]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/internals.h
Merge tag 'for_upstream' of https://git.kernel.org/pub/scm/virt/kvm/mst/qemu into...
[mirror_qemu.git] / target / arm / internals.h
1 /*
2 * QEMU ARM CPU -- internal functions and types
3 *
4 * Copyright (c) 2014 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 *
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target/arm/ but which are
22 * private to it and not required by the rest of QEMU.
23 */
24
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31
32 /* register banks for CPU modes */
33 #define BANK_USRSYS 0
34 #define BANK_SVC 1
35 #define BANK_ABT 2
36 #define BANK_UND 3
37 #define BANK_IRQ 4
38 #define BANK_FIQ 5
39 #define BANK_HYP 6
40 #define BANK_MON 7
41
42 static inline bool excp_is_internal(int excp)
43 {
44 /* Return true if this exception number represents a QEMU-internal
45 * exception that will not be passed to the guest.
46 */
47 return excp == EXCP_INTERRUPT
48 || excp == EXCP_HLT
49 || excp == EXCP_DEBUG
50 || excp == EXCP_HALTED
51 || excp == EXCP_EXCEPTION_EXIT
52 || excp == EXCP_KERNEL_TRAP
53 || excp == EXCP_SEMIHOST;
54 }
55
56 /* Scale factor for generic timers, ie number of ns per tick.
57 * This gives a 62.5MHz timer.
58 */
59 #define GTIMER_SCALE 16
60
61 /* Bit definitions for the v7M CONTROL register */
62 FIELD(V7M_CONTROL, NPRIV, 0, 1)
63 FIELD(V7M_CONTROL, SPSEL, 1, 1)
64 FIELD(V7M_CONTROL, FPCA, 2, 1)
65 FIELD(V7M_CONTROL, SFPA, 3, 1)
66
67 /* Bit definitions for v7M exception return payload */
68 FIELD(V7M_EXCRET, ES, 0, 1)
69 FIELD(V7M_EXCRET, RES0, 1, 1)
70 FIELD(V7M_EXCRET, SPSEL, 2, 1)
71 FIELD(V7M_EXCRET, MODE, 3, 1)
72 FIELD(V7M_EXCRET, FTYPE, 4, 1)
73 FIELD(V7M_EXCRET, DCRS, 5, 1)
74 FIELD(V7M_EXCRET, S, 6, 1)
75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76
77 /* Minimum value which is a magic number for exception return */
78 #define EXC_RETURN_MIN_MAGIC 0xff000000
79 /* Minimum number which is a magic number for function or exception return
80 * when using v8M security extension
81 */
82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
83
84 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
85 FIELD(DBGWCR, E, 0, 1)
86 FIELD(DBGWCR, PAC, 1, 2)
87 FIELD(DBGWCR, LSC, 3, 2)
88 FIELD(DBGWCR, BAS, 5, 8)
89 FIELD(DBGWCR, HMC, 13, 1)
90 FIELD(DBGWCR, SSC, 14, 2)
91 FIELD(DBGWCR, LBN, 16, 4)
92 FIELD(DBGWCR, WT, 20, 1)
93 FIELD(DBGWCR, MASK, 24, 5)
94 FIELD(DBGWCR, SSCE, 29, 1)
95
96 /* We use a few fake FSR values for internal purposes in M profile.
97 * M profile cores don't have A/R format FSRs, but currently our
98 * get_phys_addr() code assumes A/R profile and reports failures via
99 * an A/R format FSR value. We then translate that into the proper
100 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
101 * Mostly the FSR values we use for this are those defined for v7PMSA,
102 * since we share some of that codepath. A few kinds of fault are
103 * only for M profile and have no A/R equivalent, though, so we have
104 * to pick a value from the reserved range (which we never otherwise
105 * generate) to use for these.
106 * These values will never be visible to the guest.
107 */
108 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
109 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
110
111 /**
112 * raise_exception: Raise the specified exception.
113 * Raise a guest exception with the specified value, syndrome register
114 * and target exception level. This should be called from helper functions,
115 * and never returns because we will longjump back up to the CPU main loop.
116 */
117 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
118 uint32_t syndrome, uint32_t target_el);
119
120 /*
121 * Similarly, but also use unwinding to restore cpu state.
122 */
123 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
124 uint32_t syndrome, uint32_t target_el,
125 uintptr_t ra);
126
127 /*
128 * For AArch64, map a given EL to an index in the banked_spsr array.
129 * Note that this mapping and the AArch32 mapping defined in bank_number()
130 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
131 * mandated mapping between each other.
132 */
133 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
134 {
135 static const unsigned int map[4] = {
136 [1] = BANK_SVC, /* EL1. */
137 [2] = BANK_HYP, /* EL2. */
138 [3] = BANK_MON, /* EL3. */
139 };
140 assert(el >= 1 && el <= 3);
141 return map[el];
142 }
143
144 /* Map CPU modes onto saved register banks. */
145 static inline int bank_number(int mode)
146 {
147 switch (mode) {
148 case ARM_CPU_MODE_USR:
149 case ARM_CPU_MODE_SYS:
150 return BANK_USRSYS;
151 case ARM_CPU_MODE_SVC:
152 return BANK_SVC;
153 case ARM_CPU_MODE_ABT:
154 return BANK_ABT;
155 case ARM_CPU_MODE_UND:
156 return BANK_UND;
157 case ARM_CPU_MODE_IRQ:
158 return BANK_IRQ;
159 case ARM_CPU_MODE_FIQ:
160 return BANK_FIQ;
161 case ARM_CPU_MODE_HYP:
162 return BANK_HYP;
163 case ARM_CPU_MODE_MON:
164 return BANK_MON;
165 }
166 g_assert_not_reached();
167 }
168
169 /**
170 * r14_bank_number: Map CPU mode onto register bank for r14
171 *
172 * Given an AArch32 CPU mode, return the index into the saved register
173 * banks to use for the R14 (LR) in that mode. This is the same as
174 * bank_number(), except for the special case of Hyp mode, where
175 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
176 * This should be used as the index into env->banked_r14[], and
177 * bank_number() used for the index into env->banked_r13[] and
178 * env->banked_spsr[].
179 */
180 static inline int r14_bank_number(int mode)
181 {
182 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
183 }
184
185 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
186 void arm_translate_init(void);
187
188 void arm_restore_state_to_opc(CPUState *cs,
189 const TranslationBlock *tb,
190 const uint64_t *data);
191
192 #ifdef CONFIG_TCG
193 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
194 #endif /* CONFIG_TCG */
195
196 enum arm_fprounding {
197 FPROUNDING_TIEEVEN,
198 FPROUNDING_POSINF,
199 FPROUNDING_NEGINF,
200 FPROUNDING_ZERO,
201 FPROUNDING_TIEAWAY,
202 FPROUNDING_ODD
203 };
204
205 int arm_rmode_to_sf(int rmode);
206
207 static inline void aarch64_save_sp(CPUARMState *env, int el)
208 {
209 if (env->pstate & PSTATE_SP) {
210 env->sp_el[el] = env->xregs[31];
211 } else {
212 env->sp_el[0] = env->xregs[31];
213 }
214 }
215
216 static inline void aarch64_restore_sp(CPUARMState *env, int el)
217 {
218 if (env->pstate & PSTATE_SP) {
219 env->xregs[31] = env->sp_el[el];
220 } else {
221 env->xregs[31] = env->sp_el[0];
222 }
223 }
224
225 static inline void update_spsel(CPUARMState *env, uint32_t imm)
226 {
227 unsigned int cur_el = arm_current_el(env);
228 /* Update PSTATE SPSel bit; this requires us to update the
229 * working stack pointer in xregs[31].
230 */
231 if (!((imm ^ env->pstate) & PSTATE_SP)) {
232 return;
233 }
234 aarch64_save_sp(env, cur_el);
235 env->pstate = deposit32(env->pstate, 0, 1, imm);
236
237 /* We rely on illegal updates to SPsel from EL0 to get trapped
238 * at translation time.
239 */
240 assert(cur_el >= 1 && cur_el <= 3);
241 aarch64_restore_sp(env, cur_el);
242 }
243
244 /*
245 * arm_pamax
246 * @cpu: ARMCPU
247 *
248 * Returns the implementation defined bit-width of physical addresses.
249 * The ARMv8 reference manuals refer to this as PAMax().
250 */
251 unsigned int arm_pamax(ARMCPU *cpu);
252
253 /* Return true if extended addresses are enabled.
254 * This is always the case if our translation regime is 64 bit,
255 * but depends on TTBCR.EAE for 32 bit.
256 */
257 static inline bool extended_addresses_enabled(CPUARMState *env)
258 {
259 uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
260 return arm_el_is_aa64(env, 1) ||
261 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
262 }
263
264 /* Update a QEMU watchpoint based on the information the guest has set in the
265 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
266 */
267 void hw_watchpoint_update(ARMCPU *cpu, int n);
268 /* Update the QEMU watchpoints for every guest watchpoint. This does a
269 * complete delete-and-reinstate of the QEMU watchpoint list and so is
270 * suitable for use after migration or on reset.
271 */
272 void hw_watchpoint_update_all(ARMCPU *cpu);
273 /* Update a QEMU breakpoint based on the information the guest has set in the
274 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
275 */
276 void hw_breakpoint_update(ARMCPU *cpu, int n);
277 /* Update the QEMU breakpoints for every guest breakpoint. This does a
278 * complete delete-and-reinstate of the QEMU breakpoint list and so is
279 * suitable for use after migration or on reset.
280 */
281 void hw_breakpoint_update_all(ARMCPU *cpu);
282
283 /* Callback function for checking if a breakpoint should trigger. */
284 bool arm_debug_check_breakpoint(CPUState *cs);
285
286 /* Callback function for checking if a watchpoint should trigger. */
287 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
288
289 /* Adjust addresses (in BE32 mode) before testing against watchpoint
290 * addresses.
291 */
292 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
293
294 /* Callback function for when a watchpoint or breakpoint triggers. */
295 void arm_debug_excp_handler(CPUState *cs);
296
297 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
298 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
299 {
300 return false;
301 }
302 static inline void arm_handle_psci_call(ARMCPU *cpu)
303 {
304 g_assert_not_reached();
305 }
306 #else
307 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
308 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
309 /* Actually handle a PSCI call */
310 void arm_handle_psci_call(ARMCPU *cpu);
311 #endif
312
313 /**
314 * arm_clear_exclusive: clear the exclusive monitor
315 * @env: CPU env
316 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
317 */
318 static inline void arm_clear_exclusive(CPUARMState *env)
319 {
320 env->exclusive_addr = -1;
321 }
322
323 /**
324 * ARMFaultType: type of an ARM MMU fault
325 * This corresponds to the v8A pseudocode's Fault enumeration,
326 * with extensions for QEMU internal conditions.
327 */
328 typedef enum ARMFaultType {
329 ARMFault_None,
330 ARMFault_AccessFlag,
331 ARMFault_Alignment,
332 ARMFault_Background,
333 ARMFault_Domain,
334 ARMFault_Permission,
335 ARMFault_Translation,
336 ARMFault_AddressSize,
337 ARMFault_SyncExternal,
338 ARMFault_SyncExternalOnWalk,
339 ARMFault_SyncParity,
340 ARMFault_SyncParityOnWalk,
341 ARMFault_AsyncParity,
342 ARMFault_AsyncExternal,
343 ARMFault_Debug,
344 ARMFault_TLBConflict,
345 ARMFault_UnsuppAtomicUpdate,
346 ARMFault_Lockdown,
347 ARMFault_Exclusive,
348 ARMFault_ICacheMaint,
349 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
350 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
351 } ARMFaultType;
352
353 /**
354 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
355 * @type: Type of fault
356 * @level: Table walk level (for translation, access flag and permission faults)
357 * @domain: Domain of the fault address (for non-LPAE CPUs only)
358 * @s2addr: Address that caused a fault at stage 2
359 * @stage2: True if we faulted at stage 2
360 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
361 * @s1ns: True if we faulted on a non-secure IPA while in secure state
362 * @ea: True if we should set the EA (external abort type) bit in syndrome
363 */
364 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
365 struct ARMMMUFaultInfo {
366 ARMFaultType type;
367 target_ulong s2addr;
368 int level;
369 int domain;
370 bool stage2;
371 bool s1ptw;
372 bool s1ns;
373 bool ea;
374 };
375
376 /**
377 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
378 * Compare pseudocode EncodeSDFSC(), though unlike that function
379 * we set up a whole FSR-format code including domain field and
380 * putting the high bit of the FSC into bit 10.
381 */
382 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
383 {
384 uint32_t fsc;
385
386 switch (fi->type) {
387 case ARMFault_None:
388 return 0;
389 case ARMFault_AccessFlag:
390 fsc = fi->level == 1 ? 0x3 : 0x6;
391 break;
392 case ARMFault_Alignment:
393 fsc = 0x1;
394 break;
395 case ARMFault_Permission:
396 fsc = fi->level == 1 ? 0xd : 0xf;
397 break;
398 case ARMFault_Domain:
399 fsc = fi->level == 1 ? 0x9 : 0xb;
400 break;
401 case ARMFault_Translation:
402 fsc = fi->level == 1 ? 0x5 : 0x7;
403 break;
404 case ARMFault_SyncExternal:
405 fsc = 0x8 | (fi->ea << 12);
406 break;
407 case ARMFault_SyncExternalOnWalk:
408 fsc = fi->level == 1 ? 0xc : 0xe;
409 fsc |= (fi->ea << 12);
410 break;
411 case ARMFault_SyncParity:
412 fsc = 0x409;
413 break;
414 case ARMFault_SyncParityOnWalk:
415 fsc = fi->level == 1 ? 0x40c : 0x40e;
416 break;
417 case ARMFault_AsyncParity:
418 fsc = 0x408;
419 break;
420 case ARMFault_AsyncExternal:
421 fsc = 0x406 | (fi->ea << 12);
422 break;
423 case ARMFault_Debug:
424 fsc = 0x2;
425 break;
426 case ARMFault_TLBConflict:
427 fsc = 0x400;
428 break;
429 case ARMFault_Lockdown:
430 fsc = 0x404;
431 break;
432 case ARMFault_Exclusive:
433 fsc = 0x405;
434 break;
435 case ARMFault_ICacheMaint:
436 fsc = 0x4;
437 break;
438 case ARMFault_Background:
439 fsc = 0x0;
440 break;
441 case ARMFault_QEMU_NSCExec:
442 fsc = M_FAKE_FSR_NSC_EXEC;
443 break;
444 case ARMFault_QEMU_SFault:
445 fsc = M_FAKE_FSR_SFAULT;
446 break;
447 default:
448 /* Other faults can't occur in a context that requires a
449 * short-format status code.
450 */
451 g_assert_not_reached();
452 }
453
454 fsc |= (fi->domain << 4);
455 return fsc;
456 }
457
458 /**
459 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
460 * Compare pseudocode EncodeLDFSC(), though unlike that function
461 * we fill in also the LPAE bit 9 of a DFSR format.
462 */
463 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
464 {
465 uint32_t fsc;
466
467 switch (fi->type) {
468 case ARMFault_None:
469 return 0;
470 case ARMFault_AddressSize:
471 assert(fi->level >= -1 && fi->level <= 3);
472 if (fi->level < 0) {
473 fsc = 0b101001;
474 } else {
475 fsc = fi->level;
476 }
477 break;
478 case ARMFault_AccessFlag:
479 assert(fi->level >= 0 && fi->level <= 3);
480 fsc = 0b001000 | fi->level;
481 break;
482 case ARMFault_Permission:
483 assert(fi->level >= 0 && fi->level <= 3);
484 fsc = 0b001100 | fi->level;
485 break;
486 case ARMFault_Translation:
487 assert(fi->level >= -1 && fi->level <= 3);
488 if (fi->level < 0) {
489 fsc = 0b101011;
490 } else {
491 fsc = 0b000100 | fi->level;
492 }
493 break;
494 case ARMFault_SyncExternal:
495 fsc = 0x10 | (fi->ea << 12);
496 break;
497 case ARMFault_SyncExternalOnWalk:
498 assert(fi->level >= -1 && fi->level <= 3);
499 if (fi->level < 0) {
500 fsc = 0b010011;
501 } else {
502 fsc = 0b010100 | fi->level;
503 }
504 fsc |= fi->ea << 12;
505 break;
506 case ARMFault_SyncParity:
507 fsc = 0x18;
508 break;
509 case ARMFault_SyncParityOnWalk:
510 assert(fi->level >= -1 && fi->level <= 3);
511 if (fi->level < 0) {
512 fsc = 0b011011;
513 } else {
514 fsc = 0b011100 | fi->level;
515 }
516 break;
517 case ARMFault_AsyncParity:
518 fsc = 0x19;
519 break;
520 case ARMFault_AsyncExternal:
521 fsc = 0x11 | (fi->ea << 12);
522 break;
523 case ARMFault_Alignment:
524 fsc = 0x21;
525 break;
526 case ARMFault_Debug:
527 fsc = 0x22;
528 break;
529 case ARMFault_TLBConflict:
530 fsc = 0x30;
531 break;
532 case ARMFault_UnsuppAtomicUpdate:
533 fsc = 0x31;
534 break;
535 case ARMFault_Lockdown:
536 fsc = 0x34;
537 break;
538 case ARMFault_Exclusive:
539 fsc = 0x35;
540 break;
541 default:
542 /* Other faults can't occur in a context that requires a
543 * long-format status code.
544 */
545 g_assert_not_reached();
546 }
547
548 fsc |= 1 << 9;
549 return fsc;
550 }
551
552 static inline bool arm_extabort_type(MemTxResult result)
553 {
554 /* The EA bit in syndromes and fault status registers is an
555 * IMPDEF classification of external aborts. ARM implementations
556 * usually use this to indicate AXI bus Decode error (0) or
557 * Slave error (1); in QEMU we follow that.
558 */
559 return result != MEMTX_DECODE_ERROR;
560 }
561
562 #ifdef CONFIG_USER_ONLY
563 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
564 MMUAccessType access_type,
565 bool maperr, uintptr_t ra);
566 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
567 MMUAccessType access_type, uintptr_t ra);
568 #else
569 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
570 MMUAccessType access_type, int mmu_idx,
571 bool probe, uintptr_t retaddr);
572 #endif
573
574 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
575 {
576 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
577 }
578
579 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
580 {
581 if (arm_feature(env, ARM_FEATURE_M)) {
582 return mmu_idx | ARM_MMU_IDX_M;
583 } else {
584 return mmu_idx | ARM_MMU_IDX_A;
585 }
586 }
587
588 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
589 {
590 /* AArch64 is always a-profile. */
591 return mmu_idx | ARM_MMU_IDX_A;
592 }
593
594 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
595
596 /*
597 * Return the MMU index for a v7M CPU with all relevant information
598 * manually specified.
599 */
600 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
601 bool secstate, bool priv, bool negpri);
602
603 /*
604 * Return the MMU index for a v7M CPU in the specified security and
605 * privilege state.
606 */
607 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
608 bool secstate, bool priv);
609
610 /* Return the MMU index for a v7M CPU in the specified security state */
611 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
612
613 /* Return true if the translation regime is using LPAE format page tables */
614 bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
615
616 /*
617 * Return true if the stage 1 translation regime is using LPAE
618 * format page tables
619 */
620 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
621
622 /* Raise a data fault alignment exception for the specified virtual address */
623 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
624 MMUAccessType access_type,
625 int mmu_idx, uintptr_t retaddr);
626
627 /* arm_cpu_do_transaction_failed: handle a memory system error response
628 * (eg "no device/memory present at address") by raising an external abort
629 * exception
630 */
631 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
632 vaddr addr, unsigned size,
633 MMUAccessType access_type,
634 int mmu_idx, MemTxAttrs attrs,
635 MemTxResult response, uintptr_t retaddr);
636
637 /* Call any registered EL change hooks */
638 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
639 {
640 ARMELChangeHook *hook, *next;
641 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
642 hook->hook(cpu, hook->opaque);
643 }
644 }
645 static inline void arm_call_el_change_hook(ARMCPU *cpu)
646 {
647 ARMELChangeHook *hook, *next;
648 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
649 hook->hook(cpu, hook->opaque);
650 }
651 }
652
653 /* Return true if this address translation regime has two ranges. */
654 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
655 {
656 switch (mmu_idx) {
657 case ARMMMUIdx_Stage1_E0:
658 case ARMMMUIdx_Stage1_E1:
659 case ARMMMUIdx_Stage1_E1_PAN:
660 case ARMMMUIdx_E10_0:
661 case ARMMMUIdx_E10_1:
662 case ARMMMUIdx_E10_1_PAN:
663 case ARMMMUIdx_E20_0:
664 case ARMMMUIdx_E20_2:
665 case ARMMMUIdx_E20_2_PAN:
666 return true;
667 default:
668 return false;
669 }
670 }
671
672 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
673 {
674 switch (mmu_idx) {
675 case ARMMMUIdx_Stage1_E1_PAN:
676 case ARMMMUIdx_E10_1_PAN:
677 case ARMMMUIdx_E20_2_PAN:
678 return true;
679 default:
680 return false;
681 }
682 }
683
684 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
685 {
686 return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
687 }
688
689 /* Return the exception level which controls this address translation regime */
690 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
691 {
692 switch (mmu_idx) {
693 case ARMMMUIdx_E20_0:
694 case ARMMMUIdx_E20_2:
695 case ARMMMUIdx_E20_2_PAN:
696 case ARMMMUIdx_Stage2:
697 case ARMMMUIdx_Stage2_S:
698 case ARMMMUIdx_E2:
699 return 2;
700 case ARMMMUIdx_E3:
701 return 3;
702 case ARMMMUIdx_E10_0:
703 case ARMMMUIdx_Stage1_E0:
704 return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
705 case ARMMMUIdx_Stage1_E1:
706 case ARMMMUIdx_Stage1_E1_PAN:
707 case ARMMMUIdx_E10_1:
708 case ARMMMUIdx_E10_1_PAN:
709 case ARMMMUIdx_MPrivNegPri:
710 case ARMMMUIdx_MUserNegPri:
711 case ARMMMUIdx_MPriv:
712 case ARMMMUIdx_MUser:
713 case ARMMMUIdx_MSPrivNegPri:
714 case ARMMMUIdx_MSUserNegPri:
715 case ARMMMUIdx_MSPriv:
716 case ARMMMUIdx_MSUser:
717 return 1;
718 default:
719 g_assert_not_reached();
720 }
721 }
722
723 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
724 {
725 switch (mmu_idx) {
726 case ARMMMUIdx_E20_0:
727 case ARMMMUIdx_Stage1_E0:
728 case ARMMMUIdx_MUser:
729 case ARMMMUIdx_MSUser:
730 case ARMMMUIdx_MUserNegPri:
731 case ARMMMUIdx_MSUserNegPri:
732 return true;
733 default:
734 return false;
735 case ARMMMUIdx_E10_0:
736 case ARMMMUIdx_E10_1:
737 case ARMMMUIdx_E10_1_PAN:
738 g_assert_not_reached();
739 }
740 }
741
742 /* Return the SCTLR value which controls this address translation regime */
743 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
744 {
745 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
746 }
747
748 /*
749 * These are the fields in VTCR_EL2 which affect both the Secure stage 2
750 * and the Non-Secure stage 2 translation regimes (and hence which are
751 * not present in VSTCR_EL2).
752 */
753 #define VTCR_SHARED_FIELD_MASK \
754 (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
755 R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
756 R_VTCR_DS_MASK)
757
758 /* Return the value of the TCR controlling this translation regime */
759 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
760 {
761 if (mmu_idx == ARMMMUIdx_Stage2) {
762 return env->cp15.vtcr_el2;
763 }
764 if (mmu_idx == ARMMMUIdx_Stage2_S) {
765 /*
766 * Secure stage 2 shares fields from VTCR_EL2. We merge those
767 * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
768 * value so the callers don't need to special case this.
769 *
770 * If a future architecture change defines bits in VSTCR_EL2 that
771 * overlap with these VTCR_EL2 fields we may need to revisit this.
772 */
773 uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
774 v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
775 return v;
776 }
777 return env->cp15.tcr_el[regime_el(env, mmu_idx)];
778 }
779
780 /**
781 * arm_num_brps: Return number of implemented breakpoints.
782 * Note that the ID register BRPS field is "number of bps - 1",
783 * and we return the actual number of breakpoints.
784 */
785 static inline int arm_num_brps(ARMCPU *cpu)
786 {
787 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
788 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
789 } else {
790 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
791 }
792 }
793
794 /**
795 * arm_num_wrps: Return number of implemented watchpoints.
796 * Note that the ID register WRPS field is "number of wps - 1",
797 * and we return the actual number of watchpoints.
798 */
799 static inline int arm_num_wrps(ARMCPU *cpu)
800 {
801 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
802 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
803 } else {
804 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
805 }
806 }
807
808 /**
809 * arm_num_ctx_cmps: Return number of implemented context comparators.
810 * Note that the ID register CTX_CMPS field is "number of cmps - 1",
811 * and we return the actual number of comparators.
812 */
813 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
814 {
815 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
816 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
817 } else {
818 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
819 }
820 }
821
822 /**
823 * v7m_using_psp: Return true if using process stack pointer
824 * Return true if the CPU is currently using the process stack
825 * pointer, or false if it is using the main stack pointer.
826 */
827 static inline bool v7m_using_psp(CPUARMState *env)
828 {
829 /* Handler mode always uses the main stack; for thread mode
830 * the CONTROL.SPSEL bit determines the answer.
831 * Note that in v7M it is not possible to be in Handler mode with
832 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
833 */
834 return !arm_v7m_is_handler_mode(env) &&
835 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
836 }
837
838 /**
839 * v7m_sp_limit: Return SP limit for current CPU state
840 * Return the SP limit value for the current CPU security state
841 * and stack pointer.
842 */
843 static inline uint32_t v7m_sp_limit(CPUARMState *env)
844 {
845 if (v7m_using_psp(env)) {
846 return env->v7m.psplim[env->v7m.secure];
847 } else {
848 return env->v7m.msplim[env->v7m.secure];
849 }
850 }
851
852 /**
853 * v7m_cpacr_pass:
854 * Return true if the v7M CPACR permits access to the FPU for the specified
855 * security state and privilege level.
856 */
857 static inline bool v7m_cpacr_pass(CPUARMState *env,
858 bool is_secure, bool is_priv)
859 {
860 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
861 case 0:
862 case 2: /* UNPREDICTABLE: we treat like 0 */
863 return false;
864 case 1:
865 return is_priv;
866 case 3:
867 return true;
868 default:
869 g_assert_not_reached();
870 }
871 }
872
873 /**
874 * aarch32_mode_name(): Return name of the AArch32 CPU mode
875 * @psr: Program Status Register indicating CPU mode
876 *
877 * Returns, for debug logging purposes, a printable representation
878 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
879 * the low bits of the specified PSR.
880 */
881 static inline const char *aarch32_mode_name(uint32_t psr)
882 {
883 static const char cpu_mode_names[16][4] = {
884 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
885 "???", "???", "hyp", "und", "???", "???", "???", "sys"
886 };
887
888 return cpu_mode_names[psr & 0xf];
889 }
890
891 /**
892 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
893 *
894 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
895 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
896 * Must be called with the iothread lock held.
897 */
898 void arm_cpu_update_virq(ARMCPU *cpu);
899
900 /**
901 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
902 *
903 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
904 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
905 * Must be called with the iothread lock held.
906 */
907 void arm_cpu_update_vfiq(ARMCPU *cpu);
908
909 /**
910 * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
911 *
912 * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
913 * following a change to the HCR_EL2.VSE bit.
914 */
915 void arm_cpu_update_vserr(ARMCPU *cpu);
916
917 /**
918 * arm_mmu_idx_el:
919 * @env: The cpu environment
920 * @el: The EL to use.
921 *
922 * Return the full ARMMMUIdx for the translation regime for EL.
923 */
924 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
925
926 /**
927 * arm_mmu_idx:
928 * @env: The cpu environment
929 *
930 * Return the full ARMMMUIdx for the current translation regime.
931 */
932 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
933
934 /**
935 * arm_stage1_mmu_idx:
936 * @env: The cpu environment
937 *
938 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
939 */
940 #ifdef CONFIG_USER_ONLY
941 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
942 {
943 return ARMMMUIdx_Stage1_E0;
944 }
945 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
946 {
947 return ARMMMUIdx_Stage1_E0;
948 }
949 #else
950 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
951 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
952 #endif
953
954 /**
955 * arm_mmu_idx_is_stage1_of_2:
956 * @mmu_idx: The ARMMMUIdx to test
957 *
958 * Return true if @mmu_idx is a NOTLB mmu_idx that is the
959 * first stage of a two stage regime.
960 */
961 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
962 {
963 switch (mmu_idx) {
964 case ARMMMUIdx_Stage1_E0:
965 case ARMMMUIdx_Stage1_E1:
966 case ARMMMUIdx_Stage1_E1_PAN:
967 return true;
968 default:
969 return false;
970 }
971 }
972
973 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
974 const ARMISARegisters *id)
975 {
976 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
977
978 if ((features >> ARM_FEATURE_V4T) & 1) {
979 valid |= CPSR_T;
980 }
981 if ((features >> ARM_FEATURE_V5) & 1) {
982 valid |= CPSR_Q; /* V5TE in reality*/
983 }
984 if ((features >> ARM_FEATURE_V6) & 1) {
985 valid |= CPSR_E | CPSR_GE;
986 }
987 if ((features >> ARM_FEATURE_THUMB2) & 1) {
988 valid |= CPSR_IT;
989 }
990 if (isar_feature_aa32_jazelle(id)) {
991 valid |= CPSR_J;
992 }
993 if (isar_feature_aa32_pan(id)) {
994 valid |= CPSR_PAN;
995 }
996 if (isar_feature_aa32_dit(id)) {
997 valid |= CPSR_DIT;
998 }
999 if (isar_feature_aa32_ssbs(id)) {
1000 valid |= CPSR_SSBS;
1001 }
1002
1003 return valid;
1004 }
1005
1006 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1007 {
1008 uint32_t valid;
1009
1010 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1011 if (isar_feature_aa64_bti(id)) {
1012 valid |= PSTATE_BTYPE;
1013 }
1014 if (isar_feature_aa64_pan(id)) {
1015 valid |= PSTATE_PAN;
1016 }
1017 if (isar_feature_aa64_uao(id)) {
1018 valid |= PSTATE_UAO;
1019 }
1020 if (isar_feature_aa64_dit(id)) {
1021 valid |= PSTATE_DIT;
1022 }
1023 if (isar_feature_aa64_ssbs(id)) {
1024 valid |= PSTATE_SSBS;
1025 }
1026 if (isar_feature_aa64_mte(id)) {
1027 valid |= PSTATE_TCO;
1028 }
1029
1030 return valid;
1031 }
1032
1033 /* Granule size (i.e. page size) */
1034 typedef enum ARMGranuleSize {
1035 /* Same order as TG0 encoding */
1036 Gran4K,
1037 Gran64K,
1038 Gran16K,
1039 GranInvalid,
1040 } ARMGranuleSize;
1041
1042 /**
1043 * arm_granule_bits: Return address size of the granule in bits
1044 *
1045 * Return the address size of the granule in bits. This corresponds
1046 * to the pseudocode TGxGranuleBits().
1047 */
1048 static inline int arm_granule_bits(ARMGranuleSize gran)
1049 {
1050 switch (gran) {
1051 case Gran64K:
1052 return 16;
1053 case Gran16K:
1054 return 14;
1055 case Gran4K:
1056 return 12;
1057 default:
1058 g_assert_not_reached();
1059 }
1060 }
1061
1062 /*
1063 * Parameters of a given virtual address, as extracted from the
1064 * translation control register (TCR) for a given regime.
1065 */
1066 typedef struct ARMVAParameters {
1067 unsigned tsz : 8;
1068 unsigned ps : 3;
1069 unsigned sh : 2;
1070 unsigned select : 1;
1071 bool tbi : 1;
1072 bool epd : 1;
1073 bool hpd : 1;
1074 bool tsz_oob : 1; /* tsz has been clamped to legal range */
1075 bool ds : 1;
1076 bool ha : 1;
1077 bool hd : 1;
1078 ARMGranuleSize gran : 2;
1079 } ARMVAParameters;
1080
1081 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1082 ARMMMUIdx mmu_idx, bool data);
1083
1084 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1085 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1086
1087 /* Determine if allocation tags are available. */
1088 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1089 uint64_t sctlr)
1090 {
1091 if (el < 3
1092 && arm_feature(env, ARM_FEATURE_EL3)
1093 && !(env->cp15.scr_el3 & SCR_ATA)) {
1094 return false;
1095 }
1096 if (el < 2 && arm_is_el2_enabled(env)) {
1097 uint64_t hcr = arm_hcr_el2_eff(env);
1098 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1099 return false;
1100 }
1101 }
1102 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1103 return sctlr != 0;
1104 }
1105
1106 #ifndef CONFIG_USER_ONLY
1107
1108 /* Security attributes for an address, as returned by v8m_security_lookup. */
1109 typedef struct V8M_SAttributes {
1110 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1111 bool ns;
1112 bool nsc;
1113 uint8_t sregion;
1114 bool srvalid;
1115 uint8_t iregion;
1116 bool irvalid;
1117 } V8M_SAttributes;
1118
1119 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1120 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1121 bool secure, V8M_SAttributes *sattrs);
1122
1123 /* Cacheability and shareability attributes for a memory access */
1124 typedef struct ARMCacheAttrs {
1125 /*
1126 * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1127 * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1128 */
1129 unsigned int attrs:8;
1130 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1131 bool is_s2_format:1;
1132 bool guarded:1; /* guarded bit of the v8-64 PTE */
1133 } ARMCacheAttrs;
1134
1135 /* Fields that are valid upon success. */
1136 typedef struct GetPhysAddrResult {
1137 CPUTLBEntryFull f;
1138 ARMCacheAttrs cacheattrs;
1139 } GetPhysAddrResult;
1140
1141 /**
1142 * get_phys_addr_with_secure: get the physical address for a virtual address
1143 * @env: CPUARMState
1144 * @address: virtual address to get physical address for
1145 * @access_type: 0 for read, 1 for write, 2 for execute
1146 * @mmu_idx: MMU index indicating required translation regime
1147 * @is_secure: security state for the access
1148 * @result: set on translation success.
1149 * @fi: set to fault info if the translation fails
1150 *
1151 * Find the physical address corresponding to the given virtual address,
1152 * by doing a translation table walk on MMU based systems or using the
1153 * MPU state on MPU based systems.
1154 *
1155 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1156 * prot and page_size may not be filled in, and the populated fsr value provides
1157 * information on why the translation aborted, in the format of a
1158 * DFSR/IFSR fault register, with the following caveats:
1159 * * we honour the short vs long DFSR format differences.
1160 * * the WnR bit is never set (the caller must do this).
1161 * * for PSMAv5 based systems we don't bother to return a full FSR format
1162 * value.
1163 */
1164 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
1165 MMUAccessType access_type,
1166 ARMMMUIdx mmu_idx, bool is_secure,
1167 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1168 __attribute__((nonnull));
1169
1170 /**
1171 * get_phys_addr: get the physical address for a virtual address
1172 * @env: CPUARMState
1173 * @address: virtual address to get physical address for
1174 * @access_type: 0 for read, 1 for write, 2 for execute
1175 * @mmu_idx: MMU index indicating required translation regime
1176 * @result: set on translation success.
1177 * @fi: set to fault info if the translation fails
1178 *
1179 * Similarly, but use the security regime of @mmu_idx.
1180 */
1181 bool get_phys_addr(CPUARMState *env, target_ulong address,
1182 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1183 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1184 __attribute__((nonnull));
1185
1186 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1187 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1188 bool is_secure, GetPhysAddrResult *result,
1189 ARMMMUFaultInfo *fi, uint32_t *mregion);
1190
1191 void arm_log_exception(CPUState *cs);
1192
1193 #endif /* !CONFIG_USER_ONLY */
1194
1195 /*
1196 * The log2 of the words in the tag block, for GMID_EL1.BS.
1197 * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1198 */
1199 #define GMID_EL1_BS 6
1200
1201 /*
1202 * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1203 * the same simd_desc() encoding due to restrictions on size.
1204 * Use these instead.
1205 */
1206 FIELD(PREDDESC, OPRSZ, 0, 6)
1207 FIELD(PREDDESC, ESZ, 6, 2)
1208 FIELD(PREDDESC, DATA, 8, 24)
1209
1210 /*
1211 * The SVE simd_data field, for memory ops, contains either
1212 * rd (5 bits) or a shift count (2 bits).
1213 */
1214 #define SVE_MTEDESC_SHIFT 5
1215
1216 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1217 FIELD(MTEDESC, MIDX, 0, 4)
1218 FIELD(MTEDESC, TBI, 4, 2)
1219 FIELD(MTEDESC, TCMA, 6, 2)
1220 FIELD(MTEDESC, WRITE, 8, 1)
1221 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9) /* size - 1 */
1222
1223 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1224 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1225
1226 static inline int allocation_tag_from_addr(uint64_t ptr)
1227 {
1228 return extract64(ptr, 56, 4);
1229 }
1230
1231 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1232 {
1233 return deposit64(ptr, 56, 4, rtag);
1234 }
1235
1236 /* Return true if tbi bits mean that the access is checked. */
1237 static inline bool tbi_check(uint32_t desc, int bit55)
1238 {
1239 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1240 }
1241
1242 /* Return true if tcma bits mean that the access is unchecked. */
1243 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1244 {
1245 /*
1246 * We had extracted bit55 and ptr_tag for other reasons, so fold
1247 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1248 */
1249 bool match = ((ptr_tag + bit55) & 0xf) == 0;
1250 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1251 return tcma && match;
1252 }
1253
1254 /*
1255 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
1256 * for the tag to be present in the FAR_ELx register. But for user-only
1257 * mode, we do not have a TLB with which to implement this, so we must
1258 * remove the top byte.
1259 */
1260 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1261 {
1262 #ifdef CONFIG_USER_ONLY
1263 /* TBI0 is known to be enabled, while TBI1 is disabled. */
1264 ptr &= sextract64(ptr, 0, 56);
1265 #endif
1266 return ptr;
1267 }
1268
1269 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1270 {
1271 #ifdef CONFIG_USER_ONLY
1272 int64_t clean_ptr = sextract64(ptr, 0, 56);
1273 if (tbi_check(desc, clean_ptr < 0)) {
1274 ptr = clean_ptr;
1275 }
1276 #endif
1277 return ptr;
1278 }
1279
1280 /* Values for M-profile PSR.ECI for MVE insns */
1281 enum MVEECIState {
1282 ECI_NONE = 0, /* No completed beats */
1283 ECI_A0 = 1, /* Completed: A0 */
1284 ECI_A0A1 = 2, /* Completed: A0, A1 */
1285 /* 3 is reserved */
1286 ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1287 ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1288 /* All other values reserved */
1289 };
1290
1291 /* Definitions for the PMU registers */
1292 #define PMCRN_MASK 0xf800
1293 #define PMCRN_SHIFT 11
1294 #define PMCRLP 0x80
1295 #define PMCRLC 0x40
1296 #define PMCRDP 0x20
1297 #define PMCRX 0x10
1298 #define PMCRD 0x8
1299 #define PMCRC 0x4
1300 #define PMCRP 0x2
1301 #define PMCRE 0x1
1302 /*
1303 * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1304 * which can be written as 1 to trigger behaviour but which stay RAZ).
1305 */
1306 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1307
1308 #define PMXEVTYPER_P 0x80000000
1309 #define PMXEVTYPER_U 0x40000000
1310 #define PMXEVTYPER_NSK 0x20000000
1311 #define PMXEVTYPER_NSU 0x10000000
1312 #define PMXEVTYPER_NSH 0x08000000
1313 #define PMXEVTYPER_M 0x04000000
1314 #define PMXEVTYPER_MT 0x02000000
1315 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1316 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1317 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1318 PMXEVTYPER_M | PMXEVTYPER_MT | \
1319 PMXEVTYPER_EVTCOUNT)
1320
1321 #define PMCCFILTR 0xf8000000
1322 #define PMCCFILTR_M PMXEVTYPER_M
1323 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1324
1325 static inline uint32_t pmu_num_counters(CPUARMState *env)
1326 {
1327 ARMCPU *cpu = env_archcpu(env);
1328
1329 return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1330 }
1331
1332 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1333 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1334 {
1335 return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1336 }
1337
1338 #ifdef TARGET_AARCH64
1339 int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg);
1340 int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg);
1341 int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg);
1342 int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg);
1343 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1344 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1345 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1346 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1347 #endif
1348
1349 #ifdef CONFIG_USER_ONLY
1350 static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { }
1351 #else
1352 void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu);
1353 #endif
1354
1355 bool el_is_in_host(CPUARMState *env, int el);
1356
1357 void aa32_max_features(ARMCPU *cpu);
1358 int exception_target_el(CPUARMState *env);
1359 bool arm_singlestep_active(CPUARMState *env);
1360 bool arm_generate_debug_exceptions(CPUARMState *env);
1361
1362 /* Add the cpreg definitions for debug related system registers */
1363 void define_debug_regs(ARMCPU *cpu);
1364
1365 /* Effective value of MDCR_EL2 */
1366 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1367 {
1368 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1369 }
1370
1371 /* Powers of 2 for sve_vq_map et al. */
1372 #define SVE_VQ_POW2_MAP \
1373 ((1 << (1 - 1)) | (1 << (2 - 1)) | \
1374 (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1375
1376 #endif