]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/kvm.c
KVM: remove kvm_arch_cpu_check_are_resettable
[mirror_qemu.git] / target / arm / kvm.c
1 /*
2 * ARM implementation of KVM hooks
3 *
4 * Copyright Christoffer Dall 2009-2010
5 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
6 * Copyright Alex Bennée 2014, Linaro
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2 or later.
9 * See the COPYING file in the top-level directory.
10 *
11 */
12
13 #include "qemu/osdep.h"
14 #include <sys/ioctl.h>
15
16 #include <linux/kvm.h>
17
18 #include "qemu/timer.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qom/object.h"
22 #include "qapi/error.h"
23 #include "sysemu/sysemu.h"
24 #include "sysemu/runstate.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/kvm_int.h"
27 #include "kvm_arm.h"
28 #include "cpu.h"
29 #include "trace.h"
30 #include "internals.h"
31 #include "hw/pci/pci.h"
32 #include "exec/memattrs.h"
33 #include "exec/address-spaces.h"
34 #include "exec/gdbstub.h"
35 #include "hw/boards.h"
36 #include "hw/irq.h"
37 #include "qapi/visitor.h"
38 #include "qemu/log.h"
39 #include "hw/acpi/acpi.h"
40 #include "hw/acpi/ghes.h"
41 #include "target/arm/gtimer.h"
42
43 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
44 KVM_CAP_LAST_INFO
45 };
46
47 static bool cap_has_mp_state;
48 static bool cap_has_inject_serror_esr;
49 static bool cap_has_inject_ext_dabt;
50
51 /**
52 * ARMHostCPUFeatures: information about the host CPU (identified
53 * by asking the host kernel)
54 */
55 typedef struct ARMHostCPUFeatures {
56 ARMISARegisters isar;
57 uint64_t features;
58 uint32_t target;
59 const char *dtb_compatible;
60 } ARMHostCPUFeatures;
61
62 static ARMHostCPUFeatures arm_host_cpu_features;
63
64 /**
65 * kvm_arm_vcpu_init:
66 * @cpu: ARMCPU
67 *
68 * Initialize (or reinitialize) the VCPU by invoking the
69 * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
70 * bitmask specified in the CPUState.
71 *
72 * Returns: 0 if success else < 0 error code
73 */
74 static int kvm_arm_vcpu_init(ARMCPU *cpu)
75 {
76 struct kvm_vcpu_init init;
77
78 init.target = cpu->kvm_target;
79 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
80
81 return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init);
82 }
83
84 /**
85 * kvm_arm_vcpu_finalize:
86 * @cpu: ARMCPU
87 * @feature: feature to finalize
88 *
89 * Finalizes the configuration of the specified VCPU feature by
90 * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
91 * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
92 * KVM's API documentation.
93 *
94 * Returns: 0 if success else < 0 error code
95 */
96 static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature)
97 {
98 return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature);
99 }
100
101 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
102 int *fdarray,
103 struct kvm_vcpu_init *init)
104 {
105 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
106 int max_vm_pa_size;
107
108 kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
109 if (kvmfd < 0) {
110 goto err;
111 }
112 max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
113 if (max_vm_pa_size < 0) {
114 max_vm_pa_size = 0;
115 }
116 do {
117 vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
118 } while (vmfd == -1 && errno == EINTR);
119 if (vmfd < 0) {
120 goto err;
121 }
122 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
123 if (cpufd < 0) {
124 goto err;
125 }
126
127 if (!init) {
128 /* Caller doesn't want the VCPU to be initialized, so skip it */
129 goto finish;
130 }
131
132 if (init->target == -1) {
133 struct kvm_vcpu_init preferred;
134
135 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
136 if (!ret) {
137 init->target = preferred.target;
138 }
139 }
140 if (ret >= 0) {
141 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
142 if (ret < 0) {
143 goto err;
144 }
145 } else if (cpus_to_try) {
146 /* Old kernel which doesn't know about the
147 * PREFERRED_TARGET ioctl: we know it will only support
148 * creating one kind of guest CPU which is its preferred
149 * CPU type.
150 */
151 struct kvm_vcpu_init try;
152
153 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
154 try.target = *cpus_to_try++;
155 memcpy(try.features, init->features, sizeof(init->features));
156 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
157 if (ret >= 0) {
158 break;
159 }
160 }
161 if (ret < 0) {
162 goto err;
163 }
164 init->target = try.target;
165 } else {
166 /* Treat a NULL cpus_to_try argument the same as an empty
167 * list, which means we will fail the call since this must
168 * be an old kernel which doesn't support PREFERRED_TARGET.
169 */
170 goto err;
171 }
172
173 finish:
174 fdarray[0] = kvmfd;
175 fdarray[1] = vmfd;
176 fdarray[2] = cpufd;
177
178 return true;
179
180 err:
181 if (cpufd >= 0) {
182 close(cpufd);
183 }
184 if (vmfd >= 0) {
185 close(vmfd);
186 }
187 if (kvmfd >= 0) {
188 close(kvmfd);
189 }
190
191 return false;
192 }
193
194 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
195 {
196 int i;
197
198 for (i = 2; i >= 0; i--) {
199 close(fdarray[i]);
200 }
201 }
202
203 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
204 {
205 uint64_t ret;
206 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
207 int err;
208
209 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
210 err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
211 if (err < 0) {
212 return -1;
213 }
214 *pret = ret;
215 return 0;
216 }
217
218 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
219 {
220 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
221
222 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
223 return ioctl(fd, KVM_GET_ONE_REG, &idreg);
224 }
225
226 static bool kvm_arm_pauth_supported(void)
227 {
228 return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
229 kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
230 }
231
232 static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
233 {
234 /* Identify the feature bits corresponding to the host CPU, and
235 * fill out the ARMHostCPUClass fields accordingly. To do this
236 * we have to create a scratch VM, create a single CPU inside it,
237 * and then query that CPU for the relevant ID registers.
238 */
239 int fdarray[3];
240 bool sve_supported;
241 bool pmu_supported = false;
242 uint64_t features = 0;
243 int err;
244
245 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
246 * we know these will only support creating one kind of guest CPU,
247 * which is its preferred CPU type. Fortunately these old kernels
248 * support only a very limited number of CPUs.
249 */
250 static const uint32_t cpus_to_try[] = {
251 KVM_ARM_TARGET_AEM_V8,
252 KVM_ARM_TARGET_FOUNDATION_V8,
253 KVM_ARM_TARGET_CORTEX_A57,
254 QEMU_KVM_ARM_TARGET_NONE
255 };
256 /*
257 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
258 * to use the preferred target
259 */
260 struct kvm_vcpu_init init = { .target = -1, };
261
262 /*
263 * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
264 * which is otherwise RAZ.
265 */
266 sve_supported = kvm_arm_sve_supported();
267 if (sve_supported) {
268 init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
269 }
270
271 /*
272 * Ask for Pointer Authentication if supported, so that we get
273 * the unsanitized field values for AA64ISAR1_EL1.
274 */
275 if (kvm_arm_pauth_supported()) {
276 init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
277 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
278 }
279
280 if (kvm_arm_pmu_supported()) {
281 init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
282 pmu_supported = true;
283 }
284
285 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
286 return false;
287 }
288
289 ahcf->target = init.target;
290 ahcf->dtb_compatible = "arm,arm-v8";
291
292 err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
293 ARM64_SYS_REG(3, 0, 0, 4, 0));
294 if (unlikely(err < 0)) {
295 /*
296 * Before v4.15, the kernel only exposed a limited number of system
297 * registers, not including any of the interesting AArch64 ID regs.
298 * For the most part we could leave these fields as zero with minimal
299 * effect, since this does not affect the values seen by the guest.
300 *
301 * However, it could cause problems down the line for QEMU,
302 * so provide a minimal v8.0 default.
303 *
304 * ??? Could read MIDR and use knowledge from cpu64.c.
305 * ??? Could map a page of memory into our temp guest and
306 * run the tiniest of hand-crafted kernels to extract
307 * the values seen by the guest.
308 * ??? Either of these sounds like too much effort just
309 * to work around running a modern host kernel.
310 */
311 ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
312 err = 0;
313 } else {
314 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
315 ARM64_SYS_REG(3, 0, 0, 4, 1));
316 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
317 ARM64_SYS_REG(3, 0, 0, 4, 5));
318 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
319 ARM64_SYS_REG(3, 0, 0, 5, 0));
320 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
321 ARM64_SYS_REG(3, 0, 0, 5, 1));
322 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
323 ARM64_SYS_REG(3, 0, 0, 6, 0));
324 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
325 ARM64_SYS_REG(3, 0, 0, 6, 1));
326 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2,
327 ARM64_SYS_REG(3, 0, 0, 6, 2));
328 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
329 ARM64_SYS_REG(3, 0, 0, 7, 0));
330 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
331 ARM64_SYS_REG(3, 0, 0, 7, 1));
332 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
333 ARM64_SYS_REG(3, 0, 0, 7, 2));
334
335 /*
336 * Note that if AArch32 support is not present in the host,
337 * the AArch32 sysregs are present to be read, but will
338 * return UNKNOWN values. This is neither better nor worse
339 * than skipping the reads and leaving 0, as we must avoid
340 * considering the values in every case.
341 */
342 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
343 ARM64_SYS_REG(3, 0, 0, 1, 0));
344 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
345 ARM64_SYS_REG(3, 0, 0, 1, 1));
346 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
347 ARM64_SYS_REG(3, 0, 0, 1, 2));
348 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
349 ARM64_SYS_REG(3, 0, 0, 1, 4));
350 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
351 ARM64_SYS_REG(3, 0, 0, 1, 5));
352 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
353 ARM64_SYS_REG(3, 0, 0, 1, 6));
354 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
355 ARM64_SYS_REG(3, 0, 0, 1, 7));
356 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
357 ARM64_SYS_REG(3, 0, 0, 2, 0));
358 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
359 ARM64_SYS_REG(3, 0, 0, 2, 1));
360 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
361 ARM64_SYS_REG(3, 0, 0, 2, 2));
362 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
363 ARM64_SYS_REG(3, 0, 0, 2, 3));
364 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
365 ARM64_SYS_REG(3, 0, 0, 2, 4));
366 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
367 ARM64_SYS_REG(3, 0, 0, 2, 5));
368 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
369 ARM64_SYS_REG(3, 0, 0, 2, 6));
370 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
371 ARM64_SYS_REG(3, 0, 0, 2, 7));
372
373 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
374 ARM64_SYS_REG(3, 0, 0, 3, 0));
375 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
376 ARM64_SYS_REG(3, 0, 0, 3, 1));
377 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
378 ARM64_SYS_REG(3, 0, 0, 3, 2));
379 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
380 ARM64_SYS_REG(3, 0, 0, 3, 4));
381 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
382 ARM64_SYS_REG(3, 0, 0, 3, 5));
383 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
384 ARM64_SYS_REG(3, 0, 0, 3, 6));
385
386 /*
387 * DBGDIDR is a bit complicated because the kernel doesn't
388 * provide an accessor for it in 64-bit mode, which is what this
389 * scratch VM is in, and there's no architected "64-bit sysreg
390 * which reads the same as the 32-bit register" the way there is
391 * for other ID registers. Instead we synthesize a value from the
392 * AArch64 ID_AA64DFR0, the same way the kernel code in
393 * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
394 * We only do this if the CPU supports AArch32 at EL1.
395 */
396 if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
397 int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
398 int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
399 int ctx_cmps =
400 FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
401 int version = 6; /* ARMv8 debug architecture */
402 bool has_el3 =
403 !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
404 uint32_t dbgdidr = 0;
405
406 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
407 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
408 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
409 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
410 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
411 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
412 dbgdidr |= (1 << 15); /* RES1 bit */
413 ahcf->isar.dbgdidr = dbgdidr;
414 }
415
416 if (pmu_supported) {
417 /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
418 err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
419 ARM64_SYS_REG(3, 3, 9, 12, 0));
420 }
421
422 if (sve_supported) {
423 /*
424 * There is a range of kernels between kernel commit 73433762fcae
425 * and f81cb2c3ad41 which have a bug where the kernel doesn't
426 * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
427 * enabled SVE support, which resulted in an error rather than RAZ.
428 * So only read the register if we set KVM_ARM_VCPU_SVE above.
429 */
430 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
431 ARM64_SYS_REG(3, 0, 0, 4, 4));
432 }
433 }
434
435 kvm_arm_destroy_scratch_host_vcpu(fdarray);
436
437 if (err < 0) {
438 return false;
439 }
440
441 /*
442 * We can assume any KVM supporting CPU is at least a v8
443 * with VFPv4+Neon; this in turn implies most of the other
444 * feature bits.
445 */
446 features |= 1ULL << ARM_FEATURE_V8;
447 features |= 1ULL << ARM_FEATURE_NEON;
448 features |= 1ULL << ARM_FEATURE_AARCH64;
449 features |= 1ULL << ARM_FEATURE_PMU;
450 features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
451
452 ahcf->features = features;
453
454 return true;
455 }
456
457 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
458 {
459 CPUARMState *env = &cpu->env;
460
461 if (!arm_host_cpu_features.dtb_compatible) {
462 if (!kvm_enabled() ||
463 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
464 /* We can't report this error yet, so flag that we need to
465 * in arm_cpu_realizefn().
466 */
467 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
468 cpu->host_cpu_probe_failed = true;
469 return;
470 }
471 }
472
473 cpu->kvm_target = arm_host_cpu_features.target;
474 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
475 cpu->isar = arm_host_cpu_features.isar;
476 env->features = arm_host_cpu_features.features;
477 }
478
479 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
480 {
481 return !ARM_CPU(obj)->kvm_adjvtime;
482 }
483
484 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
485 {
486 ARM_CPU(obj)->kvm_adjvtime = !value;
487 }
488
489 static bool kvm_steal_time_get(Object *obj, Error **errp)
490 {
491 return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
492 }
493
494 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
495 {
496 ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
497 }
498
499 /* KVM VCPU properties should be prefixed with "kvm-". */
500 void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
501 {
502 CPUARMState *env = &cpu->env;
503 Object *obj = OBJECT(cpu);
504
505 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
506 cpu->kvm_adjvtime = true;
507 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
508 kvm_no_adjvtime_set);
509 object_property_set_description(obj, "kvm-no-adjvtime",
510 "Set on to disable the adjustment of "
511 "the virtual counter. VM stopped time "
512 "will be counted.");
513 }
514
515 cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
516 object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
517 kvm_steal_time_set);
518 object_property_set_description(obj, "kvm-steal-time",
519 "Set off to disable KVM steal time.");
520 }
521
522 bool kvm_arm_pmu_supported(void)
523 {
524 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
525 }
526
527 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
528 {
529 KVMState *s = KVM_STATE(ms->accelerator);
530 int ret;
531
532 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
533 *fixed_ipa = ret <= 0;
534
535 return ret > 0 ? ret : 40;
536 }
537
538 int kvm_arch_get_default_type(MachineState *ms)
539 {
540 bool fixed_ipa;
541 int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
542 return fixed_ipa ? 0 : size;
543 }
544
545 int kvm_arch_init(MachineState *ms, KVMState *s)
546 {
547 int ret = 0;
548 /* For ARM interrupt delivery is always asynchronous,
549 * whether we are using an in-kernel VGIC or not.
550 */
551 kvm_async_interrupts_allowed = true;
552
553 /*
554 * PSCI wakes up secondary cores, so we always need to
555 * have vCPUs waiting in kernel space
556 */
557 kvm_halt_in_kernel_allowed = true;
558
559 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
560
561 /* Check whether user space can specify guest syndrome value */
562 cap_has_inject_serror_esr =
563 kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
564
565 if (ms->smp.cpus > 256 &&
566 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
567 error_report("Using more than 256 vcpus requires a host kernel "
568 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
569 ret = -EINVAL;
570 }
571
572 if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
573 if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
574 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
575 } else {
576 /* Set status for supporting the external dabt injection */
577 cap_has_inject_ext_dabt = kvm_check_extension(s,
578 KVM_CAP_ARM_INJECT_EXT_DABT);
579 }
580 }
581
582 if (s->kvm_eager_split_size) {
583 uint32_t sizes;
584
585 sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES);
586 if (!sizes) {
587 s->kvm_eager_split_size = 0;
588 warn_report("Eager Page Split support not available");
589 } else if (!(s->kvm_eager_split_size & sizes)) {
590 error_report("Eager Page Split requested chunk size not valid");
591 ret = -EINVAL;
592 } else {
593 ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0,
594 s->kvm_eager_split_size);
595 if (ret < 0) {
596 error_report("Enabling of Eager Page Split failed: %s",
597 strerror(-ret));
598 }
599 }
600 }
601
602 max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
603 hw_watchpoints = g_array_sized_new(true, true,
604 sizeof(HWWatchpoint), max_hw_wps);
605
606 max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
607 hw_breakpoints = g_array_sized_new(true, true,
608 sizeof(HWBreakpoint), max_hw_bps);
609
610 return ret;
611 }
612
613 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
614 {
615 return cpu->cpu_index;
616 }
617
618 /* We track all the KVM devices which need their memory addresses
619 * passing to the kernel in a list of these structures.
620 * When board init is complete we run through the list and
621 * tell the kernel the base addresses of the memory regions.
622 * We use a MemoryListener to track mapping and unmapping of
623 * the regions during board creation, so the board models don't
624 * need to do anything special for the KVM case.
625 *
626 * Sometimes the address must be OR'ed with some other fields
627 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
628 * @kda_addr_ormask aims at storing the value of those fields.
629 */
630 typedef struct KVMDevice {
631 struct kvm_arm_device_addr kda;
632 struct kvm_device_attr kdattr;
633 uint64_t kda_addr_ormask;
634 MemoryRegion *mr;
635 QSLIST_ENTRY(KVMDevice) entries;
636 int dev_fd;
637 } KVMDevice;
638
639 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
640
641 static void kvm_arm_devlistener_add(MemoryListener *listener,
642 MemoryRegionSection *section)
643 {
644 KVMDevice *kd;
645
646 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
647 if (section->mr == kd->mr) {
648 kd->kda.addr = section->offset_within_address_space;
649 }
650 }
651 }
652
653 static void kvm_arm_devlistener_del(MemoryListener *listener,
654 MemoryRegionSection *section)
655 {
656 KVMDevice *kd;
657
658 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
659 if (section->mr == kd->mr) {
660 kd->kda.addr = -1;
661 }
662 }
663 }
664
665 static MemoryListener devlistener = {
666 .name = "kvm-arm",
667 .region_add = kvm_arm_devlistener_add,
668 .region_del = kvm_arm_devlistener_del,
669 .priority = MEMORY_LISTENER_PRIORITY_MIN,
670 };
671
672 static void kvm_arm_set_device_addr(KVMDevice *kd)
673 {
674 struct kvm_device_attr *attr = &kd->kdattr;
675 int ret;
676
677 /* If the device control API is available and we have a device fd on the
678 * KVMDevice struct, let's use the newer API
679 */
680 if (kd->dev_fd >= 0) {
681 uint64_t addr = kd->kda.addr;
682
683 addr |= kd->kda_addr_ormask;
684 attr->addr = (uintptr_t)&addr;
685 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
686 } else {
687 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
688 }
689
690 if (ret < 0) {
691 fprintf(stderr, "Failed to set device address: %s\n",
692 strerror(-ret));
693 abort();
694 }
695 }
696
697 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
698 {
699 KVMDevice *kd, *tkd;
700
701 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
702 if (kd->kda.addr != -1) {
703 kvm_arm_set_device_addr(kd);
704 }
705 memory_region_unref(kd->mr);
706 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
707 g_free(kd);
708 }
709 memory_listener_unregister(&devlistener);
710 }
711
712 static Notifier notify = {
713 .notify = kvm_arm_machine_init_done,
714 };
715
716 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
717 uint64_t attr, int dev_fd, uint64_t addr_ormask)
718 {
719 KVMDevice *kd;
720
721 if (!kvm_irqchip_in_kernel()) {
722 return;
723 }
724
725 if (QSLIST_EMPTY(&kvm_devices_head)) {
726 memory_listener_register(&devlistener, &address_space_memory);
727 qemu_add_machine_init_done_notifier(&notify);
728 }
729 kd = g_new0(KVMDevice, 1);
730 kd->mr = mr;
731 kd->kda.id = devid;
732 kd->kda.addr = -1;
733 kd->kdattr.flags = 0;
734 kd->kdattr.group = group;
735 kd->kdattr.attr = attr;
736 kd->dev_fd = dev_fd;
737 kd->kda_addr_ormask = addr_ormask;
738 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
739 memory_region_ref(kd->mr);
740 }
741
742 static int compare_u64(const void *a, const void *b)
743 {
744 if (*(uint64_t *)a > *(uint64_t *)b) {
745 return 1;
746 }
747 if (*(uint64_t *)a < *(uint64_t *)b) {
748 return -1;
749 }
750 return 0;
751 }
752
753 /*
754 * cpreg_values are sorted in ascending order by KVM register ID
755 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
756 * the storage for a KVM register by ID with a binary search.
757 */
758 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
759 {
760 uint64_t *res;
761
762 res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
763 sizeof(uint64_t), compare_u64);
764 assert(res);
765
766 return &cpu->cpreg_values[res - cpu->cpreg_indexes];
767 }
768
769 /**
770 * kvm_arm_reg_syncs_via_cpreg_list:
771 * @regidx: KVM register index
772 *
773 * Return true if this KVM register should be synchronized via the
774 * cpreg list of arbitrary system registers, false if it is synchronized
775 * by hand using code in kvm_arch_get/put_registers().
776 */
777 static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
778 {
779 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
780 case KVM_REG_ARM_CORE:
781 case KVM_REG_ARM64_SVE:
782 return false;
783 default:
784 return true;
785 }
786 }
787
788 /**
789 * kvm_arm_init_cpreg_list:
790 * @cpu: ARMCPU
791 *
792 * Initialize the ARMCPU cpreg list according to the kernel's
793 * definition of what CPU registers it knows about (and throw away
794 * the previous TCG-created cpreg list).
795 *
796 * Returns: 0 if success, else < 0 error code
797 */
798 static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
799 {
800 struct kvm_reg_list rl;
801 struct kvm_reg_list *rlp;
802 int i, ret, arraylen;
803 CPUState *cs = CPU(cpu);
804
805 rl.n = 0;
806 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
807 if (ret != -E2BIG) {
808 return ret;
809 }
810 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
811 rlp->n = rl.n;
812 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
813 if (ret) {
814 goto out;
815 }
816 /* Sort the list we get back from the kernel, since cpreg_tuples
817 * must be in strictly ascending order.
818 */
819 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
820
821 for (i = 0, arraylen = 0; i < rlp->n; i++) {
822 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
823 continue;
824 }
825 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
826 case KVM_REG_SIZE_U32:
827 case KVM_REG_SIZE_U64:
828 break;
829 default:
830 fprintf(stderr, "Can't handle size of register in kernel list\n");
831 ret = -EINVAL;
832 goto out;
833 }
834
835 arraylen++;
836 }
837
838 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
839 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
840 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
841 arraylen);
842 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
843 arraylen);
844 cpu->cpreg_array_len = arraylen;
845 cpu->cpreg_vmstate_array_len = arraylen;
846
847 for (i = 0, arraylen = 0; i < rlp->n; i++) {
848 uint64_t regidx = rlp->reg[i];
849 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
850 continue;
851 }
852 cpu->cpreg_indexes[arraylen] = regidx;
853 arraylen++;
854 }
855 assert(cpu->cpreg_array_len == arraylen);
856
857 if (!write_kvmstate_to_list(cpu)) {
858 /* Shouldn't happen unless kernel is inconsistent about
859 * what registers exist.
860 */
861 fprintf(stderr, "Initial read of kernel register state failed\n");
862 ret = -EINVAL;
863 goto out;
864 }
865
866 out:
867 g_free(rlp);
868 return ret;
869 }
870
871 /**
872 * kvm_arm_cpreg_level:
873 * @regidx: KVM register index
874 *
875 * Return the level of this coprocessor/system register. Return value is
876 * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
877 */
878 static int kvm_arm_cpreg_level(uint64_t regidx)
879 {
880 /*
881 * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
882 * If a register should be written less often, you must add it here
883 * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
884 */
885 switch (regidx) {
886 case KVM_REG_ARM_TIMER_CNT:
887 case KVM_REG_ARM_PTIMER_CNT:
888 return KVM_PUT_FULL_STATE;
889 }
890 return KVM_PUT_RUNTIME_STATE;
891 }
892
893 bool write_kvmstate_to_list(ARMCPU *cpu)
894 {
895 CPUState *cs = CPU(cpu);
896 int i;
897 bool ok = true;
898
899 for (i = 0; i < cpu->cpreg_array_len; i++) {
900 uint64_t regidx = cpu->cpreg_indexes[i];
901 uint32_t v32;
902 int ret;
903
904 switch (regidx & KVM_REG_SIZE_MASK) {
905 case KVM_REG_SIZE_U32:
906 ret = kvm_get_one_reg(cs, regidx, &v32);
907 if (!ret) {
908 cpu->cpreg_values[i] = v32;
909 }
910 break;
911 case KVM_REG_SIZE_U64:
912 ret = kvm_get_one_reg(cs, regidx, cpu->cpreg_values + i);
913 break;
914 default:
915 g_assert_not_reached();
916 }
917 if (ret) {
918 ok = false;
919 }
920 }
921 return ok;
922 }
923
924 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
925 {
926 CPUState *cs = CPU(cpu);
927 int i;
928 bool ok = true;
929
930 for (i = 0; i < cpu->cpreg_array_len; i++) {
931 uint64_t regidx = cpu->cpreg_indexes[i];
932 uint32_t v32;
933 int ret;
934
935 if (kvm_arm_cpreg_level(regidx) > level) {
936 continue;
937 }
938
939 switch (regidx & KVM_REG_SIZE_MASK) {
940 case KVM_REG_SIZE_U32:
941 v32 = cpu->cpreg_values[i];
942 ret = kvm_set_one_reg(cs, regidx, &v32);
943 break;
944 case KVM_REG_SIZE_U64:
945 ret = kvm_set_one_reg(cs, regidx, cpu->cpreg_values + i);
946 break;
947 default:
948 g_assert_not_reached();
949 }
950 if (ret) {
951 /* We might fail for "unknown register" and also for
952 * "you tried to set a register which is constant with
953 * a different value from what it actually contains".
954 */
955 ok = false;
956 }
957 }
958 return ok;
959 }
960
961 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
962 {
963 /* KVM virtual time adjustment */
964 if (cpu->kvm_vtime_dirty) {
965 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
966 }
967 }
968
969 void kvm_arm_cpu_post_load(ARMCPU *cpu)
970 {
971 /* KVM virtual time adjustment */
972 if (cpu->kvm_adjvtime) {
973 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
974 cpu->kvm_vtime_dirty = true;
975 }
976 }
977
978 void kvm_arm_reset_vcpu(ARMCPU *cpu)
979 {
980 int ret;
981
982 /* Re-init VCPU so that all registers are set to
983 * their respective reset values.
984 */
985 ret = kvm_arm_vcpu_init(cpu);
986 if (ret < 0) {
987 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
988 abort();
989 }
990 if (!write_kvmstate_to_list(cpu)) {
991 fprintf(stderr, "write_kvmstate_to_list failed\n");
992 abort();
993 }
994 /*
995 * Sync the reset values also into the CPUState. This is necessary
996 * because the next thing we do will be a kvm_arch_put_registers()
997 * which will update the list values from the CPUState before copying
998 * the list values back to KVM. It's OK to ignore failure returns here
999 * for the same reason we do so in kvm_arch_get_registers().
1000 */
1001 write_list_to_cpustate(cpu);
1002 }
1003
1004 /*
1005 * Update KVM's MP_STATE based on what QEMU thinks it is
1006 */
1007 static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
1008 {
1009 if (cap_has_mp_state) {
1010 struct kvm_mp_state mp_state = {
1011 .mp_state = (cpu->power_state == PSCI_OFF) ?
1012 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
1013 };
1014 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1015 }
1016 return 0;
1017 }
1018
1019 /*
1020 * Sync the KVM MP_STATE into QEMU
1021 */
1022 static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
1023 {
1024 if (cap_has_mp_state) {
1025 struct kvm_mp_state mp_state;
1026 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
1027 if (ret) {
1028 return ret;
1029 }
1030 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
1031 PSCI_OFF : PSCI_ON;
1032 }
1033 return 0;
1034 }
1035
1036 /**
1037 * kvm_arm_get_virtual_time:
1038 * @cpu: ARMCPU
1039 *
1040 * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
1041 */
1042 static void kvm_arm_get_virtual_time(ARMCPU *cpu)
1043 {
1044 int ret;
1045
1046 if (cpu->kvm_vtime_dirty) {
1047 return;
1048 }
1049
1050 ret = kvm_get_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1051 if (ret) {
1052 error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
1053 abort();
1054 }
1055
1056 cpu->kvm_vtime_dirty = true;
1057 }
1058
1059 /**
1060 * kvm_arm_put_virtual_time:
1061 * @cpu: ARMCPU
1062 *
1063 * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
1064 */
1065 static void kvm_arm_put_virtual_time(ARMCPU *cpu)
1066 {
1067 int ret;
1068
1069 if (!cpu->kvm_vtime_dirty) {
1070 return;
1071 }
1072
1073 ret = kvm_set_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1074 if (ret) {
1075 error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
1076 abort();
1077 }
1078
1079 cpu->kvm_vtime_dirty = false;
1080 }
1081
1082 /**
1083 * kvm_put_vcpu_events:
1084 * @cpu: ARMCPU
1085 *
1086 * Put VCPU related state to kvm.
1087 *
1088 * Returns: 0 if success else < 0 error code
1089 */
1090 static int kvm_put_vcpu_events(ARMCPU *cpu)
1091 {
1092 CPUARMState *env = &cpu->env;
1093 struct kvm_vcpu_events events;
1094 int ret;
1095
1096 if (!kvm_has_vcpu_events()) {
1097 return 0;
1098 }
1099
1100 memset(&events, 0, sizeof(events));
1101 events.exception.serror_pending = env->serror.pending;
1102
1103 /* Inject SError to guest with specified syndrome if host kernel
1104 * supports it, otherwise inject SError without syndrome.
1105 */
1106 if (cap_has_inject_serror_esr) {
1107 events.exception.serror_has_esr = env->serror.has_esr;
1108 events.exception.serror_esr = env->serror.esr;
1109 }
1110
1111 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1112 if (ret) {
1113 error_report("failed to put vcpu events");
1114 }
1115
1116 return ret;
1117 }
1118
1119 /**
1120 * kvm_get_vcpu_events:
1121 * @cpu: ARMCPU
1122 *
1123 * Get VCPU related state from kvm.
1124 *
1125 * Returns: 0 if success else < 0 error code
1126 */
1127 static int kvm_get_vcpu_events(ARMCPU *cpu)
1128 {
1129 CPUARMState *env = &cpu->env;
1130 struct kvm_vcpu_events events;
1131 int ret;
1132
1133 if (!kvm_has_vcpu_events()) {
1134 return 0;
1135 }
1136
1137 memset(&events, 0, sizeof(events));
1138 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1139 if (ret) {
1140 error_report("failed to get vcpu events");
1141 return ret;
1142 }
1143
1144 env->serror.pending = events.exception.serror_pending;
1145 env->serror.has_esr = events.exception.serror_has_esr;
1146 env->serror.esr = events.exception.serror_esr;
1147
1148 return 0;
1149 }
1150
1151 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1152 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1153
1154 /*
1155 * ESR_EL1
1156 * ISS encoding
1157 * AARCH64: DFSC, bits [5:0]
1158 * AARCH32:
1159 * TTBCR.EAE == 0
1160 * FS[4] - DFSR[10]
1161 * FS[3:0] - DFSR[3:0]
1162 * TTBCR.EAE == 1
1163 * FS, bits [5:0]
1164 */
1165 #define ESR_DFSC(aarch64, lpae, v) \
1166 ((aarch64 || (lpae)) ? ((v) & 0x3F) \
1167 : (((v) >> 6) | ((v) & 0x1F)))
1168
1169 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1170 ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1171
1172 /**
1173 * kvm_arm_verify_ext_dabt_pending:
1174 * @cpu: ARMCPU
1175 *
1176 * Verify the fault status code wrt the Ext DABT injection
1177 *
1178 * Returns: true if the fault status code is as expected, false otherwise
1179 */
1180 static bool kvm_arm_verify_ext_dabt_pending(ARMCPU *cpu)
1181 {
1182 CPUState *cs = CPU(cpu);
1183 uint64_t dfsr_val;
1184
1185 if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
1186 CPUARMState *env = &cpu->env;
1187 int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
1188 int lpae = 0;
1189
1190 if (!aarch64_mode) {
1191 uint64_t ttbcr;
1192
1193 if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
1194 lpae = arm_feature(env, ARM_FEATURE_LPAE)
1195 && (ttbcr & TTBCR_EAE);
1196 }
1197 }
1198 /*
1199 * The verification here is based on the DFSC bits
1200 * of the ESR_EL1 reg only
1201 */
1202 return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
1203 ESR_DFSC_EXTABT(aarch64_mode, lpae));
1204 }
1205 return false;
1206 }
1207
1208 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1209 {
1210 ARMCPU *cpu = ARM_CPU(cs);
1211 CPUARMState *env = &cpu->env;
1212
1213 if (unlikely(env->ext_dabt_raised)) {
1214 /*
1215 * Verifying that the ext DABT has been properly injected,
1216 * otherwise risking indefinitely re-running the faulting instruction
1217 * Covering a very narrow case for kernels 5.5..5.5.4
1218 * when injected abort was misconfigured to be
1219 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
1220 */
1221 if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
1222 unlikely(!kvm_arm_verify_ext_dabt_pending(cpu))) {
1223
1224 error_report("Data abort exception with no valid ISS generated by "
1225 "guest memory access. KVM unable to emulate faulting "
1226 "instruction. Failed to inject an external data abort "
1227 "into the guest.");
1228 abort();
1229 }
1230 /* Clear the status */
1231 env->ext_dabt_raised = 0;
1232 }
1233 }
1234
1235 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1236 {
1237 ARMCPU *cpu;
1238 uint32_t switched_level;
1239
1240 if (kvm_irqchip_in_kernel()) {
1241 /*
1242 * We only need to sync timer states with user-space interrupt
1243 * controllers, so return early and save cycles if we don't.
1244 */
1245 return MEMTXATTRS_UNSPECIFIED;
1246 }
1247
1248 cpu = ARM_CPU(cs);
1249
1250 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
1251 if (run->s.regs.device_irq_level != cpu->device_irq_level) {
1252 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
1253
1254 bql_lock();
1255
1256 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
1257 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
1258 !!(run->s.regs.device_irq_level &
1259 KVM_ARM_DEV_EL1_VTIMER));
1260 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
1261 }
1262
1263 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
1264 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
1265 !!(run->s.regs.device_irq_level &
1266 KVM_ARM_DEV_EL1_PTIMER));
1267 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
1268 }
1269
1270 if (switched_level & KVM_ARM_DEV_PMU) {
1271 qemu_set_irq(cpu->pmu_interrupt,
1272 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
1273 switched_level &= ~KVM_ARM_DEV_PMU;
1274 }
1275
1276 if (switched_level) {
1277 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
1278 __func__, switched_level);
1279 }
1280
1281 /* We also mark unknown levels as processed to not waste cycles */
1282 cpu->device_irq_level = run->s.regs.device_irq_level;
1283 bql_unlock();
1284 }
1285
1286 return MEMTXATTRS_UNSPECIFIED;
1287 }
1288
1289 static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
1290 {
1291 ARMCPU *cpu = opaque;
1292
1293 if (running) {
1294 if (cpu->kvm_adjvtime) {
1295 kvm_arm_put_virtual_time(cpu);
1296 }
1297 } else {
1298 if (cpu->kvm_adjvtime) {
1299 kvm_arm_get_virtual_time(cpu);
1300 }
1301 }
1302 }
1303
1304 /**
1305 * kvm_arm_handle_dabt_nisv:
1306 * @cpu: ARMCPU
1307 * @esr_iss: ISS encoding (limited) for the exception from Data Abort
1308 * ISV bit set to '0b0' -> no valid instruction syndrome
1309 * @fault_ipa: faulting address for the synchronous data abort
1310 *
1311 * Returns: 0 if the exception has been handled, < 0 otherwise
1312 */
1313 static int kvm_arm_handle_dabt_nisv(ARMCPU *cpu, uint64_t esr_iss,
1314 uint64_t fault_ipa)
1315 {
1316 CPUARMState *env = &cpu->env;
1317 /*
1318 * Request KVM to inject the external data abort into the guest
1319 */
1320 if (cap_has_inject_ext_dabt) {
1321 struct kvm_vcpu_events events = { };
1322 /*
1323 * The external data abort event will be handled immediately by KVM
1324 * using the address fault that triggered the exit on given VCPU.
1325 * Requesting injection of the external data abort does not rely
1326 * on any other VCPU state. Therefore, in this particular case, the VCPU
1327 * synchronization can be exceptionally skipped.
1328 */
1329 events.exception.ext_dabt_pending = 1;
1330 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
1331 if (!kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events)) {
1332 env->ext_dabt_raised = 1;
1333 return 0;
1334 }
1335 } else {
1336 error_report("Data abort exception triggered by guest memory access "
1337 "at physical address: 0x" TARGET_FMT_lx,
1338 (target_ulong)fault_ipa);
1339 error_printf("KVM unable to emulate faulting instruction.\n");
1340 }
1341 return -1;
1342 }
1343
1344 /**
1345 * kvm_arm_handle_debug:
1346 * @cpu: ARMCPU
1347 * @debug_exit: debug part of the KVM exit structure
1348 *
1349 * Returns: TRUE if the debug exception was handled.
1350 *
1351 * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1352 *
1353 * To minimise translating between kernel and user-space the kernel
1354 * ABI just provides user-space with the full exception syndrome
1355 * register value to be decoded in QEMU.
1356 */
1357 static bool kvm_arm_handle_debug(ARMCPU *cpu,
1358 struct kvm_debug_exit_arch *debug_exit)
1359 {
1360 int hsr_ec = syn_get_ec(debug_exit->hsr);
1361 CPUState *cs = CPU(cpu);
1362 CPUARMState *env = &cpu->env;
1363
1364 /* Ensure PC is synchronised */
1365 kvm_cpu_synchronize_state(cs);
1366
1367 switch (hsr_ec) {
1368 case EC_SOFTWARESTEP:
1369 if (cs->singlestep_enabled) {
1370 return true;
1371 } else {
1372 /*
1373 * The kernel should have suppressed the guest's ability to
1374 * single step at this point so something has gone wrong.
1375 */
1376 error_report("%s: guest single-step while debugging unsupported"
1377 " (%"PRIx64", %"PRIx32")",
1378 __func__, env->pc, debug_exit->hsr);
1379 return false;
1380 }
1381 break;
1382 case EC_AA64_BKPT:
1383 if (kvm_find_sw_breakpoint(cs, env->pc)) {
1384 return true;
1385 }
1386 break;
1387 case EC_BREAKPOINT:
1388 if (find_hw_breakpoint(cs, env->pc)) {
1389 return true;
1390 }
1391 break;
1392 case EC_WATCHPOINT:
1393 {
1394 CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1395 if (wp) {
1396 cs->watchpoint_hit = wp;
1397 return true;
1398 }
1399 break;
1400 }
1401 default:
1402 error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1403 __func__, debug_exit->hsr, env->pc);
1404 }
1405
1406 /* If we are not handling the debug exception it must belong to
1407 * the guest. Let's re-use the existing TCG interrupt code to set
1408 * everything up properly.
1409 */
1410 cs->exception_index = EXCP_BKPT;
1411 env->exception.syndrome = debug_exit->hsr;
1412 env->exception.vaddress = debug_exit->far;
1413 env->exception.target_el = 1;
1414 bql_lock();
1415 arm_cpu_do_interrupt(cs);
1416 bql_unlock();
1417
1418 return false;
1419 }
1420
1421 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1422 {
1423 ARMCPU *cpu = ARM_CPU(cs);
1424 int ret = 0;
1425
1426 switch (run->exit_reason) {
1427 case KVM_EXIT_DEBUG:
1428 if (kvm_arm_handle_debug(cpu, &run->debug.arch)) {
1429 ret = EXCP_DEBUG;
1430 } /* otherwise return to guest */
1431 break;
1432 case KVM_EXIT_ARM_NISV:
1433 /* External DABT with no valid iss to decode */
1434 ret = kvm_arm_handle_dabt_nisv(cpu, run->arm_nisv.esr_iss,
1435 run->arm_nisv.fault_ipa);
1436 break;
1437 default:
1438 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
1439 __func__, run->exit_reason);
1440 break;
1441 }
1442 return ret;
1443 }
1444
1445 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
1446 {
1447 return true;
1448 }
1449
1450 int kvm_arch_process_async_events(CPUState *cs)
1451 {
1452 return 0;
1453 }
1454
1455 /**
1456 * kvm_arm_hw_debug_active:
1457 * @cpu: ARMCPU
1458 *
1459 * Return: TRUE if any hardware breakpoints in use.
1460 */
1461 static bool kvm_arm_hw_debug_active(ARMCPU *cpu)
1462 {
1463 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
1464 }
1465
1466 /**
1467 * kvm_arm_copy_hw_debug_data:
1468 * @ptr: kvm_guest_debug_arch structure
1469 *
1470 * Copy the architecture specific debug registers into the
1471 * kvm_guest_debug ioctl structure.
1472 */
1473 static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
1474 {
1475 int i;
1476 memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
1477
1478 for (i = 0; i < max_hw_wps; i++) {
1479 HWWatchpoint *wp = get_hw_wp(i);
1480 ptr->dbg_wcr[i] = wp->wcr;
1481 ptr->dbg_wvr[i] = wp->wvr;
1482 }
1483 for (i = 0; i < max_hw_bps; i++) {
1484 HWBreakpoint *bp = get_hw_bp(i);
1485 ptr->dbg_bcr[i] = bp->bcr;
1486 ptr->dbg_bvr[i] = bp->bvr;
1487 }
1488 }
1489
1490 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1491 {
1492 if (kvm_sw_breakpoints_active(cs)) {
1493 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1494 }
1495 if (kvm_arm_hw_debug_active(ARM_CPU(cs))) {
1496 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
1497 kvm_arm_copy_hw_debug_data(&dbg->arch);
1498 }
1499 }
1500
1501 void kvm_arch_init_irq_routing(KVMState *s)
1502 {
1503 }
1504
1505 int kvm_arch_irqchip_create(KVMState *s)
1506 {
1507 if (kvm_kernel_irqchip_split()) {
1508 error_report("-machine kernel_irqchip=split is not supported on ARM.");
1509 exit(1);
1510 }
1511
1512 /* If we can create the VGIC using the newer device control API, we
1513 * let the device do this when it initializes itself, otherwise we
1514 * fall back to the old API */
1515 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
1516 }
1517
1518 int kvm_arm_vgic_probe(void)
1519 {
1520 int val = 0;
1521
1522 if (kvm_create_device(kvm_state,
1523 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
1524 val |= KVM_ARM_VGIC_V3;
1525 }
1526 if (kvm_create_device(kvm_state,
1527 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
1528 val |= KVM_ARM_VGIC_V2;
1529 }
1530 return val;
1531 }
1532
1533 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
1534 {
1535 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
1536 int cpu_idx1 = cpu % 256;
1537 int cpu_idx2 = cpu / 256;
1538
1539 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
1540 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
1541
1542 return kvm_set_irq(kvm_state, kvm_irq, !!level);
1543 }
1544
1545 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1546 uint64_t address, uint32_t data, PCIDevice *dev)
1547 {
1548 AddressSpace *as = pci_device_iommu_address_space(dev);
1549 hwaddr xlat, len, doorbell_gpa;
1550 MemoryRegionSection mrs;
1551 MemoryRegion *mr;
1552
1553 if (as == &address_space_memory) {
1554 return 0;
1555 }
1556
1557 /* MSI doorbell address is translated by an IOMMU */
1558
1559 RCU_READ_LOCK_GUARD();
1560
1561 mr = address_space_translate(as, address, &xlat, &len, true,
1562 MEMTXATTRS_UNSPECIFIED);
1563
1564 if (!mr) {
1565 return 1;
1566 }
1567
1568 mrs = memory_region_find(mr, xlat, 1);
1569
1570 if (!mrs.mr) {
1571 return 1;
1572 }
1573
1574 doorbell_gpa = mrs.offset_within_address_space;
1575 memory_region_unref(mrs.mr);
1576
1577 route->u.msi.address_lo = doorbell_gpa;
1578 route->u.msi.address_hi = doorbell_gpa >> 32;
1579
1580 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1581
1582 return 0;
1583 }
1584
1585 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1586 int vector, PCIDevice *dev)
1587 {
1588 return 0;
1589 }
1590
1591 int kvm_arch_release_virq_post(int virq)
1592 {
1593 return 0;
1594 }
1595
1596 int kvm_arch_msi_data_to_gsi(uint32_t data)
1597 {
1598 return (data - 32) & 0xffff;
1599 }
1600
1601 static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v,
1602 const char *name, void *opaque,
1603 Error **errp)
1604 {
1605 KVMState *s = KVM_STATE(obj);
1606 uint64_t value = s->kvm_eager_split_size;
1607
1608 visit_type_size(v, name, &value, errp);
1609 }
1610
1611 static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v,
1612 const char *name, void *opaque,
1613 Error **errp)
1614 {
1615 KVMState *s = KVM_STATE(obj);
1616 uint64_t value;
1617
1618 if (s->fd != -1) {
1619 error_setg(errp, "Unable to set early-split-size after KVM has been initialized");
1620 return;
1621 }
1622
1623 if (!visit_type_size(v, name, &value, errp)) {
1624 return;
1625 }
1626
1627 if (value && !is_power_of_2(value)) {
1628 error_setg(errp, "early-split-size must be a power of two");
1629 return;
1630 }
1631
1632 s->kvm_eager_split_size = value;
1633 }
1634
1635 void kvm_arch_accel_class_init(ObjectClass *oc)
1636 {
1637 object_class_property_add(oc, "eager-split-size", "size",
1638 kvm_arch_get_eager_split_size,
1639 kvm_arch_set_eager_split_size, NULL, NULL);
1640
1641 object_class_property_set_description(oc, "eager-split-size",
1642 "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
1643 }
1644
1645 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1646 {
1647 switch (type) {
1648 case GDB_BREAKPOINT_HW:
1649 return insert_hw_breakpoint(addr);
1650 break;
1651 case GDB_WATCHPOINT_READ:
1652 case GDB_WATCHPOINT_WRITE:
1653 case GDB_WATCHPOINT_ACCESS:
1654 return insert_hw_watchpoint(addr, len, type);
1655 default:
1656 return -ENOSYS;
1657 }
1658 }
1659
1660 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1661 {
1662 switch (type) {
1663 case GDB_BREAKPOINT_HW:
1664 return delete_hw_breakpoint(addr);
1665 case GDB_WATCHPOINT_READ:
1666 case GDB_WATCHPOINT_WRITE:
1667 case GDB_WATCHPOINT_ACCESS:
1668 return delete_hw_watchpoint(addr, len, type);
1669 default:
1670 return -ENOSYS;
1671 }
1672 }
1673
1674 void kvm_arch_remove_all_hw_breakpoints(void)
1675 {
1676 if (cur_hw_wps > 0) {
1677 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
1678 }
1679 if (cur_hw_bps > 0) {
1680 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
1681 }
1682 }
1683
1684 static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr,
1685 const char *name)
1686 {
1687 int err;
1688
1689 err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr);
1690 if (err != 0) {
1691 error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
1692 return false;
1693 }
1694
1695 err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr);
1696 if (err != 0) {
1697 error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
1698 return false;
1699 }
1700
1701 return true;
1702 }
1703
1704 void kvm_arm_pmu_init(ARMCPU *cpu)
1705 {
1706 struct kvm_device_attr attr = {
1707 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1708 .attr = KVM_ARM_VCPU_PMU_V3_INIT,
1709 };
1710
1711 if (!cpu->has_pmu) {
1712 return;
1713 }
1714 if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1715 error_report("failed to init PMU");
1716 abort();
1717 }
1718 }
1719
1720 void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
1721 {
1722 struct kvm_device_attr attr = {
1723 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1724 .addr = (intptr_t)&irq,
1725 .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
1726 };
1727
1728 if (!cpu->has_pmu) {
1729 return;
1730 }
1731 if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1732 error_report("failed to set irq for PMU");
1733 abort();
1734 }
1735 }
1736
1737 void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
1738 {
1739 struct kvm_device_attr attr = {
1740 .group = KVM_ARM_VCPU_PVTIME_CTRL,
1741 .attr = KVM_ARM_VCPU_PVTIME_IPA,
1742 .addr = (uint64_t)&ipa,
1743 };
1744
1745 if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) {
1746 return;
1747 }
1748 if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) {
1749 error_report("failed to init PVTIME IPA");
1750 abort();
1751 }
1752 }
1753
1754 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
1755 {
1756 bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
1757
1758 if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
1759 if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1760 cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
1761 } else {
1762 cpu->kvm_steal_time = ON_OFF_AUTO_ON;
1763 }
1764 } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
1765 if (!has_steal_time) {
1766 error_setg(errp, "'kvm-steal-time' cannot be enabled "
1767 "on this host");
1768 return;
1769 } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1770 /*
1771 * DEN0057A chapter 2 says "This specification only covers
1772 * systems in which the Execution state of the hypervisor
1773 * as well as EL1 of virtual machines is AArch64.". And,
1774 * to ensure that, the smc/hvc calls are only specified as
1775 * smc64/hvc64.
1776 */
1777 error_setg(errp, "'kvm-steal-time' cannot be enabled "
1778 "for AArch32 guests");
1779 return;
1780 }
1781 }
1782 }
1783
1784 bool kvm_arm_aarch32_supported(void)
1785 {
1786 return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
1787 }
1788
1789 bool kvm_arm_sve_supported(void)
1790 {
1791 return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
1792 }
1793
1794 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
1795
1796 uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
1797 {
1798 /* Only call this function if kvm_arm_sve_supported() returns true. */
1799 static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
1800 static bool probed;
1801 uint32_t vq = 0;
1802 int i;
1803
1804 /*
1805 * KVM ensures all host CPUs support the same set of vector lengths.
1806 * So we only need to create the scratch VCPUs once and then cache
1807 * the results.
1808 */
1809 if (!probed) {
1810 struct kvm_vcpu_init init = {
1811 .target = -1,
1812 .features[0] = (1 << KVM_ARM_VCPU_SVE),
1813 };
1814 struct kvm_one_reg reg = {
1815 .id = KVM_REG_ARM64_SVE_VLS,
1816 .addr = (uint64_t)&vls[0],
1817 };
1818 int fdarray[3], ret;
1819
1820 probed = true;
1821
1822 if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
1823 error_report("failed to create scratch VCPU with SVE enabled");
1824 abort();
1825 }
1826 ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
1827 kvm_arm_destroy_scratch_host_vcpu(fdarray);
1828 if (ret) {
1829 error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
1830 strerror(errno));
1831 abort();
1832 }
1833
1834 for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
1835 if (vls[i]) {
1836 vq = 64 - clz64(vls[i]) + i * 64;
1837 break;
1838 }
1839 }
1840 if (vq > ARM_MAX_VQ) {
1841 warn_report("KVM supports vector lengths larger than "
1842 "QEMU can enable");
1843 vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1844 }
1845 }
1846
1847 return vls[0];
1848 }
1849
1850 static int kvm_arm_sve_set_vls(ARMCPU *cpu)
1851 {
1852 uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
1853
1854 assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
1855
1856 return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
1857 }
1858
1859 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
1860
1861 int kvm_arch_init_vcpu(CPUState *cs)
1862 {
1863 int ret;
1864 uint64_t mpidr;
1865 ARMCPU *cpu = ARM_CPU(cs);
1866 CPUARMState *env = &cpu->env;
1867 uint64_t psciver;
1868
1869 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
1870 !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
1871 error_report("KVM is not supported for this guest CPU type");
1872 return -EINVAL;
1873 }
1874
1875 qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cpu);
1876
1877 /* Determine init features for this CPU */
1878 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
1879 if (cs->start_powered_off) {
1880 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
1881 }
1882 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
1883 cpu->psci_version = QEMU_PSCI_VERSION_0_2;
1884 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
1885 }
1886 if (!arm_feature(env, ARM_FEATURE_AARCH64)) {
1887 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
1888 }
1889 if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
1890 cpu->has_pmu = false;
1891 }
1892 if (cpu->has_pmu) {
1893 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
1894 } else {
1895 env->features &= ~(1ULL << ARM_FEATURE_PMU);
1896 }
1897 if (cpu_isar_feature(aa64_sve, cpu)) {
1898 assert(kvm_arm_sve_supported());
1899 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
1900 }
1901 if (cpu_isar_feature(aa64_pauth, cpu)) {
1902 cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
1903 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
1904 }
1905
1906 /* Do KVM_ARM_VCPU_INIT ioctl */
1907 ret = kvm_arm_vcpu_init(cpu);
1908 if (ret) {
1909 return ret;
1910 }
1911
1912 if (cpu_isar_feature(aa64_sve, cpu)) {
1913 ret = kvm_arm_sve_set_vls(cpu);
1914 if (ret) {
1915 return ret;
1916 }
1917 ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE);
1918 if (ret) {
1919 return ret;
1920 }
1921 }
1922
1923 /*
1924 * KVM reports the exact PSCI version it is implementing via a
1925 * special sysreg. If it is present, use its contents to determine
1926 * what to report to the guest in the dtb (it is the PSCI version,
1927 * in the same 15-bits major 16-bits minor format that PSCI_VERSION
1928 * returns).
1929 */
1930 if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
1931 cpu->psci_version = psciver;
1932 }
1933
1934 /*
1935 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
1936 * Currently KVM has its own idea about MPIDR assignment, so we
1937 * override our defaults with what we get from KVM.
1938 */
1939 ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
1940 if (ret) {
1941 return ret;
1942 }
1943 cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
1944
1945 return kvm_arm_init_cpreg_list(cpu);
1946 }
1947
1948 int kvm_arch_destroy_vcpu(CPUState *cs)
1949 {
1950 return 0;
1951 }
1952
1953 /* Callers must hold the iothread mutex lock */
1954 static void kvm_inject_arm_sea(CPUState *c)
1955 {
1956 ARMCPU *cpu = ARM_CPU(c);
1957 CPUARMState *env = &cpu->env;
1958 uint32_t esr;
1959 bool same_el;
1960
1961 c->exception_index = EXCP_DATA_ABORT;
1962 env->exception.target_el = 1;
1963
1964 /*
1965 * Set the DFSC to synchronous external abort and set FnV to not valid,
1966 * this will tell guest the FAR_ELx is UNKNOWN for this abort.
1967 */
1968 same_el = arm_current_el(env) == env->exception.target_el;
1969 esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
1970
1971 env->exception.syndrome = esr;
1972
1973 arm_cpu_do_interrupt(c);
1974 }
1975
1976 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
1977 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1978
1979 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
1980 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1981
1982 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
1983 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1984
1985 static int kvm_arch_put_fpsimd(CPUState *cs)
1986 {
1987 CPUARMState *env = &ARM_CPU(cs)->env;
1988 int i, ret;
1989
1990 for (i = 0; i < 32; i++) {
1991 uint64_t *q = aa64_vfp_qreg(env, i);
1992 #if HOST_BIG_ENDIAN
1993 uint64_t fp_val[2] = { q[1], q[0] };
1994 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
1995 fp_val);
1996 #else
1997 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
1998 #endif
1999 if (ret) {
2000 return ret;
2001 }
2002 }
2003
2004 return 0;
2005 }
2006
2007 /*
2008 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2009 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2010 * code the slice index to zero for now as it's unlikely we'll need more than
2011 * one slice for quite some time.
2012 */
2013 static int kvm_arch_put_sve(CPUState *cs)
2014 {
2015 ARMCPU *cpu = ARM_CPU(cs);
2016 CPUARMState *env = &cpu->env;
2017 uint64_t tmp[ARM_MAX_VQ * 2];
2018 uint64_t *r;
2019 int n, ret;
2020
2021 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2022 r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
2023 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2024 if (ret) {
2025 return ret;
2026 }
2027 }
2028
2029 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2030 r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
2031 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2032 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2033 if (ret) {
2034 return ret;
2035 }
2036 }
2037
2038 r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
2039 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2040 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2041 if (ret) {
2042 return ret;
2043 }
2044
2045 return 0;
2046 }
2047
2048 int kvm_arch_put_registers(CPUState *cs, int level)
2049 {
2050 uint64_t val;
2051 uint32_t fpr;
2052 int i, ret;
2053 unsigned int el;
2054
2055 ARMCPU *cpu = ARM_CPU(cs);
2056 CPUARMState *env = &cpu->env;
2057
2058 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
2059 * AArch64 registers before pushing them out to 64-bit KVM.
2060 */
2061 if (!is_a64(env)) {
2062 aarch64_sync_32_to_64(env);
2063 }
2064
2065 for (i = 0; i < 31; i++) {
2066 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2067 &env->xregs[i]);
2068 if (ret) {
2069 return ret;
2070 }
2071 }
2072
2073 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2074 * QEMU side we keep the current SP in xregs[31] as well.
2075 */
2076 aarch64_save_sp(env, 1);
2077
2078 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2079 if (ret) {
2080 return ret;
2081 }
2082
2083 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2084 if (ret) {
2085 return ret;
2086 }
2087
2088 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
2089 if (is_a64(env)) {
2090 val = pstate_read(env);
2091 } else {
2092 val = cpsr_read(env);
2093 }
2094 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2095 if (ret) {
2096 return ret;
2097 }
2098
2099 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2100 if (ret) {
2101 return ret;
2102 }
2103
2104 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2105 if (ret) {
2106 return ret;
2107 }
2108
2109 /* Saved Program State Registers
2110 *
2111 * Before we restore from the banked_spsr[] array we need to
2112 * ensure that any modifications to env->spsr are correctly
2113 * reflected in the banks.
2114 */
2115 el = arm_current_el(env);
2116 if (el > 0 && !is_a64(env)) {
2117 i = bank_number(env->uncached_cpsr & CPSR_M);
2118 env->banked_spsr[i] = env->spsr;
2119 }
2120
2121 /* KVM 0-4 map to QEMU banks 1-5 */
2122 for (i = 0; i < KVM_NR_SPSR; i++) {
2123 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2124 &env->banked_spsr[i + 1]);
2125 if (ret) {
2126 return ret;
2127 }
2128 }
2129
2130 if (cpu_isar_feature(aa64_sve, cpu)) {
2131 ret = kvm_arch_put_sve(cs);
2132 } else {
2133 ret = kvm_arch_put_fpsimd(cs);
2134 }
2135 if (ret) {
2136 return ret;
2137 }
2138
2139 fpr = vfp_get_fpsr(env);
2140 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2141 if (ret) {
2142 return ret;
2143 }
2144
2145 fpr = vfp_get_fpcr(env);
2146 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2147 if (ret) {
2148 return ret;
2149 }
2150
2151 write_cpustate_to_list(cpu, true);
2152
2153 if (!write_list_to_kvmstate(cpu, level)) {
2154 return -EINVAL;
2155 }
2156
2157 /*
2158 * Setting VCPU events should be triggered after syncing the registers
2159 * to avoid overwriting potential changes made by KVM upon calling
2160 * KVM_SET_VCPU_EVENTS ioctl
2161 */
2162 ret = kvm_put_vcpu_events(cpu);
2163 if (ret) {
2164 return ret;
2165 }
2166
2167 return kvm_arm_sync_mpstate_to_kvm(cpu);
2168 }
2169
2170 static int kvm_arch_get_fpsimd(CPUState *cs)
2171 {
2172 CPUARMState *env = &ARM_CPU(cs)->env;
2173 int i, ret;
2174
2175 for (i = 0; i < 32; i++) {
2176 uint64_t *q = aa64_vfp_qreg(env, i);
2177 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2178 if (ret) {
2179 return ret;
2180 } else {
2181 #if HOST_BIG_ENDIAN
2182 uint64_t t;
2183 t = q[0], q[0] = q[1], q[1] = t;
2184 #endif
2185 }
2186 }
2187
2188 return 0;
2189 }
2190
2191 /*
2192 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2193 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2194 * code the slice index to zero for now as it's unlikely we'll need more than
2195 * one slice for quite some time.
2196 */
2197 static int kvm_arch_get_sve(CPUState *cs)
2198 {
2199 ARMCPU *cpu = ARM_CPU(cs);
2200 CPUARMState *env = &cpu->env;
2201 uint64_t *r;
2202 int n, ret;
2203
2204 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2205 r = &env->vfp.zregs[n].d[0];
2206 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2207 if (ret) {
2208 return ret;
2209 }
2210 sve_bswap64(r, r, cpu->sve_max_vq * 2);
2211 }
2212
2213 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2214 r = &env->vfp.pregs[n].p[0];
2215 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2216 if (ret) {
2217 return ret;
2218 }
2219 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2220 }
2221
2222 r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
2223 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2224 if (ret) {
2225 return ret;
2226 }
2227 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2228
2229 return 0;
2230 }
2231
2232 int kvm_arch_get_registers(CPUState *cs)
2233 {
2234 uint64_t val;
2235 unsigned int el;
2236 uint32_t fpr;
2237 int i, ret;
2238
2239 ARMCPU *cpu = ARM_CPU(cs);
2240 CPUARMState *env = &cpu->env;
2241
2242 for (i = 0; i < 31; i++) {
2243 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2244 &env->xregs[i]);
2245 if (ret) {
2246 return ret;
2247 }
2248 }
2249
2250 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2251 if (ret) {
2252 return ret;
2253 }
2254
2255 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2256 if (ret) {
2257 return ret;
2258 }
2259
2260 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2261 if (ret) {
2262 return ret;
2263 }
2264
2265 env->aarch64 = ((val & PSTATE_nRW) == 0);
2266 if (is_a64(env)) {
2267 pstate_write(env, val);
2268 } else {
2269 cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
2270 }
2271
2272 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2273 * QEMU side we keep the current SP in xregs[31] as well.
2274 */
2275 aarch64_restore_sp(env, 1);
2276
2277 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2278 if (ret) {
2279 return ret;
2280 }
2281
2282 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
2283 * incoming AArch64 regs received from 64-bit KVM.
2284 * We must perform this after all of the registers have been acquired from
2285 * the kernel.
2286 */
2287 if (!is_a64(env)) {
2288 aarch64_sync_64_to_32(env);
2289 }
2290
2291 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2292 if (ret) {
2293 return ret;
2294 }
2295
2296 /* Fetch the SPSR registers
2297 *
2298 * KVM SPSRs 0-4 map to QEMU banks 1-5
2299 */
2300 for (i = 0; i < KVM_NR_SPSR; i++) {
2301 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2302 &env->banked_spsr[i + 1]);
2303 if (ret) {
2304 return ret;
2305 }
2306 }
2307
2308 el = arm_current_el(env);
2309 if (el > 0 && !is_a64(env)) {
2310 i = bank_number(env->uncached_cpsr & CPSR_M);
2311 env->spsr = env->banked_spsr[i];
2312 }
2313
2314 if (cpu_isar_feature(aa64_sve, cpu)) {
2315 ret = kvm_arch_get_sve(cs);
2316 } else {
2317 ret = kvm_arch_get_fpsimd(cs);
2318 }
2319 if (ret) {
2320 return ret;
2321 }
2322
2323 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2324 if (ret) {
2325 return ret;
2326 }
2327 vfp_set_fpsr(env, fpr);
2328
2329 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2330 if (ret) {
2331 return ret;
2332 }
2333 vfp_set_fpcr(env, fpr);
2334
2335 ret = kvm_get_vcpu_events(cpu);
2336 if (ret) {
2337 return ret;
2338 }
2339
2340 if (!write_kvmstate_to_list(cpu)) {
2341 return -EINVAL;
2342 }
2343 /* Note that it's OK to have registers which aren't in CPUState,
2344 * so we can ignore a failure return here.
2345 */
2346 write_list_to_cpustate(cpu);
2347
2348 ret = kvm_arm_sync_mpstate_to_qemu(cpu);
2349
2350 /* TODO: other registers */
2351 return ret;
2352 }
2353
2354 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
2355 {
2356 ram_addr_t ram_addr;
2357 hwaddr paddr;
2358
2359 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
2360
2361 if (acpi_ghes_present() && addr) {
2362 ram_addr = qemu_ram_addr_from_host(addr);
2363 if (ram_addr != RAM_ADDR_INVALID &&
2364 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
2365 kvm_hwpoison_page_add(ram_addr);
2366 /*
2367 * If this is a BUS_MCEERR_AR, we know we have been called
2368 * synchronously from the vCPU thread, so we can easily
2369 * synchronize the state and inject an error.
2370 *
2371 * TODO: we currently don't tell the guest at all about
2372 * BUS_MCEERR_AO. In that case we might either be being
2373 * called synchronously from the vCPU thread, or a bit
2374 * later from the main thread, so doing the injection of
2375 * the error would be more complicated.
2376 */
2377 if (code == BUS_MCEERR_AR) {
2378 kvm_cpu_synchronize_state(c);
2379 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
2380 kvm_inject_arm_sea(c);
2381 } else {
2382 error_report("failed to record the error");
2383 abort();
2384 }
2385 }
2386 return;
2387 }
2388 if (code == BUS_MCEERR_AO) {
2389 error_report("Hardware memory error at addr %p for memory used by "
2390 "QEMU itself instead of guest system!", addr);
2391 }
2392 }
2393
2394 if (code == BUS_MCEERR_AR) {
2395 error_report("Hardware memory error!");
2396 exit(1);
2397 }
2398 }
2399
2400 /* C6.6.29 BRK instruction */
2401 static const uint32_t brk_insn = 0xd4200000;
2402
2403 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2404 {
2405 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2406 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2407 return -EINVAL;
2408 }
2409 return 0;
2410 }
2411
2412 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2413 {
2414 static uint32_t brk;
2415
2416 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
2417 brk != brk_insn ||
2418 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2419 return -EINVAL;
2420 }
2421 return 0;
2422 }