]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/kvm.c
Merge remote-tracking branch 'remotes/ehabkost/tags/machine-next-pull-request' into...
[mirror_qemu.git] / target / arm / kvm.c
1 /*
2 * ARM implementation of KVM hooks
3 *
4 * Copyright Christoffer Dall 2009-2010
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
8 *
9 */
10
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13
14 #include <linux/kvm.h>
15
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/kvm.h"
21 #include "kvm_arm.h"
22 #include "cpu.h"
23 #include "trace.h"
24 #include "internals.h"
25 #include "hw/arm/arm.h"
26 #include "hw/pci/pci.h"
27 #include "exec/memattrs.h"
28 #include "exec/address-spaces.h"
29 #include "hw/boards.h"
30 #include "qemu/log.h"
31
32 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
33 KVM_CAP_LAST_INFO
34 };
35
36 static bool cap_has_mp_state;
37 static bool cap_has_inject_serror_esr;
38
39 static ARMHostCPUFeatures arm_host_cpu_features;
40
41 int kvm_arm_vcpu_init(CPUState *cs)
42 {
43 ARMCPU *cpu = ARM_CPU(cs);
44 struct kvm_vcpu_init init;
45
46 init.target = cpu->kvm_target;
47 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
48
49 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
50 }
51
52 void kvm_arm_init_serror_injection(CPUState *cs)
53 {
54 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
55 KVM_CAP_ARM_INJECT_SERROR_ESR);
56 }
57
58 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
59 int *fdarray,
60 struct kvm_vcpu_init *init)
61 {
62 int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
63
64 kvmfd = qemu_open("/dev/kvm", O_RDWR);
65 if (kvmfd < 0) {
66 goto err;
67 }
68 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
69 if (vmfd < 0) {
70 goto err;
71 }
72 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
73 if (cpufd < 0) {
74 goto err;
75 }
76
77 if (!init) {
78 /* Caller doesn't want the VCPU to be initialized, so skip it */
79 goto finish;
80 }
81
82 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
83 if (ret >= 0) {
84 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
85 if (ret < 0) {
86 goto err;
87 }
88 } else if (cpus_to_try) {
89 /* Old kernel which doesn't know about the
90 * PREFERRED_TARGET ioctl: we know it will only support
91 * creating one kind of guest CPU which is its preferred
92 * CPU type.
93 */
94 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
95 init->target = *cpus_to_try++;
96 memset(init->features, 0, sizeof(init->features));
97 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
98 if (ret >= 0) {
99 break;
100 }
101 }
102 if (ret < 0) {
103 goto err;
104 }
105 } else {
106 /* Treat a NULL cpus_to_try argument the same as an empty
107 * list, which means we will fail the call since this must
108 * be an old kernel which doesn't support PREFERRED_TARGET.
109 */
110 goto err;
111 }
112
113 finish:
114 fdarray[0] = kvmfd;
115 fdarray[1] = vmfd;
116 fdarray[2] = cpufd;
117
118 return true;
119
120 err:
121 if (cpufd >= 0) {
122 close(cpufd);
123 }
124 if (vmfd >= 0) {
125 close(vmfd);
126 }
127 if (kvmfd >= 0) {
128 close(kvmfd);
129 }
130
131 return false;
132 }
133
134 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
135 {
136 int i;
137
138 for (i = 2; i >= 0; i--) {
139 close(fdarray[i]);
140 }
141 }
142
143 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
144 {
145 CPUARMState *env = &cpu->env;
146
147 if (!arm_host_cpu_features.dtb_compatible) {
148 if (!kvm_enabled() ||
149 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
150 /* We can't report this error yet, so flag that we need to
151 * in arm_cpu_realizefn().
152 */
153 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
154 cpu->host_cpu_probe_failed = true;
155 return;
156 }
157 }
158
159 cpu->kvm_target = arm_host_cpu_features.target;
160 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
161 cpu->isar = arm_host_cpu_features.isar;
162 env->features = arm_host_cpu_features.features;
163 }
164
165 int kvm_arch_init(MachineState *ms, KVMState *s)
166 {
167 /* For ARM interrupt delivery is always asynchronous,
168 * whether we are using an in-kernel VGIC or not.
169 */
170 kvm_async_interrupts_allowed = true;
171
172 /*
173 * PSCI wakes up secondary cores, so we always need to
174 * have vCPUs waiting in kernel space
175 */
176 kvm_halt_in_kernel_allowed = true;
177
178 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
179
180 return 0;
181 }
182
183 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
184 {
185 return cpu->cpu_index;
186 }
187
188 /* We track all the KVM devices which need their memory addresses
189 * passing to the kernel in a list of these structures.
190 * When board init is complete we run through the list and
191 * tell the kernel the base addresses of the memory regions.
192 * We use a MemoryListener to track mapping and unmapping of
193 * the regions during board creation, so the board models don't
194 * need to do anything special for the KVM case.
195 *
196 * Sometimes the address must be OR'ed with some other fields
197 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
198 * @kda_addr_ormask aims at storing the value of those fields.
199 */
200 typedef struct KVMDevice {
201 struct kvm_arm_device_addr kda;
202 struct kvm_device_attr kdattr;
203 uint64_t kda_addr_ormask;
204 MemoryRegion *mr;
205 QSLIST_ENTRY(KVMDevice) entries;
206 int dev_fd;
207 } KVMDevice;
208
209 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
210
211 static void kvm_arm_devlistener_add(MemoryListener *listener,
212 MemoryRegionSection *section)
213 {
214 KVMDevice *kd;
215
216 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
217 if (section->mr == kd->mr) {
218 kd->kda.addr = section->offset_within_address_space;
219 }
220 }
221 }
222
223 static void kvm_arm_devlistener_del(MemoryListener *listener,
224 MemoryRegionSection *section)
225 {
226 KVMDevice *kd;
227
228 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
229 if (section->mr == kd->mr) {
230 kd->kda.addr = -1;
231 }
232 }
233 }
234
235 static MemoryListener devlistener = {
236 .region_add = kvm_arm_devlistener_add,
237 .region_del = kvm_arm_devlistener_del,
238 };
239
240 static void kvm_arm_set_device_addr(KVMDevice *kd)
241 {
242 struct kvm_device_attr *attr = &kd->kdattr;
243 int ret;
244
245 /* If the device control API is available and we have a device fd on the
246 * KVMDevice struct, let's use the newer API
247 */
248 if (kd->dev_fd >= 0) {
249 uint64_t addr = kd->kda.addr;
250
251 addr |= kd->kda_addr_ormask;
252 attr->addr = (uintptr_t)&addr;
253 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
254 } else {
255 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
256 }
257
258 if (ret < 0) {
259 fprintf(stderr, "Failed to set device address: %s\n",
260 strerror(-ret));
261 abort();
262 }
263 }
264
265 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
266 {
267 KVMDevice *kd, *tkd;
268
269 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
270 if (kd->kda.addr != -1) {
271 kvm_arm_set_device_addr(kd);
272 }
273 memory_region_unref(kd->mr);
274 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
275 g_free(kd);
276 }
277 memory_listener_unregister(&devlistener);
278 }
279
280 static Notifier notify = {
281 .notify = kvm_arm_machine_init_done,
282 };
283
284 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
285 uint64_t attr, int dev_fd, uint64_t addr_ormask)
286 {
287 KVMDevice *kd;
288
289 if (!kvm_irqchip_in_kernel()) {
290 return;
291 }
292
293 if (QSLIST_EMPTY(&kvm_devices_head)) {
294 memory_listener_register(&devlistener, &address_space_memory);
295 qemu_add_machine_init_done_notifier(&notify);
296 }
297 kd = g_new0(KVMDevice, 1);
298 kd->mr = mr;
299 kd->kda.id = devid;
300 kd->kda.addr = -1;
301 kd->kdattr.flags = 0;
302 kd->kdattr.group = group;
303 kd->kdattr.attr = attr;
304 kd->dev_fd = dev_fd;
305 kd->kda_addr_ormask = addr_ormask;
306 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
307 memory_region_ref(kd->mr);
308 }
309
310 static int compare_u64(const void *a, const void *b)
311 {
312 if (*(uint64_t *)a > *(uint64_t *)b) {
313 return 1;
314 }
315 if (*(uint64_t *)a < *(uint64_t *)b) {
316 return -1;
317 }
318 return 0;
319 }
320
321 /* Initialize the ARMCPU cpreg list according to the kernel's
322 * definition of what CPU registers it knows about (and throw away
323 * the previous TCG-created cpreg list).
324 */
325 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
326 {
327 struct kvm_reg_list rl;
328 struct kvm_reg_list *rlp;
329 int i, ret, arraylen;
330 CPUState *cs = CPU(cpu);
331
332 rl.n = 0;
333 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
334 if (ret != -E2BIG) {
335 return ret;
336 }
337 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
338 rlp->n = rl.n;
339 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
340 if (ret) {
341 goto out;
342 }
343 /* Sort the list we get back from the kernel, since cpreg_tuples
344 * must be in strictly ascending order.
345 */
346 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
347
348 for (i = 0, arraylen = 0; i < rlp->n; i++) {
349 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
350 continue;
351 }
352 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
353 case KVM_REG_SIZE_U32:
354 case KVM_REG_SIZE_U64:
355 break;
356 default:
357 fprintf(stderr, "Can't handle size of register in kernel list\n");
358 ret = -EINVAL;
359 goto out;
360 }
361
362 arraylen++;
363 }
364
365 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
366 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
367 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
368 arraylen);
369 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
370 arraylen);
371 cpu->cpreg_array_len = arraylen;
372 cpu->cpreg_vmstate_array_len = arraylen;
373
374 for (i = 0, arraylen = 0; i < rlp->n; i++) {
375 uint64_t regidx = rlp->reg[i];
376 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
377 continue;
378 }
379 cpu->cpreg_indexes[arraylen] = regidx;
380 arraylen++;
381 }
382 assert(cpu->cpreg_array_len == arraylen);
383
384 if (!write_kvmstate_to_list(cpu)) {
385 /* Shouldn't happen unless kernel is inconsistent about
386 * what registers exist.
387 */
388 fprintf(stderr, "Initial read of kernel register state failed\n");
389 ret = -EINVAL;
390 goto out;
391 }
392
393 out:
394 g_free(rlp);
395 return ret;
396 }
397
398 bool write_kvmstate_to_list(ARMCPU *cpu)
399 {
400 CPUState *cs = CPU(cpu);
401 int i;
402 bool ok = true;
403
404 for (i = 0; i < cpu->cpreg_array_len; i++) {
405 struct kvm_one_reg r;
406 uint64_t regidx = cpu->cpreg_indexes[i];
407 uint32_t v32;
408 int ret;
409
410 r.id = regidx;
411
412 switch (regidx & KVM_REG_SIZE_MASK) {
413 case KVM_REG_SIZE_U32:
414 r.addr = (uintptr_t)&v32;
415 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
416 if (!ret) {
417 cpu->cpreg_values[i] = v32;
418 }
419 break;
420 case KVM_REG_SIZE_U64:
421 r.addr = (uintptr_t)(cpu->cpreg_values + i);
422 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
423 break;
424 default:
425 abort();
426 }
427 if (ret) {
428 ok = false;
429 }
430 }
431 return ok;
432 }
433
434 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
435 {
436 CPUState *cs = CPU(cpu);
437 int i;
438 bool ok = true;
439
440 for (i = 0; i < cpu->cpreg_array_len; i++) {
441 struct kvm_one_reg r;
442 uint64_t regidx = cpu->cpreg_indexes[i];
443 uint32_t v32;
444 int ret;
445
446 if (kvm_arm_cpreg_level(regidx) > level) {
447 continue;
448 }
449
450 r.id = regidx;
451 switch (regidx & KVM_REG_SIZE_MASK) {
452 case KVM_REG_SIZE_U32:
453 v32 = cpu->cpreg_values[i];
454 r.addr = (uintptr_t)&v32;
455 break;
456 case KVM_REG_SIZE_U64:
457 r.addr = (uintptr_t)(cpu->cpreg_values + i);
458 break;
459 default:
460 abort();
461 }
462 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
463 if (ret) {
464 /* We might fail for "unknown register" and also for
465 * "you tried to set a register which is constant with
466 * a different value from what it actually contains".
467 */
468 ok = false;
469 }
470 }
471 return ok;
472 }
473
474 void kvm_arm_reset_vcpu(ARMCPU *cpu)
475 {
476 int ret;
477
478 /* Re-init VCPU so that all registers are set to
479 * their respective reset values.
480 */
481 ret = kvm_arm_vcpu_init(CPU(cpu));
482 if (ret < 0) {
483 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
484 abort();
485 }
486 if (!write_kvmstate_to_list(cpu)) {
487 fprintf(stderr, "write_kvmstate_to_list failed\n");
488 abort();
489 }
490 }
491
492 /*
493 * Update KVM's MP_STATE based on what QEMU thinks it is
494 */
495 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
496 {
497 if (cap_has_mp_state) {
498 struct kvm_mp_state mp_state = {
499 .mp_state = (cpu->power_state == PSCI_OFF) ?
500 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
501 };
502 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
503 if (ret) {
504 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
505 __func__, ret, strerror(-ret));
506 return -1;
507 }
508 }
509
510 return 0;
511 }
512
513 /*
514 * Sync the KVM MP_STATE into QEMU
515 */
516 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
517 {
518 if (cap_has_mp_state) {
519 struct kvm_mp_state mp_state;
520 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
521 if (ret) {
522 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
523 __func__, ret, strerror(-ret));
524 abort();
525 }
526 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
527 PSCI_OFF : PSCI_ON;
528 }
529
530 return 0;
531 }
532
533 int kvm_put_vcpu_events(ARMCPU *cpu)
534 {
535 CPUARMState *env = &cpu->env;
536 struct kvm_vcpu_events events;
537 int ret;
538
539 if (!kvm_has_vcpu_events()) {
540 return 0;
541 }
542
543 memset(&events, 0, sizeof(events));
544 events.exception.serror_pending = env->serror.pending;
545
546 /* Inject SError to guest with specified syndrome if host kernel
547 * supports it, otherwise inject SError without syndrome.
548 */
549 if (cap_has_inject_serror_esr) {
550 events.exception.serror_has_esr = env->serror.has_esr;
551 events.exception.serror_esr = env->serror.esr;
552 }
553
554 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
555 if (ret) {
556 error_report("failed to put vcpu events");
557 }
558
559 return ret;
560 }
561
562 int kvm_get_vcpu_events(ARMCPU *cpu)
563 {
564 CPUARMState *env = &cpu->env;
565 struct kvm_vcpu_events events;
566 int ret;
567
568 if (!kvm_has_vcpu_events()) {
569 return 0;
570 }
571
572 memset(&events, 0, sizeof(events));
573 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
574 if (ret) {
575 error_report("failed to get vcpu events");
576 return ret;
577 }
578
579 env->serror.pending = events.exception.serror_pending;
580 env->serror.has_esr = events.exception.serror_has_esr;
581 env->serror.esr = events.exception.serror_esr;
582
583 return 0;
584 }
585
586 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
587 {
588 }
589
590 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
591 {
592 ARMCPU *cpu;
593 uint32_t switched_level;
594
595 if (kvm_irqchip_in_kernel()) {
596 /*
597 * We only need to sync timer states with user-space interrupt
598 * controllers, so return early and save cycles if we don't.
599 */
600 return MEMTXATTRS_UNSPECIFIED;
601 }
602
603 cpu = ARM_CPU(cs);
604
605 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
606 if (run->s.regs.device_irq_level != cpu->device_irq_level) {
607 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
608
609 qemu_mutex_lock_iothread();
610
611 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
612 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
613 !!(run->s.regs.device_irq_level &
614 KVM_ARM_DEV_EL1_VTIMER));
615 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
616 }
617
618 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
619 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
620 !!(run->s.regs.device_irq_level &
621 KVM_ARM_DEV_EL1_PTIMER));
622 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
623 }
624
625 if (switched_level & KVM_ARM_DEV_PMU) {
626 qemu_set_irq(cpu->pmu_interrupt,
627 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
628 switched_level &= ~KVM_ARM_DEV_PMU;
629 }
630
631 if (switched_level) {
632 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
633 __func__, switched_level);
634 }
635
636 /* We also mark unknown levels as processed to not waste cycles */
637 cpu->device_irq_level = run->s.regs.device_irq_level;
638 qemu_mutex_unlock_iothread();
639 }
640
641 return MEMTXATTRS_UNSPECIFIED;
642 }
643
644
645 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
646 {
647 int ret = 0;
648
649 switch (run->exit_reason) {
650 case KVM_EXIT_DEBUG:
651 if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
652 ret = EXCP_DEBUG;
653 } /* otherwise return to guest */
654 break;
655 default:
656 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
657 __func__, run->exit_reason);
658 break;
659 }
660 return ret;
661 }
662
663 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
664 {
665 return true;
666 }
667
668 int kvm_arch_process_async_events(CPUState *cs)
669 {
670 return 0;
671 }
672
673 /* The #ifdef protections are until 32bit headers are imported and can
674 * be removed once both 32 and 64 bit reach feature parity.
675 */
676 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
677 {
678 #ifdef KVM_GUESTDBG_USE_SW_BP
679 if (kvm_sw_breakpoints_active(cs)) {
680 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
681 }
682 #endif
683 #ifdef KVM_GUESTDBG_USE_HW
684 if (kvm_arm_hw_debug_active(cs)) {
685 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
686 kvm_arm_copy_hw_debug_data(&dbg->arch);
687 }
688 #endif
689 }
690
691 void kvm_arch_init_irq_routing(KVMState *s)
692 {
693 }
694
695 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
696 {
697 if (machine_kernel_irqchip_split(ms)) {
698 perror("-machine kernel_irqchip=split is not supported on ARM.");
699 exit(1);
700 }
701
702 /* If we can create the VGIC using the newer device control API, we
703 * let the device do this when it initializes itself, otherwise we
704 * fall back to the old API */
705 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
706 }
707
708 int kvm_arm_vgic_probe(void)
709 {
710 if (kvm_create_device(kvm_state,
711 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
712 return 3;
713 } else if (kvm_create_device(kvm_state,
714 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
715 return 2;
716 } else {
717 return 0;
718 }
719 }
720
721 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
722 uint64_t address, uint32_t data, PCIDevice *dev)
723 {
724 AddressSpace *as = pci_device_iommu_address_space(dev);
725 hwaddr xlat, len, doorbell_gpa;
726 MemoryRegionSection mrs;
727 MemoryRegion *mr;
728 int ret = 1;
729
730 if (as == &address_space_memory) {
731 return 0;
732 }
733
734 /* MSI doorbell address is translated by an IOMMU */
735
736 rcu_read_lock();
737 mr = address_space_translate(as, address, &xlat, &len, true,
738 MEMTXATTRS_UNSPECIFIED);
739 if (!mr) {
740 goto unlock;
741 }
742 mrs = memory_region_find(mr, xlat, 1);
743 if (!mrs.mr) {
744 goto unlock;
745 }
746
747 doorbell_gpa = mrs.offset_within_address_space;
748 memory_region_unref(mrs.mr);
749
750 route->u.msi.address_lo = doorbell_gpa;
751 route->u.msi.address_hi = doorbell_gpa >> 32;
752
753 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
754
755 ret = 0;
756
757 unlock:
758 rcu_read_unlock();
759 return ret;
760 }
761
762 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
763 int vector, PCIDevice *dev)
764 {
765 return 0;
766 }
767
768 int kvm_arch_release_virq_post(int virq)
769 {
770 return 0;
771 }
772
773 int kvm_arch_msi_data_to_gsi(uint32_t data)
774 {
775 return (data - 32) & 0xffff;
776 }