]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/hvf/hvf.c
Merge tag 'pull-maintainer-may24-160524-2' of https://gitlab.com/stsquad/qemu into...
[mirror_qemu.git] / target / arm / hvf / hvf.c
1 /*
2 * QEMU Hypervisor.framework support for Apple Silicon
3
4 * Copyright 2020 Alexander Graf <agraf@csgraf.de>
5 * Copyright 2020 Google LLC
6 *
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
9 *
10 */
11
12 #include "qemu/osdep.h"
13 #include "qemu/error-report.h"
14
15 #include "sysemu/runstate.h"
16 #include "sysemu/hvf.h"
17 #include "sysemu/hvf_int.h"
18 #include "sysemu/hw_accel.h"
19 #include "hvf_arm.h"
20 #include "cpregs.h"
21
22 #include <mach/mach_time.h>
23
24 #include "exec/address-spaces.h"
25 #include "hw/irq.h"
26 #include "qemu/main-loop.h"
27 #include "sysemu/cpus.h"
28 #include "arm-powerctl.h"
29 #include "target/arm/cpu.h"
30 #include "target/arm/internals.h"
31 #include "target/arm/multiprocessing.h"
32 #include "target/arm/gtimer.h"
33 #include "trace/trace-target_arm_hvf.h"
34 #include "migration/vmstate.h"
35
36 #include "exec/gdbstub.h"
37
38 #define MDSCR_EL1_SS_SHIFT 0
39 #define MDSCR_EL1_MDE_SHIFT 15
40
41 static const uint16_t dbgbcr_regs[] = {
42 HV_SYS_REG_DBGBCR0_EL1,
43 HV_SYS_REG_DBGBCR1_EL1,
44 HV_SYS_REG_DBGBCR2_EL1,
45 HV_SYS_REG_DBGBCR3_EL1,
46 HV_SYS_REG_DBGBCR4_EL1,
47 HV_SYS_REG_DBGBCR5_EL1,
48 HV_SYS_REG_DBGBCR6_EL1,
49 HV_SYS_REG_DBGBCR7_EL1,
50 HV_SYS_REG_DBGBCR8_EL1,
51 HV_SYS_REG_DBGBCR9_EL1,
52 HV_SYS_REG_DBGBCR10_EL1,
53 HV_SYS_REG_DBGBCR11_EL1,
54 HV_SYS_REG_DBGBCR12_EL1,
55 HV_SYS_REG_DBGBCR13_EL1,
56 HV_SYS_REG_DBGBCR14_EL1,
57 HV_SYS_REG_DBGBCR15_EL1,
58 };
59
60 static const uint16_t dbgbvr_regs[] = {
61 HV_SYS_REG_DBGBVR0_EL1,
62 HV_SYS_REG_DBGBVR1_EL1,
63 HV_SYS_REG_DBGBVR2_EL1,
64 HV_SYS_REG_DBGBVR3_EL1,
65 HV_SYS_REG_DBGBVR4_EL1,
66 HV_SYS_REG_DBGBVR5_EL1,
67 HV_SYS_REG_DBGBVR6_EL1,
68 HV_SYS_REG_DBGBVR7_EL1,
69 HV_SYS_REG_DBGBVR8_EL1,
70 HV_SYS_REG_DBGBVR9_EL1,
71 HV_SYS_REG_DBGBVR10_EL1,
72 HV_SYS_REG_DBGBVR11_EL1,
73 HV_SYS_REG_DBGBVR12_EL1,
74 HV_SYS_REG_DBGBVR13_EL1,
75 HV_SYS_REG_DBGBVR14_EL1,
76 HV_SYS_REG_DBGBVR15_EL1,
77 };
78
79 static const uint16_t dbgwcr_regs[] = {
80 HV_SYS_REG_DBGWCR0_EL1,
81 HV_SYS_REG_DBGWCR1_EL1,
82 HV_SYS_REG_DBGWCR2_EL1,
83 HV_SYS_REG_DBGWCR3_EL1,
84 HV_SYS_REG_DBGWCR4_EL1,
85 HV_SYS_REG_DBGWCR5_EL1,
86 HV_SYS_REG_DBGWCR6_EL1,
87 HV_SYS_REG_DBGWCR7_EL1,
88 HV_SYS_REG_DBGWCR8_EL1,
89 HV_SYS_REG_DBGWCR9_EL1,
90 HV_SYS_REG_DBGWCR10_EL1,
91 HV_SYS_REG_DBGWCR11_EL1,
92 HV_SYS_REG_DBGWCR12_EL1,
93 HV_SYS_REG_DBGWCR13_EL1,
94 HV_SYS_REG_DBGWCR14_EL1,
95 HV_SYS_REG_DBGWCR15_EL1,
96 };
97
98 static const uint16_t dbgwvr_regs[] = {
99 HV_SYS_REG_DBGWVR0_EL1,
100 HV_SYS_REG_DBGWVR1_EL1,
101 HV_SYS_REG_DBGWVR2_EL1,
102 HV_SYS_REG_DBGWVR3_EL1,
103 HV_SYS_REG_DBGWVR4_EL1,
104 HV_SYS_REG_DBGWVR5_EL1,
105 HV_SYS_REG_DBGWVR6_EL1,
106 HV_SYS_REG_DBGWVR7_EL1,
107 HV_SYS_REG_DBGWVR8_EL1,
108 HV_SYS_REG_DBGWVR9_EL1,
109 HV_SYS_REG_DBGWVR10_EL1,
110 HV_SYS_REG_DBGWVR11_EL1,
111 HV_SYS_REG_DBGWVR12_EL1,
112 HV_SYS_REG_DBGWVR13_EL1,
113 HV_SYS_REG_DBGWVR14_EL1,
114 HV_SYS_REG_DBGWVR15_EL1,
115 };
116
117 static inline int hvf_arm_num_brps(hv_vcpu_config_t config)
118 {
119 uint64_t val;
120 hv_return_t ret;
121 ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
122 &val);
123 assert_hvf_ok(ret);
124 return FIELD_EX64(val, ID_AA64DFR0, BRPS) + 1;
125 }
126
127 static inline int hvf_arm_num_wrps(hv_vcpu_config_t config)
128 {
129 uint64_t val;
130 hv_return_t ret;
131 ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
132 &val);
133 assert_hvf_ok(ret);
134 return FIELD_EX64(val, ID_AA64DFR0, WRPS) + 1;
135 }
136
137 void hvf_arm_init_debug(void)
138 {
139 hv_vcpu_config_t config;
140 config = hv_vcpu_config_create();
141
142 max_hw_bps = hvf_arm_num_brps(config);
143 hw_breakpoints =
144 g_array_sized_new(true, true, sizeof(HWBreakpoint), max_hw_bps);
145
146 max_hw_wps = hvf_arm_num_wrps(config);
147 hw_watchpoints =
148 g_array_sized_new(true, true, sizeof(HWWatchpoint), max_hw_wps);
149 }
150
151 #define HVF_SYSREG(crn, crm, op0, op1, op2) \
152 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
153
154 #define SYSREG_OP0_SHIFT 20
155 #define SYSREG_OP0_MASK 0x3
156 #define SYSREG_OP0(sysreg) ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
157 #define SYSREG_OP1_SHIFT 14
158 #define SYSREG_OP1_MASK 0x7
159 #define SYSREG_OP1(sysreg) ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
160 #define SYSREG_CRN_SHIFT 10
161 #define SYSREG_CRN_MASK 0xf
162 #define SYSREG_CRN(sysreg) ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
163 #define SYSREG_CRM_SHIFT 1
164 #define SYSREG_CRM_MASK 0xf
165 #define SYSREG_CRM(sysreg) ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
166 #define SYSREG_OP2_SHIFT 17
167 #define SYSREG_OP2_MASK 0x7
168 #define SYSREG_OP2(sysreg) ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)
169
170 #define SYSREG(op0, op1, crn, crm, op2) \
171 ((op0 << SYSREG_OP0_SHIFT) | \
172 (op1 << SYSREG_OP1_SHIFT) | \
173 (crn << SYSREG_CRN_SHIFT) | \
174 (crm << SYSREG_CRM_SHIFT) | \
175 (op2 << SYSREG_OP2_SHIFT))
176 #define SYSREG_MASK \
177 SYSREG(SYSREG_OP0_MASK, \
178 SYSREG_OP1_MASK, \
179 SYSREG_CRN_MASK, \
180 SYSREG_CRM_MASK, \
181 SYSREG_OP2_MASK)
182 #define SYSREG_OSLAR_EL1 SYSREG(2, 0, 1, 0, 4)
183 #define SYSREG_OSLSR_EL1 SYSREG(2, 0, 1, 1, 4)
184 #define SYSREG_OSDLR_EL1 SYSREG(2, 0, 1, 3, 4)
185 #define SYSREG_CNTPCT_EL0 SYSREG(3, 3, 14, 0, 1)
186 #define SYSREG_PMCR_EL0 SYSREG(3, 3, 9, 12, 0)
187 #define SYSREG_PMUSERENR_EL0 SYSREG(3, 3, 9, 14, 0)
188 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
189 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
190 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
191 #define SYSREG_PMOVSCLR_EL0 SYSREG(3, 3, 9, 12, 3)
192 #define SYSREG_PMSWINC_EL0 SYSREG(3, 3, 9, 12, 4)
193 #define SYSREG_PMSELR_EL0 SYSREG(3, 3, 9, 12, 5)
194 #define SYSREG_PMCEID0_EL0 SYSREG(3, 3, 9, 12, 6)
195 #define SYSREG_PMCEID1_EL0 SYSREG(3, 3, 9, 12, 7)
196 #define SYSREG_PMCCNTR_EL0 SYSREG(3, 3, 9, 13, 0)
197 #define SYSREG_PMCCFILTR_EL0 SYSREG(3, 3, 14, 15, 7)
198
199 #define SYSREG_ICC_AP0R0_EL1 SYSREG(3, 0, 12, 8, 4)
200 #define SYSREG_ICC_AP0R1_EL1 SYSREG(3, 0, 12, 8, 5)
201 #define SYSREG_ICC_AP0R2_EL1 SYSREG(3, 0, 12, 8, 6)
202 #define SYSREG_ICC_AP0R3_EL1 SYSREG(3, 0, 12, 8, 7)
203 #define SYSREG_ICC_AP1R0_EL1 SYSREG(3, 0, 12, 9, 0)
204 #define SYSREG_ICC_AP1R1_EL1 SYSREG(3, 0, 12, 9, 1)
205 #define SYSREG_ICC_AP1R2_EL1 SYSREG(3, 0, 12, 9, 2)
206 #define SYSREG_ICC_AP1R3_EL1 SYSREG(3, 0, 12, 9, 3)
207 #define SYSREG_ICC_ASGI1R_EL1 SYSREG(3, 0, 12, 11, 6)
208 #define SYSREG_ICC_BPR0_EL1 SYSREG(3, 0, 12, 8, 3)
209 #define SYSREG_ICC_BPR1_EL1 SYSREG(3, 0, 12, 12, 3)
210 #define SYSREG_ICC_CTLR_EL1 SYSREG(3, 0, 12, 12, 4)
211 #define SYSREG_ICC_DIR_EL1 SYSREG(3, 0, 12, 11, 1)
212 #define SYSREG_ICC_EOIR0_EL1 SYSREG(3, 0, 12, 8, 1)
213 #define SYSREG_ICC_EOIR1_EL1 SYSREG(3, 0, 12, 12, 1)
214 #define SYSREG_ICC_HPPIR0_EL1 SYSREG(3, 0, 12, 8, 2)
215 #define SYSREG_ICC_HPPIR1_EL1 SYSREG(3, 0, 12, 12, 2)
216 #define SYSREG_ICC_IAR0_EL1 SYSREG(3, 0, 12, 8, 0)
217 #define SYSREG_ICC_IAR1_EL1 SYSREG(3, 0, 12, 12, 0)
218 #define SYSREG_ICC_IGRPEN0_EL1 SYSREG(3, 0, 12, 12, 6)
219 #define SYSREG_ICC_IGRPEN1_EL1 SYSREG(3, 0, 12, 12, 7)
220 #define SYSREG_ICC_PMR_EL1 SYSREG(3, 0, 4, 6, 0)
221 #define SYSREG_ICC_RPR_EL1 SYSREG(3, 0, 12, 11, 3)
222 #define SYSREG_ICC_SGI0R_EL1 SYSREG(3, 0, 12, 11, 7)
223 #define SYSREG_ICC_SGI1R_EL1 SYSREG(3, 0, 12, 11, 5)
224 #define SYSREG_ICC_SRE_EL1 SYSREG(3, 0, 12, 12, 5)
225
226 #define SYSREG_MDSCR_EL1 SYSREG(2, 0, 0, 2, 2)
227 #define SYSREG_DBGBVR0_EL1 SYSREG(2, 0, 0, 0, 4)
228 #define SYSREG_DBGBCR0_EL1 SYSREG(2, 0, 0, 0, 5)
229 #define SYSREG_DBGWVR0_EL1 SYSREG(2, 0, 0, 0, 6)
230 #define SYSREG_DBGWCR0_EL1 SYSREG(2, 0, 0, 0, 7)
231 #define SYSREG_DBGBVR1_EL1 SYSREG(2, 0, 0, 1, 4)
232 #define SYSREG_DBGBCR1_EL1 SYSREG(2, 0, 0, 1, 5)
233 #define SYSREG_DBGWVR1_EL1 SYSREG(2, 0, 0, 1, 6)
234 #define SYSREG_DBGWCR1_EL1 SYSREG(2, 0, 0, 1, 7)
235 #define SYSREG_DBGBVR2_EL1 SYSREG(2, 0, 0, 2, 4)
236 #define SYSREG_DBGBCR2_EL1 SYSREG(2, 0, 0, 2, 5)
237 #define SYSREG_DBGWVR2_EL1 SYSREG(2, 0, 0, 2, 6)
238 #define SYSREG_DBGWCR2_EL1 SYSREG(2, 0, 0, 2, 7)
239 #define SYSREG_DBGBVR3_EL1 SYSREG(2, 0, 0, 3, 4)
240 #define SYSREG_DBGBCR3_EL1 SYSREG(2, 0, 0, 3, 5)
241 #define SYSREG_DBGWVR3_EL1 SYSREG(2, 0, 0, 3, 6)
242 #define SYSREG_DBGWCR3_EL1 SYSREG(2, 0, 0, 3, 7)
243 #define SYSREG_DBGBVR4_EL1 SYSREG(2, 0, 0, 4, 4)
244 #define SYSREG_DBGBCR4_EL1 SYSREG(2, 0, 0, 4, 5)
245 #define SYSREG_DBGWVR4_EL1 SYSREG(2, 0, 0, 4, 6)
246 #define SYSREG_DBGWCR4_EL1 SYSREG(2, 0, 0, 4, 7)
247 #define SYSREG_DBGBVR5_EL1 SYSREG(2, 0, 0, 5, 4)
248 #define SYSREG_DBGBCR5_EL1 SYSREG(2, 0, 0, 5, 5)
249 #define SYSREG_DBGWVR5_EL1 SYSREG(2, 0, 0, 5, 6)
250 #define SYSREG_DBGWCR5_EL1 SYSREG(2, 0, 0, 5, 7)
251 #define SYSREG_DBGBVR6_EL1 SYSREG(2, 0, 0, 6, 4)
252 #define SYSREG_DBGBCR6_EL1 SYSREG(2, 0, 0, 6, 5)
253 #define SYSREG_DBGWVR6_EL1 SYSREG(2, 0, 0, 6, 6)
254 #define SYSREG_DBGWCR6_EL1 SYSREG(2, 0, 0, 6, 7)
255 #define SYSREG_DBGBVR7_EL1 SYSREG(2, 0, 0, 7, 4)
256 #define SYSREG_DBGBCR7_EL1 SYSREG(2, 0, 0, 7, 5)
257 #define SYSREG_DBGWVR7_EL1 SYSREG(2, 0, 0, 7, 6)
258 #define SYSREG_DBGWCR7_EL1 SYSREG(2, 0, 0, 7, 7)
259 #define SYSREG_DBGBVR8_EL1 SYSREG(2, 0, 0, 8, 4)
260 #define SYSREG_DBGBCR8_EL1 SYSREG(2, 0, 0, 8, 5)
261 #define SYSREG_DBGWVR8_EL1 SYSREG(2, 0, 0, 8, 6)
262 #define SYSREG_DBGWCR8_EL1 SYSREG(2, 0, 0, 8, 7)
263 #define SYSREG_DBGBVR9_EL1 SYSREG(2, 0, 0, 9, 4)
264 #define SYSREG_DBGBCR9_EL1 SYSREG(2, 0, 0, 9, 5)
265 #define SYSREG_DBGWVR9_EL1 SYSREG(2, 0, 0, 9, 6)
266 #define SYSREG_DBGWCR9_EL1 SYSREG(2, 0, 0, 9, 7)
267 #define SYSREG_DBGBVR10_EL1 SYSREG(2, 0, 0, 10, 4)
268 #define SYSREG_DBGBCR10_EL1 SYSREG(2, 0, 0, 10, 5)
269 #define SYSREG_DBGWVR10_EL1 SYSREG(2, 0, 0, 10, 6)
270 #define SYSREG_DBGWCR10_EL1 SYSREG(2, 0, 0, 10, 7)
271 #define SYSREG_DBGBVR11_EL1 SYSREG(2, 0, 0, 11, 4)
272 #define SYSREG_DBGBCR11_EL1 SYSREG(2, 0, 0, 11, 5)
273 #define SYSREG_DBGWVR11_EL1 SYSREG(2, 0, 0, 11, 6)
274 #define SYSREG_DBGWCR11_EL1 SYSREG(2, 0, 0, 11, 7)
275 #define SYSREG_DBGBVR12_EL1 SYSREG(2, 0, 0, 12, 4)
276 #define SYSREG_DBGBCR12_EL1 SYSREG(2, 0, 0, 12, 5)
277 #define SYSREG_DBGWVR12_EL1 SYSREG(2, 0, 0, 12, 6)
278 #define SYSREG_DBGWCR12_EL1 SYSREG(2, 0, 0, 12, 7)
279 #define SYSREG_DBGBVR13_EL1 SYSREG(2, 0, 0, 13, 4)
280 #define SYSREG_DBGBCR13_EL1 SYSREG(2, 0, 0, 13, 5)
281 #define SYSREG_DBGWVR13_EL1 SYSREG(2, 0, 0, 13, 6)
282 #define SYSREG_DBGWCR13_EL1 SYSREG(2, 0, 0, 13, 7)
283 #define SYSREG_DBGBVR14_EL1 SYSREG(2, 0, 0, 14, 4)
284 #define SYSREG_DBGBCR14_EL1 SYSREG(2, 0, 0, 14, 5)
285 #define SYSREG_DBGWVR14_EL1 SYSREG(2, 0, 0, 14, 6)
286 #define SYSREG_DBGWCR14_EL1 SYSREG(2, 0, 0, 14, 7)
287 #define SYSREG_DBGBVR15_EL1 SYSREG(2, 0, 0, 15, 4)
288 #define SYSREG_DBGBCR15_EL1 SYSREG(2, 0, 0, 15, 5)
289 #define SYSREG_DBGWVR15_EL1 SYSREG(2, 0, 0, 15, 6)
290 #define SYSREG_DBGWCR15_EL1 SYSREG(2, 0, 0, 15, 7)
291
292 #define WFX_IS_WFE (1 << 0)
293
294 #define TMR_CTL_ENABLE (1 << 0)
295 #define TMR_CTL_IMASK (1 << 1)
296 #define TMR_CTL_ISTATUS (1 << 2)
297
298 static void hvf_wfi(CPUState *cpu);
299
300 typedef struct HVFVTimer {
301 /* Vtimer value during migration and paused state */
302 uint64_t vtimer_val;
303 } HVFVTimer;
304
305 static HVFVTimer vtimer;
306
307 typedef struct ARMHostCPUFeatures {
308 ARMISARegisters isar;
309 uint64_t features;
310 uint64_t midr;
311 uint32_t reset_sctlr;
312 const char *dtb_compatible;
313 } ARMHostCPUFeatures;
314
315 static ARMHostCPUFeatures arm_host_cpu_features;
316
317 struct hvf_reg_match {
318 int reg;
319 uint64_t offset;
320 };
321
322 static const struct hvf_reg_match hvf_reg_match[] = {
323 { HV_REG_X0, offsetof(CPUARMState, xregs[0]) },
324 { HV_REG_X1, offsetof(CPUARMState, xregs[1]) },
325 { HV_REG_X2, offsetof(CPUARMState, xregs[2]) },
326 { HV_REG_X3, offsetof(CPUARMState, xregs[3]) },
327 { HV_REG_X4, offsetof(CPUARMState, xregs[4]) },
328 { HV_REG_X5, offsetof(CPUARMState, xregs[5]) },
329 { HV_REG_X6, offsetof(CPUARMState, xregs[6]) },
330 { HV_REG_X7, offsetof(CPUARMState, xregs[7]) },
331 { HV_REG_X8, offsetof(CPUARMState, xregs[8]) },
332 { HV_REG_X9, offsetof(CPUARMState, xregs[9]) },
333 { HV_REG_X10, offsetof(CPUARMState, xregs[10]) },
334 { HV_REG_X11, offsetof(CPUARMState, xregs[11]) },
335 { HV_REG_X12, offsetof(CPUARMState, xregs[12]) },
336 { HV_REG_X13, offsetof(CPUARMState, xregs[13]) },
337 { HV_REG_X14, offsetof(CPUARMState, xregs[14]) },
338 { HV_REG_X15, offsetof(CPUARMState, xregs[15]) },
339 { HV_REG_X16, offsetof(CPUARMState, xregs[16]) },
340 { HV_REG_X17, offsetof(CPUARMState, xregs[17]) },
341 { HV_REG_X18, offsetof(CPUARMState, xregs[18]) },
342 { HV_REG_X19, offsetof(CPUARMState, xregs[19]) },
343 { HV_REG_X20, offsetof(CPUARMState, xregs[20]) },
344 { HV_REG_X21, offsetof(CPUARMState, xregs[21]) },
345 { HV_REG_X22, offsetof(CPUARMState, xregs[22]) },
346 { HV_REG_X23, offsetof(CPUARMState, xregs[23]) },
347 { HV_REG_X24, offsetof(CPUARMState, xregs[24]) },
348 { HV_REG_X25, offsetof(CPUARMState, xregs[25]) },
349 { HV_REG_X26, offsetof(CPUARMState, xregs[26]) },
350 { HV_REG_X27, offsetof(CPUARMState, xregs[27]) },
351 { HV_REG_X28, offsetof(CPUARMState, xregs[28]) },
352 { HV_REG_X29, offsetof(CPUARMState, xregs[29]) },
353 { HV_REG_X30, offsetof(CPUARMState, xregs[30]) },
354 { HV_REG_PC, offsetof(CPUARMState, pc) },
355 };
356
357 static const struct hvf_reg_match hvf_fpreg_match[] = {
358 { HV_SIMD_FP_REG_Q0, offsetof(CPUARMState, vfp.zregs[0]) },
359 { HV_SIMD_FP_REG_Q1, offsetof(CPUARMState, vfp.zregs[1]) },
360 { HV_SIMD_FP_REG_Q2, offsetof(CPUARMState, vfp.zregs[2]) },
361 { HV_SIMD_FP_REG_Q3, offsetof(CPUARMState, vfp.zregs[3]) },
362 { HV_SIMD_FP_REG_Q4, offsetof(CPUARMState, vfp.zregs[4]) },
363 { HV_SIMD_FP_REG_Q5, offsetof(CPUARMState, vfp.zregs[5]) },
364 { HV_SIMD_FP_REG_Q6, offsetof(CPUARMState, vfp.zregs[6]) },
365 { HV_SIMD_FP_REG_Q7, offsetof(CPUARMState, vfp.zregs[7]) },
366 { HV_SIMD_FP_REG_Q8, offsetof(CPUARMState, vfp.zregs[8]) },
367 { HV_SIMD_FP_REG_Q9, offsetof(CPUARMState, vfp.zregs[9]) },
368 { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
369 { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
370 { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
371 { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
372 { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
373 { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
374 { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
375 { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
376 { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
377 { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
378 { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
379 { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
380 { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
381 { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
382 { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
383 { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
384 { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
385 { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
386 { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
387 { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
388 { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
389 { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
390 };
391
392 struct hvf_sreg_match {
393 int reg;
394 uint32_t key;
395 uint32_t cp_idx;
396 };
397
398 static struct hvf_sreg_match hvf_sreg_match[] = {
399 { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
400 { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
401 { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
402 { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
403
404 { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
405 { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
406 { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
407 { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
408
409 { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
410 { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
411 { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
412 { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
413
414 { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
415 { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
416 { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
417 { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
418
419 { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
420 { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
421 { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
422 { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
423
424 { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
425 { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
426 { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
427 { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
428
429 { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
430 { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
431 { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
432 { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
433
434 { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
435 { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
436 { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
437 { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
438
439 { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
440 { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
441 { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
442 { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
443
444 { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
445 { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
446 { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
447 { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
448
449 { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
450 { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
451 { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
452 { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
453
454 { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
455 { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
456 { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
457 { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
458
459 { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
460 { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
461 { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
462 { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
463
464 { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
465 { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
466 { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
467 { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
468
469 { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
470 { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
471 { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
472 { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
473
474 { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
475 { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
476 { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
477 { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
478
479 #ifdef SYNC_NO_RAW_REGS
480 /*
481 * The registers below are manually synced on init because they are
482 * marked as NO_RAW. We still list them to make number space sync easier.
483 */
484 { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
485 { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
486 { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
487 { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
488 #endif
489 { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
490 { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
491 { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
492 { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
493 { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
494 #ifdef SYNC_NO_MMFR0
495 /* We keep the hardware MMFR0 around. HW limits are there anyway */
496 { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
497 #endif
498 { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
499 { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
500 /* Add ID_AA64MMFR3_EL1 here when HVF supports it */
501
502 { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
503 { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
504 { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
505 { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
506 { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
507 { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
508
509 { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
510 { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
511 { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
512 { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
513 { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
514 { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
515 { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
516 { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
517 { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
518 { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
519
520 { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
521 { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
522 { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
523 { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
524 { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
525 { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
526 { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
527 { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
528 { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
529 { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
530 { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
531 { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
532 { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
533 { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
534 { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
535 { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
536 { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
537 { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
538 { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
539 { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
540 };
541
542 int hvf_get_registers(CPUState *cpu)
543 {
544 ARMCPU *arm_cpu = ARM_CPU(cpu);
545 CPUARMState *env = &arm_cpu->env;
546 hv_return_t ret;
547 uint64_t val;
548 hv_simd_fp_uchar16_t fpval;
549 int i;
550
551 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
552 ret = hv_vcpu_get_reg(cpu->accel->fd, hvf_reg_match[i].reg, &val);
553 *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
554 assert_hvf_ok(ret);
555 }
556
557 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
558 ret = hv_vcpu_get_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
559 &fpval);
560 memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
561 assert_hvf_ok(ret);
562 }
563
564 val = 0;
565 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPCR, &val);
566 assert_hvf_ok(ret);
567 vfp_set_fpcr(env, val);
568
569 val = 0;
570 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPSR, &val);
571 assert_hvf_ok(ret);
572 vfp_set_fpsr(env, val);
573
574 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_CPSR, &val);
575 assert_hvf_ok(ret);
576 pstate_write(env, val);
577
578 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
579 if (hvf_sreg_match[i].cp_idx == -1) {
580 continue;
581 }
582
583 if (cpu->accel->guest_debug_enabled) {
584 /* Handle debug registers */
585 switch (hvf_sreg_match[i].reg) {
586 case HV_SYS_REG_DBGBVR0_EL1:
587 case HV_SYS_REG_DBGBCR0_EL1:
588 case HV_SYS_REG_DBGWVR0_EL1:
589 case HV_SYS_REG_DBGWCR0_EL1:
590 case HV_SYS_REG_DBGBVR1_EL1:
591 case HV_SYS_REG_DBGBCR1_EL1:
592 case HV_SYS_REG_DBGWVR1_EL1:
593 case HV_SYS_REG_DBGWCR1_EL1:
594 case HV_SYS_REG_DBGBVR2_EL1:
595 case HV_SYS_REG_DBGBCR2_EL1:
596 case HV_SYS_REG_DBGWVR2_EL1:
597 case HV_SYS_REG_DBGWCR2_EL1:
598 case HV_SYS_REG_DBGBVR3_EL1:
599 case HV_SYS_REG_DBGBCR3_EL1:
600 case HV_SYS_REG_DBGWVR3_EL1:
601 case HV_SYS_REG_DBGWCR3_EL1:
602 case HV_SYS_REG_DBGBVR4_EL1:
603 case HV_SYS_REG_DBGBCR4_EL1:
604 case HV_SYS_REG_DBGWVR4_EL1:
605 case HV_SYS_REG_DBGWCR4_EL1:
606 case HV_SYS_REG_DBGBVR5_EL1:
607 case HV_SYS_REG_DBGBCR5_EL1:
608 case HV_SYS_REG_DBGWVR5_EL1:
609 case HV_SYS_REG_DBGWCR5_EL1:
610 case HV_SYS_REG_DBGBVR6_EL1:
611 case HV_SYS_REG_DBGBCR6_EL1:
612 case HV_SYS_REG_DBGWVR6_EL1:
613 case HV_SYS_REG_DBGWCR6_EL1:
614 case HV_SYS_REG_DBGBVR7_EL1:
615 case HV_SYS_REG_DBGBCR7_EL1:
616 case HV_SYS_REG_DBGWVR7_EL1:
617 case HV_SYS_REG_DBGWCR7_EL1:
618 case HV_SYS_REG_DBGBVR8_EL1:
619 case HV_SYS_REG_DBGBCR8_EL1:
620 case HV_SYS_REG_DBGWVR8_EL1:
621 case HV_SYS_REG_DBGWCR8_EL1:
622 case HV_SYS_REG_DBGBVR9_EL1:
623 case HV_SYS_REG_DBGBCR9_EL1:
624 case HV_SYS_REG_DBGWVR9_EL1:
625 case HV_SYS_REG_DBGWCR9_EL1:
626 case HV_SYS_REG_DBGBVR10_EL1:
627 case HV_SYS_REG_DBGBCR10_EL1:
628 case HV_SYS_REG_DBGWVR10_EL1:
629 case HV_SYS_REG_DBGWCR10_EL1:
630 case HV_SYS_REG_DBGBVR11_EL1:
631 case HV_SYS_REG_DBGBCR11_EL1:
632 case HV_SYS_REG_DBGWVR11_EL1:
633 case HV_SYS_REG_DBGWCR11_EL1:
634 case HV_SYS_REG_DBGBVR12_EL1:
635 case HV_SYS_REG_DBGBCR12_EL1:
636 case HV_SYS_REG_DBGWVR12_EL1:
637 case HV_SYS_REG_DBGWCR12_EL1:
638 case HV_SYS_REG_DBGBVR13_EL1:
639 case HV_SYS_REG_DBGBCR13_EL1:
640 case HV_SYS_REG_DBGWVR13_EL1:
641 case HV_SYS_REG_DBGWCR13_EL1:
642 case HV_SYS_REG_DBGBVR14_EL1:
643 case HV_SYS_REG_DBGBCR14_EL1:
644 case HV_SYS_REG_DBGWVR14_EL1:
645 case HV_SYS_REG_DBGWCR14_EL1:
646 case HV_SYS_REG_DBGBVR15_EL1:
647 case HV_SYS_REG_DBGBCR15_EL1:
648 case HV_SYS_REG_DBGWVR15_EL1:
649 case HV_SYS_REG_DBGWCR15_EL1: {
650 /*
651 * If the guest is being debugged, the vCPU's debug registers
652 * are holding the gdbstub's view of the registers (set in
653 * hvf_arch_update_guest_debug()).
654 * Since the environment is used to store only the guest's view
655 * of the registers, don't update it with the values from the
656 * vCPU but simply keep the values from the previous
657 * environment.
658 */
659 const ARMCPRegInfo *ri;
660 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_sreg_match[i].key);
661 val = read_raw_cp_reg(env, ri);
662
663 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
664 continue;
665 }
666 }
667 }
668
669 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, &val);
670 assert_hvf_ok(ret);
671
672 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
673 }
674 assert(write_list_to_cpustate(arm_cpu));
675
676 aarch64_restore_sp(env, arm_current_el(env));
677
678 return 0;
679 }
680
681 int hvf_put_registers(CPUState *cpu)
682 {
683 ARMCPU *arm_cpu = ARM_CPU(cpu);
684 CPUARMState *env = &arm_cpu->env;
685 hv_return_t ret;
686 uint64_t val;
687 hv_simd_fp_uchar16_t fpval;
688 int i;
689
690 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
691 val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
692 ret = hv_vcpu_set_reg(cpu->accel->fd, hvf_reg_match[i].reg, val);
693 assert_hvf_ok(ret);
694 }
695
696 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
697 memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
698 ret = hv_vcpu_set_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
699 fpval);
700 assert_hvf_ok(ret);
701 }
702
703 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPCR, vfp_get_fpcr(env));
704 assert_hvf_ok(ret);
705
706 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPSR, vfp_get_fpsr(env));
707 assert_hvf_ok(ret);
708
709 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_CPSR, pstate_read(env));
710 assert_hvf_ok(ret);
711
712 aarch64_save_sp(env, arm_current_el(env));
713
714 assert(write_cpustate_to_list(arm_cpu, false));
715 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
716 if (hvf_sreg_match[i].cp_idx == -1) {
717 continue;
718 }
719
720 if (cpu->accel->guest_debug_enabled) {
721 /* Handle debug registers */
722 switch (hvf_sreg_match[i].reg) {
723 case HV_SYS_REG_DBGBVR0_EL1:
724 case HV_SYS_REG_DBGBCR0_EL1:
725 case HV_SYS_REG_DBGWVR0_EL1:
726 case HV_SYS_REG_DBGWCR0_EL1:
727 case HV_SYS_REG_DBGBVR1_EL1:
728 case HV_SYS_REG_DBGBCR1_EL1:
729 case HV_SYS_REG_DBGWVR1_EL1:
730 case HV_SYS_REG_DBGWCR1_EL1:
731 case HV_SYS_REG_DBGBVR2_EL1:
732 case HV_SYS_REG_DBGBCR2_EL1:
733 case HV_SYS_REG_DBGWVR2_EL1:
734 case HV_SYS_REG_DBGWCR2_EL1:
735 case HV_SYS_REG_DBGBVR3_EL1:
736 case HV_SYS_REG_DBGBCR3_EL1:
737 case HV_SYS_REG_DBGWVR3_EL1:
738 case HV_SYS_REG_DBGWCR3_EL1:
739 case HV_SYS_REG_DBGBVR4_EL1:
740 case HV_SYS_REG_DBGBCR4_EL1:
741 case HV_SYS_REG_DBGWVR4_EL1:
742 case HV_SYS_REG_DBGWCR4_EL1:
743 case HV_SYS_REG_DBGBVR5_EL1:
744 case HV_SYS_REG_DBGBCR5_EL1:
745 case HV_SYS_REG_DBGWVR5_EL1:
746 case HV_SYS_REG_DBGWCR5_EL1:
747 case HV_SYS_REG_DBGBVR6_EL1:
748 case HV_SYS_REG_DBGBCR6_EL1:
749 case HV_SYS_REG_DBGWVR6_EL1:
750 case HV_SYS_REG_DBGWCR6_EL1:
751 case HV_SYS_REG_DBGBVR7_EL1:
752 case HV_SYS_REG_DBGBCR7_EL1:
753 case HV_SYS_REG_DBGWVR7_EL1:
754 case HV_SYS_REG_DBGWCR7_EL1:
755 case HV_SYS_REG_DBGBVR8_EL1:
756 case HV_SYS_REG_DBGBCR8_EL1:
757 case HV_SYS_REG_DBGWVR8_EL1:
758 case HV_SYS_REG_DBGWCR8_EL1:
759 case HV_SYS_REG_DBGBVR9_EL1:
760 case HV_SYS_REG_DBGBCR9_EL1:
761 case HV_SYS_REG_DBGWVR9_EL1:
762 case HV_SYS_REG_DBGWCR9_EL1:
763 case HV_SYS_REG_DBGBVR10_EL1:
764 case HV_SYS_REG_DBGBCR10_EL1:
765 case HV_SYS_REG_DBGWVR10_EL1:
766 case HV_SYS_REG_DBGWCR10_EL1:
767 case HV_SYS_REG_DBGBVR11_EL1:
768 case HV_SYS_REG_DBGBCR11_EL1:
769 case HV_SYS_REG_DBGWVR11_EL1:
770 case HV_SYS_REG_DBGWCR11_EL1:
771 case HV_SYS_REG_DBGBVR12_EL1:
772 case HV_SYS_REG_DBGBCR12_EL1:
773 case HV_SYS_REG_DBGWVR12_EL1:
774 case HV_SYS_REG_DBGWCR12_EL1:
775 case HV_SYS_REG_DBGBVR13_EL1:
776 case HV_SYS_REG_DBGBCR13_EL1:
777 case HV_SYS_REG_DBGWVR13_EL1:
778 case HV_SYS_REG_DBGWCR13_EL1:
779 case HV_SYS_REG_DBGBVR14_EL1:
780 case HV_SYS_REG_DBGBCR14_EL1:
781 case HV_SYS_REG_DBGWVR14_EL1:
782 case HV_SYS_REG_DBGWCR14_EL1:
783 case HV_SYS_REG_DBGBVR15_EL1:
784 case HV_SYS_REG_DBGBCR15_EL1:
785 case HV_SYS_REG_DBGWVR15_EL1:
786 case HV_SYS_REG_DBGWCR15_EL1:
787 /*
788 * If the guest is being debugged, the vCPU's debug registers
789 * are already holding the gdbstub's view of the registers (set
790 * in hvf_arch_update_guest_debug()).
791 */
792 continue;
793 }
794 }
795
796 val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
797 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, val);
798 assert_hvf_ok(ret);
799 }
800
801 ret = hv_vcpu_set_vtimer_offset(cpu->accel->fd, hvf_state->vtimer_offset);
802 assert_hvf_ok(ret);
803
804 return 0;
805 }
806
807 static void flush_cpu_state(CPUState *cpu)
808 {
809 if (cpu->accel->dirty) {
810 hvf_put_registers(cpu);
811 cpu->accel->dirty = false;
812 }
813 }
814
815 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
816 {
817 hv_return_t r;
818
819 flush_cpu_state(cpu);
820
821 if (rt < 31) {
822 r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_X0 + rt, val);
823 assert_hvf_ok(r);
824 }
825 }
826
827 static uint64_t hvf_get_reg(CPUState *cpu, int rt)
828 {
829 uint64_t val = 0;
830 hv_return_t r;
831
832 flush_cpu_state(cpu);
833
834 if (rt < 31) {
835 r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_X0 + rt, &val);
836 assert_hvf_ok(r);
837 }
838
839 return val;
840 }
841
842 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
843 {
844 ARMISARegisters host_isar = {};
845 const struct isar_regs {
846 int reg;
847 uint64_t *val;
848 } regs[] = {
849 { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
850 { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
851 { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
852 { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
853 { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
854 { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
855 /* Add ID_AA64ISAR2_EL1 here when HVF supports it */
856 { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
857 { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
858 { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
859 /* Add ID_AA64MMFR3_EL1 here when HVF supports it */
860 };
861 hv_vcpu_t fd;
862 hv_return_t r = HV_SUCCESS;
863 hv_vcpu_exit_t *exit;
864 int i;
865
866 ahcf->dtb_compatible = "arm,arm-v8";
867 ahcf->features = (1ULL << ARM_FEATURE_V8) |
868 (1ULL << ARM_FEATURE_NEON) |
869 (1ULL << ARM_FEATURE_AARCH64) |
870 (1ULL << ARM_FEATURE_PMU) |
871 (1ULL << ARM_FEATURE_GENERIC_TIMER);
872
873 /* We set up a small vcpu to extract host registers */
874
875 if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
876 return false;
877 }
878
879 for (i = 0; i < ARRAY_SIZE(regs); i++) {
880 r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
881 }
882 r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
883 r |= hv_vcpu_destroy(fd);
884
885 ahcf->isar = host_isar;
886
887 /*
888 * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
889 * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
890 */
891 ahcf->reset_sctlr = 0x30100180;
892 /*
893 * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
894 * let's disable it on boot and then allow guest software to turn it on by
895 * setting it to 0.
896 */
897 ahcf->reset_sctlr |= 0x00800000;
898
899 /* Make sure we don't advertise AArch32 support for EL0/EL1 */
900 if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
901 return false;
902 }
903
904 return r == HV_SUCCESS;
905 }
906
907 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
908 {
909 if (!arm_host_cpu_features.dtb_compatible) {
910 if (!hvf_enabled() ||
911 !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
912 /*
913 * We can't report this error yet, so flag that we need to
914 * in arm_cpu_realizefn().
915 */
916 cpu->host_cpu_probe_failed = true;
917 return;
918 }
919 }
920
921 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
922 cpu->isar = arm_host_cpu_features.isar;
923 cpu->env.features = arm_host_cpu_features.features;
924 cpu->midr = arm_host_cpu_features.midr;
925 cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
926 }
927
928 void hvf_arch_vcpu_destroy(CPUState *cpu)
929 {
930 }
931
932 int hvf_arch_init_vcpu(CPUState *cpu)
933 {
934 ARMCPU *arm_cpu = ARM_CPU(cpu);
935 CPUARMState *env = &arm_cpu->env;
936 uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
937 uint32_t sregs_cnt = 0;
938 uint64_t pfr;
939 hv_return_t ret;
940 int i;
941
942 env->aarch64 = true;
943 asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
944
945 /* Allocate enough space for our sysreg sync */
946 arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
947 sregs_match_len);
948 arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
949 sregs_match_len);
950 arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
951 arm_cpu->cpreg_vmstate_indexes,
952 sregs_match_len);
953 arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
954 arm_cpu->cpreg_vmstate_values,
955 sregs_match_len);
956
957 memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
958
959 /* Populate cp list for all known sysregs */
960 for (i = 0; i < sregs_match_len; i++) {
961 const ARMCPRegInfo *ri;
962 uint32_t key = hvf_sreg_match[i].key;
963
964 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
965 if (ri) {
966 assert(!(ri->type & ARM_CP_NO_RAW));
967 hvf_sreg_match[i].cp_idx = sregs_cnt;
968 arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
969 } else {
970 hvf_sreg_match[i].cp_idx = -1;
971 }
972 }
973 arm_cpu->cpreg_array_len = sregs_cnt;
974 arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
975
976 assert(write_cpustate_to_list(arm_cpu, false));
977
978 /* Set CP_NO_RAW system registers on init */
979 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MIDR_EL1,
980 arm_cpu->midr);
981 assert_hvf_ok(ret);
982
983 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MPIDR_EL1,
984 arm_cpu->mp_affinity);
985 assert_hvf_ok(ret);
986
987 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
988 assert_hvf_ok(ret);
989 pfr |= env->gicv3state ? (1 << 24) : 0;
990 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
991 assert_hvf_ok(ret);
992
993 /* We're limited to underlying hardware caps, override internal versions */
994 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
995 &arm_cpu->isar.id_aa64mmfr0);
996 assert_hvf_ok(ret);
997
998 return 0;
999 }
1000
1001 void hvf_kick_vcpu_thread(CPUState *cpu)
1002 {
1003 cpus_kick_thread(cpu);
1004 hv_vcpus_exit(&cpu->accel->fd, 1);
1005 }
1006
1007 static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
1008 uint32_t syndrome)
1009 {
1010 ARMCPU *arm_cpu = ARM_CPU(cpu);
1011 CPUARMState *env = &arm_cpu->env;
1012
1013 cpu->exception_index = excp;
1014 env->exception.target_el = 1;
1015 env->exception.syndrome = syndrome;
1016
1017 arm_cpu_do_interrupt(cpu);
1018 }
1019
1020 static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
1021 {
1022 int32_t ret = arm_set_cpu_off(arm_cpu_mp_affinity(arm_cpu));
1023 assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
1024 }
1025
1026 /*
1027 * Handle a PSCI call.
1028 *
1029 * Returns 0 on success
1030 * -1 when the PSCI call is unknown,
1031 */
1032 static bool hvf_handle_psci_call(CPUState *cpu)
1033 {
1034 ARMCPU *arm_cpu = ARM_CPU(cpu);
1035 CPUARMState *env = &arm_cpu->env;
1036 uint64_t param[4] = {
1037 env->xregs[0],
1038 env->xregs[1],
1039 env->xregs[2],
1040 env->xregs[3]
1041 };
1042 uint64_t context_id, mpidr;
1043 bool target_aarch64 = true;
1044 CPUState *target_cpu_state;
1045 ARMCPU *target_cpu;
1046 target_ulong entry;
1047 int target_el = 1;
1048 int32_t ret = 0;
1049
1050 trace_hvf_psci_call(param[0], param[1], param[2], param[3],
1051 arm_cpu_mp_affinity(arm_cpu));
1052
1053 switch (param[0]) {
1054 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1055 ret = QEMU_PSCI_VERSION_1_1;
1056 break;
1057 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1058 ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
1059 break;
1060 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1061 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1062 mpidr = param[1];
1063
1064 switch (param[2]) {
1065 case 0:
1066 target_cpu_state = arm_get_cpu_by_id(mpidr);
1067 if (!target_cpu_state) {
1068 ret = QEMU_PSCI_RET_INVALID_PARAMS;
1069 break;
1070 }
1071 target_cpu = ARM_CPU(target_cpu_state);
1072
1073 ret = target_cpu->power_state;
1074 break;
1075 default:
1076 /* Everything above affinity level 0 is always on. */
1077 ret = 0;
1078 }
1079 break;
1080 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1081 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1082 /*
1083 * QEMU reset and shutdown are async requests, but PSCI
1084 * mandates that we never return from the reset/shutdown
1085 * call, so power the CPU off now so it doesn't execute
1086 * anything further.
1087 */
1088 hvf_psci_cpu_off(arm_cpu);
1089 break;
1090 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1091 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1092 hvf_psci_cpu_off(arm_cpu);
1093 break;
1094 case QEMU_PSCI_0_1_FN_CPU_ON:
1095 case QEMU_PSCI_0_2_FN_CPU_ON:
1096 case QEMU_PSCI_0_2_FN64_CPU_ON:
1097 mpidr = param[1];
1098 entry = param[2];
1099 context_id = param[3];
1100 ret = arm_set_cpu_on(mpidr, entry, context_id,
1101 target_el, target_aarch64);
1102 break;
1103 case QEMU_PSCI_0_1_FN_CPU_OFF:
1104 case QEMU_PSCI_0_2_FN_CPU_OFF:
1105 hvf_psci_cpu_off(arm_cpu);
1106 break;
1107 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1108 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1109 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1110 /* Affinity levels are not supported in QEMU */
1111 if (param[1] & 0xfffe0000) {
1112 ret = QEMU_PSCI_RET_INVALID_PARAMS;
1113 break;
1114 }
1115 /* Powerdown is not supported, we always go into WFI */
1116 env->xregs[0] = 0;
1117 hvf_wfi(cpu);
1118 break;
1119 case QEMU_PSCI_0_1_FN_MIGRATE:
1120 case QEMU_PSCI_0_2_FN_MIGRATE:
1121 ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1122 break;
1123 case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1124 switch (param[1]) {
1125 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1126 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1127 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1128 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1129 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1130 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1131 case QEMU_PSCI_0_1_FN_CPU_ON:
1132 case QEMU_PSCI_0_2_FN_CPU_ON:
1133 case QEMU_PSCI_0_2_FN64_CPU_ON:
1134 case QEMU_PSCI_0_1_FN_CPU_OFF:
1135 case QEMU_PSCI_0_2_FN_CPU_OFF:
1136 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1137 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1138 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1139 case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1140 ret = 0;
1141 break;
1142 case QEMU_PSCI_0_1_FN_MIGRATE:
1143 case QEMU_PSCI_0_2_FN_MIGRATE:
1144 default:
1145 ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1146 }
1147 break;
1148 default:
1149 return false;
1150 }
1151
1152 env->xregs[0] = ret;
1153 return true;
1154 }
1155
1156 static bool is_id_sysreg(uint32_t reg)
1157 {
1158 return SYSREG_OP0(reg) == 3 &&
1159 SYSREG_OP1(reg) == 0 &&
1160 SYSREG_CRN(reg) == 0 &&
1161 SYSREG_CRM(reg) >= 1 &&
1162 SYSREG_CRM(reg) < 8;
1163 }
1164
1165 static uint32_t hvf_reg2cp_reg(uint32_t reg)
1166 {
1167 return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1168 (reg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK,
1169 (reg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK,
1170 (reg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK,
1171 (reg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK,
1172 (reg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK);
1173 }
1174
1175 static bool hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg, uint64_t *val)
1176 {
1177 ARMCPU *arm_cpu = ARM_CPU(cpu);
1178 CPUARMState *env = &arm_cpu->env;
1179 const ARMCPRegInfo *ri;
1180
1181 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1182 if (ri) {
1183 if (ri->accessfn) {
1184 if (ri->accessfn(env, ri, true) != CP_ACCESS_OK) {
1185 return false;
1186 }
1187 }
1188 if (ri->type & ARM_CP_CONST) {
1189 *val = ri->resetvalue;
1190 } else if (ri->readfn) {
1191 *val = ri->readfn(env, ri);
1192 } else {
1193 *val = CPREG_FIELD64(env, ri);
1194 }
1195 trace_hvf_vgic_read(ri->name, *val);
1196 return true;
1197 }
1198
1199 return false;
1200 }
1201
1202 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
1203 {
1204 ARMCPU *arm_cpu = ARM_CPU(cpu);
1205 CPUARMState *env = &arm_cpu->env;
1206 uint64_t val = 0;
1207
1208 switch (reg) {
1209 case SYSREG_CNTPCT_EL0:
1210 val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
1211 gt_cntfrq_period_ns(arm_cpu);
1212 break;
1213 case SYSREG_PMCR_EL0:
1214 val = env->cp15.c9_pmcr;
1215 break;
1216 case SYSREG_PMCCNTR_EL0:
1217 pmu_op_start(env);
1218 val = env->cp15.c15_ccnt;
1219 pmu_op_finish(env);
1220 break;
1221 case SYSREG_PMCNTENCLR_EL0:
1222 val = env->cp15.c9_pmcnten;
1223 break;
1224 case SYSREG_PMOVSCLR_EL0:
1225 val = env->cp15.c9_pmovsr;
1226 break;
1227 case SYSREG_PMSELR_EL0:
1228 val = env->cp15.c9_pmselr;
1229 break;
1230 case SYSREG_PMINTENCLR_EL1:
1231 val = env->cp15.c9_pminten;
1232 break;
1233 case SYSREG_PMCCFILTR_EL0:
1234 val = env->cp15.pmccfiltr_el0;
1235 break;
1236 case SYSREG_PMCNTENSET_EL0:
1237 val = env->cp15.c9_pmcnten;
1238 break;
1239 case SYSREG_PMUSERENR_EL0:
1240 val = env->cp15.c9_pmuserenr;
1241 break;
1242 case SYSREG_PMCEID0_EL0:
1243 case SYSREG_PMCEID1_EL0:
1244 /* We can't really count anything yet, declare all events invalid */
1245 val = 0;
1246 break;
1247 case SYSREG_OSLSR_EL1:
1248 val = env->cp15.oslsr_el1;
1249 break;
1250 case SYSREG_OSDLR_EL1:
1251 /* Dummy register */
1252 break;
1253 case SYSREG_ICC_AP0R0_EL1:
1254 case SYSREG_ICC_AP0R1_EL1:
1255 case SYSREG_ICC_AP0R2_EL1:
1256 case SYSREG_ICC_AP0R3_EL1:
1257 case SYSREG_ICC_AP1R0_EL1:
1258 case SYSREG_ICC_AP1R1_EL1:
1259 case SYSREG_ICC_AP1R2_EL1:
1260 case SYSREG_ICC_AP1R3_EL1:
1261 case SYSREG_ICC_ASGI1R_EL1:
1262 case SYSREG_ICC_BPR0_EL1:
1263 case SYSREG_ICC_BPR1_EL1:
1264 case SYSREG_ICC_DIR_EL1:
1265 case SYSREG_ICC_EOIR0_EL1:
1266 case SYSREG_ICC_EOIR1_EL1:
1267 case SYSREG_ICC_HPPIR0_EL1:
1268 case SYSREG_ICC_HPPIR1_EL1:
1269 case SYSREG_ICC_IAR0_EL1:
1270 case SYSREG_ICC_IAR1_EL1:
1271 case SYSREG_ICC_IGRPEN0_EL1:
1272 case SYSREG_ICC_IGRPEN1_EL1:
1273 case SYSREG_ICC_PMR_EL1:
1274 case SYSREG_ICC_SGI0R_EL1:
1275 case SYSREG_ICC_SGI1R_EL1:
1276 case SYSREG_ICC_SRE_EL1:
1277 case SYSREG_ICC_CTLR_EL1:
1278 /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1279 if (!hvf_sysreg_read_cp(cpu, reg, &val)) {
1280 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1281 }
1282 break;
1283 case SYSREG_DBGBVR0_EL1:
1284 case SYSREG_DBGBVR1_EL1:
1285 case SYSREG_DBGBVR2_EL1:
1286 case SYSREG_DBGBVR3_EL1:
1287 case SYSREG_DBGBVR4_EL1:
1288 case SYSREG_DBGBVR5_EL1:
1289 case SYSREG_DBGBVR6_EL1:
1290 case SYSREG_DBGBVR7_EL1:
1291 case SYSREG_DBGBVR8_EL1:
1292 case SYSREG_DBGBVR9_EL1:
1293 case SYSREG_DBGBVR10_EL1:
1294 case SYSREG_DBGBVR11_EL1:
1295 case SYSREG_DBGBVR12_EL1:
1296 case SYSREG_DBGBVR13_EL1:
1297 case SYSREG_DBGBVR14_EL1:
1298 case SYSREG_DBGBVR15_EL1:
1299 val = env->cp15.dbgbvr[SYSREG_CRM(reg)];
1300 break;
1301 case SYSREG_DBGBCR0_EL1:
1302 case SYSREG_DBGBCR1_EL1:
1303 case SYSREG_DBGBCR2_EL1:
1304 case SYSREG_DBGBCR3_EL1:
1305 case SYSREG_DBGBCR4_EL1:
1306 case SYSREG_DBGBCR5_EL1:
1307 case SYSREG_DBGBCR6_EL1:
1308 case SYSREG_DBGBCR7_EL1:
1309 case SYSREG_DBGBCR8_EL1:
1310 case SYSREG_DBGBCR9_EL1:
1311 case SYSREG_DBGBCR10_EL1:
1312 case SYSREG_DBGBCR11_EL1:
1313 case SYSREG_DBGBCR12_EL1:
1314 case SYSREG_DBGBCR13_EL1:
1315 case SYSREG_DBGBCR14_EL1:
1316 case SYSREG_DBGBCR15_EL1:
1317 val = env->cp15.dbgbcr[SYSREG_CRM(reg)];
1318 break;
1319 case SYSREG_DBGWVR0_EL1:
1320 case SYSREG_DBGWVR1_EL1:
1321 case SYSREG_DBGWVR2_EL1:
1322 case SYSREG_DBGWVR3_EL1:
1323 case SYSREG_DBGWVR4_EL1:
1324 case SYSREG_DBGWVR5_EL1:
1325 case SYSREG_DBGWVR6_EL1:
1326 case SYSREG_DBGWVR7_EL1:
1327 case SYSREG_DBGWVR8_EL1:
1328 case SYSREG_DBGWVR9_EL1:
1329 case SYSREG_DBGWVR10_EL1:
1330 case SYSREG_DBGWVR11_EL1:
1331 case SYSREG_DBGWVR12_EL1:
1332 case SYSREG_DBGWVR13_EL1:
1333 case SYSREG_DBGWVR14_EL1:
1334 case SYSREG_DBGWVR15_EL1:
1335 val = env->cp15.dbgwvr[SYSREG_CRM(reg)];
1336 break;
1337 case SYSREG_DBGWCR0_EL1:
1338 case SYSREG_DBGWCR1_EL1:
1339 case SYSREG_DBGWCR2_EL1:
1340 case SYSREG_DBGWCR3_EL1:
1341 case SYSREG_DBGWCR4_EL1:
1342 case SYSREG_DBGWCR5_EL1:
1343 case SYSREG_DBGWCR6_EL1:
1344 case SYSREG_DBGWCR7_EL1:
1345 case SYSREG_DBGWCR8_EL1:
1346 case SYSREG_DBGWCR9_EL1:
1347 case SYSREG_DBGWCR10_EL1:
1348 case SYSREG_DBGWCR11_EL1:
1349 case SYSREG_DBGWCR12_EL1:
1350 case SYSREG_DBGWCR13_EL1:
1351 case SYSREG_DBGWCR14_EL1:
1352 case SYSREG_DBGWCR15_EL1:
1353 val = env->cp15.dbgwcr[SYSREG_CRM(reg)];
1354 break;
1355 default:
1356 if (is_id_sysreg(reg)) {
1357 /* ID system registers read as RES0 */
1358 val = 0;
1359 break;
1360 }
1361 cpu_synchronize_state(cpu);
1362 trace_hvf_unhandled_sysreg_read(env->pc, reg,
1363 SYSREG_OP0(reg),
1364 SYSREG_OP1(reg),
1365 SYSREG_CRN(reg),
1366 SYSREG_CRM(reg),
1367 SYSREG_OP2(reg));
1368 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1369 return 1;
1370 }
1371
1372 trace_hvf_sysreg_read(reg,
1373 SYSREG_OP0(reg),
1374 SYSREG_OP1(reg),
1375 SYSREG_CRN(reg),
1376 SYSREG_CRM(reg),
1377 SYSREG_OP2(reg),
1378 val);
1379 hvf_set_reg(cpu, rt, val);
1380
1381 return 0;
1382 }
1383
1384 static void pmu_update_irq(CPUARMState *env)
1385 {
1386 ARMCPU *cpu = env_archcpu(env);
1387 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1388 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1389 }
1390
1391 static bool pmu_event_supported(uint16_t number)
1392 {
1393 return false;
1394 }
1395
1396 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1397 * the current EL, security state, and register configuration.
1398 */
1399 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1400 {
1401 uint64_t filter;
1402 bool enabled, filtered = true;
1403 int el = arm_current_el(env);
1404
1405 enabled = (env->cp15.c9_pmcr & PMCRE) &&
1406 (env->cp15.c9_pmcnten & (1 << counter));
1407
1408 if (counter == 31) {
1409 filter = env->cp15.pmccfiltr_el0;
1410 } else {
1411 filter = env->cp15.c14_pmevtyper[counter];
1412 }
1413
1414 if (el == 0) {
1415 filtered = filter & PMXEVTYPER_U;
1416 } else if (el == 1) {
1417 filtered = filter & PMXEVTYPER_P;
1418 }
1419
1420 if (counter != 31) {
1421 /*
1422 * If not checking PMCCNTR, ensure the counter is setup to an event we
1423 * support
1424 */
1425 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1426 if (!pmu_event_supported(event)) {
1427 return false;
1428 }
1429 }
1430
1431 return enabled && !filtered;
1432 }
1433
1434 static void pmswinc_write(CPUARMState *env, uint64_t value)
1435 {
1436 unsigned int i;
1437 for (i = 0; i < pmu_num_counters(env); i++) {
1438 /* Increment a counter's count iff: */
1439 if ((value & (1 << i)) && /* counter's bit is set */
1440 /* counter is enabled and not filtered */
1441 pmu_counter_enabled(env, i) &&
1442 /* counter is SW_INCR */
1443 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1444 /*
1445 * Detect if this write causes an overflow since we can't predict
1446 * PMSWINC overflows like we can for other events
1447 */
1448 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1449
1450 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1451 env->cp15.c9_pmovsr |= (1 << i);
1452 pmu_update_irq(env);
1453 }
1454
1455 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1456 }
1457 }
1458 }
1459
1460 static bool hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val)
1461 {
1462 ARMCPU *arm_cpu = ARM_CPU(cpu);
1463 CPUARMState *env = &arm_cpu->env;
1464 const ARMCPRegInfo *ri;
1465
1466 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1467
1468 if (ri) {
1469 if (ri->accessfn) {
1470 if (ri->accessfn(env, ri, false) != CP_ACCESS_OK) {
1471 return false;
1472 }
1473 }
1474 if (ri->writefn) {
1475 ri->writefn(env, ri, val);
1476 } else {
1477 CPREG_FIELD64(env, ri) = val;
1478 }
1479
1480 trace_hvf_vgic_write(ri->name, val);
1481 return true;
1482 }
1483
1484 return false;
1485 }
1486
1487 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
1488 {
1489 ARMCPU *arm_cpu = ARM_CPU(cpu);
1490 CPUARMState *env = &arm_cpu->env;
1491
1492 trace_hvf_sysreg_write(reg,
1493 SYSREG_OP0(reg),
1494 SYSREG_OP1(reg),
1495 SYSREG_CRN(reg),
1496 SYSREG_CRM(reg),
1497 SYSREG_OP2(reg),
1498 val);
1499
1500 switch (reg) {
1501 case SYSREG_PMCCNTR_EL0:
1502 pmu_op_start(env);
1503 env->cp15.c15_ccnt = val;
1504 pmu_op_finish(env);
1505 break;
1506 case SYSREG_PMCR_EL0:
1507 pmu_op_start(env);
1508
1509 if (val & PMCRC) {
1510 /* The counter has been reset */
1511 env->cp15.c15_ccnt = 0;
1512 }
1513
1514 if (val & PMCRP) {
1515 unsigned int i;
1516 for (i = 0; i < pmu_num_counters(env); i++) {
1517 env->cp15.c14_pmevcntr[i] = 0;
1518 }
1519 }
1520
1521 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1522 env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK);
1523
1524 pmu_op_finish(env);
1525 break;
1526 case SYSREG_PMUSERENR_EL0:
1527 env->cp15.c9_pmuserenr = val & 0xf;
1528 break;
1529 case SYSREG_PMCNTENSET_EL0:
1530 env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
1531 break;
1532 case SYSREG_PMCNTENCLR_EL0:
1533 env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
1534 break;
1535 case SYSREG_PMINTENCLR_EL1:
1536 pmu_op_start(env);
1537 env->cp15.c9_pminten |= val;
1538 pmu_op_finish(env);
1539 break;
1540 case SYSREG_PMOVSCLR_EL0:
1541 pmu_op_start(env);
1542 env->cp15.c9_pmovsr &= ~val;
1543 pmu_op_finish(env);
1544 break;
1545 case SYSREG_PMSWINC_EL0:
1546 pmu_op_start(env);
1547 pmswinc_write(env, val);
1548 pmu_op_finish(env);
1549 break;
1550 case SYSREG_PMSELR_EL0:
1551 env->cp15.c9_pmselr = val & 0x1f;
1552 break;
1553 case SYSREG_PMCCFILTR_EL0:
1554 pmu_op_start(env);
1555 env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
1556 pmu_op_finish(env);
1557 break;
1558 case SYSREG_OSLAR_EL1:
1559 env->cp15.oslsr_el1 = val & 1;
1560 break;
1561 case SYSREG_OSDLR_EL1:
1562 /* Dummy register */
1563 break;
1564 case SYSREG_ICC_AP0R0_EL1:
1565 case SYSREG_ICC_AP0R1_EL1:
1566 case SYSREG_ICC_AP0R2_EL1:
1567 case SYSREG_ICC_AP0R3_EL1:
1568 case SYSREG_ICC_AP1R0_EL1:
1569 case SYSREG_ICC_AP1R1_EL1:
1570 case SYSREG_ICC_AP1R2_EL1:
1571 case SYSREG_ICC_AP1R3_EL1:
1572 case SYSREG_ICC_ASGI1R_EL1:
1573 case SYSREG_ICC_BPR0_EL1:
1574 case SYSREG_ICC_BPR1_EL1:
1575 case SYSREG_ICC_CTLR_EL1:
1576 case SYSREG_ICC_DIR_EL1:
1577 case SYSREG_ICC_EOIR0_EL1:
1578 case SYSREG_ICC_EOIR1_EL1:
1579 case SYSREG_ICC_HPPIR0_EL1:
1580 case SYSREG_ICC_HPPIR1_EL1:
1581 case SYSREG_ICC_IAR0_EL1:
1582 case SYSREG_ICC_IAR1_EL1:
1583 case SYSREG_ICC_IGRPEN0_EL1:
1584 case SYSREG_ICC_IGRPEN1_EL1:
1585 case SYSREG_ICC_PMR_EL1:
1586 case SYSREG_ICC_SGI0R_EL1:
1587 case SYSREG_ICC_SGI1R_EL1:
1588 case SYSREG_ICC_SRE_EL1:
1589 /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1590 if (!hvf_sysreg_write_cp(cpu, reg, val)) {
1591 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1592 }
1593 break;
1594 case SYSREG_MDSCR_EL1:
1595 env->cp15.mdscr_el1 = val;
1596 break;
1597 case SYSREG_DBGBVR0_EL1:
1598 case SYSREG_DBGBVR1_EL1:
1599 case SYSREG_DBGBVR2_EL1:
1600 case SYSREG_DBGBVR3_EL1:
1601 case SYSREG_DBGBVR4_EL1:
1602 case SYSREG_DBGBVR5_EL1:
1603 case SYSREG_DBGBVR6_EL1:
1604 case SYSREG_DBGBVR7_EL1:
1605 case SYSREG_DBGBVR8_EL1:
1606 case SYSREG_DBGBVR9_EL1:
1607 case SYSREG_DBGBVR10_EL1:
1608 case SYSREG_DBGBVR11_EL1:
1609 case SYSREG_DBGBVR12_EL1:
1610 case SYSREG_DBGBVR13_EL1:
1611 case SYSREG_DBGBVR14_EL1:
1612 case SYSREG_DBGBVR15_EL1:
1613 env->cp15.dbgbvr[SYSREG_CRM(reg)] = val;
1614 break;
1615 case SYSREG_DBGBCR0_EL1:
1616 case SYSREG_DBGBCR1_EL1:
1617 case SYSREG_DBGBCR2_EL1:
1618 case SYSREG_DBGBCR3_EL1:
1619 case SYSREG_DBGBCR4_EL1:
1620 case SYSREG_DBGBCR5_EL1:
1621 case SYSREG_DBGBCR6_EL1:
1622 case SYSREG_DBGBCR7_EL1:
1623 case SYSREG_DBGBCR8_EL1:
1624 case SYSREG_DBGBCR9_EL1:
1625 case SYSREG_DBGBCR10_EL1:
1626 case SYSREG_DBGBCR11_EL1:
1627 case SYSREG_DBGBCR12_EL1:
1628 case SYSREG_DBGBCR13_EL1:
1629 case SYSREG_DBGBCR14_EL1:
1630 case SYSREG_DBGBCR15_EL1:
1631 env->cp15.dbgbcr[SYSREG_CRM(reg)] = val;
1632 break;
1633 case SYSREG_DBGWVR0_EL1:
1634 case SYSREG_DBGWVR1_EL1:
1635 case SYSREG_DBGWVR2_EL1:
1636 case SYSREG_DBGWVR3_EL1:
1637 case SYSREG_DBGWVR4_EL1:
1638 case SYSREG_DBGWVR5_EL1:
1639 case SYSREG_DBGWVR6_EL1:
1640 case SYSREG_DBGWVR7_EL1:
1641 case SYSREG_DBGWVR8_EL1:
1642 case SYSREG_DBGWVR9_EL1:
1643 case SYSREG_DBGWVR10_EL1:
1644 case SYSREG_DBGWVR11_EL1:
1645 case SYSREG_DBGWVR12_EL1:
1646 case SYSREG_DBGWVR13_EL1:
1647 case SYSREG_DBGWVR14_EL1:
1648 case SYSREG_DBGWVR15_EL1:
1649 env->cp15.dbgwvr[SYSREG_CRM(reg)] = val;
1650 break;
1651 case SYSREG_DBGWCR0_EL1:
1652 case SYSREG_DBGWCR1_EL1:
1653 case SYSREG_DBGWCR2_EL1:
1654 case SYSREG_DBGWCR3_EL1:
1655 case SYSREG_DBGWCR4_EL1:
1656 case SYSREG_DBGWCR5_EL1:
1657 case SYSREG_DBGWCR6_EL1:
1658 case SYSREG_DBGWCR7_EL1:
1659 case SYSREG_DBGWCR8_EL1:
1660 case SYSREG_DBGWCR9_EL1:
1661 case SYSREG_DBGWCR10_EL1:
1662 case SYSREG_DBGWCR11_EL1:
1663 case SYSREG_DBGWCR12_EL1:
1664 case SYSREG_DBGWCR13_EL1:
1665 case SYSREG_DBGWCR14_EL1:
1666 case SYSREG_DBGWCR15_EL1:
1667 env->cp15.dbgwcr[SYSREG_CRM(reg)] = val;
1668 break;
1669 default:
1670 cpu_synchronize_state(cpu);
1671 trace_hvf_unhandled_sysreg_write(env->pc, reg,
1672 SYSREG_OP0(reg),
1673 SYSREG_OP1(reg),
1674 SYSREG_CRN(reg),
1675 SYSREG_CRM(reg),
1676 SYSREG_OP2(reg));
1677 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1678 return 1;
1679 }
1680
1681 return 0;
1682 }
1683
1684 static int hvf_inject_interrupts(CPUState *cpu)
1685 {
1686 if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
1687 trace_hvf_inject_fiq();
1688 hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_FIQ,
1689 true);
1690 }
1691
1692 if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
1693 trace_hvf_inject_irq();
1694 hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_IRQ,
1695 true);
1696 }
1697
1698 return 0;
1699 }
1700
1701 static uint64_t hvf_vtimer_val_raw(void)
1702 {
1703 /*
1704 * mach_absolute_time() returns the vtimer value without the VM
1705 * offset that we define. Add our own offset on top.
1706 */
1707 return mach_absolute_time() - hvf_state->vtimer_offset;
1708 }
1709
1710 static uint64_t hvf_vtimer_val(void)
1711 {
1712 if (!runstate_is_running()) {
1713 /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1714 return vtimer.vtimer_val;
1715 }
1716
1717 return hvf_vtimer_val_raw();
1718 }
1719
1720 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1721 {
1722 /*
1723 * Use pselect to sleep so that other threads can IPI us while we're
1724 * sleeping.
1725 */
1726 qatomic_set_mb(&cpu->thread_kicked, false);
1727 bql_unlock();
1728 pselect(0, 0, 0, 0, ts, &cpu->accel->unblock_ipi_mask);
1729 bql_lock();
1730 }
1731
1732 static void hvf_wfi(CPUState *cpu)
1733 {
1734 ARMCPU *arm_cpu = ARM_CPU(cpu);
1735 struct timespec ts;
1736 hv_return_t r;
1737 uint64_t ctl;
1738 uint64_t cval;
1739 int64_t ticks_to_sleep;
1740 uint64_t seconds;
1741 uint64_t nanos;
1742 uint32_t cntfrq;
1743
1744 if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1745 /* Interrupt pending, no need to wait */
1746 return;
1747 }
1748
1749 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1750 assert_hvf_ok(r);
1751
1752 if (!(ctl & 1) || (ctl & 2)) {
1753 /* Timer disabled or masked, just wait for an IPI. */
1754 hvf_wait_for_ipi(cpu, NULL);
1755 return;
1756 }
1757
1758 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
1759 assert_hvf_ok(r);
1760
1761 ticks_to_sleep = cval - hvf_vtimer_val();
1762 if (ticks_to_sleep < 0) {
1763 return;
1764 }
1765
1766 cntfrq = gt_cntfrq_period_ns(arm_cpu);
1767 seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1768 ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1769 nanos = ticks_to_sleep * cntfrq;
1770
1771 /*
1772 * Don't sleep for less than the time a context switch would take,
1773 * so that we can satisfy fast timer requests on the same CPU.
1774 * Measurements on M1 show the sweet spot to be ~2ms.
1775 */
1776 if (!seconds && nanos < (2 * SCALE_MS)) {
1777 return;
1778 }
1779
1780 ts = (struct timespec) { seconds, nanos };
1781 hvf_wait_for_ipi(cpu, &ts);
1782 }
1783
1784 static void hvf_sync_vtimer(CPUState *cpu)
1785 {
1786 ARMCPU *arm_cpu = ARM_CPU(cpu);
1787 hv_return_t r;
1788 uint64_t ctl;
1789 bool irq_state;
1790
1791 if (!cpu->accel->vtimer_masked) {
1792 /* We will get notified on vtimer changes by hvf, nothing to do */
1793 return;
1794 }
1795
1796 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1797 assert_hvf_ok(r);
1798
1799 irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1800 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1801 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1802
1803 if (!irq_state) {
1804 /* Timer no longer asserting, we can unmask it */
1805 hv_vcpu_set_vtimer_mask(cpu->accel->fd, false);
1806 cpu->accel->vtimer_masked = false;
1807 }
1808 }
1809
1810 int hvf_vcpu_exec(CPUState *cpu)
1811 {
1812 ARMCPU *arm_cpu = ARM_CPU(cpu);
1813 CPUARMState *env = &arm_cpu->env;
1814 int ret;
1815 hv_vcpu_exit_t *hvf_exit = cpu->accel->exit;
1816 hv_return_t r;
1817 bool advance_pc = false;
1818
1819 if (!(cpu->singlestep_enabled & SSTEP_NOIRQ) &&
1820 hvf_inject_interrupts(cpu)) {
1821 return EXCP_INTERRUPT;
1822 }
1823
1824 if (cpu->halted) {
1825 return EXCP_HLT;
1826 }
1827
1828 flush_cpu_state(cpu);
1829
1830 bql_unlock();
1831 assert_hvf_ok(hv_vcpu_run(cpu->accel->fd));
1832
1833 /* handle VMEXIT */
1834 uint64_t exit_reason = hvf_exit->reason;
1835 uint64_t syndrome = hvf_exit->exception.syndrome;
1836 uint32_t ec = syn_get_ec(syndrome);
1837
1838 ret = 0;
1839 bql_lock();
1840 switch (exit_reason) {
1841 case HV_EXIT_REASON_EXCEPTION:
1842 /* This is the main one, handle below. */
1843 break;
1844 case HV_EXIT_REASON_VTIMER_ACTIVATED:
1845 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
1846 cpu->accel->vtimer_masked = true;
1847 return 0;
1848 case HV_EXIT_REASON_CANCELED:
1849 /* we got kicked, no exit to process */
1850 return 0;
1851 default:
1852 g_assert_not_reached();
1853 }
1854
1855 hvf_sync_vtimer(cpu);
1856
1857 switch (ec) {
1858 case EC_SOFTWARESTEP: {
1859 ret = EXCP_DEBUG;
1860
1861 if (!cpu->singlestep_enabled) {
1862 error_report("EC_SOFTWARESTEP but single-stepping not enabled");
1863 }
1864 break;
1865 }
1866 case EC_AA64_BKPT: {
1867 ret = EXCP_DEBUG;
1868
1869 cpu_synchronize_state(cpu);
1870
1871 if (!hvf_find_sw_breakpoint(cpu, env->pc)) {
1872 /* Re-inject into the guest */
1873 ret = 0;
1874 hvf_raise_exception(cpu, EXCP_BKPT, syn_aa64_bkpt(0));
1875 }
1876 break;
1877 }
1878 case EC_BREAKPOINT: {
1879 ret = EXCP_DEBUG;
1880
1881 cpu_synchronize_state(cpu);
1882
1883 if (!find_hw_breakpoint(cpu, env->pc)) {
1884 error_report("EC_BREAKPOINT but unknown hw breakpoint");
1885 }
1886 break;
1887 }
1888 case EC_WATCHPOINT: {
1889 ret = EXCP_DEBUG;
1890
1891 cpu_synchronize_state(cpu);
1892
1893 CPUWatchpoint *wp =
1894 find_hw_watchpoint(cpu, hvf_exit->exception.virtual_address);
1895 if (!wp) {
1896 error_report("EXCP_DEBUG but unknown hw watchpoint");
1897 }
1898 cpu->watchpoint_hit = wp;
1899 break;
1900 }
1901 case EC_DATAABORT: {
1902 bool isv = syndrome & ARM_EL_ISV;
1903 bool iswrite = (syndrome >> 6) & 1;
1904 bool s1ptw = (syndrome >> 7) & 1;
1905 uint32_t sas = (syndrome >> 22) & 3;
1906 uint32_t len = 1 << sas;
1907 uint32_t srt = (syndrome >> 16) & 0x1f;
1908 uint32_t cm = (syndrome >> 8) & 0x1;
1909 uint64_t val = 0;
1910
1911 trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1912 hvf_exit->exception.physical_address, isv,
1913 iswrite, s1ptw, len, srt);
1914
1915 if (cm) {
1916 /* We don't cache MMIO regions */
1917 advance_pc = true;
1918 break;
1919 }
1920
1921 assert(isv);
1922
1923 if (iswrite) {
1924 val = hvf_get_reg(cpu, srt);
1925 address_space_write(&address_space_memory,
1926 hvf_exit->exception.physical_address,
1927 MEMTXATTRS_UNSPECIFIED, &val, len);
1928 } else {
1929 address_space_read(&address_space_memory,
1930 hvf_exit->exception.physical_address,
1931 MEMTXATTRS_UNSPECIFIED, &val, len);
1932 hvf_set_reg(cpu, srt, val);
1933 }
1934
1935 advance_pc = true;
1936 break;
1937 }
1938 case EC_SYSTEMREGISTERTRAP: {
1939 bool isread = (syndrome >> 0) & 1;
1940 uint32_t rt = (syndrome >> 5) & 0x1f;
1941 uint32_t reg = syndrome & SYSREG_MASK;
1942 uint64_t val;
1943 int sysreg_ret = 0;
1944
1945 if (isread) {
1946 sysreg_ret = hvf_sysreg_read(cpu, reg, rt);
1947 } else {
1948 val = hvf_get_reg(cpu, rt);
1949 sysreg_ret = hvf_sysreg_write(cpu, reg, val);
1950 }
1951
1952 advance_pc = !sysreg_ret;
1953 break;
1954 }
1955 case EC_WFX_TRAP:
1956 advance_pc = true;
1957 if (!(syndrome & WFX_IS_WFE)) {
1958 hvf_wfi(cpu);
1959 }
1960 break;
1961 case EC_AA64_HVC:
1962 cpu_synchronize_state(cpu);
1963 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
1964 if (!hvf_handle_psci_call(cpu)) {
1965 trace_hvf_unknown_hvc(env->xregs[0]);
1966 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1967 env->xregs[0] = -1;
1968 }
1969 } else {
1970 trace_hvf_unknown_hvc(env->xregs[0]);
1971 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1972 }
1973 break;
1974 case EC_AA64_SMC:
1975 cpu_synchronize_state(cpu);
1976 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
1977 advance_pc = true;
1978
1979 if (!hvf_handle_psci_call(cpu)) {
1980 trace_hvf_unknown_smc(env->xregs[0]);
1981 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1982 env->xregs[0] = -1;
1983 }
1984 } else {
1985 trace_hvf_unknown_smc(env->xregs[0]);
1986 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1987 }
1988 break;
1989 default:
1990 cpu_synchronize_state(cpu);
1991 trace_hvf_exit(syndrome, ec, env->pc);
1992 error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
1993 }
1994
1995 if (advance_pc) {
1996 uint64_t pc;
1997
1998 flush_cpu_state(cpu);
1999
2000 r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_PC, &pc);
2001 assert_hvf_ok(r);
2002 pc += 4;
2003 r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_PC, pc);
2004 assert_hvf_ok(r);
2005
2006 /* Handle single-stepping over instructions which trigger a VM exit */
2007 if (cpu->singlestep_enabled) {
2008 ret = EXCP_DEBUG;
2009 }
2010 }
2011
2012 return ret;
2013 }
2014
2015 static const VMStateDescription vmstate_hvf_vtimer = {
2016 .name = "hvf-vtimer",
2017 .version_id = 1,
2018 .minimum_version_id = 1,
2019 .fields = (const VMStateField[]) {
2020 VMSTATE_UINT64(vtimer_val, HVFVTimer),
2021 VMSTATE_END_OF_LIST()
2022 },
2023 };
2024
2025 static void hvf_vm_state_change(void *opaque, bool running, RunState state)
2026 {
2027 HVFVTimer *s = opaque;
2028
2029 if (running) {
2030 /* Update vtimer offset on all CPUs */
2031 hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
2032 cpu_synchronize_all_states();
2033 } else {
2034 /* Remember vtimer value on every pause */
2035 s->vtimer_val = hvf_vtimer_val_raw();
2036 }
2037 }
2038
2039 int hvf_arch_init(void)
2040 {
2041 hvf_state->vtimer_offset = mach_absolute_time();
2042 vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
2043 qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
2044
2045 hvf_arm_init_debug();
2046
2047 return 0;
2048 }
2049
2050 static const uint32_t brk_insn = 0xd4200000;
2051
2052 int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2053 {
2054 if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2055 cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2056 return -EINVAL;
2057 }
2058 return 0;
2059 }
2060
2061 int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2062 {
2063 static uint32_t brk;
2064
2065 if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk, 4, 0) ||
2066 brk != brk_insn ||
2067 cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2068 return -EINVAL;
2069 }
2070 return 0;
2071 }
2072
2073 int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
2074 {
2075 switch (type) {
2076 case GDB_BREAKPOINT_HW:
2077 return insert_hw_breakpoint(addr);
2078 case GDB_WATCHPOINT_READ:
2079 case GDB_WATCHPOINT_WRITE:
2080 case GDB_WATCHPOINT_ACCESS:
2081 return insert_hw_watchpoint(addr, len, type);
2082 default:
2083 return -ENOSYS;
2084 }
2085 }
2086
2087 int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
2088 {
2089 switch (type) {
2090 case GDB_BREAKPOINT_HW:
2091 return delete_hw_breakpoint(addr);
2092 case GDB_WATCHPOINT_READ:
2093 case GDB_WATCHPOINT_WRITE:
2094 case GDB_WATCHPOINT_ACCESS:
2095 return delete_hw_watchpoint(addr, len, type);
2096 default:
2097 return -ENOSYS;
2098 }
2099 }
2100
2101 void hvf_arch_remove_all_hw_breakpoints(void)
2102 {
2103 if (cur_hw_wps > 0) {
2104 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
2105 }
2106 if (cur_hw_bps > 0) {
2107 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
2108 }
2109 }
2110
2111 /*
2112 * Update the vCPU with the gdbstub's view of debug registers. This view
2113 * consists of all hardware breakpoints and watchpoints inserted so far while
2114 * debugging the guest.
2115 */
2116 static void hvf_put_gdbstub_debug_registers(CPUState *cpu)
2117 {
2118 hv_return_t r = HV_SUCCESS;
2119 int i;
2120
2121 for (i = 0; i < cur_hw_bps; i++) {
2122 HWBreakpoint *bp = get_hw_bp(i);
2123 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], bp->bcr);
2124 assert_hvf_ok(r);
2125 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], bp->bvr);
2126 assert_hvf_ok(r);
2127 }
2128 for (i = cur_hw_bps; i < max_hw_bps; i++) {
2129 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], 0);
2130 assert_hvf_ok(r);
2131 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], 0);
2132 assert_hvf_ok(r);
2133 }
2134
2135 for (i = 0; i < cur_hw_wps; i++) {
2136 HWWatchpoint *wp = get_hw_wp(i);
2137 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], wp->wcr);
2138 assert_hvf_ok(r);
2139 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], wp->wvr);
2140 assert_hvf_ok(r);
2141 }
2142 for (i = cur_hw_wps; i < max_hw_wps; i++) {
2143 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], 0);
2144 assert_hvf_ok(r);
2145 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], 0);
2146 assert_hvf_ok(r);
2147 }
2148 }
2149
2150 /*
2151 * Update the vCPU with the guest's view of debug registers. This view is kept
2152 * in the environment at all times.
2153 */
2154 static void hvf_put_guest_debug_registers(CPUState *cpu)
2155 {
2156 ARMCPU *arm_cpu = ARM_CPU(cpu);
2157 CPUARMState *env = &arm_cpu->env;
2158 hv_return_t r = HV_SUCCESS;
2159 int i;
2160
2161 for (i = 0; i < max_hw_bps; i++) {
2162 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i],
2163 env->cp15.dbgbcr[i]);
2164 assert_hvf_ok(r);
2165 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i],
2166 env->cp15.dbgbvr[i]);
2167 assert_hvf_ok(r);
2168 }
2169
2170 for (i = 0; i < max_hw_wps; i++) {
2171 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i],
2172 env->cp15.dbgwcr[i]);
2173 assert_hvf_ok(r);
2174 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i],
2175 env->cp15.dbgwvr[i]);
2176 assert_hvf_ok(r);
2177 }
2178 }
2179
2180 static inline bool hvf_arm_hw_debug_active(CPUState *cpu)
2181 {
2182 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
2183 }
2184
2185 static void hvf_arch_set_traps(void)
2186 {
2187 CPUState *cpu;
2188 bool should_enable_traps = false;
2189 hv_return_t r = HV_SUCCESS;
2190
2191 /* Check whether guest debugging is enabled for at least one vCPU; if it
2192 * is, enable exiting the guest on all vCPUs */
2193 CPU_FOREACH(cpu) {
2194 should_enable_traps |= cpu->accel->guest_debug_enabled;
2195 }
2196 CPU_FOREACH(cpu) {
2197 /* Set whether debug exceptions exit the guest */
2198 r = hv_vcpu_set_trap_debug_exceptions(cpu->accel->fd,
2199 should_enable_traps);
2200 assert_hvf_ok(r);
2201
2202 /* Set whether accesses to debug registers exit the guest */
2203 r = hv_vcpu_set_trap_debug_reg_accesses(cpu->accel->fd,
2204 should_enable_traps);
2205 assert_hvf_ok(r);
2206 }
2207 }
2208
2209 void hvf_arch_update_guest_debug(CPUState *cpu)
2210 {
2211 ARMCPU *arm_cpu = ARM_CPU(cpu);
2212 CPUARMState *env = &arm_cpu->env;
2213
2214 /* Check whether guest debugging is enabled */
2215 cpu->accel->guest_debug_enabled = cpu->singlestep_enabled ||
2216 hvf_sw_breakpoints_active(cpu) ||
2217 hvf_arm_hw_debug_active(cpu);
2218
2219 /* Update debug registers */
2220 if (cpu->accel->guest_debug_enabled) {
2221 hvf_put_gdbstub_debug_registers(cpu);
2222 } else {
2223 hvf_put_guest_debug_registers(cpu);
2224 }
2225
2226 cpu_synchronize_state(cpu);
2227
2228 /* Enable/disable single-stepping */
2229 if (cpu->singlestep_enabled) {
2230 env->cp15.mdscr_el1 =
2231 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 1);
2232 pstate_write(env, pstate_read(env) | PSTATE_SS);
2233 } else {
2234 env->cp15.mdscr_el1 =
2235 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 0);
2236 }
2237
2238 /* Enable/disable Breakpoint exceptions */
2239 if (hvf_arm_hw_debug_active(cpu)) {
2240 env->cp15.mdscr_el1 =
2241 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 1);
2242 } else {
2243 env->cp15.mdscr_el1 =
2244 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 0);
2245 }
2246
2247 hvf_arch_set_traps();
2248 }
2249
2250 bool hvf_arch_supports_guest_debug(void)
2251 {
2252 return true;
2253 }