]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/kvm.c
target/arm/kvm: Have kvm_arm_sve_get_vls take a ARMCPU argument
[mirror_qemu.git] / target / arm / kvm.c
1 /*
2 * ARM implementation of KVM hooks
3 *
4 * Copyright Christoffer Dall 2009-2010
5 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
6 * Copyright Alex Bennée 2014, Linaro
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2 or later.
9 * See the COPYING file in the top-level directory.
10 *
11 */
12
13 #include "qemu/osdep.h"
14 #include <sys/ioctl.h>
15
16 #include <linux/kvm.h>
17
18 #include "qemu/timer.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qom/object.h"
22 #include "qapi/error.h"
23 #include "sysemu/sysemu.h"
24 #include "sysemu/runstate.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/kvm_int.h"
27 #include "kvm_arm.h"
28 #include "cpu.h"
29 #include "trace.h"
30 #include "internals.h"
31 #include "hw/pci/pci.h"
32 #include "exec/memattrs.h"
33 #include "exec/address-spaces.h"
34 #include "exec/gdbstub.h"
35 #include "hw/boards.h"
36 #include "hw/irq.h"
37 #include "qapi/visitor.h"
38 #include "qemu/log.h"
39 #include "hw/acpi/acpi.h"
40 #include "hw/acpi/ghes.h"
41
42 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
43 KVM_CAP_LAST_INFO
44 };
45
46 static bool cap_has_mp_state;
47 static bool cap_has_inject_serror_esr;
48 static bool cap_has_inject_ext_dabt;
49
50 /**
51 * ARMHostCPUFeatures: information about the host CPU (identified
52 * by asking the host kernel)
53 */
54 typedef struct ARMHostCPUFeatures {
55 ARMISARegisters isar;
56 uint64_t features;
57 uint32_t target;
58 const char *dtb_compatible;
59 } ARMHostCPUFeatures;
60
61 static ARMHostCPUFeatures arm_host_cpu_features;
62
63 /**
64 * kvm_arm_vcpu_init:
65 * @cs: CPUState
66 *
67 * Initialize (or reinitialize) the VCPU by invoking the
68 * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
69 * bitmask specified in the CPUState.
70 *
71 * Returns: 0 if success else < 0 error code
72 */
73 static int kvm_arm_vcpu_init(CPUState *cs)
74 {
75 ARMCPU *cpu = ARM_CPU(cs);
76 struct kvm_vcpu_init init;
77
78 init.target = cpu->kvm_target;
79 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
80
81 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
82 }
83
84 /**
85 * kvm_arm_vcpu_finalize:
86 * @cs: CPUState
87 * @feature: feature to finalize
88 *
89 * Finalizes the configuration of the specified VCPU feature by
90 * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
91 * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
92 * KVM's API documentation.
93 *
94 * Returns: 0 if success else < 0 error code
95 */
96 static int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
97 {
98 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
99 }
100
101 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
102 int *fdarray,
103 struct kvm_vcpu_init *init)
104 {
105 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
106 int max_vm_pa_size;
107
108 kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
109 if (kvmfd < 0) {
110 goto err;
111 }
112 max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
113 if (max_vm_pa_size < 0) {
114 max_vm_pa_size = 0;
115 }
116 do {
117 vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
118 } while (vmfd == -1 && errno == EINTR);
119 if (vmfd < 0) {
120 goto err;
121 }
122 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
123 if (cpufd < 0) {
124 goto err;
125 }
126
127 if (!init) {
128 /* Caller doesn't want the VCPU to be initialized, so skip it */
129 goto finish;
130 }
131
132 if (init->target == -1) {
133 struct kvm_vcpu_init preferred;
134
135 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
136 if (!ret) {
137 init->target = preferred.target;
138 }
139 }
140 if (ret >= 0) {
141 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
142 if (ret < 0) {
143 goto err;
144 }
145 } else if (cpus_to_try) {
146 /* Old kernel which doesn't know about the
147 * PREFERRED_TARGET ioctl: we know it will only support
148 * creating one kind of guest CPU which is its preferred
149 * CPU type.
150 */
151 struct kvm_vcpu_init try;
152
153 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
154 try.target = *cpus_to_try++;
155 memcpy(try.features, init->features, sizeof(init->features));
156 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
157 if (ret >= 0) {
158 break;
159 }
160 }
161 if (ret < 0) {
162 goto err;
163 }
164 init->target = try.target;
165 } else {
166 /* Treat a NULL cpus_to_try argument the same as an empty
167 * list, which means we will fail the call since this must
168 * be an old kernel which doesn't support PREFERRED_TARGET.
169 */
170 goto err;
171 }
172
173 finish:
174 fdarray[0] = kvmfd;
175 fdarray[1] = vmfd;
176 fdarray[2] = cpufd;
177
178 return true;
179
180 err:
181 if (cpufd >= 0) {
182 close(cpufd);
183 }
184 if (vmfd >= 0) {
185 close(vmfd);
186 }
187 if (kvmfd >= 0) {
188 close(kvmfd);
189 }
190
191 return false;
192 }
193
194 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
195 {
196 int i;
197
198 for (i = 2; i >= 0; i--) {
199 close(fdarray[i]);
200 }
201 }
202
203 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
204 {
205 uint64_t ret;
206 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
207 int err;
208
209 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
210 err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
211 if (err < 0) {
212 return -1;
213 }
214 *pret = ret;
215 return 0;
216 }
217
218 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
219 {
220 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
221
222 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
223 return ioctl(fd, KVM_GET_ONE_REG, &idreg);
224 }
225
226 static bool kvm_arm_pauth_supported(void)
227 {
228 return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
229 kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
230 }
231
232 static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
233 {
234 /* Identify the feature bits corresponding to the host CPU, and
235 * fill out the ARMHostCPUClass fields accordingly. To do this
236 * we have to create a scratch VM, create a single CPU inside it,
237 * and then query that CPU for the relevant ID registers.
238 */
239 int fdarray[3];
240 bool sve_supported;
241 bool pmu_supported = false;
242 uint64_t features = 0;
243 int err;
244
245 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
246 * we know these will only support creating one kind of guest CPU,
247 * which is its preferred CPU type. Fortunately these old kernels
248 * support only a very limited number of CPUs.
249 */
250 static const uint32_t cpus_to_try[] = {
251 KVM_ARM_TARGET_AEM_V8,
252 KVM_ARM_TARGET_FOUNDATION_V8,
253 KVM_ARM_TARGET_CORTEX_A57,
254 QEMU_KVM_ARM_TARGET_NONE
255 };
256 /*
257 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
258 * to use the preferred target
259 */
260 struct kvm_vcpu_init init = { .target = -1, };
261
262 /*
263 * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
264 * which is otherwise RAZ.
265 */
266 sve_supported = kvm_arm_sve_supported();
267 if (sve_supported) {
268 init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
269 }
270
271 /*
272 * Ask for Pointer Authentication if supported, so that we get
273 * the unsanitized field values for AA64ISAR1_EL1.
274 */
275 if (kvm_arm_pauth_supported()) {
276 init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
277 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
278 }
279
280 if (kvm_arm_pmu_supported()) {
281 init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
282 pmu_supported = true;
283 }
284
285 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
286 return false;
287 }
288
289 ahcf->target = init.target;
290 ahcf->dtb_compatible = "arm,arm-v8";
291
292 err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
293 ARM64_SYS_REG(3, 0, 0, 4, 0));
294 if (unlikely(err < 0)) {
295 /*
296 * Before v4.15, the kernel only exposed a limited number of system
297 * registers, not including any of the interesting AArch64 ID regs.
298 * For the most part we could leave these fields as zero with minimal
299 * effect, since this does not affect the values seen by the guest.
300 *
301 * However, it could cause problems down the line for QEMU,
302 * so provide a minimal v8.0 default.
303 *
304 * ??? Could read MIDR and use knowledge from cpu64.c.
305 * ??? Could map a page of memory into our temp guest and
306 * run the tiniest of hand-crafted kernels to extract
307 * the values seen by the guest.
308 * ??? Either of these sounds like too much effort just
309 * to work around running a modern host kernel.
310 */
311 ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
312 err = 0;
313 } else {
314 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
315 ARM64_SYS_REG(3, 0, 0, 4, 1));
316 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
317 ARM64_SYS_REG(3, 0, 0, 4, 5));
318 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
319 ARM64_SYS_REG(3, 0, 0, 5, 0));
320 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
321 ARM64_SYS_REG(3, 0, 0, 5, 1));
322 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
323 ARM64_SYS_REG(3, 0, 0, 6, 0));
324 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
325 ARM64_SYS_REG(3, 0, 0, 6, 1));
326 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2,
327 ARM64_SYS_REG(3, 0, 0, 6, 2));
328 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
329 ARM64_SYS_REG(3, 0, 0, 7, 0));
330 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
331 ARM64_SYS_REG(3, 0, 0, 7, 1));
332 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
333 ARM64_SYS_REG(3, 0, 0, 7, 2));
334
335 /*
336 * Note that if AArch32 support is not present in the host,
337 * the AArch32 sysregs are present to be read, but will
338 * return UNKNOWN values. This is neither better nor worse
339 * than skipping the reads and leaving 0, as we must avoid
340 * considering the values in every case.
341 */
342 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
343 ARM64_SYS_REG(3, 0, 0, 1, 0));
344 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
345 ARM64_SYS_REG(3, 0, 0, 1, 1));
346 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
347 ARM64_SYS_REG(3, 0, 0, 1, 2));
348 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
349 ARM64_SYS_REG(3, 0, 0, 1, 4));
350 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
351 ARM64_SYS_REG(3, 0, 0, 1, 5));
352 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
353 ARM64_SYS_REG(3, 0, 0, 1, 6));
354 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
355 ARM64_SYS_REG(3, 0, 0, 1, 7));
356 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
357 ARM64_SYS_REG(3, 0, 0, 2, 0));
358 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
359 ARM64_SYS_REG(3, 0, 0, 2, 1));
360 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
361 ARM64_SYS_REG(3, 0, 0, 2, 2));
362 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
363 ARM64_SYS_REG(3, 0, 0, 2, 3));
364 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
365 ARM64_SYS_REG(3, 0, 0, 2, 4));
366 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
367 ARM64_SYS_REG(3, 0, 0, 2, 5));
368 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
369 ARM64_SYS_REG(3, 0, 0, 2, 6));
370 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
371 ARM64_SYS_REG(3, 0, 0, 2, 7));
372
373 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
374 ARM64_SYS_REG(3, 0, 0, 3, 0));
375 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
376 ARM64_SYS_REG(3, 0, 0, 3, 1));
377 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
378 ARM64_SYS_REG(3, 0, 0, 3, 2));
379 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
380 ARM64_SYS_REG(3, 0, 0, 3, 4));
381 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
382 ARM64_SYS_REG(3, 0, 0, 3, 5));
383 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
384 ARM64_SYS_REG(3, 0, 0, 3, 6));
385
386 /*
387 * DBGDIDR is a bit complicated because the kernel doesn't
388 * provide an accessor for it in 64-bit mode, which is what this
389 * scratch VM is in, and there's no architected "64-bit sysreg
390 * which reads the same as the 32-bit register" the way there is
391 * for other ID registers. Instead we synthesize a value from the
392 * AArch64 ID_AA64DFR0, the same way the kernel code in
393 * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
394 * We only do this if the CPU supports AArch32 at EL1.
395 */
396 if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
397 int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
398 int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
399 int ctx_cmps =
400 FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
401 int version = 6; /* ARMv8 debug architecture */
402 bool has_el3 =
403 !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
404 uint32_t dbgdidr = 0;
405
406 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
407 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
408 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
409 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
410 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
411 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
412 dbgdidr |= (1 << 15); /* RES1 bit */
413 ahcf->isar.dbgdidr = dbgdidr;
414 }
415
416 if (pmu_supported) {
417 /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
418 err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
419 ARM64_SYS_REG(3, 3, 9, 12, 0));
420 }
421
422 if (sve_supported) {
423 /*
424 * There is a range of kernels between kernel commit 73433762fcae
425 * and f81cb2c3ad41 which have a bug where the kernel doesn't
426 * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
427 * enabled SVE support, which resulted in an error rather than RAZ.
428 * So only read the register if we set KVM_ARM_VCPU_SVE above.
429 */
430 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
431 ARM64_SYS_REG(3, 0, 0, 4, 4));
432 }
433 }
434
435 kvm_arm_destroy_scratch_host_vcpu(fdarray);
436
437 if (err < 0) {
438 return false;
439 }
440
441 /*
442 * We can assume any KVM supporting CPU is at least a v8
443 * with VFPv4+Neon; this in turn implies most of the other
444 * feature bits.
445 */
446 features |= 1ULL << ARM_FEATURE_V8;
447 features |= 1ULL << ARM_FEATURE_NEON;
448 features |= 1ULL << ARM_FEATURE_AARCH64;
449 features |= 1ULL << ARM_FEATURE_PMU;
450 features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
451
452 ahcf->features = features;
453
454 return true;
455 }
456
457 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
458 {
459 CPUARMState *env = &cpu->env;
460
461 if (!arm_host_cpu_features.dtb_compatible) {
462 if (!kvm_enabled() ||
463 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
464 /* We can't report this error yet, so flag that we need to
465 * in arm_cpu_realizefn().
466 */
467 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
468 cpu->host_cpu_probe_failed = true;
469 return;
470 }
471 }
472
473 cpu->kvm_target = arm_host_cpu_features.target;
474 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
475 cpu->isar = arm_host_cpu_features.isar;
476 env->features = arm_host_cpu_features.features;
477 }
478
479 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
480 {
481 return !ARM_CPU(obj)->kvm_adjvtime;
482 }
483
484 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
485 {
486 ARM_CPU(obj)->kvm_adjvtime = !value;
487 }
488
489 static bool kvm_steal_time_get(Object *obj, Error **errp)
490 {
491 return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
492 }
493
494 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
495 {
496 ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
497 }
498
499 /* KVM VCPU properties should be prefixed with "kvm-". */
500 void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
501 {
502 CPUARMState *env = &cpu->env;
503 Object *obj = OBJECT(cpu);
504
505 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
506 cpu->kvm_adjvtime = true;
507 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
508 kvm_no_adjvtime_set);
509 object_property_set_description(obj, "kvm-no-adjvtime",
510 "Set on to disable the adjustment of "
511 "the virtual counter. VM stopped time "
512 "will be counted.");
513 }
514
515 cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
516 object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
517 kvm_steal_time_set);
518 object_property_set_description(obj, "kvm-steal-time",
519 "Set off to disable KVM steal time.");
520 }
521
522 bool kvm_arm_pmu_supported(void)
523 {
524 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
525 }
526
527 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
528 {
529 KVMState *s = KVM_STATE(ms->accelerator);
530 int ret;
531
532 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
533 *fixed_ipa = ret <= 0;
534
535 return ret > 0 ? ret : 40;
536 }
537
538 int kvm_arch_get_default_type(MachineState *ms)
539 {
540 bool fixed_ipa;
541 int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
542 return fixed_ipa ? 0 : size;
543 }
544
545 int kvm_arch_init(MachineState *ms, KVMState *s)
546 {
547 int ret = 0;
548 /* For ARM interrupt delivery is always asynchronous,
549 * whether we are using an in-kernel VGIC or not.
550 */
551 kvm_async_interrupts_allowed = true;
552
553 /*
554 * PSCI wakes up secondary cores, so we always need to
555 * have vCPUs waiting in kernel space
556 */
557 kvm_halt_in_kernel_allowed = true;
558
559 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
560
561 /* Check whether user space can specify guest syndrome value */
562 cap_has_inject_serror_esr =
563 kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
564
565 if (ms->smp.cpus > 256 &&
566 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
567 error_report("Using more than 256 vcpus requires a host kernel "
568 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
569 ret = -EINVAL;
570 }
571
572 if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
573 if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
574 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
575 } else {
576 /* Set status for supporting the external dabt injection */
577 cap_has_inject_ext_dabt = kvm_check_extension(s,
578 KVM_CAP_ARM_INJECT_EXT_DABT);
579 }
580 }
581
582 if (s->kvm_eager_split_size) {
583 uint32_t sizes;
584
585 sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES);
586 if (!sizes) {
587 s->kvm_eager_split_size = 0;
588 warn_report("Eager Page Split support not available");
589 } else if (!(s->kvm_eager_split_size & sizes)) {
590 error_report("Eager Page Split requested chunk size not valid");
591 ret = -EINVAL;
592 } else {
593 ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0,
594 s->kvm_eager_split_size);
595 if (ret < 0) {
596 error_report("Enabling of Eager Page Split failed: %s",
597 strerror(-ret));
598 }
599 }
600 }
601
602 max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
603 hw_watchpoints = g_array_sized_new(true, true,
604 sizeof(HWWatchpoint), max_hw_wps);
605
606 max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
607 hw_breakpoints = g_array_sized_new(true, true,
608 sizeof(HWBreakpoint), max_hw_bps);
609
610 return ret;
611 }
612
613 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
614 {
615 return cpu->cpu_index;
616 }
617
618 /* We track all the KVM devices which need their memory addresses
619 * passing to the kernel in a list of these structures.
620 * When board init is complete we run through the list and
621 * tell the kernel the base addresses of the memory regions.
622 * We use a MemoryListener to track mapping and unmapping of
623 * the regions during board creation, so the board models don't
624 * need to do anything special for the KVM case.
625 *
626 * Sometimes the address must be OR'ed with some other fields
627 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
628 * @kda_addr_ormask aims at storing the value of those fields.
629 */
630 typedef struct KVMDevice {
631 struct kvm_arm_device_addr kda;
632 struct kvm_device_attr kdattr;
633 uint64_t kda_addr_ormask;
634 MemoryRegion *mr;
635 QSLIST_ENTRY(KVMDevice) entries;
636 int dev_fd;
637 } KVMDevice;
638
639 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
640
641 static void kvm_arm_devlistener_add(MemoryListener *listener,
642 MemoryRegionSection *section)
643 {
644 KVMDevice *kd;
645
646 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
647 if (section->mr == kd->mr) {
648 kd->kda.addr = section->offset_within_address_space;
649 }
650 }
651 }
652
653 static void kvm_arm_devlistener_del(MemoryListener *listener,
654 MemoryRegionSection *section)
655 {
656 KVMDevice *kd;
657
658 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
659 if (section->mr == kd->mr) {
660 kd->kda.addr = -1;
661 }
662 }
663 }
664
665 static MemoryListener devlistener = {
666 .name = "kvm-arm",
667 .region_add = kvm_arm_devlistener_add,
668 .region_del = kvm_arm_devlistener_del,
669 .priority = MEMORY_LISTENER_PRIORITY_MIN,
670 };
671
672 static void kvm_arm_set_device_addr(KVMDevice *kd)
673 {
674 struct kvm_device_attr *attr = &kd->kdattr;
675 int ret;
676
677 /* If the device control API is available and we have a device fd on the
678 * KVMDevice struct, let's use the newer API
679 */
680 if (kd->dev_fd >= 0) {
681 uint64_t addr = kd->kda.addr;
682
683 addr |= kd->kda_addr_ormask;
684 attr->addr = (uintptr_t)&addr;
685 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
686 } else {
687 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
688 }
689
690 if (ret < 0) {
691 fprintf(stderr, "Failed to set device address: %s\n",
692 strerror(-ret));
693 abort();
694 }
695 }
696
697 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
698 {
699 KVMDevice *kd, *tkd;
700
701 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
702 if (kd->kda.addr != -1) {
703 kvm_arm_set_device_addr(kd);
704 }
705 memory_region_unref(kd->mr);
706 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
707 g_free(kd);
708 }
709 memory_listener_unregister(&devlistener);
710 }
711
712 static Notifier notify = {
713 .notify = kvm_arm_machine_init_done,
714 };
715
716 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
717 uint64_t attr, int dev_fd, uint64_t addr_ormask)
718 {
719 KVMDevice *kd;
720
721 if (!kvm_irqchip_in_kernel()) {
722 return;
723 }
724
725 if (QSLIST_EMPTY(&kvm_devices_head)) {
726 memory_listener_register(&devlistener, &address_space_memory);
727 qemu_add_machine_init_done_notifier(&notify);
728 }
729 kd = g_new0(KVMDevice, 1);
730 kd->mr = mr;
731 kd->kda.id = devid;
732 kd->kda.addr = -1;
733 kd->kdattr.flags = 0;
734 kd->kdattr.group = group;
735 kd->kdattr.attr = attr;
736 kd->dev_fd = dev_fd;
737 kd->kda_addr_ormask = addr_ormask;
738 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
739 memory_region_ref(kd->mr);
740 }
741
742 static int compare_u64(const void *a, const void *b)
743 {
744 if (*(uint64_t *)a > *(uint64_t *)b) {
745 return 1;
746 }
747 if (*(uint64_t *)a < *(uint64_t *)b) {
748 return -1;
749 }
750 return 0;
751 }
752
753 /*
754 * cpreg_values are sorted in ascending order by KVM register ID
755 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
756 * the storage for a KVM register by ID with a binary search.
757 */
758 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
759 {
760 uint64_t *res;
761
762 res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
763 sizeof(uint64_t), compare_u64);
764 assert(res);
765
766 return &cpu->cpreg_values[res - cpu->cpreg_indexes];
767 }
768
769 /**
770 * kvm_arm_reg_syncs_via_cpreg_list:
771 * @regidx: KVM register index
772 *
773 * Return true if this KVM register should be synchronized via the
774 * cpreg list of arbitrary system registers, false if it is synchronized
775 * by hand using code in kvm_arch_get/put_registers().
776 */
777 static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
778 {
779 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
780 case KVM_REG_ARM_CORE:
781 case KVM_REG_ARM64_SVE:
782 return false;
783 default:
784 return true;
785 }
786 }
787
788 /**
789 * kvm_arm_init_cpreg_list:
790 * @cpu: ARMCPU
791 *
792 * Initialize the ARMCPU cpreg list according to the kernel's
793 * definition of what CPU registers it knows about (and throw away
794 * the previous TCG-created cpreg list).
795 *
796 * Returns: 0 if success, else < 0 error code
797 */
798 static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
799 {
800 struct kvm_reg_list rl;
801 struct kvm_reg_list *rlp;
802 int i, ret, arraylen;
803 CPUState *cs = CPU(cpu);
804
805 rl.n = 0;
806 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
807 if (ret != -E2BIG) {
808 return ret;
809 }
810 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
811 rlp->n = rl.n;
812 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
813 if (ret) {
814 goto out;
815 }
816 /* Sort the list we get back from the kernel, since cpreg_tuples
817 * must be in strictly ascending order.
818 */
819 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
820
821 for (i = 0, arraylen = 0; i < rlp->n; i++) {
822 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
823 continue;
824 }
825 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
826 case KVM_REG_SIZE_U32:
827 case KVM_REG_SIZE_U64:
828 break;
829 default:
830 fprintf(stderr, "Can't handle size of register in kernel list\n");
831 ret = -EINVAL;
832 goto out;
833 }
834
835 arraylen++;
836 }
837
838 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
839 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
840 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
841 arraylen);
842 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
843 arraylen);
844 cpu->cpreg_array_len = arraylen;
845 cpu->cpreg_vmstate_array_len = arraylen;
846
847 for (i = 0, arraylen = 0; i < rlp->n; i++) {
848 uint64_t regidx = rlp->reg[i];
849 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
850 continue;
851 }
852 cpu->cpreg_indexes[arraylen] = regidx;
853 arraylen++;
854 }
855 assert(cpu->cpreg_array_len == arraylen);
856
857 if (!write_kvmstate_to_list(cpu)) {
858 /* Shouldn't happen unless kernel is inconsistent about
859 * what registers exist.
860 */
861 fprintf(stderr, "Initial read of kernel register state failed\n");
862 ret = -EINVAL;
863 goto out;
864 }
865
866 out:
867 g_free(rlp);
868 return ret;
869 }
870
871 /**
872 * kvm_arm_cpreg_level:
873 * @regidx: KVM register index
874 *
875 * Return the level of this coprocessor/system register. Return value is
876 * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
877 */
878 static int kvm_arm_cpreg_level(uint64_t regidx)
879 {
880 /*
881 * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
882 * If a register should be written less often, you must add it here
883 * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
884 */
885 switch (regidx) {
886 case KVM_REG_ARM_TIMER_CNT:
887 case KVM_REG_ARM_PTIMER_CNT:
888 return KVM_PUT_FULL_STATE;
889 }
890 return KVM_PUT_RUNTIME_STATE;
891 }
892
893 bool write_kvmstate_to_list(ARMCPU *cpu)
894 {
895 CPUState *cs = CPU(cpu);
896 int i;
897 bool ok = true;
898
899 for (i = 0; i < cpu->cpreg_array_len; i++) {
900 uint64_t regidx = cpu->cpreg_indexes[i];
901 uint32_t v32;
902 int ret;
903
904 switch (regidx & KVM_REG_SIZE_MASK) {
905 case KVM_REG_SIZE_U32:
906 ret = kvm_get_one_reg(cs, regidx, &v32);
907 if (!ret) {
908 cpu->cpreg_values[i] = v32;
909 }
910 break;
911 case KVM_REG_SIZE_U64:
912 ret = kvm_get_one_reg(cs, regidx, cpu->cpreg_values + i);
913 break;
914 default:
915 g_assert_not_reached();
916 }
917 if (ret) {
918 ok = false;
919 }
920 }
921 return ok;
922 }
923
924 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
925 {
926 CPUState *cs = CPU(cpu);
927 int i;
928 bool ok = true;
929
930 for (i = 0; i < cpu->cpreg_array_len; i++) {
931 uint64_t regidx = cpu->cpreg_indexes[i];
932 uint32_t v32;
933 int ret;
934
935 if (kvm_arm_cpreg_level(regidx) > level) {
936 continue;
937 }
938
939 switch (regidx & KVM_REG_SIZE_MASK) {
940 case KVM_REG_SIZE_U32:
941 v32 = cpu->cpreg_values[i];
942 ret = kvm_set_one_reg(cs, regidx, &v32);
943 break;
944 case KVM_REG_SIZE_U64:
945 ret = kvm_set_one_reg(cs, regidx, cpu->cpreg_values + i);
946 break;
947 default:
948 g_assert_not_reached();
949 }
950 if (ret) {
951 /* We might fail for "unknown register" and also for
952 * "you tried to set a register which is constant with
953 * a different value from what it actually contains".
954 */
955 ok = false;
956 }
957 }
958 return ok;
959 }
960
961 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
962 {
963 /* KVM virtual time adjustment */
964 if (cpu->kvm_vtime_dirty) {
965 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
966 }
967 }
968
969 void kvm_arm_cpu_post_load(ARMCPU *cpu)
970 {
971 /* KVM virtual time adjustment */
972 if (cpu->kvm_adjvtime) {
973 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
974 cpu->kvm_vtime_dirty = true;
975 }
976 }
977
978 void kvm_arm_reset_vcpu(ARMCPU *cpu)
979 {
980 int ret;
981
982 /* Re-init VCPU so that all registers are set to
983 * their respective reset values.
984 */
985 ret = kvm_arm_vcpu_init(CPU(cpu));
986 if (ret < 0) {
987 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
988 abort();
989 }
990 if (!write_kvmstate_to_list(cpu)) {
991 fprintf(stderr, "write_kvmstate_to_list failed\n");
992 abort();
993 }
994 /*
995 * Sync the reset values also into the CPUState. This is necessary
996 * because the next thing we do will be a kvm_arch_put_registers()
997 * which will update the list values from the CPUState before copying
998 * the list values back to KVM. It's OK to ignore failure returns here
999 * for the same reason we do so in kvm_arch_get_registers().
1000 */
1001 write_list_to_cpustate(cpu);
1002 }
1003
1004 /*
1005 * Update KVM's MP_STATE based on what QEMU thinks it is
1006 */
1007 static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
1008 {
1009 if (cap_has_mp_state) {
1010 struct kvm_mp_state mp_state = {
1011 .mp_state = (cpu->power_state == PSCI_OFF) ?
1012 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
1013 };
1014 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1015 }
1016 return 0;
1017 }
1018
1019 /*
1020 * Sync the KVM MP_STATE into QEMU
1021 */
1022 static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
1023 {
1024 if (cap_has_mp_state) {
1025 struct kvm_mp_state mp_state;
1026 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
1027 if (ret) {
1028 return ret;
1029 }
1030 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
1031 PSCI_OFF : PSCI_ON;
1032 }
1033 return 0;
1034 }
1035
1036 /**
1037 * kvm_arm_get_virtual_time:
1038 * @cs: CPUState
1039 *
1040 * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
1041 */
1042 static void kvm_arm_get_virtual_time(CPUState *cs)
1043 {
1044 ARMCPU *cpu = ARM_CPU(cs);
1045 int ret;
1046
1047 if (cpu->kvm_vtime_dirty) {
1048 return;
1049 }
1050
1051 ret = kvm_get_one_reg(cs, KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1052 if (ret) {
1053 error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
1054 abort();
1055 }
1056
1057 cpu->kvm_vtime_dirty = true;
1058 }
1059
1060 /**
1061 * kvm_arm_put_virtual_time:
1062 * @cs: CPUState
1063 *
1064 * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
1065 */
1066 static void kvm_arm_put_virtual_time(CPUState *cs)
1067 {
1068 ARMCPU *cpu = ARM_CPU(cs);
1069 int ret;
1070
1071 if (!cpu->kvm_vtime_dirty) {
1072 return;
1073 }
1074
1075 ret = kvm_set_one_reg(cs, KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1076 if (ret) {
1077 error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
1078 abort();
1079 }
1080
1081 cpu->kvm_vtime_dirty = false;
1082 }
1083
1084 /**
1085 * kvm_put_vcpu_events:
1086 * @cpu: ARMCPU
1087 *
1088 * Put VCPU related state to kvm.
1089 *
1090 * Returns: 0 if success else < 0 error code
1091 */
1092 static int kvm_put_vcpu_events(ARMCPU *cpu)
1093 {
1094 CPUARMState *env = &cpu->env;
1095 struct kvm_vcpu_events events;
1096 int ret;
1097
1098 if (!kvm_has_vcpu_events()) {
1099 return 0;
1100 }
1101
1102 memset(&events, 0, sizeof(events));
1103 events.exception.serror_pending = env->serror.pending;
1104
1105 /* Inject SError to guest with specified syndrome if host kernel
1106 * supports it, otherwise inject SError without syndrome.
1107 */
1108 if (cap_has_inject_serror_esr) {
1109 events.exception.serror_has_esr = env->serror.has_esr;
1110 events.exception.serror_esr = env->serror.esr;
1111 }
1112
1113 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1114 if (ret) {
1115 error_report("failed to put vcpu events");
1116 }
1117
1118 return ret;
1119 }
1120
1121 /**
1122 * kvm_get_vcpu_events:
1123 * @cpu: ARMCPU
1124 *
1125 * Get VCPU related state from kvm.
1126 *
1127 * Returns: 0 if success else < 0 error code
1128 */
1129 static int kvm_get_vcpu_events(ARMCPU *cpu)
1130 {
1131 CPUARMState *env = &cpu->env;
1132 struct kvm_vcpu_events events;
1133 int ret;
1134
1135 if (!kvm_has_vcpu_events()) {
1136 return 0;
1137 }
1138
1139 memset(&events, 0, sizeof(events));
1140 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1141 if (ret) {
1142 error_report("failed to get vcpu events");
1143 return ret;
1144 }
1145
1146 env->serror.pending = events.exception.serror_pending;
1147 env->serror.has_esr = events.exception.serror_has_esr;
1148 env->serror.esr = events.exception.serror_esr;
1149
1150 return 0;
1151 }
1152
1153 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1154 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1155
1156 /*
1157 * ESR_EL1
1158 * ISS encoding
1159 * AARCH64: DFSC, bits [5:0]
1160 * AARCH32:
1161 * TTBCR.EAE == 0
1162 * FS[4] - DFSR[10]
1163 * FS[3:0] - DFSR[3:0]
1164 * TTBCR.EAE == 1
1165 * FS, bits [5:0]
1166 */
1167 #define ESR_DFSC(aarch64, lpae, v) \
1168 ((aarch64 || (lpae)) ? ((v) & 0x3F) \
1169 : (((v) >> 6) | ((v) & 0x1F)))
1170
1171 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1172 ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1173
1174 /**
1175 * kvm_arm_verify_ext_dabt_pending:
1176 * @cs: CPUState
1177 *
1178 * Verify the fault status code wrt the Ext DABT injection
1179 *
1180 * Returns: true if the fault status code is as expected, false otherwise
1181 */
1182 static bool kvm_arm_verify_ext_dabt_pending(CPUState *cs)
1183 {
1184 uint64_t dfsr_val;
1185
1186 if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
1187 ARMCPU *cpu = ARM_CPU(cs);
1188 CPUARMState *env = &cpu->env;
1189 int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
1190 int lpae = 0;
1191
1192 if (!aarch64_mode) {
1193 uint64_t ttbcr;
1194
1195 if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
1196 lpae = arm_feature(env, ARM_FEATURE_LPAE)
1197 && (ttbcr & TTBCR_EAE);
1198 }
1199 }
1200 /*
1201 * The verification here is based on the DFSC bits
1202 * of the ESR_EL1 reg only
1203 */
1204 return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
1205 ESR_DFSC_EXTABT(aarch64_mode, lpae));
1206 }
1207 return false;
1208 }
1209
1210 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1211 {
1212 ARMCPU *cpu = ARM_CPU(cs);
1213 CPUARMState *env = &cpu->env;
1214
1215 if (unlikely(env->ext_dabt_raised)) {
1216 /*
1217 * Verifying that the ext DABT has been properly injected,
1218 * otherwise risking indefinitely re-running the faulting instruction
1219 * Covering a very narrow case for kernels 5.5..5.5.4
1220 * when injected abort was misconfigured to be
1221 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
1222 */
1223 if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
1224 unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
1225
1226 error_report("Data abort exception with no valid ISS generated by "
1227 "guest memory access. KVM unable to emulate faulting "
1228 "instruction. Failed to inject an external data abort "
1229 "into the guest.");
1230 abort();
1231 }
1232 /* Clear the status */
1233 env->ext_dabt_raised = 0;
1234 }
1235 }
1236
1237 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1238 {
1239 ARMCPU *cpu;
1240 uint32_t switched_level;
1241
1242 if (kvm_irqchip_in_kernel()) {
1243 /*
1244 * We only need to sync timer states with user-space interrupt
1245 * controllers, so return early and save cycles if we don't.
1246 */
1247 return MEMTXATTRS_UNSPECIFIED;
1248 }
1249
1250 cpu = ARM_CPU(cs);
1251
1252 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
1253 if (run->s.regs.device_irq_level != cpu->device_irq_level) {
1254 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
1255
1256 qemu_mutex_lock_iothread();
1257
1258 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
1259 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
1260 !!(run->s.regs.device_irq_level &
1261 KVM_ARM_DEV_EL1_VTIMER));
1262 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
1263 }
1264
1265 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
1266 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
1267 !!(run->s.regs.device_irq_level &
1268 KVM_ARM_DEV_EL1_PTIMER));
1269 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
1270 }
1271
1272 if (switched_level & KVM_ARM_DEV_PMU) {
1273 qemu_set_irq(cpu->pmu_interrupt,
1274 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
1275 switched_level &= ~KVM_ARM_DEV_PMU;
1276 }
1277
1278 if (switched_level) {
1279 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
1280 __func__, switched_level);
1281 }
1282
1283 /* We also mark unknown levels as processed to not waste cycles */
1284 cpu->device_irq_level = run->s.regs.device_irq_level;
1285 qemu_mutex_unlock_iothread();
1286 }
1287
1288 return MEMTXATTRS_UNSPECIFIED;
1289 }
1290
1291 static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
1292 {
1293 CPUState *cs = opaque;
1294 ARMCPU *cpu = ARM_CPU(cs);
1295
1296 if (running) {
1297 if (cpu->kvm_adjvtime) {
1298 kvm_arm_put_virtual_time(cs);
1299 }
1300 } else {
1301 if (cpu->kvm_adjvtime) {
1302 kvm_arm_get_virtual_time(cs);
1303 }
1304 }
1305 }
1306
1307 /**
1308 * kvm_arm_handle_dabt_nisv:
1309 * @cs: CPUState
1310 * @esr_iss: ISS encoding (limited) for the exception from Data Abort
1311 * ISV bit set to '0b0' -> no valid instruction syndrome
1312 * @fault_ipa: faulting address for the synchronous data abort
1313 *
1314 * Returns: 0 if the exception has been handled, < 0 otherwise
1315 */
1316 static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
1317 uint64_t fault_ipa)
1318 {
1319 ARMCPU *cpu = ARM_CPU(cs);
1320 CPUARMState *env = &cpu->env;
1321 /*
1322 * Request KVM to inject the external data abort into the guest
1323 */
1324 if (cap_has_inject_ext_dabt) {
1325 struct kvm_vcpu_events events = { };
1326 /*
1327 * The external data abort event will be handled immediately by KVM
1328 * using the address fault that triggered the exit on given VCPU.
1329 * Requesting injection of the external data abort does not rely
1330 * on any other VCPU state. Therefore, in this particular case, the VCPU
1331 * synchronization can be exceptionally skipped.
1332 */
1333 events.exception.ext_dabt_pending = 1;
1334 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
1335 if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
1336 env->ext_dabt_raised = 1;
1337 return 0;
1338 }
1339 } else {
1340 error_report("Data abort exception triggered by guest memory access "
1341 "at physical address: 0x" TARGET_FMT_lx,
1342 (target_ulong)fault_ipa);
1343 error_printf("KVM unable to emulate faulting instruction.\n");
1344 }
1345 return -1;
1346 }
1347
1348 /**
1349 * kvm_arm_handle_debug:
1350 * @cs: CPUState
1351 * @debug_exit: debug part of the KVM exit structure
1352 *
1353 * Returns: TRUE if the debug exception was handled.
1354 *
1355 * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1356 *
1357 * To minimise translating between kernel and user-space the kernel
1358 * ABI just provides user-space with the full exception syndrome
1359 * register value to be decoded in QEMU.
1360 */
1361 static bool kvm_arm_handle_debug(CPUState *cs,
1362 struct kvm_debug_exit_arch *debug_exit)
1363 {
1364 int hsr_ec = syn_get_ec(debug_exit->hsr);
1365 ARMCPU *cpu = ARM_CPU(cs);
1366 CPUARMState *env = &cpu->env;
1367
1368 /* Ensure PC is synchronised */
1369 kvm_cpu_synchronize_state(cs);
1370
1371 switch (hsr_ec) {
1372 case EC_SOFTWARESTEP:
1373 if (cs->singlestep_enabled) {
1374 return true;
1375 } else {
1376 /*
1377 * The kernel should have suppressed the guest's ability to
1378 * single step at this point so something has gone wrong.
1379 */
1380 error_report("%s: guest single-step while debugging unsupported"
1381 " (%"PRIx64", %"PRIx32")",
1382 __func__, env->pc, debug_exit->hsr);
1383 return false;
1384 }
1385 break;
1386 case EC_AA64_BKPT:
1387 if (kvm_find_sw_breakpoint(cs, env->pc)) {
1388 return true;
1389 }
1390 break;
1391 case EC_BREAKPOINT:
1392 if (find_hw_breakpoint(cs, env->pc)) {
1393 return true;
1394 }
1395 break;
1396 case EC_WATCHPOINT:
1397 {
1398 CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1399 if (wp) {
1400 cs->watchpoint_hit = wp;
1401 return true;
1402 }
1403 break;
1404 }
1405 default:
1406 error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1407 __func__, debug_exit->hsr, env->pc);
1408 }
1409
1410 /* If we are not handling the debug exception it must belong to
1411 * the guest. Let's re-use the existing TCG interrupt code to set
1412 * everything up properly.
1413 */
1414 cs->exception_index = EXCP_BKPT;
1415 env->exception.syndrome = debug_exit->hsr;
1416 env->exception.vaddress = debug_exit->far;
1417 env->exception.target_el = 1;
1418 qemu_mutex_lock_iothread();
1419 arm_cpu_do_interrupt(cs);
1420 qemu_mutex_unlock_iothread();
1421
1422 return false;
1423 }
1424
1425 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1426 {
1427 int ret = 0;
1428
1429 switch (run->exit_reason) {
1430 case KVM_EXIT_DEBUG:
1431 if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
1432 ret = EXCP_DEBUG;
1433 } /* otherwise return to guest */
1434 break;
1435 case KVM_EXIT_ARM_NISV:
1436 /* External DABT with no valid iss to decode */
1437 ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
1438 run->arm_nisv.fault_ipa);
1439 break;
1440 default:
1441 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
1442 __func__, run->exit_reason);
1443 break;
1444 }
1445 return ret;
1446 }
1447
1448 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
1449 {
1450 return true;
1451 }
1452
1453 int kvm_arch_process_async_events(CPUState *cs)
1454 {
1455 return 0;
1456 }
1457
1458 /**
1459 * kvm_arm_hw_debug_active:
1460 * @cs: CPU State
1461 *
1462 * Return: TRUE if any hardware breakpoints in use.
1463 */
1464 static bool kvm_arm_hw_debug_active(CPUState *cs)
1465 {
1466 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
1467 }
1468
1469 /**
1470 * kvm_arm_copy_hw_debug_data:
1471 * @ptr: kvm_guest_debug_arch structure
1472 *
1473 * Copy the architecture specific debug registers into the
1474 * kvm_guest_debug ioctl structure.
1475 */
1476 static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
1477 {
1478 int i;
1479 memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
1480
1481 for (i = 0; i < max_hw_wps; i++) {
1482 HWWatchpoint *wp = get_hw_wp(i);
1483 ptr->dbg_wcr[i] = wp->wcr;
1484 ptr->dbg_wvr[i] = wp->wvr;
1485 }
1486 for (i = 0; i < max_hw_bps; i++) {
1487 HWBreakpoint *bp = get_hw_bp(i);
1488 ptr->dbg_bcr[i] = bp->bcr;
1489 ptr->dbg_bvr[i] = bp->bvr;
1490 }
1491 }
1492
1493 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1494 {
1495 if (kvm_sw_breakpoints_active(cs)) {
1496 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1497 }
1498 if (kvm_arm_hw_debug_active(cs)) {
1499 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
1500 kvm_arm_copy_hw_debug_data(&dbg->arch);
1501 }
1502 }
1503
1504 void kvm_arch_init_irq_routing(KVMState *s)
1505 {
1506 }
1507
1508 int kvm_arch_irqchip_create(KVMState *s)
1509 {
1510 if (kvm_kernel_irqchip_split()) {
1511 error_report("-machine kernel_irqchip=split is not supported on ARM.");
1512 exit(1);
1513 }
1514
1515 /* If we can create the VGIC using the newer device control API, we
1516 * let the device do this when it initializes itself, otherwise we
1517 * fall back to the old API */
1518 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
1519 }
1520
1521 int kvm_arm_vgic_probe(void)
1522 {
1523 int val = 0;
1524
1525 if (kvm_create_device(kvm_state,
1526 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
1527 val |= KVM_ARM_VGIC_V3;
1528 }
1529 if (kvm_create_device(kvm_state,
1530 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
1531 val |= KVM_ARM_VGIC_V2;
1532 }
1533 return val;
1534 }
1535
1536 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
1537 {
1538 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
1539 int cpu_idx1 = cpu % 256;
1540 int cpu_idx2 = cpu / 256;
1541
1542 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
1543 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
1544
1545 return kvm_set_irq(kvm_state, kvm_irq, !!level);
1546 }
1547
1548 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1549 uint64_t address, uint32_t data, PCIDevice *dev)
1550 {
1551 AddressSpace *as = pci_device_iommu_address_space(dev);
1552 hwaddr xlat, len, doorbell_gpa;
1553 MemoryRegionSection mrs;
1554 MemoryRegion *mr;
1555
1556 if (as == &address_space_memory) {
1557 return 0;
1558 }
1559
1560 /* MSI doorbell address is translated by an IOMMU */
1561
1562 RCU_READ_LOCK_GUARD();
1563
1564 mr = address_space_translate(as, address, &xlat, &len, true,
1565 MEMTXATTRS_UNSPECIFIED);
1566
1567 if (!mr) {
1568 return 1;
1569 }
1570
1571 mrs = memory_region_find(mr, xlat, 1);
1572
1573 if (!mrs.mr) {
1574 return 1;
1575 }
1576
1577 doorbell_gpa = mrs.offset_within_address_space;
1578 memory_region_unref(mrs.mr);
1579
1580 route->u.msi.address_lo = doorbell_gpa;
1581 route->u.msi.address_hi = doorbell_gpa >> 32;
1582
1583 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1584
1585 return 0;
1586 }
1587
1588 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1589 int vector, PCIDevice *dev)
1590 {
1591 return 0;
1592 }
1593
1594 int kvm_arch_release_virq_post(int virq)
1595 {
1596 return 0;
1597 }
1598
1599 int kvm_arch_msi_data_to_gsi(uint32_t data)
1600 {
1601 return (data - 32) & 0xffff;
1602 }
1603
1604 bool kvm_arch_cpu_check_are_resettable(void)
1605 {
1606 return true;
1607 }
1608
1609 static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v,
1610 const char *name, void *opaque,
1611 Error **errp)
1612 {
1613 KVMState *s = KVM_STATE(obj);
1614 uint64_t value = s->kvm_eager_split_size;
1615
1616 visit_type_size(v, name, &value, errp);
1617 }
1618
1619 static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v,
1620 const char *name, void *opaque,
1621 Error **errp)
1622 {
1623 KVMState *s = KVM_STATE(obj);
1624 uint64_t value;
1625
1626 if (s->fd != -1) {
1627 error_setg(errp, "Unable to set early-split-size after KVM has been initialized");
1628 return;
1629 }
1630
1631 if (!visit_type_size(v, name, &value, errp)) {
1632 return;
1633 }
1634
1635 if (value && !is_power_of_2(value)) {
1636 error_setg(errp, "early-split-size must be a power of two");
1637 return;
1638 }
1639
1640 s->kvm_eager_split_size = value;
1641 }
1642
1643 void kvm_arch_accel_class_init(ObjectClass *oc)
1644 {
1645 object_class_property_add(oc, "eager-split-size", "size",
1646 kvm_arch_get_eager_split_size,
1647 kvm_arch_set_eager_split_size, NULL, NULL);
1648
1649 object_class_property_set_description(oc, "eager-split-size",
1650 "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
1651 }
1652
1653 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1654 {
1655 switch (type) {
1656 case GDB_BREAKPOINT_HW:
1657 return insert_hw_breakpoint(addr);
1658 break;
1659 case GDB_WATCHPOINT_READ:
1660 case GDB_WATCHPOINT_WRITE:
1661 case GDB_WATCHPOINT_ACCESS:
1662 return insert_hw_watchpoint(addr, len, type);
1663 default:
1664 return -ENOSYS;
1665 }
1666 }
1667
1668 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1669 {
1670 switch (type) {
1671 case GDB_BREAKPOINT_HW:
1672 return delete_hw_breakpoint(addr);
1673 case GDB_WATCHPOINT_READ:
1674 case GDB_WATCHPOINT_WRITE:
1675 case GDB_WATCHPOINT_ACCESS:
1676 return delete_hw_watchpoint(addr, len, type);
1677 default:
1678 return -ENOSYS;
1679 }
1680 }
1681
1682 void kvm_arch_remove_all_hw_breakpoints(void)
1683 {
1684 if (cur_hw_wps > 0) {
1685 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
1686 }
1687 if (cur_hw_bps > 0) {
1688 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
1689 }
1690 }
1691
1692 static bool kvm_arm_set_device_attr(CPUState *cs, struct kvm_device_attr *attr,
1693 const char *name)
1694 {
1695 int err;
1696
1697 err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
1698 if (err != 0) {
1699 error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
1700 return false;
1701 }
1702
1703 err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
1704 if (err != 0) {
1705 error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
1706 return false;
1707 }
1708
1709 return true;
1710 }
1711
1712 void kvm_arm_pmu_init(CPUState *cs)
1713 {
1714 struct kvm_device_attr attr = {
1715 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1716 .attr = KVM_ARM_VCPU_PMU_V3_INIT,
1717 };
1718
1719 if (!ARM_CPU(cs)->has_pmu) {
1720 return;
1721 }
1722 if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
1723 error_report("failed to init PMU");
1724 abort();
1725 }
1726 }
1727
1728 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
1729 {
1730 struct kvm_device_attr attr = {
1731 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1732 .addr = (intptr_t)&irq,
1733 .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
1734 };
1735
1736 if (!ARM_CPU(cs)->has_pmu) {
1737 return;
1738 }
1739 if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
1740 error_report("failed to set irq for PMU");
1741 abort();
1742 }
1743 }
1744
1745 void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa)
1746 {
1747 struct kvm_device_attr attr = {
1748 .group = KVM_ARM_VCPU_PVTIME_CTRL,
1749 .attr = KVM_ARM_VCPU_PVTIME_IPA,
1750 .addr = (uint64_t)&ipa,
1751 };
1752
1753 if (ARM_CPU(cs)->kvm_steal_time == ON_OFF_AUTO_OFF) {
1754 return;
1755 }
1756 if (!kvm_arm_set_device_attr(cs, &attr, "PVTIME IPA")) {
1757 error_report("failed to init PVTIME IPA");
1758 abort();
1759 }
1760 }
1761
1762 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
1763 {
1764 bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
1765
1766 if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
1767 if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1768 cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
1769 } else {
1770 cpu->kvm_steal_time = ON_OFF_AUTO_ON;
1771 }
1772 } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
1773 if (!has_steal_time) {
1774 error_setg(errp, "'kvm-steal-time' cannot be enabled "
1775 "on this host");
1776 return;
1777 } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1778 /*
1779 * DEN0057A chapter 2 says "This specification only covers
1780 * systems in which the Execution state of the hypervisor
1781 * as well as EL1 of virtual machines is AArch64.". And,
1782 * to ensure that, the smc/hvc calls are only specified as
1783 * smc64/hvc64.
1784 */
1785 error_setg(errp, "'kvm-steal-time' cannot be enabled "
1786 "for AArch32 guests");
1787 return;
1788 }
1789 }
1790 }
1791
1792 bool kvm_arm_aarch32_supported(void)
1793 {
1794 return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
1795 }
1796
1797 bool kvm_arm_sve_supported(void)
1798 {
1799 return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
1800 }
1801
1802 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
1803
1804 uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
1805 {
1806 /* Only call this function if kvm_arm_sve_supported() returns true. */
1807 static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
1808 static bool probed;
1809 uint32_t vq = 0;
1810 int i;
1811
1812 /*
1813 * KVM ensures all host CPUs support the same set of vector lengths.
1814 * So we only need to create the scratch VCPUs once and then cache
1815 * the results.
1816 */
1817 if (!probed) {
1818 struct kvm_vcpu_init init = {
1819 .target = -1,
1820 .features[0] = (1 << KVM_ARM_VCPU_SVE),
1821 };
1822 struct kvm_one_reg reg = {
1823 .id = KVM_REG_ARM64_SVE_VLS,
1824 .addr = (uint64_t)&vls[0],
1825 };
1826 int fdarray[3], ret;
1827
1828 probed = true;
1829
1830 if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
1831 error_report("failed to create scratch VCPU with SVE enabled");
1832 abort();
1833 }
1834 ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
1835 kvm_arm_destroy_scratch_host_vcpu(fdarray);
1836 if (ret) {
1837 error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
1838 strerror(errno));
1839 abort();
1840 }
1841
1842 for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
1843 if (vls[i]) {
1844 vq = 64 - clz64(vls[i]) + i * 64;
1845 break;
1846 }
1847 }
1848 if (vq > ARM_MAX_VQ) {
1849 warn_report("KVM supports vector lengths larger than "
1850 "QEMU can enable");
1851 vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1852 }
1853 }
1854
1855 return vls[0];
1856 }
1857
1858 static int kvm_arm_sve_set_vls(ARMCPU *cpu)
1859 {
1860 uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
1861
1862 assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
1863
1864 return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
1865 }
1866
1867 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
1868
1869 int kvm_arch_init_vcpu(CPUState *cs)
1870 {
1871 int ret;
1872 uint64_t mpidr;
1873 ARMCPU *cpu = ARM_CPU(cs);
1874 CPUARMState *env = &cpu->env;
1875 uint64_t psciver;
1876
1877 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
1878 !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
1879 error_report("KVM is not supported for this guest CPU type");
1880 return -EINVAL;
1881 }
1882
1883 qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
1884
1885 /* Determine init features for this CPU */
1886 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
1887 if (cs->start_powered_off) {
1888 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
1889 }
1890 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
1891 cpu->psci_version = QEMU_PSCI_VERSION_0_2;
1892 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
1893 }
1894 if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1895 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
1896 }
1897 if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
1898 cpu->has_pmu = false;
1899 }
1900 if (cpu->has_pmu) {
1901 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
1902 } else {
1903 env->features &= ~(1ULL << ARM_FEATURE_PMU);
1904 }
1905 if (cpu_isar_feature(aa64_sve, cpu)) {
1906 assert(kvm_arm_sve_supported());
1907 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
1908 }
1909 if (cpu_isar_feature(aa64_pauth, cpu)) {
1910 cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
1911 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
1912 }
1913
1914 /* Do KVM_ARM_VCPU_INIT ioctl */
1915 ret = kvm_arm_vcpu_init(cs);
1916 if (ret) {
1917 return ret;
1918 }
1919
1920 if (cpu_isar_feature(aa64_sve, cpu)) {
1921 ret = kvm_arm_sve_set_vls(cpu);
1922 if (ret) {
1923 return ret;
1924 }
1925 ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
1926 if (ret) {
1927 return ret;
1928 }
1929 }
1930
1931 /*
1932 * KVM reports the exact PSCI version it is implementing via a
1933 * special sysreg. If it is present, use its contents to determine
1934 * what to report to the guest in the dtb (it is the PSCI version,
1935 * in the same 15-bits major 16-bits minor format that PSCI_VERSION
1936 * returns).
1937 */
1938 if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
1939 cpu->psci_version = psciver;
1940 }
1941
1942 /*
1943 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
1944 * Currently KVM has its own idea about MPIDR assignment, so we
1945 * override our defaults with what we get from KVM.
1946 */
1947 ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
1948 if (ret) {
1949 return ret;
1950 }
1951 cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
1952
1953 return kvm_arm_init_cpreg_list(cpu);
1954 }
1955
1956 int kvm_arch_destroy_vcpu(CPUState *cs)
1957 {
1958 return 0;
1959 }
1960
1961 /* Callers must hold the iothread mutex lock */
1962 static void kvm_inject_arm_sea(CPUState *c)
1963 {
1964 ARMCPU *cpu = ARM_CPU(c);
1965 CPUARMState *env = &cpu->env;
1966 uint32_t esr;
1967 bool same_el;
1968
1969 c->exception_index = EXCP_DATA_ABORT;
1970 env->exception.target_el = 1;
1971
1972 /*
1973 * Set the DFSC to synchronous external abort and set FnV to not valid,
1974 * this will tell guest the FAR_ELx is UNKNOWN for this abort.
1975 */
1976 same_el = arm_current_el(env) == env->exception.target_el;
1977 esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
1978
1979 env->exception.syndrome = esr;
1980
1981 arm_cpu_do_interrupt(c);
1982 }
1983
1984 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
1985 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1986
1987 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
1988 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1989
1990 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
1991 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1992
1993 static int kvm_arch_put_fpsimd(CPUState *cs)
1994 {
1995 CPUARMState *env = &ARM_CPU(cs)->env;
1996 int i, ret;
1997
1998 for (i = 0; i < 32; i++) {
1999 uint64_t *q = aa64_vfp_qreg(env, i);
2000 #if HOST_BIG_ENDIAN
2001 uint64_t fp_val[2] = { q[1], q[0] };
2002 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
2003 fp_val);
2004 #else
2005 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2006 #endif
2007 if (ret) {
2008 return ret;
2009 }
2010 }
2011
2012 return 0;
2013 }
2014
2015 /*
2016 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2017 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2018 * code the slice index to zero for now as it's unlikely we'll need more than
2019 * one slice for quite some time.
2020 */
2021 static int kvm_arch_put_sve(CPUState *cs)
2022 {
2023 ARMCPU *cpu = ARM_CPU(cs);
2024 CPUARMState *env = &cpu->env;
2025 uint64_t tmp[ARM_MAX_VQ * 2];
2026 uint64_t *r;
2027 int n, ret;
2028
2029 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2030 r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
2031 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2032 if (ret) {
2033 return ret;
2034 }
2035 }
2036
2037 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2038 r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
2039 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2040 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2041 if (ret) {
2042 return ret;
2043 }
2044 }
2045
2046 r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
2047 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2048 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2049 if (ret) {
2050 return ret;
2051 }
2052
2053 return 0;
2054 }
2055
2056 int kvm_arch_put_registers(CPUState *cs, int level)
2057 {
2058 uint64_t val;
2059 uint32_t fpr;
2060 int i, ret;
2061 unsigned int el;
2062
2063 ARMCPU *cpu = ARM_CPU(cs);
2064 CPUARMState *env = &cpu->env;
2065
2066 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
2067 * AArch64 registers before pushing them out to 64-bit KVM.
2068 */
2069 if (!is_a64(env)) {
2070 aarch64_sync_32_to_64(env);
2071 }
2072
2073 for (i = 0; i < 31; i++) {
2074 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2075 &env->xregs[i]);
2076 if (ret) {
2077 return ret;
2078 }
2079 }
2080
2081 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2082 * QEMU side we keep the current SP in xregs[31] as well.
2083 */
2084 aarch64_save_sp(env, 1);
2085
2086 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2087 if (ret) {
2088 return ret;
2089 }
2090
2091 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2092 if (ret) {
2093 return ret;
2094 }
2095
2096 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
2097 if (is_a64(env)) {
2098 val = pstate_read(env);
2099 } else {
2100 val = cpsr_read(env);
2101 }
2102 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2103 if (ret) {
2104 return ret;
2105 }
2106
2107 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2108 if (ret) {
2109 return ret;
2110 }
2111
2112 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2113 if (ret) {
2114 return ret;
2115 }
2116
2117 /* Saved Program State Registers
2118 *
2119 * Before we restore from the banked_spsr[] array we need to
2120 * ensure that any modifications to env->spsr are correctly
2121 * reflected in the banks.
2122 */
2123 el = arm_current_el(env);
2124 if (el > 0 && !is_a64(env)) {
2125 i = bank_number(env->uncached_cpsr & CPSR_M);
2126 env->banked_spsr[i] = env->spsr;
2127 }
2128
2129 /* KVM 0-4 map to QEMU banks 1-5 */
2130 for (i = 0; i < KVM_NR_SPSR; i++) {
2131 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2132 &env->banked_spsr[i + 1]);
2133 if (ret) {
2134 return ret;
2135 }
2136 }
2137
2138 if (cpu_isar_feature(aa64_sve, cpu)) {
2139 ret = kvm_arch_put_sve(cs);
2140 } else {
2141 ret = kvm_arch_put_fpsimd(cs);
2142 }
2143 if (ret) {
2144 return ret;
2145 }
2146
2147 fpr = vfp_get_fpsr(env);
2148 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2149 if (ret) {
2150 return ret;
2151 }
2152
2153 fpr = vfp_get_fpcr(env);
2154 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2155 if (ret) {
2156 return ret;
2157 }
2158
2159 write_cpustate_to_list(cpu, true);
2160
2161 if (!write_list_to_kvmstate(cpu, level)) {
2162 return -EINVAL;
2163 }
2164
2165 /*
2166 * Setting VCPU events should be triggered after syncing the registers
2167 * to avoid overwriting potential changes made by KVM upon calling
2168 * KVM_SET_VCPU_EVENTS ioctl
2169 */
2170 ret = kvm_put_vcpu_events(cpu);
2171 if (ret) {
2172 return ret;
2173 }
2174
2175 return kvm_arm_sync_mpstate_to_kvm(cpu);
2176 }
2177
2178 static int kvm_arch_get_fpsimd(CPUState *cs)
2179 {
2180 CPUARMState *env = &ARM_CPU(cs)->env;
2181 int i, ret;
2182
2183 for (i = 0; i < 32; i++) {
2184 uint64_t *q = aa64_vfp_qreg(env, i);
2185 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2186 if (ret) {
2187 return ret;
2188 } else {
2189 #if HOST_BIG_ENDIAN
2190 uint64_t t;
2191 t = q[0], q[0] = q[1], q[1] = t;
2192 #endif
2193 }
2194 }
2195
2196 return 0;
2197 }
2198
2199 /*
2200 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2201 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2202 * code the slice index to zero for now as it's unlikely we'll need more than
2203 * one slice for quite some time.
2204 */
2205 static int kvm_arch_get_sve(CPUState *cs)
2206 {
2207 ARMCPU *cpu = ARM_CPU(cs);
2208 CPUARMState *env = &cpu->env;
2209 uint64_t *r;
2210 int n, ret;
2211
2212 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2213 r = &env->vfp.zregs[n].d[0];
2214 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2215 if (ret) {
2216 return ret;
2217 }
2218 sve_bswap64(r, r, cpu->sve_max_vq * 2);
2219 }
2220
2221 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2222 r = &env->vfp.pregs[n].p[0];
2223 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2224 if (ret) {
2225 return ret;
2226 }
2227 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2228 }
2229
2230 r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
2231 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2232 if (ret) {
2233 return ret;
2234 }
2235 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2236
2237 return 0;
2238 }
2239
2240 int kvm_arch_get_registers(CPUState *cs)
2241 {
2242 uint64_t val;
2243 unsigned int el;
2244 uint32_t fpr;
2245 int i, ret;
2246
2247 ARMCPU *cpu = ARM_CPU(cs);
2248 CPUARMState *env = &cpu->env;
2249
2250 for (i = 0; i < 31; i++) {
2251 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2252 &env->xregs[i]);
2253 if (ret) {
2254 return ret;
2255 }
2256 }
2257
2258 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2259 if (ret) {
2260 return ret;
2261 }
2262
2263 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2264 if (ret) {
2265 return ret;
2266 }
2267
2268 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2269 if (ret) {
2270 return ret;
2271 }
2272
2273 env->aarch64 = ((val & PSTATE_nRW) == 0);
2274 if (is_a64(env)) {
2275 pstate_write(env, val);
2276 } else {
2277 cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
2278 }
2279
2280 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2281 * QEMU side we keep the current SP in xregs[31] as well.
2282 */
2283 aarch64_restore_sp(env, 1);
2284
2285 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2286 if (ret) {
2287 return ret;
2288 }
2289
2290 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
2291 * incoming AArch64 regs received from 64-bit KVM.
2292 * We must perform this after all of the registers have been acquired from
2293 * the kernel.
2294 */
2295 if (!is_a64(env)) {
2296 aarch64_sync_64_to_32(env);
2297 }
2298
2299 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2300 if (ret) {
2301 return ret;
2302 }
2303
2304 /* Fetch the SPSR registers
2305 *
2306 * KVM SPSRs 0-4 map to QEMU banks 1-5
2307 */
2308 for (i = 0; i < KVM_NR_SPSR; i++) {
2309 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2310 &env->banked_spsr[i + 1]);
2311 if (ret) {
2312 return ret;
2313 }
2314 }
2315
2316 el = arm_current_el(env);
2317 if (el > 0 && !is_a64(env)) {
2318 i = bank_number(env->uncached_cpsr & CPSR_M);
2319 env->spsr = env->banked_spsr[i];
2320 }
2321
2322 if (cpu_isar_feature(aa64_sve, cpu)) {
2323 ret = kvm_arch_get_sve(cs);
2324 } else {
2325 ret = kvm_arch_get_fpsimd(cs);
2326 }
2327 if (ret) {
2328 return ret;
2329 }
2330
2331 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2332 if (ret) {
2333 return ret;
2334 }
2335 vfp_set_fpsr(env, fpr);
2336
2337 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2338 if (ret) {
2339 return ret;
2340 }
2341 vfp_set_fpcr(env, fpr);
2342
2343 ret = kvm_get_vcpu_events(cpu);
2344 if (ret) {
2345 return ret;
2346 }
2347
2348 if (!write_kvmstate_to_list(cpu)) {
2349 return -EINVAL;
2350 }
2351 /* Note that it's OK to have registers which aren't in CPUState,
2352 * so we can ignore a failure return here.
2353 */
2354 write_list_to_cpustate(cpu);
2355
2356 ret = kvm_arm_sync_mpstate_to_qemu(cpu);
2357
2358 /* TODO: other registers */
2359 return ret;
2360 }
2361
2362 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
2363 {
2364 ram_addr_t ram_addr;
2365 hwaddr paddr;
2366
2367 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
2368
2369 if (acpi_ghes_present() && addr) {
2370 ram_addr = qemu_ram_addr_from_host(addr);
2371 if (ram_addr != RAM_ADDR_INVALID &&
2372 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
2373 kvm_hwpoison_page_add(ram_addr);
2374 /*
2375 * If this is a BUS_MCEERR_AR, we know we have been called
2376 * synchronously from the vCPU thread, so we can easily
2377 * synchronize the state and inject an error.
2378 *
2379 * TODO: we currently don't tell the guest at all about
2380 * BUS_MCEERR_AO. In that case we might either be being
2381 * called synchronously from the vCPU thread, or a bit
2382 * later from the main thread, so doing the injection of
2383 * the error would be more complicated.
2384 */
2385 if (code == BUS_MCEERR_AR) {
2386 kvm_cpu_synchronize_state(c);
2387 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
2388 kvm_inject_arm_sea(c);
2389 } else {
2390 error_report("failed to record the error");
2391 abort();
2392 }
2393 }
2394 return;
2395 }
2396 if (code == BUS_MCEERR_AO) {
2397 error_report("Hardware memory error at addr %p for memory used by "
2398 "QEMU itself instead of guest system!", addr);
2399 }
2400 }
2401
2402 if (code == BUS_MCEERR_AR) {
2403 error_report("Hardware memory error!");
2404 exit(1);
2405 }
2406 }
2407
2408 /* C6.6.29 BRK instruction */
2409 static const uint32_t brk_insn = 0xd4200000;
2410
2411 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2412 {
2413 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2414 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2415 return -EINVAL;
2416 }
2417 return 0;
2418 }
2419
2420 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2421 {
2422 static uint32_t brk;
2423
2424 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
2425 brk != brk_insn ||
2426 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2427 return -EINVAL;
2428 }
2429 return 0;
2430 }