]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/kvm32.c
target/ppc: introduce GEN_VSX_HELPER_R2 macro to fpu_helper.c
[mirror_qemu.git] / target / arm / kvm32.c
1 /*
2 * ARM implementation of KVM hooks, 32 bit specific code.
3 *
4 * Copyright Christoffer Dall 2009-2010
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
8 *
9 */
10
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13
14 #include <linux/kvm.h>
15
16 #include "qemu-common.h"
17 #include "cpu.h"
18 #include "qemu/timer.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/kvm.h"
21 #include "kvm_arm.h"
22 #include "internals.h"
23 #include "qemu/log.h"
24
25 static inline void set_feature(uint64_t *features, int feature)
26 {
27 *features |= 1ULL << feature;
28 }
29
30 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
31 {
32 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
33
34 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32);
35 return ioctl(fd, KVM_GET_ONE_REG, &idreg);
36 }
37
38 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
39 {
40 /* Identify the feature bits corresponding to the host CPU, and
41 * fill out the ARMHostCPUClass fields accordingly. To do this
42 * we have to create a scratch VM, create a single CPU inside it,
43 * and then query that CPU for the relevant ID registers.
44 */
45 int err = 0, fdarray[3];
46 uint32_t midr, id_pfr0;
47 uint64_t features = 0;
48
49 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
50 * we know these will only support creating one kind of guest CPU,
51 * which is its preferred CPU type.
52 */
53 static const uint32_t cpus_to_try[] = {
54 QEMU_KVM_ARM_TARGET_CORTEX_A15,
55 QEMU_KVM_ARM_TARGET_NONE
56 };
57 struct kvm_vcpu_init init;
58
59 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
60 return false;
61 }
62
63 ahcf->target = init.target;
64
65 /* This is not strictly blessed by the device tree binding docs yet,
66 * but in practice the kernel does not care about this string so
67 * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
68 */
69 ahcf->dtb_compatible = "arm,arm-v7";
70
71 err |= read_sys_reg32(fdarray[2], &midr, ARM_CP15_REG32(0, 0, 0, 0));
72 err |= read_sys_reg32(fdarray[2], &id_pfr0, ARM_CP15_REG32(0, 0, 1, 0));
73
74 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
75 ARM_CP15_REG32(0, 0, 2, 0));
76 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
77 ARM_CP15_REG32(0, 0, 2, 1));
78 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
79 ARM_CP15_REG32(0, 0, 2, 2));
80 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
81 ARM_CP15_REG32(0, 0, 2, 3));
82 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
83 ARM_CP15_REG32(0, 0, 2, 4));
84 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
85 ARM_CP15_REG32(0, 0, 2, 5));
86 if (read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
87 ARM_CP15_REG32(0, 0, 2, 7))) {
88 /*
89 * Older kernels don't support reading ID_ISAR6. This register was
90 * only introduced in ARMv8, so we can assume that it is zero on a
91 * CPU that a kernel this old is running on.
92 */
93 ahcf->isar.id_isar6 = 0;
94 }
95
96 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
97 KVM_REG_ARM | KVM_REG_SIZE_U32 |
98 KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR0);
99 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
100 KVM_REG_ARM | KVM_REG_SIZE_U32 |
101 KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1);
102 /*
103 * FIXME: There is not yet a way to read MVFR2.
104 * Fortunately there is not yet anything in there that affects migration.
105 */
106
107 kvm_arm_destroy_scratch_host_vcpu(fdarray);
108
109 if (err < 0) {
110 return false;
111 }
112
113 /* Now we've retrieved all the register information we can
114 * set the feature bits based on the ID register fields.
115 * We can assume any KVM supporting CPU is at least a v7
116 * with VFPv3, virtualization extensions, and the generic
117 * timers; this in turn implies most of the other feature
118 * bits, but a few must be tested.
119 */
120 set_feature(&features, ARM_FEATURE_V7VE);
121 set_feature(&features, ARM_FEATURE_VFP3);
122 set_feature(&features, ARM_FEATURE_GENERIC_TIMER);
123
124 if (extract32(id_pfr0, 12, 4) == 1) {
125 set_feature(&features, ARM_FEATURE_THUMB2EE);
126 }
127 if (extract32(ahcf->isar.mvfr1, 12, 4) == 1) {
128 set_feature(&features, ARM_FEATURE_NEON);
129 }
130 if (extract32(ahcf->isar.mvfr1, 28, 4) == 1) {
131 /* FMAC support implies VFPv4 */
132 set_feature(&features, ARM_FEATURE_VFP4);
133 }
134
135 ahcf->features = features;
136
137 return true;
138 }
139
140 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
141 {
142 /* Return true if the regidx is a register we should synchronize
143 * via the cpreg_tuples array (ie is not a core reg we sync by
144 * hand in kvm_arch_get/put_registers())
145 */
146 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
147 case KVM_REG_ARM_CORE:
148 case KVM_REG_ARM_VFP:
149 return false;
150 default:
151 return true;
152 }
153 }
154
155 typedef struct CPRegStateLevel {
156 uint64_t regidx;
157 int level;
158 } CPRegStateLevel;
159
160 /* All coprocessor registers not listed in the following table are assumed to
161 * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
162 * often, you must add it to this table with a state of either
163 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
164 */
165 static const CPRegStateLevel non_runtime_cpregs[] = {
166 { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
167 };
168
169 int kvm_arm_cpreg_level(uint64_t regidx)
170 {
171 int i;
172
173 for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
174 const CPRegStateLevel *l = &non_runtime_cpregs[i];
175 if (l->regidx == regidx) {
176 return l->level;
177 }
178 }
179
180 return KVM_PUT_RUNTIME_STATE;
181 }
182
183 #define ARM_CPU_ID_MPIDR 0, 0, 0, 5
184
185 int kvm_arch_init_vcpu(CPUState *cs)
186 {
187 int ret;
188 uint64_t v;
189 uint32_t mpidr;
190 struct kvm_one_reg r;
191 ARMCPU *cpu = ARM_CPU(cs);
192
193 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
194 fprintf(stderr, "KVM is not supported for this guest CPU type\n");
195 return -EINVAL;
196 }
197
198 /* Determine init features for this CPU */
199 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
200 if (cpu->start_powered_off) {
201 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
202 }
203 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
204 cpu->psci_version = 2;
205 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
206 }
207
208 /* Do KVM_ARM_VCPU_INIT ioctl */
209 ret = kvm_arm_vcpu_init(cs);
210 if (ret) {
211 return ret;
212 }
213
214 /* Query the kernel to make sure it supports 32 VFP
215 * registers: QEMU's "cortex-a15" CPU is always a
216 * VFP-D32 core. The simplest way to do this is just
217 * to attempt to read register d31.
218 */
219 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
220 r.addr = (uintptr_t)(&v);
221 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
222 if (ret == -ENOENT) {
223 return -EINVAL;
224 }
225
226 /*
227 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
228 * Currently KVM has its own idea about MPIDR assignment, so we
229 * override our defaults with what we get from KVM.
230 */
231 ret = kvm_get_one_reg(cs, ARM_CP15_REG32(ARM_CPU_ID_MPIDR), &mpidr);
232 if (ret) {
233 return ret;
234 }
235 cpu->mp_affinity = mpidr & ARM32_AFFINITY_MASK;
236
237 /* Check whether userspace can specify guest syndrome value */
238 kvm_arm_init_serror_injection(cs);
239
240 return kvm_arm_init_cpreg_list(cpu);
241 }
242
243 int kvm_arch_destroy_vcpu(CPUState *cs)
244 {
245 return 0;
246 }
247
248 typedef struct Reg {
249 uint64_t id;
250 int offset;
251 } Reg;
252
253 #define COREREG(KERNELNAME, QEMUFIELD) \
254 { \
255 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
256 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
257 offsetof(CPUARMState, QEMUFIELD) \
258 }
259
260 #define VFPSYSREG(R) \
261 { \
262 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
263 KVM_REG_ARM_VFP_##R, \
264 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
265 }
266
267 /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
268 #define COREREG64(KERNELNAME, QEMUFIELD) \
269 { \
270 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
271 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
272 offsetoflow32(CPUARMState, QEMUFIELD) \
273 }
274
275 static const Reg regs[] = {
276 /* R0_usr .. R14_usr */
277 COREREG(usr_regs.uregs[0], regs[0]),
278 COREREG(usr_regs.uregs[1], regs[1]),
279 COREREG(usr_regs.uregs[2], regs[2]),
280 COREREG(usr_regs.uregs[3], regs[3]),
281 COREREG(usr_regs.uregs[4], regs[4]),
282 COREREG(usr_regs.uregs[5], regs[5]),
283 COREREG(usr_regs.uregs[6], regs[6]),
284 COREREG(usr_regs.uregs[7], regs[7]),
285 COREREG(usr_regs.uregs[8], usr_regs[0]),
286 COREREG(usr_regs.uregs[9], usr_regs[1]),
287 COREREG(usr_regs.uregs[10], usr_regs[2]),
288 COREREG(usr_regs.uregs[11], usr_regs[3]),
289 COREREG(usr_regs.uregs[12], usr_regs[4]),
290 COREREG(usr_regs.uregs[13], banked_r13[BANK_USRSYS]),
291 COREREG(usr_regs.uregs[14], banked_r14[BANK_USRSYS]),
292 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
293 COREREG(svc_regs[0], banked_r13[BANK_SVC]),
294 COREREG(svc_regs[1], banked_r14[BANK_SVC]),
295 COREREG64(svc_regs[2], banked_spsr[BANK_SVC]),
296 COREREG(abt_regs[0], banked_r13[BANK_ABT]),
297 COREREG(abt_regs[1], banked_r14[BANK_ABT]),
298 COREREG64(abt_regs[2], banked_spsr[BANK_ABT]),
299 COREREG(und_regs[0], banked_r13[BANK_UND]),
300 COREREG(und_regs[1], banked_r14[BANK_UND]),
301 COREREG64(und_regs[2], banked_spsr[BANK_UND]),
302 COREREG(irq_regs[0], banked_r13[BANK_IRQ]),
303 COREREG(irq_regs[1], banked_r14[BANK_IRQ]),
304 COREREG64(irq_regs[2], banked_spsr[BANK_IRQ]),
305 /* R8_fiq .. R14_fiq and SPSR_fiq */
306 COREREG(fiq_regs[0], fiq_regs[0]),
307 COREREG(fiq_regs[1], fiq_regs[1]),
308 COREREG(fiq_regs[2], fiq_regs[2]),
309 COREREG(fiq_regs[3], fiq_regs[3]),
310 COREREG(fiq_regs[4], fiq_regs[4]),
311 COREREG(fiq_regs[5], banked_r13[BANK_FIQ]),
312 COREREG(fiq_regs[6], banked_r14[BANK_FIQ]),
313 COREREG64(fiq_regs[7], banked_spsr[BANK_FIQ]),
314 /* R15 */
315 COREREG(usr_regs.uregs[15], regs[15]),
316 /* VFP system registers */
317 VFPSYSREG(FPSID),
318 VFPSYSREG(MVFR1),
319 VFPSYSREG(MVFR0),
320 VFPSYSREG(FPEXC),
321 VFPSYSREG(FPINST),
322 VFPSYSREG(FPINST2),
323 };
324
325 int kvm_arch_put_registers(CPUState *cs, int level)
326 {
327 ARMCPU *cpu = ARM_CPU(cs);
328 CPUARMState *env = &cpu->env;
329 struct kvm_one_reg r;
330 int mode, bn;
331 int ret, i;
332 uint32_t cpsr, fpscr;
333
334 /* Make sure the banked regs are properly set */
335 mode = env->uncached_cpsr & CPSR_M;
336 bn = bank_number(mode);
337 if (mode == ARM_CPU_MODE_FIQ) {
338 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
339 } else {
340 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
341 }
342 env->banked_r13[bn] = env->regs[13];
343 env->banked_spsr[bn] = env->spsr;
344 env->banked_r14[r14_bank_number(mode)] = env->regs[14];
345
346 /* Now we can safely copy stuff down to the kernel */
347 for (i = 0; i < ARRAY_SIZE(regs); i++) {
348 r.id = regs[i].id;
349 r.addr = (uintptr_t)(env) + regs[i].offset;
350 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
351 if (ret) {
352 return ret;
353 }
354 }
355
356 /* Special cases which aren't a single CPUARMState field */
357 cpsr = cpsr_read(env);
358 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
359 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
360 r.addr = (uintptr_t)(&cpsr);
361 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
362 if (ret) {
363 return ret;
364 }
365
366 /* VFP registers */
367 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
368 for (i = 0; i < 32; i++) {
369 r.addr = (uintptr_t)aa32_vfp_dreg(env, i);
370 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
371 if (ret) {
372 return ret;
373 }
374 r.id++;
375 }
376
377 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
378 KVM_REG_ARM_VFP_FPSCR;
379 fpscr = vfp_get_fpscr(env);
380 r.addr = (uintptr_t)&fpscr;
381 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
382 if (ret) {
383 return ret;
384 }
385
386 ret = kvm_put_vcpu_events(cpu);
387 if (ret) {
388 return ret;
389 }
390
391 write_cpustate_to_list(cpu, true);
392
393 if (!write_list_to_kvmstate(cpu, level)) {
394 return EINVAL;
395 }
396
397 kvm_arm_sync_mpstate_to_kvm(cpu);
398
399 return ret;
400 }
401
402 int kvm_arch_get_registers(CPUState *cs)
403 {
404 ARMCPU *cpu = ARM_CPU(cs);
405 CPUARMState *env = &cpu->env;
406 struct kvm_one_reg r;
407 int mode, bn;
408 int ret, i;
409 uint32_t cpsr, fpscr;
410
411 for (i = 0; i < ARRAY_SIZE(regs); i++) {
412 r.id = regs[i].id;
413 r.addr = (uintptr_t)(env) + regs[i].offset;
414 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
415 if (ret) {
416 return ret;
417 }
418 }
419
420 /* Special cases which aren't a single CPUARMState field */
421 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
422 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
423 r.addr = (uintptr_t)(&cpsr);
424 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
425 if (ret) {
426 return ret;
427 }
428 cpsr_write(env, cpsr, 0xffffffff, CPSRWriteRaw);
429
430 /* Make sure the current mode regs are properly set */
431 mode = env->uncached_cpsr & CPSR_M;
432 bn = bank_number(mode);
433 if (mode == ARM_CPU_MODE_FIQ) {
434 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
435 } else {
436 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
437 }
438 env->regs[13] = env->banked_r13[bn];
439 env->spsr = env->banked_spsr[bn];
440 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
441
442 /* VFP registers */
443 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
444 for (i = 0; i < 32; i++) {
445 r.addr = (uintptr_t)aa32_vfp_dreg(env, i);
446 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
447 if (ret) {
448 return ret;
449 }
450 r.id++;
451 }
452
453 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
454 KVM_REG_ARM_VFP_FPSCR;
455 r.addr = (uintptr_t)&fpscr;
456 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
457 if (ret) {
458 return ret;
459 }
460 vfp_set_fpscr(env, fpscr);
461
462 ret = kvm_get_vcpu_events(cpu);
463 if (ret) {
464 return ret;
465 }
466
467 if (!write_kvmstate_to_list(cpu)) {
468 return EINVAL;
469 }
470 /* Note that it's OK to have registers which aren't in CPUState,
471 * so we can ignore a failure return here.
472 */
473 write_list_to_cpustate(cpu);
474
475 kvm_arm_sync_mpstate_to_qemu(cpu);
476
477 return 0;
478 }
479
480 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
481 {
482 qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
483 return -EINVAL;
484 }
485
486 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
487 {
488 qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
489 return -EINVAL;
490 }
491
492 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
493 {
494 qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
495 return false;
496 }
497
498 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
499 target_ulong len, int type)
500 {
501 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
502 return -EINVAL;
503 }
504
505 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
506 target_ulong len, int type)
507 {
508 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
509 return -EINVAL;
510 }
511
512 void kvm_arch_remove_all_hw_breakpoints(void)
513 {
514 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
515 }
516
517 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
518 {
519 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
520 }
521
522 bool kvm_arm_hw_debug_active(CPUState *cs)
523 {
524 return false;
525 }
526
527 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
528 {
529 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
530 }
531
532 void kvm_arm_pmu_init(CPUState *cs)
533 {
534 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
535 }