]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/internals.h
Merge remote-tracking branch 'remotes/dgilbert-gitlab/tags/pull-virtiofs-20200221...
[mirror_qemu.git] / target / arm / internals.h
1 /*
2 * QEMU ARM CPU -- internal functions and types
3 *
4 * Copyright (c) 2014 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 *
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target/arm/ but which are
22 * private to it and not required by the rest of QEMU.
23 */
24
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27
28 #include "hw/registerfields.h"
29
30 /* register banks for CPU modes */
31 #define BANK_USRSYS 0
32 #define BANK_SVC 1
33 #define BANK_ABT 2
34 #define BANK_UND 3
35 #define BANK_IRQ 4
36 #define BANK_FIQ 5
37 #define BANK_HYP 6
38 #define BANK_MON 7
39
40 static inline bool excp_is_internal(int excp)
41 {
42 /* Return true if this exception number represents a QEMU-internal
43 * exception that will not be passed to the guest.
44 */
45 return excp == EXCP_INTERRUPT
46 || excp == EXCP_HLT
47 || excp == EXCP_DEBUG
48 || excp == EXCP_HALTED
49 || excp == EXCP_EXCEPTION_EXIT
50 || excp == EXCP_KERNEL_TRAP
51 || excp == EXCP_SEMIHOST;
52 }
53
54 /* Scale factor for generic timers, ie number of ns per tick.
55 * This gives a 62.5MHz timer.
56 */
57 #define GTIMER_SCALE 16
58
59 /* Bit definitions for the v7M CONTROL register */
60 FIELD(V7M_CONTROL, NPRIV, 0, 1)
61 FIELD(V7M_CONTROL, SPSEL, 1, 1)
62 FIELD(V7M_CONTROL, FPCA, 2, 1)
63 FIELD(V7M_CONTROL, SFPA, 3, 1)
64
65 /* Bit definitions for v7M exception return payload */
66 FIELD(V7M_EXCRET, ES, 0, 1)
67 FIELD(V7M_EXCRET, RES0, 1, 1)
68 FIELD(V7M_EXCRET, SPSEL, 2, 1)
69 FIELD(V7M_EXCRET, MODE, 3, 1)
70 FIELD(V7M_EXCRET, FTYPE, 4, 1)
71 FIELD(V7M_EXCRET, DCRS, 5, 1)
72 FIELD(V7M_EXCRET, S, 6, 1)
73 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
74
75 /* Minimum value which is a magic number for exception return */
76 #define EXC_RETURN_MIN_MAGIC 0xff000000
77 /* Minimum number which is a magic number for function or exception return
78 * when using v8M security extension
79 */
80 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
81
82 /* We use a few fake FSR values for internal purposes in M profile.
83 * M profile cores don't have A/R format FSRs, but currently our
84 * get_phys_addr() code assumes A/R profile and reports failures via
85 * an A/R format FSR value. We then translate that into the proper
86 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
87 * Mostly the FSR values we use for this are those defined for v7PMSA,
88 * since we share some of that codepath. A few kinds of fault are
89 * only for M profile and have no A/R equivalent, though, so we have
90 * to pick a value from the reserved range (which we never otherwise
91 * generate) to use for these.
92 * These values will never be visible to the guest.
93 */
94 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
95 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
96
97 /**
98 * raise_exception: Raise the specified exception.
99 * Raise a guest exception with the specified value, syndrome register
100 * and target exception level. This should be called from helper functions,
101 * and never returns because we will longjump back up to the CPU main loop.
102 */
103 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
104 uint32_t syndrome, uint32_t target_el);
105
106 /*
107 * Similarly, but also use unwinding to restore cpu state.
108 */
109 void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
110 uint32_t syndrome, uint32_t target_el,
111 uintptr_t ra);
112
113 /*
114 * For AArch64, map a given EL to an index in the banked_spsr array.
115 * Note that this mapping and the AArch32 mapping defined in bank_number()
116 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
117 * mandated mapping between each other.
118 */
119 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
120 {
121 static const unsigned int map[4] = {
122 [1] = BANK_SVC, /* EL1. */
123 [2] = BANK_HYP, /* EL2. */
124 [3] = BANK_MON, /* EL3. */
125 };
126 assert(el >= 1 && el <= 3);
127 return map[el];
128 }
129
130 /* Map CPU modes onto saved register banks. */
131 static inline int bank_number(int mode)
132 {
133 switch (mode) {
134 case ARM_CPU_MODE_USR:
135 case ARM_CPU_MODE_SYS:
136 return BANK_USRSYS;
137 case ARM_CPU_MODE_SVC:
138 return BANK_SVC;
139 case ARM_CPU_MODE_ABT:
140 return BANK_ABT;
141 case ARM_CPU_MODE_UND:
142 return BANK_UND;
143 case ARM_CPU_MODE_IRQ:
144 return BANK_IRQ;
145 case ARM_CPU_MODE_FIQ:
146 return BANK_FIQ;
147 case ARM_CPU_MODE_HYP:
148 return BANK_HYP;
149 case ARM_CPU_MODE_MON:
150 return BANK_MON;
151 }
152 g_assert_not_reached();
153 }
154
155 /**
156 * r14_bank_number: Map CPU mode onto register bank for r14
157 *
158 * Given an AArch32 CPU mode, return the index into the saved register
159 * banks to use for the R14 (LR) in that mode. This is the same as
160 * bank_number(), except for the special case of Hyp mode, where
161 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
162 * This should be used as the index into env->banked_r14[], and
163 * bank_number() used for the index into env->banked_r13[] and
164 * env->banked_spsr[].
165 */
166 static inline int r14_bank_number(int mode)
167 {
168 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
169 }
170
171 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
172 void arm_translate_init(void);
173
174 enum arm_fprounding {
175 FPROUNDING_TIEEVEN,
176 FPROUNDING_POSINF,
177 FPROUNDING_NEGINF,
178 FPROUNDING_ZERO,
179 FPROUNDING_TIEAWAY,
180 FPROUNDING_ODD
181 };
182
183 int arm_rmode_to_sf(int rmode);
184
185 static inline void aarch64_save_sp(CPUARMState *env, int el)
186 {
187 if (env->pstate & PSTATE_SP) {
188 env->sp_el[el] = env->xregs[31];
189 } else {
190 env->sp_el[0] = env->xregs[31];
191 }
192 }
193
194 static inline void aarch64_restore_sp(CPUARMState *env, int el)
195 {
196 if (env->pstate & PSTATE_SP) {
197 env->xregs[31] = env->sp_el[el];
198 } else {
199 env->xregs[31] = env->sp_el[0];
200 }
201 }
202
203 static inline void update_spsel(CPUARMState *env, uint32_t imm)
204 {
205 unsigned int cur_el = arm_current_el(env);
206 /* Update PSTATE SPSel bit; this requires us to update the
207 * working stack pointer in xregs[31].
208 */
209 if (!((imm ^ env->pstate) & PSTATE_SP)) {
210 return;
211 }
212 aarch64_save_sp(env, cur_el);
213 env->pstate = deposit32(env->pstate, 0, 1, imm);
214
215 /* We rely on illegal updates to SPsel from EL0 to get trapped
216 * at translation time.
217 */
218 assert(cur_el >= 1 && cur_el <= 3);
219 aarch64_restore_sp(env, cur_el);
220 }
221
222 /*
223 * arm_pamax
224 * @cpu: ARMCPU
225 *
226 * Returns the implementation defined bit-width of physical addresses.
227 * The ARMv8 reference manuals refer to this as PAMax().
228 */
229 static inline unsigned int arm_pamax(ARMCPU *cpu)
230 {
231 static const unsigned int pamax_map[] = {
232 [0] = 32,
233 [1] = 36,
234 [2] = 40,
235 [3] = 42,
236 [4] = 44,
237 [5] = 48,
238 };
239 unsigned int parange =
240 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
241
242 /* id_aa64mmfr0 is a read-only register so values outside of the
243 * supported mappings can be considered an implementation error. */
244 assert(parange < ARRAY_SIZE(pamax_map));
245 return pamax_map[parange];
246 }
247
248 /* Return true if extended addresses are enabled.
249 * This is always the case if our translation regime is 64 bit,
250 * but depends on TTBCR.EAE for 32 bit.
251 */
252 static inline bool extended_addresses_enabled(CPUARMState *env)
253 {
254 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
255 return arm_el_is_aa64(env, 1) ||
256 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
257 }
258
259 /* Valid Syndrome Register EC field values */
260 enum arm_exception_class {
261 EC_UNCATEGORIZED = 0x00,
262 EC_WFX_TRAP = 0x01,
263 EC_CP15RTTRAP = 0x03,
264 EC_CP15RRTTRAP = 0x04,
265 EC_CP14RTTRAP = 0x05,
266 EC_CP14DTTRAP = 0x06,
267 EC_ADVSIMDFPACCESSTRAP = 0x07,
268 EC_FPIDTRAP = 0x08,
269 EC_PACTRAP = 0x09,
270 EC_CP14RRTTRAP = 0x0c,
271 EC_BTITRAP = 0x0d,
272 EC_ILLEGALSTATE = 0x0e,
273 EC_AA32_SVC = 0x11,
274 EC_AA32_HVC = 0x12,
275 EC_AA32_SMC = 0x13,
276 EC_AA64_SVC = 0x15,
277 EC_AA64_HVC = 0x16,
278 EC_AA64_SMC = 0x17,
279 EC_SYSTEMREGISTERTRAP = 0x18,
280 EC_SVEACCESSTRAP = 0x19,
281 EC_INSNABORT = 0x20,
282 EC_INSNABORT_SAME_EL = 0x21,
283 EC_PCALIGNMENT = 0x22,
284 EC_DATAABORT = 0x24,
285 EC_DATAABORT_SAME_EL = 0x25,
286 EC_SPALIGNMENT = 0x26,
287 EC_AA32_FPTRAP = 0x28,
288 EC_AA64_FPTRAP = 0x2c,
289 EC_SERROR = 0x2f,
290 EC_BREAKPOINT = 0x30,
291 EC_BREAKPOINT_SAME_EL = 0x31,
292 EC_SOFTWARESTEP = 0x32,
293 EC_SOFTWARESTEP_SAME_EL = 0x33,
294 EC_WATCHPOINT = 0x34,
295 EC_WATCHPOINT_SAME_EL = 0x35,
296 EC_AA32_BKPT = 0x38,
297 EC_VECTORCATCH = 0x3a,
298 EC_AA64_BKPT = 0x3c,
299 };
300
301 #define ARM_EL_EC_SHIFT 26
302 #define ARM_EL_IL_SHIFT 25
303 #define ARM_EL_ISV_SHIFT 24
304 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
305 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
306
307 static inline uint32_t syn_get_ec(uint32_t syn)
308 {
309 return syn >> ARM_EL_EC_SHIFT;
310 }
311
312 /* Utility functions for constructing various kinds of syndrome value.
313 * Note that in general we follow the AArch64 syndrome values; in a
314 * few cases the value in HSR for exceptions taken to AArch32 Hyp
315 * mode differs slightly, and we fix this up when populating HSR in
316 * arm_cpu_do_interrupt_aarch32_hyp().
317 * The exception is FP/SIMD access traps -- these report extra information
318 * when taking an exception to AArch32. For those we include the extra coproc
319 * and TA fields, and mask them out when taking the exception to AArch64.
320 */
321 static inline uint32_t syn_uncategorized(void)
322 {
323 return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
324 }
325
326 static inline uint32_t syn_aa64_svc(uint32_t imm16)
327 {
328 return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
329 }
330
331 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
332 {
333 return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
334 }
335
336 static inline uint32_t syn_aa64_smc(uint32_t imm16)
337 {
338 return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
339 }
340
341 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
342 {
343 return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
344 | (is_16bit ? 0 : ARM_EL_IL);
345 }
346
347 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
348 {
349 return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
350 }
351
352 static inline uint32_t syn_aa32_smc(void)
353 {
354 return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
355 }
356
357 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
358 {
359 return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
360 }
361
362 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
363 {
364 return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
365 | (is_16bit ? 0 : ARM_EL_IL);
366 }
367
368 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
369 int crn, int crm, int rt,
370 int isread)
371 {
372 return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
373 | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
374 | (crm << 1) | isread;
375 }
376
377 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
378 int crn, int crm, int rt, int isread,
379 bool is_16bit)
380 {
381 return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
382 | (is_16bit ? 0 : ARM_EL_IL)
383 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
384 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
385 }
386
387 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
388 int crn, int crm, int rt, int isread,
389 bool is_16bit)
390 {
391 return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
392 | (is_16bit ? 0 : ARM_EL_IL)
393 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
394 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
395 }
396
397 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
398 int rt, int rt2, int isread,
399 bool is_16bit)
400 {
401 return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
402 | (is_16bit ? 0 : ARM_EL_IL)
403 | (cv << 24) | (cond << 20) | (opc1 << 16)
404 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
405 }
406
407 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
408 int rt, int rt2, int isread,
409 bool is_16bit)
410 {
411 return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
412 | (is_16bit ? 0 : ARM_EL_IL)
413 | (cv << 24) | (cond << 20) | (opc1 << 16)
414 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
415 }
416
417 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
418 {
419 /* AArch32 FP trap or any AArch64 FP/SIMD trap: TA == 0 coproc == 0xa */
420 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
421 | (is_16bit ? 0 : ARM_EL_IL)
422 | (cv << 24) | (cond << 20) | 0xa;
423 }
424
425 static inline uint32_t syn_simd_access_trap(int cv, int cond, bool is_16bit)
426 {
427 /* AArch32 SIMD trap: TA == 1 coproc == 0 */
428 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
429 | (is_16bit ? 0 : ARM_EL_IL)
430 | (cv << 24) | (cond << 20) | (1 << 5);
431 }
432
433 static inline uint32_t syn_sve_access_trap(void)
434 {
435 return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT;
436 }
437
438 static inline uint32_t syn_pactrap(void)
439 {
440 return EC_PACTRAP << ARM_EL_EC_SHIFT;
441 }
442
443 static inline uint32_t syn_btitrap(int btype)
444 {
445 return (EC_BTITRAP << ARM_EL_EC_SHIFT) | btype;
446 }
447
448 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
449 {
450 return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
451 | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
452 }
453
454 static inline uint32_t syn_data_abort_no_iss(int same_el,
455 int ea, int cm, int s1ptw,
456 int wnr, int fsc)
457 {
458 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
459 | ARM_EL_IL
460 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
461 }
462
463 static inline uint32_t syn_data_abort_with_iss(int same_el,
464 int sas, int sse, int srt,
465 int sf, int ar,
466 int ea, int cm, int s1ptw,
467 int wnr, int fsc,
468 bool is_16bit)
469 {
470 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
471 | (is_16bit ? 0 : ARM_EL_IL)
472 | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
473 | (sf << 15) | (ar << 14)
474 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
475 }
476
477 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
478 {
479 return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
480 | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
481 }
482
483 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
484 {
485 return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
486 | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
487 }
488
489 static inline uint32_t syn_breakpoint(int same_el)
490 {
491 return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
492 | ARM_EL_IL | 0x22;
493 }
494
495 static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
496 {
497 return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
498 (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
499 (cv << 24) | (cond << 20) | ti;
500 }
501
502 /* Update a QEMU watchpoint based on the information the guest has set in the
503 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
504 */
505 void hw_watchpoint_update(ARMCPU *cpu, int n);
506 /* Update the QEMU watchpoints for every guest watchpoint. This does a
507 * complete delete-and-reinstate of the QEMU watchpoint list and so is
508 * suitable for use after migration or on reset.
509 */
510 void hw_watchpoint_update_all(ARMCPU *cpu);
511 /* Update a QEMU breakpoint based on the information the guest has set in the
512 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
513 */
514 void hw_breakpoint_update(ARMCPU *cpu, int n);
515 /* Update the QEMU breakpoints for every guest breakpoint. This does a
516 * complete delete-and-reinstate of the QEMU breakpoint list and so is
517 * suitable for use after migration or on reset.
518 */
519 void hw_breakpoint_update_all(ARMCPU *cpu);
520
521 /* Callback function for checking if a watchpoint should trigger. */
522 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
523
524 /* Adjust addresses (in BE32 mode) before testing against watchpoint
525 * addresses.
526 */
527 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
528
529 /* Callback function for when a watchpoint or breakpoint triggers. */
530 void arm_debug_excp_handler(CPUState *cs);
531
532 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
533 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
534 {
535 return false;
536 }
537 static inline void arm_handle_psci_call(ARMCPU *cpu)
538 {
539 g_assert_not_reached();
540 }
541 #else
542 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
543 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
544 /* Actually handle a PSCI call */
545 void arm_handle_psci_call(ARMCPU *cpu);
546 #endif
547
548 /**
549 * arm_clear_exclusive: clear the exclusive monitor
550 * @env: CPU env
551 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
552 */
553 static inline void arm_clear_exclusive(CPUARMState *env)
554 {
555 env->exclusive_addr = -1;
556 }
557
558 /**
559 * ARMFaultType: type of an ARM MMU fault
560 * This corresponds to the v8A pseudocode's Fault enumeration,
561 * with extensions for QEMU internal conditions.
562 */
563 typedef enum ARMFaultType {
564 ARMFault_None,
565 ARMFault_AccessFlag,
566 ARMFault_Alignment,
567 ARMFault_Background,
568 ARMFault_Domain,
569 ARMFault_Permission,
570 ARMFault_Translation,
571 ARMFault_AddressSize,
572 ARMFault_SyncExternal,
573 ARMFault_SyncExternalOnWalk,
574 ARMFault_SyncParity,
575 ARMFault_SyncParityOnWalk,
576 ARMFault_AsyncParity,
577 ARMFault_AsyncExternal,
578 ARMFault_Debug,
579 ARMFault_TLBConflict,
580 ARMFault_Lockdown,
581 ARMFault_Exclusive,
582 ARMFault_ICacheMaint,
583 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
584 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
585 } ARMFaultType;
586
587 /**
588 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
589 * @type: Type of fault
590 * @level: Table walk level (for translation, access flag and permission faults)
591 * @domain: Domain of the fault address (for non-LPAE CPUs only)
592 * @s2addr: Address that caused a fault at stage 2
593 * @stage2: True if we faulted at stage 2
594 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
595 * @ea: True if we should set the EA (external abort type) bit in syndrome
596 */
597 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
598 struct ARMMMUFaultInfo {
599 ARMFaultType type;
600 target_ulong s2addr;
601 int level;
602 int domain;
603 bool stage2;
604 bool s1ptw;
605 bool ea;
606 };
607
608 /**
609 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
610 * Compare pseudocode EncodeSDFSC(), though unlike that function
611 * we set up a whole FSR-format code including domain field and
612 * putting the high bit of the FSC into bit 10.
613 */
614 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
615 {
616 uint32_t fsc;
617
618 switch (fi->type) {
619 case ARMFault_None:
620 return 0;
621 case ARMFault_AccessFlag:
622 fsc = fi->level == 1 ? 0x3 : 0x6;
623 break;
624 case ARMFault_Alignment:
625 fsc = 0x1;
626 break;
627 case ARMFault_Permission:
628 fsc = fi->level == 1 ? 0xd : 0xf;
629 break;
630 case ARMFault_Domain:
631 fsc = fi->level == 1 ? 0x9 : 0xb;
632 break;
633 case ARMFault_Translation:
634 fsc = fi->level == 1 ? 0x5 : 0x7;
635 break;
636 case ARMFault_SyncExternal:
637 fsc = 0x8 | (fi->ea << 12);
638 break;
639 case ARMFault_SyncExternalOnWalk:
640 fsc = fi->level == 1 ? 0xc : 0xe;
641 fsc |= (fi->ea << 12);
642 break;
643 case ARMFault_SyncParity:
644 fsc = 0x409;
645 break;
646 case ARMFault_SyncParityOnWalk:
647 fsc = fi->level == 1 ? 0x40c : 0x40e;
648 break;
649 case ARMFault_AsyncParity:
650 fsc = 0x408;
651 break;
652 case ARMFault_AsyncExternal:
653 fsc = 0x406 | (fi->ea << 12);
654 break;
655 case ARMFault_Debug:
656 fsc = 0x2;
657 break;
658 case ARMFault_TLBConflict:
659 fsc = 0x400;
660 break;
661 case ARMFault_Lockdown:
662 fsc = 0x404;
663 break;
664 case ARMFault_Exclusive:
665 fsc = 0x405;
666 break;
667 case ARMFault_ICacheMaint:
668 fsc = 0x4;
669 break;
670 case ARMFault_Background:
671 fsc = 0x0;
672 break;
673 case ARMFault_QEMU_NSCExec:
674 fsc = M_FAKE_FSR_NSC_EXEC;
675 break;
676 case ARMFault_QEMU_SFault:
677 fsc = M_FAKE_FSR_SFAULT;
678 break;
679 default:
680 /* Other faults can't occur in a context that requires a
681 * short-format status code.
682 */
683 g_assert_not_reached();
684 }
685
686 fsc |= (fi->domain << 4);
687 return fsc;
688 }
689
690 /**
691 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
692 * Compare pseudocode EncodeLDFSC(), though unlike that function
693 * we fill in also the LPAE bit 9 of a DFSR format.
694 */
695 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
696 {
697 uint32_t fsc;
698
699 switch (fi->type) {
700 case ARMFault_None:
701 return 0;
702 case ARMFault_AddressSize:
703 fsc = fi->level & 3;
704 break;
705 case ARMFault_AccessFlag:
706 fsc = (fi->level & 3) | (0x2 << 2);
707 break;
708 case ARMFault_Permission:
709 fsc = (fi->level & 3) | (0x3 << 2);
710 break;
711 case ARMFault_Translation:
712 fsc = (fi->level & 3) | (0x1 << 2);
713 break;
714 case ARMFault_SyncExternal:
715 fsc = 0x10 | (fi->ea << 12);
716 break;
717 case ARMFault_SyncExternalOnWalk:
718 fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
719 break;
720 case ARMFault_SyncParity:
721 fsc = 0x18;
722 break;
723 case ARMFault_SyncParityOnWalk:
724 fsc = (fi->level & 3) | (0x7 << 2);
725 break;
726 case ARMFault_AsyncParity:
727 fsc = 0x19;
728 break;
729 case ARMFault_AsyncExternal:
730 fsc = 0x11 | (fi->ea << 12);
731 break;
732 case ARMFault_Alignment:
733 fsc = 0x21;
734 break;
735 case ARMFault_Debug:
736 fsc = 0x22;
737 break;
738 case ARMFault_TLBConflict:
739 fsc = 0x30;
740 break;
741 case ARMFault_Lockdown:
742 fsc = 0x34;
743 break;
744 case ARMFault_Exclusive:
745 fsc = 0x35;
746 break;
747 default:
748 /* Other faults can't occur in a context that requires a
749 * long-format status code.
750 */
751 g_assert_not_reached();
752 }
753
754 fsc |= 1 << 9;
755 return fsc;
756 }
757
758 static inline bool arm_extabort_type(MemTxResult result)
759 {
760 /* The EA bit in syndromes and fault status registers is an
761 * IMPDEF classification of external aborts. ARM implementations
762 * usually use this to indicate AXI bus Decode error (0) or
763 * Slave error (1); in QEMU we follow that.
764 */
765 return result != MEMTX_DECODE_ERROR;
766 }
767
768 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
769 MMUAccessType access_type, int mmu_idx,
770 bool probe, uintptr_t retaddr);
771
772 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
773 {
774 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
775 }
776
777 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
778 {
779 if (arm_feature(env, ARM_FEATURE_M)) {
780 return mmu_idx | ARM_MMU_IDX_M;
781 } else {
782 return mmu_idx | ARM_MMU_IDX_A;
783 }
784 }
785
786 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
787
788 /*
789 * Return the MMU index for a v7M CPU with all relevant information
790 * manually specified.
791 */
792 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
793 bool secstate, bool priv, bool negpri);
794
795 /*
796 * Return the MMU index for a v7M CPU in the specified security and
797 * privilege state.
798 */
799 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
800 bool secstate, bool priv);
801
802 /* Return the MMU index for a v7M CPU in the specified security state */
803 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
804
805 /* Return true if the stage 1 translation regime is using LPAE format page
806 * tables */
807 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
808
809 /* Raise a data fault alignment exception for the specified virtual address */
810 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
811 MMUAccessType access_type,
812 int mmu_idx, uintptr_t retaddr);
813
814 /* arm_cpu_do_transaction_failed: handle a memory system error response
815 * (eg "no device/memory present at address") by raising an external abort
816 * exception
817 */
818 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
819 vaddr addr, unsigned size,
820 MMUAccessType access_type,
821 int mmu_idx, MemTxAttrs attrs,
822 MemTxResult response, uintptr_t retaddr);
823
824 /* Call any registered EL change hooks */
825 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
826 {
827 ARMELChangeHook *hook, *next;
828 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
829 hook->hook(cpu, hook->opaque);
830 }
831 }
832 static inline void arm_call_el_change_hook(ARMCPU *cpu)
833 {
834 ARMELChangeHook *hook, *next;
835 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
836 hook->hook(cpu, hook->opaque);
837 }
838 }
839
840 /* Return true if this address translation regime has two ranges. */
841 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
842 {
843 switch (mmu_idx) {
844 case ARMMMUIdx_Stage1_E0:
845 case ARMMMUIdx_Stage1_E1:
846 case ARMMMUIdx_Stage1_E1_PAN:
847 case ARMMMUIdx_E10_0:
848 case ARMMMUIdx_E10_1:
849 case ARMMMUIdx_E10_1_PAN:
850 case ARMMMUIdx_E20_0:
851 case ARMMMUIdx_E20_2:
852 case ARMMMUIdx_E20_2_PAN:
853 case ARMMMUIdx_SE10_0:
854 case ARMMMUIdx_SE10_1:
855 case ARMMMUIdx_SE10_1_PAN:
856 return true;
857 default:
858 return false;
859 }
860 }
861
862 /* Return true if this address translation regime is secure */
863 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
864 {
865 switch (mmu_idx) {
866 case ARMMMUIdx_E10_0:
867 case ARMMMUIdx_E10_1:
868 case ARMMMUIdx_E10_1_PAN:
869 case ARMMMUIdx_E20_0:
870 case ARMMMUIdx_E20_2:
871 case ARMMMUIdx_E20_2_PAN:
872 case ARMMMUIdx_Stage1_E0:
873 case ARMMMUIdx_Stage1_E1:
874 case ARMMMUIdx_Stage1_E1_PAN:
875 case ARMMMUIdx_E2:
876 case ARMMMUIdx_Stage2:
877 case ARMMMUIdx_MPrivNegPri:
878 case ARMMMUIdx_MUserNegPri:
879 case ARMMMUIdx_MPriv:
880 case ARMMMUIdx_MUser:
881 return false;
882 case ARMMMUIdx_SE3:
883 case ARMMMUIdx_SE10_0:
884 case ARMMMUIdx_SE10_1:
885 case ARMMMUIdx_SE10_1_PAN:
886 case ARMMMUIdx_MSPrivNegPri:
887 case ARMMMUIdx_MSUserNegPri:
888 case ARMMMUIdx_MSPriv:
889 case ARMMMUIdx_MSUser:
890 return true;
891 default:
892 g_assert_not_reached();
893 }
894 }
895
896 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
897 {
898 switch (mmu_idx) {
899 case ARMMMUIdx_Stage1_E1_PAN:
900 case ARMMMUIdx_E10_1_PAN:
901 case ARMMMUIdx_E20_2_PAN:
902 case ARMMMUIdx_SE10_1_PAN:
903 return true;
904 default:
905 return false;
906 }
907 }
908
909 /* Return the FSR value for a debug exception (watchpoint, hardware
910 * breakpoint or BKPT insn) targeting the specified exception level.
911 */
912 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
913 {
914 ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
915 int target_el = arm_debug_target_el(env);
916 bool using_lpae = false;
917
918 if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
919 using_lpae = true;
920 } else {
921 if (arm_feature(env, ARM_FEATURE_LPAE) &&
922 (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
923 using_lpae = true;
924 }
925 }
926
927 if (using_lpae) {
928 return arm_fi_to_lfsc(&fi);
929 } else {
930 return arm_fi_to_sfsc(&fi);
931 }
932 }
933
934 /**
935 * arm_num_brps: Return number of implemented breakpoints.
936 * Note that the ID register BRPS field is "number of bps - 1",
937 * and we return the actual number of breakpoints.
938 */
939 static inline int arm_num_brps(ARMCPU *cpu)
940 {
941 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
942 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
943 } else {
944 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
945 }
946 }
947
948 /**
949 * arm_num_wrps: Return number of implemented watchpoints.
950 * Note that the ID register WRPS field is "number of wps - 1",
951 * and we return the actual number of watchpoints.
952 */
953 static inline int arm_num_wrps(ARMCPU *cpu)
954 {
955 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
956 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
957 } else {
958 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
959 }
960 }
961
962 /**
963 * arm_num_ctx_cmps: Return number of implemented context comparators.
964 * Note that the ID register CTX_CMPS field is "number of cmps - 1",
965 * and we return the actual number of comparators.
966 */
967 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
968 {
969 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
970 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
971 } else {
972 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
973 }
974 }
975
976 /* Note make_memop_idx reserves 4 bits for mmu_idx, and MO_BSWAP is bit 3.
977 * Thus a TCGMemOpIdx, without any MO_ALIGN bits, fits in 8 bits.
978 */
979 #define MEMOPIDX_SHIFT 8
980
981 /**
982 * v7m_using_psp: Return true if using process stack pointer
983 * Return true if the CPU is currently using the process stack
984 * pointer, or false if it is using the main stack pointer.
985 */
986 static inline bool v7m_using_psp(CPUARMState *env)
987 {
988 /* Handler mode always uses the main stack; for thread mode
989 * the CONTROL.SPSEL bit determines the answer.
990 * Note that in v7M it is not possible to be in Handler mode with
991 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
992 */
993 return !arm_v7m_is_handler_mode(env) &&
994 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
995 }
996
997 /**
998 * v7m_sp_limit: Return SP limit for current CPU state
999 * Return the SP limit value for the current CPU security state
1000 * and stack pointer.
1001 */
1002 static inline uint32_t v7m_sp_limit(CPUARMState *env)
1003 {
1004 if (v7m_using_psp(env)) {
1005 return env->v7m.psplim[env->v7m.secure];
1006 } else {
1007 return env->v7m.msplim[env->v7m.secure];
1008 }
1009 }
1010
1011 /**
1012 * v7m_cpacr_pass:
1013 * Return true if the v7M CPACR permits access to the FPU for the specified
1014 * security state and privilege level.
1015 */
1016 static inline bool v7m_cpacr_pass(CPUARMState *env,
1017 bool is_secure, bool is_priv)
1018 {
1019 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
1020 case 0:
1021 case 2: /* UNPREDICTABLE: we treat like 0 */
1022 return false;
1023 case 1:
1024 return is_priv;
1025 case 3:
1026 return true;
1027 default:
1028 g_assert_not_reached();
1029 }
1030 }
1031
1032 /**
1033 * aarch32_mode_name(): Return name of the AArch32 CPU mode
1034 * @psr: Program Status Register indicating CPU mode
1035 *
1036 * Returns, for debug logging purposes, a printable representation
1037 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
1038 * the low bits of the specified PSR.
1039 */
1040 static inline const char *aarch32_mode_name(uint32_t psr)
1041 {
1042 static const char cpu_mode_names[16][4] = {
1043 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
1044 "???", "???", "hyp", "und", "???", "???", "???", "sys"
1045 };
1046
1047 return cpu_mode_names[psr & 0xf];
1048 }
1049
1050 /**
1051 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
1052 *
1053 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
1054 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
1055 * Must be called with the iothread lock held.
1056 */
1057 void arm_cpu_update_virq(ARMCPU *cpu);
1058
1059 /**
1060 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
1061 *
1062 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
1063 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
1064 * Must be called with the iothread lock held.
1065 */
1066 void arm_cpu_update_vfiq(ARMCPU *cpu);
1067
1068 /**
1069 * arm_mmu_idx_el:
1070 * @env: The cpu environment
1071 * @el: The EL to use.
1072 *
1073 * Return the full ARMMMUIdx for the translation regime for EL.
1074 */
1075 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
1076
1077 /**
1078 * arm_mmu_idx:
1079 * @env: The cpu environment
1080 *
1081 * Return the full ARMMMUIdx for the current translation regime.
1082 */
1083 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
1084
1085 /**
1086 * arm_stage1_mmu_idx:
1087 * @env: The cpu environment
1088 *
1089 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
1090 */
1091 #ifdef CONFIG_USER_ONLY
1092 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
1093 {
1094 return ARMMMUIdx_Stage1_E0;
1095 }
1096 #else
1097 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
1098 #endif
1099
1100 /**
1101 * arm_mmu_idx_is_stage1_of_2:
1102 * @mmu_idx: The ARMMMUIdx to test
1103 *
1104 * Return true if @mmu_idx is a NOTLB mmu_idx that is the
1105 * first stage of a two stage regime.
1106 */
1107 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
1108 {
1109 switch (mmu_idx) {
1110 case ARMMMUIdx_Stage1_E0:
1111 case ARMMMUIdx_Stage1_E1:
1112 case ARMMMUIdx_Stage1_E1_PAN:
1113 return true;
1114 default:
1115 return false;
1116 }
1117 }
1118
1119 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1120 const ARMISARegisters *id)
1121 {
1122 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1123
1124 if ((features >> ARM_FEATURE_V4T) & 1) {
1125 valid |= CPSR_T;
1126 }
1127 if ((features >> ARM_FEATURE_V5) & 1) {
1128 valid |= CPSR_Q; /* V5TE in reality*/
1129 }
1130 if ((features >> ARM_FEATURE_V6) & 1) {
1131 valid |= CPSR_E | CPSR_GE;
1132 }
1133 if ((features >> ARM_FEATURE_THUMB2) & 1) {
1134 valid |= CPSR_IT;
1135 }
1136 if (isar_feature_aa32_jazelle(id)) {
1137 valid |= CPSR_J;
1138 }
1139 if (isar_feature_aa32_pan(id)) {
1140 valid |= CPSR_PAN;
1141 }
1142
1143 return valid;
1144 }
1145
1146 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1147 {
1148 uint32_t valid;
1149
1150 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1151 if (isar_feature_aa64_bti(id)) {
1152 valid |= PSTATE_BTYPE;
1153 }
1154 if (isar_feature_aa64_pan(id)) {
1155 valid |= PSTATE_PAN;
1156 }
1157 if (isar_feature_aa64_uao(id)) {
1158 valid |= PSTATE_UAO;
1159 }
1160
1161 return valid;
1162 }
1163
1164 /*
1165 * Parameters of a given virtual address, as extracted from the
1166 * translation control register (TCR) for a given regime.
1167 */
1168 typedef struct ARMVAParameters {
1169 unsigned tsz : 8;
1170 unsigned select : 1;
1171 bool tbi : 1;
1172 bool epd : 1;
1173 bool hpd : 1;
1174 bool using16k : 1;
1175 bool using64k : 1;
1176 } ARMVAParameters;
1177
1178 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1179 ARMMMUIdx mmu_idx, bool data);
1180
1181 static inline int exception_target_el(CPUARMState *env)
1182 {
1183 int target_el = MAX(1, arm_current_el(env));
1184
1185 /*
1186 * No such thing as secure EL1 if EL3 is aarch32,
1187 * so update the target EL to EL3 in this case.
1188 */
1189 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
1190 target_el = 3;
1191 }
1192
1193 return target_el;
1194 }
1195
1196 #ifndef CONFIG_USER_ONLY
1197
1198 /* Security attributes for an address, as returned by v8m_security_lookup. */
1199 typedef struct V8M_SAttributes {
1200 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1201 bool ns;
1202 bool nsc;
1203 uint8_t sregion;
1204 bool srvalid;
1205 uint8_t iregion;
1206 bool irvalid;
1207 } V8M_SAttributes;
1208
1209 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1210 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1211 V8M_SAttributes *sattrs);
1212
1213 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1214 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1215 hwaddr *phys_ptr, MemTxAttrs *txattrs,
1216 int *prot, bool *is_subpage,
1217 ARMMMUFaultInfo *fi, uint32_t *mregion);
1218
1219 /* Cacheability and shareability attributes for a memory access */
1220 typedef struct ARMCacheAttrs {
1221 unsigned int attrs:8; /* as in the MAIR register encoding */
1222 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1223 } ARMCacheAttrs;
1224
1225 bool get_phys_addr(CPUARMState *env, target_ulong address,
1226 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1227 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
1228 target_ulong *page_size,
1229 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
1230
1231 void arm_log_exception(int idx);
1232
1233 #endif /* !CONFIG_USER_ONLY */
1234
1235 #endif