]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/internals.h
target/arm: Implement BLXNS
[mirror_qemu.git] / target / arm / internals.h
1 /*
2 * QEMU ARM CPU -- internal functions and types
3 *
4 * Copyright (c) 2014 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 *
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target/arm/ but which are
22 * private to it and not required by the rest of QEMU.
23 */
24
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27
28 #include "hw/registerfields.h"
29
30 /* register banks for CPU modes */
31 #define BANK_USRSYS 0
32 #define BANK_SVC 1
33 #define BANK_ABT 2
34 #define BANK_UND 3
35 #define BANK_IRQ 4
36 #define BANK_FIQ 5
37 #define BANK_HYP 6
38 #define BANK_MON 7
39
40 static inline bool excp_is_internal(int excp)
41 {
42 /* Return true if this exception number represents a QEMU-internal
43 * exception that will not be passed to the guest.
44 */
45 return excp == EXCP_INTERRUPT
46 || excp == EXCP_HLT
47 || excp == EXCP_DEBUG
48 || excp == EXCP_HALTED
49 || excp == EXCP_EXCEPTION_EXIT
50 || excp == EXCP_KERNEL_TRAP
51 || excp == EXCP_SEMIHOST;
52 }
53
54 /* Scale factor for generic timers, ie number of ns per tick.
55 * This gives a 62.5MHz timer.
56 */
57 #define GTIMER_SCALE 16
58
59 /* Bit definitions for the v7M CONTROL register */
60 FIELD(V7M_CONTROL, NPRIV, 0, 1)
61 FIELD(V7M_CONTROL, SPSEL, 1, 1)
62 FIELD(V7M_CONTROL, FPCA, 2, 1)
63 FIELD(V7M_CONTROL, SFPA, 3, 1)
64
65 /* Bit definitions for v7M exception return payload */
66 FIELD(V7M_EXCRET, ES, 0, 1)
67 FIELD(V7M_EXCRET, RES0, 1, 1)
68 FIELD(V7M_EXCRET, SPSEL, 2, 1)
69 FIELD(V7M_EXCRET, MODE, 3, 1)
70 FIELD(V7M_EXCRET, FTYPE, 4, 1)
71 FIELD(V7M_EXCRET, DCRS, 5, 1)
72 FIELD(V7M_EXCRET, S, 6, 1)
73 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
74
75 /* We use a few fake FSR values for internal purposes in M profile.
76 * M profile cores don't have A/R format FSRs, but currently our
77 * get_phys_addr() code assumes A/R profile and reports failures via
78 * an A/R format FSR value. We then translate that into the proper
79 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
80 * Mostly the FSR values we use for this are those defined for v7PMSA,
81 * since we share some of that codepath. A few kinds of fault are
82 * only for M profile and have no A/R equivalent, though, so we have
83 * to pick a value from the reserved range (which we never otherwise
84 * generate) to use for these.
85 * These values will never be visible to the guest.
86 */
87 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
88 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
89
90 /*
91 * For AArch64, map a given EL to an index in the banked_spsr array.
92 * Note that this mapping and the AArch32 mapping defined in bank_number()
93 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
94 * mandated mapping between each other.
95 */
96 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
97 {
98 static const unsigned int map[4] = {
99 [1] = BANK_SVC, /* EL1. */
100 [2] = BANK_HYP, /* EL2. */
101 [3] = BANK_MON, /* EL3. */
102 };
103 assert(el >= 1 && el <= 3);
104 return map[el];
105 }
106
107 /* Map CPU modes onto saved register banks. */
108 static inline int bank_number(int mode)
109 {
110 switch (mode) {
111 case ARM_CPU_MODE_USR:
112 case ARM_CPU_MODE_SYS:
113 return BANK_USRSYS;
114 case ARM_CPU_MODE_SVC:
115 return BANK_SVC;
116 case ARM_CPU_MODE_ABT:
117 return BANK_ABT;
118 case ARM_CPU_MODE_UND:
119 return BANK_UND;
120 case ARM_CPU_MODE_IRQ:
121 return BANK_IRQ;
122 case ARM_CPU_MODE_FIQ:
123 return BANK_FIQ;
124 case ARM_CPU_MODE_HYP:
125 return BANK_HYP;
126 case ARM_CPU_MODE_MON:
127 return BANK_MON;
128 }
129 g_assert_not_reached();
130 }
131
132 void switch_mode(CPUARMState *, int);
133 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
134 void arm_translate_init(void);
135
136 enum arm_fprounding {
137 FPROUNDING_TIEEVEN,
138 FPROUNDING_POSINF,
139 FPROUNDING_NEGINF,
140 FPROUNDING_ZERO,
141 FPROUNDING_TIEAWAY,
142 FPROUNDING_ODD
143 };
144
145 int arm_rmode_to_sf(int rmode);
146
147 static inline void aarch64_save_sp(CPUARMState *env, int el)
148 {
149 if (env->pstate & PSTATE_SP) {
150 env->sp_el[el] = env->xregs[31];
151 } else {
152 env->sp_el[0] = env->xregs[31];
153 }
154 }
155
156 static inline void aarch64_restore_sp(CPUARMState *env, int el)
157 {
158 if (env->pstate & PSTATE_SP) {
159 env->xregs[31] = env->sp_el[el];
160 } else {
161 env->xregs[31] = env->sp_el[0];
162 }
163 }
164
165 static inline void update_spsel(CPUARMState *env, uint32_t imm)
166 {
167 unsigned int cur_el = arm_current_el(env);
168 /* Update PSTATE SPSel bit; this requires us to update the
169 * working stack pointer in xregs[31].
170 */
171 if (!((imm ^ env->pstate) & PSTATE_SP)) {
172 return;
173 }
174 aarch64_save_sp(env, cur_el);
175 env->pstate = deposit32(env->pstate, 0, 1, imm);
176
177 /* We rely on illegal updates to SPsel from EL0 to get trapped
178 * at translation time.
179 */
180 assert(cur_el >= 1 && cur_el <= 3);
181 aarch64_restore_sp(env, cur_el);
182 }
183
184 /*
185 * arm_pamax
186 * @cpu: ARMCPU
187 *
188 * Returns the implementation defined bit-width of physical addresses.
189 * The ARMv8 reference manuals refer to this as PAMax().
190 */
191 static inline unsigned int arm_pamax(ARMCPU *cpu)
192 {
193 static const unsigned int pamax_map[] = {
194 [0] = 32,
195 [1] = 36,
196 [2] = 40,
197 [3] = 42,
198 [4] = 44,
199 [5] = 48,
200 };
201 unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
202
203 /* id_aa64mmfr0 is a read-only register so values outside of the
204 * supported mappings can be considered an implementation error. */
205 assert(parange < ARRAY_SIZE(pamax_map));
206 return pamax_map[parange];
207 }
208
209 /* Return true if extended addresses are enabled.
210 * This is always the case if our translation regime is 64 bit,
211 * but depends on TTBCR.EAE for 32 bit.
212 */
213 static inline bool extended_addresses_enabled(CPUARMState *env)
214 {
215 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
216 return arm_el_is_aa64(env, 1) ||
217 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
218 }
219
220 /* Valid Syndrome Register EC field values */
221 enum arm_exception_class {
222 EC_UNCATEGORIZED = 0x00,
223 EC_WFX_TRAP = 0x01,
224 EC_CP15RTTRAP = 0x03,
225 EC_CP15RRTTRAP = 0x04,
226 EC_CP14RTTRAP = 0x05,
227 EC_CP14DTTRAP = 0x06,
228 EC_ADVSIMDFPACCESSTRAP = 0x07,
229 EC_FPIDTRAP = 0x08,
230 EC_CP14RRTTRAP = 0x0c,
231 EC_ILLEGALSTATE = 0x0e,
232 EC_AA32_SVC = 0x11,
233 EC_AA32_HVC = 0x12,
234 EC_AA32_SMC = 0x13,
235 EC_AA64_SVC = 0x15,
236 EC_AA64_HVC = 0x16,
237 EC_AA64_SMC = 0x17,
238 EC_SYSTEMREGISTERTRAP = 0x18,
239 EC_INSNABORT = 0x20,
240 EC_INSNABORT_SAME_EL = 0x21,
241 EC_PCALIGNMENT = 0x22,
242 EC_DATAABORT = 0x24,
243 EC_DATAABORT_SAME_EL = 0x25,
244 EC_SPALIGNMENT = 0x26,
245 EC_AA32_FPTRAP = 0x28,
246 EC_AA64_FPTRAP = 0x2c,
247 EC_SERROR = 0x2f,
248 EC_BREAKPOINT = 0x30,
249 EC_BREAKPOINT_SAME_EL = 0x31,
250 EC_SOFTWARESTEP = 0x32,
251 EC_SOFTWARESTEP_SAME_EL = 0x33,
252 EC_WATCHPOINT = 0x34,
253 EC_WATCHPOINT_SAME_EL = 0x35,
254 EC_AA32_BKPT = 0x38,
255 EC_VECTORCATCH = 0x3a,
256 EC_AA64_BKPT = 0x3c,
257 };
258
259 #define ARM_EL_EC_SHIFT 26
260 #define ARM_EL_IL_SHIFT 25
261 #define ARM_EL_ISV_SHIFT 24
262 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
263 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
264
265 /* Utility functions for constructing various kinds of syndrome value.
266 * Note that in general we follow the AArch64 syndrome values; in a
267 * few cases the value in HSR for exceptions taken to AArch32 Hyp
268 * mode differs slightly, so if we ever implemented Hyp mode then the
269 * syndrome value would need some massaging on exception entry.
270 * (One example of this is that AArch64 defaults to IL bit set for
271 * exceptions which don't specifically indicate information about the
272 * trapping instruction, whereas AArch32 defaults to IL bit clear.)
273 */
274 static inline uint32_t syn_uncategorized(void)
275 {
276 return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
277 }
278
279 static inline uint32_t syn_aa64_svc(uint32_t imm16)
280 {
281 return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
282 }
283
284 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
285 {
286 return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
287 }
288
289 static inline uint32_t syn_aa64_smc(uint32_t imm16)
290 {
291 return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
292 }
293
294 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
295 {
296 return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
297 | (is_16bit ? 0 : ARM_EL_IL);
298 }
299
300 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
301 {
302 return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
303 }
304
305 static inline uint32_t syn_aa32_smc(void)
306 {
307 return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
308 }
309
310 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
311 {
312 return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
313 }
314
315 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
316 {
317 return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
318 | (is_16bit ? 0 : ARM_EL_IL);
319 }
320
321 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
322 int crn, int crm, int rt,
323 int isread)
324 {
325 return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
326 | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
327 | (crm << 1) | isread;
328 }
329
330 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
331 int crn, int crm, int rt, int isread,
332 bool is_16bit)
333 {
334 return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
335 | (is_16bit ? 0 : ARM_EL_IL)
336 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
337 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
338 }
339
340 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
341 int crn, int crm, int rt, int isread,
342 bool is_16bit)
343 {
344 return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
345 | (is_16bit ? 0 : ARM_EL_IL)
346 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
347 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
348 }
349
350 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
351 int rt, int rt2, int isread,
352 bool is_16bit)
353 {
354 return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
355 | (is_16bit ? 0 : ARM_EL_IL)
356 | (cv << 24) | (cond << 20) | (opc1 << 16)
357 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
358 }
359
360 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
361 int rt, int rt2, int isread,
362 bool is_16bit)
363 {
364 return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
365 | (is_16bit ? 0 : ARM_EL_IL)
366 | (cv << 24) | (cond << 20) | (opc1 << 16)
367 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
368 }
369
370 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
371 {
372 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
373 | (is_16bit ? 0 : ARM_EL_IL)
374 | (cv << 24) | (cond << 20);
375 }
376
377 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
378 {
379 return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
380 | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
381 }
382
383 static inline uint32_t syn_data_abort_no_iss(int same_el,
384 int ea, int cm, int s1ptw,
385 int wnr, int fsc)
386 {
387 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
388 | ARM_EL_IL
389 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
390 }
391
392 static inline uint32_t syn_data_abort_with_iss(int same_el,
393 int sas, int sse, int srt,
394 int sf, int ar,
395 int ea, int cm, int s1ptw,
396 int wnr, int fsc,
397 bool is_16bit)
398 {
399 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
400 | (is_16bit ? 0 : ARM_EL_IL)
401 | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
402 | (sf << 15) | (ar << 14)
403 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
404 }
405
406 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
407 {
408 return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
409 | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
410 }
411
412 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
413 {
414 return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
415 | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
416 }
417
418 static inline uint32_t syn_breakpoint(int same_el)
419 {
420 return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
421 | ARM_EL_IL | 0x22;
422 }
423
424 static inline uint32_t syn_wfx(int cv, int cond, int ti)
425 {
426 return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
427 (cv << 24) | (cond << 20) | ti;
428 }
429
430 /* Update a QEMU watchpoint based on the information the guest has set in the
431 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
432 */
433 void hw_watchpoint_update(ARMCPU *cpu, int n);
434 /* Update the QEMU watchpoints for every guest watchpoint. This does a
435 * complete delete-and-reinstate of the QEMU watchpoint list and so is
436 * suitable for use after migration or on reset.
437 */
438 void hw_watchpoint_update_all(ARMCPU *cpu);
439 /* Update a QEMU breakpoint based on the information the guest has set in the
440 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
441 */
442 void hw_breakpoint_update(ARMCPU *cpu, int n);
443 /* Update the QEMU breakpoints for every guest breakpoint. This does a
444 * complete delete-and-reinstate of the QEMU breakpoint list and so is
445 * suitable for use after migration or on reset.
446 */
447 void hw_breakpoint_update_all(ARMCPU *cpu);
448
449 /* Callback function for checking if a watchpoint should trigger. */
450 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
451
452 /* Adjust addresses (in BE32 mode) before testing against watchpoint
453 * addresses.
454 */
455 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
456
457 /* Callback function for when a watchpoint or breakpoint triggers. */
458 void arm_debug_excp_handler(CPUState *cs);
459
460 #ifdef CONFIG_USER_ONLY
461 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
462 {
463 return false;
464 }
465 #else
466 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
467 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
468 /* Actually handle a PSCI call */
469 void arm_handle_psci_call(ARMCPU *cpu);
470 #endif
471
472 /**
473 * arm_clear_exclusive: clear the exclusive monitor
474 * @env: CPU env
475 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
476 */
477 static inline void arm_clear_exclusive(CPUARMState *env)
478 {
479 env->exclusive_addr = -1;
480 }
481
482 /**
483 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
484 * @s2addr: Address that caused a fault at stage 2
485 * @stage2: True if we faulted at stage 2
486 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
487 * @ea: True if we should set the EA (external abort type) bit in syndrome
488 */
489 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
490 struct ARMMMUFaultInfo {
491 target_ulong s2addr;
492 bool stage2;
493 bool s1ptw;
494 bool ea;
495 };
496
497 /* Do a page table walk and add page to TLB if possible */
498 bool arm_tlb_fill(CPUState *cpu, vaddr address,
499 MMUAccessType access_type, int mmu_idx,
500 uint32_t *fsr, ARMMMUFaultInfo *fi);
501
502 /* Return true if the stage 1 translation regime is using LPAE format page
503 * tables */
504 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
505
506 /* Raise a data fault alignment exception for the specified virtual address */
507 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
508 MMUAccessType access_type,
509 int mmu_idx, uintptr_t retaddr);
510
511 /* arm_cpu_do_transaction_failed: handle a memory system error response
512 * (eg "no device/memory present at address") by raising an external abort
513 * exception
514 */
515 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
516 vaddr addr, unsigned size,
517 MMUAccessType access_type,
518 int mmu_idx, MemTxAttrs attrs,
519 MemTxResult response, uintptr_t retaddr);
520
521 /* Call the EL change hook if one has been registered */
522 static inline void arm_call_el_change_hook(ARMCPU *cpu)
523 {
524 if (cpu->el_change_hook) {
525 cpu->el_change_hook(cpu, cpu->el_change_hook_opaque);
526 }
527 }
528
529 /* Return true if this address translation regime is secure */
530 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
531 {
532 switch (mmu_idx) {
533 case ARMMMUIdx_S12NSE0:
534 case ARMMMUIdx_S12NSE1:
535 case ARMMMUIdx_S1NSE0:
536 case ARMMMUIdx_S1NSE1:
537 case ARMMMUIdx_S1E2:
538 case ARMMMUIdx_S2NS:
539 case ARMMMUIdx_MPriv:
540 case ARMMMUIdx_MNegPri:
541 case ARMMMUIdx_MUser:
542 return false;
543 case ARMMMUIdx_S1E3:
544 case ARMMMUIdx_S1SE0:
545 case ARMMMUIdx_S1SE1:
546 case ARMMMUIdx_MSPriv:
547 case ARMMMUIdx_MSNegPri:
548 case ARMMMUIdx_MSUser:
549 return true;
550 default:
551 g_assert_not_reached();
552 }
553 }
554
555 #endif