]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/internals.h
Merge remote-tracking branch 'remotes/bonzini-gitlab/tags/for-upstream' into staging
[mirror_qemu.git] / target / arm / internals.h
1 /*
2 * QEMU ARM CPU -- internal functions and types
3 *
4 * Copyright (c) 2014 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 *
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target/arm/ but which are
22 * private to it and not required by the rest of QEMU.
23 */
24
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31
32 /* register banks for CPU modes */
33 #define BANK_USRSYS 0
34 #define BANK_SVC 1
35 #define BANK_ABT 2
36 #define BANK_UND 3
37 #define BANK_IRQ 4
38 #define BANK_FIQ 5
39 #define BANK_HYP 6
40 #define BANK_MON 7
41
42 static inline bool excp_is_internal(int excp)
43 {
44 /* Return true if this exception number represents a QEMU-internal
45 * exception that will not be passed to the guest.
46 */
47 return excp == EXCP_INTERRUPT
48 || excp == EXCP_HLT
49 || excp == EXCP_DEBUG
50 || excp == EXCP_HALTED
51 || excp == EXCP_EXCEPTION_EXIT
52 || excp == EXCP_KERNEL_TRAP
53 || excp == EXCP_SEMIHOST;
54 }
55
56 /* Scale factor for generic timers, ie number of ns per tick.
57 * This gives a 62.5MHz timer.
58 */
59 #define GTIMER_SCALE 16
60
61 /* Bit definitions for the v7M CONTROL register */
62 FIELD(V7M_CONTROL, NPRIV, 0, 1)
63 FIELD(V7M_CONTROL, SPSEL, 1, 1)
64 FIELD(V7M_CONTROL, FPCA, 2, 1)
65 FIELD(V7M_CONTROL, SFPA, 3, 1)
66
67 /* Bit definitions for v7M exception return payload */
68 FIELD(V7M_EXCRET, ES, 0, 1)
69 FIELD(V7M_EXCRET, RES0, 1, 1)
70 FIELD(V7M_EXCRET, SPSEL, 2, 1)
71 FIELD(V7M_EXCRET, MODE, 3, 1)
72 FIELD(V7M_EXCRET, FTYPE, 4, 1)
73 FIELD(V7M_EXCRET, DCRS, 5, 1)
74 FIELD(V7M_EXCRET, S, 6, 1)
75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76
77 /* Minimum value which is a magic number for exception return */
78 #define EXC_RETURN_MIN_MAGIC 0xff000000
79 /* Minimum number which is a magic number for function or exception return
80 * when using v8M security extension
81 */
82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
83
84 /* We use a few fake FSR values for internal purposes in M profile.
85 * M profile cores don't have A/R format FSRs, but currently our
86 * get_phys_addr() code assumes A/R profile and reports failures via
87 * an A/R format FSR value. We then translate that into the proper
88 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
89 * Mostly the FSR values we use for this are those defined for v7PMSA,
90 * since we share some of that codepath. A few kinds of fault are
91 * only for M profile and have no A/R equivalent, though, so we have
92 * to pick a value from the reserved range (which we never otherwise
93 * generate) to use for these.
94 * These values will never be visible to the guest.
95 */
96 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
97 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
98
99 /**
100 * raise_exception: Raise the specified exception.
101 * Raise a guest exception with the specified value, syndrome register
102 * and target exception level. This should be called from helper functions,
103 * and never returns because we will longjump back up to the CPU main loop.
104 */
105 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
106 uint32_t syndrome, uint32_t target_el);
107
108 /*
109 * Similarly, but also use unwinding to restore cpu state.
110 */
111 void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
112 uint32_t syndrome, uint32_t target_el,
113 uintptr_t ra);
114
115 /*
116 * For AArch64, map a given EL to an index in the banked_spsr array.
117 * Note that this mapping and the AArch32 mapping defined in bank_number()
118 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
119 * mandated mapping between each other.
120 */
121 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
122 {
123 static const unsigned int map[4] = {
124 [1] = BANK_SVC, /* EL1. */
125 [2] = BANK_HYP, /* EL2. */
126 [3] = BANK_MON, /* EL3. */
127 };
128 assert(el >= 1 && el <= 3);
129 return map[el];
130 }
131
132 /* Map CPU modes onto saved register banks. */
133 static inline int bank_number(int mode)
134 {
135 switch (mode) {
136 case ARM_CPU_MODE_USR:
137 case ARM_CPU_MODE_SYS:
138 return BANK_USRSYS;
139 case ARM_CPU_MODE_SVC:
140 return BANK_SVC;
141 case ARM_CPU_MODE_ABT:
142 return BANK_ABT;
143 case ARM_CPU_MODE_UND:
144 return BANK_UND;
145 case ARM_CPU_MODE_IRQ:
146 return BANK_IRQ;
147 case ARM_CPU_MODE_FIQ:
148 return BANK_FIQ;
149 case ARM_CPU_MODE_HYP:
150 return BANK_HYP;
151 case ARM_CPU_MODE_MON:
152 return BANK_MON;
153 }
154 g_assert_not_reached();
155 }
156
157 /**
158 * r14_bank_number: Map CPU mode onto register bank for r14
159 *
160 * Given an AArch32 CPU mode, return the index into the saved register
161 * banks to use for the R14 (LR) in that mode. This is the same as
162 * bank_number(), except for the special case of Hyp mode, where
163 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
164 * This should be used as the index into env->banked_r14[], and
165 * bank_number() used for the index into env->banked_r13[] and
166 * env->banked_spsr[].
167 */
168 static inline int r14_bank_number(int mode)
169 {
170 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
171 }
172
173 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
174 void arm_translate_init(void);
175
176 #ifdef CONFIG_TCG
177 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
178 #endif /* CONFIG_TCG */
179
180
181 enum arm_fprounding {
182 FPROUNDING_TIEEVEN,
183 FPROUNDING_POSINF,
184 FPROUNDING_NEGINF,
185 FPROUNDING_ZERO,
186 FPROUNDING_TIEAWAY,
187 FPROUNDING_ODD
188 };
189
190 int arm_rmode_to_sf(int rmode);
191
192 static inline void aarch64_save_sp(CPUARMState *env, int el)
193 {
194 if (env->pstate & PSTATE_SP) {
195 env->sp_el[el] = env->xregs[31];
196 } else {
197 env->sp_el[0] = env->xregs[31];
198 }
199 }
200
201 static inline void aarch64_restore_sp(CPUARMState *env, int el)
202 {
203 if (env->pstate & PSTATE_SP) {
204 env->xregs[31] = env->sp_el[el];
205 } else {
206 env->xregs[31] = env->sp_el[0];
207 }
208 }
209
210 static inline void update_spsel(CPUARMState *env, uint32_t imm)
211 {
212 unsigned int cur_el = arm_current_el(env);
213 /* Update PSTATE SPSel bit; this requires us to update the
214 * working stack pointer in xregs[31].
215 */
216 if (!((imm ^ env->pstate) & PSTATE_SP)) {
217 return;
218 }
219 aarch64_save_sp(env, cur_el);
220 env->pstate = deposit32(env->pstate, 0, 1, imm);
221
222 /* We rely on illegal updates to SPsel from EL0 to get trapped
223 * at translation time.
224 */
225 assert(cur_el >= 1 && cur_el <= 3);
226 aarch64_restore_sp(env, cur_el);
227 }
228
229 /*
230 * arm_pamax
231 * @cpu: ARMCPU
232 *
233 * Returns the implementation defined bit-width of physical addresses.
234 * The ARMv8 reference manuals refer to this as PAMax().
235 */
236 static inline unsigned int arm_pamax(ARMCPU *cpu)
237 {
238 static const unsigned int pamax_map[] = {
239 [0] = 32,
240 [1] = 36,
241 [2] = 40,
242 [3] = 42,
243 [4] = 44,
244 [5] = 48,
245 };
246 unsigned int parange =
247 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
248
249 /* id_aa64mmfr0 is a read-only register so values outside of the
250 * supported mappings can be considered an implementation error. */
251 assert(parange < ARRAY_SIZE(pamax_map));
252 return pamax_map[parange];
253 }
254
255 /* Return true if extended addresses are enabled.
256 * This is always the case if our translation regime is 64 bit,
257 * but depends on TTBCR.EAE for 32 bit.
258 */
259 static inline bool extended_addresses_enabled(CPUARMState *env)
260 {
261 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
262 return arm_el_is_aa64(env, 1) ||
263 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
264 }
265
266 /* Update a QEMU watchpoint based on the information the guest has set in the
267 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
268 */
269 void hw_watchpoint_update(ARMCPU *cpu, int n);
270 /* Update the QEMU watchpoints for every guest watchpoint. This does a
271 * complete delete-and-reinstate of the QEMU watchpoint list and so is
272 * suitable for use after migration or on reset.
273 */
274 void hw_watchpoint_update_all(ARMCPU *cpu);
275 /* Update a QEMU breakpoint based on the information the guest has set in the
276 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
277 */
278 void hw_breakpoint_update(ARMCPU *cpu, int n);
279 /* Update the QEMU breakpoints for every guest breakpoint. This does a
280 * complete delete-and-reinstate of the QEMU breakpoint list and so is
281 * suitable for use after migration or on reset.
282 */
283 void hw_breakpoint_update_all(ARMCPU *cpu);
284
285 /* Callback function for checking if a breakpoint should trigger. */
286 bool arm_debug_check_breakpoint(CPUState *cs);
287
288 /* Callback function for checking if a watchpoint should trigger. */
289 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
290
291 /* Adjust addresses (in BE32 mode) before testing against watchpoint
292 * addresses.
293 */
294 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
295
296 /* Callback function for when a watchpoint or breakpoint triggers. */
297 void arm_debug_excp_handler(CPUState *cs);
298
299 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
300 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
301 {
302 return false;
303 }
304 static inline void arm_handle_psci_call(ARMCPU *cpu)
305 {
306 g_assert_not_reached();
307 }
308 #else
309 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
310 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
311 /* Actually handle a PSCI call */
312 void arm_handle_psci_call(ARMCPU *cpu);
313 #endif
314
315 /**
316 * arm_clear_exclusive: clear the exclusive monitor
317 * @env: CPU env
318 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
319 */
320 static inline void arm_clear_exclusive(CPUARMState *env)
321 {
322 env->exclusive_addr = -1;
323 }
324
325 /**
326 * ARMFaultType: type of an ARM MMU fault
327 * This corresponds to the v8A pseudocode's Fault enumeration,
328 * with extensions for QEMU internal conditions.
329 */
330 typedef enum ARMFaultType {
331 ARMFault_None,
332 ARMFault_AccessFlag,
333 ARMFault_Alignment,
334 ARMFault_Background,
335 ARMFault_Domain,
336 ARMFault_Permission,
337 ARMFault_Translation,
338 ARMFault_AddressSize,
339 ARMFault_SyncExternal,
340 ARMFault_SyncExternalOnWalk,
341 ARMFault_SyncParity,
342 ARMFault_SyncParityOnWalk,
343 ARMFault_AsyncParity,
344 ARMFault_AsyncExternal,
345 ARMFault_Debug,
346 ARMFault_TLBConflict,
347 ARMFault_Lockdown,
348 ARMFault_Exclusive,
349 ARMFault_ICacheMaint,
350 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
351 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
352 } ARMFaultType;
353
354 /**
355 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
356 * @type: Type of fault
357 * @level: Table walk level (for translation, access flag and permission faults)
358 * @domain: Domain of the fault address (for non-LPAE CPUs only)
359 * @s2addr: Address that caused a fault at stage 2
360 * @stage2: True if we faulted at stage 2
361 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
362 * @s1ns: True if we faulted on a non-secure IPA while in secure state
363 * @ea: True if we should set the EA (external abort type) bit in syndrome
364 */
365 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
366 struct ARMMMUFaultInfo {
367 ARMFaultType type;
368 target_ulong s2addr;
369 int level;
370 int domain;
371 bool stage2;
372 bool s1ptw;
373 bool s1ns;
374 bool ea;
375 };
376
377 /**
378 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
379 * Compare pseudocode EncodeSDFSC(), though unlike that function
380 * we set up a whole FSR-format code including domain field and
381 * putting the high bit of the FSC into bit 10.
382 */
383 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
384 {
385 uint32_t fsc;
386
387 switch (fi->type) {
388 case ARMFault_None:
389 return 0;
390 case ARMFault_AccessFlag:
391 fsc = fi->level == 1 ? 0x3 : 0x6;
392 break;
393 case ARMFault_Alignment:
394 fsc = 0x1;
395 break;
396 case ARMFault_Permission:
397 fsc = fi->level == 1 ? 0xd : 0xf;
398 break;
399 case ARMFault_Domain:
400 fsc = fi->level == 1 ? 0x9 : 0xb;
401 break;
402 case ARMFault_Translation:
403 fsc = fi->level == 1 ? 0x5 : 0x7;
404 break;
405 case ARMFault_SyncExternal:
406 fsc = 0x8 | (fi->ea << 12);
407 break;
408 case ARMFault_SyncExternalOnWalk:
409 fsc = fi->level == 1 ? 0xc : 0xe;
410 fsc |= (fi->ea << 12);
411 break;
412 case ARMFault_SyncParity:
413 fsc = 0x409;
414 break;
415 case ARMFault_SyncParityOnWalk:
416 fsc = fi->level == 1 ? 0x40c : 0x40e;
417 break;
418 case ARMFault_AsyncParity:
419 fsc = 0x408;
420 break;
421 case ARMFault_AsyncExternal:
422 fsc = 0x406 | (fi->ea << 12);
423 break;
424 case ARMFault_Debug:
425 fsc = 0x2;
426 break;
427 case ARMFault_TLBConflict:
428 fsc = 0x400;
429 break;
430 case ARMFault_Lockdown:
431 fsc = 0x404;
432 break;
433 case ARMFault_Exclusive:
434 fsc = 0x405;
435 break;
436 case ARMFault_ICacheMaint:
437 fsc = 0x4;
438 break;
439 case ARMFault_Background:
440 fsc = 0x0;
441 break;
442 case ARMFault_QEMU_NSCExec:
443 fsc = M_FAKE_FSR_NSC_EXEC;
444 break;
445 case ARMFault_QEMU_SFault:
446 fsc = M_FAKE_FSR_SFAULT;
447 break;
448 default:
449 /* Other faults can't occur in a context that requires a
450 * short-format status code.
451 */
452 g_assert_not_reached();
453 }
454
455 fsc |= (fi->domain << 4);
456 return fsc;
457 }
458
459 /**
460 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
461 * Compare pseudocode EncodeLDFSC(), though unlike that function
462 * we fill in also the LPAE bit 9 of a DFSR format.
463 */
464 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
465 {
466 uint32_t fsc;
467
468 switch (fi->type) {
469 case ARMFault_None:
470 return 0;
471 case ARMFault_AddressSize:
472 fsc = fi->level & 3;
473 break;
474 case ARMFault_AccessFlag:
475 fsc = (fi->level & 3) | (0x2 << 2);
476 break;
477 case ARMFault_Permission:
478 fsc = (fi->level & 3) | (0x3 << 2);
479 break;
480 case ARMFault_Translation:
481 fsc = (fi->level & 3) | (0x1 << 2);
482 break;
483 case ARMFault_SyncExternal:
484 fsc = 0x10 | (fi->ea << 12);
485 break;
486 case ARMFault_SyncExternalOnWalk:
487 fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
488 break;
489 case ARMFault_SyncParity:
490 fsc = 0x18;
491 break;
492 case ARMFault_SyncParityOnWalk:
493 fsc = (fi->level & 3) | (0x7 << 2);
494 break;
495 case ARMFault_AsyncParity:
496 fsc = 0x19;
497 break;
498 case ARMFault_AsyncExternal:
499 fsc = 0x11 | (fi->ea << 12);
500 break;
501 case ARMFault_Alignment:
502 fsc = 0x21;
503 break;
504 case ARMFault_Debug:
505 fsc = 0x22;
506 break;
507 case ARMFault_TLBConflict:
508 fsc = 0x30;
509 break;
510 case ARMFault_Lockdown:
511 fsc = 0x34;
512 break;
513 case ARMFault_Exclusive:
514 fsc = 0x35;
515 break;
516 default:
517 /* Other faults can't occur in a context that requires a
518 * long-format status code.
519 */
520 g_assert_not_reached();
521 }
522
523 fsc |= 1 << 9;
524 return fsc;
525 }
526
527 static inline bool arm_extabort_type(MemTxResult result)
528 {
529 /* The EA bit in syndromes and fault status registers is an
530 * IMPDEF classification of external aborts. ARM implementations
531 * usually use this to indicate AXI bus Decode error (0) or
532 * Slave error (1); in QEMU we follow that.
533 */
534 return result != MEMTX_DECODE_ERROR;
535 }
536
537 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
538 MMUAccessType access_type, int mmu_idx,
539 bool probe, uintptr_t retaddr);
540
541 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
542 {
543 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
544 }
545
546 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
547 {
548 if (arm_feature(env, ARM_FEATURE_M)) {
549 return mmu_idx | ARM_MMU_IDX_M;
550 } else {
551 return mmu_idx | ARM_MMU_IDX_A;
552 }
553 }
554
555 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
556 {
557 /* AArch64 is always a-profile. */
558 return mmu_idx | ARM_MMU_IDX_A;
559 }
560
561 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
562
563 /*
564 * Return the MMU index for a v7M CPU with all relevant information
565 * manually specified.
566 */
567 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
568 bool secstate, bool priv, bool negpri);
569
570 /*
571 * Return the MMU index for a v7M CPU in the specified security and
572 * privilege state.
573 */
574 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
575 bool secstate, bool priv);
576
577 /* Return the MMU index for a v7M CPU in the specified security state */
578 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
579
580 /* Return true if the stage 1 translation regime is using LPAE format page
581 * tables */
582 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
583
584 /* Raise a data fault alignment exception for the specified virtual address */
585 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
586 MMUAccessType access_type,
587 int mmu_idx, uintptr_t retaddr);
588
589 /* arm_cpu_do_transaction_failed: handle a memory system error response
590 * (eg "no device/memory present at address") by raising an external abort
591 * exception
592 */
593 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
594 vaddr addr, unsigned size,
595 MMUAccessType access_type,
596 int mmu_idx, MemTxAttrs attrs,
597 MemTxResult response, uintptr_t retaddr);
598
599 /* Call any registered EL change hooks */
600 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
601 {
602 ARMELChangeHook *hook, *next;
603 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
604 hook->hook(cpu, hook->opaque);
605 }
606 }
607 static inline void arm_call_el_change_hook(ARMCPU *cpu)
608 {
609 ARMELChangeHook *hook, *next;
610 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
611 hook->hook(cpu, hook->opaque);
612 }
613 }
614
615 /* Return true if this address translation regime has two ranges. */
616 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
617 {
618 switch (mmu_idx) {
619 case ARMMMUIdx_Stage1_E0:
620 case ARMMMUIdx_Stage1_E1:
621 case ARMMMUIdx_Stage1_E1_PAN:
622 case ARMMMUIdx_Stage1_SE0:
623 case ARMMMUIdx_Stage1_SE1:
624 case ARMMMUIdx_Stage1_SE1_PAN:
625 case ARMMMUIdx_E10_0:
626 case ARMMMUIdx_E10_1:
627 case ARMMMUIdx_E10_1_PAN:
628 case ARMMMUIdx_E20_0:
629 case ARMMMUIdx_E20_2:
630 case ARMMMUIdx_E20_2_PAN:
631 case ARMMMUIdx_SE10_0:
632 case ARMMMUIdx_SE10_1:
633 case ARMMMUIdx_SE10_1_PAN:
634 case ARMMMUIdx_SE20_0:
635 case ARMMMUIdx_SE20_2:
636 case ARMMMUIdx_SE20_2_PAN:
637 return true;
638 default:
639 return false;
640 }
641 }
642
643 /* Return true if this address translation regime is secure */
644 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
645 {
646 switch (mmu_idx) {
647 case ARMMMUIdx_E10_0:
648 case ARMMMUIdx_E10_1:
649 case ARMMMUIdx_E10_1_PAN:
650 case ARMMMUIdx_E20_0:
651 case ARMMMUIdx_E20_2:
652 case ARMMMUIdx_E20_2_PAN:
653 case ARMMMUIdx_Stage1_E0:
654 case ARMMMUIdx_Stage1_E1:
655 case ARMMMUIdx_Stage1_E1_PAN:
656 case ARMMMUIdx_E2:
657 case ARMMMUIdx_Stage2:
658 case ARMMMUIdx_MPrivNegPri:
659 case ARMMMUIdx_MUserNegPri:
660 case ARMMMUIdx_MPriv:
661 case ARMMMUIdx_MUser:
662 return false;
663 case ARMMMUIdx_SE3:
664 case ARMMMUIdx_SE10_0:
665 case ARMMMUIdx_SE10_1:
666 case ARMMMUIdx_SE10_1_PAN:
667 case ARMMMUIdx_SE20_0:
668 case ARMMMUIdx_SE20_2:
669 case ARMMMUIdx_SE20_2_PAN:
670 case ARMMMUIdx_Stage1_SE0:
671 case ARMMMUIdx_Stage1_SE1:
672 case ARMMMUIdx_Stage1_SE1_PAN:
673 case ARMMMUIdx_SE2:
674 case ARMMMUIdx_Stage2_S:
675 case ARMMMUIdx_MSPrivNegPri:
676 case ARMMMUIdx_MSUserNegPri:
677 case ARMMMUIdx_MSPriv:
678 case ARMMMUIdx_MSUser:
679 return true;
680 default:
681 g_assert_not_reached();
682 }
683 }
684
685 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
686 {
687 switch (mmu_idx) {
688 case ARMMMUIdx_Stage1_E1_PAN:
689 case ARMMMUIdx_Stage1_SE1_PAN:
690 case ARMMMUIdx_E10_1_PAN:
691 case ARMMMUIdx_E20_2_PAN:
692 case ARMMMUIdx_SE10_1_PAN:
693 case ARMMMUIdx_SE20_2_PAN:
694 return true;
695 default:
696 return false;
697 }
698 }
699
700 /* Return the exception level which controls this address translation regime */
701 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
702 {
703 switch (mmu_idx) {
704 case ARMMMUIdx_SE20_0:
705 case ARMMMUIdx_SE20_2:
706 case ARMMMUIdx_SE20_2_PAN:
707 case ARMMMUIdx_E20_0:
708 case ARMMMUIdx_E20_2:
709 case ARMMMUIdx_E20_2_PAN:
710 case ARMMMUIdx_Stage2:
711 case ARMMMUIdx_Stage2_S:
712 case ARMMMUIdx_SE2:
713 case ARMMMUIdx_E2:
714 return 2;
715 case ARMMMUIdx_SE3:
716 return 3;
717 case ARMMMUIdx_SE10_0:
718 case ARMMMUIdx_Stage1_SE0:
719 return arm_el_is_aa64(env, 3) ? 1 : 3;
720 case ARMMMUIdx_SE10_1:
721 case ARMMMUIdx_SE10_1_PAN:
722 case ARMMMUIdx_Stage1_E0:
723 case ARMMMUIdx_Stage1_E1:
724 case ARMMMUIdx_Stage1_E1_PAN:
725 case ARMMMUIdx_Stage1_SE1:
726 case ARMMMUIdx_Stage1_SE1_PAN:
727 case ARMMMUIdx_E10_0:
728 case ARMMMUIdx_E10_1:
729 case ARMMMUIdx_E10_1_PAN:
730 case ARMMMUIdx_MPrivNegPri:
731 case ARMMMUIdx_MUserNegPri:
732 case ARMMMUIdx_MPriv:
733 case ARMMMUIdx_MUser:
734 case ARMMMUIdx_MSPrivNegPri:
735 case ARMMMUIdx_MSUserNegPri:
736 case ARMMMUIdx_MSPriv:
737 case ARMMMUIdx_MSUser:
738 return 1;
739 default:
740 g_assert_not_reached();
741 }
742 }
743
744 /* Return the TCR controlling this translation regime */
745 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
746 {
747 if (mmu_idx == ARMMMUIdx_Stage2) {
748 return &env->cp15.vtcr_el2;
749 }
750 if (mmu_idx == ARMMMUIdx_Stage2_S) {
751 /*
752 * Note: Secure stage 2 nominally shares fields from VTCR_EL2, but
753 * those are not currently used by QEMU, so just return VSTCR_EL2.
754 */
755 return &env->cp15.vstcr_el2;
756 }
757 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
758 }
759
760 /* Return the FSR value for a debug exception (watchpoint, hardware
761 * breakpoint or BKPT insn) targeting the specified exception level.
762 */
763 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
764 {
765 ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
766 int target_el = arm_debug_target_el(env);
767 bool using_lpae = false;
768
769 if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
770 using_lpae = true;
771 } else {
772 if (arm_feature(env, ARM_FEATURE_LPAE) &&
773 (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
774 using_lpae = true;
775 }
776 }
777
778 if (using_lpae) {
779 return arm_fi_to_lfsc(&fi);
780 } else {
781 return arm_fi_to_sfsc(&fi);
782 }
783 }
784
785 /**
786 * arm_num_brps: Return number of implemented breakpoints.
787 * Note that the ID register BRPS field is "number of bps - 1",
788 * and we return the actual number of breakpoints.
789 */
790 static inline int arm_num_brps(ARMCPU *cpu)
791 {
792 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
793 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
794 } else {
795 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
796 }
797 }
798
799 /**
800 * arm_num_wrps: Return number of implemented watchpoints.
801 * Note that the ID register WRPS field is "number of wps - 1",
802 * and we return the actual number of watchpoints.
803 */
804 static inline int arm_num_wrps(ARMCPU *cpu)
805 {
806 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
807 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
808 } else {
809 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
810 }
811 }
812
813 /**
814 * arm_num_ctx_cmps: Return number of implemented context comparators.
815 * Note that the ID register CTX_CMPS field is "number of cmps - 1",
816 * and we return the actual number of comparators.
817 */
818 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
819 {
820 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
821 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
822 } else {
823 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
824 }
825 }
826
827 /**
828 * v7m_using_psp: Return true if using process stack pointer
829 * Return true if the CPU is currently using the process stack
830 * pointer, or false if it is using the main stack pointer.
831 */
832 static inline bool v7m_using_psp(CPUARMState *env)
833 {
834 /* Handler mode always uses the main stack; for thread mode
835 * the CONTROL.SPSEL bit determines the answer.
836 * Note that in v7M it is not possible to be in Handler mode with
837 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
838 */
839 return !arm_v7m_is_handler_mode(env) &&
840 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
841 }
842
843 /**
844 * v7m_sp_limit: Return SP limit for current CPU state
845 * Return the SP limit value for the current CPU security state
846 * and stack pointer.
847 */
848 static inline uint32_t v7m_sp_limit(CPUARMState *env)
849 {
850 if (v7m_using_psp(env)) {
851 return env->v7m.psplim[env->v7m.secure];
852 } else {
853 return env->v7m.msplim[env->v7m.secure];
854 }
855 }
856
857 /**
858 * v7m_cpacr_pass:
859 * Return true if the v7M CPACR permits access to the FPU for the specified
860 * security state and privilege level.
861 */
862 static inline bool v7m_cpacr_pass(CPUARMState *env,
863 bool is_secure, bool is_priv)
864 {
865 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
866 case 0:
867 case 2: /* UNPREDICTABLE: we treat like 0 */
868 return false;
869 case 1:
870 return is_priv;
871 case 3:
872 return true;
873 default:
874 g_assert_not_reached();
875 }
876 }
877
878 /**
879 * aarch32_mode_name(): Return name of the AArch32 CPU mode
880 * @psr: Program Status Register indicating CPU mode
881 *
882 * Returns, for debug logging purposes, a printable representation
883 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
884 * the low bits of the specified PSR.
885 */
886 static inline const char *aarch32_mode_name(uint32_t psr)
887 {
888 static const char cpu_mode_names[16][4] = {
889 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
890 "???", "???", "hyp", "und", "???", "???", "???", "sys"
891 };
892
893 return cpu_mode_names[psr & 0xf];
894 }
895
896 /**
897 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
898 *
899 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
900 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
901 * Must be called with the iothread lock held.
902 */
903 void arm_cpu_update_virq(ARMCPU *cpu);
904
905 /**
906 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
907 *
908 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
909 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
910 * Must be called with the iothread lock held.
911 */
912 void arm_cpu_update_vfiq(ARMCPU *cpu);
913
914 /**
915 * arm_mmu_idx_el:
916 * @env: The cpu environment
917 * @el: The EL to use.
918 *
919 * Return the full ARMMMUIdx for the translation regime for EL.
920 */
921 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
922
923 /**
924 * arm_mmu_idx:
925 * @env: The cpu environment
926 *
927 * Return the full ARMMMUIdx for the current translation regime.
928 */
929 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
930
931 /**
932 * arm_stage1_mmu_idx:
933 * @env: The cpu environment
934 *
935 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
936 */
937 #ifdef CONFIG_USER_ONLY
938 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
939 {
940 return ARMMMUIdx_Stage1_E0;
941 }
942 #else
943 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
944 #endif
945
946 /**
947 * arm_mmu_idx_is_stage1_of_2:
948 * @mmu_idx: The ARMMMUIdx to test
949 *
950 * Return true if @mmu_idx is a NOTLB mmu_idx that is the
951 * first stage of a two stage regime.
952 */
953 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
954 {
955 switch (mmu_idx) {
956 case ARMMMUIdx_Stage1_E0:
957 case ARMMMUIdx_Stage1_E1:
958 case ARMMMUIdx_Stage1_E1_PAN:
959 case ARMMMUIdx_Stage1_SE0:
960 case ARMMMUIdx_Stage1_SE1:
961 case ARMMMUIdx_Stage1_SE1_PAN:
962 return true;
963 default:
964 return false;
965 }
966 }
967
968 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
969 const ARMISARegisters *id)
970 {
971 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
972
973 if ((features >> ARM_FEATURE_V4T) & 1) {
974 valid |= CPSR_T;
975 }
976 if ((features >> ARM_FEATURE_V5) & 1) {
977 valid |= CPSR_Q; /* V5TE in reality*/
978 }
979 if ((features >> ARM_FEATURE_V6) & 1) {
980 valid |= CPSR_E | CPSR_GE;
981 }
982 if ((features >> ARM_FEATURE_THUMB2) & 1) {
983 valid |= CPSR_IT;
984 }
985 if (isar_feature_aa32_jazelle(id)) {
986 valid |= CPSR_J;
987 }
988 if (isar_feature_aa32_pan(id)) {
989 valid |= CPSR_PAN;
990 }
991 if (isar_feature_aa32_dit(id)) {
992 valid |= CPSR_DIT;
993 }
994 if (isar_feature_aa32_ssbs(id)) {
995 valid |= CPSR_SSBS;
996 }
997
998 return valid;
999 }
1000
1001 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1002 {
1003 uint32_t valid;
1004
1005 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1006 if (isar_feature_aa64_bti(id)) {
1007 valid |= PSTATE_BTYPE;
1008 }
1009 if (isar_feature_aa64_pan(id)) {
1010 valid |= PSTATE_PAN;
1011 }
1012 if (isar_feature_aa64_uao(id)) {
1013 valid |= PSTATE_UAO;
1014 }
1015 if (isar_feature_aa64_dit(id)) {
1016 valid |= PSTATE_DIT;
1017 }
1018 if (isar_feature_aa64_ssbs(id)) {
1019 valid |= PSTATE_SSBS;
1020 }
1021 if (isar_feature_aa64_mte(id)) {
1022 valid |= PSTATE_TCO;
1023 }
1024
1025 return valid;
1026 }
1027
1028 /*
1029 * Parameters of a given virtual address, as extracted from the
1030 * translation control register (TCR) for a given regime.
1031 */
1032 typedef struct ARMVAParameters {
1033 unsigned tsz : 8;
1034 unsigned select : 1;
1035 bool tbi : 1;
1036 bool epd : 1;
1037 bool hpd : 1;
1038 bool using16k : 1;
1039 bool using64k : 1;
1040 } ARMVAParameters;
1041
1042 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1043 ARMMMUIdx mmu_idx, bool data);
1044
1045 static inline int exception_target_el(CPUARMState *env)
1046 {
1047 int target_el = MAX(1, arm_current_el(env));
1048
1049 /*
1050 * No such thing as secure EL1 if EL3 is aarch32,
1051 * so update the target EL to EL3 in this case.
1052 */
1053 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
1054 target_el = 3;
1055 }
1056
1057 return target_el;
1058 }
1059
1060 /* Determine if allocation tags are available. */
1061 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1062 uint64_t sctlr)
1063 {
1064 if (el < 3
1065 && arm_feature(env, ARM_FEATURE_EL3)
1066 && !(env->cp15.scr_el3 & SCR_ATA)) {
1067 return false;
1068 }
1069 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
1070 uint64_t hcr = arm_hcr_el2_eff(env);
1071 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1072 return false;
1073 }
1074 }
1075 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1076 return sctlr != 0;
1077 }
1078
1079 #ifndef CONFIG_USER_ONLY
1080
1081 /* Security attributes for an address, as returned by v8m_security_lookup. */
1082 typedef struct V8M_SAttributes {
1083 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1084 bool ns;
1085 bool nsc;
1086 uint8_t sregion;
1087 bool srvalid;
1088 uint8_t iregion;
1089 bool irvalid;
1090 } V8M_SAttributes;
1091
1092 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1093 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1094 V8M_SAttributes *sattrs);
1095
1096 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1097 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1098 hwaddr *phys_ptr, MemTxAttrs *txattrs,
1099 int *prot, bool *is_subpage,
1100 ARMMMUFaultInfo *fi, uint32_t *mregion);
1101
1102 /* Cacheability and shareability attributes for a memory access */
1103 typedef struct ARMCacheAttrs {
1104 unsigned int attrs:8; /* as in the MAIR register encoding */
1105 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1106 } ARMCacheAttrs;
1107
1108 bool get_phys_addr(CPUARMState *env, target_ulong address,
1109 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1110 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
1111 target_ulong *page_size,
1112 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
1113 __attribute__((nonnull));
1114
1115 void arm_log_exception(int idx);
1116
1117 #endif /* !CONFIG_USER_ONLY */
1118
1119 /*
1120 * The log2 of the words in the tag block, for GMID_EL1.BS.
1121 * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1122 */
1123 #define GMID_EL1_BS 6
1124
1125 /* We associate one allocation tag per 16 bytes, the minimum. */
1126 #define LOG2_TAG_GRANULE 4
1127 #define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
1128
1129 /*
1130 * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1131 * the same simd_desc() encoding due to restrictions on size.
1132 * Use these instead.
1133 */
1134 FIELD(PREDDESC, OPRSZ, 0, 6)
1135 FIELD(PREDDESC, ESZ, 6, 2)
1136 FIELD(PREDDESC, DATA, 8, 24)
1137
1138 /*
1139 * The SVE simd_data field, for memory ops, contains either
1140 * rd (5 bits) or a shift count (2 bits).
1141 */
1142 #define SVE_MTEDESC_SHIFT 5
1143
1144 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1145 FIELD(MTEDESC, MIDX, 0, 4)
1146 FIELD(MTEDESC, TBI, 4, 2)
1147 FIELD(MTEDESC, TCMA, 6, 2)
1148 FIELD(MTEDESC, WRITE, 8, 1)
1149 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9) /* size - 1 */
1150
1151 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1152 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1153
1154 static inline int allocation_tag_from_addr(uint64_t ptr)
1155 {
1156 return extract64(ptr, 56, 4);
1157 }
1158
1159 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1160 {
1161 return deposit64(ptr, 56, 4, rtag);
1162 }
1163
1164 /* Return true if tbi bits mean that the access is checked. */
1165 static inline bool tbi_check(uint32_t desc, int bit55)
1166 {
1167 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1168 }
1169
1170 /* Return true if tcma bits mean that the access is unchecked. */
1171 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1172 {
1173 /*
1174 * We had extracted bit55 and ptr_tag for other reasons, so fold
1175 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1176 */
1177 bool match = ((ptr_tag + bit55) & 0xf) == 0;
1178 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1179 return tcma && match;
1180 }
1181
1182 /*
1183 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
1184 * for the tag to be present in the FAR_ELx register. But for user-only
1185 * mode, we do not have a TLB with which to implement this, so we must
1186 * remove the top byte.
1187 */
1188 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1189 {
1190 #ifdef CONFIG_USER_ONLY
1191 /* TBI0 is known to be enabled, while TBI1 is disabled. */
1192 ptr &= sextract64(ptr, 0, 56);
1193 #endif
1194 return ptr;
1195 }
1196
1197 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1198 {
1199 #ifdef CONFIG_USER_ONLY
1200 int64_t clean_ptr = sextract64(ptr, 0, 56);
1201 if (tbi_check(desc, clean_ptr < 0)) {
1202 ptr = clean_ptr;
1203 }
1204 #endif
1205 return ptr;
1206 }
1207
1208 /* Values for M-profile PSR.ECI for MVE insns */
1209 enum MVEECIState {
1210 ECI_NONE = 0, /* No completed beats */
1211 ECI_A0 = 1, /* Completed: A0 */
1212 ECI_A0A1 = 2, /* Completed: A0, A1 */
1213 /* 3 is reserved */
1214 ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1215 ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1216 /* All other values reserved */
1217 };
1218
1219 #endif