]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/op_helper.c
target/arm: adjust program counter for wfi exception in AArch32
[mirror_qemu.git] / target / arm / op_helper.c
1 /*
2 * ARM helper routines
3 *
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qemu/units.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "exec/helper-proto.h"
25 #include "internals.h"
26 #include "exec/exec-all.h"
27 #include "exec/cpu_ldst.h"
28
29 #define SIGNBIT (uint32_t)0x80000000
30 #define SIGNBIT64 ((uint64_t)1 << 63)
31
32 static CPUState *do_raise_exception(CPUARMState *env, uint32_t excp,
33 uint32_t syndrome, uint32_t target_el)
34 {
35 CPUState *cs = env_cpu(env);
36
37 if (target_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
38 /*
39 * Redirect NS EL1 exceptions to NS EL2. These are reported with
40 * their original syndrome register value, with the exception of
41 * SIMD/FP access traps, which are reported as uncategorized
42 * (see DDI0478C.a D1.10.4)
43 */
44 target_el = 2;
45 if (syn_get_ec(syndrome) == EC_ADVSIMDFPACCESSTRAP) {
46 syndrome = syn_uncategorized();
47 }
48 }
49
50 assert(!excp_is_internal(excp));
51 cs->exception_index = excp;
52 env->exception.syndrome = syndrome;
53 env->exception.target_el = target_el;
54
55 return cs;
56 }
57
58 void raise_exception(CPUARMState *env, uint32_t excp,
59 uint32_t syndrome, uint32_t target_el)
60 {
61 CPUState *cs = do_raise_exception(env, excp, syndrome, target_el);
62 cpu_loop_exit(cs);
63 }
64
65 void raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome,
66 uint32_t target_el, uintptr_t ra)
67 {
68 CPUState *cs = do_raise_exception(env, excp, syndrome, target_el);
69 cpu_loop_exit_restore(cs, ra);
70 }
71
72 uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def, void *vn,
73 uint32_t maxindex)
74 {
75 uint32_t val, shift;
76 uint64_t *table = vn;
77
78 val = 0;
79 for (shift = 0; shift < 32; shift += 8) {
80 uint32_t index = (ireg >> shift) & 0xff;
81 if (index < maxindex) {
82 uint32_t tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
83 val |= tmp << shift;
84 } else {
85 val |= def & (0xff << shift);
86 }
87 }
88 return val;
89 }
90
91 void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue)
92 {
93 /*
94 * Perform the v8M stack limit check for SP updates from translated code,
95 * raising an exception if the limit is breached.
96 */
97 if (newvalue < v7m_sp_limit(env)) {
98 CPUState *cs = env_cpu(env);
99
100 /*
101 * Stack limit exceptions are a rare case, so rather than syncing
102 * PC/condbits before the call, we use cpu_restore_state() to
103 * get them right before raising the exception.
104 */
105 cpu_restore_state(cs, GETPC(), true);
106 raise_exception(env, EXCP_STKOF, 0, 1);
107 }
108 }
109
110 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
111 {
112 uint32_t res = a + b;
113 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
114 env->QF = 1;
115 return res;
116 }
117
118 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
119 {
120 uint32_t res = a + b;
121 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
122 env->QF = 1;
123 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
124 }
125 return res;
126 }
127
128 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
129 {
130 uint32_t res = a - b;
131 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
132 env->QF = 1;
133 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
134 }
135 return res;
136 }
137
138 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
139 {
140 uint32_t res = a + b;
141 if (res < a) {
142 env->QF = 1;
143 res = ~0;
144 }
145 return res;
146 }
147
148 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
149 {
150 uint32_t res = a - b;
151 if (res > a) {
152 env->QF = 1;
153 res = 0;
154 }
155 return res;
156 }
157
158 /* Signed saturation. */
159 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
160 {
161 int32_t top;
162 uint32_t mask;
163
164 top = val >> shift;
165 mask = (1u << shift) - 1;
166 if (top > 0) {
167 env->QF = 1;
168 return mask;
169 } else if (top < -1) {
170 env->QF = 1;
171 return ~mask;
172 }
173 return val;
174 }
175
176 /* Unsigned saturation. */
177 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
178 {
179 uint32_t max;
180
181 max = (1u << shift) - 1;
182 if (val < 0) {
183 env->QF = 1;
184 return 0;
185 } else if (val > max) {
186 env->QF = 1;
187 return max;
188 }
189 return val;
190 }
191
192 /* Signed saturate. */
193 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
194 {
195 return do_ssat(env, x, shift);
196 }
197
198 /* Dual halfword signed saturate. */
199 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
200 {
201 uint32_t res;
202
203 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
204 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
205 return res;
206 }
207
208 /* Unsigned saturate. */
209 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
210 {
211 return do_usat(env, x, shift);
212 }
213
214 /* Dual halfword unsigned saturate. */
215 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
216 {
217 uint32_t res;
218
219 res = (uint16_t)do_usat(env, (int16_t)x, shift);
220 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
221 return res;
222 }
223
224 void HELPER(setend)(CPUARMState *env)
225 {
226 env->uncached_cpsr ^= CPSR_E;
227 arm_rebuild_hflags(env);
228 }
229
230 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
231 * The function returns the target EL (1-3) if the instruction is to be trapped;
232 * otherwise it returns 0 indicating it is not trapped.
233 */
234 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
235 {
236 int cur_el = arm_current_el(env);
237 uint64_t mask;
238
239 if (arm_feature(env, ARM_FEATURE_M)) {
240 /* M profile cores can never trap WFI/WFE. */
241 return 0;
242 }
243
244 /* If we are currently in EL0 then we need to check if SCTLR is set up for
245 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
246 */
247 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
248 int target_el;
249
250 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
251 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
252 /* Secure EL0 and Secure PL1 is at EL3 */
253 target_el = 3;
254 } else {
255 target_el = 1;
256 }
257
258 if (!(env->cp15.sctlr_el[target_el] & mask)) {
259 return target_el;
260 }
261 }
262
263 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
264 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
265 * bits will be zero indicating no trap.
266 */
267 if (cur_el < 2) {
268 mask = is_wfe ? HCR_TWE : HCR_TWI;
269 if (arm_hcr_el2_eff(env) & mask) {
270 return 2;
271 }
272 }
273
274 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
275 if (cur_el < 3) {
276 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
277 if (env->cp15.scr_el3 & mask) {
278 return 3;
279 }
280 }
281
282 return 0;
283 }
284
285 void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
286 {
287 CPUState *cs = env_cpu(env);
288 int target_el = check_wfx_trap(env, false);
289
290 if (cpu_has_work(cs)) {
291 /* Don't bother to go into our "low power state" if
292 * we would just wake up immediately.
293 */
294 return;
295 }
296
297 if (target_el) {
298 if (env->aarch64) {
299 env->pc -= insn_len;
300 } else {
301 env->regs[15] -= insn_len;
302 }
303
304 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
305 target_el);
306 }
307
308 cs->exception_index = EXCP_HLT;
309 cs->halted = 1;
310 cpu_loop_exit(cs);
311 }
312
313 void HELPER(wfe)(CPUARMState *env)
314 {
315 /* This is a hint instruction that is semantically different
316 * from YIELD even though we currently implement it identically.
317 * Don't actually halt the CPU, just yield back to top
318 * level loop. This is not going into a "low power state"
319 * (ie halting until some event occurs), so we never take
320 * a configurable trap to a different exception level.
321 */
322 HELPER(yield)(env);
323 }
324
325 void HELPER(yield)(CPUARMState *env)
326 {
327 CPUState *cs = env_cpu(env);
328
329 /* This is a non-trappable hint instruction that generally indicates
330 * that the guest is currently busy-looping. Yield control back to the
331 * top level loop so that a more deserving VCPU has a chance to run.
332 */
333 cs->exception_index = EXCP_YIELD;
334 cpu_loop_exit(cs);
335 }
336
337 /* Raise an internal-to-QEMU exception. This is limited to only
338 * those EXCP values which are special cases for QEMU to interrupt
339 * execution and not to be used for exceptions which are passed to
340 * the guest (those must all have syndrome information and thus should
341 * use exception_with_syndrome).
342 */
343 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
344 {
345 CPUState *cs = env_cpu(env);
346
347 assert(excp_is_internal(excp));
348 cs->exception_index = excp;
349 cpu_loop_exit(cs);
350 }
351
352 /* Raise an exception with the specified syndrome register value */
353 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
354 uint32_t syndrome, uint32_t target_el)
355 {
356 raise_exception(env, excp, syndrome, target_el);
357 }
358
359 /* Raise an EXCP_BKPT with the specified syndrome register value,
360 * targeting the correct exception level for debug exceptions.
361 */
362 void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
363 {
364 int debug_el = arm_debug_target_el(env);
365 int cur_el = arm_current_el(env);
366
367 /* FSR will only be used if the debug target EL is AArch32. */
368 env->exception.fsr = arm_debug_exception_fsr(env);
369 /* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
370 * values to the guest that it shouldn't be able to see at its
371 * exception/security level.
372 */
373 env->exception.vaddress = 0;
374 /*
375 * Other kinds of architectural debug exception are ignored if
376 * they target an exception level below the current one (in QEMU
377 * this is checked by arm_generate_debug_exceptions()). Breakpoint
378 * instructions are special because they always generate an exception
379 * to somewhere: if they can't go to the configured debug exception
380 * level they are taken to the current exception level.
381 */
382 if (debug_el < cur_el) {
383 debug_el = cur_el;
384 }
385 raise_exception(env, EXCP_BKPT, syndrome, debug_el);
386 }
387
388 uint32_t HELPER(cpsr_read)(CPUARMState *env)
389 {
390 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
391 }
392
393 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
394 {
395 cpsr_write(env, val, mask, CPSRWriteByInstr);
396 /* TODO: Not all cpsr bits are relevant to hflags. */
397 arm_rebuild_hflags(env);
398 }
399
400 /* Write the CPSR for a 32-bit exception return */
401 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
402 {
403 qemu_mutex_lock_iothread();
404 arm_call_pre_el_change_hook(env_archcpu(env));
405 qemu_mutex_unlock_iothread();
406
407 cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
408
409 /* Generated code has already stored the new PC value, but
410 * without masking out its low bits, because which bits need
411 * masking depends on whether we're returning to Thumb or ARM
412 * state. Do the masking now.
413 */
414 env->regs[15] &= (env->thumb ? ~1 : ~3);
415 arm_rebuild_hflags(env);
416
417 qemu_mutex_lock_iothread();
418 arm_call_el_change_hook(env_archcpu(env));
419 qemu_mutex_unlock_iothread();
420 }
421
422 /* Access to user mode registers from privileged modes. */
423 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
424 {
425 uint32_t val;
426
427 if (regno == 13) {
428 val = env->banked_r13[BANK_USRSYS];
429 } else if (regno == 14) {
430 val = env->banked_r14[BANK_USRSYS];
431 } else if (regno >= 8
432 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
433 val = env->usr_regs[regno - 8];
434 } else {
435 val = env->regs[regno];
436 }
437 return val;
438 }
439
440 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
441 {
442 if (regno == 13) {
443 env->banked_r13[BANK_USRSYS] = val;
444 } else if (regno == 14) {
445 env->banked_r14[BANK_USRSYS] = val;
446 } else if (regno >= 8
447 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
448 env->usr_regs[regno - 8] = val;
449 } else {
450 env->regs[regno] = val;
451 }
452 }
453
454 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
455 {
456 if ((env->uncached_cpsr & CPSR_M) == mode) {
457 env->regs[13] = val;
458 } else {
459 env->banked_r13[bank_number(mode)] = val;
460 }
461 }
462
463 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
464 {
465 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
466 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
467 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
468 */
469 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
470 exception_target_el(env));
471 }
472
473 if ((env->uncached_cpsr & CPSR_M) == mode) {
474 return env->regs[13];
475 } else {
476 return env->banked_r13[bank_number(mode)];
477 }
478 }
479
480 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
481 uint32_t regno)
482 {
483 /* Raise an exception if the requested access is one of the UNPREDICTABLE
484 * cases; otherwise return. This broadly corresponds to the pseudocode
485 * BankedRegisterAccessValid() and SPSRAccessValid(),
486 * except that we have already handled some cases at translate time.
487 */
488 int curmode = env->uncached_cpsr & CPSR_M;
489
490 if (regno == 17) {
491 /* ELR_Hyp: a special case because access from tgtmode is OK */
492 if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
493 goto undef;
494 }
495 return;
496 }
497
498 if (curmode == tgtmode) {
499 goto undef;
500 }
501
502 if (tgtmode == ARM_CPU_MODE_USR) {
503 switch (regno) {
504 case 8 ... 12:
505 if (curmode != ARM_CPU_MODE_FIQ) {
506 goto undef;
507 }
508 break;
509 case 13:
510 if (curmode == ARM_CPU_MODE_SYS) {
511 goto undef;
512 }
513 break;
514 case 14:
515 if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
516 goto undef;
517 }
518 break;
519 default:
520 break;
521 }
522 }
523
524 if (tgtmode == ARM_CPU_MODE_HYP) {
525 /* SPSR_Hyp, r13_hyp: accessible from Monitor mode only */
526 if (curmode != ARM_CPU_MODE_MON) {
527 goto undef;
528 }
529 }
530
531 return;
532
533 undef:
534 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
535 exception_target_el(env));
536 }
537
538 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
539 uint32_t regno)
540 {
541 msr_mrs_banked_exc_checks(env, tgtmode, regno);
542
543 switch (regno) {
544 case 16: /* SPSRs */
545 env->banked_spsr[bank_number(tgtmode)] = value;
546 break;
547 case 17: /* ELR_Hyp */
548 env->elr_el[2] = value;
549 break;
550 case 13:
551 env->banked_r13[bank_number(tgtmode)] = value;
552 break;
553 case 14:
554 env->banked_r14[r14_bank_number(tgtmode)] = value;
555 break;
556 case 8 ... 12:
557 switch (tgtmode) {
558 case ARM_CPU_MODE_USR:
559 env->usr_regs[regno - 8] = value;
560 break;
561 case ARM_CPU_MODE_FIQ:
562 env->fiq_regs[regno - 8] = value;
563 break;
564 default:
565 g_assert_not_reached();
566 }
567 break;
568 default:
569 g_assert_not_reached();
570 }
571 }
572
573 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
574 {
575 msr_mrs_banked_exc_checks(env, tgtmode, regno);
576
577 switch (regno) {
578 case 16: /* SPSRs */
579 return env->banked_spsr[bank_number(tgtmode)];
580 case 17: /* ELR_Hyp */
581 return env->elr_el[2];
582 case 13:
583 return env->banked_r13[bank_number(tgtmode)];
584 case 14:
585 return env->banked_r14[r14_bank_number(tgtmode)];
586 case 8 ... 12:
587 switch (tgtmode) {
588 case ARM_CPU_MODE_USR:
589 return env->usr_regs[regno - 8];
590 case ARM_CPU_MODE_FIQ:
591 return env->fiq_regs[regno - 8];
592 default:
593 g_assert_not_reached();
594 }
595 default:
596 g_assert_not_reached();
597 }
598 }
599
600 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
601 uint32_t isread)
602 {
603 const ARMCPRegInfo *ri = rip;
604 int target_el;
605
606 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
607 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
608 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
609 }
610
611 /*
612 * Check for an EL2 trap due to HSTR_EL2. We expect EL0 accesses
613 * to sysregs non accessible at EL0 to have UNDEF-ed already.
614 */
615 if (!is_a64(env) && arm_current_el(env) < 2 && ri->cp == 15 &&
616 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
617 uint32_t mask = 1 << ri->crn;
618
619 if (ri->type & ARM_CP_64BIT) {
620 mask = 1 << ri->crm;
621 }
622
623 /* T4 and T14 are RES0 */
624 mask &= ~((1 << 4) | (1 << 14));
625
626 if (env->cp15.hstr_el2 & mask) {
627 target_el = 2;
628 goto exept;
629 }
630 }
631
632 if (!ri->accessfn) {
633 return;
634 }
635
636 switch (ri->accessfn(env, ri, isread)) {
637 case CP_ACCESS_OK:
638 return;
639 case CP_ACCESS_TRAP:
640 target_el = exception_target_el(env);
641 break;
642 case CP_ACCESS_TRAP_EL2:
643 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
644 * a bug in the access function.
645 */
646 assert(!arm_is_secure(env) && arm_current_el(env) != 3);
647 target_el = 2;
648 break;
649 case CP_ACCESS_TRAP_EL3:
650 target_el = 3;
651 break;
652 case CP_ACCESS_TRAP_UNCATEGORIZED:
653 target_el = exception_target_el(env);
654 syndrome = syn_uncategorized();
655 break;
656 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
657 target_el = 2;
658 syndrome = syn_uncategorized();
659 break;
660 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
661 target_el = 3;
662 syndrome = syn_uncategorized();
663 break;
664 case CP_ACCESS_TRAP_FP_EL2:
665 target_el = 2;
666 /* Since we are an implementation that takes exceptions on a trapped
667 * conditional insn only if the insn has passed its condition code
668 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
669 * (which is also the required value for AArch64 traps).
670 */
671 syndrome = syn_fp_access_trap(1, 0xe, false);
672 break;
673 case CP_ACCESS_TRAP_FP_EL3:
674 target_el = 3;
675 syndrome = syn_fp_access_trap(1, 0xe, false);
676 break;
677 default:
678 g_assert_not_reached();
679 }
680
681 exept:
682 raise_exception(env, EXCP_UDEF, syndrome, target_el);
683 }
684
685 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
686 {
687 const ARMCPRegInfo *ri = rip;
688
689 if (ri->type & ARM_CP_IO) {
690 qemu_mutex_lock_iothread();
691 ri->writefn(env, ri, value);
692 qemu_mutex_unlock_iothread();
693 } else {
694 ri->writefn(env, ri, value);
695 }
696 }
697
698 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
699 {
700 const ARMCPRegInfo *ri = rip;
701 uint32_t res;
702
703 if (ri->type & ARM_CP_IO) {
704 qemu_mutex_lock_iothread();
705 res = ri->readfn(env, ri);
706 qemu_mutex_unlock_iothread();
707 } else {
708 res = ri->readfn(env, ri);
709 }
710
711 return res;
712 }
713
714 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
715 {
716 const ARMCPRegInfo *ri = rip;
717
718 if (ri->type & ARM_CP_IO) {
719 qemu_mutex_lock_iothread();
720 ri->writefn(env, ri, value);
721 qemu_mutex_unlock_iothread();
722 } else {
723 ri->writefn(env, ri, value);
724 }
725 }
726
727 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
728 {
729 const ARMCPRegInfo *ri = rip;
730 uint64_t res;
731
732 if (ri->type & ARM_CP_IO) {
733 qemu_mutex_lock_iothread();
734 res = ri->readfn(env, ri);
735 qemu_mutex_unlock_iothread();
736 } else {
737 res = ri->readfn(env, ri);
738 }
739
740 return res;
741 }
742
743 void HELPER(pre_hvc)(CPUARMState *env)
744 {
745 ARMCPU *cpu = env_archcpu(env);
746 int cur_el = arm_current_el(env);
747 /* FIXME: Use actual secure state. */
748 bool secure = false;
749 bool undef;
750
751 if (arm_is_psci_call(cpu, EXCP_HVC)) {
752 /* If PSCI is enabled and this looks like a valid PSCI call then
753 * that overrides the architecturally mandated HVC behaviour.
754 */
755 return;
756 }
757
758 if (!arm_feature(env, ARM_FEATURE_EL2)) {
759 /* If EL2 doesn't exist, HVC always UNDEFs */
760 undef = true;
761 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
762 /* EL3.HCE has priority over EL2.HCD. */
763 undef = !(env->cp15.scr_el3 & SCR_HCE);
764 } else {
765 undef = env->cp15.hcr_el2 & HCR_HCD;
766 }
767
768 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
769 * For ARMv8/AArch64, HVC is allowed in EL3.
770 * Note that we've already trapped HVC from EL0 at translation
771 * time.
772 */
773 if (secure && (!is_a64(env) || cur_el == 1)) {
774 undef = true;
775 }
776
777 if (undef) {
778 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
779 exception_target_el(env));
780 }
781 }
782
783 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
784 {
785 ARMCPU *cpu = env_archcpu(env);
786 int cur_el = arm_current_el(env);
787 bool secure = arm_is_secure(env);
788 bool smd_flag = env->cp15.scr_el3 & SCR_SMD;
789
790 /*
791 * SMC behaviour is summarized in the following table.
792 * This helper handles the "Trap to EL2" and "Undef insn" cases.
793 * The "Trap to EL3" and "PSCI call" cases are handled in the exception
794 * helper.
795 *
796 * -> ARM_FEATURE_EL3 and !SMD
797 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
798 *
799 * Conduit SMC, valid call Trap to EL2 PSCI Call
800 * Conduit SMC, inval call Trap to EL2 Trap to EL3
801 * Conduit not SMC Trap to EL2 Trap to EL3
802 *
803 *
804 * -> ARM_FEATURE_EL3 and SMD
805 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
806 *
807 * Conduit SMC, valid call Trap to EL2 PSCI Call
808 * Conduit SMC, inval call Trap to EL2 Undef insn
809 * Conduit not SMC Trap to EL2 Undef insn
810 *
811 *
812 * -> !ARM_FEATURE_EL3
813 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
814 *
815 * Conduit SMC, valid call Trap to EL2 PSCI Call
816 * Conduit SMC, inval call Trap to EL2 Undef insn
817 * Conduit not SMC Undef insn Undef insn
818 */
819
820 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
821 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
822 * extensions, SMD only applies to NS state.
823 * On ARMv7 without the Virtualization extensions, the SMD bit
824 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
825 * so we need not special case this here.
826 */
827 bool smd = arm_feature(env, ARM_FEATURE_AARCH64) ? smd_flag
828 : smd_flag && !secure;
829
830 if (!arm_feature(env, ARM_FEATURE_EL3) &&
831 cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
832 /* If we have no EL3 then SMC always UNDEFs and can't be
833 * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
834 * firmware within QEMU, and we want an EL2 guest to be able
835 * to forbid its EL1 from making PSCI calls into QEMU's
836 * "firmware" via HCR.TSC, so for these purposes treat
837 * PSCI-via-SMC as implying an EL3.
838 * This handles the very last line of the previous table.
839 */
840 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
841 exception_target_el(env));
842 }
843
844 if (cur_el == 1 && (arm_hcr_el2_eff(env) & HCR_TSC)) {
845 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
846 * We also want an EL2 guest to be able to forbid its EL1 from
847 * making PSCI calls into QEMU's "firmware" via HCR.TSC.
848 * This handles all the "Trap to EL2" cases of the previous table.
849 */
850 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
851 }
852
853 /* Catch the two remaining "Undef insn" cases of the previous table:
854 * - PSCI conduit is SMC but we don't have a valid PCSI call,
855 * - We don't have EL3 or SMD is set.
856 */
857 if (!arm_is_psci_call(cpu, EXCP_SMC) &&
858 (smd || !arm_feature(env, ARM_FEATURE_EL3))) {
859 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
860 exception_target_el(env));
861 }
862 }
863
864 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
865 The only way to do that in TCG is a conditional branch, which clobbers
866 all our temporaries. For now implement these as helper functions. */
867
868 /* Similarly for variable shift instructions. */
869
870 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
871 {
872 int shift = i & 0xff;
873 if (shift >= 32) {
874 if (shift == 32)
875 env->CF = x & 1;
876 else
877 env->CF = 0;
878 return 0;
879 } else if (shift != 0) {
880 env->CF = (x >> (32 - shift)) & 1;
881 return x << shift;
882 }
883 return x;
884 }
885
886 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
887 {
888 int shift = i & 0xff;
889 if (shift >= 32) {
890 if (shift == 32)
891 env->CF = (x >> 31) & 1;
892 else
893 env->CF = 0;
894 return 0;
895 } else if (shift != 0) {
896 env->CF = (x >> (shift - 1)) & 1;
897 return x >> shift;
898 }
899 return x;
900 }
901
902 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
903 {
904 int shift = i & 0xff;
905 if (shift >= 32) {
906 env->CF = (x >> 31) & 1;
907 return (int32_t)x >> 31;
908 } else if (shift != 0) {
909 env->CF = (x >> (shift - 1)) & 1;
910 return (int32_t)x >> shift;
911 }
912 return x;
913 }
914
915 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
916 {
917 int shift1, shift;
918 shift1 = i & 0xff;
919 shift = shift1 & 0x1f;
920 if (shift == 0) {
921 if (shift1 != 0)
922 env->CF = (x >> 31) & 1;
923 return x;
924 } else {
925 env->CF = (x >> (shift - 1)) & 1;
926 return ((uint32_t)x >> shift) | (x << (32 - shift));
927 }
928 }
929
930 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
931 {
932 /*
933 * Implement DC ZVA, which zeroes a fixed-length block of memory.
934 * Note that we do not implement the (architecturally mandated)
935 * alignment fault for attempts to use this on Device memory
936 * (which matches the usual QEMU behaviour of not implementing either
937 * alignment faults or any memory attribute handling).
938 */
939
940 ARMCPU *cpu = env_archcpu(env);
941 uint64_t blocklen = 4 << cpu->dcz_blocksize;
942 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
943
944 #ifndef CONFIG_USER_ONLY
945 {
946 /*
947 * Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
948 * the block size so we might have to do more than one TLB lookup.
949 * We know that in fact for any v8 CPU the page size is at least 4K
950 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
951 * 1K as an artefact of legacy v5 subpage support being present in the
952 * same QEMU executable. So in practice the hostaddr[] array has
953 * two entries, given the current setting of TARGET_PAGE_BITS_MIN.
954 */
955 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
956 void *hostaddr[DIV_ROUND_UP(2 * KiB, 1 << TARGET_PAGE_BITS_MIN)];
957 int try, i;
958 unsigned mmu_idx = cpu_mmu_index(env, false);
959 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
960
961 assert(maxidx <= ARRAY_SIZE(hostaddr));
962
963 for (try = 0; try < 2; try++) {
964
965 for (i = 0; i < maxidx; i++) {
966 hostaddr[i] = tlb_vaddr_to_host(env,
967 vaddr + TARGET_PAGE_SIZE * i,
968 1, mmu_idx);
969 if (!hostaddr[i]) {
970 break;
971 }
972 }
973 if (i == maxidx) {
974 /*
975 * If it's all in the TLB it's fair game for just writing to;
976 * we know we don't need to update dirty status, etc.
977 */
978 for (i = 0; i < maxidx - 1; i++) {
979 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
980 }
981 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
982 return;
983 }
984 /*
985 * OK, try a store and see if we can populate the tlb. This
986 * might cause an exception if the memory isn't writable,
987 * in which case we will longjmp out of here. We must for
988 * this purpose use the actual register value passed to us
989 * so that we get the fault address right.
990 */
991 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
992 /* Now we can populate the other TLB entries, if any */
993 for (i = 0; i < maxidx; i++) {
994 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
995 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
996 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
997 }
998 }
999 }
1000
1001 /*
1002 * Slow path (probably attempt to do this to an I/O device or
1003 * similar, or clearing of a block of code we have translations
1004 * cached for). Just do a series of byte writes as the architecture
1005 * demands. It's not worth trying to use a cpu_physical_memory_map(),
1006 * memset(), unmap() sequence here because:
1007 * + we'd need to account for the blocksize being larger than a page
1008 * + the direct-RAM access case is almost always going to be dealt
1009 * with in the fastpath code above, so there's no speed benefit
1010 * + we would have to deal with the map returning NULL because the
1011 * bounce buffer was in use
1012 */
1013 for (i = 0; i < blocklen; i++) {
1014 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
1015 }
1016 }
1017 #else
1018 memset(g2h(vaddr), 0, blocklen);
1019 #endif
1020 }