]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/kvm.c
target/ppc: introduce GEN_VSX_HELPER_R2 macro to fpu_helper.c
[mirror_qemu.git] / target / arm / kvm.c
1 /*
2 * ARM implementation of KVM hooks
3 *
4 * Copyright Christoffer Dall 2009-2010
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
8 *
9 */
10
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13
14 #include <linux/kvm.h>
15
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/kvm.h"
21 #include "sysemu/kvm_int.h"
22 #include "kvm_arm.h"
23 #include "cpu.h"
24 #include "trace.h"
25 #include "internals.h"
26 #include "hw/pci/pci.h"
27 #include "exec/memattrs.h"
28 #include "exec/address-spaces.h"
29 #include "hw/boards.h"
30 #include "qemu/log.h"
31
32 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
33 KVM_CAP_LAST_INFO
34 };
35
36 static bool cap_has_mp_state;
37 static bool cap_has_inject_serror_esr;
38
39 static ARMHostCPUFeatures arm_host_cpu_features;
40
41 int kvm_arm_vcpu_init(CPUState *cs)
42 {
43 ARMCPU *cpu = ARM_CPU(cs);
44 struct kvm_vcpu_init init;
45
46 init.target = cpu->kvm_target;
47 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
48
49 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
50 }
51
52 void kvm_arm_init_serror_injection(CPUState *cs)
53 {
54 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
55 KVM_CAP_ARM_INJECT_SERROR_ESR);
56 }
57
58 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
59 int *fdarray,
60 struct kvm_vcpu_init *init)
61 {
62 int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
63
64 kvmfd = qemu_open("/dev/kvm", O_RDWR);
65 if (kvmfd < 0) {
66 goto err;
67 }
68 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
69 if (vmfd < 0) {
70 goto err;
71 }
72 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
73 if (cpufd < 0) {
74 goto err;
75 }
76
77 if (!init) {
78 /* Caller doesn't want the VCPU to be initialized, so skip it */
79 goto finish;
80 }
81
82 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
83 if (ret >= 0) {
84 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
85 if (ret < 0) {
86 goto err;
87 }
88 } else if (cpus_to_try) {
89 /* Old kernel which doesn't know about the
90 * PREFERRED_TARGET ioctl: we know it will only support
91 * creating one kind of guest CPU which is its preferred
92 * CPU type.
93 */
94 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
95 init->target = *cpus_to_try++;
96 memset(init->features, 0, sizeof(init->features));
97 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
98 if (ret >= 0) {
99 break;
100 }
101 }
102 if (ret < 0) {
103 goto err;
104 }
105 } else {
106 /* Treat a NULL cpus_to_try argument the same as an empty
107 * list, which means we will fail the call since this must
108 * be an old kernel which doesn't support PREFERRED_TARGET.
109 */
110 goto err;
111 }
112
113 finish:
114 fdarray[0] = kvmfd;
115 fdarray[1] = vmfd;
116 fdarray[2] = cpufd;
117
118 return true;
119
120 err:
121 if (cpufd >= 0) {
122 close(cpufd);
123 }
124 if (vmfd >= 0) {
125 close(vmfd);
126 }
127 if (kvmfd >= 0) {
128 close(kvmfd);
129 }
130
131 return false;
132 }
133
134 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
135 {
136 int i;
137
138 for (i = 2; i >= 0; i--) {
139 close(fdarray[i]);
140 }
141 }
142
143 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
144 {
145 CPUARMState *env = &cpu->env;
146
147 if (!arm_host_cpu_features.dtb_compatible) {
148 if (!kvm_enabled() ||
149 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
150 /* We can't report this error yet, so flag that we need to
151 * in arm_cpu_realizefn().
152 */
153 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
154 cpu->host_cpu_probe_failed = true;
155 return;
156 }
157 }
158
159 cpu->kvm_target = arm_host_cpu_features.target;
160 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
161 cpu->isar = arm_host_cpu_features.isar;
162 env->features = arm_host_cpu_features.features;
163 }
164
165 int kvm_arm_get_max_vm_ipa_size(MachineState *ms)
166 {
167 KVMState *s = KVM_STATE(ms->accelerator);
168 int ret;
169
170 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
171 return ret > 0 ? ret : 40;
172 }
173
174 int kvm_arch_init(MachineState *ms, KVMState *s)
175 {
176 /* For ARM interrupt delivery is always asynchronous,
177 * whether we are using an in-kernel VGIC or not.
178 */
179 kvm_async_interrupts_allowed = true;
180
181 /*
182 * PSCI wakes up secondary cores, so we always need to
183 * have vCPUs waiting in kernel space
184 */
185 kvm_halt_in_kernel_allowed = true;
186
187 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
188
189 return 0;
190 }
191
192 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
193 {
194 return cpu->cpu_index;
195 }
196
197 /* We track all the KVM devices which need their memory addresses
198 * passing to the kernel in a list of these structures.
199 * When board init is complete we run through the list and
200 * tell the kernel the base addresses of the memory regions.
201 * We use a MemoryListener to track mapping and unmapping of
202 * the regions during board creation, so the board models don't
203 * need to do anything special for the KVM case.
204 *
205 * Sometimes the address must be OR'ed with some other fields
206 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
207 * @kda_addr_ormask aims at storing the value of those fields.
208 */
209 typedef struct KVMDevice {
210 struct kvm_arm_device_addr kda;
211 struct kvm_device_attr kdattr;
212 uint64_t kda_addr_ormask;
213 MemoryRegion *mr;
214 QSLIST_ENTRY(KVMDevice) entries;
215 int dev_fd;
216 } KVMDevice;
217
218 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
219
220 static void kvm_arm_devlistener_add(MemoryListener *listener,
221 MemoryRegionSection *section)
222 {
223 KVMDevice *kd;
224
225 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
226 if (section->mr == kd->mr) {
227 kd->kda.addr = section->offset_within_address_space;
228 }
229 }
230 }
231
232 static void kvm_arm_devlistener_del(MemoryListener *listener,
233 MemoryRegionSection *section)
234 {
235 KVMDevice *kd;
236
237 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
238 if (section->mr == kd->mr) {
239 kd->kda.addr = -1;
240 }
241 }
242 }
243
244 static MemoryListener devlistener = {
245 .region_add = kvm_arm_devlistener_add,
246 .region_del = kvm_arm_devlistener_del,
247 };
248
249 static void kvm_arm_set_device_addr(KVMDevice *kd)
250 {
251 struct kvm_device_attr *attr = &kd->kdattr;
252 int ret;
253
254 /* If the device control API is available and we have a device fd on the
255 * KVMDevice struct, let's use the newer API
256 */
257 if (kd->dev_fd >= 0) {
258 uint64_t addr = kd->kda.addr;
259
260 addr |= kd->kda_addr_ormask;
261 attr->addr = (uintptr_t)&addr;
262 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
263 } else {
264 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
265 }
266
267 if (ret < 0) {
268 fprintf(stderr, "Failed to set device address: %s\n",
269 strerror(-ret));
270 abort();
271 }
272 }
273
274 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
275 {
276 KVMDevice *kd, *tkd;
277
278 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
279 if (kd->kda.addr != -1) {
280 kvm_arm_set_device_addr(kd);
281 }
282 memory_region_unref(kd->mr);
283 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
284 g_free(kd);
285 }
286 memory_listener_unregister(&devlistener);
287 }
288
289 static Notifier notify = {
290 .notify = kvm_arm_machine_init_done,
291 };
292
293 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
294 uint64_t attr, int dev_fd, uint64_t addr_ormask)
295 {
296 KVMDevice *kd;
297
298 if (!kvm_irqchip_in_kernel()) {
299 return;
300 }
301
302 if (QSLIST_EMPTY(&kvm_devices_head)) {
303 memory_listener_register(&devlistener, &address_space_memory);
304 qemu_add_machine_init_done_notifier(&notify);
305 }
306 kd = g_new0(KVMDevice, 1);
307 kd->mr = mr;
308 kd->kda.id = devid;
309 kd->kda.addr = -1;
310 kd->kdattr.flags = 0;
311 kd->kdattr.group = group;
312 kd->kdattr.attr = attr;
313 kd->dev_fd = dev_fd;
314 kd->kda_addr_ormask = addr_ormask;
315 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
316 memory_region_ref(kd->mr);
317 }
318
319 static int compare_u64(const void *a, const void *b)
320 {
321 if (*(uint64_t *)a > *(uint64_t *)b) {
322 return 1;
323 }
324 if (*(uint64_t *)a < *(uint64_t *)b) {
325 return -1;
326 }
327 return 0;
328 }
329
330 /* Initialize the ARMCPU cpreg list according to the kernel's
331 * definition of what CPU registers it knows about (and throw away
332 * the previous TCG-created cpreg list).
333 */
334 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
335 {
336 struct kvm_reg_list rl;
337 struct kvm_reg_list *rlp;
338 int i, ret, arraylen;
339 CPUState *cs = CPU(cpu);
340
341 rl.n = 0;
342 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
343 if (ret != -E2BIG) {
344 return ret;
345 }
346 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
347 rlp->n = rl.n;
348 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
349 if (ret) {
350 goto out;
351 }
352 /* Sort the list we get back from the kernel, since cpreg_tuples
353 * must be in strictly ascending order.
354 */
355 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
356
357 for (i = 0, arraylen = 0; i < rlp->n; i++) {
358 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
359 continue;
360 }
361 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
362 case KVM_REG_SIZE_U32:
363 case KVM_REG_SIZE_U64:
364 break;
365 default:
366 fprintf(stderr, "Can't handle size of register in kernel list\n");
367 ret = -EINVAL;
368 goto out;
369 }
370
371 arraylen++;
372 }
373
374 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
375 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
376 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
377 arraylen);
378 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
379 arraylen);
380 cpu->cpreg_array_len = arraylen;
381 cpu->cpreg_vmstate_array_len = arraylen;
382
383 for (i = 0, arraylen = 0; i < rlp->n; i++) {
384 uint64_t regidx = rlp->reg[i];
385 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
386 continue;
387 }
388 cpu->cpreg_indexes[arraylen] = regidx;
389 arraylen++;
390 }
391 assert(cpu->cpreg_array_len == arraylen);
392
393 if (!write_kvmstate_to_list(cpu)) {
394 /* Shouldn't happen unless kernel is inconsistent about
395 * what registers exist.
396 */
397 fprintf(stderr, "Initial read of kernel register state failed\n");
398 ret = -EINVAL;
399 goto out;
400 }
401
402 out:
403 g_free(rlp);
404 return ret;
405 }
406
407 bool write_kvmstate_to_list(ARMCPU *cpu)
408 {
409 CPUState *cs = CPU(cpu);
410 int i;
411 bool ok = true;
412
413 for (i = 0; i < cpu->cpreg_array_len; i++) {
414 struct kvm_one_reg r;
415 uint64_t regidx = cpu->cpreg_indexes[i];
416 uint32_t v32;
417 int ret;
418
419 r.id = regidx;
420
421 switch (regidx & KVM_REG_SIZE_MASK) {
422 case KVM_REG_SIZE_U32:
423 r.addr = (uintptr_t)&v32;
424 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
425 if (!ret) {
426 cpu->cpreg_values[i] = v32;
427 }
428 break;
429 case KVM_REG_SIZE_U64:
430 r.addr = (uintptr_t)(cpu->cpreg_values + i);
431 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
432 break;
433 default:
434 abort();
435 }
436 if (ret) {
437 ok = false;
438 }
439 }
440 return ok;
441 }
442
443 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
444 {
445 CPUState *cs = CPU(cpu);
446 int i;
447 bool ok = true;
448
449 for (i = 0; i < cpu->cpreg_array_len; i++) {
450 struct kvm_one_reg r;
451 uint64_t regidx = cpu->cpreg_indexes[i];
452 uint32_t v32;
453 int ret;
454
455 if (kvm_arm_cpreg_level(regidx) > level) {
456 continue;
457 }
458
459 r.id = regidx;
460 switch (regidx & KVM_REG_SIZE_MASK) {
461 case KVM_REG_SIZE_U32:
462 v32 = cpu->cpreg_values[i];
463 r.addr = (uintptr_t)&v32;
464 break;
465 case KVM_REG_SIZE_U64:
466 r.addr = (uintptr_t)(cpu->cpreg_values + i);
467 break;
468 default:
469 abort();
470 }
471 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
472 if (ret) {
473 /* We might fail for "unknown register" and also for
474 * "you tried to set a register which is constant with
475 * a different value from what it actually contains".
476 */
477 ok = false;
478 }
479 }
480 return ok;
481 }
482
483 void kvm_arm_reset_vcpu(ARMCPU *cpu)
484 {
485 int ret;
486
487 /* Re-init VCPU so that all registers are set to
488 * their respective reset values.
489 */
490 ret = kvm_arm_vcpu_init(CPU(cpu));
491 if (ret < 0) {
492 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
493 abort();
494 }
495 if (!write_kvmstate_to_list(cpu)) {
496 fprintf(stderr, "write_kvmstate_to_list failed\n");
497 abort();
498 }
499 /*
500 * Sync the reset values also into the CPUState. This is necessary
501 * because the next thing we do will be a kvm_arch_put_registers()
502 * which will update the list values from the CPUState before copying
503 * the list values back to KVM. It's OK to ignore failure returns here
504 * for the same reason we do so in kvm_arch_get_registers().
505 */
506 write_list_to_cpustate(cpu);
507 }
508
509 /*
510 * Update KVM's MP_STATE based on what QEMU thinks it is
511 */
512 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
513 {
514 if (cap_has_mp_state) {
515 struct kvm_mp_state mp_state = {
516 .mp_state = (cpu->power_state == PSCI_OFF) ?
517 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
518 };
519 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
520 if (ret) {
521 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
522 __func__, ret, strerror(-ret));
523 return -1;
524 }
525 }
526
527 return 0;
528 }
529
530 /*
531 * Sync the KVM MP_STATE into QEMU
532 */
533 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
534 {
535 if (cap_has_mp_state) {
536 struct kvm_mp_state mp_state;
537 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
538 if (ret) {
539 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
540 __func__, ret, strerror(-ret));
541 abort();
542 }
543 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
544 PSCI_OFF : PSCI_ON;
545 }
546
547 return 0;
548 }
549
550 int kvm_put_vcpu_events(ARMCPU *cpu)
551 {
552 CPUARMState *env = &cpu->env;
553 struct kvm_vcpu_events events;
554 int ret;
555
556 if (!kvm_has_vcpu_events()) {
557 return 0;
558 }
559
560 memset(&events, 0, sizeof(events));
561 events.exception.serror_pending = env->serror.pending;
562
563 /* Inject SError to guest with specified syndrome if host kernel
564 * supports it, otherwise inject SError without syndrome.
565 */
566 if (cap_has_inject_serror_esr) {
567 events.exception.serror_has_esr = env->serror.has_esr;
568 events.exception.serror_esr = env->serror.esr;
569 }
570
571 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
572 if (ret) {
573 error_report("failed to put vcpu events");
574 }
575
576 return ret;
577 }
578
579 int kvm_get_vcpu_events(ARMCPU *cpu)
580 {
581 CPUARMState *env = &cpu->env;
582 struct kvm_vcpu_events events;
583 int ret;
584
585 if (!kvm_has_vcpu_events()) {
586 return 0;
587 }
588
589 memset(&events, 0, sizeof(events));
590 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
591 if (ret) {
592 error_report("failed to get vcpu events");
593 return ret;
594 }
595
596 env->serror.pending = events.exception.serror_pending;
597 env->serror.has_esr = events.exception.serror_has_esr;
598 env->serror.esr = events.exception.serror_esr;
599
600 return 0;
601 }
602
603 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
604 {
605 }
606
607 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
608 {
609 ARMCPU *cpu;
610 uint32_t switched_level;
611
612 if (kvm_irqchip_in_kernel()) {
613 /*
614 * We only need to sync timer states with user-space interrupt
615 * controllers, so return early and save cycles if we don't.
616 */
617 return MEMTXATTRS_UNSPECIFIED;
618 }
619
620 cpu = ARM_CPU(cs);
621
622 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
623 if (run->s.regs.device_irq_level != cpu->device_irq_level) {
624 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
625
626 qemu_mutex_lock_iothread();
627
628 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
629 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
630 !!(run->s.regs.device_irq_level &
631 KVM_ARM_DEV_EL1_VTIMER));
632 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
633 }
634
635 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
636 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
637 !!(run->s.regs.device_irq_level &
638 KVM_ARM_DEV_EL1_PTIMER));
639 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
640 }
641
642 if (switched_level & KVM_ARM_DEV_PMU) {
643 qemu_set_irq(cpu->pmu_interrupt,
644 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
645 switched_level &= ~KVM_ARM_DEV_PMU;
646 }
647
648 if (switched_level) {
649 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
650 __func__, switched_level);
651 }
652
653 /* We also mark unknown levels as processed to not waste cycles */
654 cpu->device_irq_level = run->s.regs.device_irq_level;
655 qemu_mutex_unlock_iothread();
656 }
657
658 return MEMTXATTRS_UNSPECIFIED;
659 }
660
661
662 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
663 {
664 int ret = 0;
665
666 switch (run->exit_reason) {
667 case KVM_EXIT_DEBUG:
668 if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
669 ret = EXCP_DEBUG;
670 } /* otherwise return to guest */
671 break;
672 default:
673 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
674 __func__, run->exit_reason);
675 break;
676 }
677 return ret;
678 }
679
680 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
681 {
682 return true;
683 }
684
685 int kvm_arch_process_async_events(CPUState *cs)
686 {
687 return 0;
688 }
689
690 /* The #ifdef protections are until 32bit headers are imported and can
691 * be removed once both 32 and 64 bit reach feature parity.
692 */
693 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
694 {
695 #ifdef KVM_GUESTDBG_USE_SW_BP
696 if (kvm_sw_breakpoints_active(cs)) {
697 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
698 }
699 #endif
700 #ifdef KVM_GUESTDBG_USE_HW
701 if (kvm_arm_hw_debug_active(cs)) {
702 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
703 kvm_arm_copy_hw_debug_data(&dbg->arch);
704 }
705 #endif
706 }
707
708 void kvm_arch_init_irq_routing(KVMState *s)
709 {
710 }
711
712 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
713 {
714 if (machine_kernel_irqchip_split(ms)) {
715 perror("-machine kernel_irqchip=split is not supported on ARM.");
716 exit(1);
717 }
718
719 /* If we can create the VGIC using the newer device control API, we
720 * let the device do this when it initializes itself, otherwise we
721 * fall back to the old API */
722 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
723 }
724
725 int kvm_arm_vgic_probe(void)
726 {
727 if (kvm_create_device(kvm_state,
728 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
729 return 3;
730 } else if (kvm_create_device(kvm_state,
731 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
732 return 2;
733 } else {
734 return 0;
735 }
736 }
737
738 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
739 uint64_t address, uint32_t data, PCIDevice *dev)
740 {
741 AddressSpace *as = pci_device_iommu_address_space(dev);
742 hwaddr xlat, len, doorbell_gpa;
743 MemoryRegionSection mrs;
744 MemoryRegion *mr;
745 int ret = 1;
746
747 if (as == &address_space_memory) {
748 return 0;
749 }
750
751 /* MSI doorbell address is translated by an IOMMU */
752
753 rcu_read_lock();
754 mr = address_space_translate(as, address, &xlat, &len, true,
755 MEMTXATTRS_UNSPECIFIED);
756 if (!mr) {
757 goto unlock;
758 }
759 mrs = memory_region_find(mr, xlat, 1);
760 if (!mrs.mr) {
761 goto unlock;
762 }
763
764 doorbell_gpa = mrs.offset_within_address_space;
765 memory_region_unref(mrs.mr);
766
767 route->u.msi.address_lo = doorbell_gpa;
768 route->u.msi.address_hi = doorbell_gpa >> 32;
769
770 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
771
772 ret = 0;
773
774 unlock:
775 rcu_read_unlock();
776 return ret;
777 }
778
779 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
780 int vector, PCIDevice *dev)
781 {
782 return 0;
783 }
784
785 int kvm_arch_release_virq_post(int virq)
786 {
787 return 0;
788 }
789
790 int kvm_arch_msi_data_to_gsi(uint32_t data)
791 {
792 return (data - 32) & 0xffff;
793 }