]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/internals.h
arm: Correctly handle watchpoints for BE32 CPUs
[mirror_qemu.git] / target / arm / internals.h
1 /*
2 * QEMU ARM CPU -- internal functions and types
3 *
4 * Copyright (c) 2014 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 *
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target/arm/ but which are
22 * private to it and not required by the rest of QEMU.
23 */
24
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27
28 #include "hw/registerfields.h"
29
30 /* register banks for CPU modes */
31 #define BANK_USRSYS 0
32 #define BANK_SVC 1
33 #define BANK_ABT 2
34 #define BANK_UND 3
35 #define BANK_IRQ 4
36 #define BANK_FIQ 5
37 #define BANK_HYP 6
38 #define BANK_MON 7
39
40 static inline bool excp_is_internal(int excp)
41 {
42 /* Return true if this exception number represents a QEMU-internal
43 * exception that will not be passed to the guest.
44 */
45 return excp == EXCP_INTERRUPT
46 || excp == EXCP_HLT
47 || excp == EXCP_DEBUG
48 || excp == EXCP_HALTED
49 || excp == EXCP_EXCEPTION_EXIT
50 || excp == EXCP_KERNEL_TRAP
51 || excp == EXCP_SEMIHOST;
52 }
53
54 /* Exception names for debug logging; note that not all of these
55 * precisely correspond to architectural exceptions.
56 */
57 static const char * const excnames[] = {
58 [EXCP_UDEF] = "Undefined Instruction",
59 [EXCP_SWI] = "SVC",
60 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
61 [EXCP_DATA_ABORT] = "Data Abort",
62 [EXCP_IRQ] = "IRQ",
63 [EXCP_FIQ] = "FIQ",
64 [EXCP_BKPT] = "Breakpoint",
65 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
66 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
67 [EXCP_HVC] = "Hypervisor Call",
68 [EXCP_HYP_TRAP] = "Hypervisor Trap",
69 [EXCP_SMC] = "Secure Monitor Call",
70 [EXCP_VIRQ] = "Virtual IRQ",
71 [EXCP_VFIQ] = "Virtual FIQ",
72 [EXCP_SEMIHOST] = "Semihosting call",
73 };
74
75 /* Scale factor for generic timers, ie number of ns per tick.
76 * This gives a 62.5MHz timer.
77 */
78 #define GTIMER_SCALE 16
79
80 /* Bit definitions for the v7M CONTROL register */
81 FIELD(V7M_CONTROL, NPRIV, 0, 1)
82 FIELD(V7M_CONTROL, SPSEL, 1, 1)
83 FIELD(V7M_CONTROL, FPCA, 2, 1)
84
85 /*
86 * For AArch64, map a given EL to an index in the banked_spsr array.
87 * Note that this mapping and the AArch32 mapping defined in bank_number()
88 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
89 * mandated mapping between each other.
90 */
91 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
92 {
93 static const unsigned int map[4] = {
94 [1] = BANK_SVC, /* EL1. */
95 [2] = BANK_HYP, /* EL2. */
96 [3] = BANK_MON, /* EL3. */
97 };
98 assert(el >= 1 && el <= 3);
99 return map[el];
100 }
101
102 /* Map CPU modes onto saved register banks. */
103 static inline int bank_number(int mode)
104 {
105 switch (mode) {
106 case ARM_CPU_MODE_USR:
107 case ARM_CPU_MODE_SYS:
108 return BANK_USRSYS;
109 case ARM_CPU_MODE_SVC:
110 return BANK_SVC;
111 case ARM_CPU_MODE_ABT:
112 return BANK_ABT;
113 case ARM_CPU_MODE_UND:
114 return BANK_UND;
115 case ARM_CPU_MODE_IRQ:
116 return BANK_IRQ;
117 case ARM_CPU_MODE_FIQ:
118 return BANK_FIQ;
119 case ARM_CPU_MODE_HYP:
120 return BANK_HYP;
121 case ARM_CPU_MODE_MON:
122 return BANK_MON;
123 }
124 g_assert_not_reached();
125 }
126
127 void switch_mode(CPUARMState *, int);
128 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
129 void arm_translate_init(void);
130
131 enum arm_fprounding {
132 FPROUNDING_TIEEVEN,
133 FPROUNDING_POSINF,
134 FPROUNDING_NEGINF,
135 FPROUNDING_ZERO,
136 FPROUNDING_TIEAWAY,
137 FPROUNDING_ODD
138 };
139
140 int arm_rmode_to_sf(int rmode);
141
142 static inline void aarch64_save_sp(CPUARMState *env, int el)
143 {
144 if (env->pstate & PSTATE_SP) {
145 env->sp_el[el] = env->xregs[31];
146 } else {
147 env->sp_el[0] = env->xregs[31];
148 }
149 }
150
151 static inline void aarch64_restore_sp(CPUARMState *env, int el)
152 {
153 if (env->pstate & PSTATE_SP) {
154 env->xregs[31] = env->sp_el[el];
155 } else {
156 env->xregs[31] = env->sp_el[0];
157 }
158 }
159
160 static inline void update_spsel(CPUARMState *env, uint32_t imm)
161 {
162 unsigned int cur_el = arm_current_el(env);
163 /* Update PSTATE SPSel bit; this requires us to update the
164 * working stack pointer in xregs[31].
165 */
166 if (!((imm ^ env->pstate) & PSTATE_SP)) {
167 return;
168 }
169 aarch64_save_sp(env, cur_el);
170 env->pstate = deposit32(env->pstate, 0, 1, imm);
171
172 /* We rely on illegal updates to SPsel from EL0 to get trapped
173 * at translation time.
174 */
175 assert(cur_el >= 1 && cur_el <= 3);
176 aarch64_restore_sp(env, cur_el);
177 }
178
179 /*
180 * arm_pamax
181 * @cpu: ARMCPU
182 *
183 * Returns the implementation defined bit-width of physical addresses.
184 * The ARMv8 reference manuals refer to this as PAMax().
185 */
186 static inline unsigned int arm_pamax(ARMCPU *cpu)
187 {
188 static const unsigned int pamax_map[] = {
189 [0] = 32,
190 [1] = 36,
191 [2] = 40,
192 [3] = 42,
193 [4] = 44,
194 [5] = 48,
195 };
196 unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
197
198 /* id_aa64mmfr0 is a read-only register so values outside of the
199 * supported mappings can be considered an implementation error. */
200 assert(parange < ARRAY_SIZE(pamax_map));
201 return pamax_map[parange];
202 }
203
204 /* Return true if extended addresses are enabled.
205 * This is always the case if our translation regime is 64 bit,
206 * but depends on TTBCR.EAE for 32 bit.
207 */
208 static inline bool extended_addresses_enabled(CPUARMState *env)
209 {
210 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
211 return arm_el_is_aa64(env, 1) ||
212 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
213 }
214
215 /* Valid Syndrome Register EC field values */
216 enum arm_exception_class {
217 EC_UNCATEGORIZED = 0x00,
218 EC_WFX_TRAP = 0x01,
219 EC_CP15RTTRAP = 0x03,
220 EC_CP15RRTTRAP = 0x04,
221 EC_CP14RTTRAP = 0x05,
222 EC_CP14DTTRAP = 0x06,
223 EC_ADVSIMDFPACCESSTRAP = 0x07,
224 EC_FPIDTRAP = 0x08,
225 EC_CP14RRTTRAP = 0x0c,
226 EC_ILLEGALSTATE = 0x0e,
227 EC_AA32_SVC = 0x11,
228 EC_AA32_HVC = 0x12,
229 EC_AA32_SMC = 0x13,
230 EC_AA64_SVC = 0x15,
231 EC_AA64_HVC = 0x16,
232 EC_AA64_SMC = 0x17,
233 EC_SYSTEMREGISTERTRAP = 0x18,
234 EC_INSNABORT = 0x20,
235 EC_INSNABORT_SAME_EL = 0x21,
236 EC_PCALIGNMENT = 0x22,
237 EC_DATAABORT = 0x24,
238 EC_DATAABORT_SAME_EL = 0x25,
239 EC_SPALIGNMENT = 0x26,
240 EC_AA32_FPTRAP = 0x28,
241 EC_AA64_FPTRAP = 0x2c,
242 EC_SERROR = 0x2f,
243 EC_BREAKPOINT = 0x30,
244 EC_BREAKPOINT_SAME_EL = 0x31,
245 EC_SOFTWARESTEP = 0x32,
246 EC_SOFTWARESTEP_SAME_EL = 0x33,
247 EC_WATCHPOINT = 0x34,
248 EC_WATCHPOINT_SAME_EL = 0x35,
249 EC_AA32_BKPT = 0x38,
250 EC_VECTORCATCH = 0x3a,
251 EC_AA64_BKPT = 0x3c,
252 };
253
254 #define ARM_EL_EC_SHIFT 26
255 #define ARM_EL_IL_SHIFT 25
256 #define ARM_EL_ISV_SHIFT 24
257 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
258 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
259
260 /* Utility functions for constructing various kinds of syndrome value.
261 * Note that in general we follow the AArch64 syndrome values; in a
262 * few cases the value in HSR for exceptions taken to AArch32 Hyp
263 * mode differs slightly, so if we ever implemented Hyp mode then the
264 * syndrome value would need some massaging on exception entry.
265 * (One example of this is that AArch64 defaults to IL bit set for
266 * exceptions which don't specifically indicate information about the
267 * trapping instruction, whereas AArch32 defaults to IL bit clear.)
268 */
269 static inline uint32_t syn_uncategorized(void)
270 {
271 return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
272 }
273
274 static inline uint32_t syn_aa64_svc(uint32_t imm16)
275 {
276 return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
277 }
278
279 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
280 {
281 return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
282 }
283
284 static inline uint32_t syn_aa64_smc(uint32_t imm16)
285 {
286 return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
287 }
288
289 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
290 {
291 return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
292 | (is_16bit ? 0 : ARM_EL_IL);
293 }
294
295 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
296 {
297 return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
298 }
299
300 static inline uint32_t syn_aa32_smc(void)
301 {
302 return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
303 }
304
305 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
306 {
307 return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
308 }
309
310 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
311 {
312 return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
313 | (is_16bit ? 0 : ARM_EL_IL);
314 }
315
316 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
317 int crn, int crm, int rt,
318 int isread)
319 {
320 return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
321 | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
322 | (crm << 1) | isread;
323 }
324
325 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
326 int crn, int crm, int rt, int isread,
327 bool is_16bit)
328 {
329 return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
330 | (is_16bit ? 0 : ARM_EL_IL)
331 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
332 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
333 }
334
335 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
336 int crn, int crm, int rt, int isread,
337 bool is_16bit)
338 {
339 return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
340 | (is_16bit ? 0 : ARM_EL_IL)
341 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
342 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
343 }
344
345 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
346 int rt, int rt2, int isread,
347 bool is_16bit)
348 {
349 return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
350 | (is_16bit ? 0 : ARM_EL_IL)
351 | (cv << 24) | (cond << 20) | (opc1 << 16)
352 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
353 }
354
355 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
356 int rt, int rt2, int isread,
357 bool is_16bit)
358 {
359 return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
360 | (is_16bit ? 0 : ARM_EL_IL)
361 | (cv << 24) | (cond << 20) | (opc1 << 16)
362 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
363 }
364
365 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
366 {
367 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
368 | (is_16bit ? 0 : ARM_EL_IL)
369 | (cv << 24) | (cond << 20);
370 }
371
372 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
373 {
374 return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
375 | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
376 }
377
378 static inline uint32_t syn_data_abort_no_iss(int same_el,
379 int ea, int cm, int s1ptw,
380 int wnr, int fsc)
381 {
382 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
383 | ARM_EL_IL
384 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
385 }
386
387 static inline uint32_t syn_data_abort_with_iss(int same_el,
388 int sas, int sse, int srt,
389 int sf, int ar,
390 int ea, int cm, int s1ptw,
391 int wnr, int fsc,
392 bool is_16bit)
393 {
394 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
395 | (is_16bit ? 0 : ARM_EL_IL)
396 | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
397 | (sf << 15) | (ar << 14)
398 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
399 }
400
401 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
402 {
403 return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
404 | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
405 }
406
407 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
408 {
409 return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
410 | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
411 }
412
413 static inline uint32_t syn_breakpoint(int same_el)
414 {
415 return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
416 | ARM_EL_IL | 0x22;
417 }
418
419 static inline uint32_t syn_wfx(int cv, int cond, int ti)
420 {
421 return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
422 (cv << 24) | (cond << 20) | ti;
423 }
424
425 /* Update a QEMU watchpoint based on the information the guest has set in the
426 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
427 */
428 void hw_watchpoint_update(ARMCPU *cpu, int n);
429 /* Update the QEMU watchpoints for every guest watchpoint. This does a
430 * complete delete-and-reinstate of the QEMU watchpoint list and so is
431 * suitable for use after migration or on reset.
432 */
433 void hw_watchpoint_update_all(ARMCPU *cpu);
434 /* Update a QEMU breakpoint based on the information the guest has set in the
435 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
436 */
437 void hw_breakpoint_update(ARMCPU *cpu, int n);
438 /* Update the QEMU breakpoints for every guest breakpoint. This does a
439 * complete delete-and-reinstate of the QEMU breakpoint list and so is
440 * suitable for use after migration or on reset.
441 */
442 void hw_breakpoint_update_all(ARMCPU *cpu);
443
444 /* Callback function for checking if a watchpoint should trigger. */
445 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
446
447 /* Adjust addresses (in BE32 mode) before testing against watchpoint
448 * addresses.
449 */
450 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
451
452 /* Callback function for when a watchpoint or breakpoint triggers. */
453 void arm_debug_excp_handler(CPUState *cs);
454
455 #ifdef CONFIG_USER_ONLY
456 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
457 {
458 return false;
459 }
460 #else
461 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
462 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
463 /* Actually handle a PSCI call */
464 void arm_handle_psci_call(ARMCPU *cpu);
465 #endif
466
467 /**
468 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
469 * @s2addr: Address that caused a fault at stage 2
470 * @stage2: True if we faulted at stage 2
471 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
472 */
473 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
474 struct ARMMMUFaultInfo {
475 target_ulong s2addr;
476 bool stage2;
477 bool s1ptw;
478 };
479
480 /* Do a page table walk and add page to TLB if possible */
481 bool arm_tlb_fill(CPUState *cpu, vaddr address, int rw, int mmu_idx,
482 uint32_t *fsr, ARMMMUFaultInfo *fi);
483
484 /* Return true if the stage 1 translation regime is using LPAE format page
485 * tables */
486 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
487
488 /* Raise a data fault alignment exception for the specified virtual address */
489 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
490 MMUAccessType access_type,
491 int mmu_idx, uintptr_t retaddr);
492
493 /* Call the EL change hook if one has been registered */
494 static inline void arm_call_el_change_hook(ARMCPU *cpu)
495 {
496 if (cpu->el_change_hook) {
497 cpu->el_change_hook(cpu, cpu->el_change_hook_opaque);
498 }
499 }
500
501 #endif