]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/kvm.c
Merge tag 'pull-target-arm-20230420' of https://git.linaro.org/people/pmaydell/qemu...
[mirror_qemu.git] / target / arm / kvm.c
1 /*
2 * ARM implementation of KVM hooks
3 *
4 * Copyright Christoffer Dall 2009-2010
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
8 *
9 */
10
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13
14 #include <linux/kvm.h>
15
16 #include "qemu/timer.h"
17 #include "qemu/error-report.h"
18 #include "qemu/main-loop.h"
19 #include "qom/object.h"
20 #include "qapi/error.h"
21 #include "sysemu/sysemu.h"
22 #include "sysemu/kvm.h"
23 #include "sysemu/kvm_int.h"
24 #include "kvm_arm.h"
25 #include "cpu.h"
26 #include "trace.h"
27 #include "internals.h"
28 #include "hw/pci/pci.h"
29 #include "exec/memattrs.h"
30 #include "exec/address-spaces.h"
31 #include "hw/boards.h"
32 #include "hw/irq.h"
33 #include "qemu/log.h"
34
35 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
36 KVM_CAP_LAST_INFO
37 };
38
39 static bool cap_has_mp_state;
40 static bool cap_has_inject_serror_esr;
41 static bool cap_has_inject_ext_dabt;
42
43 static ARMHostCPUFeatures arm_host_cpu_features;
44
45 int kvm_arm_vcpu_init(CPUState *cs)
46 {
47 ARMCPU *cpu = ARM_CPU(cs);
48 struct kvm_vcpu_init init;
49
50 init.target = cpu->kvm_target;
51 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
52
53 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
54 }
55
56 int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
57 {
58 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
59 }
60
61 void kvm_arm_init_serror_injection(CPUState *cs)
62 {
63 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
64 KVM_CAP_ARM_INJECT_SERROR_ESR);
65 }
66
67 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
68 int *fdarray,
69 struct kvm_vcpu_init *init)
70 {
71 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
72 int max_vm_pa_size;
73
74 kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
75 if (kvmfd < 0) {
76 goto err;
77 }
78 max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
79 if (max_vm_pa_size < 0) {
80 max_vm_pa_size = 0;
81 }
82 do {
83 vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
84 } while (vmfd == -1 && errno == EINTR);
85 if (vmfd < 0) {
86 goto err;
87 }
88 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
89 if (cpufd < 0) {
90 goto err;
91 }
92
93 if (!init) {
94 /* Caller doesn't want the VCPU to be initialized, so skip it */
95 goto finish;
96 }
97
98 if (init->target == -1) {
99 struct kvm_vcpu_init preferred;
100
101 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
102 if (!ret) {
103 init->target = preferred.target;
104 }
105 }
106 if (ret >= 0) {
107 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
108 if (ret < 0) {
109 goto err;
110 }
111 } else if (cpus_to_try) {
112 /* Old kernel which doesn't know about the
113 * PREFERRED_TARGET ioctl: we know it will only support
114 * creating one kind of guest CPU which is its preferred
115 * CPU type.
116 */
117 struct kvm_vcpu_init try;
118
119 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
120 try.target = *cpus_to_try++;
121 memcpy(try.features, init->features, sizeof(init->features));
122 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
123 if (ret >= 0) {
124 break;
125 }
126 }
127 if (ret < 0) {
128 goto err;
129 }
130 init->target = try.target;
131 } else {
132 /* Treat a NULL cpus_to_try argument the same as an empty
133 * list, which means we will fail the call since this must
134 * be an old kernel which doesn't support PREFERRED_TARGET.
135 */
136 goto err;
137 }
138
139 finish:
140 fdarray[0] = kvmfd;
141 fdarray[1] = vmfd;
142 fdarray[2] = cpufd;
143
144 return true;
145
146 err:
147 if (cpufd >= 0) {
148 close(cpufd);
149 }
150 if (vmfd >= 0) {
151 close(vmfd);
152 }
153 if (kvmfd >= 0) {
154 close(kvmfd);
155 }
156
157 return false;
158 }
159
160 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
161 {
162 int i;
163
164 for (i = 2; i >= 0; i--) {
165 close(fdarray[i]);
166 }
167 }
168
169 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
170 {
171 CPUARMState *env = &cpu->env;
172
173 if (!arm_host_cpu_features.dtb_compatible) {
174 if (!kvm_enabled() ||
175 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
176 /* We can't report this error yet, so flag that we need to
177 * in arm_cpu_realizefn().
178 */
179 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
180 cpu->host_cpu_probe_failed = true;
181 return;
182 }
183 }
184
185 cpu->kvm_target = arm_host_cpu_features.target;
186 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
187 cpu->isar = arm_host_cpu_features.isar;
188 env->features = arm_host_cpu_features.features;
189 }
190
191 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
192 {
193 return !ARM_CPU(obj)->kvm_adjvtime;
194 }
195
196 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
197 {
198 ARM_CPU(obj)->kvm_adjvtime = !value;
199 }
200
201 static bool kvm_steal_time_get(Object *obj, Error **errp)
202 {
203 return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
204 }
205
206 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
207 {
208 ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
209 }
210
211 /* KVM VCPU properties should be prefixed with "kvm-". */
212 void kvm_arm_add_vcpu_properties(Object *obj)
213 {
214 ARMCPU *cpu = ARM_CPU(obj);
215 CPUARMState *env = &cpu->env;
216
217 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
218 cpu->kvm_adjvtime = true;
219 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
220 kvm_no_adjvtime_set);
221 object_property_set_description(obj, "kvm-no-adjvtime",
222 "Set on to disable the adjustment of "
223 "the virtual counter. VM stopped time "
224 "will be counted.");
225 }
226
227 cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
228 object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
229 kvm_steal_time_set);
230 object_property_set_description(obj, "kvm-steal-time",
231 "Set off to disable KVM steal time.");
232 }
233
234 bool kvm_arm_pmu_supported(void)
235 {
236 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
237 }
238
239 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
240 {
241 KVMState *s = KVM_STATE(ms->accelerator);
242 int ret;
243
244 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
245 *fixed_ipa = ret <= 0;
246
247 return ret > 0 ? ret : 40;
248 }
249
250 int kvm_arch_init(MachineState *ms, KVMState *s)
251 {
252 int ret = 0;
253 /* For ARM interrupt delivery is always asynchronous,
254 * whether we are using an in-kernel VGIC or not.
255 */
256 kvm_async_interrupts_allowed = true;
257
258 /*
259 * PSCI wakes up secondary cores, so we always need to
260 * have vCPUs waiting in kernel space
261 */
262 kvm_halt_in_kernel_allowed = true;
263
264 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
265
266 if (ms->smp.cpus > 256 &&
267 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
268 error_report("Using more than 256 vcpus requires a host kernel "
269 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
270 ret = -EINVAL;
271 }
272
273 if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
274 if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
275 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
276 } else {
277 /* Set status for supporting the external dabt injection */
278 cap_has_inject_ext_dabt = kvm_check_extension(s,
279 KVM_CAP_ARM_INJECT_EXT_DABT);
280 }
281 }
282
283 kvm_arm_init_debug(s);
284
285 return ret;
286 }
287
288 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
289 {
290 return cpu->cpu_index;
291 }
292
293 /* We track all the KVM devices which need their memory addresses
294 * passing to the kernel in a list of these structures.
295 * When board init is complete we run through the list and
296 * tell the kernel the base addresses of the memory regions.
297 * We use a MemoryListener to track mapping and unmapping of
298 * the regions during board creation, so the board models don't
299 * need to do anything special for the KVM case.
300 *
301 * Sometimes the address must be OR'ed with some other fields
302 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
303 * @kda_addr_ormask aims at storing the value of those fields.
304 */
305 typedef struct KVMDevice {
306 struct kvm_arm_device_addr kda;
307 struct kvm_device_attr kdattr;
308 uint64_t kda_addr_ormask;
309 MemoryRegion *mr;
310 QSLIST_ENTRY(KVMDevice) entries;
311 int dev_fd;
312 } KVMDevice;
313
314 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
315
316 static void kvm_arm_devlistener_add(MemoryListener *listener,
317 MemoryRegionSection *section)
318 {
319 KVMDevice *kd;
320
321 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
322 if (section->mr == kd->mr) {
323 kd->kda.addr = section->offset_within_address_space;
324 }
325 }
326 }
327
328 static void kvm_arm_devlistener_del(MemoryListener *listener,
329 MemoryRegionSection *section)
330 {
331 KVMDevice *kd;
332
333 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
334 if (section->mr == kd->mr) {
335 kd->kda.addr = -1;
336 }
337 }
338 }
339
340 static MemoryListener devlistener = {
341 .name = "kvm-arm",
342 .region_add = kvm_arm_devlistener_add,
343 .region_del = kvm_arm_devlistener_del,
344 };
345
346 static void kvm_arm_set_device_addr(KVMDevice *kd)
347 {
348 struct kvm_device_attr *attr = &kd->kdattr;
349 int ret;
350
351 /* If the device control API is available and we have a device fd on the
352 * KVMDevice struct, let's use the newer API
353 */
354 if (kd->dev_fd >= 0) {
355 uint64_t addr = kd->kda.addr;
356
357 addr |= kd->kda_addr_ormask;
358 attr->addr = (uintptr_t)&addr;
359 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
360 } else {
361 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
362 }
363
364 if (ret < 0) {
365 fprintf(stderr, "Failed to set device address: %s\n",
366 strerror(-ret));
367 abort();
368 }
369 }
370
371 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
372 {
373 KVMDevice *kd, *tkd;
374
375 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
376 if (kd->kda.addr != -1) {
377 kvm_arm_set_device_addr(kd);
378 }
379 memory_region_unref(kd->mr);
380 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
381 g_free(kd);
382 }
383 memory_listener_unregister(&devlistener);
384 }
385
386 static Notifier notify = {
387 .notify = kvm_arm_machine_init_done,
388 };
389
390 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
391 uint64_t attr, int dev_fd, uint64_t addr_ormask)
392 {
393 KVMDevice *kd;
394
395 if (!kvm_irqchip_in_kernel()) {
396 return;
397 }
398
399 if (QSLIST_EMPTY(&kvm_devices_head)) {
400 memory_listener_register(&devlistener, &address_space_memory);
401 qemu_add_machine_init_done_notifier(&notify);
402 }
403 kd = g_new0(KVMDevice, 1);
404 kd->mr = mr;
405 kd->kda.id = devid;
406 kd->kda.addr = -1;
407 kd->kdattr.flags = 0;
408 kd->kdattr.group = group;
409 kd->kdattr.attr = attr;
410 kd->dev_fd = dev_fd;
411 kd->kda_addr_ormask = addr_ormask;
412 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
413 memory_region_ref(kd->mr);
414 }
415
416 static int compare_u64(const void *a, const void *b)
417 {
418 if (*(uint64_t *)a > *(uint64_t *)b) {
419 return 1;
420 }
421 if (*(uint64_t *)a < *(uint64_t *)b) {
422 return -1;
423 }
424 return 0;
425 }
426
427 /*
428 * cpreg_values are sorted in ascending order by KVM register ID
429 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
430 * the storage for a KVM register by ID with a binary search.
431 */
432 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
433 {
434 uint64_t *res;
435
436 res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
437 sizeof(uint64_t), compare_u64);
438 assert(res);
439
440 return &cpu->cpreg_values[res - cpu->cpreg_indexes];
441 }
442
443 /* Initialize the ARMCPU cpreg list according to the kernel's
444 * definition of what CPU registers it knows about (and throw away
445 * the previous TCG-created cpreg list).
446 */
447 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
448 {
449 struct kvm_reg_list rl;
450 struct kvm_reg_list *rlp;
451 int i, ret, arraylen;
452 CPUState *cs = CPU(cpu);
453
454 rl.n = 0;
455 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
456 if (ret != -E2BIG) {
457 return ret;
458 }
459 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
460 rlp->n = rl.n;
461 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
462 if (ret) {
463 goto out;
464 }
465 /* Sort the list we get back from the kernel, since cpreg_tuples
466 * must be in strictly ascending order.
467 */
468 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
469
470 for (i = 0, arraylen = 0; i < rlp->n; i++) {
471 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
472 continue;
473 }
474 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
475 case KVM_REG_SIZE_U32:
476 case KVM_REG_SIZE_U64:
477 break;
478 default:
479 fprintf(stderr, "Can't handle size of register in kernel list\n");
480 ret = -EINVAL;
481 goto out;
482 }
483
484 arraylen++;
485 }
486
487 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
488 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
489 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
490 arraylen);
491 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
492 arraylen);
493 cpu->cpreg_array_len = arraylen;
494 cpu->cpreg_vmstate_array_len = arraylen;
495
496 for (i = 0, arraylen = 0; i < rlp->n; i++) {
497 uint64_t regidx = rlp->reg[i];
498 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
499 continue;
500 }
501 cpu->cpreg_indexes[arraylen] = regidx;
502 arraylen++;
503 }
504 assert(cpu->cpreg_array_len == arraylen);
505
506 if (!write_kvmstate_to_list(cpu)) {
507 /* Shouldn't happen unless kernel is inconsistent about
508 * what registers exist.
509 */
510 fprintf(stderr, "Initial read of kernel register state failed\n");
511 ret = -EINVAL;
512 goto out;
513 }
514
515 out:
516 g_free(rlp);
517 return ret;
518 }
519
520 bool write_kvmstate_to_list(ARMCPU *cpu)
521 {
522 CPUState *cs = CPU(cpu);
523 int i;
524 bool ok = true;
525
526 for (i = 0; i < cpu->cpreg_array_len; i++) {
527 struct kvm_one_reg r;
528 uint64_t regidx = cpu->cpreg_indexes[i];
529 uint32_t v32;
530 int ret;
531
532 r.id = regidx;
533
534 switch (regidx & KVM_REG_SIZE_MASK) {
535 case KVM_REG_SIZE_U32:
536 r.addr = (uintptr_t)&v32;
537 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
538 if (!ret) {
539 cpu->cpreg_values[i] = v32;
540 }
541 break;
542 case KVM_REG_SIZE_U64:
543 r.addr = (uintptr_t)(cpu->cpreg_values + i);
544 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
545 break;
546 default:
547 g_assert_not_reached();
548 }
549 if (ret) {
550 ok = false;
551 }
552 }
553 return ok;
554 }
555
556 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
557 {
558 CPUState *cs = CPU(cpu);
559 int i;
560 bool ok = true;
561
562 for (i = 0; i < cpu->cpreg_array_len; i++) {
563 struct kvm_one_reg r;
564 uint64_t regidx = cpu->cpreg_indexes[i];
565 uint32_t v32;
566 int ret;
567
568 if (kvm_arm_cpreg_level(regidx) > level) {
569 continue;
570 }
571
572 r.id = regidx;
573 switch (regidx & KVM_REG_SIZE_MASK) {
574 case KVM_REG_SIZE_U32:
575 v32 = cpu->cpreg_values[i];
576 r.addr = (uintptr_t)&v32;
577 break;
578 case KVM_REG_SIZE_U64:
579 r.addr = (uintptr_t)(cpu->cpreg_values + i);
580 break;
581 default:
582 g_assert_not_reached();
583 }
584 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
585 if (ret) {
586 /* We might fail for "unknown register" and also for
587 * "you tried to set a register which is constant with
588 * a different value from what it actually contains".
589 */
590 ok = false;
591 }
592 }
593 return ok;
594 }
595
596 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
597 {
598 /* KVM virtual time adjustment */
599 if (cpu->kvm_vtime_dirty) {
600 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
601 }
602 }
603
604 void kvm_arm_cpu_post_load(ARMCPU *cpu)
605 {
606 /* KVM virtual time adjustment */
607 if (cpu->kvm_adjvtime) {
608 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
609 cpu->kvm_vtime_dirty = true;
610 }
611 }
612
613 void kvm_arm_reset_vcpu(ARMCPU *cpu)
614 {
615 int ret;
616
617 /* Re-init VCPU so that all registers are set to
618 * their respective reset values.
619 */
620 ret = kvm_arm_vcpu_init(CPU(cpu));
621 if (ret < 0) {
622 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
623 abort();
624 }
625 if (!write_kvmstate_to_list(cpu)) {
626 fprintf(stderr, "write_kvmstate_to_list failed\n");
627 abort();
628 }
629 /*
630 * Sync the reset values also into the CPUState. This is necessary
631 * because the next thing we do will be a kvm_arch_put_registers()
632 * which will update the list values from the CPUState before copying
633 * the list values back to KVM. It's OK to ignore failure returns here
634 * for the same reason we do so in kvm_arch_get_registers().
635 */
636 write_list_to_cpustate(cpu);
637 }
638
639 /*
640 * Update KVM's MP_STATE based on what QEMU thinks it is
641 */
642 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
643 {
644 if (cap_has_mp_state) {
645 struct kvm_mp_state mp_state = {
646 .mp_state = (cpu->power_state == PSCI_OFF) ?
647 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
648 };
649 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
650 if (ret) {
651 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
652 __func__, ret, strerror(-ret));
653 return -1;
654 }
655 }
656
657 return 0;
658 }
659
660 /*
661 * Sync the KVM MP_STATE into QEMU
662 */
663 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
664 {
665 if (cap_has_mp_state) {
666 struct kvm_mp_state mp_state;
667 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
668 if (ret) {
669 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
670 __func__, ret, strerror(-ret));
671 abort();
672 }
673 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
674 PSCI_OFF : PSCI_ON;
675 }
676
677 return 0;
678 }
679
680 void kvm_arm_get_virtual_time(CPUState *cs)
681 {
682 ARMCPU *cpu = ARM_CPU(cs);
683 struct kvm_one_reg reg = {
684 .id = KVM_REG_ARM_TIMER_CNT,
685 .addr = (uintptr_t)&cpu->kvm_vtime,
686 };
687 int ret;
688
689 if (cpu->kvm_vtime_dirty) {
690 return;
691 }
692
693 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
694 if (ret) {
695 error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
696 abort();
697 }
698
699 cpu->kvm_vtime_dirty = true;
700 }
701
702 void kvm_arm_put_virtual_time(CPUState *cs)
703 {
704 ARMCPU *cpu = ARM_CPU(cs);
705 struct kvm_one_reg reg = {
706 .id = KVM_REG_ARM_TIMER_CNT,
707 .addr = (uintptr_t)&cpu->kvm_vtime,
708 };
709 int ret;
710
711 if (!cpu->kvm_vtime_dirty) {
712 return;
713 }
714
715 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
716 if (ret) {
717 error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
718 abort();
719 }
720
721 cpu->kvm_vtime_dirty = false;
722 }
723
724 int kvm_put_vcpu_events(ARMCPU *cpu)
725 {
726 CPUARMState *env = &cpu->env;
727 struct kvm_vcpu_events events;
728 int ret;
729
730 if (!kvm_has_vcpu_events()) {
731 return 0;
732 }
733
734 memset(&events, 0, sizeof(events));
735 events.exception.serror_pending = env->serror.pending;
736
737 /* Inject SError to guest with specified syndrome if host kernel
738 * supports it, otherwise inject SError without syndrome.
739 */
740 if (cap_has_inject_serror_esr) {
741 events.exception.serror_has_esr = env->serror.has_esr;
742 events.exception.serror_esr = env->serror.esr;
743 }
744
745 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
746 if (ret) {
747 error_report("failed to put vcpu events");
748 }
749
750 return ret;
751 }
752
753 int kvm_get_vcpu_events(ARMCPU *cpu)
754 {
755 CPUARMState *env = &cpu->env;
756 struct kvm_vcpu_events events;
757 int ret;
758
759 if (!kvm_has_vcpu_events()) {
760 return 0;
761 }
762
763 memset(&events, 0, sizeof(events));
764 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
765 if (ret) {
766 error_report("failed to get vcpu events");
767 return ret;
768 }
769
770 env->serror.pending = events.exception.serror_pending;
771 env->serror.has_esr = events.exception.serror_has_esr;
772 env->serror.esr = events.exception.serror_esr;
773
774 return 0;
775 }
776
777 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
778 {
779 ARMCPU *cpu = ARM_CPU(cs);
780 CPUARMState *env = &cpu->env;
781
782 if (unlikely(env->ext_dabt_raised)) {
783 /*
784 * Verifying that the ext DABT has been properly injected,
785 * otherwise risking indefinitely re-running the faulting instruction
786 * Covering a very narrow case for kernels 5.5..5.5.4
787 * when injected abort was misconfigured to be
788 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
789 */
790 if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
791 unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
792
793 error_report("Data abort exception with no valid ISS generated by "
794 "guest memory access. KVM unable to emulate faulting "
795 "instruction. Failed to inject an external data abort "
796 "into the guest.");
797 abort();
798 }
799 /* Clear the status */
800 env->ext_dabt_raised = 0;
801 }
802 }
803
804 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
805 {
806 ARMCPU *cpu;
807 uint32_t switched_level;
808
809 if (kvm_irqchip_in_kernel()) {
810 /*
811 * We only need to sync timer states with user-space interrupt
812 * controllers, so return early and save cycles if we don't.
813 */
814 return MEMTXATTRS_UNSPECIFIED;
815 }
816
817 cpu = ARM_CPU(cs);
818
819 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
820 if (run->s.regs.device_irq_level != cpu->device_irq_level) {
821 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
822
823 qemu_mutex_lock_iothread();
824
825 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
826 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
827 !!(run->s.regs.device_irq_level &
828 KVM_ARM_DEV_EL1_VTIMER));
829 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
830 }
831
832 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
833 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
834 !!(run->s.regs.device_irq_level &
835 KVM_ARM_DEV_EL1_PTIMER));
836 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
837 }
838
839 if (switched_level & KVM_ARM_DEV_PMU) {
840 qemu_set_irq(cpu->pmu_interrupt,
841 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
842 switched_level &= ~KVM_ARM_DEV_PMU;
843 }
844
845 if (switched_level) {
846 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
847 __func__, switched_level);
848 }
849
850 /* We also mark unknown levels as processed to not waste cycles */
851 cpu->device_irq_level = run->s.regs.device_irq_level;
852 qemu_mutex_unlock_iothread();
853 }
854
855 return MEMTXATTRS_UNSPECIFIED;
856 }
857
858 void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
859 {
860 CPUState *cs = opaque;
861 ARMCPU *cpu = ARM_CPU(cs);
862
863 if (running) {
864 if (cpu->kvm_adjvtime) {
865 kvm_arm_put_virtual_time(cs);
866 }
867 } else {
868 if (cpu->kvm_adjvtime) {
869 kvm_arm_get_virtual_time(cs);
870 }
871 }
872 }
873
874 /**
875 * kvm_arm_handle_dabt_nisv:
876 * @cs: CPUState
877 * @esr_iss: ISS encoding (limited) for the exception from Data Abort
878 * ISV bit set to '0b0' -> no valid instruction syndrome
879 * @fault_ipa: faulting address for the synchronous data abort
880 *
881 * Returns: 0 if the exception has been handled, < 0 otherwise
882 */
883 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
884 uint64_t fault_ipa)
885 {
886 ARMCPU *cpu = ARM_CPU(cs);
887 CPUARMState *env = &cpu->env;
888 /*
889 * Request KVM to inject the external data abort into the guest
890 */
891 if (cap_has_inject_ext_dabt) {
892 struct kvm_vcpu_events events = { };
893 /*
894 * The external data abort event will be handled immediately by KVM
895 * using the address fault that triggered the exit on given VCPU.
896 * Requesting injection of the external data abort does not rely
897 * on any other VCPU state. Therefore, in this particular case, the VCPU
898 * synchronization can be exceptionally skipped.
899 */
900 events.exception.ext_dabt_pending = 1;
901 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
902 if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
903 env->ext_dabt_raised = 1;
904 return 0;
905 }
906 } else {
907 error_report("Data abort exception triggered by guest memory access "
908 "at physical address: 0x" TARGET_FMT_lx,
909 (target_ulong)fault_ipa);
910 error_printf("KVM unable to emulate faulting instruction.\n");
911 }
912 return -1;
913 }
914
915 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
916 {
917 int ret = 0;
918
919 switch (run->exit_reason) {
920 case KVM_EXIT_DEBUG:
921 if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
922 ret = EXCP_DEBUG;
923 } /* otherwise return to guest */
924 break;
925 case KVM_EXIT_ARM_NISV:
926 /* External DABT with no valid iss to decode */
927 ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
928 run->arm_nisv.fault_ipa);
929 break;
930 default:
931 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
932 __func__, run->exit_reason);
933 break;
934 }
935 return ret;
936 }
937
938 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
939 {
940 return true;
941 }
942
943 int kvm_arch_process_async_events(CPUState *cs)
944 {
945 return 0;
946 }
947
948 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
949 {
950 if (kvm_sw_breakpoints_active(cs)) {
951 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
952 }
953 if (kvm_arm_hw_debug_active(cs)) {
954 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
955 kvm_arm_copy_hw_debug_data(&dbg->arch);
956 }
957 }
958
959 void kvm_arch_init_irq_routing(KVMState *s)
960 {
961 }
962
963 int kvm_arch_irqchip_create(KVMState *s)
964 {
965 if (kvm_kernel_irqchip_split()) {
966 error_report("-machine kernel_irqchip=split is not supported on ARM.");
967 exit(1);
968 }
969
970 /* If we can create the VGIC using the newer device control API, we
971 * let the device do this when it initializes itself, otherwise we
972 * fall back to the old API */
973 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
974 }
975
976 int kvm_arm_vgic_probe(void)
977 {
978 int val = 0;
979
980 if (kvm_create_device(kvm_state,
981 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
982 val |= KVM_ARM_VGIC_V3;
983 }
984 if (kvm_create_device(kvm_state,
985 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
986 val |= KVM_ARM_VGIC_V2;
987 }
988 return val;
989 }
990
991 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
992 {
993 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
994 int cpu_idx1 = cpu % 256;
995 int cpu_idx2 = cpu / 256;
996
997 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
998 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
999
1000 return kvm_set_irq(kvm_state, kvm_irq, !!level);
1001 }
1002
1003 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1004 uint64_t address, uint32_t data, PCIDevice *dev)
1005 {
1006 AddressSpace *as = pci_device_iommu_address_space(dev);
1007 hwaddr xlat, len, doorbell_gpa;
1008 MemoryRegionSection mrs;
1009 MemoryRegion *mr;
1010
1011 if (as == &address_space_memory) {
1012 return 0;
1013 }
1014
1015 /* MSI doorbell address is translated by an IOMMU */
1016
1017 RCU_READ_LOCK_GUARD();
1018
1019 mr = address_space_translate(as, address, &xlat, &len, true,
1020 MEMTXATTRS_UNSPECIFIED);
1021
1022 if (!mr) {
1023 return 1;
1024 }
1025
1026 mrs = memory_region_find(mr, xlat, 1);
1027
1028 if (!mrs.mr) {
1029 return 1;
1030 }
1031
1032 doorbell_gpa = mrs.offset_within_address_space;
1033 memory_region_unref(mrs.mr);
1034
1035 route->u.msi.address_lo = doorbell_gpa;
1036 route->u.msi.address_hi = doorbell_gpa >> 32;
1037
1038 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1039
1040 return 0;
1041 }
1042
1043 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1044 int vector, PCIDevice *dev)
1045 {
1046 return 0;
1047 }
1048
1049 int kvm_arch_release_virq_post(int virq)
1050 {
1051 return 0;
1052 }
1053
1054 int kvm_arch_msi_data_to_gsi(uint32_t data)
1055 {
1056 return (data - 32) & 0xffff;
1057 }
1058
1059 bool kvm_arch_cpu_check_are_resettable(void)
1060 {
1061 return true;
1062 }
1063
1064 void kvm_arch_accel_class_init(ObjectClass *oc)
1065 {
1066 }