]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/kvm.c
target/arm/kvm: Have kvm_arm_vcpu_finalize take a ARMCPU argument
[mirror_qemu.git] / target / arm / kvm.c
1 /*
2 * ARM implementation of KVM hooks
3 *
4 * Copyright Christoffer Dall 2009-2010
5 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
6 * Copyright Alex Bennée 2014, Linaro
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2 or later.
9 * See the COPYING file in the top-level directory.
10 *
11 */
12
13 #include "qemu/osdep.h"
14 #include <sys/ioctl.h>
15
16 #include <linux/kvm.h>
17
18 #include "qemu/timer.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qom/object.h"
22 #include "qapi/error.h"
23 #include "sysemu/sysemu.h"
24 #include "sysemu/runstate.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/kvm_int.h"
27 #include "kvm_arm.h"
28 #include "cpu.h"
29 #include "trace.h"
30 #include "internals.h"
31 #include "hw/pci/pci.h"
32 #include "exec/memattrs.h"
33 #include "exec/address-spaces.h"
34 #include "exec/gdbstub.h"
35 #include "hw/boards.h"
36 #include "hw/irq.h"
37 #include "qapi/visitor.h"
38 #include "qemu/log.h"
39 #include "hw/acpi/acpi.h"
40 #include "hw/acpi/ghes.h"
41
42 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
43 KVM_CAP_LAST_INFO
44 };
45
46 static bool cap_has_mp_state;
47 static bool cap_has_inject_serror_esr;
48 static bool cap_has_inject_ext_dabt;
49
50 /**
51 * ARMHostCPUFeatures: information about the host CPU (identified
52 * by asking the host kernel)
53 */
54 typedef struct ARMHostCPUFeatures {
55 ARMISARegisters isar;
56 uint64_t features;
57 uint32_t target;
58 const char *dtb_compatible;
59 } ARMHostCPUFeatures;
60
61 static ARMHostCPUFeatures arm_host_cpu_features;
62
63 /**
64 * kvm_arm_vcpu_init:
65 * @cpu: ARMCPU
66 *
67 * Initialize (or reinitialize) the VCPU by invoking the
68 * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
69 * bitmask specified in the CPUState.
70 *
71 * Returns: 0 if success else < 0 error code
72 */
73 static int kvm_arm_vcpu_init(ARMCPU *cpu)
74 {
75 struct kvm_vcpu_init init;
76
77 init.target = cpu->kvm_target;
78 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
79
80 return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init);
81 }
82
83 /**
84 * kvm_arm_vcpu_finalize:
85 * @cpu: ARMCPU
86 * @feature: feature to finalize
87 *
88 * Finalizes the configuration of the specified VCPU feature by
89 * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
90 * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
91 * KVM's API documentation.
92 *
93 * Returns: 0 if success else < 0 error code
94 */
95 static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature)
96 {
97 return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature);
98 }
99
100 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
101 int *fdarray,
102 struct kvm_vcpu_init *init)
103 {
104 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
105 int max_vm_pa_size;
106
107 kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
108 if (kvmfd < 0) {
109 goto err;
110 }
111 max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
112 if (max_vm_pa_size < 0) {
113 max_vm_pa_size = 0;
114 }
115 do {
116 vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
117 } while (vmfd == -1 && errno == EINTR);
118 if (vmfd < 0) {
119 goto err;
120 }
121 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
122 if (cpufd < 0) {
123 goto err;
124 }
125
126 if (!init) {
127 /* Caller doesn't want the VCPU to be initialized, so skip it */
128 goto finish;
129 }
130
131 if (init->target == -1) {
132 struct kvm_vcpu_init preferred;
133
134 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
135 if (!ret) {
136 init->target = preferred.target;
137 }
138 }
139 if (ret >= 0) {
140 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
141 if (ret < 0) {
142 goto err;
143 }
144 } else if (cpus_to_try) {
145 /* Old kernel which doesn't know about the
146 * PREFERRED_TARGET ioctl: we know it will only support
147 * creating one kind of guest CPU which is its preferred
148 * CPU type.
149 */
150 struct kvm_vcpu_init try;
151
152 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
153 try.target = *cpus_to_try++;
154 memcpy(try.features, init->features, sizeof(init->features));
155 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
156 if (ret >= 0) {
157 break;
158 }
159 }
160 if (ret < 0) {
161 goto err;
162 }
163 init->target = try.target;
164 } else {
165 /* Treat a NULL cpus_to_try argument the same as an empty
166 * list, which means we will fail the call since this must
167 * be an old kernel which doesn't support PREFERRED_TARGET.
168 */
169 goto err;
170 }
171
172 finish:
173 fdarray[0] = kvmfd;
174 fdarray[1] = vmfd;
175 fdarray[2] = cpufd;
176
177 return true;
178
179 err:
180 if (cpufd >= 0) {
181 close(cpufd);
182 }
183 if (vmfd >= 0) {
184 close(vmfd);
185 }
186 if (kvmfd >= 0) {
187 close(kvmfd);
188 }
189
190 return false;
191 }
192
193 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
194 {
195 int i;
196
197 for (i = 2; i >= 0; i--) {
198 close(fdarray[i]);
199 }
200 }
201
202 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
203 {
204 uint64_t ret;
205 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
206 int err;
207
208 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
209 err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
210 if (err < 0) {
211 return -1;
212 }
213 *pret = ret;
214 return 0;
215 }
216
217 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
218 {
219 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
220
221 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
222 return ioctl(fd, KVM_GET_ONE_REG, &idreg);
223 }
224
225 static bool kvm_arm_pauth_supported(void)
226 {
227 return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
228 kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
229 }
230
231 static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
232 {
233 /* Identify the feature bits corresponding to the host CPU, and
234 * fill out the ARMHostCPUClass fields accordingly. To do this
235 * we have to create a scratch VM, create a single CPU inside it,
236 * and then query that CPU for the relevant ID registers.
237 */
238 int fdarray[3];
239 bool sve_supported;
240 bool pmu_supported = false;
241 uint64_t features = 0;
242 int err;
243
244 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
245 * we know these will only support creating one kind of guest CPU,
246 * which is its preferred CPU type. Fortunately these old kernels
247 * support only a very limited number of CPUs.
248 */
249 static const uint32_t cpus_to_try[] = {
250 KVM_ARM_TARGET_AEM_V8,
251 KVM_ARM_TARGET_FOUNDATION_V8,
252 KVM_ARM_TARGET_CORTEX_A57,
253 QEMU_KVM_ARM_TARGET_NONE
254 };
255 /*
256 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
257 * to use the preferred target
258 */
259 struct kvm_vcpu_init init = { .target = -1, };
260
261 /*
262 * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
263 * which is otherwise RAZ.
264 */
265 sve_supported = kvm_arm_sve_supported();
266 if (sve_supported) {
267 init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
268 }
269
270 /*
271 * Ask for Pointer Authentication if supported, so that we get
272 * the unsanitized field values for AA64ISAR1_EL1.
273 */
274 if (kvm_arm_pauth_supported()) {
275 init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
276 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
277 }
278
279 if (kvm_arm_pmu_supported()) {
280 init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
281 pmu_supported = true;
282 }
283
284 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
285 return false;
286 }
287
288 ahcf->target = init.target;
289 ahcf->dtb_compatible = "arm,arm-v8";
290
291 err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
292 ARM64_SYS_REG(3, 0, 0, 4, 0));
293 if (unlikely(err < 0)) {
294 /*
295 * Before v4.15, the kernel only exposed a limited number of system
296 * registers, not including any of the interesting AArch64 ID regs.
297 * For the most part we could leave these fields as zero with minimal
298 * effect, since this does not affect the values seen by the guest.
299 *
300 * However, it could cause problems down the line for QEMU,
301 * so provide a minimal v8.0 default.
302 *
303 * ??? Could read MIDR and use knowledge from cpu64.c.
304 * ??? Could map a page of memory into our temp guest and
305 * run the tiniest of hand-crafted kernels to extract
306 * the values seen by the guest.
307 * ??? Either of these sounds like too much effort just
308 * to work around running a modern host kernel.
309 */
310 ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
311 err = 0;
312 } else {
313 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
314 ARM64_SYS_REG(3, 0, 0, 4, 1));
315 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
316 ARM64_SYS_REG(3, 0, 0, 4, 5));
317 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
318 ARM64_SYS_REG(3, 0, 0, 5, 0));
319 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
320 ARM64_SYS_REG(3, 0, 0, 5, 1));
321 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
322 ARM64_SYS_REG(3, 0, 0, 6, 0));
323 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
324 ARM64_SYS_REG(3, 0, 0, 6, 1));
325 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2,
326 ARM64_SYS_REG(3, 0, 0, 6, 2));
327 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
328 ARM64_SYS_REG(3, 0, 0, 7, 0));
329 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
330 ARM64_SYS_REG(3, 0, 0, 7, 1));
331 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
332 ARM64_SYS_REG(3, 0, 0, 7, 2));
333
334 /*
335 * Note that if AArch32 support is not present in the host,
336 * the AArch32 sysregs are present to be read, but will
337 * return UNKNOWN values. This is neither better nor worse
338 * than skipping the reads and leaving 0, as we must avoid
339 * considering the values in every case.
340 */
341 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
342 ARM64_SYS_REG(3, 0, 0, 1, 0));
343 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
344 ARM64_SYS_REG(3, 0, 0, 1, 1));
345 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
346 ARM64_SYS_REG(3, 0, 0, 1, 2));
347 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
348 ARM64_SYS_REG(3, 0, 0, 1, 4));
349 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
350 ARM64_SYS_REG(3, 0, 0, 1, 5));
351 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
352 ARM64_SYS_REG(3, 0, 0, 1, 6));
353 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
354 ARM64_SYS_REG(3, 0, 0, 1, 7));
355 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
356 ARM64_SYS_REG(3, 0, 0, 2, 0));
357 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
358 ARM64_SYS_REG(3, 0, 0, 2, 1));
359 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
360 ARM64_SYS_REG(3, 0, 0, 2, 2));
361 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
362 ARM64_SYS_REG(3, 0, 0, 2, 3));
363 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
364 ARM64_SYS_REG(3, 0, 0, 2, 4));
365 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
366 ARM64_SYS_REG(3, 0, 0, 2, 5));
367 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
368 ARM64_SYS_REG(3, 0, 0, 2, 6));
369 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
370 ARM64_SYS_REG(3, 0, 0, 2, 7));
371
372 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
373 ARM64_SYS_REG(3, 0, 0, 3, 0));
374 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
375 ARM64_SYS_REG(3, 0, 0, 3, 1));
376 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
377 ARM64_SYS_REG(3, 0, 0, 3, 2));
378 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
379 ARM64_SYS_REG(3, 0, 0, 3, 4));
380 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
381 ARM64_SYS_REG(3, 0, 0, 3, 5));
382 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
383 ARM64_SYS_REG(3, 0, 0, 3, 6));
384
385 /*
386 * DBGDIDR is a bit complicated because the kernel doesn't
387 * provide an accessor for it in 64-bit mode, which is what this
388 * scratch VM is in, and there's no architected "64-bit sysreg
389 * which reads the same as the 32-bit register" the way there is
390 * for other ID registers. Instead we synthesize a value from the
391 * AArch64 ID_AA64DFR0, the same way the kernel code in
392 * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
393 * We only do this if the CPU supports AArch32 at EL1.
394 */
395 if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
396 int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
397 int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
398 int ctx_cmps =
399 FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
400 int version = 6; /* ARMv8 debug architecture */
401 bool has_el3 =
402 !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
403 uint32_t dbgdidr = 0;
404
405 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
406 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
407 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
408 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
409 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
410 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
411 dbgdidr |= (1 << 15); /* RES1 bit */
412 ahcf->isar.dbgdidr = dbgdidr;
413 }
414
415 if (pmu_supported) {
416 /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
417 err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
418 ARM64_SYS_REG(3, 3, 9, 12, 0));
419 }
420
421 if (sve_supported) {
422 /*
423 * There is a range of kernels between kernel commit 73433762fcae
424 * and f81cb2c3ad41 which have a bug where the kernel doesn't
425 * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
426 * enabled SVE support, which resulted in an error rather than RAZ.
427 * So only read the register if we set KVM_ARM_VCPU_SVE above.
428 */
429 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
430 ARM64_SYS_REG(3, 0, 0, 4, 4));
431 }
432 }
433
434 kvm_arm_destroy_scratch_host_vcpu(fdarray);
435
436 if (err < 0) {
437 return false;
438 }
439
440 /*
441 * We can assume any KVM supporting CPU is at least a v8
442 * with VFPv4+Neon; this in turn implies most of the other
443 * feature bits.
444 */
445 features |= 1ULL << ARM_FEATURE_V8;
446 features |= 1ULL << ARM_FEATURE_NEON;
447 features |= 1ULL << ARM_FEATURE_AARCH64;
448 features |= 1ULL << ARM_FEATURE_PMU;
449 features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
450
451 ahcf->features = features;
452
453 return true;
454 }
455
456 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
457 {
458 CPUARMState *env = &cpu->env;
459
460 if (!arm_host_cpu_features.dtb_compatible) {
461 if (!kvm_enabled() ||
462 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
463 /* We can't report this error yet, so flag that we need to
464 * in arm_cpu_realizefn().
465 */
466 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
467 cpu->host_cpu_probe_failed = true;
468 return;
469 }
470 }
471
472 cpu->kvm_target = arm_host_cpu_features.target;
473 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
474 cpu->isar = arm_host_cpu_features.isar;
475 env->features = arm_host_cpu_features.features;
476 }
477
478 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
479 {
480 return !ARM_CPU(obj)->kvm_adjvtime;
481 }
482
483 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
484 {
485 ARM_CPU(obj)->kvm_adjvtime = !value;
486 }
487
488 static bool kvm_steal_time_get(Object *obj, Error **errp)
489 {
490 return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
491 }
492
493 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
494 {
495 ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
496 }
497
498 /* KVM VCPU properties should be prefixed with "kvm-". */
499 void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
500 {
501 CPUARMState *env = &cpu->env;
502 Object *obj = OBJECT(cpu);
503
504 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
505 cpu->kvm_adjvtime = true;
506 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
507 kvm_no_adjvtime_set);
508 object_property_set_description(obj, "kvm-no-adjvtime",
509 "Set on to disable the adjustment of "
510 "the virtual counter. VM stopped time "
511 "will be counted.");
512 }
513
514 cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
515 object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
516 kvm_steal_time_set);
517 object_property_set_description(obj, "kvm-steal-time",
518 "Set off to disable KVM steal time.");
519 }
520
521 bool kvm_arm_pmu_supported(void)
522 {
523 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
524 }
525
526 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
527 {
528 KVMState *s = KVM_STATE(ms->accelerator);
529 int ret;
530
531 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
532 *fixed_ipa = ret <= 0;
533
534 return ret > 0 ? ret : 40;
535 }
536
537 int kvm_arch_get_default_type(MachineState *ms)
538 {
539 bool fixed_ipa;
540 int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
541 return fixed_ipa ? 0 : size;
542 }
543
544 int kvm_arch_init(MachineState *ms, KVMState *s)
545 {
546 int ret = 0;
547 /* For ARM interrupt delivery is always asynchronous,
548 * whether we are using an in-kernel VGIC or not.
549 */
550 kvm_async_interrupts_allowed = true;
551
552 /*
553 * PSCI wakes up secondary cores, so we always need to
554 * have vCPUs waiting in kernel space
555 */
556 kvm_halt_in_kernel_allowed = true;
557
558 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
559
560 /* Check whether user space can specify guest syndrome value */
561 cap_has_inject_serror_esr =
562 kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
563
564 if (ms->smp.cpus > 256 &&
565 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
566 error_report("Using more than 256 vcpus requires a host kernel "
567 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
568 ret = -EINVAL;
569 }
570
571 if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
572 if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
573 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
574 } else {
575 /* Set status for supporting the external dabt injection */
576 cap_has_inject_ext_dabt = kvm_check_extension(s,
577 KVM_CAP_ARM_INJECT_EXT_DABT);
578 }
579 }
580
581 if (s->kvm_eager_split_size) {
582 uint32_t sizes;
583
584 sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES);
585 if (!sizes) {
586 s->kvm_eager_split_size = 0;
587 warn_report("Eager Page Split support not available");
588 } else if (!(s->kvm_eager_split_size & sizes)) {
589 error_report("Eager Page Split requested chunk size not valid");
590 ret = -EINVAL;
591 } else {
592 ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0,
593 s->kvm_eager_split_size);
594 if (ret < 0) {
595 error_report("Enabling of Eager Page Split failed: %s",
596 strerror(-ret));
597 }
598 }
599 }
600
601 max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
602 hw_watchpoints = g_array_sized_new(true, true,
603 sizeof(HWWatchpoint), max_hw_wps);
604
605 max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
606 hw_breakpoints = g_array_sized_new(true, true,
607 sizeof(HWBreakpoint), max_hw_bps);
608
609 return ret;
610 }
611
612 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
613 {
614 return cpu->cpu_index;
615 }
616
617 /* We track all the KVM devices which need their memory addresses
618 * passing to the kernel in a list of these structures.
619 * When board init is complete we run through the list and
620 * tell the kernel the base addresses of the memory regions.
621 * We use a MemoryListener to track mapping and unmapping of
622 * the regions during board creation, so the board models don't
623 * need to do anything special for the KVM case.
624 *
625 * Sometimes the address must be OR'ed with some other fields
626 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
627 * @kda_addr_ormask aims at storing the value of those fields.
628 */
629 typedef struct KVMDevice {
630 struct kvm_arm_device_addr kda;
631 struct kvm_device_attr kdattr;
632 uint64_t kda_addr_ormask;
633 MemoryRegion *mr;
634 QSLIST_ENTRY(KVMDevice) entries;
635 int dev_fd;
636 } KVMDevice;
637
638 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
639
640 static void kvm_arm_devlistener_add(MemoryListener *listener,
641 MemoryRegionSection *section)
642 {
643 KVMDevice *kd;
644
645 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
646 if (section->mr == kd->mr) {
647 kd->kda.addr = section->offset_within_address_space;
648 }
649 }
650 }
651
652 static void kvm_arm_devlistener_del(MemoryListener *listener,
653 MemoryRegionSection *section)
654 {
655 KVMDevice *kd;
656
657 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
658 if (section->mr == kd->mr) {
659 kd->kda.addr = -1;
660 }
661 }
662 }
663
664 static MemoryListener devlistener = {
665 .name = "kvm-arm",
666 .region_add = kvm_arm_devlistener_add,
667 .region_del = kvm_arm_devlistener_del,
668 .priority = MEMORY_LISTENER_PRIORITY_MIN,
669 };
670
671 static void kvm_arm_set_device_addr(KVMDevice *kd)
672 {
673 struct kvm_device_attr *attr = &kd->kdattr;
674 int ret;
675
676 /* If the device control API is available and we have a device fd on the
677 * KVMDevice struct, let's use the newer API
678 */
679 if (kd->dev_fd >= 0) {
680 uint64_t addr = kd->kda.addr;
681
682 addr |= kd->kda_addr_ormask;
683 attr->addr = (uintptr_t)&addr;
684 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
685 } else {
686 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
687 }
688
689 if (ret < 0) {
690 fprintf(stderr, "Failed to set device address: %s\n",
691 strerror(-ret));
692 abort();
693 }
694 }
695
696 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
697 {
698 KVMDevice *kd, *tkd;
699
700 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
701 if (kd->kda.addr != -1) {
702 kvm_arm_set_device_addr(kd);
703 }
704 memory_region_unref(kd->mr);
705 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
706 g_free(kd);
707 }
708 memory_listener_unregister(&devlistener);
709 }
710
711 static Notifier notify = {
712 .notify = kvm_arm_machine_init_done,
713 };
714
715 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
716 uint64_t attr, int dev_fd, uint64_t addr_ormask)
717 {
718 KVMDevice *kd;
719
720 if (!kvm_irqchip_in_kernel()) {
721 return;
722 }
723
724 if (QSLIST_EMPTY(&kvm_devices_head)) {
725 memory_listener_register(&devlistener, &address_space_memory);
726 qemu_add_machine_init_done_notifier(&notify);
727 }
728 kd = g_new0(KVMDevice, 1);
729 kd->mr = mr;
730 kd->kda.id = devid;
731 kd->kda.addr = -1;
732 kd->kdattr.flags = 0;
733 kd->kdattr.group = group;
734 kd->kdattr.attr = attr;
735 kd->dev_fd = dev_fd;
736 kd->kda_addr_ormask = addr_ormask;
737 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
738 memory_region_ref(kd->mr);
739 }
740
741 static int compare_u64(const void *a, const void *b)
742 {
743 if (*(uint64_t *)a > *(uint64_t *)b) {
744 return 1;
745 }
746 if (*(uint64_t *)a < *(uint64_t *)b) {
747 return -1;
748 }
749 return 0;
750 }
751
752 /*
753 * cpreg_values are sorted in ascending order by KVM register ID
754 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
755 * the storage for a KVM register by ID with a binary search.
756 */
757 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
758 {
759 uint64_t *res;
760
761 res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
762 sizeof(uint64_t), compare_u64);
763 assert(res);
764
765 return &cpu->cpreg_values[res - cpu->cpreg_indexes];
766 }
767
768 /**
769 * kvm_arm_reg_syncs_via_cpreg_list:
770 * @regidx: KVM register index
771 *
772 * Return true if this KVM register should be synchronized via the
773 * cpreg list of arbitrary system registers, false if it is synchronized
774 * by hand using code in kvm_arch_get/put_registers().
775 */
776 static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
777 {
778 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
779 case KVM_REG_ARM_CORE:
780 case KVM_REG_ARM64_SVE:
781 return false;
782 default:
783 return true;
784 }
785 }
786
787 /**
788 * kvm_arm_init_cpreg_list:
789 * @cpu: ARMCPU
790 *
791 * Initialize the ARMCPU cpreg list according to the kernel's
792 * definition of what CPU registers it knows about (and throw away
793 * the previous TCG-created cpreg list).
794 *
795 * Returns: 0 if success, else < 0 error code
796 */
797 static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
798 {
799 struct kvm_reg_list rl;
800 struct kvm_reg_list *rlp;
801 int i, ret, arraylen;
802 CPUState *cs = CPU(cpu);
803
804 rl.n = 0;
805 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
806 if (ret != -E2BIG) {
807 return ret;
808 }
809 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
810 rlp->n = rl.n;
811 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
812 if (ret) {
813 goto out;
814 }
815 /* Sort the list we get back from the kernel, since cpreg_tuples
816 * must be in strictly ascending order.
817 */
818 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
819
820 for (i = 0, arraylen = 0; i < rlp->n; i++) {
821 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
822 continue;
823 }
824 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
825 case KVM_REG_SIZE_U32:
826 case KVM_REG_SIZE_U64:
827 break;
828 default:
829 fprintf(stderr, "Can't handle size of register in kernel list\n");
830 ret = -EINVAL;
831 goto out;
832 }
833
834 arraylen++;
835 }
836
837 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
838 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
839 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
840 arraylen);
841 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
842 arraylen);
843 cpu->cpreg_array_len = arraylen;
844 cpu->cpreg_vmstate_array_len = arraylen;
845
846 for (i = 0, arraylen = 0; i < rlp->n; i++) {
847 uint64_t regidx = rlp->reg[i];
848 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
849 continue;
850 }
851 cpu->cpreg_indexes[arraylen] = regidx;
852 arraylen++;
853 }
854 assert(cpu->cpreg_array_len == arraylen);
855
856 if (!write_kvmstate_to_list(cpu)) {
857 /* Shouldn't happen unless kernel is inconsistent about
858 * what registers exist.
859 */
860 fprintf(stderr, "Initial read of kernel register state failed\n");
861 ret = -EINVAL;
862 goto out;
863 }
864
865 out:
866 g_free(rlp);
867 return ret;
868 }
869
870 /**
871 * kvm_arm_cpreg_level:
872 * @regidx: KVM register index
873 *
874 * Return the level of this coprocessor/system register. Return value is
875 * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
876 */
877 static int kvm_arm_cpreg_level(uint64_t regidx)
878 {
879 /*
880 * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
881 * If a register should be written less often, you must add it here
882 * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
883 */
884 switch (regidx) {
885 case KVM_REG_ARM_TIMER_CNT:
886 case KVM_REG_ARM_PTIMER_CNT:
887 return KVM_PUT_FULL_STATE;
888 }
889 return KVM_PUT_RUNTIME_STATE;
890 }
891
892 bool write_kvmstate_to_list(ARMCPU *cpu)
893 {
894 CPUState *cs = CPU(cpu);
895 int i;
896 bool ok = true;
897
898 for (i = 0; i < cpu->cpreg_array_len; i++) {
899 uint64_t regidx = cpu->cpreg_indexes[i];
900 uint32_t v32;
901 int ret;
902
903 switch (regidx & KVM_REG_SIZE_MASK) {
904 case KVM_REG_SIZE_U32:
905 ret = kvm_get_one_reg(cs, regidx, &v32);
906 if (!ret) {
907 cpu->cpreg_values[i] = v32;
908 }
909 break;
910 case KVM_REG_SIZE_U64:
911 ret = kvm_get_one_reg(cs, regidx, cpu->cpreg_values + i);
912 break;
913 default:
914 g_assert_not_reached();
915 }
916 if (ret) {
917 ok = false;
918 }
919 }
920 return ok;
921 }
922
923 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
924 {
925 CPUState *cs = CPU(cpu);
926 int i;
927 bool ok = true;
928
929 for (i = 0; i < cpu->cpreg_array_len; i++) {
930 uint64_t regidx = cpu->cpreg_indexes[i];
931 uint32_t v32;
932 int ret;
933
934 if (kvm_arm_cpreg_level(regidx) > level) {
935 continue;
936 }
937
938 switch (regidx & KVM_REG_SIZE_MASK) {
939 case KVM_REG_SIZE_U32:
940 v32 = cpu->cpreg_values[i];
941 ret = kvm_set_one_reg(cs, regidx, &v32);
942 break;
943 case KVM_REG_SIZE_U64:
944 ret = kvm_set_one_reg(cs, regidx, cpu->cpreg_values + i);
945 break;
946 default:
947 g_assert_not_reached();
948 }
949 if (ret) {
950 /* We might fail for "unknown register" and also for
951 * "you tried to set a register which is constant with
952 * a different value from what it actually contains".
953 */
954 ok = false;
955 }
956 }
957 return ok;
958 }
959
960 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
961 {
962 /* KVM virtual time adjustment */
963 if (cpu->kvm_vtime_dirty) {
964 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
965 }
966 }
967
968 void kvm_arm_cpu_post_load(ARMCPU *cpu)
969 {
970 /* KVM virtual time adjustment */
971 if (cpu->kvm_adjvtime) {
972 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
973 cpu->kvm_vtime_dirty = true;
974 }
975 }
976
977 void kvm_arm_reset_vcpu(ARMCPU *cpu)
978 {
979 int ret;
980
981 /* Re-init VCPU so that all registers are set to
982 * their respective reset values.
983 */
984 ret = kvm_arm_vcpu_init(cpu);
985 if (ret < 0) {
986 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
987 abort();
988 }
989 if (!write_kvmstate_to_list(cpu)) {
990 fprintf(stderr, "write_kvmstate_to_list failed\n");
991 abort();
992 }
993 /*
994 * Sync the reset values also into the CPUState. This is necessary
995 * because the next thing we do will be a kvm_arch_put_registers()
996 * which will update the list values from the CPUState before copying
997 * the list values back to KVM. It's OK to ignore failure returns here
998 * for the same reason we do so in kvm_arch_get_registers().
999 */
1000 write_list_to_cpustate(cpu);
1001 }
1002
1003 /*
1004 * Update KVM's MP_STATE based on what QEMU thinks it is
1005 */
1006 static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
1007 {
1008 if (cap_has_mp_state) {
1009 struct kvm_mp_state mp_state = {
1010 .mp_state = (cpu->power_state == PSCI_OFF) ?
1011 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
1012 };
1013 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1014 }
1015 return 0;
1016 }
1017
1018 /*
1019 * Sync the KVM MP_STATE into QEMU
1020 */
1021 static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
1022 {
1023 if (cap_has_mp_state) {
1024 struct kvm_mp_state mp_state;
1025 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
1026 if (ret) {
1027 return ret;
1028 }
1029 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
1030 PSCI_OFF : PSCI_ON;
1031 }
1032 return 0;
1033 }
1034
1035 /**
1036 * kvm_arm_get_virtual_time:
1037 * @cs: CPUState
1038 *
1039 * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
1040 */
1041 static void kvm_arm_get_virtual_time(CPUState *cs)
1042 {
1043 ARMCPU *cpu = ARM_CPU(cs);
1044 int ret;
1045
1046 if (cpu->kvm_vtime_dirty) {
1047 return;
1048 }
1049
1050 ret = kvm_get_one_reg(cs, KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1051 if (ret) {
1052 error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
1053 abort();
1054 }
1055
1056 cpu->kvm_vtime_dirty = true;
1057 }
1058
1059 /**
1060 * kvm_arm_put_virtual_time:
1061 * @cs: CPUState
1062 *
1063 * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
1064 */
1065 static void kvm_arm_put_virtual_time(CPUState *cs)
1066 {
1067 ARMCPU *cpu = ARM_CPU(cs);
1068 int ret;
1069
1070 if (!cpu->kvm_vtime_dirty) {
1071 return;
1072 }
1073
1074 ret = kvm_set_one_reg(cs, KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1075 if (ret) {
1076 error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
1077 abort();
1078 }
1079
1080 cpu->kvm_vtime_dirty = false;
1081 }
1082
1083 /**
1084 * kvm_put_vcpu_events:
1085 * @cpu: ARMCPU
1086 *
1087 * Put VCPU related state to kvm.
1088 *
1089 * Returns: 0 if success else < 0 error code
1090 */
1091 static int kvm_put_vcpu_events(ARMCPU *cpu)
1092 {
1093 CPUARMState *env = &cpu->env;
1094 struct kvm_vcpu_events events;
1095 int ret;
1096
1097 if (!kvm_has_vcpu_events()) {
1098 return 0;
1099 }
1100
1101 memset(&events, 0, sizeof(events));
1102 events.exception.serror_pending = env->serror.pending;
1103
1104 /* Inject SError to guest with specified syndrome if host kernel
1105 * supports it, otherwise inject SError without syndrome.
1106 */
1107 if (cap_has_inject_serror_esr) {
1108 events.exception.serror_has_esr = env->serror.has_esr;
1109 events.exception.serror_esr = env->serror.esr;
1110 }
1111
1112 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1113 if (ret) {
1114 error_report("failed to put vcpu events");
1115 }
1116
1117 return ret;
1118 }
1119
1120 /**
1121 * kvm_get_vcpu_events:
1122 * @cpu: ARMCPU
1123 *
1124 * Get VCPU related state from kvm.
1125 *
1126 * Returns: 0 if success else < 0 error code
1127 */
1128 static int kvm_get_vcpu_events(ARMCPU *cpu)
1129 {
1130 CPUARMState *env = &cpu->env;
1131 struct kvm_vcpu_events events;
1132 int ret;
1133
1134 if (!kvm_has_vcpu_events()) {
1135 return 0;
1136 }
1137
1138 memset(&events, 0, sizeof(events));
1139 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1140 if (ret) {
1141 error_report("failed to get vcpu events");
1142 return ret;
1143 }
1144
1145 env->serror.pending = events.exception.serror_pending;
1146 env->serror.has_esr = events.exception.serror_has_esr;
1147 env->serror.esr = events.exception.serror_esr;
1148
1149 return 0;
1150 }
1151
1152 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1153 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1154
1155 /*
1156 * ESR_EL1
1157 * ISS encoding
1158 * AARCH64: DFSC, bits [5:0]
1159 * AARCH32:
1160 * TTBCR.EAE == 0
1161 * FS[4] - DFSR[10]
1162 * FS[3:0] - DFSR[3:0]
1163 * TTBCR.EAE == 1
1164 * FS, bits [5:0]
1165 */
1166 #define ESR_DFSC(aarch64, lpae, v) \
1167 ((aarch64 || (lpae)) ? ((v) & 0x3F) \
1168 : (((v) >> 6) | ((v) & 0x1F)))
1169
1170 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1171 ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1172
1173 /**
1174 * kvm_arm_verify_ext_dabt_pending:
1175 * @cs: CPUState
1176 *
1177 * Verify the fault status code wrt the Ext DABT injection
1178 *
1179 * Returns: true if the fault status code is as expected, false otherwise
1180 */
1181 static bool kvm_arm_verify_ext_dabt_pending(CPUState *cs)
1182 {
1183 uint64_t dfsr_val;
1184
1185 if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
1186 ARMCPU *cpu = ARM_CPU(cs);
1187 CPUARMState *env = &cpu->env;
1188 int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
1189 int lpae = 0;
1190
1191 if (!aarch64_mode) {
1192 uint64_t ttbcr;
1193
1194 if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
1195 lpae = arm_feature(env, ARM_FEATURE_LPAE)
1196 && (ttbcr & TTBCR_EAE);
1197 }
1198 }
1199 /*
1200 * The verification here is based on the DFSC bits
1201 * of the ESR_EL1 reg only
1202 */
1203 return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
1204 ESR_DFSC_EXTABT(aarch64_mode, lpae));
1205 }
1206 return false;
1207 }
1208
1209 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1210 {
1211 ARMCPU *cpu = ARM_CPU(cs);
1212 CPUARMState *env = &cpu->env;
1213
1214 if (unlikely(env->ext_dabt_raised)) {
1215 /*
1216 * Verifying that the ext DABT has been properly injected,
1217 * otherwise risking indefinitely re-running the faulting instruction
1218 * Covering a very narrow case for kernels 5.5..5.5.4
1219 * when injected abort was misconfigured to be
1220 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
1221 */
1222 if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
1223 unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
1224
1225 error_report("Data abort exception with no valid ISS generated by "
1226 "guest memory access. KVM unable to emulate faulting "
1227 "instruction. Failed to inject an external data abort "
1228 "into the guest.");
1229 abort();
1230 }
1231 /* Clear the status */
1232 env->ext_dabt_raised = 0;
1233 }
1234 }
1235
1236 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1237 {
1238 ARMCPU *cpu;
1239 uint32_t switched_level;
1240
1241 if (kvm_irqchip_in_kernel()) {
1242 /*
1243 * We only need to sync timer states with user-space interrupt
1244 * controllers, so return early and save cycles if we don't.
1245 */
1246 return MEMTXATTRS_UNSPECIFIED;
1247 }
1248
1249 cpu = ARM_CPU(cs);
1250
1251 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
1252 if (run->s.regs.device_irq_level != cpu->device_irq_level) {
1253 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
1254
1255 qemu_mutex_lock_iothread();
1256
1257 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
1258 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
1259 !!(run->s.regs.device_irq_level &
1260 KVM_ARM_DEV_EL1_VTIMER));
1261 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
1262 }
1263
1264 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
1265 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
1266 !!(run->s.regs.device_irq_level &
1267 KVM_ARM_DEV_EL1_PTIMER));
1268 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
1269 }
1270
1271 if (switched_level & KVM_ARM_DEV_PMU) {
1272 qemu_set_irq(cpu->pmu_interrupt,
1273 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
1274 switched_level &= ~KVM_ARM_DEV_PMU;
1275 }
1276
1277 if (switched_level) {
1278 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
1279 __func__, switched_level);
1280 }
1281
1282 /* We also mark unknown levels as processed to not waste cycles */
1283 cpu->device_irq_level = run->s.regs.device_irq_level;
1284 qemu_mutex_unlock_iothread();
1285 }
1286
1287 return MEMTXATTRS_UNSPECIFIED;
1288 }
1289
1290 static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
1291 {
1292 CPUState *cs = opaque;
1293 ARMCPU *cpu = ARM_CPU(cs);
1294
1295 if (running) {
1296 if (cpu->kvm_adjvtime) {
1297 kvm_arm_put_virtual_time(cs);
1298 }
1299 } else {
1300 if (cpu->kvm_adjvtime) {
1301 kvm_arm_get_virtual_time(cs);
1302 }
1303 }
1304 }
1305
1306 /**
1307 * kvm_arm_handle_dabt_nisv:
1308 * @cs: CPUState
1309 * @esr_iss: ISS encoding (limited) for the exception from Data Abort
1310 * ISV bit set to '0b0' -> no valid instruction syndrome
1311 * @fault_ipa: faulting address for the synchronous data abort
1312 *
1313 * Returns: 0 if the exception has been handled, < 0 otherwise
1314 */
1315 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
1316 uint64_t fault_ipa)
1317 {
1318 ARMCPU *cpu = ARM_CPU(cs);
1319 CPUARMState *env = &cpu->env;
1320 /*
1321 * Request KVM to inject the external data abort into the guest
1322 */
1323 if (cap_has_inject_ext_dabt) {
1324 struct kvm_vcpu_events events = { };
1325 /*
1326 * The external data abort event will be handled immediately by KVM
1327 * using the address fault that triggered the exit on given VCPU.
1328 * Requesting injection of the external data abort does not rely
1329 * on any other VCPU state. Therefore, in this particular case, the VCPU
1330 * synchronization can be exceptionally skipped.
1331 */
1332 events.exception.ext_dabt_pending = 1;
1333 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
1334 if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
1335 env->ext_dabt_raised = 1;
1336 return 0;
1337 }
1338 } else {
1339 error_report("Data abort exception triggered by guest memory access "
1340 "at physical address: 0x" TARGET_FMT_lx,
1341 (target_ulong)fault_ipa);
1342 error_printf("KVM unable to emulate faulting instruction.\n");
1343 }
1344 return -1;
1345 }
1346
1347 /**
1348 * kvm_arm_handle_debug:
1349 * @cs: CPUState
1350 * @debug_exit: debug part of the KVM exit structure
1351 *
1352 * Returns: TRUE if the debug exception was handled.
1353 *
1354 * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1355 *
1356 * To minimise translating between kernel and user-space the kernel
1357 * ABI just provides user-space with the full exception syndrome
1358 * register value to be decoded in QEMU.
1359 */
1360 static bool kvm_arm_handle_debug(CPUState *cs,
1361 struct kvm_debug_exit_arch *debug_exit)
1362 {
1363 int hsr_ec = syn_get_ec(debug_exit->hsr);
1364 ARMCPU *cpu = ARM_CPU(cs);
1365 CPUARMState *env = &cpu->env;
1366
1367 /* Ensure PC is synchronised */
1368 kvm_cpu_synchronize_state(cs);
1369
1370 switch (hsr_ec) {
1371 case EC_SOFTWARESTEP:
1372 if (cs->singlestep_enabled) {
1373 return true;
1374 } else {
1375 /*
1376 * The kernel should have suppressed the guest's ability to
1377 * single step at this point so something has gone wrong.
1378 */
1379 error_report("%s: guest single-step while debugging unsupported"
1380 " (%"PRIx64", %"PRIx32")",
1381 __func__, env->pc, debug_exit->hsr);
1382 return false;
1383 }
1384 break;
1385 case EC_AA64_BKPT:
1386 if (kvm_find_sw_breakpoint(cs, env->pc)) {
1387 return true;
1388 }
1389 break;
1390 case EC_BREAKPOINT:
1391 if (find_hw_breakpoint(cs, env->pc)) {
1392 return true;
1393 }
1394 break;
1395 case EC_WATCHPOINT:
1396 {
1397 CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1398 if (wp) {
1399 cs->watchpoint_hit = wp;
1400 return true;
1401 }
1402 break;
1403 }
1404 default:
1405 error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1406 __func__, debug_exit->hsr, env->pc);
1407 }
1408
1409 /* If we are not handling the debug exception it must belong to
1410 * the guest. Let's re-use the existing TCG interrupt code to set
1411 * everything up properly.
1412 */
1413 cs->exception_index = EXCP_BKPT;
1414 env->exception.syndrome = debug_exit->hsr;
1415 env->exception.vaddress = debug_exit->far;
1416 env->exception.target_el = 1;
1417 qemu_mutex_lock_iothread();
1418 arm_cpu_do_interrupt(cs);
1419 qemu_mutex_unlock_iothread();
1420
1421 return false;
1422 }
1423
1424 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1425 {
1426 int ret = 0;
1427
1428 switch (run->exit_reason) {
1429 case KVM_EXIT_DEBUG:
1430 if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
1431 ret = EXCP_DEBUG;
1432 } /* otherwise return to guest */
1433 break;
1434 case KVM_EXIT_ARM_NISV:
1435 /* External DABT with no valid iss to decode */
1436 ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
1437 run->arm_nisv.fault_ipa);
1438 break;
1439 default:
1440 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
1441 __func__, run->exit_reason);
1442 break;
1443 }
1444 return ret;
1445 }
1446
1447 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
1448 {
1449 return true;
1450 }
1451
1452 int kvm_arch_process_async_events(CPUState *cs)
1453 {
1454 return 0;
1455 }
1456
1457 /**
1458 * kvm_arm_hw_debug_active:
1459 * @cs: CPU State
1460 *
1461 * Return: TRUE if any hardware breakpoints in use.
1462 */
1463 static bool kvm_arm_hw_debug_active(CPUState *cs)
1464 {
1465 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
1466 }
1467
1468 /**
1469 * kvm_arm_copy_hw_debug_data:
1470 * @ptr: kvm_guest_debug_arch structure
1471 *
1472 * Copy the architecture specific debug registers into the
1473 * kvm_guest_debug ioctl structure.
1474 */
1475 static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
1476 {
1477 int i;
1478 memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
1479
1480 for (i = 0; i < max_hw_wps; i++) {
1481 HWWatchpoint *wp = get_hw_wp(i);
1482 ptr->dbg_wcr[i] = wp->wcr;
1483 ptr->dbg_wvr[i] = wp->wvr;
1484 }
1485 for (i = 0; i < max_hw_bps; i++) {
1486 HWBreakpoint *bp = get_hw_bp(i);
1487 ptr->dbg_bcr[i] = bp->bcr;
1488 ptr->dbg_bvr[i] = bp->bvr;
1489 }
1490 }
1491
1492 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1493 {
1494 if (kvm_sw_breakpoints_active(cs)) {
1495 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1496 }
1497 if (kvm_arm_hw_debug_active(cs)) {
1498 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
1499 kvm_arm_copy_hw_debug_data(&dbg->arch);
1500 }
1501 }
1502
1503 void kvm_arch_init_irq_routing(KVMState *s)
1504 {
1505 }
1506
1507 int kvm_arch_irqchip_create(KVMState *s)
1508 {
1509 if (kvm_kernel_irqchip_split()) {
1510 error_report("-machine kernel_irqchip=split is not supported on ARM.");
1511 exit(1);
1512 }
1513
1514 /* If we can create the VGIC using the newer device control API, we
1515 * let the device do this when it initializes itself, otherwise we
1516 * fall back to the old API */
1517 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
1518 }
1519
1520 int kvm_arm_vgic_probe(void)
1521 {
1522 int val = 0;
1523
1524 if (kvm_create_device(kvm_state,
1525 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
1526 val |= KVM_ARM_VGIC_V3;
1527 }
1528 if (kvm_create_device(kvm_state,
1529 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
1530 val |= KVM_ARM_VGIC_V2;
1531 }
1532 return val;
1533 }
1534
1535 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
1536 {
1537 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
1538 int cpu_idx1 = cpu % 256;
1539 int cpu_idx2 = cpu / 256;
1540
1541 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
1542 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
1543
1544 return kvm_set_irq(kvm_state, kvm_irq, !!level);
1545 }
1546
1547 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1548 uint64_t address, uint32_t data, PCIDevice *dev)
1549 {
1550 AddressSpace *as = pci_device_iommu_address_space(dev);
1551 hwaddr xlat, len, doorbell_gpa;
1552 MemoryRegionSection mrs;
1553 MemoryRegion *mr;
1554
1555 if (as == &address_space_memory) {
1556 return 0;
1557 }
1558
1559 /* MSI doorbell address is translated by an IOMMU */
1560
1561 RCU_READ_LOCK_GUARD();
1562
1563 mr = address_space_translate(as, address, &xlat, &len, true,
1564 MEMTXATTRS_UNSPECIFIED);
1565
1566 if (!mr) {
1567 return 1;
1568 }
1569
1570 mrs = memory_region_find(mr, xlat, 1);
1571
1572 if (!mrs.mr) {
1573 return 1;
1574 }
1575
1576 doorbell_gpa = mrs.offset_within_address_space;
1577 memory_region_unref(mrs.mr);
1578
1579 route->u.msi.address_lo = doorbell_gpa;
1580 route->u.msi.address_hi = doorbell_gpa >> 32;
1581
1582 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1583
1584 return 0;
1585 }
1586
1587 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1588 int vector, PCIDevice *dev)
1589 {
1590 return 0;
1591 }
1592
1593 int kvm_arch_release_virq_post(int virq)
1594 {
1595 return 0;
1596 }
1597
1598 int kvm_arch_msi_data_to_gsi(uint32_t data)
1599 {
1600 return (data - 32) & 0xffff;
1601 }
1602
1603 bool kvm_arch_cpu_check_are_resettable(void)
1604 {
1605 return true;
1606 }
1607
1608 static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v,
1609 const char *name, void *opaque,
1610 Error **errp)
1611 {
1612 KVMState *s = KVM_STATE(obj);
1613 uint64_t value = s->kvm_eager_split_size;
1614
1615 visit_type_size(v, name, &value, errp);
1616 }
1617
1618 static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v,
1619 const char *name, void *opaque,
1620 Error **errp)
1621 {
1622 KVMState *s = KVM_STATE(obj);
1623 uint64_t value;
1624
1625 if (s->fd != -1) {
1626 error_setg(errp, "Unable to set early-split-size after KVM has been initialized");
1627 return;
1628 }
1629
1630 if (!visit_type_size(v, name, &value, errp)) {
1631 return;
1632 }
1633
1634 if (value && !is_power_of_2(value)) {
1635 error_setg(errp, "early-split-size must be a power of two");
1636 return;
1637 }
1638
1639 s->kvm_eager_split_size = value;
1640 }
1641
1642 void kvm_arch_accel_class_init(ObjectClass *oc)
1643 {
1644 object_class_property_add(oc, "eager-split-size", "size",
1645 kvm_arch_get_eager_split_size,
1646 kvm_arch_set_eager_split_size, NULL, NULL);
1647
1648 object_class_property_set_description(oc, "eager-split-size",
1649 "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
1650 }
1651
1652 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1653 {
1654 switch (type) {
1655 case GDB_BREAKPOINT_HW:
1656 return insert_hw_breakpoint(addr);
1657 break;
1658 case GDB_WATCHPOINT_READ:
1659 case GDB_WATCHPOINT_WRITE:
1660 case GDB_WATCHPOINT_ACCESS:
1661 return insert_hw_watchpoint(addr, len, type);
1662 default:
1663 return -ENOSYS;
1664 }
1665 }
1666
1667 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1668 {
1669 switch (type) {
1670 case GDB_BREAKPOINT_HW:
1671 return delete_hw_breakpoint(addr);
1672 case GDB_WATCHPOINT_READ:
1673 case GDB_WATCHPOINT_WRITE:
1674 case GDB_WATCHPOINT_ACCESS:
1675 return delete_hw_watchpoint(addr, len, type);
1676 default:
1677 return -ENOSYS;
1678 }
1679 }
1680
1681 void kvm_arch_remove_all_hw_breakpoints(void)
1682 {
1683 if (cur_hw_wps > 0) {
1684 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
1685 }
1686 if (cur_hw_bps > 0) {
1687 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
1688 }
1689 }
1690
1691 static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr,
1692 const char *name)
1693 {
1694 int err;
1695
1696 err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr);
1697 if (err != 0) {
1698 error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
1699 return false;
1700 }
1701
1702 err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr);
1703 if (err != 0) {
1704 error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
1705 return false;
1706 }
1707
1708 return true;
1709 }
1710
1711 void kvm_arm_pmu_init(ARMCPU *cpu)
1712 {
1713 struct kvm_device_attr attr = {
1714 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1715 .attr = KVM_ARM_VCPU_PMU_V3_INIT,
1716 };
1717
1718 if (!cpu->has_pmu) {
1719 return;
1720 }
1721 if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1722 error_report("failed to init PMU");
1723 abort();
1724 }
1725 }
1726
1727 void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
1728 {
1729 struct kvm_device_attr attr = {
1730 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1731 .addr = (intptr_t)&irq,
1732 .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
1733 };
1734
1735 if (!cpu->has_pmu) {
1736 return;
1737 }
1738 if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1739 error_report("failed to set irq for PMU");
1740 abort();
1741 }
1742 }
1743
1744 void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
1745 {
1746 struct kvm_device_attr attr = {
1747 .group = KVM_ARM_VCPU_PVTIME_CTRL,
1748 .attr = KVM_ARM_VCPU_PVTIME_IPA,
1749 .addr = (uint64_t)&ipa,
1750 };
1751
1752 if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) {
1753 return;
1754 }
1755 if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) {
1756 error_report("failed to init PVTIME IPA");
1757 abort();
1758 }
1759 }
1760
1761 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
1762 {
1763 bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
1764
1765 if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
1766 if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1767 cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
1768 } else {
1769 cpu->kvm_steal_time = ON_OFF_AUTO_ON;
1770 }
1771 } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
1772 if (!has_steal_time) {
1773 error_setg(errp, "'kvm-steal-time' cannot be enabled "
1774 "on this host");
1775 return;
1776 } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1777 /*
1778 * DEN0057A chapter 2 says "This specification only covers
1779 * systems in which the Execution state of the hypervisor
1780 * as well as EL1 of virtual machines is AArch64.". And,
1781 * to ensure that, the smc/hvc calls are only specified as
1782 * smc64/hvc64.
1783 */
1784 error_setg(errp, "'kvm-steal-time' cannot be enabled "
1785 "for AArch32 guests");
1786 return;
1787 }
1788 }
1789 }
1790
1791 bool kvm_arm_aarch32_supported(void)
1792 {
1793 return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
1794 }
1795
1796 bool kvm_arm_sve_supported(void)
1797 {
1798 return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
1799 }
1800
1801 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
1802
1803 uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
1804 {
1805 /* Only call this function if kvm_arm_sve_supported() returns true. */
1806 static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
1807 static bool probed;
1808 uint32_t vq = 0;
1809 int i;
1810
1811 /*
1812 * KVM ensures all host CPUs support the same set of vector lengths.
1813 * So we only need to create the scratch VCPUs once and then cache
1814 * the results.
1815 */
1816 if (!probed) {
1817 struct kvm_vcpu_init init = {
1818 .target = -1,
1819 .features[0] = (1 << KVM_ARM_VCPU_SVE),
1820 };
1821 struct kvm_one_reg reg = {
1822 .id = KVM_REG_ARM64_SVE_VLS,
1823 .addr = (uint64_t)&vls[0],
1824 };
1825 int fdarray[3], ret;
1826
1827 probed = true;
1828
1829 if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
1830 error_report("failed to create scratch VCPU with SVE enabled");
1831 abort();
1832 }
1833 ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
1834 kvm_arm_destroy_scratch_host_vcpu(fdarray);
1835 if (ret) {
1836 error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
1837 strerror(errno));
1838 abort();
1839 }
1840
1841 for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
1842 if (vls[i]) {
1843 vq = 64 - clz64(vls[i]) + i * 64;
1844 break;
1845 }
1846 }
1847 if (vq > ARM_MAX_VQ) {
1848 warn_report("KVM supports vector lengths larger than "
1849 "QEMU can enable");
1850 vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1851 }
1852 }
1853
1854 return vls[0];
1855 }
1856
1857 static int kvm_arm_sve_set_vls(ARMCPU *cpu)
1858 {
1859 uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
1860
1861 assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
1862
1863 return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
1864 }
1865
1866 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
1867
1868 int kvm_arch_init_vcpu(CPUState *cs)
1869 {
1870 int ret;
1871 uint64_t mpidr;
1872 ARMCPU *cpu = ARM_CPU(cs);
1873 CPUARMState *env = &cpu->env;
1874 uint64_t psciver;
1875
1876 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
1877 !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
1878 error_report("KVM is not supported for this guest CPU type");
1879 return -EINVAL;
1880 }
1881
1882 qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
1883
1884 /* Determine init features for this CPU */
1885 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
1886 if (cs->start_powered_off) {
1887 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
1888 }
1889 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
1890 cpu->psci_version = QEMU_PSCI_VERSION_0_2;
1891 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
1892 }
1893 if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1894 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
1895 }
1896 if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
1897 cpu->has_pmu = false;
1898 }
1899 if (cpu->has_pmu) {
1900 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
1901 } else {
1902 env->features &= ~(1ULL << ARM_FEATURE_PMU);
1903 }
1904 if (cpu_isar_feature(aa64_sve, cpu)) {
1905 assert(kvm_arm_sve_supported());
1906 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
1907 }
1908 if (cpu_isar_feature(aa64_pauth, cpu)) {
1909 cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
1910 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
1911 }
1912
1913 /* Do KVM_ARM_VCPU_INIT ioctl */
1914 ret = kvm_arm_vcpu_init(cpu);
1915 if (ret) {
1916 return ret;
1917 }
1918
1919 if (cpu_isar_feature(aa64_sve, cpu)) {
1920 ret = kvm_arm_sve_set_vls(cpu);
1921 if (ret) {
1922 return ret;
1923 }
1924 ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE);
1925 if (ret) {
1926 return ret;
1927 }
1928 }
1929
1930 /*
1931 * KVM reports the exact PSCI version it is implementing via a
1932 * special sysreg. If it is present, use its contents to determine
1933 * what to report to the guest in the dtb (it is the PSCI version,
1934 * in the same 15-bits major 16-bits minor format that PSCI_VERSION
1935 * returns).
1936 */
1937 if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
1938 cpu->psci_version = psciver;
1939 }
1940
1941 /*
1942 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
1943 * Currently KVM has its own idea about MPIDR assignment, so we
1944 * override our defaults with what we get from KVM.
1945 */
1946 ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
1947 if (ret) {
1948 return ret;
1949 }
1950 cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
1951
1952 return kvm_arm_init_cpreg_list(cpu);
1953 }
1954
1955 int kvm_arch_destroy_vcpu(CPUState *cs)
1956 {
1957 return 0;
1958 }
1959
1960 /* Callers must hold the iothread mutex lock */
1961 static void kvm_inject_arm_sea(CPUState *c)
1962 {
1963 ARMCPU *cpu = ARM_CPU(c);
1964 CPUARMState *env = &cpu->env;
1965 uint32_t esr;
1966 bool same_el;
1967
1968 c->exception_index = EXCP_DATA_ABORT;
1969 env->exception.target_el = 1;
1970
1971 /*
1972 * Set the DFSC to synchronous external abort and set FnV to not valid,
1973 * this will tell guest the FAR_ELx is UNKNOWN for this abort.
1974 */
1975 same_el = arm_current_el(env) == env->exception.target_el;
1976 esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
1977
1978 env->exception.syndrome = esr;
1979
1980 arm_cpu_do_interrupt(c);
1981 }
1982
1983 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
1984 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1985
1986 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
1987 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1988
1989 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
1990 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1991
1992 static int kvm_arch_put_fpsimd(CPUState *cs)
1993 {
1994 CPUARMState *env = &ARM_CPU(cs)->env;
1995 int i, ret;
1996
1997 for (i = 0; i < 32; i++) {
1998 uint64_t *q = aa64_vfp_qreg(env, i);
1999 #if HOST_BIG_ENDIAN
2000 uint64_t fp_val[2] = { q[1], q[0] };
2001 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
2002 fp_val);
2003 #else
2004 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2005 #endif
2006 if (ret) {
2007 return ret;
2008 }
2009 }
2010
2011 return 0;
2012 }
2013
2014 /*
2015 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2016 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2017 * code the slice index to zero for now as it's unlikely we'll need more than
2018 * one slice for quite some time.
2019 */
2020 static int kvm_arch_put_sve(CPUState *cs)
2021 {
2022 ARMCPU *cpu = ARM_CPU(cs);
2023 CPUARMState *env = &cpu->env;
2024 uint64_t tmp[ARM_MAX_VQ * 2];
2025 uint64_t *r;
2026 int n, ret;
2027
2028 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2029 r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
2030 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2031 if (ret) {
2032 return ret;
2033 }
2034 }
2035
2036 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2037 r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
2038 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2039 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2040 if (ret) {
2041 return ret;
2042 }
2043 }
2044
2045 r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
2046 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2047 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2048 if (ret) {
2049 return ret;
2050 }
2051
2052 return 0;
2053 }
2054
2055 int kvm_arch_put_registers(CPUState *cs, int level)
2056 {
2057 uint64_t val;
2058 uint32_t fpr;
2059 int i, ret;
2060 unsigned int el;
2061
2062 ARMCPU *cpu = ARM_CPU(cs);
2063 CPUARMState *env = &cpu->env;
2064
2065 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
2066 * AArch64 registers before pushing them out to 64-bit KVM.
2067 */
2068 if (!is_a64(env)) {
2069 aarch64_sync_32_to_64(env);
2070 }
2071
2072 for (i = 0; i < 31; i++) {
2073 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2074 &env->xregs[i]);
2075 if (ret) {
2076 return ret;
2077 }
2078 }
2079
2080 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2081 * QEMU side we keep the current SP in xregs[31] as well.
2082 */
2083 aarch64_save_sp(env, 1);
2084
2085 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2086 if (ret) {
2087 return ret;
2088 }
2089
2090 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2091 if (ret) {
2092 return ret;
2093 }
2094
2095 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
2096 if (is_a64(env)) {
2097 val = pstate_read(env);
2098 } else {
2099 val = cpsr_read(env);
2100 }
2101 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2102 if (ret) {
2103 return ret;
2104 }
2105
2106 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2107 if (ret) {
2108 return ret;
2109 }
2110
2111 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2112 if (ret) {
2113 return ret;
2114 }
2115
2116 /* Saved Program State Registers
2117 *
2118 * Before we restore from the banked_spsr[] array we need to
2119 * ensure that any modifications to env->spsr are correctly
2120 * reflected in the banks.
2121 */
2122 el = arm_current_el(env);
2123 if (el > 0 && !is_a64(env)) {
2124 i = bank_number(env->uncached_cpsr & CPSR_M);
2125 env->banked_spsr[i] = env->spsr;
2126 }
2127
2128 /* KVM 0-4 map to QEMU banks 1-5 */
2129 for (i = 0; i < KVM_NR_SPSR; i++) {
2130 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2131 &env->banked_spsr[i + 1]);
2132 if (ret) {
2133 return ret;
2134 }
2135 }
2136
2137 if (cpu_isar_feature(aa64_sve, cpu)) {
2138 ret = kvm_arch_put_sve(cs);
2139 } else {
2140 ret = kvm_arch_put_fpsimd(cs);
2141 }
2142 if (ret) {
2143 return ret;
2144 }
2145
2146 fpr = vfp_get_fpsr(env);
2147 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2148 if (ret) {
2149 return ret;
2150 }
2151
2152 fpr = vfp_get_fpcr(env);
2153 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2154 if (ret) {
2155 return ret;
2156 }
2157
2158 write_cpustate_to_list(cpu, true);
2159
2160 if (!write_list_to_kvmstate(cpu, level)) {
2161 return -EINVAL;
2162 }
2163
2164 /*
2165 * Setting VCPU events should be triggered after syncing the registers
2166 * to avoid overwriting potential changes made by KVM upon calling
2167 * KVM_SET_VCPU_EVENTS ioctl
2168 */
2169 ret = kvm_put_vcpu_events(cpu);
2170 if (ret) {
2171 return ret;
2172 }
2173
2174 return kvm_arm_sync_mpstate_to_kvm(cpu);
2175 }
2176
2177 static int kvm_arch_get_fpsimd(CPUState *cs)
2178 {
2179 CPUARMState *env = &ARM_CPU(cs)->env;
2180 int i, ret;
2181
2182 for (i = 0; i < 32; i++) {
2183 uint64_t *q = aa64_vfp_qreg(env, i);
2184 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2185 if (ret) {
2186 return ret;
2187 } else {
2188 #if HOST_BIG_ENDIAN
2189 uint64_t t;
2190 t = q[0], q[0] = q[1], q[1] = t;
2191 #endif
2192 }
2193 }
2194
2195 return 0;
2196 }
2197
2198 /*
2199 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2200 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2201 * code the slice index to zero for now as it's unlikely we'll need more than
2202 * one slice for quite some time.
2203 */
2204 static int kvm_arch_get_sve(CPUState *cs)
2205 {
2206 ARMCPU *cpu = ARM_CPU(cs);
2207 CPUARMState *env = &cpu->env;
2208 uint64_t *r;
2209 int n, ret;
2210
2211 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2212 r = &env->vfp.zregs[n].d[0];
2213 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2214 if (ret) {
2215 return ret;
2216 }
2217 sve_bswap64(r, r, cpu->sve_max_vq * 2);
2218 }
2219
2220 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2221 r = &env->vfp.pregs[n].p[0];
2222 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2223 if (ret) {
2224 return ret;
2225 }
2226 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2227 }
2228
2229 r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
2230 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2231 if (ret) {
2232 return ret;
2233 }
2234 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2235
2236 return 0;
2237 }
2238
2239 int kvm_arch_get_registers(CPUState *cs)
2240 {
2241 uint64_t val;
2242 unsigned int el;
2243 uint32_t fpr;
2244 int i, ret;
2245
2246 ARMCPU *cpu = ARM_CPU(cs);
2247 CPUARMState *env = &cpu->env;
2248
2249 for (i = 0; i < 31; i++) {
2250 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2251 &env->xregs[i]);
2252 if (ret) {
2253 return ret;
2254 }
2255 }
2256
2257 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2258 if (ret) {
2259 return ret;
2260 }
2261
2262 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2263 if (ret) {
2264 return ret;
2265 }
2266
2267 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2268 if (ret) {
2269 return ret;
2270 }
2271
2272 env->aarch64 = ((val & PSTATE_nRW) == 0);
2273 if (is_a64(env)) {
2274 pstate_write(env, val);
2275 } else {
2276 cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
2277 }
2278
2279 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2280 * QEMU side we keep the current SP in xregs[31] as well.
2281 */
2282 aarch64_restore_sp(env, 1);
2283
2284 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2285 if (ret) {
2286 return ret;
2287 }
2288
2289 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
2290 * incoming AArch64 regs received from 64-bit KVM.
2291 * We must perform this after all of the registers have been acquired from
2292 * the kernel.
2293 */
2294 if (!is_a64(env)) {
2295 aarch64_sync_64_to_32(env);
2296 }
2297
2298 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2299 if (ret) {
2300 return ret;
2301 }
2302
2303 /* Fetch the SPSR registers
2304 *
2305 * KVM SPSRs 0-4 map to QEMU banks 1-5
2306 */
2307 for (i = 0; i < KVM_NR_SPSR; i++) {
2308 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2309 &env->banked_spsr[i + 1]);
2310 if (ret) {
2311 return ret;
2312 }
2313 }
2314
2315 el = arm_current_el(env);
2316 if (el > 0 && !is_a64(env)) {
2317 i = bank_number(env->uncached_cpsr & CPSR_M);
2318 env->spsr = env->banked_spsr[i];
2319 }
2320
2321 if (cpu_isar_feature(aa64_sve, cpu)) {
2322 ret = kvm_arch_get_sve(cs);
2323 } else {
2324 ret = kvm_arch_get_fpsimd(cs);
2325 }
2326 if (ret) {
2327 return ret;
2328 }
2329
2330 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2331 if (ret) {
2332 return ret;
2333 }
2334 vfp_set_fpsr(env, fpr);
2335
2336 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2337 if (ret) {
2338 return ret;
2339 }
2340 vfp_set_fpcr(env, fpr);
2341
2342 ret = kvm_get_vcpu_events(cpu);
2343 if (ret) {
2344 return ret;
2345 }
2346
2347 if (!write_kvmstate_to_list(cpu)) {
2348 return -EINVAL;
2349 }
2350 /* Note that it's OK to have registers which aren't in CPUState,
2351 * so we can ignore a failure return here.
2352 */
2353 write_list_to_cpustate(cpu);
2354
2355 ret = kvm_arm_sync_mpstate_to_qemu(cpu);
2356
2357 /* TODO: other registers */
2358 return ret;
2359 }
2360
2361 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
2362 {
2363 ram_addr_t ram_addr;
2364 hwaddr paddr;
2365
2366 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
2367
2368 if (acpi_ghes_present() && addr) {
2369 ram_addr = qemu_ram_addr_from_host(addr);
2370 if (ram_addr != RAM_ADDR_INVALID &&
2371 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
2372 kvm_hwpoison_page_add(ram_addr);
2373 /*
2374 * If this is a BUS_MCEERR_AR, we know we have been called
2375 * synchronously from the vCPU thread, so we can easily
2376 * synchronize the state and inject an error.
2377 *
2378 * TODO: we currently don't tell the guest at all about
2379 * BUS_MCEERR_AO. In that case we might either be being
2380 * called synchronously from the vCPU thread, or a bit
2381 * later from the main thread, so doing the injection of
2382 * the error would be more complicated.
2383 */
2384 if (code == BUS_MCEERR_AR) {
2385 kvm_cpu_synchronize_state(c);
2386 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
2387 kvm_inject_arm_sea(c);
2388 } else {
2389 error_report("failed to record the error");
2390 abort();
2391 }
2392 }
2393 return;
2394 }
2395 if (code == BUS_MCEERR_AO) {
2396 error_report("Hardware memory error at addr %p for memory used by "
2397 "QEMU itself instead of guest system!", addr);
2398 }
2399 }
2400
2401 if (code == BUS_MCEERR_AR) {
2402 error_report("Hardware memory error!");
2403 exit(1);
2404 }
2405 }
2406
2407 /* C6.6.29 BRK instruction */
2408 static const uint32_t brk_insn = 0xd4200000;
2409
2410 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2411 {
2412 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2413 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2414 return -EINVAL;
2415 }
2416 return 0;
2417 }
2418
2419 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2420 {
2421 static uint32_t brk;
2422
2423 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
2424 brk != brk_insn ||
2425 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2426 return -EINVAL;
2427 }
2428 return 0;
2429 }