]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/op_helper.c
target/arm: Add v8M stack checks on ADD/SUB/MOV of SP
[mirror_qemu.git] / target / arm / op_helper.c
1 /*
2 * ARM helper routines
3 *
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qemu/log.h"
21 #include "qemu/main-loop.h"
22 #include "cpu.h"
23 #include "exec/helper-proto.h"
24 #include "internals.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
27
28 #define SIGNBIT (uint32_t)0x80000000
29 #define SIGNBIT64 ((uint64_t)1 << 63)
30
31 static void raise_exception(CPUARMState *env, uint32_t excp,
32 uint32_t syndrome, uint32_t target_el)
33 {
34 CPUState *cs = CPU(arm_env_get_cpu(env));
35
36 if ((env->cp15.hcr_el2 & HCR_TGE) &&
37 target_el == 1 && !arm_is_secure(env)) {
38 /*
39 * Redirect NS EL1 exceptions to NS EL2. These are reported with
40 * their original syndrome register value, with the exception of
41 * SIMD/FP access traps, which are reported as uncategorized
42 * (see DDI0478C.a D1.10.4)
43 */
44 target_el = 2;
45 if (syndrome >> ARM_EL_EC_SHIFT == EC_ADVSIMDFPACCESSTRAP) {
46 syndrome = syn_uncategorized();
47 }
48 }
49
50 assert(!excp_is_internal(excp));
51 cs->exception_index = excp;
52 env->exception.syndrome = syndrome;
53 env->exception.target_el = target_el;
54 cpu_loop_exit(cs);
55 }
56
57 static int exception_target_el(CPUARMState *env)
58 {
59 int target_el = MAX(1, arm_current_el(env));
60
61 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
62 * to EL3 in this case.
63 */
64 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
65 target_el = 3;
66 }
67
68 return target_el;
69 }
70
71 uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def, void *vn,
72 uint32_t maxindex)
73 {
74 uint32_t val, shift;
75 uint64_t *table = vn;
76
77 val = 0;
78 for (shift = 0; shift < 32; shift += 8) {
79 uint32_t index = (ireg >> shift) & 0xff;
80 if (index < maxindex) {
81 uint32_t tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
82 val |= tmp << shift;
83 } else {
84 val |= def & (0xff << shift);
85 }
86 }
87 return val;
88 }
89
90 #if !defined(CONFIG_USER_ONLY)
91
92 static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
93 unsigned int target_el,
94 bool same_el, bool ea,
95 bool s1ptw, bool is_write,
96 int fsc)
97 {
98 uint32_t syn;
99
100 /* ISV is only set for data aborts routed to EL2 and
101 * never for stage-1 page table walks faulting on stage 2.
102 *
103 * Furthermore, ISV is only set for certain kinds of load/stores.
104 * If the template syndrome does not have ISV set, we should leave
105 * it cleared.
106 *
107 * See ARMv8 specs, D7-1974:
108 * ISS encoding for an exception from a Data Abort, the
109 * ISV field.
110 */
111 if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
112 syn = syn_data_abort_no_iss(same_el,
113 ea, 0, s1ptw, is_write, fsc);
114 } else {
115 /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
116 * syndrome created at translation time.
117 * Now we create the runtime syndrome with the remaining fields.
118 */
119 syn = syn_data_abort_with_iss(same_el,
120 0, 0, 0, 0, 0,
121 ea, 0, s1ptw, is_write, fsc,
122 false);
123 /* Merge the runtime syndrome with the template syndrome. */
124 syn |= template_syn;
125 }
126 return syn;
127 }
128
129 static void deliver_fault(ARMCPU *cpu, vaddr addr, MMUAccessType access_type,
130 int mmu_idx, ARMMMUFaultInfo *fi)
131 {
132 CPUARMState *env = &cpu->env;
133 int target_el;
134 bool same_el;
135 uint32_t syn, exc, fsr, fsc;
136 ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
137
138 target_el = exception_target_el(env);
139 if (fi->stage2) {
140 target_el = 2;
141 env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
142 }
143 same_el = (arm_current_el(env) == target_el);
144
145 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
146 arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
147 /* LPAE format fault status register : bottom 6 bits are
148 * status code in the same form as needed for syndrome
149 */
150 fsr = arm_fi_to_lfsc(fi);
151 fsc = extract32(fsr, 0, 6);
152 } else {
153 fsr = arm_fi_to_sfsc(fi);
154 /* Short format FSR : this fault will never actually be reported
155 * to an EL that uses a syndrome register. Use a (currently)
156 * reserved FSR code in case the constructed syndrome does leak
157 * into the guest somehow.
158 */
159 fsc = 0x3f;
160 }
161
162 if (access_type == MMU_INST_FETCH) {
163 syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
164 exc = EXCP_PREFETCH_ABORT;
165 } else {
166 syn = merge_syn_data_abort(env->exception.syndrome, target_el,
167 same_el, fi->ea, fi->s1ptw,
168 access_type == MMU_DATA_STORE,
169 fsc);
170 if (access_type == MMU_DATA_STORE
171 && arm_feature(env, ARM_FEATURE_V6)) {
172 fsr |= (1 << 11);
173 }
174 exc = EXCP_DATA_ABORT;
175 }
176
177 env->exception.vaddress = addr;
178 env->exception.fsr = fsr;
179 raise_exception(env, exc, syn, target_el);
180 }
181
182 /* try to fill the TLB and return an exception if error. If retaddr is
183 * NULL, it means that the function was called in C code (i.e. not
184 * from generated code or from helper.c)
185 */
186 void tlb_fill(CPUState *cs, target_ulong addr, int size,
187 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
188 {
189 bool ret;
190 ARMMMUFaultInfo fi = {};
191
192 ret = arm_tlb_fill(cs, addr, access_type, mmu_idx, &fi);
193 if (unlikely(ret)) {
194 ARMCPU *cpu = ARM_CPU(cs);
195
196 /* now we have a real cpu fault */
197 cpu_restore_state(cs, retaddr, true);
198
199 deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
200 }
201 }
202
203 /* Raise a data fault alignment exception for the specified virtual address */
204 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
205 MMUAccessType access_type,
206 int mmu_idx, uintptr_t retaddr)
207 {
208 ARMCPU *cpu = ARM_CPU(cs);
209 ARMMMUFaultInfo fi = {};
210
211 /* now we have a real cpu fault */
212 cpu_restore_state(cs, retaddr, true);
213
214 fi.type = ARMFault_Alignment;
215 deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
216 }
217
218 /* arm_cpu_do_transaction_failed: handle a memory system error response
219 * (eg "no device/memory present at address") by raising an external abort
220 * exception
221 */
222 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
223 vaddr addr, unsigned size,
224 MMUAccessType access_type,
225 int mmu_idx, MemTxAttrs attrs,
226 MemTxResult response, uintptr_t retaddr)
227 {
228 ARMCPU *cpu = ARM_CPU(cs);
229 ARMMMUFaultInfo fi = {};
230
231 /* now we have a real cpu fault */
232 cpu_restore_state(cs, retaddr, true);
233
234 fi.ea = arm_extabort_type(response);
235 fi.type = ARMFault_SyncExternal;
236 deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
237 }
238
239 #endif /* !defined(CONFIG_USER_ONLY) */
240
241 void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue)
242 {
243 /*
244 * Perform the v8M stack limit check for SP updates from translated code,
245 * raising an exception if the limit is breached.
246 */
247 if (newvalue < v7m_sp_limit(env)) {
248 CPUState *cs = CPU(arm_env_get_cpu(env));
249
250 /*
251 * Stack limit exceptions are a rare case, so rather than syncing
252 * PC/condbits before the call, we use cpu_restore_state() to
253 * get them right before raising the exception.
254 */
255 cpu_restore_state(cs, GETPC(), true);
256 raise_exception(env, EXCP_STKOF, 0, 1);
257 }
258 }
259
260 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
261 {
262 uint32_t res = a + b;
263 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
264 env->QF = 1;
265 return res;
266 }
267
268 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
269 {
270 uint32_t res = a + b;
271 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
272 env->QF = 1;
273 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
274 }
275 return res;
276 }
277
278 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
279 {
280 uint32_t res = a - b;
281 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
282 env->QF = 1;
283 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
284 }
285 return res;
286 }
287
288 uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
289 {
290 uint32_t res;
291 if (val >= 0x40000000) {
292 res = ~SIGNBIT;
293 env->QF = 1;
294 } else if (val <= (int32_t)0xc0000000) {
295 res = SIGNBIT;
296 env->QF = 1;
297 } else {
298 res = val << 1;
299 }
300 return res;
301 }
302
303 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
304 {
305 uint32_t res = a + b;
306 if (res < a) {
307 env->QF = 1;
308 res = ~0;
309 }
310 return res;
311 }
312
313 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
314 {
315 uint32_t res = a - b;
316 if (res > a) {
317 env->QF = 1;
318 res = 0;
319 }
320 return res;
321 }
322
323 /* Signed saturation. */
324 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
325 {
326 int32_t top;
327 uint32_t mask;
328
329 top = val >> shift;
330 mask = (1u << shift) - 1;
331 if (top > 0) {
332 env->QF = 1;
333 return mask;
334 } else if (top < -1) {
335 env->QF = 1;
336 return ~mask;
337 }
338 return val;
339 }
340
341 /* Unsigned saturation. */
342 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
343 {
344 uint32_t max;
345
346 max = (1u << shift) - 1;
347 if (val < 0) {
348 env->QF = 1;
349 return 0;
350 } else if (val > max) {
351 env->QF = 1;
352 return max;
353 }
354 return val;
355 }
356
357 /* Signed saturate. */
358 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
359 {
360 return do_ssat(env, x, shift);
361 }
362
363 /* Dual halfword signed saturate. */
364 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
365 {
366 uint32_t res;
367
368 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
369 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
370 return res;
371 }
372
373 /* Unsigned saturate. */
374 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
375 {
376 return do_usat(env, x, shift);
377 }
378
379 /* Dual halfword unsigned saturate. */
380 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
381 {
382 uint32_t res;
383
384 res = (uint16_t)do_usat(env, (int16_t)x, shift);
385 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
386 return res;
387 }
388
389 void HELPER(setend)(CPUARMState *env)
390 {
391 env->uncached_cpsr ^= CPSR_E;
392 }
393
394 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
395 * The function returns the target EL (1-3) if the instruction is to be trapped;
396 * otherwise it returns 0 indicating it is not trapped.
397 */
398 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
399 {
400 int cur_el = arm_current_el(env);
401 uint64_t mask;
402
403 if (arm_feature(env, ARM_FEATURE_M)) {
404 /* M profile cores can never trap WFI/WFE. */
405 return 0;
406 }
407
408 /* If we are currently in EL0 then we need to check if SCTLR is set up for
409 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
410 */
411 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
412 int target_el;
413
414 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
415 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
416 /* Secure EL0 and Secure PL1 is at EL3 */
417 target_el = 3;
418 } else {
419 target_el = 1;
420 }
421
422 if (!(env->cp15.sctlr_el[target_el] & mask)) {
423 return target_el;
424 }
425 }
426
427 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
428 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
429 * bits will be zero indicating no trap.
430 */
431 if (cur_el < 2 && !arm_is_secure(env)) {
432 mask = (is_wfe) ? HCR_TWE : HCR_TWI;
433 if (env->cp15.hcr_el2 & mask) {
434 return 2;
435 }
436 }
437
438 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
439 if (cur_el < 3) {
440 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
441 if (env->cp15.scr_el3 & mask) {
442 return 3;
443 }
444 }
445
446 return 0;
447 }
448
449 void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
450 {
451 CPUState *cs = CPU(arm_env_get_cpu(env));
452 int target_el = check_wfx_trap(env, false);
453
454 if (cpu_has_work(cs)) {
455 /* Don't bother to go into our "low power state" if
456 * we would just wake up immediately.
457 */
458 return;
459 }
460
461 if (target_el) {
462 env->pc -= insn_len;
463 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
464 target_el);
465 }
466
467 cs->exception_index = EXCP_HLT;
468 cs->halted = 1;
469 cpu_loop_exit(cs);
470 }
471
472 void HELPER(wfe)(CPUARMState *env)
473 {
474 /* This is a hint instruction that is semantically different
475 * from YIELD even though we currently implement it identically.
476 * Don't actually halt the CPU, just yield back to top
477 * level loop. This is not going into a "low power state"
478 * (ie halting until some event occurs), so we never take
479 * a configurable trap to a different exception level.
480 */
481 HELPER(yield)(env);
482 }
483
484 void HELPER(yield)(CPUARMState *env)
485 {
486 ARMCPU *cpu = arm_env_get_cpu(env);
487 CPUState *cs = CPU(cpu);
488
489 /* This is a non-trappable hint instruction that generally indicates
490 * that the guest is currently busy-looping. Yield control back to the
491 * top level loop so that a more deserving VCPU has a chance to run.
492 */
493 cs->exception_index = EXCP_YIELD;
494 cpu_loop_exit(cs);
495 }
496
497 /* Raise an internal-to-QEMU exception. This is limited to only
498 * those EXCP values which are special cases for QEMU to interrupt
499 * execution and not to be used for exceptions which are passed to
500 * the guest (those must all have syndrome information and thus should
501 * use exception_with_syndrome).
502 */
503 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
504 {
505 CPUState *cs = CPU(arm_env_get_cpu(env));
506
507 assert(excp_is_internal(excp));
508 cs->exception_index = excp;
509 cpu_loop_exit(cs);
510 }
511
512 /* Raise an exception with the specified syndrome register value */
513 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
514 uint32_t syndrome, uint32_t target_el)
515 {
516 raise_exception(env, excp, syndrome, target_el);
517 }
518
519 /* Raise an EXCP_BKPT with the specified syndrome register value,
520 * targeting the correct exception level for debug exceptions.
521 */
522 void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
523 {
524 /* FSR will only be used if the debug target EL is AArch32. */
525 env->exception.fsr = arm_debug_exception_fsr(env);
526 /* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
527 * values to the guest that it shouldn't be able to see at its
528 * exception/security level.
529 */
530 env->exception.vaddress = 0;
531 raise_exception(env, EXCP_BKPT, syndrome, arm_debug_target_el(env));
532 }
533
534 uint32_t HELPER(cpsr_read)(CPUARMState *env)
535 {
536 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
537 }
538
539 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
540 {
541 cpsr_write(env, val, mask, CPSRWriteByInstr);
542 }
543
544 /* Write the CPSR for a 32-bit exception return */
545 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
546 {
547 qemu_mutex_lock_iothread();
548 arm_call_pre_el_change_hook(arm_env_get_cpu(env));
549 qemu_mutex_unlock_iothread();
550
551 cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
552
553 /* Generated code has already stored the new PC value, but
554 * without masking out its low bits, because which bits need
555 * masking depends on whether we're returning to Thumb or ARM
556 * state. Do the masking now.
557 */
558 env->regs[15] &= (env->thumb ? ~1 : ~3);
559
560 qemu_mutex_lock_iothread();
561 arm_call_el_change_hook(arm_env_get_cpu(env));
562 qemu_mutex_unlock_iothread();
563 }
564
565 /* Access to user mode registers from privileged modes. */
566 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
567 {
568 uint32_t val;
569
570 if (regno == 13) {
571 val = env->banked_r13[BANK_USRSYS];
572 } else if (regno == 14) {
573 val = env->banked_r14[BANK_USRSYS];
574 } else if (regno >= 8
575 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
576 val = env->usr_regs[regno - 8];
577 } else {
578 val = env->regs[regno];
579 }
580 return val;
581 }
582
583 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
584 {
585 if (regno == 13) {
586 env->banked_r13[BANK_USRSYS] = val;
587 } else if (regno == 14) {
588 env->banked_r14[BANK_USRSYS] = val;
589 } else if (regno >= 8
590 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
591 env->usr_regs[regno - 8] = val;
592 } else {
593 env->regs[regno] = val;
594 }
595 }
596
597 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
598 {
599 if ((env->uncached_cpsr & CPSR_M) == mode) {
600 env->regs[13] = val;
601 } else {
602 env->banked_r13[bank_number(mode)] = val;
603 }
604 }
605
606 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
607 {
608 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
609 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
610 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
611 */
612 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
613 exception_target_el(env));
614 }
615
616 if ((env->uncached_cpsr & CPSR_M) == mode) {
617 return env->regs[13];
618 } else {
619 return env->banked_r13[bank_number(mode)];
620 }
621 }
622
623 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
624 uint32_t regno)
625 {
626 /* Raise an exception if the requested access is one of the UNPREDICTABLE
627 * cases; otherwise return. This broadly corresponds to the pseudocode
628 * BankedRegisterAccessValid() and SPSRAccessValid(),
629 * except that we have already handled some cases at translate time.
630 */
631 int curmode = env->uncached_cpsr & CPSR_M;
632
633 if (regno == 17) {
634 /* ELR_Hyp: a special case because access from tgtmode is OK */
635 if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
636 goto undef;
637 }
638 return;
639 }
640
641 if (curmode == tgtmode) {
642 goto undef;
643 }
644
645 if (tgtmode == ARM_CPU_MODE_USR) {
646 switch (regno) {
647 case 8 ... 12:
648 if (curmode != ARM_CPU_MODE_FIQ) {
649 goto undef;
650 }
651 break;
652 case 13:
653 if (curmode == ARM_CPU_MODE_SYS) {
654 goto undef;
655 }
656 break;
657 case 14:
658 if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
659 goto undef;
660 }
661 break;
662 default:
663 break;
664 }
665 }
666
667 if (tgtmode == ARM_CPU_MODE_HYP) {
668 /* SPSR_Hyp, r13_hyp: accessible from Monitor mode only */
669 if (curmode != ARM_CPU_MODE_MON) {
670 goto undef;
671 }
672 }
673
674 return;
675
676 undef:
677 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
678 exception_target_el(env));
679 }
680
681 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
682 uint32_t regno)
683 {
684 msr_mrs_banked_exc_checks(env, tgtmode, regno);
685
686 switch (regno) {
687 case 16: /* SPSRs */
688 env->banked_spsr[bank_number(tgtmode)] = value;
689 break;
690 case 17: /* ELR_Hyp */
691 env->elr_el[2] = value;
692 break;
693 case 13:
694 env->banked_r13[bank_number(tgtmode)] = value;
695 break;
696 case 14:
697 env->banked_r14[bank_number(tgtmode)] = value;
698 break;
699 case 8 ... 12:
700 switch (tgtmode) {
701 case ARM_CPU_MODE_USR:
702 env->usr_regs[regno - 8] = value;
703 break;
704 case ARM_CPU_MODE_FIQ:
705 env->fiq_regs[regno - 8] = value;
706 break;
707 default:
708 g_assert_not_reached();
709 }
710 break;
711 default:
712 g_assert_not_reached();
713 }
714 }
715
716 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
717 {
718 msr_mrs_banked_exc_checks(env, tgtmode, regno);
719
720 switch (regno) {
721 case 16: /* SPSRs */
722 return env->banked_spsr[bank_number(tgtmode)];
723 case 17: /* ELR_Hyp */
724 return env->elr_el[2];
725 case 13:
726 return env->banked_r13[bank_number(tgtmode)];
727 case 14:
728 return env->banked_r14[bank_number(tgtmode)];
729 case 8 ... 12:
730 switch (tgtmode) {
731 case ARM_CPU_MODE_USR:
732 return env->usr_regs[regno - 8];
733 case ARM_CPU_MODE_FIQ:
734 return env->fiq_regs[regno - 8];
735 default:
736 g_assert_not_reached();
737 }
738 default:
739 g_assert_not_reached();
740 }
741 }
742
743 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
744 uint32_t isread)
745 {
746 const ARMCPRegInfo *ri = rip;
747 int target_el;
748
749 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
750 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
751 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
752 }
753
754 if (!ri->accessfn) {
755 return;
756 }
757
758 switch (ri->accessfn(env, ri, isread)) {
759 case CP_ACCESS_OK:
760 return;
761 case CP_ACCESS_TRAP:
762 target_el = exception_target_el(env);
763 break;
764 case CP_ACCESS_TRAP_EL2:
765 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
766 * a bug in the access function.
767 */
768 assert(!arm_is_secure(env) && arm_current_el(env) != 3);
769 target_el = 2;
770 break;
771 case CP_ACCESS_TRAP_EL3:
772 target_el = 3;
773 break;
774 case CP_ACCESS_TRAP_UNCATEGORIZED:
775 target_el = exception_target_el(env);
776 syndrome = syn_uncategorized();
777 break;
778 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
779 target_el = 2;
780 syndrome = syn_uncategorized();
781 break;
782 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
783 target_el = 3;
784 syndrome = syn_uncategorized();
785 break;
786 case CP_ACCESS_TRAP_FP_EL2:
787 target_el = 2;
788 /* Since we are an implementation that takes exceptions on a trapped
789 * conditional insn only if the insn has passed its condition code
790 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
791 * (which is also the required value for AArch64 traps).
792 */
793 syndrome = syn_fp_access_trap(1, 0xe, false);
794 break;
795 case CP_ACCESS_TRAP_FP_EL3:
796 target_el = 3;
797 syndrome = syn_fp_access_trap(1, 0xe, false);
798 break;
799 default:
800 g_assert_not_reached();
801 }
802
803 raise_exception(env, EXCP_UDEF, syndrome, target_el);
804 }
805
806 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
807 {
808 const ARMCPRegInfo *ri = rip;
809
810 if (ri->type & ARM_CP_IO) {
811 qemu_mutex_lock_iothread();
812 ri->writefn(env, ri, value);
813 qemu_mutex_unlock_iothread();
814 } else {
815 ri->writefn(env, ri, value);
816 }
817 }
818
819 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
820 {
821 const ARMCPRegInfo *ri = rip;
822 uint32_t res;
823
824 if (ri->type & ARM_CP_IO) {
825 qemu_mutex_lock_iothread();
826 res = ri->readfn(env, ri);
827 qemu_mutex_unlock_iothread();
828 } else {
829 res = ri->readfn(env, ri);
830 }
831
832 return res;
833 }
834
835 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
836 {
837 const ARMCPRegInfo *ri = rip;
838
839 if (ri->type & ARM_CP_IO) {
840 qemu_mutex_lock_iothread();
841 ri->writefn(env, ri, value);
842 qemu_mutex_unlock_iothread();
843 } else {
844 ri->writefn(env, ri, value);
845 }
846 }
847
848 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
849 {
850 const ARMCPRegInfo *ri = rip;
851 uint64_t res;
852
853 if (ri->type & ARM_CP_IO) {
854 qemu_mutex_lock_iothread();
855 res = ri->readfn(env, ri);
856 qemu_mutex_unlock_iothread();
857 } else {
858 res = ri->readfn(env, ri);
859 }
860
861 return res;
862 }
863
864 void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
865 {
866 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
867 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
868 * to catch that case at translate time.
869 */
870 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
871 uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
872 extract32(op, 3, 3), 4,
873 imm, 0x1f, 0);
874 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
875 }
876
877 switch (op) {
878 case 0x05: /* SPSel */
879 update_spsel(env, imm);
880 break;
881 case 0x1e: /* DAIFSet */
882 env->daif |= (imm << 6) & PSTATE_DAIF;
883 break;
884 case 0x1f: /* DAIFClear */
885 env->daif &= ~((imm << 6) & PSTATE_DAIF);
886 break;
887 default:
888 g_assert_not_reached();
889 }
890 }
891
892 void HELPER(clear_pstate_ss)(CPUARMState *env)
893 {
894 env->pstate &= ~PSTATE_SS;
895 }
896
897 void HELPER(pre_hvc)(CPUARMState *env)
898 {
899 ARMCPU *cpu = arm_env_get_cpu(env);
900 int cur_el = arm_current_el(env);
901 /* FIXME: Use actual secure state. */
902 bool secure = false;
903 bool undef;
904
905 if (arm_is_psci_call(cpu, EXCP_HVC)) {
906 /* If PSCI is enabled and this looks like a valid PSCI call then
907 * that overrides the architecturally mandated HVC behaviour.
908 */
909 return;
910 }
911
912 if (!arm_feature(env, ARM_FEATURE_EL2)) {
913 /* If EL2 doesn't exist, HVC always UNDEFs */
914 undef = true;
915 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
916 /* EL3.HCE has priority over EL2.HCD. */
917 undef = !(env->cp15.scr_el3 & SCR_HCE);
918 } else {
919 undef = env->cp15.hcr_el2 & HCR_HCD;
920 }
921
922 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
923 * For ARMv8/AArch64, HVC is allowed in EL3.
924 * Note that we've already trapped HVC from EL0 at translation
925 * time.
926 */
927 if (secure && (!is_a64(env) || cur_el == 1)) {
928 undef = true;
929 }
930
931 if (undef) {
932 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
933 exception_target_el(env));
934 }
935 }
936
937 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
938 {
939 ARMCPU *cpu = arm_env_get_cpu(env);
940 int cur_el = arm_current_el(env);
941 bool secure = arm_is_secure(env);
942 bool smd = env->cp15.scr_el3 & SCR_SMD;
943 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
944 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
945 * extensions, SMD only applies to NS state.
946 * On ARMv7 without the Virtualization extensions, the SMD bit
947 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
948 * so we need not special case this here.
949 */
950 bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure;
951
952 if (!arm_feature(env, ARM_FEATURE_EL3) &&
953 cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
954 /* If we have no EL3 then SMC always UNDEFs and can't be
955 * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
956 * firmware within QEMU, and we want an EL2 guest to be able
957 * to forbid its EL1 from making PSCI calls into QEMU's
958 * "firmware" via HCR.TSC, so for these purposes treat
959 * PSCI-via-SMC as implying an EL3.
960 */
961 undef = true;
962 } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
963 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
964 * We also want an EL2 guest to be able to forbid its EL1 from
965 * making PSCI calls into QEMU's "firmware" via HCR.TSC.
966 */
967 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
968 }
969
970 /* If PSCI is enabled and this looks like a valid PSCI call then
971 * suppress the UNDEF -- we'll catch the SMC exception and
972 * implement the PSCI call behaviour there.
973 */
974 if (undef && !arm_is_psci_call(cpu, EXCP_SMC)) {
975 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
976 exception_target_el(env));
977 }
978 }
979
980 static int el_from_spsr(uint32_t spsr)
981 {
982 /* Return the exception level that this SPSR is requesting a return to,
983 * or -1 if it is invalid (an illegal return)
984 */
985 if (spsr & PSTATE_nRW) {
986 switch (spsr & CPSR_M) {
987 case ARM_CPU_MODE_USR:
988 return 0;
989 case ARM_CPU_MODE_HYP:
990 return 2;
991 case ARM_CPU_MODE_FIQ:
992 case ARM_CPU_MODE_IRQ:
993 case ARM_CPU_MODE_SVC:
994 case ARM_CPU_MODE_ABT:
995 case ARM_CPU_MODE_UND:
996 case ARM_CPU_MODE_SYS:
997 return 1;
998 case ARM_CPU_MODE_MON:
999 /* Returning to Mon from AArch64 is never possible,
1000 * so this is an illegal return.
1001 */
1002 default:
1003 return -1;
1004 }
1005 } else {
1006 if (extract32(spsr, 1, 1)) {
1007 /* Return with reserved M[1] bit set */
1008 return -1;
1009 }
1010 if (extract32(spsr, 0, 4) == 1) {
1011 /* return to EL0 with M[0] bit set */
1012 return -1;
1013 }
1014 return extract32(spsr, 2, 2);
1015 }
1016 }
1017
1018 void HELPER(exception_return)(CPUARMState *env)
1019 {
1020 int cur_el = arm_current_el(env);
1021 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
1022 uint32_t spsr = env->banked_spsr[spsr_idx];
1023 int new_el;
1024 bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
1025
1026 aarch64_save_sp(env, cur_el);
1027
1028 arm_clear_exclusive(env);
1029
1030 /* We must squash the PSTATE.SS bit to zero unless both of the
1031 * following hold:
1032 * 1. debug exceptions are currently disabled
1033 * 2. singlestep will be active in the EL we return to
1034 * We check 1 here and 2 after we've done the pstate/cpsr write() to
1035 * transition to the EL we're going to.
1036 */
1037 if (arm_generate_debug_exceptions(env)) {
1038 spsr &= ~PSTATE_SS;
1039 }
1040
1041 new_el = el_from_spsr(spsr);
1042 if (new_el == -1) {
1043 goto illegal_return;
1044 }
1045 if (new_el > cur_el
1046 || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
1047 /* Disallow return to an EL which is unimplemented or higher
1048 * than the current one.
1049 */
1050 goto illegal_return;
1051 }
1052
1053 if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
1054 /* Return to an EL which is configured for a different register width */
1055 goto illegal_return;
1056 }
1057
1058 if (new_el == 2 && arm_is_secure_below_el3(env)) {
1059 /* Return to the non-existent secure-EL2 */
1060 goto illegal_return;
1061 }
1062
1063 if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE)
1064 && !arm_is_secure_below_el3(env)) {
1065 goto illegal_return;
1066 }
1067
1068 qemu_mutex_lock_iothread();
1069 arm_call_pre_el_change_hook(arm_env_get_cpu(env));
1070 qemu_mutex_unlock_iothread();
1071
1072 if (!return_to_aa64) {
1073 env->aarch64 = 0;
1074 /* We do a raw CPSR write because aarch64_sync_64_to_32()
1075 * will sort the register banks out for us, and we've already
1076 * caught all the bad-mode cases in el_from_spsr().
1077 */
1078 cpsr_write(env, spsr, ~0, CPSRWriteRaw);
1079 if (!arm_singlestep_active(env)) {
1080 env->uncached_cpsr &= ~PSTATE_SS;
1081 }
1082 aarch64_sync_64_to_32(env);
1083
1084 if (spsr & CPSR_T) {
1085 env->regs[15] = env->elr_el[cur_el] & ~0x1;
1086 } else {
1087 env->regs[15] = env->elr_el[cur_el] & ~0x3;
1088 }
1089 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1090 "AArch32 EL%d PC 0x%" PRIx32 "\n",
1091 cur_el, new_el, env->regs[15]);
1092 } else {
1093 env->aarch64 = 1;
1094 pstate_write(env, spsr);
1095 if (!arm_singlestep_active(env)) {
1096 env->pstate &= ~PSTATE_SS;
1097 }
1098 aarch64_restore_sp(env, new_el);
1099 env->pc = env->elr_el[cur_el];
1100 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1101 "AArch64 EL%d PC 0x%" PRIx64 "\n",
1102 cur_el, new_el, env->pc);
1103 }
1104 aarch64_sve_change_el(env, cur_el, new_el);
1105
1106 qemu_mutex_lock_iothread();
1107 arm_call_el_change_hook(arm_env_get_cpu(env));
1108 qemu_mutex_unlock_iothread();
1109
1110 return;
1111
1112 illegal_return:
1113 /* Illegal return events of various kinds have architecturally
1114 * mandated behaviour:
1115 * restore NZCV and DAIF from SPSR_ELx
1116 * set PSTATE.IL
1117 * restore PC from ELR_ELx
1118 * no change to exception level, execution state or stack pointer
1119 */
1120 env->pstate |= PSTATE_IL;
1121 env->pc = env->elr_el[cur_el];
1122 spsr &= PSTATE_NZCV | PSTATE_DAIF;
1123 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
1124 pstate_write(env, spsr);
1125 if (!arm_singlestep_active(env)) {
1126 env->pstate &= ~PSTATE_SS;
1127 }
1128 qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
1129 "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
1130 }
1131
1132 /* Return true if the linked breakpoint entry lbn passes its checks */
1133 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
1134 {
1135 CPUARMState *env = &cpu->env;
1136 uint64_t bcr = env->cp15.dbgbcr[lbn];
1137 int brps = extract32(cpu->dbgdidr, 24, 4);
1138 int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
1139 int bt;
1140 uint32_t contextidr;
1141
1142 /* Links to unimplemented or non-context aware breakpoints are
1143 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
1144 * as if linked to an UNKNOWN context-aware breakpoint (in which
1145 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
1146 * We choose the former.
1147 */
1148 if (lbn > brps || lbn < (brps - ctx_cmps)) {
1149 return false;
1150 }
1151
1152 bcr = env->cp15.dbgbcr[lbn];
1153
1154 if (extract64(bcr, 0, 1) == 0) {
1155 /* Linked breakpoint disabled : generate no events */
1156 return false;
1157 }
1158
1159 bt = extract64(bcr, 20, 4);
1160
1161 /* We match the whole register even if this is AArch32 using the
1162 * short descriptor format (in which case it holds both PROCID and ASID),
1163 * since we don't implement the optional v7 context ID masking.
1164 */
1165 contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
1166
1167 switch (bt) {
1168 case 3: /* linked context ID match */
1169 if (arm_current_el(env) > 1) {
1170 /* Context matches never fire in EL2 or (AArch64) EL3 */
1171 return false;
1172 }
1173 return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
1174 case 5: /* linked address mismatch (reserved in AArch64) */
1175 case 9: /* linked VMID match (reserved if no EL2) */
1176 case 11: /* linked context ID and VMID match (reserved if no EL2) */
1177 default:
1178 /* Links to Unlinked context breakpoints must generate no
1179 * events; we choose to do the same for reserved values too.
1180 */
1181 return false;
1182 }
1183
1184 return false;
1185 }
1186
1187 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
1188 {
1189 CPUARMState *env = &cpu->env;
1190 uint64_t cr;
1191 int pac, hmc, ssc, wt, lbn;
1192 /* Note that for watchpoints the check is against the CPU security
1193 * state, not the S/NS attribute on the offending data access.
1194 */
1195 bool is_secure = arm_is_secure(env);
1196 int access_el = arm_current_el(env);
1197
1198 if (is_wp) {
1199 CPUWatchpoint *wp = env->cpu_watchpoint[n];
1200
1201 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
1202 return false;
1203 }
1204 cr = env->cp15.dbgwcr[n];
1205 if (wp->hitattrs.user) {
1206 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
1207 * match watchpoints as if they were accesses done at EL0, even if
1208 * the CPU is at EL1 or higher.
1209 */
1210 access_el = 0;
1211 }
1212 } else {
1213 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1214
1215 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
1216 return false;
1217 }
1218 cr = env->cp15.dbgbcr[n];
1219 }
1220 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1221 * enabled and that the address and access type match; for breakpoints
1222 * we know the address matched; check the remaining fields, including
1223 * linked breakpoints. We rely on WCR and BCR having the same layout
1224 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
1225 * Note that some combinations of {PAC, HMC, SSC} are reserved and
1226 * must act either like some valid combination or as if the watchpoint
1227 * were disabled. We choose the former, and use this together with
1228 * the fact that EL3 must always be Secure and EL2 must always be
1229 * Non-Secure to simplify the code slightly compared to the full
1230 * table in the ARM ARM.
1231 */
1232 pac = extract64(cr, 1, 2);
1233 hmc = extract64(cr, 13, 1);
1234 ssc = extract64(cr, 14, 2);
1235
1236 switch (ssc) {
1237 case 0:
1238 break;
1239 case 1:
1240 case 3:
1241 if (is_secure) {
1242 return false;
1243 }
1244 break;
1245 case 2:
1246 if (!is_secure) {
1247 return false;
1248 }
1249 break;
1250 }
1251
1252 switch (access_el) {
1253 case 3:
1254 case 2:
1255 if (!hmc) {
1256 return false;
1257 }
1258 break;
1259 case 1:
1260 if (extract32(pac, 0, 1) == 0) {
1261 return false;
1262 }
1263 break;
1264 case 0:
1265 if (extract32(pac, 1, 1) == 0) {
1266 return false;
1267 }
1268 break;
1269 default:
1270 g_assert_not_reached();
1271 }
1272
1273 wt = extract64(cr, 20, 1);
1274 lbn = extract64(cr, 16, 4);
1275
1276 if (wt && !linked_bp_matches(cpu, lbn)) {
1277 return false;
1278 }
1279
1280 return true;
1281 }
1282
1283 static bool check_watchpoints(ARMCPU *cpu)
1284 {
1285 CPUARMState *env = &cpu->env;
1286 int n;
1287
1288 /* If watchpoints are disabled globally or we can't take debug
1289 * exceptions here then watchpoint firings are ignored.
1290 */
1291 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1292 || !arm_generate_debug_exceptions(env)) {
1293 return false;
1294 }
1295
1296 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
1297 if (bp_wp_matches(cpu, n, true)) {
1298 return true;
1299 }
1300 }
1301 return false;
1302 }
1303
1304 static bool check_breakpoints(ARMCPU *cpu)
1305 {
1306 CPUARMState *env = &cpu->env;
1307 int n;
1308
1309 /* If breakpoints are disabled globally or we can't take debug
1310 * exceptions here then breakpoint firings are ignored.
1311 */
1312 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1313 || !arm_generate_debug_exceptions(env)) {
1314 return false;
1315 }
1316
1317 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
1318 if (bp_wp_matches(cpu, n, false)) {
1319 return true;
1320 }
1321 }
1322 return false;
1323 }
1324
1325 void HELPER(check_breakpoints)(CPUARMState *env)
1326 {
1327 ARMCPU *cpu = arm_env_get_cpu(env);
1328
1329 if (check_breakpoints(cpu)) {
1330 HELPER(exception_internal(env, EXCP_DEBUG));
1331 }
1332 }
1333
1334 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
1335 {
1336 /* Called by core code when a CPU watchpoint fires; need to check if this
1337 * is also an architectural watchpoint match.
1338 */
1339 ARMCPU *cpu = ARM_CPU(cs);
1340
1341 return check_watchpoints(cpu);
1342 }
1343
1344 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
1345 {
1346 ARMCPU *cpu = ARM_CPU(cs);
1347 CPUARMState *env = &cpu->env;
1348
1349 /* In BE32 system mode, target memory is stored byteswapped (on a
1350 * little-endian host system), and by the time we reach here (via an
1351 * opcode helper) the addresses of subword accesses have been adjusted
1352 * to account for that, which means that watchpoints will not match.
1353 * Undo the adjustment here.
1354 */
1355 if (arm_sctlr_b(env)) {
1356 if (len == 1) {
1357 addr ^= 3;
1358 } else if (len == 2) {
1359 addr ^= 2;
1360 }
1361 }
1362
1363 return addr;
1364 }
1365
1366 void arm_debug_excp_handler(CPUState *cs)
1367 {
1368 /* Called by core code when a watchpoint or breakpoint fires;
1369 * need to check which one and raise the appropriate exception.
1370 */
1371 ARMCPU *cpu = ARM_CPU(cs);
1372 CPUARMState *env = &cpu->env;
1373 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
1374
1375 if (wp_hit) {
1376 if (wp_hit->flags & BP_CPU) {
1377 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
1378 bool same_el = arm_debug_target_el(env) == arm_current_el(env);
1379
1380 cs->watchpoint_hit = NULL;
1381
1382 env->exception.fsr = arm_debug_exception_fsr(env);
1383 env->exception.vaddress = wp_hit->hitaddr;
1384 raise_exception(env, EXCP_DATA_ABORT,
1385 syn_watchpoint(same_el, 0, wnr),
1386 arm_debug_target_el(env));
1387 }
1388 } else {
1389 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1390 bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
1391
1392 /* (1) GDB breakpoints should be handled first.
1393 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
1394 * since singlestep is also done by generating a debug internal
1395 * exception.
1396 */
1397 if (cpu_breakpoint_test(cs, pc, BP_GDB)
1398 || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
1399 return;
1400 }
1401
1402 env->exception.fsr = arm_debug_exception_fsr(env);
1403 /* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
1404 * values to the guest that it shouldn't be able to see at its
1405 * exception/security level.
1406 */
1407 env->exception.vaddress = 0;
1408 raise_exception(env, EXCP_PREFETCH_ABORT,
1409 syn_breakpoint(same_el),
1410 arm_debug_target_el(env));
1411 }
1412 }
1413
1414 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1415 The only way to do that in TCG is a conditional branch, which clobbers
1416 all our temporaries. For now implement these as helper functions. */
1417
1418 /* Similarly for variable shift instructions. */
1419
1420 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1421 {
1422 int shift = i & 0xff;
1423 if (shift >= 32) {
1424 if (shift == 32)
1425 env->CF = x & 1;
1426 else
1427 env->CF = 0;
1428 return 0;
1429 } else if (shift != 0) {
1430 env->CF = (x >> (32 - shift)) & 1;
1431 return x << shift;
1432 }
1433 return x;
1434 }
1435
1436 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1437 {
1438 int shift = i & 0xff;
1439 if (shift >= 32) {
1440 if (shift == 32)
1441 env->CF = (x >> 31) & 1;
1442 else
1443 env->CF = 0;
1444 return 0;
1445 } else if (shift != 0) {
1446 env->CF = (x >> (shift - 1)) & 1;
1447 return x >> shift;
1448 }
1449 return x;
1450 }
1451
1452 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1453 {
1454 int shift = i & 0xff;
1455 if (shift >= 32) {
1456 env->CF = (x >> 31) & 1;
1457 return (int32_t)x >> 31;
1458 } else if (shift != 0) {
1459 env->CF = (x >> (shift - 1)) & 1;
1460 return (int32_t)x >> shift;
1461 }
1462 return x;
1463 }
1464
1465 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1466 {
1467 int shift1, shift;
1468 shift1 = i & 0xff;
1469 shift = shift1 & 0x1f;
1470 if (shift == 0) {
1471 if (shift1 != 0)
1472 env->CF = (x >> 31) & 1;
1473 return x;
1474 } else {
1475 env->CF = (x >> (shift - 1)) & 1;
1476 return ((uint32_t)x >> shift) | (x << (32 - shift));
1477 }
1478 }