]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/internals.h
target/arm: Introduce regime_is_stage2
[mirror_qemu.git] / target / arm / internals.h
1 /*
2 * QEMU ARM CPU -- internal functions and types
3 *
4 * Copyright (c) 2014 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 *
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target/arm/ but which are
22 * private to it and not required by the rest of QEMU.
23 */
24
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31
32 /* register banks for CPU modes */
33 #define BANK_USRSYS 0
34 #define BANK_SVC 1
35 #define BANK_ABT 2
36 #define BANK_UND 3
37 #define BANK_IRQ 4
38 #define BANK_FIQ 5
39 #define BANK_HYP 6
40 #define BANK_MON 7
41
42 static inline bool excp_is_internal(int excp)
43 {
44 /* Return true if this exception number represents a QEMU-internal
45 * exception that will not be passed to the guest.
46 */
47 return excp == EXCP_INTERRUPT
48 || excp == EXCP_HLT
49 || excp == EXCP_DEBUG
50 || excp == EXCP_HALTED
51 || excp == EXCP_EXCEPTION_EXIT
52 || excp == EXCP_KERNEL_TRAP
53 || excp == EXCP_SEMIHOST;
54 }
55
56 /* Scale factor for generic timers, ie number of ns per tick.
57 * This gives a 62.5MHz timer.
58 */
59 #define GTIMER_SCALE 16
60
61 /* Bit definitions for the v7M CONTROL register */
62 FIELD(V7M_CONTROL, NPRIV, 0, 1)
63 FIELD(V7M_CONTROL, SPSEL, 1, 1)
64 FIELD(V7M_CONTROL, FPCA, 2, 1)
65 FIELD(V7M_CONTROL, SFPA, 3, 1)
66
67 /* Bit definitions for v7M exception return payload */
68 FIELD(V7M_EXCRET, ES, 0, 1)
69 FIELD(V7M_EXCRET, RES0, 1, 1)
70 FIELD(V7M_EXCRET, SPSEL, 2, 1)
71 FIELD(V7M_EXCRET, MODE, 3, 1)
72 FIELD(V7M_EXCRET, FTYPE, 4, 1)
73 FIELD(V7M_EXCRET, DCRS, 5, 1)
74 FIELD(V7M_EXCRET, S, 6, 1)
75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76
77 /* Minimum value which is a magic number for exception return */
78 #define EXC_RETURN_MIN_MAGIC 0xff000000
79 /* Minimum number which is a magic number for function or exception return
80 * when using v8M security extension
81 */
82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
83
84 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
85 FIELD(DBGWCR, E, 0, 1)
86 FIELD(DBGWCR, PAC, 1, 2)
87 FIELD(DBGWCR, LSC, 3, 2)
88 FIELD(DBGWCR, BAS, 5, 8)
89 FIELD(DBGWCR, HMC, 13, 1)
90 FIELD(DBGWCR, SSC, 14, 2)
91 FIELD(DBGWCR, LBN, 16, 4)
92 FIELD(DBGWCR, WT, 20, 1)
93 FIELD(DBGWCR, MASK, 24, 5)
94 FIELD(DBGWCR, SSCE, 29, 1)
95
96 /* We use a few fake FSR values for internal purposes in M profile.
97 * M profile cores don't have A/R format FSRs, but currently our
98 * get_phys_addr() code assumes A/R profile and reports failures via
99 * an A/R format FSR value. We then translate that into the proper
100 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
101 * Mostly the FSR values we use for this are those defined for v7PMSA,
102 * since we share some of that codepath. A few kinds of fault are
103 * only for M profile and have no A/R equivalent, though, so we have
104 * to pick a value from the reserved range (which we never otherwise
105 * generate) to use for these.
106 * These values will never be visible to the guest.
107 */
108 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
109 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
110
111 /**
112 * raise_exception: Raise the specified exception.
113 * Raise a guest exception with the specified value, syndrome register
114 * and target exception level. This should be called from helper functions,
115 * and never returns because we will longjump back up to the CPU main loop.
116 */
117 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
118 uint32_t syndrome, uint32_t target_el);
119
120 /*
121 * Similarly, but also use unwinding to restore cpu state.
122 */
123 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
124 uint32_t syndrome, uint32_t target_el,
125 uintptr_t ra);
126
127 /*
128 * For AArch64, map a given EL to an index in the banked_spsr array.
129 * Note that this mapping and the AArch32 mapping defined in bank_number()
130 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
131 * mandated mapping between each other.
132 */
133 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
134 {
135 static const unsigned int map[4] = {
136 [1] = BANK_SVC, /* EL1. */
137 [2] = BANK_HYP, /* EL2. */
138 [3] = BANK_MON, /* EL3. */
139 };
140 assert(el >= 1 && el <= 3);
141 return map[el];
142 }
143
144 /* Map CPU modes onto saved register banks. */
145 static inline int bank_number(int mode)
146 {
147 switch (mode) {
148 case ARM_CPU_MODE_USR:
149 case ARM_CPU_MODE_SYS:
150 return BANK_USRSYS;
151 case ARM_CPU_MODE_SVC:
152 return BANK_SVC;
153 case ARM_CPU_MODE_ABT:
154 return BANK_ABT;
155 case ARM_CPU_MODE_UND:
156 return BANK_UND;
157 case ARM_CPU_MODE_IRQ:
158 return BANK_IRQ;
159 case ARM_CPU_MODE_FIQ:
160 return BANK_FIQ;
161 case ARM_CPU_MODE_HYP:
162 return BANK_HYP;
163 case ARM_CPU_MODE_MON:
164 return BANK_MON;
165 }
166 g_assert_not_reached();
167 }
168
169 /**
170 * r14_bank_number: Map CPU mode onto register bank for r14
171 *
172 * Given an AArch32 CPU mode, return the index into the saved register
173 * banks to use for the R14 (LR) in that mode. This is the same as
174 * bank_number(), except for the special case of Hyp mode, where
175 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
176 * This should be used as the index into env->banked_r14[], and
177 * bank_number() used for the index into env->banked_r13[] and
178 * env->banked_spsr[].
179 */
180 static inline int r14_bank_number(int mode)
181 {
182 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
183 }
184
185 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
186 void arm_translate_init(void);
187
188 #ifdef CONFIG_TCG
189 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
190 #endif /* CONFIG_TCG */
191
192 enum arm_fprounding {
193 FPROUNDING_TIEEVEN,
194 FPROUNDING_POSINF,
195 FPROUNDING_NEGINF,
196 FPROUNDING_ZERO,
197 FPROUNDING_TIEAWAY,
198 FPROUNDING_ODD
199 };
200
201 int arm_rmode_to_sf(int rmode);
202
203 static inline void aarch64_save_sp(CPUARMState *env, int el)
204 {
205 if (env->pstate & PSTATE_SP) {
206 env->sp_el[el] = env->xregs[31];
207 } else {
208 env->sp_el[0] = env->xregs[31];
209 }
210 }
211
212 static inline void aarch64_restore_sp(CPUARMState *env, int el)
213 {
214 if (env->pstate & PSTATE_SP) {
215 env->xregs[31] = env->sp_el[el];
216 } else {
217 env->xregs[31] = env->sp_el[0];
218 }
219 }
220
221 static inline void update_spsel(CPUARMState *env, uint32_t imm)
222 {
223 unsigned int cur_el = arm_current_el(env);
224 /* Update PSTATE SPSel bit; this requires us to update the
225 * working stack pointer in xregs[31].
226 */
227 if (!((imm ^ env->pstate) & PSTATE_SP)) {
228 return;
229 }
230 aarch64_save_sp(env, cur_el);
231 env->pstate = deposit32(env->pstate, 0, 1, imm);
232
233 /* We rely on illegal updates to SPsel from EL0 to get trapped
234 * at translation time.
235 */
236 assert(cur_el >= 1 && cur_el <= 3);
237 aarch64_restore_sp(env, cur_el);
238 }
239
240 /*
241 * arm_pamax
242 * @cpu: ARMCPU
243 *
244 * Returns the implementation defined bit-width of physical addresses.
245 * The ARMv8 reference manuals refer to this as PAMax().
246 */
247 unsigned int arm_pamax(ARMCPU *cpu);
248
249 /* Return true if extended addresses are enabled.
250 * This is always the case if our translation regime is 64 bit,
251 * but depends on TTBCR.EAE for 32 bit.
252 */
253 static inline bool extended_addresses_enabled(CPUARMState *env)
254 {
255 uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
256 return arm_el_is_aa64(env, 1) ||
257 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
258 }
259
260 /* Update a QEMU watchpoint based on the information the guest has set in the
261 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
262 */
263 void hw_watchpoint_update(ARMCPU *cpu, int n);
264 /* Update the QEMU watchpoints for every guest watchpoint. This does a
265 * complete delete-and-reinstate of the QEMU watchpoint list and so is
266 * suitable for use after migration or on reset.
267 */
268 void hw_watchpoint_update_all(ARMCPU *cpu);
269 /* Update a QEMU breakpoint based on the information the guest has set in the
270 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
271 */
272 void hw_breakpoint_update(ARMCPU *cpu, int n);
273 /* Update the QEMU breakpoints for every guest breakpoint. This does a
274 * complete delete-and-reinstate of the QEMU breakpoint list and so is
275 * suitable for use after migration or on reset.
276 */
277 void hw_breakpoint_update_all(ARMCPU *cpu);
278
279 /* Callback function for checking if a breakpoint should trigger. */
280 bool arm_debug_check_breakpoint(CPUState *cs);
281
282 /* Callback function for checking if a watchpoint should trigger. */
283 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
284
285 /* Adjust addresses (in BE32 mode) before testing against watchpoint
286 * addresses.
287 */
288 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
289
290 /* Callback function for when a watchpoint or breakpoint triggers. */
291 void arm_debug_excp_handler(CPUState *cs);
292
293 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
294 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
295 {
296 return false;
297 }
298 static inline void arm_handle_psci_call(ARMCPU *cpu)
299 {
300 g_assert_not_reached();
301 }
302 #else
303 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
304 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
305 /* Actually handle a PSCI call */
306 void arm_handle_psci_call(ARMCPU *cpu);
307 #endif
308
309 /**
310 * arm_clear_exclusive: clear the exclusive monitor
311 * @env: CPU env
312 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
313 */
314 static inline void arm_clear_exclusive(CPUARMState *env)
315 {
316 env->exclusive_addr = -1;
317 }
318
319 /**
320 * ARMFaultType: type of an ARM MMU fault
321 * This corresponds to the v8A pseudocode's Fault enumeration,
322 * with extensions for QEMU internal conditions.
323 */
324 typedef enum ARMFaultType {
325 ARMFault_None,
326 ARMFault_AccessFlag,
327 ARMFault_Alignment,
328 ARMFault_Background,
329 ARMFault_Domain,
330 ARMFault_Permission,
331 ARMFault_Translation,
332 ARMFault_AddressSize,
333 ARMFault_SyncExternal,
334 ARMFault_SyncExternalOnWalk,
335 ARMFault_SyncParity,
336 ARMFault_SyncParityOnWalk,
337 ARMFault_AsyncParity,
338 ARMFault_AsyncExternal,
339 ARMFault_Debug,
340 ARMFault_TLBConflict,
341 ARMFault_Lockdown,
342 ARMFault_Exclusive,
343 ARMFault_ICacheMaint,
344 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
345 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
346 } ARMFaultType;
347
348 /**
349 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
350 * @type: Type of fault
351 * @level: Table walk level (for translation, access flag and permission faults)
352 * @domain: Domain of the fault address (for non-LPAE CPUs only)
353 * @s2addr: Address that caused a fault at stage 2
354 * @stage2: True if we faulted at stage 2
355 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
356 * @s1ns: True if we faulted on a non-secure IPA while in secure state
357 * @ea: True if we should set the EA (external abort type) bit in syndrome
358 */
359 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
360 struct ARMMMUFaultInfo {
361 ARMFaultType type;
362 target_ulong s2addr;
363 int level;
364 int domain;
365 bool stage2;
366 bool s1ptw;
367 bool s1ns;
368 bool ea;
369 };
370
371 /**
372 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
373 * Compare pseudocode EncodeSDFSC(), though unlike that function
374 * we set up a whole FSR-format code including domain field and
375 * putting the high bit of the FSC into bit 10.
376 */
377 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
378 {
379 uint32_t fsc;
380
381 switch (fi->type) {
382 case ARMFault_None:
383 return 0;
384 case ARMFault_AccessFlag:
385 fsc = fi->level == 1 ? 0x3 : 0x6;
386 break;
387 case ARMFault_Alignment:
388 fsc = 0x1;
389 break;
390 case ARMFault_Permission:
391 fsc = fi->level == 1 ? 0xd : 0xf;
392 break;
393 case ARMFault_Domain:
394 fsc = fi->level == 1 ? 0x9 : 0xb;
395 break;
396 case ARMFault_Translation:
397 fsc = fi->level == 1 ? 0x5 : 0x7;
398 break;
399 case ARMFault_SyncExternal:
400 fsc = 0x8 | (fi->ea << 12);
401 break;
402 case ARMFault_SyncExternalOnWalk:
403 fsc = fi->level == 1 ? 0xc : 0xe;
404 fsc |= (fi->ea << 12);
405 break;
406 case ARMFault_SyncParity:
407 fsc = 0x409;
408 break;
409 case ARMFault_SyncParityOnWalk:
410 fsc = fi->level == 1 ? 0x40c : 0x40e;
411 break;
412 case ARMFault_AsyncParity:
413 fsc = 0x408;
414 break;
415 case ARMFault_AsyncExternal:
416 fsc = 0x406 | (fi->ea << 12);
417 break;
418 case ARMFault_Debug:
419 fsc = 0x2;
420 break;
421 case ARMFault_TLBConflict:
422 fsc = 0x400;
423 break;
424 case ARMFault_Lockdown:
425 fsc = 0x404;
426 break;
427 case ARMFault_Exclusive:
428 fsc = 0x405;
429 break;
430 case ARMFault_ICacheMaint:
431 fsc = 0x4;
432 break;
433 case ARMFault_Background:
434 fsc = 0x0;
435 break;
436 case ARMFault_QEMU_NSCExec:
437 fsc = M_FAKE_FSR_NSC_EXEC;
438 break;
439 case ARMFault_QEMU_SFault:
440 fsc = M_FAKE_FSR_SFAULT;
441 break;
442 default:
443 /* Other faults can't occur in a context that requires a
444 * short-format status code.
445 */
446 g_assert_not_reached();
447 }
448
449 fsc |= (fi->domain << 4);
450 return fsc;
451 }
452
453 /**
454 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
455 * Compare pseudocode EncodeLDFSC(), though unlike that function
456 * we fill in also the LPAE bit 9 of a DFSR format.
457 */
458 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
459 {
460 uint32_t fsc;
461
462 switch (fi->type) {
463 case ARMFault_None:
464 return 0;
465 case ARMFault_AddressSize:
466 assert(fi->level >= -1 && fi->level <= 3);
467 if (fi->level < 0) {
468 fsc = 0b101001;
469 } else {
470 fsc = fi->level;
471 }
472 break;
473 case ARMFault_AccessFlag:
474 assert(fi->level >= 0 && fi->level <= 3);
475 fsc = 0b001000 | fi->level;
476 break;
477 case ARMFault_Permission:
478 assert(fi->level >= 0 && fi->level <= 3);
479 fsc = 0b001100 | fi->level;
480 break;
481 case ARMFault_Translation:
482 assert(fi->level >= -1 && fi->level <= 3);
483 if (fi->level < 0) {
484 fsc = 0b101011;
485 } else {
486 fsc = 0b000100 | fi->level;
487 }
488 break;
489 case ARMFault_SyncExternal:
490 fsc = 0x10 | (fi->ea << 12);
491 break;
492 case ARMFault_SyncExternalOnWalk:
493 assert(fi->level >= -1 && fi->level <= 3);
494 if (fi->level < 0) {
495 fsc = 0b010011;
496 } else {
497 fsc = 0b010100 | fi->level;
498 }
499 fsc |= fi->ea << 12;
500 break;
501 case ARMFault_SyncParity:
502 fsc = 0x18;
503 break;
504 case ARMFault_SyncParityOnWalk:
505 assert(fi->level >= -1 && fi->level <= 3);
506 if (fi->level < 0) {
507 fsc = 0b011011;
508 } else {
509 fsc = 0b011100 | fi->level;
510 }
511 break;
512 case ARMFault_AsyncParity:
513 fsc = 0x19;
514 break;
515 case ARMFault_AsyncExternal:
516 fsc = 0x11 | (fi->ea << 12);
517 break;
518 case ARMFault_Alignment:
519 fsc = 0x21;
520 break;
521 case ARMFault_Debug:
522 fsc = 0x22;
523 break;
524 case ARMFault_TLBConflict:
525 fsc = 0x30;
526 break;
527 case ARMFault_Lockdown:
528 fsc = 0x34;
529 break;
530 case ARMFault_Exclusive:
531 fsc = 0x35;
532 break;
533 default:
534 /* Other faults can't occur in a context that requires a
535 * long-format status code.
536 */
537 g_assert_not_reached();
538 }
539
540 fsc |= 1 << 9;
541 return fsc;
542 }
543
544 static inline bool arm_extabort_type(MemTxResult result)
545 {
546 /* The EA bit in syndromes and fault status registers is an
547 * IMPDEF classification of external aborts. ARM implementations
548 * usually use this to indicate AXI bus Decode error (0) or
549 * Slave error (1); in QEMU we follow that.
550 */
551 return result != MEMTX_DECODE_ERROR;
552 }
553
554 #ifdef CONFIG_USER_ONLY
555 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
556 MMUAccessType access_type,
557 bool maperr, uintptr_t ra);
558 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
559 MMUAccessType access_type, uintptr_t ra);
560 #else
561 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
562 MMUAccessType access_type, int mmu_idx,
563 bool probe, uintptr_t retaddr);
564 #endif
565
566 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
567 {
568 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
569 }
570
571 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
572 {
573 if (arm_feature(env, ARM_FEATURE_M)) {
574 return mmu_idx | ARM_MMU_IDX_M;
575 } else {
576 return mmu_idx | ARM_MMU_IDX_A;
577 }
578 }
579
580 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
581 {
582 /* AArch64 is always a-profile. */
583 return mmu_idx | ARM_MMU_IDX_A;
584 }
585
586 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
587
588 /*
589 * Return the MMU index for a v7M CPU with all relevant information
590 * manually specified.
591 */
592 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
593 bool secstate, bool priv, bool negpri);
594
595 /*
596 * Return the MMU index for a v7M CPU in the specified security and
597 * privilege state.
598 */
599 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
600 bool secstate, bool priv);
601
602 /* Return the MMU index for a v7M CPU in the specified security state */
603 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
604
605 /* Return true if the translation regime is using LPAE format page tables */
606 bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
607
608 /*
609 * Return true if the stage 1 translation regime is using LPAE
610 * format page tables
611 */
612 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
613
614 /* Raise a data fault alignment exception for the specified virtual address */
615 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
616 MMUAccessType access_type,
617 int mmu_idx, uintptr_t retaddr);
618
619 /* arm_cpu_do_transaction_failed: handle a memory system error response
620 * (eg "no device/memory present at address") by raising an external abort
621 * exception
622 */
623 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
624 vaddr addr, unsigned size,
625 MMUAccessType access_type,
626 int mmu_idx, MemTxAttrs attrs,
627 MemTxResult response, uintptr_t retaddr);
628
629 /* Call any registered EL change hooks */
630 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
631 {
632 ARMELChangeHook *hook, *next;
633 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
634 hook->hook(cpu, hook->opaque);
635 }
636 }
637 static inline void arm_call_el_change_hook(ARMCPU *cpu)
638 {
639 ARMELChangeHook *hook, *next;
640 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
641 hook->hook(cpu, hook->opaque);
642 }
643 }
644
645 /* Return true if this address translation regime has two ranges. */
646 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
647 {
648 switch (mmu_idx) {
649 case ARMMMUIdx_Stage1_E0:
650 case ARMMMUIdx_Stage1_E1:
651 case ARMMMUIdx_Stage1_E1_PAN:
652 case ARMMMUIdx_E10_0:
653 case ARMMMUIdx_E10_1:
654 case ARMMMUIdx_E10_1_PAN:
655 case ARMMMUIdx_E20_0:
656 case ARMMMUIdx_E20_2:
657 case ARMMMUIdx_E20_2_PAN:
658 return true;
659 default:
660 return false;
661 }
662 }
663
664 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
665 {
666 switch (mmu_idx) {
667 case ARMMMUIdx_Stage1_E1_PAN:
668 case ARMMMUIdx_E10_1_PAN:
669 case ARMMMUIdx_E20_2_PAN:
670 return true;
671 default:
672 return false;
673 }
674 }
675
676 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
677 {
678 return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
679 }
680
681 /* Return the exception level which controls this address translation regime */
682 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
683 {
684 switch (mmu_idx) {
685 case ARMMMUIdx_E20_0:
686 case ARMMMUIdx_E20_2:
687 case ARMMMUIdx_E20_2_PAN:
688 case ARMMMUIdx_Stage2:
689 case ARMMMUIdx_Stage2_S:
690 case ARMMMUIdx_E2:
691 return 2;
692 case ARMMMUIdx_E3:
693 return 3;
694 case ARMMMUIdx_E10_0:
695 case ARMMMUIdx_Stage1_E0:
696 return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
697 case ARMMMUIdx_Stage1_E1:
698 case ARMMMUIdx_Stage1_E1_PAN:
699 case ARMMMUIdx_E10_1:
700 case ARMMMUIdx_E10_1_PAN:
701 case ARMMMUIdx_MPrivNegPri:
702 case ARMMMUIdx_MUserNegPri:
703 case ARMMMUIdx_MPriv:
704 case ARMMMUIdx_MUser:
705 case ARMMMUIdx_MSPrivNegPri:
706 case ARMMMUIdx_MSUserNegPri:
707 case ARMMMUIdx_MSPriv:
708 case ARMMMUIdx_MSUser:
709 return 1;
710 default:
711 g_assert_not_reached();
712 }
713 }
714
715 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
716 {
717 switch (mmu_idx) {
718 case ARMMMUIdx_E20_0:
719 case ARMMMUIdx_Stage1_E0:
720 case ARMMMUIdx_MUser:
721 case ARMMMUIdx_MSUser:
722 case ARMMMUIdx_MUserNegPri:
723 case ARMMMUIdx_MSUserNegPri:
724 return true;
725 default:
726 return false;
727 case ARMMMUIdx_E10_0:
728 case ARMMMUIdx_E10_1:
729 case ARMMMUIdx_E10_1_PAN:
730 g_assert_not_reached();
731 }
732 }
733
734 /* Return the SCTLR value which controls this address translation regime */
735 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
736 {
737 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
738 }
739
740 /*
741 * These are the fields in VTCR_EL2 which affect both the Secure stage 2
742 * and the Non-Secure stage 2 translation regimes (and hence which are
743 * not present in VSTCR_EL2).
744 */
745 #define VTCR_SHARED_FIELD_MASK \
746 (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
747 R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
748 R_VTCR_DS_MASK)
749
750 /* Return the value of the TCR controlling this translation regime */
751 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
752 {
753 if (mmu_idx == ARMMMUIdx_Stage2) {
754 return env->cp15.vtcr_el2;
755 }
756 if (mmu_idx == ARMMMUIdx_Stage2_S) {
757 /*
758 * Secure stage 2 shares fields from VTCR_EL2. We merge those
759 * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
760 * value so the callers don't need to special case this.
761 *
762 * If a future architecture change defines bits in VSTCR_EL2 that
763 * overlap with these VTCR_EL2 fields we may need to revisit this.
764 */
765 uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
766 v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
767 return v;
768 }
769 return env->cp15.tcr_el[regime_el(env, mmu_idx)];
770 }
771
772 /**
773 * arm_num_brps: Return number of implemented breakpoints.
774 * Note that the ID register BRPS field is "number of bps - 1",
775 * and we return the actual number of breakpoints.
776 */
777 static inline int arm_num_brps(ARMCPU *cpu)
778 {
779 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
780 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
781 } else {
782 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
783 }
784 }
785
786 /**
787 * arm_num_wrps: Return number of implemented watchpoints.
788 * Note that the ID register WRPS field is "number of wps - 1",
789 * and we return the actual number of watchpoints.
790 */
791 static inline int arm_num_wrps(ARMCPU *cpu)
792 {
793 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
794 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
795 } else {
796 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
797 }
798 }
799
800 /**
801 * arm_num_ctx_cmps: Return number of implemented context comparators.
802 * Note that the ID register CTX_CMPS field is "number of cmps - 1",
803 * and we return the actual number of comparators.
804 */
805 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
806 {
807 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
808 return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
809 } else {
810 return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
811 }
812 }
813
814 /**
815 * v7m_using_psp: Return true if using process stack pointer
816 * Return true if the CPU is currently using the process stack
817 * pointer, or false if it is using the main stack pointer.
818 */
819 static inline bool v7m_using_psp(CPUARMState *env)
820 {
821 /* Handler mode always uses the main stack; for thread mode
822 * the CONTROL.SPSEL bit determines the answer.
823 * Note that in v7M it is not possible to be in Handler mode with
824 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
825 */
826 return !arm_v7m_is_handler_mode(env) &&
827 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
828 }
829
830 /**
831 * v7m_sp_limit: Return SP limit for current CPU state
832 * Return the SP limit value for the current CPU security state
833 * and stack pointer.
834 */
835 static inline uint32_t v7m_sp_limit(CPUARMState *env)
836 {
837 if (v7m_using_psp(env)) {
838 return env->v7m.psplim[env->v7m.secure];
839 } else {
840 return env->v7m.msplim[env->v7m.secure];
841 }
842 }
843
844 /**
845 * v7m_cpacr_pass:
846 * Return true if the v7M CPACR permits access to the FPU for the specified
847 * security state and privilege level.
848 */
849 static inline bool v7m_cpacr_pass(CPUARMState *env,
850 bool is_secure, bool is_priv)
851 {
852 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
853 case 0:
854 case 2: /* UNPREDICTABLE: we treat like 0 */
855 return false;
856 case 1:
857 return is_priv;
858 case 3:
859 return true;
860 default:
861 g_assert_not_reached();
862 }
863 }
864
865 /**
866 * aarch32_mode_name(): Return name of the AArch32 CPU mode
867 * @psr: Program Status Register indicating CPU mode
868 *
869 * Returns, for debug logging purposes, a printable representation
870 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
871 * the low bits of the specified PSR.
872 */
873 static inline const char *aarch32_mode_name(uint32_t psr)
874 {
875 static const char cpu_mode_names[16][4] = {
876 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
877 "???", "???", "hyp", "und", "???", "???", "???", "sys"
878 };
879
880 return cpu_mode_names[psr & 0xf];
881 }
882
883 /**
884 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
885 *
886 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
887 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
888 * Must be called with the iothread lock held.
889 */
890 void arm_cpu_update_virq(ARMCPU *cpu);
891
892 /**
893 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
894 *
895 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
896 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
897 * Must be called with the iothread lock held.
898 */
899 void arm_cpu_update_vfiq(ARMCPU *cpu);
900
901 /**
902 * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
903 *
904 * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
905 * following a change to the HCR_EL2.VSE bit.
906 */
907 void arm_cpu_update_vserr(ARMCPU *cpu);
908
909 /**
910 * arm_mmu_idx_el:
911 * @env: The cpu environment
912 * @el: The EL to use.
913 *
914 * Return the full ARMMMUIdx for the translation regime for EL.
915 */
916 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
917
918 /**
919 * arm_mmu_idx:
920 * @env: The cpu environment
921 *
922 * Return the full ARMMMUIdx for the current translation regime.
923 */
924 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
925
926 /**
927 * arm_stage1_mmu_idx:
928 * @env: The cpu environment
929 *
930 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
931 */
932 #ifdef CONFIG_USER_ONLY
933 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
934 {
935 return ARMMMUIdx_Stage1_E0;
936 }
937 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
938 {
939 return ARMMMUIdx_Stage1_E0;
940 }
941 #else
942 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
943 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
944 #endif
945
946 /**
947 * arm_mmu_idx_is_stage1_of_2:
948 * @mmu_idx: The ARMMMUIdx to test
949 *
950 * Return true if @mmu_idx is a NOTLB mmu_idx that is the
951 * first stage of a two stage regime.
952 */
953 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
954 {
955 switch (mmu_idx) {
956 case ARMMMUIdx_Stage1_E0:
957 case ARMMMUIdx_Stage1_E1:
958 case ARMMMUIdx_Stage1_E1_PAN:
959 return true;
960 default:
961 return false;
962 }
963 }
964
965 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
966 const ARMISARegisters *id)
967 {
968 uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
969
970 if ((features >> ARM_FEATURE_V4T) & 1) {
971 valid |= CPSR_T;
972 }
973 if ((features >> ARM_FEATURE_V5) & 1) {
974 valid |= CPSR_Q; /* V5TE in reality*/
975 }
976 if ((features >> ARM_FEATURE_V6) & 1) {
977 valid |= CPSR_E | CPSR_GE;
978 }
979 if ((features >> ARM_FEATURE_THUMB2) & 1) {
980 valid |= CPSR_IT;
981 }
982 if (isar_feature_aa32_jazelle(id)) {
983 valid |= CPSR_J;
984 }
985 if (isar_feature_aa32_pan(id)) {
986 valid |= CPSR_PAN;
987 }
988 if (isar_feature_aa32_dit(id)) {
989 valid |= CPSR_DIT;
990 }
991 if (isar_feature_aa32_ssbs(id)) {
992 valid |= CPSR_SSBS;
993 }
994
995 return valid;
996 }
997
998 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
999 {
1000 uint32_t valid;
1001
1002 valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1003 if (isar_feature_aa64_bti(id)) {
1004 valid |= PSTATE_BTYPE;
1005 }
1006 if (isar_feature_aa64_pan(id)) {
1007 valid |= PSTATE_PAN;
1008 }
1009 if (isar_feature_aa64_uao(id)) {
1010 valid |= PSTATE_UAO;
1011 }
1012 if (isar_feature_aa64_dit(id)) {
1013 valid |= PSTATE_DIT;
1014 }
1015 if (isar_feature_aa64_ssbs(id)) {
1016 valid |= PSTATE_SSBS;
1017 }
1018 if (isar_feature_aa64_mte(id)) {
1019 valid |= PSTATE_TCO;
1020 }
1021
1022 return valid;
1023 }
1024
1025 /* Granule size (i.e. page size) */
1026 typedef enum ARMGranuleSize {
1027 /* Same order as TG0 encoding */
1028 Gran4K,
1029 Gran64K,
1030 Gran16K,
1031 GranInvalid,
1032 } ARMGranuleSize;
1033
1034 /**
1035 * arm_granule_bits: Return address size of the granule in bits
1036 *
1037 * Return the address size of the granule in bits. This corresponds
1038 * to the pseudocode TGxGranuleBits().
1039 */
1040 static inline int arm_granule_bits(ARMGranuleSize gran)
1041 {
1042 switch (gran) {
1043 case Gran64K:
1044 return 16;
1045 case Gran16K:
1046 return 14;
1047 case Gran4K:
1048 return 12;
1049 default:
1050 g_assert_not_reached();
1051 }
1052 }
1053
1054 /*
1055 * Parameters of a given virtual address, as extracted from the
1056 * translation control register (TCR) for a given regime.
1057 */
1058 typedef struct ARMVAParameters {
1059 unsigned tsz : 8;
1060 unsigned ps : 3;
1061 unsigned sh : 2;
1062 unsigned select : 1;
1063 bool tbi : 1;
1064 bool epd : 1;
1065 bool hpd : 1;
1066 bool tsz_oob : 1; /* tsz has been clamped to legal range */
1067 bool ds : 1;
1068 ARMGranuleSize gran : 2;
1069 } ARMVAParameters;
1070
1071 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1072 ARMMMUIdx mmu_idx, bool data);
1073
1074 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1075 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1076
1077 /* Determine if allocation tags are available. */
1078 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1079 uint64_t sctlr)
1080 {
1081 if (el < 3
1082 && arm_feature(env, ARM_FEATURE_EL3)
1083 && !(env->cp15.scr_el3 & SCR_ATA)) {
1084 return false;
1085 }
1086 if (el < 2 && arm_is_el2_enabled(env)) {
1087 uint64_t hcr = arm_hcr_el2_eff(env);
1088 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1089 return false;
1090 }
1091 }
1092 sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1093 return sctlr != 0;
1094 }
1095
1096 #ifndef CONFIG_USER_ONLY
1097
1098 /* Security attributes for an address, as returned by v8m_security_lookup. */
1099 typedef struct V8M_SAttributes {
1100 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1101 bool ns;
1102 bool nsc;
1103 uint8_t sregion;
1104 bool srvalid;
1105 uint8_t iregion;
1106 bool irvalid;
1107 } V8M_SAttributes;
1108
1109 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1110 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1111 bool secure, V8M_SAttributes *sattrs);
1112
1113 /* Cacheability and shareability attributes for a memory access */
1114 typedef struct ARMCacheAttrs {
1115 /*
1116 * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1117 * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1118 */
1119 unsigned int attrs:8;
1120 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1121 bool is_s2_format:1;
1122 bool guarded:1; /* guarded bit of the v8-64 PTE */
1123 } ARMCacheAttrs;
1124
1125 /* Fields that are valid upon success. */
1126 typedef struct GetPhysAddrResult {
1127 CPUTLBEntryFull f;
1128 ARMCacheAttrs cacheattrs;
1129 } GetPhysAddrResult;
1130
1131 /**
1132 * get_phys_addr_with_secure: get the physical address for a virtual address
1133 * @env: CPUARMState
1134 * @address: virtual address to get physical address for
1135 * @access_type: 0 for read, 1 for write, 2 for execute
1136 * @mmu_idx: MMU index indicating required translation regime
1137 * @is_secure: security state for the access
1138 * @result: set on translation success.
1139 * @fi: set to fault info if the translation fails
1140 *
1141 * Find the physical address corresponding to the given virtual address,
1142 * by doing a translation table walk on MMU based systems or using the
1143 * MPU state on MPU based systems.
1144 *
1145 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1146 * prot and page_size may not be filled in, and the populated fsr value provides
1147 * information on why the translation aborted, in the format of a
1148 * DFSR/IFSR fault register, with the following caveats:
1149 * * we honour the short vs long DFSR format differences.
1150 * * the WnR bit is never set (the caller must do this).
1151 * * for PSMAv5 based systems we don't bother to return a full FSR format
1152 * value.
1153 */
1154 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
1155 MMUAccessType access_type,
1156 ARMMMUIdx mmu_idx, bool is_secure,
1157 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1158 __attribute__((nonnull));
1159
1160 /**
1161 * get_phys_addr: get the physical address for a virtual address
1162 * @env: CPUARMState
1163 * @address: virtual address to get physical address for
1164 * @access_type: 0 for read, 1 for write, 2 for execute
1165 * @mmu_idx: MMU index indicating required translation regime
1166 * @result: set on translation success.
1167 * @fi: set to fault info if the translation fails
1168 *
1169 * Similarly, but use the security regime of @mmu_idx.
1170 */
1171 bool get_phys_addr(CPUARMState *env, target_ulong address,
1172 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1173 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1174 __attribute__((nonnull));
1175
1176 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1177 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1178 bool is_secure, GetPhysAddrResult *result,
1179 ARMMMUFaultInfo *fi, uint32_t *mregion);
1180
1181 void arm_log_exception(CPUState *cs);
1182
1183 #endif /* !CONFIG_USER_ONLY */
1184
1185 /*
1186 * The log2 of the words in the tag block, for GMID_EL1.BS.
1187 * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1188 */
1189 #define GMID_EL1_BS 6
1190
1191 /*
1192 * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1193 * the same simd_desc() encoding due to restrictions on size.
1194 * Use these instead.
1195 */
1196 FIELD(PREDDESC, OPRSZ, 0, 6)
1197 FIELD(PREDDESC, ESZ, 6, 2)
1198 FIELD(PREDDESC, DATA, 8, 24)
1199
1200 /*
1201 * The SVE simd_data field, for memory ops, contains either
1202 * rd (5 bits) or a shift count (2 bits).
1203 */
1204 #define SVE_MTEDESC_SHIFT 5
1205
1206 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1207 FIELD(MTEDESC, MIDX, 0, 4)
1208 FIELD(MTEDESC, TBI, 4, 2)
1209 FIELD(MTEDESC, TCMA, 6, 2)
1210 FIELD(MTEDESC, WRITE, 8, 1)
1211 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9) /* size - 1 */
1212
1213 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1214 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1215
1216 static inline int allocation_tag_from_addr(uint64_t ptr)
1217 {
1218 return extract64(ptr, 56, 4);
1219 }
1220
1221 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1222 {
1223 return deposit64(ptr, 56, 4, rtag);
1224 }
1225
1226 /* Return true if tbi bits mean that the access is checked. */
1227 static inline bool tbi_check(uint32_t desc, int bit55)
1228 {
1229 return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1230 }
1231
1232 /* Return true if tcma bits mean that the access is unchecked. */
1233 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1234 {
1235 /*
1236 * We had extracted bit55 and ptr_tag for other reasons, so fold
1237 * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1238 */
1239 bool match = ((ptr_tag + bit55) & 0xf) == 0;
1240 bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1241 return tcma && match;
1242 }
1243
1244 /*
1245 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
1246 * for the tag to be present in the FAR_ELx register. But for user-only
1247 * mode, we do not have a TLB with which to implement this, so we must
1248 * remove the top byte.
1249 */
1250 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1251 {
1252 #ifdef CONFIG_USER_ONLY
1253 /* TBI0 is known to be enabled, while TBI1 is disabled. */
1254 ptr &= sextract64(ptr, 0, 56);
1255 #endif
1256 return ptr;
1257 }
1258
1259 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1260 {
1261 #ifdef CONFIG_USER_ONLY
1262 int64_t clean_ptr = sextract64(ptr, 0, 56);
1263 if (tbi_check(desc, clean_ptr < 0)) {
1264 ptr = clean_ptr;
1265 }
1266 #endif
1267 return ptr;
1268 }
1269
1270 /* Values for M-profile PSR.ECI for MVE insns */
1271 enum MVEECIState {
1272 ECI_NONE = 0, /* No completed beats */
1273 ECI_A0 = 1, /* Completed: A0 */
1274 ECI_A0A1 = 2, /* Completed: A0, A1 */
1275 /* 3 is reserved */
1276 ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1277 ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1278 /* All other values reserved */
1279 };
1280
1281 /* Definitions for the PMU registers */
1282 #define PMCRN_MASK 0xf800
1283 #define PMCRN_SHIFT 11
1284 #define PMCRLP 0x80
1285 #define PMCRLC 0x40
1286 #define PMCRDP 0x20
1287 #define PMCRX 0x10
1288 #define PMCRD 0x8
1289 #define PMCRC 0x4
1290 #define PMCRP 0x2
1291 #define PMCRE 0x1
1292 /*
1293 * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1294 * which can be written as 1 to trigger behaviour but which stay RAZ).
1295 */
1296 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1297
1298 #define PMXEVTYPER_P 0x80000000
1299 #define PMXEVTYPER_U 0x40000000
1300 #define PMXEVTYPER_NSK 0x20000000
1301 #define PMXEVTYPER_NSU 0x10000000
1302 #define PMXEVTYPER_NSH 0x08000000
1303 #define PMXEVTYPER_M 0x04000000
1304 #define PMXEVTYPER_MT 0x02000000
1305 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1306 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1307 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1308 PMXEVTYPER_M | PMXEVTYPER_MT | \
1309 PMXEVTYPER_EVTCOUNT)
1310
1311 #define PMCCFILTR 0xf8000000
1312 #define PMCCFILTR_M PMXEVTYPER_M
1313 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1314
1315 static inline uint32_t pmu_num_counters(CPUARMState *env)
1316 {
1317 ARMCPU *cpu = env_archcpu(env);
1318
1319 return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1320 }
1321
1322 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1323 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1324 {
1325 return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1326 }
1327
1328 #ifdef TARGET_AARCH64
1329 int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg);
1330 int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg);
1331 int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg);
1332 int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg);
1333 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1334 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1335 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1336 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1337 #endif
1338
1339 #ifdef CONFIG_USER_ONLY
1340 static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { }
1341 #else
1342 void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu);
1343 #endif
1344
1345 bool el_is_in_host(CPUARMState *env, int el);
1346
1347 void aa32_max_features(ARMCPU *cpu);
1348 int exception_target_el(CPUARMState *env);
1349 bool arm_singlestep_active(CPUARMState *env);
1350 bool arm_generate_debug_exceptions(CPUARMState *env);
1351
1352 /* Add the cpreg definitions for debug related system registers */
1353 void define_debug_regs(ARMCPU *cpu);
1354
1355 /* Effective value of MDCR_EL2 */
1356 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1357 {
1358 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1359 }
1360
1361 /* Powers of 2 for sve_vq_map et al. */
1362 #define SVE_VQ_POW2_MAP \
1363 ((1 << (1 - 1)) | (1 << (2 - 1)) | \
1364 (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1365
1366 #endif