]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/internals.h
Merge remote-tracking branch 'remotes/sstabellini/tags/xen-20171214-tag' into staging
[mirror_qemu.git] / target / arm / internals.h
1 /*
2 * QEMU ARM CPU -- internal functions and types
3 *
4 * Copyright (c) 2014 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 *
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target/arm/ but which are
22 * private to it and not required by the rest of QEMU.
23 */
24
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27
28 #include "hw/registerfields.h"
29
30 /* register banks for CPU modes */
31 #define BANK_USRSYS 0
32 #define BANK_SVC 1
33 #define BANK_ABT 2
34 #define BANK_UND 3
35 #define BANK_IRQ 4
36 #define BANK_FIQ 5
37 #define BANK_HYP 6
38 #define BANK_MON 7
39
40 static inline bool excp_is_internal(int excp)
41 {
42 /* Return true if this exception number represents a QEMU-internal
43 * exception that will not be passed to the guest.
44 */
45 return excp == EXCP_INTERRUPT
46 || excp == EXCP_HLT
47 || excp == EXCP_DEBUG
48 || excp == EXCP_HALTED
49 || excp == EXCP_EXCEPTION_EXIT
50 || excp == EXCP_KERNEL_TRAP
51 || excp == EXCP_SEMIHOST;
52 }
53
54 /* Scale factor for generic timers, ie number of ns per tick.
55 * This gives a 62.5MHz timer.
56 */
57 #define GTIMER_SCALE 16
58
59 /* Bit definitions for the v7M CONTROL register */
60 FIELD(V7M_CONTROL, NPRIV, 0, 1)
61 FIELD(V7M_CONTROL, SPSEL, 1, 1)
62 FIELD(V7M_CONTROL, FPCA, 2, 1)
63 FIELD(V7M_CONTROL, SFPA, 3, 1)
64
65 /* Bit definitions for v7M exception return payload */
66 FIELD(V7M_EXCRET, ES, 0, 1)
67 FIELD(V7M_EXCRET, RES0, 1, 1)
68 FIELD(V7M_EXCRET, SPSEL, 2, 1)
69 FIELD(V7M_EXCRET, MODE, 3, 1)
70 FIELD(V7M_EXCRET, FTYPE, 4, 1)
71 FIELD(V7M_EXCRET, DCRS, 5, 1)
72 FIELD(V7M_EXCRET, S, 6, 1)
73 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
74
75 /* Minimum value which is a magic number for exception return */
76 #define EXC_RETURN_MIN_MAGIC 0xff000000
77 /* Minimum number which is a magic number for function or exception return
78 * when using v8M security extension
79 */
80 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
81
82 /* We use a few fake FSR values for internal purposes in M profile.
83 * M profile cores don't have A/R format FSRs, but currently our
84 * get_phys_addr() code assumes A/R profile and reports failures via
85 * an A/R format FSR value. We then translate that into the proper
86 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
87 * Mostly the FSR values we use for this are those defined for v7PMSA,
88 * since we share some of that codepath. A few kinds of fault are
89 * only for M profile and have no A/R equivalent, though, so we have
90 * to pick a value from the reserved range (which we never otherwise
91 * generate) to use for these.
92 * These values will never be visible to the guest.
93 */
94 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
95 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
96
97 /*
98 * For AArch64, map a given EL to an index in the banked_spsr array.
99 * Note that this mapping and the AArch32 mapping defined in bank_number()
100 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
101 * mandated mapping between each other.
102 */
103 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
104 {
105 static const unsigned int map[4] = {
106 [1] = BANK_SVC, /* EL1. */
107 [2] = BANK_HYP, /* EL2. */
108 [3] = BANK_MON, /* EL3. */
109 };
110 assert(el >= 1 && el <= 3);
111 return map[el];
112 }
113
114 /* Map CPU modes onto saved register banks. */
115 static inline int bank_number(int mode)
116 {
117 switch (mode) {
118 case ARM_CPU_MODE_USR:
119 case ARM_CPU_MODE_SYS:
120 return BANK_USRSYS;
121 case ARM_CPU_MODE_SVC:
122 return BANK_SVC;
123 case ARM_CPU_MODE_ABT:
124 return BANK_ABT;
125 case ARM_CPU_MODE_UND:
126 return BANK_UND;
127 case ARM_CPU_MODE_IRQ:
128 return BANK_IRQ;
129 case ARM_CPU_MODE_FIQ:
130 return BANK_FIQ;
131 case ARM_CPU_MODE_HYP:
132 return BANK_HYP;
133 case ARM_CPU_MODE_MON:
134 return BANK_MON;
135 }
136 g_assert_not_reached();
137 }
138
139 void switch_mode(CPUARMState *, int);
140 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
141 void arm_translate_init(void);
142
143 enum arm_fprounding {
144 FPROUNDING_TIEEVEN,
145 FPROUNDING_POSINF,
146 FPROUNDING_NEGINF,
147 FPROUNDING_ZERO,
148 FPROUNDING_TIEAWAY,
149 FPROUNDING_ODD
150 };
151
152 int arm_rmode_to_sf(int rmode);
153
154 static inline void aarch64_save_sp(CPUARMState *env, int el)
155 {
156 if (env->pstate & PSTATE_SP) {
157 env->sp_el[el] = env->xregs[31];
158 } else {
159 env->sp_el[0] = env->xregs[31];
160 }
161 }
162
163 static inline void aarch64_restore_sp(CPUARMState *env, int el)
164 {
165 if (env->pstate & PSTATE_SP) {
166 env->xregs[31] = env->sp_el[el];
167 } else {
168 env->xregs[31] = env->sp_el[0];
169 }
170 }
171
172 static inline void update_spsel(CPUARMState *env, uint32_t imm)
173 {
174 unsigned int cur_el = arm_current_el(env);
175 /* Update PSTATE SPSel bit; this requires us to update the
176 * working stack pointer in xregs[31].
177 */
178 if (!((imm ^ env->pstate) & PSTATE_SP)) {
179 return;
180 }
181 aarch64_save_sp(env, cur_el);
182 env->pstate = deposit32(env->pstate, 0, 1, imm);
183
184 /* We rely on illegal updates to SPsel from EL0 to get trapped
185 * at translation time.
186 */
187 assert(cur_el >= 1 && cur_el <= 3);
188 aarch64_restore_sp(env, cur_el);
189 }
190
191 /*
192 * arm_pamax
193 * @cpu: ARMCPU
194 *
195 * Returns the implementation defined bit-width of physical addresses.
196 * The ARMv8 reference manuals refer to this as PAMax().
197 */
198 static inline unsigned int arm_pamax(ARMCPU *cpu)
199 {
200 static const unsigned int pamax_map[] = {
201 [0] = 32,
202 [1] = 36,
203 [2] = 40,
204 [3] = 42,
205 [4] = 44,
206 [5] = 48,
207 };
208 unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
209
210 /* id_aa64mmfr0 is a read-only register so values outside of the
211 * supported mappings can be considered an implementation error. */
212 assert(parange < ARRAY_SIZE(pamax_map));
213 return pamax_map[parange];
214 }
215
216 /* Return true if extended addresses are enabled.
217 * This is always the case if our translation regime is 64 bit,
218 * but depends on TTBCR.EAE for 32 bit.
219 */
220 static inline bool extended_addresses_enabled(CPUARMState *env)
221 {
222 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
223 return arm_el_is_aa64(env, 1) ||
224 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
225 }
226
227 /* Valid Syndrome Register EC field values */
228 enum arm_exception_class {
229 EC_UNCATEGORIZED = 0x00,
230 EC_WFX_TRAP = 0x01,
231 EC_CP15RTTRAP = 0x03,
232 EC_CP15RRTTRAP = 0x04,
233 EC_CP14RTTRAP = 0x05,
234 EC_CP14DTTRAP = 0x06,
235 EC_ADVSIMDFPACCESSTRAP = 0x07,
236 EC_FPIDTRAP = 0x08,
237 EC_CP14RRTTRAP = 0x0c,
238 EC_ILLEGALSTATE = 0x0e,
239 EC_AA32_SVC = 0x11,
240 EC_AA32_HVC = 0x12,
241 EC_AA32_SMC = 0x13,
242 EC_AA64_SVC = 0x15,
243 EC_AA64_HVC = 0x16,
244 EC_AA64_SMC = 0x17,
245 EC_SYSTEMREGISTERTRAP = 0x18,
246 EC_INSNABORT = 0x20,
247 EC_INSNABORT_SAME_EL = 0x21,
248 EC_PCALIGNMENT = 0x22,
249 EC_DATAABORT = 0x24,
250 EC_DATAABORT_SAME_EL = 0x25,
251 EC_SPALIGNMENT = 0x26,
252 EC_AA32_FPTRAP = 0x28,
253 EC_AA64_FPTRAP = 0x2c,
254 EC_SERROR = 0x2f,
255 EC_BREAKPOINT = 0x30,
256 EC_BREAKPOINT_SAME_EL = 0x31,
257 EC_SOFTWARESTEP = 0x32,
258 EC_SOFTWARESTEP_SAME_EL = 0x33,
259 EC_WATCHPOINT = 0x34,
260 EC_WATCHPOINT_SAME_EL = 0x35,
261 EC_AA32_BKPT = 0x38,
262 EC_VECTORCATCH = 0x3a,
263 EC_AA64_BKPT = 0x3c,
264 };
265
266 #define ARM_EL_EC_SHIFT 26
267 #define ARM_EL_IL_SHIFT 25
268 #define ARM_EL_ISV_SHIFT 24
269 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
270 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
271
272 /* Utility functions for constructing various kinds of syndrome value.
273 * Note that in general we follow the AArch64 syndrome values; in a
274 * few cases the value in HSR for exceptions taken to AArch32 Hyp
275 * mode differs slightly, so if we ever implemented Hyp mode then the
276 * syndrome value would need some massaging on exception entry.
277 * (One example of this is that AArch64 defaults to IL bit set for
278 * exceptions which don't specifically indicate information about the
279 * trapping instruction, whereas AArch32 defaults to IL bit clear.)
280 */
281 static inline uint32_t syn_uncategorized(void)
282 {
283 return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
284 }
285
286 static inline uint32_t syn_aa64_svc(uint32_t imm16)
287 {
288 return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
289 }
290
291 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
292 {
293 return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
294 }
295
296 static inline uint32_t syn_aa64_smc(uint32_t imm16)
297 {
298 return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
299 }
300
301 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
302 {
303 return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
304 | (is_16bit ? 0 : ARM_EL_IL);
305 }
306
307 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
308 {
309 return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
310 }
311
312 static inline uint32_t syn_aa32_smc(void)
313 {
314 return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
315 }
316
317 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
318 {
319 return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
320 }
321
322 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
323 {
324 return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
325 | (is_16bit ? 0 : ARM_EL_IL);
326 }
327
328 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
329 int crn, int crm, int rt,
330 int isread)
331 {
332 return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
333 | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
334 | (crm << 1) | isread;
335 }
336
337 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
338 int crn, int crm, int rt, int isread,
339 bool is_16bit)
340 {
341 return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
342 | (is_16bit ? 0 : ARM_EL_IL)
343 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
344 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
345 }
346
347 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
348 int crn, int crm, int rt, int isread,
349 bool is_16bit)
350 {
351 return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
352 | (is_16bit ? 0 : ARM_EL_IL)
353 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
354 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
355 }
356
357 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
358 int rt, int rt2, int isread,
359 bool is_16bit)
360 {
361 return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
362 | (is_16bit ? 0 : ARM_EL_IL)
363 | (cv << 24) | (cond << 20) | (opc1 << 16)
364 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
365 }
366
367 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
368 int rt, int rt2, int isread,
369 bool is_16bit)
370 {
371 return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
372 | (is_16bit ? 0 : ARM_EL_IL)
373 | (cv << 24) | (cond << 20) | (opc1 << 16)
374 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
375 }
376
377 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
378 {
379 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
380 | (is_16bit ? 0 : ARM_EL_IL)
381 | (cv << 24) | (cond << 20);
382 }
383
384 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
385 {
386 return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
387 | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
388 }
389
390 static inline uint32_t syn_data_abort_no_iss(int same_el,
391 int ea, int cm, int s1ptw,
392 int wnr, int fsc)
393 {
394 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
395 | ARM_EL_IL
396 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
397 }
398
399 static inline uint32_t syn_data_abort_with_iss(int same_el,
400 int sas, int sse, int srt,
401 int sf, int ar,
402 int ea, int cm, int s1ptw,
403 int wnr, int fsc,
404 bool is_16bit)
405 {
406 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
407 | (is_16bit ? 0 : ARM_EL_IL)
408 | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
409 | (sf << 15) | (ar << 14)
410 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
411 }
412
413 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
414 {
415 return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
416 | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
417 }
418
419 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
420 {
421 return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
422 | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
423 }
424
425 static inline uint32_t syn_breakpoint(int same_el)
426 {
427 return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
428 | ARM_EL_IL | 0x22;
429 }
430
431 static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
432 {
433 return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
434 (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
435 (cv << 24) | (cond << 20) | ti;
436 }
437
438 /* Update a QEMU watchpoint based on the information the guest has set in the
439 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
440 */
441 void hw_watchpoint_update(ARMCPU *cpu, int n);
442 /* Update the QEMU watchpoints for every guest watchpoint. This does a
443 * complete delete-and-reinstate of the QEMU watchpoint list and so is
444 * suitable for use after migration or on reset.
445 */
446 void hw_watchpoint_update_all(ARMCPU *cpu);
447 /* Update a QEMU breakpoint based on the information the guest has set in the
448 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
449 */
450 void hw_breakpoint_update(ARMCPU *cpu, int n);
451 /* Update the QEMU breakpoints for every guest breakpoint. This does a
452 * complete delete-and-reinstate of the QEMU breakpoint list and so is
453 * suitable for use after migration or on reset.
454 */
455 void hw_breakpoint_update_all(ARMCPU *cpu);
456
457 /* Callback function for checking if a watchpoint should trigger. */
458 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
459
460 /* Adjust addresses (in BE32 mode) before testing against watchpoint
461 * addresses.
462 */
463 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
464
465 /* Callback function for when a watchpoint or breakpoint triggers. */
466 void arm_debug_excp_handler(CPUState *cs);
467
468 #ifdef CONFIG_USER_ONLY
469 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
470 {
471 return false;
472 }
473 #else
474 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
475 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
476 /* Actually handle a PSCI call */
477 void arm_handle_psci_call(ARMCPU *cpu);
478 #endif
479
480 /**
481 * arm_clear_exclusive: clear the exclusive monitor
482 * @env: CPU env
483 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
484 */
485 static inline void arm_clear_exclusive(CPUARMState *env)
486 {
487 env->exclusive_addr = -1;
488 }
489
490 /**
491 * ARMFaultType: type of an ARM MMU fault
492 * This corresponds to the v8A pseudocode's Fault enumeration,
493 * with extensions for QEMU internal conditions.
494 */
495 typedef enum ARMFaultType {
496 ARMFault_None,
497 ARMFault_AccessFlag,
498 ARMFault_Alignment,
499 ARMFault_Background,
500 ARMFault_Domain,
501 ARMFault_Permission,
502 ARMFault_Translation,
503 ARMFault_AddressSize,
504 ARMFault_SyncExternal,
505 ARMFault_SyncExternalOnWalk,
506 ARMFault_SyncParity,
507 ARMFault_SyncParityOnWalk,
508 ARMFault_AsyncParity,
509 ARMFault_AsyncExternal,
510 ARMFault_Debug,
511 ARMFault_TLBConflict,
512 ARMFault_Lockdown,
513 ARMFault_Exclusive,
514 ARMFault_ICacheMaint,
515 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
516 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
517 } ARMFaultType;
518
519 /**
520 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
521 * @type: Type of fault
522 * @level: Table walk level (for translation, access flag and permission faults)
523 * @domain: Domain of the fault address (for non-LPAE CPUs only)
524 * @s2addr: Address that caused a fault at stage 2
525 * @stage2: True if we faulted at stage 2
526 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
527 * @ea: True if we should set the EA (external abort type) bit in syndrome
528 */
529 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
530 struct ARMMMUFaultInfo {
531 ARMFaultType type;
532 target_ulong s2addr;
533 int level;
534 int domain;
535 bool stage2;
536 bool s1ptw;
537 bool ea;
538 };
539
540 /**
541 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
542 * Compare pseudocode EncodeSDFSC(), though unlike that function
543 * we set up a whole FSR-format code including domain field and
544 * putting the high bit of the FSC into bit 10.
545 */
546 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
547 {
548 uint32_t fsc;
549
550 switch (fi->type) {
551 case ARMFault_None:
552 return 0;
553 case ARMFault_AccessFlag:
554 fsc = fi->level == 1 ? 0x3 : 0x6;
555 break;
556 case ARMFault_Alignment:
557 fsc = 0x1;
558 break;
559 case ARMFault_Permission:
560 fsc = fi->level == 1 ? 0xd : 0xf;
561 break;
562 case ARMFault_Domain:
563 fsc = fi->level == 1 ? 0x9 : 0xb;
564 break;
565 case ARMFault_Translation:
566 fsc = fi->level == 1 ? 0x5 : 0x7;
567 break;
568 case ARMFault_SyncExternal:
569 fsc = 0x8 | (fi->ea << 12);
570 break;
571 case ARMFault_SyncExternalOnWalk:
572 fsc = fi->level == 1 ? 0xc : 0xe;
573 fsc |= (fi->ea << 12);
574 break;
575 case ARMFault_SyncParity:
576 fsc = 0x409;
577 break;
578 case ARMFault_SyncParityOnWalk:
579 fsc = fi->level == 1 ? 0x40c : 0x40e;
580 break;
581 case ARMFault_AsyncParity:
582 fsc = 0x408;
583 break;
584 case ARMFault_AsyncExternal:
585 fsc = 0x406 | (fi->ea << 12);
586 break;
587 case ARMFault_Debug:
588 fsc = 0x2;
589 break;
590 case ARMFault_TLBConflict:
591 fsc = 0x400;
592 break;
593 case ARMFault_Lockdown:
594 fsc = 0x404;
595 break;
596 case ARMFault_Exclusive:
597 fsc = 0x405;
598 break;
599 case ARMFault_ICacheMaint:
600 fsc = 0x4;
601 break;
602 case ARMFault_Background:
603 fsc = 0x0;
604 break;
605 case ARMFault_QEMU_NSCExec:
606 fsc = M_FAKE_FSR_NSC_EXEC;
607 break;
608 case ARMFault_QEMU_SFault:
609 fsc = M_FAKE_FSR_SFAULT;
610 break;
611 default:
612 /* Other faults can't occur in a context that requires a
613 * short-format status code.
614 */
615 g_assert_not_reached();
616 }
617
618 fsc |= (fi->domain << 4);
619 return fsc;
620 }
621
622 /**
623 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
624 * Compare pseudocode EncodeLDFSC(), though unlike that function
625 * we fill in also the LPAE bit 9 of a DFSR format.
626 */
627 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
628 {
629 uint32_t fsc;
630
631 switch (fi->type) {
632 case ARMFault_None:
633 return 0;
634 case ARMFault_AddressSize:
635 fsc = fi->level & 3;
636 break;
637 case ARMFault_AccessFlag:
638 fsc = (fi->level & 3) | (0x2 << 2);
639 break;
640 case ARMFault_Permission:
641 fsc = (fi->level & 3) | (0x3 << 2);
642 break;
643 case ARMFault_Translation:
644 fsc = (fi->level & 3) | (0x1 << 2);
645 break;
646 case ARMFault_SyncExternal:
647 fsc = 0x10 | (fi->ea << 12);
648 break;
649 case ARMFault_SyncExternalOnWalk:
650 fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
651 break;
652 case ARMFault_SyncParity:
653 fsc = 0x18;
654 break;
655 case ARMFault_SyncParityOnWalk:
656 fsc = (fi->level & 3) | (0x7 << 2);
657 break;
658 case ARMFault_AsyncParity:
659 fsc = 0x19;
660 break;
661 case ARMFault_AsyncExternal:
662 fsc = 0x11 | (fi->ea << 12);
663 break;
664 case ARMFault_Alignment:
665 fsc = 0x21;
666 break;
667 case ARMFault_Debug:
668 fsc = 0x22;
669 break;
670 case ARMFault_TLBConflict:
671 fsc = 0x30;
672 break;
673 case ARMFault_Lockdown:
674 fsc = 0x34;
675 break;
676 case ARMFault_Exclusive:
677 fsc = 0x35;
678 break;
679 default:
680 /* Other faults can't occur in a context that requires a
681 * long-format status code.
682 */
683 g_assert_not_reached();
684 }
685
686 fsc |= 1 << 9;
687 return fsc;
688 }
689
690 /* Do a page table walk and add page to TLB if possible */
691 bool arm_tlb_fill(CPUState *cpu, vaddr address,
692 MMUAccessType access_type, int mmu_idx,
693 ARMMMUFaultInfo *fi);
694
695 /* Return true if the stage 1 translation regime is using LPAE format page
696 * tables */
697 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
698
699 /* Raise a data fault alignment exception for the specified virtual address */
700 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
701 MMUAccessType access_type,
702 int mmu_idx, uintptr_t retaddr);
703
704 /* arm_cpu_do_transaction_failed: handle a memory system error response
705 * (eg "no device/memory present at address") by raising an external abort
706 * exception
707 */
708 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
709 vaddr addr, unsigned size,
710 MMUAccessType access_type,
711 int mmu_idx, MemTxAttrs attrs,
712 MemTxResult response, uintptr_t retaddr);
713
714 /* Call the EL change hook if one has been registered */
715 static inline void arm_call_el_change_hook(ARMCPU *cpu)
716 {
717 if (cpu->el_change_hook) {
718 cpu->el_change_hook(cpu, cpu->el_change_hook_opaque);
719 }
720 }
721
722 /* Return true if this address translation regime is secure */
723 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
724 {
725 switch (mmu_idx) {
726 case ARMMMUIdx_S12NSE0:
727 case ARMMMUIdx_S12NSE1:
728 case ARMMMUIdx_S1NSE0:
729 case ARMMMUIdx_S1NSE1:
730 case ARMMMUIdx_S1E2:
731 case ARMMMUIdx_S2NS:
732 case ARMMMUIdx_MPrivNegPri:
733 case ARMMMUIdx_MUserNegPri:
734 case ARMMMUIdx_MPriv:
735 case ARMMMUIdx_MUser:
736 return false;
737 case ARMMMUIdx_S1E3:
738 case ARMMMUIdx_S1SE0:
739 case ARMMMUIdx_S1SE1:
740 case ARMMMUIdx_MSPrivNegPri:
741 case ARMMMUIdx_MSUserNegPri:
742 case ARMMMUIdx_MSPriv:
743 case ARMMMUIdx_MSUser:
744 return true;
745 default:
746 g_assert_not_reached();
747 }
748 }
749
750 #endif