]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/internals.h
target/arm: Define and use new regime_tcr_value() function
[mirror_qemu.git] / target / arm / internals.h
1 /*
2 * QEMU ARM CPU -- internal functions and types
3 *
4 * Copyright (c) 2014 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 *
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target/arm/ but which are
22 * private to it and not required by the rest of QEMU.
23 */
24
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31
32 /* register banks for CPU modes */
33 #define BANK_USRSYS 0
34 #define BANK_SVC 1
35 #define BANK_ABT 2
36 #define BANK_UND 3
37 #define BANK_IRQ 4
38 #define BANK_FIQ 5
39 #define BANK_HYP 6
40 #define BANK_MON 7
41
42 static inline bool excp_is_internal(int excp)
43 {
44 /* Return true if this exception number represents a QEMU-internal
45 * exception that will not be passed to the guest.
46 */
47 return excp == EXCP_INTERRUPT
48 || excp == EXCP_HLT
49 || excp == EXCP_DEBUG
50 || excp == EXCP_HALTED
51 || excp == EXCP_EXCEPTION_EXIT
52 || excp == EXCP_KERNEL_TRAP
53 || excp == EXCP_SEMIHOST;
54 }
55
56 /* Scale factor for generic timers, ie number of ns per tick.
57 * This gives a 62.5MHz timer.
58 */
59 #define GTIMER_SCALE 16
60
61 /* Bit definitions for the v7M CONTROL register */
62 FIELD(V7M_CONTROL, NPRIV, 0, 1)
63 FIELD(V7M_CONTROL, SPSEL, 1, 1)
64 FIELD(V7M_CONTROL, FPCA, 2, 1)
65 FIELD(V7M_CONTROL, SFPA, 3, 1)
66
67 /* Bit definitions for v7M exception return payload */
68 FIELD(V7M_EXCRET, ES, 0, 1)
69 FIELD(V7M_EXCRET, RES0, 1, 1)
70 FIELD(V7M_EXCRET, SPSEL, 2, 1)
71 FIELD(V7M_EXCRET, MODE, 3, 1)
72 FIELD(V7M_EXCRET, FTYPE, 4, 1)
73 FIELD(V7M_EXCRET, DCRS, 5, 1)
74 FIELD(V7M_EXCRET, S, 6, 1)
75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76
77 /* Minimum value which is a magic number for exception return */
78 #define EXC_RETURN_MIN_MAGIC 0xff000000
79 /* Minimum number which is a magic number for function or exception return
80 * when using v8M security extension
81 */
82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
83
84 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
85 FIELD(DBGWCR, E, 0, 1)
86 FIELD(DBGWCR, PAC, 1, 2)
87 FIELD(DBGWCR, LSC, 3, 2)
88 FIELD(DBGWCR, BAS, 5, 8)
89 FIELD(DBGWCR, HMC, 13, 1)
90 FIELD(DBGWCR, SSC, 14, 2)
91 FIELD(DBGWCR, LBN, 16, 4)
92 FIELD(DBGWCR, WT, 20, 1)
93 FIELD(DBGWCR, MASK, 24, 5)
94 FIELD(DBGWCR, SSCE, 29, 1)
95
96 /* We use a few fake FSR values for internal purposes in M profile.
97 * M profile cores don't have A/R format FSRs, but currently our
98 * get_phys_addr() code assumes A/R profile and reports failures via
99 * an A/R format FSR value. We then translate that into the proper
100 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
101 * Mostly the FSR values we use for this are those defined for v7PMSA,
102 * since we share some of that codepath. A few kinds of fault are
103 * only for M profile and have no A/R equivalent, though, so we have
104 * to pick a value from the reserved range (which we never otherwise
105 * generate) to use for these.
106 * These values will never be visible to the guest.
107 */
108 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
109 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
110
111 /**
112 * raise_exception: Raise the specified exception.
113 * Raise a guest exception with the specified value, syndrome register
114 * and target exception level. This should be called from helper functions,
115 * and never returns because we will longjump back up to the CPU main loop.
116 */
117 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
118 uint32_t syndrome, uint32_t target_el);
119
120 /*
121 * Similarly, but also use unwinding to restore cpu state.
122 */
123 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
124 uint32_t syndrome, uint32_t target_el,
125 uintptr_t ra);
126
127 /*
128 * For AArch64, map a given EL to an index in the banked_spsr array.
129 * Note that this mapping and the AArch32 mapping defined in bank_number()
130 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
131 * mandated mapping between each other.
132 */
133 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
134 {
135 static const unsigned int map[4] = {
136 [1] = BANK_SVC, /* EL1. */
137 [2] = BANK_HYP, /* EL2. */
138 [3] = BANK_MON, /* EL3. */
139 };
140 assert(el >= 1 && el <= 3);
141 return map[el];
142 }
143
144 /* Map CPU modes onto saved register banks. */
145 static inline int bank_number(int mode)
146 {
147 switch (mode) {
148 case ARM_CPU_MODE_USR:
149 case ARM_CPU_MODE_SYS:
150 return BANK_USRSYS;
151 case ARM_CPU_MODE_SVC:
152 return BANK_SVC;
153 case ARM_CPU_MODE_ABT:
154 return BANK_ABT;
155 case ARM_CPU_MODE_UND:
156 return BANK_UND;
157 case ARM_CPU_MODE_IRQ:
158 return BANK_IRQ;
159 case ARM_CPU_MODE_FIQ:
160 return BANK_FIQ;
161 case ARM_CPU_MODE_HYP:
162 return BANK_HYP;
163 case ARM_CPU_MODE_MON:
164 return BANK_MON;
165 }
166 g_assert_not_reached();
167 }
168
169 /**
170 * r14_bank_number: Map CPU mode onto register bank for r14
171 *
172 * Given an AArch32 CPU mode, return the index into the saved register
173 * banks to use for the R14 (LR) in that mode. This is the same as
174 * bank_number(), except for the special case of Hyp mode, where
175 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
176 * This should be used as the index into env->banked_r14[], and
177 * bank_number() used for the index into env->banked_r13[] and
178 * env->banked_spsr[].
179 */
180 static inline int r14_bank_number(int mode)
181 {
182 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
183 }
184
185 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
186 void arm_translate_init(void);
187
188 #ifdef CONFIG_TCG
189 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
190 #endif /* CONFIG_TCG */
191
192 enum arm_fprounding {
193 FPROUNDING_TIEEVEN,
194 FPROUNDING_POSINF,
195 FPROUNDING_NEGINF,
196 FPROUNDING_ZERO,
197 FPROUNDING_TIEAWAY,
198 FPROUNDING_ODD
199 };
200
201 int arm_rmode_to_sf(int rmode);
202
203 static inline void aarch64_save_sp(CPUARMState *env, int el)
204 {
205 if (env->pstate & PSTATE_SP) {
206 env->sp_el[el] = env->xregs[31];
207 } else {
208 env->sp_el[0] = env->xregs[31];
209 }
210 }
211
212 static inline void aarch64_restore_sp(CPUARMState *env, int el)
213 {
214 if (env->pstate & PSTATE_SP) {
215 env->xregs[31] = env->sp_el[el];
216 } else {
217 env->xregs[31] = env->sp_el[0];
218 }
219 }
220
221 static inline void update_spsel(CPUARMState *env, uint32_t imm)
222 {
223 unsigned int cur_el = arm_current_el(env);
224 /* Update PSTATE SPSel bit; this requires us to update the
225 * working stack pointer in xregs[31].
226 */
227 if (!((imm ^ env->pstate) & PSTATE_SP)) {
228 return;
229 }
230 aarch64_save_sp(env, cur_el);
231 env->pstate = deposit32(env->pstate, 0, 1, imm);
232
233 /* We rely on illegal updates to SPsel from EL0 to get trapped
234 * at translation time.
235 */
236 assert(cur_el >= 1 && cur_el <= 3);
237 aarch64_restore_sp(env, cur_el);
238 }
239
240 /*
241 * arm_pamax
242 * @cpu: ARMCPU
243 *
244 * Returns the implementation defined bit-width of physical addresses.
245 * The ARMv8 reference manuals refer to this as PAMax().
246 */
247 unsigned int arm_pamax(ARMCPU *cpu);
248
249 /* Return true if extended addresses are enabled.
250 * This is always the case if our translation regime is 64 bit,
251 * but depends on TTBCR.EAE for 32 bit.
252 */
253 static inline bool extended_addresses_enabled(CPUARMState *env)
254 {
255 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
256 return arm_el_is_aa64(env, 1) ||
257 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
258 }
259
260 /* Update a QEMU watchpoint based on the information the guest has set in the
261 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
262 */
263 void hw_watchpoint_update(ARMCPU *cpu, int n);
264 /* Update the QEMU watchpoints for every guest watchpoint. This does a
265 * complete delete-and-reinstate of the QEMU watchpoint list and so is
266 * suitable for use after migration or on reset.
267 */
268 void hw_watchpoint_update_all(ARMCPU *cpu);
269 /* Update a QEMU breakpoint based on the information the guest has set in the
270 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
271 */
272 void hw_breakpoint_update(ARMCPU *cpu, int n);
273 /* Update the QEMU breakpoints for every guest breakpoint. This does a
274 * complete delete-and-reinstate of the QEMU breakpoint list and so is
275 * suitable for use after migration or on reset.
276 */
277 void hw_breakpoint_update_all(ARMCPU *cpu);
278
279 /* Callback function for checking if a breakpoint should trigger. */
280 bool arm_debug_check_breakpoint(CPUState *cs);
281
282 /* Callback function for checking if a watchpoint should trigger. */
283 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
284
285 /* Adjust addresses (in BE32 mode) before testing against watchpoint
286 * addresses.
287 */
288 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
289
290 /* Callback function for when a watchpoint or breakpoint triggers. */
291 void arm_debug_excp_handler(CPUState *cs);
292
293 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
294 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
295 {
296 return false;
297 }
298 static inline void arm_handle_psci_call(ARMCPU *cpu)
299 {
300 g_assert_not_reached();
301 }
302 #else
303 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
304 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
305 /* Actually handle a PSCI call */
306 void arm_handle_psci_call(ARMCPU *cpu);
307 #endif
308
309 /**
310 * arm_clear_exclusive: clear the exclusive monitor
311 * @env: CPU env
312 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
313 */
314 static inline void arm_clear_exclusive(CPUARMState *env)
315 {
316 env->exclusive_addr = -1;
317 }
318
319 /**
320 * ARMFaultType: type of an ARM MMU fault
321 * This corresponds to the v8A pseudocode's Fault enumeration,
322 * with extensions for QEMU internal conditions.
323 */
324 typedef enum ARMFaultType {
325 ARMFault_None,
326 ARMFault_AccessFlag,
327 ARMFault_Alignment,
328 ARMFault_Background,
329 ARMFault_Domain,
330 ARMFault_Permission,
331 ARMFault_Translation,
332 ARMFault_AddressSize,
333 ARMFault_SyncExternal,
334 ARMFault_SyncExternalOnWalk,
335 ARMFault_SyncParity,
336 ARMFault_SyncParityOnWalk,
337 ARMFault_AsyncParity,
338 ARMFault_AsyncExternal,
339 ARMFault_Debug,
340 ARMFault_TLBConflict,
341 ARMFault_Lockdown,
342 ARMFault_Exclusive,
343 ARMFault_ICacheMaint,
344 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
345 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
346 } ARMFaultType;
347
348 /**
349 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
350 * @type: Type of fault
351 * @level: Table walk level (for translation, access flag and permission faults)
352 * @domain: Domain of the fault address (for non-LPAE CPUs only)
353 * @s2addr: Address that caused a fault at stage 2
354 * @stage2: True if we faulted at stage 2
355 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
356 * @s1ns: True if we faulted on a non-secure IPA while in secure state
357 * @ea: True if we should set the EA (external abort type) bit in syndrome
358 */
359 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
360 struct ARMMMUFaultInfo {
361 ARMFaultType type;
362 target_ulong s2addr;
363 int level;
364 int domain;
365 bool stage2;
366 bool s1ptw;
367 bool s1ns;
368 bool ea;
369 };
370
371 /**
372 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
373 * Compare pseudocode EncodeSDFSC(), though unlike that function
374 * we set up a whole FSR-format code including domain field and
375 * putting the high bit of the FSC into bit 10.
376 */
377 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
378 {
379 uint32_t fsc;
380
381 switch (fi->type) {
382 case ARMFault_None:
383 return 0;
384 case ARMFault_AccessFlag:
385 fsc = fi->level == 1 ? 0x3 : 0x6;
386 break;
387 case ARMFault_Alignment:
388 fsc = 0x1;
389 break;
390 case ARMFault_Permission:
391 fsc = fi->level == 1 ? 0xd : 0xf;
392 break;
393 case ARMFault_Domain:
394 fsc = fi->level == 1 ? 0x9 : 0xb;
395 break;
396 case ARMFault_Translation:
397 fsc = fi->level == 1 ? 0x5 : 0x7;
398 break;
399 case ARMFault_SyncExternal:
400 fsc = 0x8 | (fi->ea << 12);
401 break;
402 case ARMFault_SyncExternalOnWalk:
403 fsc = fi->level == 1 ? 0xc : 0xe;
404 fsc |= (fi->ea << 12);
405 break;
406 case ARMFault_SyncParity:
407 fsc = 0x409;
408 break;
409 case ARMFault_SyncParityOnWalk:
410 fsc = fi->level == 1 ? 0x40c : 0x40e;
411 break;
412 case ARMFault_AsyncParity:
413 fsc = 0x408;
414 break;
415 case ARMFault_AsyncExternal:
416 fsc = 0x406 | (fi->ea << 12);
417 break;
418 case ARMFault_Debug:
419 fsc = 0x2;
420 break;
421 case ARMFault_TLBConflict:
422 fsc = 0x400;
423 break;
424 case ARMFault_Lockdown:
425 fsc = 0x404;
426 break;
427 case ARMFault_Exclusive:
428 fsc = 0x405;
429 break;
430 case ARMFault_ICacheMaint:
431 fsc = 0x4;
432 break;
433 case ARMFault_Background:
434 fsc = 0x0;
435 break;
436 case ARMFault_QEMU_NSCExec:
437 fsc = M_FAKE_FSR_NSC_EXEC;
438 break;
439 case ARMFault_QEMU_SFault:
440 fsc = M_FAKE_FSR_SFAULT;
441 break;
442 default:
443 /* Other faults can't occur in a context that requires a
444 * short-format status code.
445 */
446 g_assert_not_reached();
447 }
448
449 fsc |= (fi->domain << 4);
450 return fsc;
451 }
452
453 /**
454 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
455 * Compare pseudocode EncodeLDFSC(), though unlike that function
456 * we fill in also the LPAE bit 9 of a DFSR format.
457 */
458 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
459 {
460 uint32_t fsc;
461
462 switch (fi->type) {
463 case ARMFault_None:
464 return 0;
465 case ARMFault_AddressSize:
466 assert(fi->level >= -1 && fi->level <= 3);
467 if (fi->level < 0) {
468 fsc = 0b101001;
469 } else {
470 fsc = fi->level;
471 }
472 break;
473 case ARMFault_AccessFlag:
474 assert(fi->level >= 0 && fi->level <= 3);
475 fsc = 0b001000 | fi->level;
476 break;
477 case ARMFault_Permission:
478 assert(fi->level >= 0 && fi->level <= 3);
479 fsc = 0b001100 | fi->level;
480 break;
481 case ARMFault_Translation:
482 assert(fi->level >= -1 && fi->level <= 3);
483 if (fi->level < 0) {
484 fsc = 0b101011;
485 } else {
486 fsc = 0b000100 | fi->level;
487 }
488 break;
489 case ARMFault_SyncExternal:
490 fsc = 0x10 | (fi->ea << 12);
491 break;
492 case ARMFault_SyncExternalOnWalk:
493 assert(fi->level >= -1 && fi->level <= 3);
494 if (fi->level < 0) {
495 fsc = 0b010011;
496 } else {
497 fsc = 0b010100 | fi->level;
498 }
499 fsc |= fi->ea << 12;
500 break;
501 case ARMFault_SyncParity:
502 fsc = 0x18;
503 break;
504 case ARMFault_SyncParityOnWalk:
505 assert(fi->level >= -1 && fi->level <= 3);
506 if (fi->level < 0) {
507 fsc = 0b011011;
508 } else {
509 fsc = 0b011100 | fi->level;
510 }
511 break;
512 case ARMFault_AsyncParity:
513 fsc = 0x19;
514 break;
515 case ARMFault_AsyncExternal:
516 fsc = 0x11 | (fi->ea << 12);
517 break;
518 case ARMFault_Alignment:
519 fsc = 0x21;
520 break;
521 case ARMFault_Debug:
522 fsc = 0x22;
523 break;
524 case ARMFault_TLBConflict:
525 fsc = 0x30;
526 break;
527 case ARMFault_Lockdown:
528 fsc = 0x34;
529 break;
530 case ARMFault_Exclusive:
531 fsc = 0x35;
532 break;
533 default:
534 /* Other faults can't occur in a context that requires a
535 * long-format status code.
536 */
537 g_assert_not_reached();
538 }
539
540 fsc |= 1 << 9;
541 return fsc;
542 }
543
544 static inline bool arm_extabort_type(MemTxResult result)
545 {
546 /* The EA bit in syndromes and fault status registers is an
547 * IMPDEF classification of external aborts. ARM implementations
548 * usually use this to indicate AXI bus Decode error (0) or
549 * Slave error (1); in QEMU we follow that.
550 */
551 return result != MEMTX_DECODE_ERROR;
552 }
553
554 #ifdef CONFIG_USER_ONLY
555 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
556 MMUAccessType access_type,
557 bool maperr, uintptr_t ra);
558 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
559 MMUAccessType access_type, uintptr_t ra);
560 #else
561 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
562 MMUAccessType access_type, int mmu_idx,
563 bool probe, uintptr_t retaddr);
564 #endif
565
566 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
567 {
568 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
569 }
570
571 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
572 {
573 if (arm_feature(env, ARM_FEATURE_M)) {
574 return mmu_idx | ARM_MMU_IDX_M;
575 } else {
576 return mmu_idx | ARM_MMU_IDX_A;
577 }
578 }
579
580 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
581 {
582 /* AArch64 is always a-profile. */
583 return mmu_idx | ARM_MMU_IDX_A;
584 }
585
586 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
587
588 /*
589 * Return the MMU index for a v7M CPU with all relevant information
590 * manually specified.
591 */
592 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
593 bool secstate, bool priv, bool negpri);
594
595 /*
596 * Return the MMU index for a v7M CPU in the specified security and
597 * privilege state.
598 */
599 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
600 bool secstate, bool priv);
601
602 /* Return the MMU index for a v7M CPU in the specified security state */
603 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
604
605 /* Return true if the translation regime is using LPAE format page tables */
606 bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
607
608 /*
609 * Return true if the stage 1 translation regime is using LPAE
610 * format page tables
611 */
612 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
613
614 /* Raise a data fault alignment exception for the specified virtual address */
615 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
616 MMUAccessType access_type,
617 int mmu_idx, uintptr_t retaddr);
618
619 /* arm_cpu_do_transaction_failed: handle a memory system error response
620 * (eg "no device/memory present at address") by raising an external abort
621 * exception
622 */
623 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
624 vaddr addr, unsigned size,
625 MMUAccessType access_type,
626 int mmu_idx, MemTxAttrs attrs,
627 MemTxResult response, uintptr_t retaddr);
628
629 /* Call any registered EL change hooks */
630 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
631 {
632 ARMELChangeHook *hook, *next;
633 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
634 hook->hook(cpu, hook->opaque);
635 }
636 }
637 static inline void arm_call_el_change_hook(ARMCPU *cpu)
638 {
639 ARMELChangeHook *hook, *next;
640 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
641 hook->hook(cpu, hook->opaque);
642 }
643 }
644
645 /* Return true if this address translation regime has two ranges. */
646 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
647 {
648 switch (mmu_idx) {
649 case ARMMMUIdx_Stage1_E0:
650 case ARMMMUIdx_Stage1_E1:
651 case ARMMMUIdx_Stage1_E1_PAN:
652 case ARMMMUIdx_Stage1_SE0:
653 case ARMMMUIdx_Stage1_SE1:
654 case ARMMMUIdx_Stage1_SE1_PAN:
655 case ARMMMUIdx_E10_0:
656 case ARMMMUIdx_E10_1:
657 case ARMMMUIdx_E10_1_PAN:
658 case ARMMMUIdx_E20_0:
659 case ARMMMUIdx_E20_2:
660 case ARMMMUIdx_E20_2_PAN:
661 case ARMMMUIdx_SE10_0:
662 case ARMMMUIdx_SE10_1:
663 case ARMMMUIdx_SE10_1_PAN:
664 case ARMMMUIdx_SE20_0:
665 case ARMMMUIdx_SE20_2:
666 case ARMMMUIdx_SE20_2_PAN:
667 return true;
668 default:
669 return false;
670 }
671 }
672
673 /* Return true if this address translation regime is secure */
674 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
675 {
676 switch (mmu_idx) {
677 case ARMMMUIdx_E10_0:
678 case ARMMMUIdx_E10_1:
679 case ARMMMUIdx_E10_1_PAN:
680 case ARMMMUIdx_E20_0:
681 case ARMMMUIdx_E20_2:
682 case ARMMMUIdx_E20_2_PAN:
683 case ARMMMUIdx_Stage1_E0:
684 case ARMMMUIdx_Stage1_E1:
685 case ARMMMUIdx_Stage1_E1_PAN:
686 case ARMMMUIdx_E2:
687 case ARMMMUIdx_Stage2:
688 case ARMMMUIdx_MPrivNegPri:
689 case ARMMMUIdx_MUserNegPri:
690 case ARMMMUIdx_MPriv:
691 case ARMMMUIdx_MUser:
692 return false;
693 case ARMMMUIdx_SE3:
694 case ARMMMUIdx_SE10_0:
695 case ARMMMUIdx_SE10_1:
696 case ARMMMUIdx_SE10_1_PAN:
697 case ARMMMUIdx_SE20_0:
698 case ARMMMUIdx_SE20_2:
699 case ARMMMUIdx_SE20_2_PAN:
700 case ARMMMUIdx_Stage1_SE0:
701 case ARMMMUIdx_Stage1_SE1:
702 case ARMMMUIdx_Stage1_SE1_PAN:
703 case ARMMMUIdx_SE2:
704 case ARMMMUIdx_Stage2_S:
705 case ARMMMUIdx_MSPrivNegPri:
706 case ARMMMUIdx_MSUserNegPri:
707 case ARMMMUIdx_MSPriv:
708 case ARMMMUIdx_MSUser:
709 return true;
710 default:
711 g_assert_not_reached();
712 }
713 }
714
715 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
716 {
717 switch (mmu_idx) {
718 case ARMMMUIdx_Stage1_E1_PAN:
719 case ARMMMUIdx_Stage1_SE1_PAN:
720 case ARMMMUIdx_E10_1_PAN:
721 case ARMMMUIdx_E20_2_PAN:
722 case ARMMMUIdx_SE10_1_PAN:
723 case ARMMMUIdx_SE20_2_PAN:
724 return true;
725 default:
726 return false;
727 }
728 }
729
730 /* Return the exception level which controls this address translation regime */
731 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
732 {
733 switch (mmu_idx) {
734 case ARMMMUIdx_SE20_0:
735 case ARMMMUIdx_SE20_2:
736 case ARMMMUIdx_SE20_2_PAN:
737 case ARMMMUIdx_E20_0:
738 case ARMMMUIdx_E20_2:
739 case ARMMMUIdx_E20_2_PAN:
740 case ARMMMUIdx_Stage2:
741 case ARMMMUIdx_Stage2_S:
742 case ARMMMUIdx_SE2:
743 case ARMMMUIdx_E2:
744 return 2;
745 case ARMMMUIdx_SE3:
746 return 3;
747 case ARMMMUIdx_SE10_0:
748 case ARMMMUIdx_Stage1_SE0:
749 return arm_el_is_aa64(env, 3) ? 1 : 3;
750 case ARMMMUIdx_SE10_1:
751 case ARMMMUIdx_SE10_1_PAN:
752 case ARMMMUIdx_Stage1_E0:
753 case ARMMMUIdx_Stage1_E1:
754 case ARMMMUIdx_Stage1_E1_PAN:
755 case ARMMMUIdx_Stage1_SE1:
756 case ARMMMUIdx_Stage1_SE1_PAN:
757 case ARMMMUIdx_E10_0:
758 case ARMMMUIdx_E10_1:
759 case ARMMMUIdx_E10_1_PAN:
760 case ARMMMUIdx_MPrivNegPri:
761 case ARMMMUIdx_MUserNegPri:
762 case ARMMMUIdx_MPriv:
763 case ARMMMUIdx_MUser:
764 case ARMMMUIdx_MSPrivNegPri:
765 case ARMMMUIdx_MSUserNegPri:
766 case ARMMMUIdx_MSPriv:
767 case ARMMMUIdx_MSUser:
768 return 1;
769 default:
770 g_assert_not_reached();
771 }
772 }
773
774 /* Return the SCTLR value which controls this address translation regime */
775 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
776 {
777 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
778 }
779
780 /* Return the TCR controlling this translation regime */
781 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
782 {
783 if (mmu_idx == ARMMMUIdx_Stage2) {
784 return &env->cp15.vtcr_el2;
785 }
786 if (mmu_idx == ARMMMUIdx_Stage2_S) {
787 /*
788 * Note: Secure stage 2 nominally shares fields from VTCR_EL2, but
789 * those are not currently used by QEMU, so just return VSTCR_EL2.
790 */
791 return &env->cp15.vstcr_el2;
792 }
793 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
794 }
795
796 /* Return the raw value of the TCR controlling this translation regime */
797 static inline uint64_t regime_tcr_value(CPUARMState *env, ARMMMUIdx mmu_idx)
798 {
799 return regime_tcr(env, mmu_idx)->raw_tcr;
800 }
801
802 /**
803 * arm_num_brps: Return number of implemented breakpoints.
804 * Note that the ID register BRPS field is "number of bps - 1",
805 * and we return the actual number of breakpoints.
806 */
807 static inline int arm_num_brps(ARMCPU *cpu)
808 {
809 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
810 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
811 } else {
812 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
813 }
814 }
815
816 /**
817 * arm_num_wrps: Return number of implemented watchpoints.
818 * Note that the ID register WRPS field is "number of wps - 1",
819 * and we return the actual number of watchpoints.
820 */
821 static inline int arm_num_wrps(ARMCPU *cpu)
822 {
823 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
824 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
825 } else {
826 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
827 }
828 }
829
830 /**
831 * arm_num_ctx_cmps: Return number of implemented context comparators.
832 * Note that the ID register CTX_CMPS field is "number of cmps - 1",
833 * and we return the actual number of comparators.
834 */
835 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
836 {
837 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
838 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
839 } else {
840 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
841 }
842 }
843
844 /**
845 * v7m_using_psp: Return true if using process stack pointer
846 * Return true if the CPU is currently using the process stack
847 * pointer, or false if it is using the main stack pointer.
848 */
849 static inline bool v7m_using_psp(CPUARMState *env)
850 {
851 /* Handler mode always uses the main stack; for thread mode
852 * the CONTROL.SPSEL bit determines the answer.
853 * Note that in v7M it is not possible to be in Handler mode with
854 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
855 */
856 return !arm_v7m_is_handler_mode(env) &&
857 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
858 }
859
860 /**
861 * v7m_sp_limit: Return SP limit for current CPU state
862 * Return the SP limit value for the current CPU security state
863 * and stack pointer.
864 */
865 static inline uint32_t v7m_sp_limit(CPUARMState *env)
866 {
867 if (v7m_using_psp(env)) {
868 return env->v7m.psplim[env->v7m.secure];
869 } else {
870 return env->v7m.msplim[env->v7m.secure];
871 }
872 }
873
874 /**
875 * v7m_cpacr_pass:
876 * Return true if the v7M CPACR permits access to the FPU for the specified
877 * security state and privilege level.
878 */
879 static inline bool v7m_cpacr_pass(CPUARMState *env,
880 bool is_secure, bool is_priv)
881 {
882 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
883 case 0:
884 case 2: /* UNPREDICTABLE: we treat like 0 */
885 return false;
886 case 1:
887 return is_priv;
888 case 3:
889 return true;
890 default:
891 g_assert_not_reached();
892 }
893 }
894
895 /**
896 * aarch32_mode_name(): Return name of the AArch32 CPU mode
897 * @psr: Program Status Register indicating CPU mode
898 *
899 * Returns, for debug logging purposes, a printable representation
900 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
901 * the low bits of the specified PSR.
902 */
903 static inline const char *aarch32_mode_name(uint32_t psr)
904 {
905 static const char cpu_mode_names[16][4] = {
906 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
907 "???", "???", "hyp", "und", "???", "???", "???", "sys"
908 };
909
910 return cpu_mode_names[psr & 0xf];
911 }
912
913 /**
914 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
915 *
916 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
917 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
918 * Must be called with the iothread lock held.
919 */
920 void arm_cpu_update_virq(ARMCPU *cpu);
921
922 /**
923 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
924 *
925 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
926 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
927 * Must be called with the iothread lock held.
928 */
929 void arm_cpu_update_vfiq(ARMCPU *cpu);
930
931 /**
932 * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
933 *
934 * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
935 * following a change to the HCR_EL2.VSE bit.
936 */
937 void arm_cpu_update_vserr(ARMCPU *cpu);
938
939 /**
940 * arm_mmu_idx_el:
941 * @env: The cpu environment
942 * @el: The EL to use.
943 *
944 * Return the full ARMMMUIdx for the translation regime for EL.
945 */
946 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
947
948 /**
949 * arm_mmu_idx:
950 * @env: The cpu environment
951 *
952 * Return the full ARMMMUIdx for the current translation regime.
953 */
954 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
955
956 /**
957 * arm_stage1_mmu_idx:
958 * @env: The cpu environment
959 *
960 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
961 */
962 #ifdef CONFIG_USER_ONLY
963 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
964 {
965 return ARMMMUIdx_Stage1_E0;
966 }
967 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
968 {
969 return ARMMMUIdx_Stage1_E0;
970 }
971 #else
972 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
973 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
974 #endif
975
976 /**
977 * arm_mmu_idx_is_stage1_of_2:
978 * @mmu_idx: The ARMMMUIdx to test
979 *
980 * Return true if @mmu_idx is a NOTLB mmu_idx that is the
981 * first stage of a two stage regime.
982 */
983 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
984 {
985 switch (mmu_idx) {
986 case ARMMMUIdx_Stage1_E0:
987 case ARMMMUIdx_Stage1_E1:
988 case ARMMMUIdx_Stage1_E1_PAN:
989 case ARMMMUIdx_Stage1_SE0:
990 case ARMMMUIdx_Stage1_SE1:
991 case ARMMMUIdx_Stage1_SE1_PAN:
992 return true;
993 default:
994 return false;
995 }
996 }
997
998 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
999 const ARMISARegisters *id)
1000 {
1001 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1002
1003 if ((features >> ARM_FEATURE_V4T) & 1) {
1004 valid |= CPSR_T;
1005 }
1006 if ((features >> ARM_FEATURE_V5) & 1) {
1007 valid |= CPSR_Q; /* V5TE in reality*/
1008 }
1009 if ((features >> ARM_FEATURE_V6) & 1) {
1010 valid |= CPSR_E | CPSR_GE;
1011 }
1012 if ((features >> ARM_FEATURE_THUMB2) & 1) {
1013 valid |= CPSR_IT;
1014 }
1015 if (isar_feature_aa32_jazelle(id)) {
1016 valid |= CPSR_J;
1017 }
1018 if (isar_feature_aa32_pan(id)) {
1019 valid |= CPSR_PAN;
1020 }
1021 if (isar_feature_aa32_dit(id)) {
1022 valid |= CPSR_DIT;
1023 }
1024 if (isar_feature_aa32_ssbs(id)) {
1025 valid |= CPSR_SSBS;
1026 }
1027
1028 return valid;
1029 }
1030
1031 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1032 {
1033 uint32_t valid;
1034
1035 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1036 if (isar_feature_aa64_bti(id)) {
1037 valid |= PSTATE_BTYPE;
1038 }
1039 if (isar_feature_aa64_pan(id)) {
1040 valid |= PSTATE_PAN;
1041 }
1042 if (isar_feature_aa64_uao(id)) {
1043 valid |= PSTATE_UAO;
1044 }
1045 if (isar_feature_aa64_dit(id)) {
1046 valid |= PSTATE_DIT;
1047 }
1048 if (isar_feature_aa64_ssbs(id)) {
1049 valid |= PSTATE_SSBS;
1050 }
1051 if (isar_feature_aa64_mte(id)) {
1052 valid |= PSTATE_TCO;
1053 }
1054
1055 return valid;
1056 }
1057
1058 /*
1059 * Parameters of a given virtual address, as extracted from the
1060 * translation control register (TCR) for a given regime.
1061 */
1062 typedef struct ARMVAParameters {
1063 unsigned tsz : 8;
1064 unsigned ps : 3;
1065 unsigned sh : 2;
1066 unsigned select : 1;
1067 bool tbi : 1;
1068 bool epd : 1;
1069 bool hpd : 1;
1070 bool using16k : 1;
1071 bool using64k : 1;
1072 bool tsz_oob : 1; /* tsz has been clamped to legal range */
1073 bool ds : 1;
1074 } ARMVAParameters;
1075
1076 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1077 ARMMMUIdx mmu_idx, bool data);
1078
1079 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1080 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1081
1082 /* Determine if allocation tags are available. */
1083 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1084 uint64_t sctlr)
1085 {
1086 if (el < 3
1087 && arm_feature(env, ARM_FEATURE_EL3)
1088 && !(env->cp15.scr_el3 & SCR_ATA)) {
1089 return false;
1090 }
1091 if (el < 2 && arm_is_el2_enabled(env)) {
1092 uint64_t hcr = arm_hcr_el2_eff(env);
1093 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1094 return false;
1095 }
1096 }
1097 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1098 return sctlr != 0;
1099 }
1100
1101 #ifndef CONFIG_USER_ONLY
1102
1103 /* Security attributes for an address, as returned by v8m_security_lookup. */
1104 typedef struct V8M_SAttributes {
1105 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1106 bool ns;
1107 bool nsc;
1108 uint8_t sregion;
1109 bool srvalid;
1110 uint8_t iregion;
1111 bool irvalid;
1112 } V8M_SAttributes;
1113
1114 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1115 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1116 V8M_SAttributes *sattrs);
1117
1118 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1119 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1120 hwaddr *phys_ptr, MemTxAttrs *txattrs,
1121 int *prot, bool *is_subpage,
1122 ARMMMUFaultInfo *fi, uint32_t *mregion);
1123
1124 /* Cacheability and shareability attributes for a memory access */
1125 typedef struct ARMCacheAttrs {
1126 /*
1127 * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1128 * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1129 */
1130 unsigned int attrs:8;
1131 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1132 bool is_s2_format:1;
1133 } ARMCacheAttrs;
1134
1135 bool get_phys_addr(CPUARMState *env, target_ulong address,
1136 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1137 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
1138 target_ulong *page_size,
1139 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
1140 __attribute__((nonnull));
1141
1142 void arm_log_exception(CPUState *cs);
1143
1144 #endif /* !CONFIG_USER_ONLY */
1145
1146 /*
1147 * The log2 of the words in the tag block, for GMID_EL1.BS.
1148 * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1149 */
1150 #define GMID_EL1_BS 6
1151
1152 /* We associate one allocation tag per 16 bytes, the minimum. */
1153 #define LOG2_TAG_GRANULE 4
1154 #define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
1155
1156 /*
1157 * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1158 * the same simd_desc() encoding due to restrictions on size.
1159 * Use these instead.
1160 */
1161 FIELD(PREDDESC, OPRSZ, 0, 6)
1162 FIELD(PREDDESC, ESZ, 6, 2)
1163 FIELD(PREDDESC, DATA, 8, 24)
1164
1165 /*
1166 * The SVE simd_data field, for memory ops, contains either
1167 * rd (5 bits) or a shift count (2 bits).
1168 */
1169 #define SVE_MTEDESC_SHIFT 5
1170
1171 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1172 FIELD(MTEDESC, MIDX, 0, 4)
1173 FIELD(MTEDESC, TBI, 4, 2)
1174 FIELD(MTEDESC, TCMA, 6, 2)
1175 FIELD(MTEDESC, WRITE, 8, 1)
1176 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9) /* size - 1 */
1177
1178 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1179 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1180
1181 static inline int allocation_tag_from_addr(uint64_t ptr)
1182 {
1183 return extract64(ptr, 56, 4);
1184 }
1185
1186 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1187 {
1188 return deposit64(ptr, 56, 4, rtag);
1189 }
1190
1191 /* Return true if tbi bits mean that the access is checked. */
1192 static inline bool tbi_check(uint32_t desc, int bit55)
1193 {
1194 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1195 }
1196
1197 /* Return true if tcma bits mean that the access is unchecked. */
1198 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1199 {
1200 /*
1201 * We had extracted bit55 and ptr_tag for other reasons, so fold
1202 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1203 */
1204 bool match = ((ptr_tag + bit55) & 0xf) == 0;
1205 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1206 return tcma && match;
1207 }
1208
1209 /*
1210 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
1211 * for the tag to be present in the FAR_ELx register. But for user-only
1212 * mode, we do not have a TLB with which to implement this, so we must
1213 * remove the top byte.
1214 */
1215 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1216 {
1217 #ifdef CONFIG_USER_ONLY
1218 /* TBI0 is known to be enabled, while TBI1 is disabled. */
1219 ptr &= sextract64(ptr, 0, 56);
1220 #endif
1221 return ptr;
1222 }
1223
1224 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1225 {
1226 #ifdef CONFIG_USER_ONLY
1227 int64_t clean_ptr = sextract64(ptr, 0, 56);
1228 if (tbi_check(desc, clean_ptr < 0)) {
1229 ptr = clean_ptr;
1230 }
1231 #endif
1232 return ptr;
1233 }
1234
1235 /* Values for M-profile PSR.ECI for MVE insns */
1236 enum MVEECIState {
1237 ECI_NONE = 0, /* No completed beats */
1238 ECI_A0 = 1, /* Completed: A0 */
1239 ECI_A0A1 = 2, /* Completed: A0, A1 */
1240 /* 3 is reserved */
1241 ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1242 ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1243 /* All other values reserved */
1244 };
1245
1246 /* Definitions for the PMU registers */
1247 #define PMCRN_MASK 0xf800
1248 #define PMCRN_SHIFT 11
1249 #define PMCRLC 0x40
1250 #define PMCRDP 0x20
1251 #define PMCRX 0x10
1252 #define PMCRD 0x8
1253 #define PMCRC 0x4
1254 #define PMCRP 0x2
1255 #define PMCRE 0x1
1256 /*
1257 * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1258 * which can be written as 1 to trigger behaviour but which stay RAZ).
1259 */
1260 #define PMCR_WRITABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1261
1262 #define PMXEVTYPER_P 0x80000000
1263 #define PMXEVTYPER_U 0x40000000
1264 #define PMXEVTYPER_NSK 0x20000000
1265 #define PMXEVTYPER_NSU 0x10000000
1266 #define PMXEVTYPER_NSH 0x08000000
1267 #define PMXEVTYPER_M 0x04000000
1268 #define PMXEVTYPER_MT 0x02000000
1269 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1270 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1271 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1272 PMXEVTYPER_M | PMXEVTYPER_MT | \
1273 PMXEVTYPER_EVTCOUNT)
1274
1275 #define PMCCFILTR 0xf8000000
1276 #define PMCCFILTR_M PMXEVTYPER_M
1277 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1278
1279 static inline uint32_t pmu_num_counters(CPUARMState *env)
1280 {
1281 ARMCPU *cpu = env_archcpu(env);
1282
1283 return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1284 }
1285
1286 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1287 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1288 {
1289 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1290 }
1291
1292 #ifdef TARGET_AARCH64
1293 int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg);
1294 int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg);
1295 int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg);
1296 int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg);
1297 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1298 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1299 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1300 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1301 #endif
1302
1303 #ifdef CONFIG_USER_ONLY
1304 static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { }
1305 #else
1306 void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu);
1307 #endif
1308
1309 bool el_is_in_host(CPUARMState *env, int el);
1310
1311 void aa32_max_features(ARMCPU *cpu);
1312 int exception_target_el(CPUARMState *env);
1313 bool arm_singlestep_active(CPUARMState *env);
1314 bool arm_generate_debug_exceptions(CPUARMState *env);
1315
1316 /* Add the cpreg definitions for debug related system registers */
1317 void define_debug_regs(ARMCPU *cpu);
1318
1319 /* Effective value of MDCR_EL2 */
1320 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1321 {
1322 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1323 }
1324
1325 /* Powers of 2 for sve_vq_map et al. */
1326 #define SVE_VQ_POW2_MAP \
1327 ((1 << (1 - 1)) | (1 << (2 - 1)) | \
1328 (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1329
1330 #endif