]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/internals.h
Merge tag 'for-upstream' of https://gitlab.com/bonzini/qemu into staging
[mirror_qemu.git] / target / arm / internals.h
1 /*
2 * QEMU ARM CPU -- internal functions and types
3 *
4 * Copyright (c) 2014 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 *
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target/arm/ but which are
22 * private to it and not required by the rest of QEMU.
23 */
24
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31
32 /* register banks for CPU modes */
33 #define BANK_USRSYS 0
34 #define BANK_SVC 1
35 #define BANK_ABT 2
36 #define BANK_UND 3
37 #define BANK_IRQ 4
38 #define BANK_FIQ 5
39 #define BANK_HYP 6
40 #define BANK_MON 7
41
42 static inline bool excp_is_internal(int excp)
43 {
44 /* Return true if this exception number represents a QEMU-internal
45 * exception that will not be passed to the guest.
46 */
47 return excp == EXCP_INTERRUPT
48 || excp == EXCP_HLT
49 || excp == EXCP_DEBUG
50 || excp == EXCP_HALTED
51 || excp == EXCP_EXCEPTION_EXIT
52 || excp == EXCP_KERNEL_TRAP
53 || excp == EXCP_SEMIHOST;
54 }
55
56 /* Scale factor for generic timers, ie number of ns per tick.
57 * This gives a 62.5MHz timer.
58 */
59 #define GTIMER_SCALE 16
60
61 /* Bit definitions for the v7M CONTROL register */
62 FIELD(V7M_CONTROL, NPRIV, 0, 1)
63 FIELD(V7M_CONTROL, SPSEL, 1, 1)
64 FIELD(V7M_CONTROL, FPCA, 2, 1)
65 FIELD(V7M_CONTROL, SFPA, 3, 1)
66
67 /* Bit definitions for v7M exception return payload */
68 FIELD(V7M_EXCRET, ES, 0, 1)
69 FIELD(V7M_EXCRET, RES0, 1, 1)
70 FIELD(V7M_EXCRET, SPSEL, 2, 1)
71 FIELD(V7M_EXCRET, MODE, 3, 1)
72 FIELD(V7M_EXCRET, FTYPE, 4, 1)
73 FIELD(V7M_EXCRET, DCRS, 5, 1)
74 FIELD(V7M_EXCRET, S, 6, 1)
75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76
77 /* Minimum value which is a magic number for exception return */
78 #define EXC_RETURN_MIN_MAGIC 0xff000000
79 /* Minimum number which is a magic number for function or exception return
80 * when using v8M security extension
81 */
82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
83
84 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
85 FIELD(DBGWCR, E, 0, 1)
86 FIELD(DBGWCR, PAC, 1, 2)
87 FIELD(DBGWCR, LSC, 3, 2)
88 FIELD(DBGWCR, BAS, 5, 8)
89 FIELD(DBGWCR, HMC, 13, 1)
90 FIELD(DBGWCR, SSC, 14, 2)
91 FIELD(DBGWCR, LBN, 16, 4)
92 FIELD(DBGWCR, WT, 20, 1)
93 FIELD(DBGWCR, MASK, 24, 5)
94 FIELD(DBGWCR, SSCE, 29, 1)
95
96 /* We use a few fake FSR values for internal purposes in M profile.
97 * M profile cores don't have A/R format FSRs, but currently our
98 * get_phys_addr() code assumes A/R profile and reports failures via
99 * an A/R format FSR value. We then translate that into the proper
100 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
101 * Mostly the FSR values we use for this are those defined for v7PMSA,
102 * since we share some of that codepath. A few kinds of fault are
103 * only for M profile and have no A/R equivalent, though, so we have
104 * to pick a value from the reserved range (which we never otherwise
105 * generate) to use for these.
106 * These values will never be visible to the guest.
107 */
108 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
109 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
110
111 /**
112 * raise_exception: Raise the specified exception.
113 * Raise a guest exception with the specified value, syndrome register
114 * and target exception level. This should be called from helper functions,
115 * and never returns because we will longjump back up to the CPU main loop.
116 */
117 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
118 uint32_t syndrome, uint32_t target_el);
119
120 /*
121 * Similarly, but also use unwinding to restore cpu state.
122 */
123 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
124 uint32_t syndrome, uint32_t target_el,
125 uintptr_t ra);
126
127 /*
128 * For AArch64, map a given EL to an index in the banked_spsr array.
129 * Note that this mapping and the AArch32 mapping defined in bank_number()
130 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
131 * mandated mapping between each other.
132 */
133 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
134 {
135 static const unsigned int map[4] = {
136 [1] = BANK_SVC, /* EL1. */
137 [2] = BANK_HYP, /* EL2. */
138 [3] = BANK_MON, /* EL3. */
139 };
140 assert(el >= 1 && el <= 3);
141 return map[el];
142 }
143
144 /* Map CPU modes onto saved register banks. */
145 static inline int bank_number(int mode)
146 {
147 switch (mode) {
148 case ARM_CPU_MODE_USR:
149 case ARM_CPU_MODE_SYS:
150 return BANK_USRSYS;
151 case ARM_CPU_MODE_SVC:
152 return BANK_SVC;
153 case ARM_CPU_MODE_ABT:
154 return BANK_ABT;
155 case ARM_CPU_MODE_UND:
156 return BANK_UND;
157 case ARM_CPU_MODE_IRQ:
158 return BANK_IRQ;
159 case ARM_CPU_MODE_FIQ:
160 return BANK_FIQ;
161 case ARM_CPU_MODE_HYP:
162 return BANK_HYP;
163 case ARM_CPU_MODE_MON:
164 return BANK_MON;
165 }
166 g_assert_not_reached();
167 }
168
169 /**
170 * r14_bank_number: Map CPU mode onto register bank for r14
171 *
172 * Given an AArch32 CPU mode, return the index into the saved register
173 * banks to use for the R14 (LR) in that mode. This is the same as
174 * bank_number(), except for the special case of Hyp mode, where
175 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
176 * This should be used as the index into env->banked_r14[], and
177 * bank_number() used for the index into env->banked_r13[] and
178 * env->banked_spsr[].
179 */
180 static inline int r14_bank_number(int mode)
181 {
182 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
183 }
184
185 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
186 void arm_translate_init(void);
187
188 void arm_restore_state_to_opc(CPUState *cs,
189 const TranslationBlock *tb,
190 const uint64_t *data);
191
192 #ifdef CONFIG_TCG
193 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
194 #endif /* CONFIG_TCG */
195
196 enum arm_fprounding {
197 FPROUNDING_TIEEVEN,
198 FPROUNDING_POSINF,
199 FPROUNDING_NEGINF,
200 FPROUNDING_ZERO,
201 FPROUNDING_TIEAWAY,
202 FPROUNDING_ODD
203 };
204
205 int arm_rmode_to_sf(int rmode);
206
207 static inline void aarch64_save_sp(CPUARMState *env, int el)
208 {
209 if (env->pstate & PSTATE_SP) {
210 env->sp_el[el] = env->xregs[31];
211 } else {
212 env->sp_el[0] = env->xregs[31];
213 }
214 }
215
216 static inline void aarch64_restore_sp(CPUARMState *env, int el)
217 {
218 if (env->pstate & PSTATE_SP) {
219 env->xregs[31] = env->sp_el[el];
220 } else {
221 env->xregs[31] = env->sp_el[0];
222 }
223 }
224
225 static inline void update_spsel(CPUARMState *env, uint32_t imm)
226 {
227 unsigned int cur_el = arm_current_el(env);
228 /* Update PSTATE SPSel bit; this requires us to update the
229 * working stack pointer in xregs[31].
230 */
231 if (!((imm ^ env->pstate) & PSTATE_SP)) {
232 return;
233 }
234 aarch64_save_sp(env, cur_el);
235 env->pstate = deposit32(env->pstate, 0, 1, imm);
236
237 /* We rely on illegal updates to SPsel from EL0 to get trapped
238 * at translation time.
239 */
240 assert(cur_el >= 1 && cur_el <= 3);
241 aarch64_restore_sp(env, cur_el);
242 }
243
244 /*
245 * arm_pamax
246 * @cpu: ARMCPU
247 *
248 * Returns the implementation defined bit-width of physical addresses.
249 * The ARMv8 reference manuals refer to this as PAMax().
250 */
251 unsigned int arm_pamax(ARMCPU *cpu);
252
253 /* Return true if extended addresses are enabled.
254 * This is always the case if our translation regime is 64 bit,
255 * but depends on TTBCR.EAE for 32 bit.
256 */
257 static inline bool extended_addresses_enabled(CPUARMState *env)
258 {
259 uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
260 if (arm_feature(env, ARM_FEATURE_PMSA) &&
261 arm_feature(env, ARM_FEATURE_V8)) {
262 return true;
263 }
264 return arm_el_is_aa64(env, 1) ||
265 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
266 }
267
268 /* Update a QEMU watchpoint based on the information the guest has set in the
269 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
270 */
271 void hw_watchpoint_update(ARMCPU *cpu, int n);
272 /* Update the QEMU watchpoints for every guest watchpoint. This does a
273 * complete delete-and-reinstate of the QEMU watchpoint list and so is
274 * suitable for use after migration or on reset.
275 */
276 void hw_watchpoint_update_all(ARMCPU *cpu);
277 /* Update a QEMU breakpoint based on the information the guest has set in the
278 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
279 */
280 void hw_breakpoint_update(ARMCPU *cpu, int n);
281 /* Update the QEMU breakpoints for every guest breakpoint. This does a
282 * complete delete-and-reinstate of the QEMU breakpoint list and so is
283 * suitable for use after migration or on reset.
284 */
285 void hw_breakpoint_update_all(ARMCPU *cpu);
286
287 /* Callback function for checking if a breakpoint should trigger. */
288 bool arm_debug_check_breakpoint(CPUState *cs);
289
290 /* Callback function for checking if a watchpoint should trigger. */
291 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
292
293 /* Adjust addresses (in BE32 mode) before testing against watchpoint
294 * addresses.
295 */
296 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
297
298 /* Callback function for when a watchpoint or breakpoint triggers. */
299 void arm_debug_excp_handler(CPUState *cs);
300
301 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
302 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
303 {
304 return false;
305 }
306 static inline void arm_handle_psci_call(ARMCPU *cpu)
307 {
308 g_assert_not_reached();
309 }
310 #else
311 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
312 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
313 /* Actually handle a PSCI call */
314 void arm_handle_psci_call(ARMCPU *cpu);
315 #endif
316
317 /**
318 * arm_clear_exclusive: clear the exclusive monitor
319 * @env: CPU env
320 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
321 */
322 static inline void arm_clear_exclusive(CPUARMState *env)
323 {
324 env->exclusive_addr = -1;
325 }
326
327 /**
328 * ARMFaultType: type of an ARM MMU fault
329 * This corresponds to the v8A pseudocode's Fault enumeration,
330 * with extensions for QEMU internal conditions.
331 */
332 typedef enum ARMFaultType {
333 ARMFault_None,
334 ARMFault_AccessFlag,
335 ARMFault_Alignment,
336 ARMFault_Background,
337 ARMFault_Domain,
338 ARMFault_Permission,
339 ARMFault_Translation,
340 ARMFault_AddressSize,
341 ARMFault_SyncExternal,
342 ARMFault_SyncExternalOnWalk,
343 ARMFault_SyncParity,
344 ARMFault_SyncParityOnWalk,
345 ARMFault_AsyncParity,
346 ARMFault_AsyncExternal,
347 ARMFault_Debug,
348 ARMFault_TLBConflict,
349 ARMFault_UnsuppAtomicUpdate,
350 ARMFault_Lockdown,
351 ARMFault_Exclusive,
352 ARMFault_ICacheMaint,
353 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
354 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
355 } ARMFaultType;
356
357 /**
358 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
359 * @type: Type of fault
360 * @level: Table walk level (for translation, access flag and permission faults)
361 * @domain: Domain of the fault address (for non-LPAE CPUs only)
362 * @s2addr: Address that caused a fault at stage 2
363 * @stage2: True if we faulted at stage 2
364 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
365 * @s1ns: True if we faulted on a non-secure IPA while in secure state
366 * @ea: True if we should set the EA (external abort type) bit in syndrome
367 */
368 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
369 struct ARMMMUFaultInfo {
370 ARMFaultType type;
371 target_ulong s2addr;
372 int level;
373 int domain;
374 bool stage2;
375 bool s1ptw;
376 bool s1ns;
377 bool ea;
378 };
379
380 /**
381 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
382 * Compare pseudocode EncodeSDFSC(), though unlike that function
383 * we set up a whole FSR-format code including domain field and
384 * putting the high bit of the FSC into bit 10.
385 */
386 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
387 {
388 uint32_t fsc;
389
390 switch (fi->type) {
391 case ARMFault_None:
392 return 0;
393 case ARMFault_AccessFlag:
394 fsc = fi->level == 1 ? 0x3 : 0x6;
395 break;
396 case ARMFault_Alignment:
397 fsc = 0x1;
398 break;
399 case ARMFault_Permission:
400 fsc = fi->level == 1 ? 0xd : 0xf;
401 break;
402 case ARMFault_Domain:
403 fsc = fi->level == 1 ? 0x9 : 0xb;
404 break;
405 case ARMFault_Translation:
406 fsc = fi->level == 1 ? 0x5 : 0x7;
407 break;
408 case ARMFault_SyncExternal:
409 fsc = 0x8 | (fi->ea << 12);
410 break;
411 case ARMFault_SyncExternalOnWalk:
412 fsc = fi->level == 1 ? 0xc : 0xe;
413 fsc |= (fi->ea << 12);
414 break;
415 case ARMFault_SyncParity:
416 fsc = 0x409;
417 break;
418 case ARMFault_SyncParityOnWalk:
419 fsc = fi->level == 1 ? 0x40c : 0x40e;
420 break;
421 case ARMFault_AsyncParity:
422 fsc = 0x408;
423 break;
424 case ARMFault_AsyncExternal:
425 fsc = 0x406 | (fi->ea << 12);
426 break;
427 case ARMFault_Debug:
428 fsc = 0x2;
429 break;
430 case ARMFault_TLBConflict:
431 fsc = 0x400;
432 break;
433 case ARMFault_Lockdown:
434 fsc = 0x404;
435 break;
436 case ARMFault_Exclusive:
437 fsc = 0x405;
438 break;
439 case ARMFault_ICacheMaint:
440 fsc = 0x4;
441 break;
442 case ARMFault_Background:
443 fsc = 0x0;
444 break;
445 case ARMFault_QEMU_NSCExec:
446 fsc = M_FAKE_FSR_NSC_EXEC;
447 break;
448 case ARMFault_QEMU_SFault:
449 fsc = M_FAKE_FSR_SFAULT;
450 break;
451 default:
452 /* Other faults can't occur in a context that requires a
453 * short-format status code.
454 */
455 g_assert_not_reached();
456 }
457
458 fsc |= (fi->domain << 4);
459 return fsc;
460 }
461
462 /**
463 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
464 * Compare pseudocode EncodeLDFSC(), though unlike that function
465 * we fill in also the LPAE bit 9 of a DFSR format.
466 */
467 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
468 {
469 uint32_t fsc;
470
471 switch (fi->type) {
472 case ARMFault_None:
473 return 0;
474 case ARMFault_AddressSize:
475 assert(fi->level >= -1 && fi->level <= 3);
476 if (fi->level < 0) {
477 fsc = 0b101001;
478 } else {
479 fsc = fi->level;
480 }
481 break;
482 case ARMFault_AccessFlag:
483 assert(fi->level >= 0 && fi->level <= 3);
484 fsc = 0b001000 | fi->level;
485 break;
486 case ARMFault_Permission:
487 assert(fi->level >= 0 && fi->level <= 3);
488 fsc = 0b001100 | fi->level;
489 break;
490 case ARMFault_Translation:
491 assert(fi->level >= -1 && fi->level <= 3);
492 if (fi->level < 0) {
493 fsc = 0b101011;
494 } else {
495 fsc = 0b000100 | fi->level;
496 }
497 break;
498 case ARMFault_SyncExternal:
499 fsc = 0x10 | (fi->ea << 12);
500 break;
501 case ARMFault_SyncExternalOnWalk:
502 assert(fi->level >= -1 && fi->level <= 3);
503 if (fi->level < 0) {
504 fsc = 0b010011;
505 } else {
506 fsc = 0b010100 | fi->level;
507 }
508 fsc |= fi->ea << 12;
509 break;
510 case ARMFault_SyncParity:
511 fsc = 0x18;
512 break;
513 case ARMFault_SyncParityOnWalk:
514 assert(fi->level >= -1 && fi->level <= 3);
515 if (fi->level < 0) {
516 fsc = 0b011011;
517 } else {
518 fsc = 0b011100 | fi->level;
519 }
520 break;
521 case ARMFault_AsyncParity:
522 fsc = 0x19;
523 break;
524 case ARMFault_AsyncExternal:
525 fsc = 0x11 | (fi->ea << 12);
526 break;
527 case ARMFault_Alignment:
528 fsc = 0x21;
529 break;
530 case ARMFault_Debug:
531 fsc = 0x22;
532 break;
533 case ARMFault_TLBConflict:
534 fsc = 0x30;
535 break;
536 case ARMFault_UnsuppAtomicUpdate:
537 fsc = 0x31;
538 break;
539 case ARMFault_Lockdown:
540 fsc = 0x34;
541 break;
542 case ARMFault_Exclusive:
543 fsc = 0x35;
544 break;
545 default:
546 /* Other faults can't occur in a context that requires a
547 * long-format status code.
548 */
549 g_assert_not_reached();
550 }
551
552 fsc |= 1 << 9;
553 return fsc;
554 }
555
556 static inline bool arm_extabort_type(MemTxResult result)
557 {
558 /* The EA bit in syndromes and fault status registers is an
559 * IMPDEF classification of external aborts. ARM implementations
560 * usually use this to indicate AXI bus Decode error (0) or
561 * Slave error (1); in QEMU we follow that.
562 */
563 return result != MEMTX_DECODE_ERROR;
564 }
565
566 #ifdef CONFIG_USER_ONLY
567 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
568 MMUAccessType access_type,
569 bool maperr, uintptr_t ra);
570 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
571 MMUAccessType access_type, uintptr_t ra);
572 #else
573 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
574 MMUAccessType access_type, int mmu_idx,
575 bool probe, uintptr_t retaddr);
576 #endif
577
578 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
579 {
580 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
581 }
582
583 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
584 {
585 if (arm_feature(env, ARM_FEATURE_M)) {
586 return mmu_idx | ARM_MMU_IDX_M;
587 } else {
588 return mmu_idx | ARM_MMU_IDX_A;
589 }
590 }
591
592 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
593 {
594 /* AArch64 is always a-profile. */
595 return mmu_idx | ARM_MMU_IDX_A;
596 }
597
598 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
599
600 /*
601 * Return the MMU index for a v7M CPU with all relevant information
602 * manually specified.
603 */
604 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
605 bool secstate, bool priv, bool negpri);
606
607 /*
608 * Return the MMU index for a v7M CPU in the specified security and
609 * privilege state.
610 */
611 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
612 bool secstate, bool priv);
613
614 /* Return the MMU index for a v7M CPU in the specified security state */
615 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
616
617 /* Return true if the translation regime is using LPAE format page tables */
618 bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
619
620 /*
621 * Return true if the stage 1 translation regime is using LPAE
622 * format page tables
623 */
624 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
625
626 /* Raise a data fault alignment exception for the specified virtual address */
627 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
628 MMUAccessType access_type,
629 int mmu_idx, uintptr_t retaddr);
630
631 /* arm_cpu_do_transaction_failed: handle a memory system error response
632 * (eg "no device/memory present at address") by raising an external abort
633 * exception
634 */
635 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
636 vaddr addr, unsigned size,
637 MMUAccessType access_type,
638 int mmu_idx, MemTxAttrs attrs,
639 MemTxResult response, uintptr_t retaddr);
640
641 /* Call any registered EL change hooks */
642 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
643 {
644 ARMELChangeHook *hook, *next;
645 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
646 hook->hook(cpu, hook->opaque);
647 }
648 }
649 static inline void arm_call_el_change_hook(ARMCPU *cpu)
650 {
651 ARMELChangeHook *hook, *next;
652 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
653 hook->hook(cpu, hook->opaque);
654 }
655 }
656
657 /* Return true if this address translation regime has two ranges. */
658 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
659 {
660 switch (mmu_idx) {
661 case ARMMMUIdx_Stage1_E0:
662 case ARMMMUIdx_Stage1_E1:
663 case ARMMMUIdx_Stage1_E1_PAN:
664 case ARMMMUIdx_E10_0:
665 case ARMMMUIdx_E10_1:
666 case ARMMMUIdx_E10_1_PAN:
667 case ARMMMUIdx_E20_0:
668 case ARMMMUIdx_E20_2:
669 case ARMMMUIdx_E20_2_PAN:
670 return true;
671 default:
672 return false;
673 }
674 }
675
676 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
677 {
678 switch (mmu_idx) {
679 case ARMMMUIdx_Stage1_E1_PAN:
680 case ARMMMUIdx_E10_1_PAN:
681 case ARMMMUIdx_E20_2_PAN:
682 return true;
683 default:
684 return false;
685 }
686 }
687
688 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
689 {
690 return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
691 }
692
693 /* Return the exception level which controls this address translation regime */
694 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
695 {
696 switch (mmu_idx) {
697 case ARMMMUIdx_E20_0:
698 case ARMMMUIdx_E20_2:
699 case ARMMMUIdx_E20_2_PAN:
700 case ARMMMUIdx_Stage2:
701 case ARMMMUIdx_Stage2_S:
702 case ARMMMUIdx_E2:
703 return 2;
704 case ARMMMUIdx_E3:
705 return 3;
706 case ARMMMUIdx_E10_0:
707 case ARMMMUIdx_Stage1_E0:
708 return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
709 case ARMMMUIdx_Stage1_E1:
710 case ARMMMUIdx_Stage1_E1_PAN:
711 case ARMMMUIdx_E10_1:
712 case ARMMMUIdx_E10_1_PAN:
713 case ARMMMUIdx_MPrivNegPri:
714 case ARMMMUIdx_MUserNegPri:
715 case ARMMMUIdx_MPriv:
716 case ARMMMUIdx_MUser:
717 case ARMMMUIdx_MSPrivNegPri:
718 case ARMMMUIdx_MSUserNegPri:
719 case ARMMMUIdx_MSPriv:
720 case ARMMMUIdx_MSUser:
721 return 1;
722 default:
723 g_assert_not_reached();
724 }
725 }
726
727 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
728 {
729 switch (mmu_idx) {
730 case ARMMMUIdx_E20_0:
731 case ARMMMUIdx_Stage1_E0:
732 case ARMMMUIdx_MUser:
733 case ARMMMUIdx_MSUser:
734 case ARMMMUIdx_MUserNegPri:
735 case ARMMMUIdx_MSUserNegPri:
736 return true;
737 default:
738 return false;
739 case ARMMMUIdx_E10_0:
740 case ARMMMUIdx_E10_1:
741 case ARMMMUIdx_E10_1_PAN:
742 g_assert_not_reached();
743 }
744 }
745
746 /* Return the SCTLR value which controls this address translation regime */
747 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
748 {
749 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
750 }
751
752 /*
753 * These are the fields in VTCR_EL2 which affect both the Secure stage 2
754 * and the Non-Secure stage 2 translation regimes (and hence which are
755 * not present in VSTCR_EL2).
756 */
757 #define VTCR_SHARED_FIELD_MASK \
758 (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
759 R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
760 R_VTCR_DS_MASK)
761
762 /* Return the value of the TCR controlling this translation regime */
763 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
764 {
765 if (mmu_idx == ARMMMUIdx_Stage2) {
766 return env->cp15.vtcr_el2;
767 }
768 if (mmu_idx == ARMMMUIdx_Stage2_S) {
769 /*
770 * Secure stage 2 shares fields from VTCR_EL2. We merge those
771 * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
772 * value so the callers don't need to special case this.
773 *
774 * If a future architecture change defines bits in VSTCR_EL2 that
775 * overlap with these VTCR_EL2 fields we may need to revisit this.
776 */
777 uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
778 v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
779 return v;
780 }
781 return env->cp15.tcr_el[regime_el(env, mmu_idx)];
782 }
783
784 /**
785 * arm_num_brps: Return number of implemented breakpoints.
786 * Note that the ID register BRPS field is "number of bps - 1",
787 * and we return the actual number of breakpoints.
788 */
789 static inline int arm_num_brps(ARMCPU *cpu)
790 {
791 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
792 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
793 } else {
794 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
795 }
796 }
797
798 /**
799 * arm_num_wrps: Return number of implemented watchpoints.
800 * Note that the ID register WRPS field is "number of wps - 1",
801 * and we return the actual number of watchpoints.
802 */
803 static inline int arm_num_wrps(ARMCPU *cpu)
804 {
805 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
806 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
807 } else {
808 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
809 }
810 }
811
812 /**
813 * arm_num_ctx_cmps: Return number of implemented context comparators.
814 * Note that the ID register CTX_CMPS field is "number of cmps - 1",
815 * and we return the actual number of comparators.
816 */
817 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
818 {
819 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
820 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
821 } else {
822 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
823 }
824 }
825
826 /**
827 * v7m_using_psp: Return true if using process stack pointer
828 * Return true if the CPU is currently using the process stack
829 * pointer, or false if it is using the main stack pointer.
830 */
831 static inline bool v7m_using_psp(CPUARMState *env)
832 {
833 /* Handler mode always uses the main stack; for thread mode
834 * the CONTROL.SPSEL bit determines the answer.
835 * Note that in v7M it is not possible to be in Handler mode with
836 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
837 */
838 return !arm_v7m_is_handler_mode(env) &&
839 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
840 }
841
842 /**
843 * v7m_sp_limit: Return SP limit for current CPU state
844 * Return the SP limit value for the current CPU security state
845 * and stack pointer.
846 */
847 static inline uint32_t v7m_sp_limit(CPUARMState *env)
848 {
849 if (v7m_using_psp(env)) {
850 return env->v7m.psplim[env->v7m.secure];
851 } else {
852 return env->v7m.msplim[env->v7m.secure];
853 }
854 }
855
856 /**
857 * v7m_cpacr_pass:
858 * Return true if the v7M CPACR permits access to the FPU for the specified
859 * security state and privilege level.
860 */
861 static inline bool v7m_cpacr_pass(CPUARMState *env,
862 bool is_secure, bool is_priv)
863 {
864 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
865 case 0:
866 case 2: /* UNPREDICTABLE: we treat like 0 */
867 return false;
868 case 1:
869 return is_priv;
870 case 3:
871 return true;
872 default:
873 g_assert_not_reached();
874 }
875 }
876
877 /**
878 * aarch32_mode_name(): Return name of the AArch32 CPU mode
879 * @psr: Program Status Register indicating CPU mode
880 *
881 * Returns, for debug logging purposes, a printable representation
882 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
883 * the low bits of the specified PSR.
884 */
885 static inline const char *aarch32_mode_name(uint32_t psr)
886 {
887 static const char cpu_mode_names[16][4] = {
888 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
889 "???", "???", "hyp", "und", "???", "???", "???", "sys"
890 };
891
892 return cpu_mode_names[psr & 0xf];
893 }
894
895 /**
896 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
897 *
898 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
899 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
900 * Must be called with the iothread lock held.
901 */
902 void arm_cpu_update_virq(ARMCPU *cpu);
903
904 /**
905 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
906 *
907 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
908 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
909 * Must be called with the iothread lock held.
910 */
911 void arm_cpu_update_vfiq(ARMCPU *cpu);
912
913 /**
914 * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
915 *
916 * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
917 * following a change to the HCR_EL2.VSE bit.
918 */
919 void arm_cpu_update_vserr(ARMCPU *cpu);
920
921 /**
922 * arm_mmu_idx_el:
923 * @env: The cpu environment
924 * @el: The EL to use.
925 *
926 * Return the full ARMMMUIdx for the translation regime for EL.
927 */
928 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
929
930 /**
931 * arm_mmu_idx:
932 * @env: The cpu environment
933 *
934 * Return the full ARMMMUIdx for the current translation regime.
935 */
936 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
937
938 /**
939 * arm_stage1_mmu_idx:
940 * @env: The cpu environment
941 *
942 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
943 */
944 #ifdef CONFIG_USER_ONLY
945 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
946 {
947 return ARMMMUIdx_Stage1_E0;
948 }
949 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
950 {
951 return ARMMMUIdx_Stage1_E0;
952 }
953 #else
954 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
955 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
956 #endif
957
958 /**
959 * arm_mmu_idx_is_stage1_of_2:
960 * @mmu_idx: The ARMMMUIdx to test
961 *
962 * Return true if @mmu_idx is a NOTLB mmu_idx that is the
963 * first stage of a two stage regime.
964 */
965 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
966 {
967 switch (mmu_idx) {
968 case ARMMMUIdx_Stage1_E0:
969 case ARMMMUIdx_Stage1_E1:
970 case ARMMMUIdx_Stage1_E1_PAN:
971 return true;
972 default:
973 return false;
974 }
975 }
976
977 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
978 const ARMISARegisters *id)
979 {
980 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
981
982 if ((features >> ARM_FEATURE_V4T) & 1) {
983 valid |= CPSR_T;
984 }
985 if ((features >> ARM_FEATURE_V5) & 1) {
986 valid |= CPSR_Q; /* V5TE in reality*/
987 }
988 if ((features >> ARM_FEATURE_V6) & 1) {
989 valid |= CPSR_E | CPSR_GE;
990 }
991 if ((features >> ARM_FEATURE_THUMB2) & 1) {
992 valid |= CPSR_IT;
993 }
994 if (isar_feature_aa32_jazelle(id)) {
995 valid |= CPSR_J;
996 }
997 if (isar_feature_aa32_pan(id)) {
998 valid |= CPSR_PAN;
999 }
1000 if (isar_feature_aa32_dit(id)) {
1001 valid |= CPSR_DIT;
1002 }
1003 if (isar_feature_aa32_ssbs(id)) {
1004 valid |= CPSR_SSBS;
1005 }
1006
1007 return valid;
1008 }
1009
1010 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1011 {
1012 uint32_t valid;
1013
1014 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1015 if (isar_feature_aa64_bti(id)) {
1016 valid |= PSTATE_BTYPE;
1017 }
1018 if (isar_feature_aa64_pan(id)) {
1019 valid |= PSTATE_PAN;
1020 }
1021 if (isar_feature_aa64_uao(id)) {
1022 valid |= PSTATE_UAO;
1023 }
1024 if (isar_feature_aa64_dit(id)) {
1025 valid |= PSTATE_DIT;
1026 }
1027 if (isar_feature_aa64_ssbs(id)) {
1028 valid |= PSTATE_SSBS;
1029 }
1030 if (isar_feature_aa64_mte(id)) {
1031 valid |= PSTATE_TCO;
1032 }
1033
1034 return valid;
1035 }
1036
1037 /* Granule size (i.e. page size) */
1038 typedef enum ARMGranuleSize {
1039 /* Same order as TG0 encoding */
1040 Gran4K,
1041 Gran64K,
1042 Gran16K,
1043 GranInvalid,
1044 } ARMGranuleSize;
1045
1046 /**
1047 * arm_granule_bits: Return address size of the granule in bits
1048 *
1049 * Return the address size of the granule in bits. This corresponds
1050 * to the pseudocode TGxGranuleBits().
1051 */
1052 static inline int arm_granule_bits(ARMGranuleSize gran)
1053 {
1054 switch (gran) {
1055 case Gran64K:
1056 return 16;
1057 case Gran16K:
1058 return 14;
1059 case Gran4K:
1060 return 12;
1061 default:
1062 g_assert_not_reached();
1063 }
1064 }
1065
1066 /*
1067 * Parameters of a given virtual address, as extracted from the
1068 * translation control register (TCR) for a given regime.
1069 */
1070 typedef struct ARMVAParameters {
1071 unsigned tsz : 8;
1072 unsigned ps : 3;
1073 unsigned sh : 2;
1074 unsigned select : 1;
1075 bool tbi : 1;
1076 bool epd : 1;
1077 bool hpd : 1;
1078 bool tsz_oob : 1; /* tsz has been clamped to legal range */
1079 bool ds : 1;
1080 bool ha : 1;
1081 bool hd : 1;
1082 ARMGranuleSize gran : 2;
1083 } ARMVAParameters;
1084
1085 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1086 ARMMMUIdx mmu_idx, bool data);
1087
1088 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1089 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1090
1091 /* Determine if allocation tags are available. */
1092 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1093 uint64_t sctlr)
1094 {
1095 if (el < 3
1096 && arm_feature(env, ARM_FEATURE_EL3)
1097 && !(env->cp15.scr_el3 & SCR_ATA)) {
1098 return false;
1099 }
1100 if (el < 2 && arm_is_el2_enabled(env)) {
1101 uint64_t hcr = arm_hcr_el2_eff(env);
1102 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1103 return false;
1104 }
1105 }
1106 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1107 return sctlr != 0;
1108 }
1109
1110 #ifndef CONFIG_USER_ONLY
1111
1112 /* Security attributes for an address, as returned by v8m_security_lookup. */
1113 typedef struct V8M_SAttributes {
1114 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1115 bool ns;
1116 bool nsc;
1117 uint8_t sregion;
1118 bool srvalid;
1119 uint8_t iregion;
1120 bool irvalid;
1121 } V8M_SAttributes;
1122
1123 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1124 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1125 bool secure, V8M_SAttributes *sattrs);
1126
1127 /* Cacheability and shareability attributes for a memory access */
1128 typedef struct ARMCacheAttrs {
1129 /*
1130 * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1131 * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1132 */
1133 unsigned int attrs:8;
1134 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1135 bool is_s2_format:1;
1136 bool guarded:1; /* guarded bit of the v8-64 PTE */
1137 } ARMCacheAttrs;
1138
1139 /* Fields that are valid upon success. */
1140 typedef struct GetPhysAddrResult {
1141 CPUTLBEntryFull f;
1142 ARMCacheAttrs cacheattrs;
1143 } GetPhysAddrResult;
1144
1145 /**
1146 * get_phys_addr_with_secure: get the physical address for a virtual address
1147 * @env: CPUARMState
1148 * @address: virtual address to get physical address for
1149 * @access_type: 0 for read, 1 for write, 2 for execute
1150 * @mmu_idx: MMU index indicating required translation regime
1151 * @is_secure: security state for the access
1152 * @result: set on translation success.
1153 * @fi: set to fault info if the translation fails
1154 *
1155 * Find the physical address corresponding to the given virtual address,
1156 * by doing a translation table walk on MMU based systems or using the
1157 * MPU state on MPU based systems.
1158 *
1159 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1160 * prot and page_size may not be filled in, and the populated fsr value provides
1161 * information on why the translation aborted, in the format of a
1162 * DFSR/IFSR fault register, with the following caveats:
1163 * * we honour the short vs long DFSR format differences.
1164 * * the WnR bit is never set (the caller must do this).
1165 * * for PSMAv5 based systems we don't bother to return a full FSR format
1166 * value.
1167 */
1168 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
1169 MMUAccessType access_type,
1170 ARMMMUIdx mmu_idx, bool is_secure,
1171 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1172 __attribute__((nonnull));
1173
1174 /**
1175 * get_phys_addr: get the physical address for a virtual address
1176 * @env: CPUARMState
1177 * @address: virtual address to get physical address for
1178 * @access_type: 0 for read, 1 for write, 2 for execute
1179 * @mmu_idx: MMU index indicating required translation regime
1180 * @result: set on translation success.
1181 * @fi: set to fault info if the translation fails
1182 *
1183 * Similarly, but use the security regime of @mmu_idx.
1184 */
1185 bool get_phys_addr(CPUARMState *env, target_ulong address,
1186 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1187 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1188 __attribute__((nonnull));
1189
1190 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1191 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1192 bool is_secure, GetPhysAddrResult *result,
1193 ARMMMUFaultInfo *fi, uint32_t *mregion);
1194
1195 void arm_log_exception(CPUState *cs);
1196
1197 #endif /* !CONFIG_USER_ONLY */
1198
1199 /*
1200 * The log2 of the words in the tag block, for GMID_EL1.BS.
1201 * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1202 */
1203 #define GMID_EL1_BS 6
1204
1205 /*
1206 * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1207 * the same simd_desc() encoding due to restrictions on size.
1208 * Use these instead.
1209 */
1210 FIELD(PREDDESC, OPRSZ, 0, 6)
1211 FIELD(PREDDESC, ESZ, 6, 2)
1212 FIELD(PREDDESC, DATA, 8, 24)
1213
1214 /*
1215 * The SVE simd_data field, for memory ops, contains either
1216 * rd (5 bits) or a shift count (2 bits).
1217 */
1218 #define SVE_MTEDESC_SHIFT 5
1219
1220 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1221 FIELD(MTEDESC, MIDX, 0, 4)
1222 FIELD(MTEDESC, TBI, 4, 2)
1223 FIELD(MTEDESC, TCMA, 6, 2)
1224 FIELD(MTEDESC, WRITE, 8, 1)
1225 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9) /* size - 1 */
1226
1227 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1228 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1229
1230 static inline int allocation_tag_from_addr(uint64_t ptr)
1231 {
1232 return extract64(ptr, 56, 4);
1233 }
1234
1235 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1236 {
1237 return deposit64(ptr, 56, 4, rtag);
1238 }
1239
1240 /* Return true if tbi bits mean that the access is checked. */
1241 static inline bool tbi_check(uint32_t desc, int bit55)
1242 {
1243 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1244 }
1245
1246 /* Return true if tcma bits mean that the access is unchecked. */
1247 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1248 {
1249 /*
1250 * We had extracted bit55 and ptr_tag for other reasons, so fold
1251 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1252 */
1253 bool match = ((ptr_tag + bit55) & 0xf) == 0;
1254 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1255 return tcma && match;
1256 }
1257
1258 /*
1259 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
1260 * for the tag to be present in the FAR_ELx register. But for user-only
1261 * mode, we do not have a TLB with which to implement this, so we must
1262 * remove the top byte.
1263 */
1264 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1265 {
1266 #ifdef CONFIG_USER_ONLY
1267 /* TBI0 is known to be enabled, while TBI1 is disabled. */
1268 ptr &= sextract64(ptr, 0, 56);
1269 #endif
1270 return ptr;
1271 }
1272
1273 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1274 {
1275 #ifdef CONFIG_USER_ONLY
1276 int64_t clean_ptr = sextract64(ptr, 0, 56);
1277 if (tbi_check(desc, clean_ptr < 0)) {
1278 ptr = clean_ptr;
1279 }
1280 #endif
1281 return ptr;
1282 }
1283
1284 /* Values for M-profile PSR.ECI for MVE insns */
1285 enum MVEECIState {
1286 ECI_NONE = 0, /* No completed beats */
1287 ECI_A0 = 1, /* Completed: A0 */
1288 ECI_A0A1 = 2, /* Completed: A0, A1 */
1289 /* 3 is reserved */
1290 ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1291 ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1292 /* All other values reserved */
1293 };
1294
1295 /* Definitions for the PMU registers */
1296 #define PMCRN_MASK 0xf800
1297 #define PMCRN_SHIFT 11
1298 #define PMCRLP 0x80
1299 #define PMCRLC 0x40
1300 #define PMCRDP 0x20
1301 #define PMCRX 0x10
1302 #define PMCRD 0x8
1303 #define PMCRC 0x4
1304 #define PMCRP 0x2
1305 #define PMCRE 0x1
1306 /*
1307 * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1308 * which can be written as 1 to trigger behaviour but which stay RAZ).
1309 */
1310 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1311
1312 #define PMXEVTYPER_P 0x80000000
1313 #define PMXEVTYPER_U 0x40000000
1314 #define PMXEVTYPER_NSK 0x20000000
1315 #define PMXEVTYPER_NSU 0x10000000
1316 #define PMXEVTYPER_NSH 0x08000000
1317 #define PMXEVTYPER_M 0x04000000
1318 #define PMXEVTYPER_MT 0x02000000
1319 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1320 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1321 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1322 PMXEVTYPER_M | PMXEVTYPER_MT | \
1323 PMXEVTYPER_EVTCOUNT)
1324
1325 #define PMCCFILTR 0xf8000000
1326 #define PMCCFILTR_M PMXEVTYPER_M
1327 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1328
1329 static inline uint32_t pmu_num_counters(CPUARMState *env)
1330 {
1331 ARMCPU *cpu = env_archcpu(env);
1332
1333 return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1334 }
1335
1336 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1337 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1338 {
1339 return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1340 }
1341
1342 #ifdef TARGET_AARCH64
1343 int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg);
1344 int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg);
1345 int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg);
1346 int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg);
1347 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1348 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1349 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1350 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1351 #endif
1352
1353 #ifdef CONFIG_USER_ONLY
1354 static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { }
1355 #else
1356 void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu);
1357 #endif
1358
1359 bool el_is_in_host(CPUARMState *env, int el);
1360
1361 void aa32_max_features(ARMCPU *cpu);
1362 int exception_target_el(CPUARMState *env);
1363 bool arm_singlestep_active(CPUARMState *env);
1364 bool arm_generate_debug_exceptions(CPUARMState *env);
1365
1366 /* Add the cpreg definitions for debug related system registers */
1367 void define_debug_regs(ARMCPU *cpu);
1368
1369 /* Effective value of MDCR_EL2 */
1370 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1371 {
1372 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1373 }
1374
1375 /* Powers of 2 for sve_vq_map et al. */
1376 #define SVE_VQ_POW2_MAP \
1377 ((1 << (1 - 1)) | (1 << (2 - 1)) | \
1378 (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1379
1380 #endif