]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/kvm.c
Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20191015' into...
[mirror_qemu.git] / target / arm / kvm.c
1 /*
2 * ARM implementation of KVM hooks
3 *
4 * Copyright Christoffer Dall 2009-2010
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
8 *
9 */
10
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13
14 #include <linux/kvm.h>
15
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "qemu/main-loop.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
22 #include "sysemu/kvm_int.h"
23 #include "kvm_arm.h"
24 #include "cpu.h"
25 #include "trace.h"
26 #include "internals.h"
27 #include "hw/pci/pci.h"
28 #include "exec/memattrs.h"
29 #include "exec/address-spaces.h"
30 #include "hw/boards.h"
31 #include "hw/irq.h"
32 #include "qemu/log.h"
33
34 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
35 KVM_CAP_LAST_INFO
36 };
37
38 static bool cap_has_mp_state;
39 static bool cap_has_inject_serror_esr;
40
41 static ARMHostCPUFeatures arm_host_cpu_features;
42
43 int kvm_arm_vcpu_init(CPUState *cs)
44 {
45 ARMCPU *cpu = ARM_CPU(cs);
46 struct kvm_vcpu_init init;
47
48 init.target = cpu->kvm_target;
49 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
50
51 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
52 }
53
54 void kvm_arm_init_serror_injection(CPUState *cs)
55 {
56 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
57 KVM_CAP_ARM_INJECT_SERROR_ESR);
58 }
59
60 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
61 int *fdarray,
62 struct kvm_vcpu_init *init)
63 {
64 int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
65
66 kvmfd = qemu_open("/dev/kvm", O_RDWR);
67 if (kvmfd < 0) {
68 goto err;
69 }
70 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
71 if (vmfd < 0) {
72 goto err;
73 }
74 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
75 if (cpufd < 0) {
76 goto err;
77 }
78
79 if (!init) {
80 /* Caller doesn't want the VCPU to be initialized, so skip it */
81 goto finish;
82 }
83
84 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
85 if (ret >= 0) {
86 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
87 if (ret < 0) {
88 goto err;
89 }
90 } else if (cpus_to_try) {
91 /* Old kernel which doesn't know about the
92 * PREFERRED_TARGET ioctl: we know it will only support
93 * creating one kind of guest CPU which is its preferred
94 * CPU type.
95 */
96 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
97 init->target = *cpus_to_try++;
98 memset(init->features, 0, sizeof(init->features));
99 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
100 if (ret >= 0) {
101 break;
102 }
103 }
104 if (ret < 0) {
105 goto err;
106 }
107 } else {
108 /* Treat a NULL cpus_to_try argument the same as an empty
109 * list, which means we will fail the call since this must
110 * be an old kernel which doesn't support PREFERRED_TARGET.
111 */
112 goto err;
113 }
114
115 finish:
116 fdarray[0] = kvmfd;
117 fdarray[1] = vmfd;
118 fdarray[2] = cpufd;
119
120 return true;
121
122 err:
123 if (cpufd >= 0) {
124 close(cpufd);
125 }
126 if (vmfd >= 0) {
127 close(vmfd);
128 }
129 if (kvmfd >= 0) {
130 close(kvmfd);
131 }
132
133 return false;
134 }
135
136 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
137 {
138 int i;
139
140 for (i = 2; i >= 0; i--) {
141 close(fdarray[i]);
142 }
143 }
144
145 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
146 {
147 CPUARMState *env = &cpu->env;
148
149 if (!arm_host_cpu_features.dtb_compatible) {
150 if (!kvm_enabled() ||
151 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
152 /* We can't report this error yet, so flag that we need to
153 * in arm_cpu_realizefn().
154 */
155 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
156 cpu->host_cpu_probe_failed = true;
157 return;
158 }
159 }
160
161 cpu->kvm_target = arm_host_cpu_features.target;
162 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
163 cpu->isar = arm_host_cpu_features.isar;
164 env->features = arm_host_cpu_features.features;
165 }
166
167 bool kvm_arm_pmu_supported(CPUState *cpu)
168 {
169 KVMState *s = KVM_STATE(current_machine->accelerator);
170
171 return kvm_check_extension(s, KVM_CAP_ARM_PMU_V3);
172 }
173
174 int kvm_arm_get_max_vm_ipa_size(MachineState *ms)
175 {
176 KVMState *s = KVM_STATE(ms->accelerator);
177 int ret;
178
179 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
180 return ret > 0 ? ret : 40;
181 }
182
183 int kvm_arch_init(MachineState *ms, KVMState *s)
184 {
185 int ret = 0;
186 /* For ARM interrupt delivery is always asynchronous,
187 * whether we are using an in-kernel VGIC or not.
188 */
189 kvm_async_interrupts_allowed = true;
190
191 /*
192 * PSCI wakes up secondary cores, so we always need to
193 * have vCPUs waiting in kernel space
194 */
195 kvm_halt_in_kernel_allowed = true;
196
197 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
198
199 if (ms->smp.cpus > 256 &&
200 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
201 error_report("Using more than 256 vcpus requires a host kernel "
202 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
203 ret = -EINVAL;
204 }
205
206 return ret;
207 }
208
209 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
210 {
211 return cpu->cpu_index;
212 }
213
214 /* We track all the KVM devices which need their memory addresses
215 * passing to the kernel in a list of these structures.
216 * When board init is complete we run through the list and
217 * tell the kernel the base addresses of the memory regions.
218 * We use a MemoryListener to track mapping and unmapping of
219 * the regions during board creation, so the board models don't
220 * need to do anything special for the KVM case.
221 *
222 * Sometimes the address must be OR'ed with some other fields
223 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
224 * @kda_addr_ormask aims at storing the value of those fields.
225 */
226 typedef struct KVMDevice {
227 struct kvm_arm_device_addr kda;
228 struct kvm_device_attr kdattr;
229 uint64_t kda_addr_ormask;
230 MemoryRegion *mr;
231 QSLIST_ENTRY(KVMDevice) entries;
232 int dev_fd;
233 } KVMDevice;
234
235 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
236
237 static void kvm_arm_devlistener_add(MemoryListener *listener,
238 MemoryRegionSection *section)
239 {
240 KVMDevice *kd;
241
242 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
243 if (section->mr == kd->mr) {
244 kd->kda.addr = section->offset_within_address_space;
245 }
246 }
247 }
248
249 static void kvm_arm_devlistener_del(MemoryListener *listener,
250 MemoryRegionSection *section)
251 {
252 KVMDevice *kd;
253
254 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
255 if (section->mr == kd->mr) {
256 kd->kda.addr = -1;
257 }
258 }
259 }
260
261 static MemoryListener devlistener = {
262 .region_add = kvm_arm_devlistener_add,
263 .region_del = kvm_arm_devlistener_del,
264 };
265
266 static void kvm_arm_set_device_addr(KVMDevice *kd)
267 {
268 struct kvm_device_attr *attr = &kd->kdattr;
269 int ret;
270
271 /* If the device control API is available and we have a device fd on the
272 * KVMDevice struct, let's use the newer API
273 */
274 if (kd->dev_fd >= 0) {
275 uint64_t addr = kd->kda.addr;
276
277 addr |= kd->kda_addr_ormask;
278 attr->addr = (uintptr_t)&addr;
279 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
280 } else {
281 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
282 }
283
284 if (ret < 0) {
285 fprintf(stderr, "Failed to set device address: %s\n",
286 strerror(-ret));
287 abort();
288 }
289 }
290
291 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
292 {
293 KVMDevice *kd, *tkd;
294
295 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
296 if (kd->kda.addr != -1) {
297 kvm_arm_set_device_addr(kd);
298 }
299 memory_region_unref(kd->mr);
300 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
301 g_free(kd);
302 }
303 memory_listener_unregister(&devlistener);
304 }
305
306 static Notifier notify = {
307 .notify = kvm_arm_machine_init_done,
308 };
309
310 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
311 uint64_t attr, int dev_fd, uint64_t addr_ormask)
312 {
313 KVMDevice *kd;
314
315 if (!kvm_irqchip_in_kernel()) {
316 return;
317 }
318
319 if (QSLIST_EMPTY(&kvm_devices_head)) {
320 memory_listener_register(&devlistener, &address_space_memory);
321 qemu_add_machine_init_done_notifier(&notify);
322 }
323 kd = g_new0(KVMDevice, 1);
324 kd->mr = mr;
325 kd->kda.id = devid;
326 kd->kda.addr = -1;
327 kd->kdattr.flags = 0;
328 kd->kdattr.group = group;
329 kd->kdattr.attr = attr;
330 kd->dev_fd = dev_fd;
331 kd->kda_addr_ormask = addr_ormask;
332 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
333 memory_region_ref(kd->mr);
334 }
335
336 static int compare_u64(const void *a, const void *b)
337 {
338 if (*(uint64_t *)a > *(uint64_t *)b) {
339 return 1;
340 }
341 if (*(uint64_t *)a < *(uint64_t *)b) {
342 return -1;
343 }
344 return 0;
345 }
346
347 /* Initialize the ARMCPU cpreg list according to the kernel's
348 * definition of what CPU registers it knows about (and throw away
349 * the previous TCG-created cpreg list).
350 */
351 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
352 {
353 struct kvm_reg_list rl;
354 struct kvm_reg_list *rlp;
355 int i, ret, arraylen;
356 CPUState *cs = CPU(cpu);
357
358 rl.n = 0;
359 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
360 if (ret != -E2BIG) {
361 return ret;
362 }
363 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
364 rlp->n = rl.n;
365 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
366 if (ret) {
367 goto out;
368 }
369 /* Sort the list we get back from the kernel, since cpreg_tuples
370 * must be in strictly ascending order.
371 */
372 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
373
374 for (i = 0, arraylen = 0; i < rlp->n; i++) {
375 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
376 continue;
377 }
378 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
379 case KVM_REG_SIZE_U32:
380 case KVM_REG_SIZE_U64:
381 break;
382 default:
383 fprintf(stderr, "Can't handle size of register in kernel list\n");
384 ret = -EINVAL;
385 goto out;
386 }
387
388 arraylen++;
389 }
390
391 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
392 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
393 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
394 arraylen);
395 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
396 arraylen);
397 cpu->cpreg_array_len = arraylen;
398 cpu->cpreg_vmstate_array_len = arraylen;
399
400 for (i = 0, arraylen = 0; i < rlp->n; i++) {
401 uint64_t regidx = rlp->reg[i];
402 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
403 continue;
404 }
405 cpu->cpreg_indexes[arraylen] = regidx;
406 arraylen++;
407 }
408 assert(cpu->cpreg_array_len == arraylen);
409
410 if (!write_kvmstate_to_list(cpu)) {
411 /* Shouldn't happen unless kernel is inconsistent about
412 * what registers exist.
413 */
414 fprintf(stderr, "Initial read of kernel register state failed\n");
415 ret = -EINVAL;
416 goto out;
417 }
418
419 out:
420 g_free(rlp);
421 return ret;
422 }
423
424 bool write_kvmstate_to_list(ARMCPU *cpu)
425 {
426 CPUState *cs = CPU(cpu);
427 int i;
428 bool ok = true;
429
430 for (i = 0; i < cpu->cpreg_array_len; i++) {
431 struct kvm_one_reg r;
432 uint64_t regidx = cpu->cpreg_indexes[i];
433 uint32_t v32;
434 int ret;
435
436 r.id = regidx;
437
438 switch (regidx & KVM_REG_SIZE_MASK) {
439 case KVM_REG_SIZE_U32:
440 r.addr = (uintptr_t)&v32;
441 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
442 if (!ret) {
443 cpu->cpreg_values[i] = v32;
444 }
445 break;
446 case KVM_REG_SIZE_U64:
447 r.addr = (uintptr_t)(cpu->cpreg_values + i);
448 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
449 break;
450 default:
451 abort();
452 }
453 if (ret) {
454 ok = false;
455 }
456 }
457 return ok;
458 }
459
460 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
461 {
462 CPUState *cs = CPU(cpu);
463 int i;
464 bool ok = true;
465
466 for (i = 0; i < cpu->cpreg_array_len; i++) {
467 struct kvm_one_reg r;
468 uint64_t regidx = cpu->cpreg_indexes[i];
469 uint32_t v32;
470 int ret;
471
472 if (kvm_arm_cpreg_level(regidx) > level) {
473 continue;
474 }
475
476 r.id = regidx;
477 switch (regidx & KVM_REG_SIZE_MASK) {
478 case KVM_REG_SIZE_U32:
479 v32 = cpu->cpreg_values[i];
480 r.addr = (uintptr_t)&v32;
481 break;
482 case KVM_REG_SIZE_U64:
483 r.addr = (uintptr_t)(cpu->cpreg_values + i);
484 break;
485 default:
486 abort();
487 }
488 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
489 if (ret) {
490 /* We might fail for "unknown register" and also for
491 * "you tried to set a register which is constant with
492 * a different value from what it actually contains".
493 */
494 ok = false;
495 }
496 }
497 return ok;
498 }
499
500 void kvm_arm_reset_vcpu(ARMCPU *cpu)
501 {
502 int ret;
503
504 /* Re-init VCPU so that all registers are set to
505 * their respective reset values.
506 */
507 ret = kvm_arm_vcpu_init(CPU(cpu));
508 if (ret < 0) {
509 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
510 abort();
511 }
512 if (!write_kvmstate_to_list(cpu)) {
513 fprintf(stderr, "write_kvmstate_to_list failed\n");
514 abort();
515 }
516 /*
517 * Sync the reset values also into the CPUState. This is necessary
518 * because the next thing we do will be a kvm_arch_put_registers()
519 * which will update the list values from the CPUState before copying
520 * the list values back to KVM. It's OK to ignore failure returns here
521 * for the same reason we do so in kvm_arch_get_registers().
522 */
523 write_list_to_cpustate(cpu);
524 }
525
526 /*
527 * Update KVM's MP_STATE based on what QEMU thinks it is
528 */
529 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
530 {
531 if (cap_has_mp_state) {
532 struct kvm_mp_state mp_state = {
533 .mp_state = (cpu->power_state == PSCI_OFF) ?
534 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
535 };
536 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
537 if (ret) {
538 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
539 __func__, ret, strerror(-ret));
540 return -1;
541 }
542 }
543
544 return 0;
545 }
546
547 /*
548 * Sync the KVM MP_STATE into QEMU
549 */
550 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
551 {
552 if (cap_has_mp_state) {
553 struct kvm_mp_state mp_state;
554 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
555 if (ret) {
556 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
557 __func__, ret, strerror(-ret));
558 abort();
559 }
560 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
561 PSCI_OFF : PSCI_ON;
562 }
563
564 return 0;
565 }
566
567 int kvm_put_vcpu_events(ARMCPU *cpu)
568 {
569 CPUARMState *env = &cpu->env;
570 struct kvm_vcpu_events events;
571 int ret;
572
573 if (!kvm_has_vcpu_events()) {
574 return 0;
575 }
576
577 memset(&events, 0, sizeof(events));
578 events.exception.serror_pending = env->serror.pending;
579
580 /* Inject SError to guest with specified syndrome if host kernel
581 * supports it, otherwise inject SError without syndrome.
582 */
583 if (cap_has_inject_serror_esr) {
584 events.exception.serror_has_esr = env->serror.has_esr;
585 events.exception.serror_esr = env->serror.esr;
586 }
587
588 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
589 if (ret) {
590 error_report("failed to put vcpu events");
591 }
592
593 return ret;
594 }
595
596 int kvm_get_vcpu_events(ARMCPU *cpu)
597 {
598 CPUARMState *env = &cpu->env;
599 struct kvm_vcpu_events events;
600 int ret;
601
602 if (!kvm_has_vcpu_events()) {
603 return 0;
604 }
605
606 memset(&events, 0, sizeof(events));
607 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
608 if (ret) {
609 error_report("failed to get vcpu events");
610 return ret;
611 }
612
613 env->serror.pending = events.exception.serror_pending;
614 env->serror.has_esr = events.exception.serror_has_esr;
615 env->serror.esr = events.exception.serror_esr;
616
617 return 0;
618 }
619
620 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
621 {
622 }
623
624 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
625 {
626 ARMCPU *cpu;
627 uint32_t switched_level;
628
629 if (kvm_irqchip_in_kernel()) {
630 /*
631 * We only need to sync timer states with user-space interrupt
632 * controllers, so return early and save cycles if we don't.
633 */
634 return MEMTXATTRS_UNSPECIFIED;
635 }
636
637 cpu = ARM_CPU(cs);
638
639 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
640 if (run->s.regs.device_irq_level != cpu->device_irq_level) {
641 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
642
643 qemu_mutex_lock_iothread();
644
645 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
646 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
647 !!(run->s.regs.device_irq_level &
648 KVM_ARM_DEV_EL1_VTIMER));
649 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
650 }
651
652 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
653 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
654 !!(run->s.regs.device_irq_level &
655 KVM_ARM_DEV_EL1_PTIMER));
656 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
657 }
658
659 if (switched_level & KVM_ARM_DEV_PMU) {
660 qemu_set_irq(cpu->pmu_interrupt,
661 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
662 switched_level &= ~KVM_ARM_DEV_PMU;
663 }
664
665 if (switched_level) {
666 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
667 __func__, switched_level);
668 }
669
670 /* We also mark unknown levels as processed to not waste cycles */
671 cpu->device_irq_level = run->s.regs.device_irq_level;
672 qemu_mutex_unlock_iothread();
673 }
674
675 return MEMTXATTRS_UNSPECIFIED;
676 }
677
678
679 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
680 {
681 int ret = 0;
682
683 switch (run->exit_reason) {
684 case KVM_EXIT_DEBUG:
685 if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
686 ret = EXCP_DEBUG;
687 } /* otherwise return to guest */
688 break;
689 default:
690 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
691 __func__, run->exit_reason);
692 break;
693 }
694 return ret;
695 }
696
697 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
698 {
699 return true;
700 }
701
702 int kvm_arch_process_async_events(CPUState *cs)
703 {
704 return 0;
705 }
706
707 /* The #ifdef protections are until 32bit headers are imported and can
708 * be removed once both 32 and 64 bit reach feature parity.
709 */
710 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
711 {
712 #ifdef KVM_GUESTDBG_USE_SW_BP
713 if (kvm_sw_breakpoints_active(cs)) {
714 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
715 }
716 #endif
717 #ifdef KVM_GUESTDBG_USE_HW
718 if (kvm_arm_hw_debug_active(cs)) {
719 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
720 kvm_arm_copy_hw_debug_data(&dbg->arch);
721 }
722 #endif
723 }
724
725 void kvm_arch_init_irq_routing(KVMState *s)
726 {
727 }
728
729 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
730 {
731 if (machine_kernel_irqchip_split(ms)) {
732 perror("-machine kernel_irqchip=split is not supported on ARM.");
733 exit(1);
734 }
735
736 /* If we can create the VGIC using the newer device control API, we
737 * let the device do this when it initializes itself, otherwise we
738 * fall back to the old API */
739 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
740 }
741
742 int kvm_arm_vgic_probe(void)
743 {
744 if (kvm_create_device(kvm_state,
745 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
746 return 3;
747 } else if (kvm_create_device(kvm_state,
748 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
749 return 2;
750 } else {
751 return 0;
752 }
753 }
754
755 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
756 {
757 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
758 int cpu_idx1 = cpu % 256;
759 int cpu_idx2 = cpu / 256;
760
761 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
762 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
763
764 return kvm_set_irq(kvm_state, kvm_irq, !!level);
765 }
766
767 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
768 uint64_t address, uint32_t data, PCIDevice *dev)
769 {
770 AddressSpace *as = pci_device_iommu_address_space(dev);
771 hwaddr xlat, len, doorbell_gpa;
772 MemoryRegionSection mrs;
773 MemoryRegion *mr;
774 int ret = 1;
775
776 if (as == &address_space_memory) {
777 return 0;
778 }
779
780 /* MSI doorbell address is translated by an IOMMU */
781
782 rcu_read_lock();
783 mr = address_space_translate(as, address, &xlat, &len, true,
784 MEMTXATTRS_UNSPECIFIED);
785 if (!mr) {
786 goto unlock;
787 }
788 mrs = memory_region_find(mr, xlat, 1);
789 if (!mrs.mr) {
790 goto unlock;
791 }
792
793 doorbell_gpa = mrs.offset_within_address_space;
794 memory_region_unref(mrs.mr);
795
796 route->u.msi.address_lo = doorbell_gpa;
797 route->u.msi.address_hi = doorbell_gpa >> 32;
798
799 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
800
801 ret = 0;
802
803 unlock:
804 rcu_read_unlock();
805 return ret;
806 }
807
808 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
809 int vector, PCIDevice *dev)
810 {
811 return 0;
812 }
813
814 int kvm_arch_release_virq_post(int virq)
815 {
816 return 0;
817 }
818
819 int kvm_arch_msi_data_to_gsi(uint32_t data)
820 {
821 return (data - 32) & 0xffff;
822 }