]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/ptw.c
2d4fa8dbcaf99a7301626725831952971b1415ea
[mirror_qemu.git] / target / arm / ptw.c
1 /*
2 * ARM page table walking.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "cpu-features.h"
17 #include "idau.h"
18 #ifdef CONFIG_TCG
19 # include "tcg/oversized-guest.h"
20 #endif
21
22 typedef struct S1Translate {
23 /*
24 * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk.
25 * Together with in_space, specifies the architectural translation regime.
26 */
27 ARMMMUIdx in_mmu_idx;
28 /*
29 * in_ptw_idx: specifies which mmuidx to use for the actual
30 * page table descriptor load operations. This will be one of the
31 * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes.
32 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
33 * this field is updated accordingly.
34 */
35 ARMMMUIdx in_ptw_idx;
36 /*
37 * in_space: the security space for this walk. This plus
38 * the in_mmu_idx specify the architectural translation regime.
39 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
40 * this field is updated accordingly.
41 *
42 * Note that the security space for the in_ptw_idx may be different
43 * from that for the in_mmu_idx. We do not need to explicitly track
44 * the in_ptw_idx security space because:
45 * - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx
46 * itself specifies the security space
47 * - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security
48 * space used for ptw reads is the same as that of the security
49 * space of the stage 1 translation for all cases except where
50 * stage 1 is Secure; in that case the only possibilities for
51 * the ptw read are Secure and NonSecure, and the in_ptw_idx
52 * value being Stage2 vs Stage2_S distinguishes those.
53 */
54 ARMSecuritySpace in_space;
55 /*
56 * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug
57 * accesses will not update the guest page table access flags
58 * and will not change the state of the softmmu TLBs.
59 */
60 bool in_debug;
61 /*
62 * If this is stage 2 of a stage 1+2 page table walk, then this must
63 * be true if stage 1 is an EL0 access; otherwise this is ignored.
64 * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}.
65 */
66 bool in_s1_is_el0;
67 bool out_rw;
68 bool out_be;
69 ARMSecuritySpace out_space;
70 hwaddr out_virt;
71 hwaddr out_phys;
72 void *out_host;
73 } S1Translate;
74
75 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
76 target_ulong address,
77 MMUAccessType access_type,
78 GetPhysAddrResult *result,
79 ARMMMUFaultInfo *fi);
80
81 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
82 target_ulong address,
83 MMUAccessType access_type,
84 GetPhysAddrResult *result,
85 ARMMMUFaultInfo *fi);
86
87 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
88 static const uint8_t pamax_map[] = {
89 [0] = 32,
90 [1] = 36,
91 [2] = 40,
92 [3] = 42,
93 [4] = 44,
94 [5] = 48,
95 [6] = 52,
96 };
97
98 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
99 unsigned int arm_pamax(ARMCPU *cpu)
100 {
101 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
102 unsigned int parange =
103 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
104
105 /*
106 * id_aa64mmfr0 is a read-only register so values outside of the
107 * supported mappings can be considered an implementation error.
108 */
109 assert(parange < ARRAY_SIZE(pamax_map));
110 return pamax_map[parange];
111 }
112
113 /*
114 * In machvirt_init, we call arm_pamax on a cpu that is not fully
115 * initialized, so we can't rely on the propagation done in realize.
116 */
117 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
118 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
119 /* v7 with LPAE */
120 return 40;
121 }
122 /* Anything else */
123 return 32;
124 }
125
126 /*
127 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
128 */
129 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
130 {
131 switch (mmu_idx) {
132 case ARMMMUIdx_E10_0:
133 return ARMMMUIdx_Stage1_E0;
134 case ARMMMUIdx_E10_1:
135 return ARMMMUIdx_Stage1_E1;
136 case ARMMMUIdx_E10_1_PAN:
137 return ARMMMUIdx_Stage1_E1_PAN;
138 default:
139 return mmu_idx;
140 }
141 }
142
143 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
144 {
145 return stage_1_mmu_idx(arm_mmu_idx(env));
146 }
147
148 /*
149 * Return where we should do ptw loads from for a stage 2 walk.
150 * This depends on whether the address we are looking up is a
151 * Secure IPA or a NonSecure IPA, which we know from whether this is
152 * Stage2 or Stage2_S.
153 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
154 */
155 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
156 {
157 bool s2walk_secure;
158
159 /*
160 * We're OK to check the current state of the CPU here because
161 * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit
162 * changes.
163 * (2) there's no way to do a lookup that cares about Stage 2 for a
164 * different security state to the current one for AArch64, and AArch32
165 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
166 * an NS stage 1+2 lookup while the NS bit is 0.)
167 */
168 if (!arm_el_is_aa64(env, 3)) {
169 return ARMMMUIdx_Phys_NS;
170 }
171
172 switch (arm_security_space_below_el3(env)) {
173 case ARMSS_NonSecure:
174 return ARMMMUIdx_Phys_NS;
175 case ARMSS_Realm:
176 return ARMMMUIdx_Phys_Realm;
177 case ARMSS_Secure:
178 if (stage2idx == ARMMMUIdx_Stage2_S) {
179 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
180 } else {
181 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
182 }
183 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
184 default:
185 g_assert_not_reached();
186 }
187 }
188
189 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
190 {
191 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
192 }
193
194 /* Return the TTBR associated with this translation regime */
195 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
196 {
197 if (mmu_idx == ARMMMUIdx_Stage2) {
198 return env->cp15.vttbr_el2;
199 }
200 if (mmu_idx == ARMMMUIdx_Stage2_S) {
201 return env->cp15.vsttbr_el2;
202 }
203 if (ttbrn == 0) {
204 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
205 } else {
206 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
207 }
208 }
209
210 /* Return true if the specified stage of address translation is disabled */
211 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
212 ARMSecuritySpace space)
213 {
214 uint64_t hcr_el2;
215
216 if (arm_feature(env, ARM_FEATURE_M)) {
217 bool is_secure = arm_space_is_secure(space);
218 switch (env->v7m.mpu_ctrl[is_secure] &
219 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
220 case R_V7M_MPU_CTRL_ENABLE_MASK:
221 /* Enabled, but not for HardFault and NMI */
222 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
223 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
224 /* Enabled for all cases */
225 return false;
226 case 0:
227 default:
228 /*
229 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
230 * we warned about that in armv7m_nvic.c when the guest set it.
231 */
232 return true;
233 }
234 }
235
236
237 switch (mmu_idx) {
238 case ARMMMUIdx_Stage2:
239 case ARMMMUIdx_Stage2_S:
240 /* HCR.DC means HCR.VM behaves as 1 */
241 hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
242 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
243
244 case ARMMMUIdx_E10_0:
245 case ARMMMUIdx_E10_1:
246 case ARMMMUIdx_E10_1_PAN:
247 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
248 hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
249 if (hcr_el2 & HCR_TGE) {
250 return true;
251 }
252 break;
253
254 case ARMMMUIdx_Stage1_E0:
255 case ARMMMUIdx_Stage1_E1:
256 case ARMMMUIdx_Stage1_E1_PAN:
257 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
258 hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
259 if (hcr_el2 & HCR_DC) {
260 return true;
261 }
262 break;
263
264 case ARMMMUIdx_E20_0:
265 case ARMMMUIdx_E20_2:
266 case ARMMMUIdx_E20_2_PAN:
267 case ARMMMUIdx_E2:
268 case ARMMMUIdx_E3:
269 break;
270
271 case ARMMMUIdx_Phys_S:
272 case ARMMMUIdx_Phys_NS:
273 case ARMMMUIdx_Phys_Root:
274 case ARMMMUIdx_Phys_Realm:
275 /* No translation for physical address spaces. */
276 return true;
277
278 default:
279 g_assert_not_reached();
280 }
281
282 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
283 }
284
285 static bool granule_protection_check(CPUARMState *env, uint64_t paddress,
286 ARMSecuritySpace pspace,
287 ARMMMUFaultInfo *fi)
288 {
289 MemTxAttrs attrs = {
290 .secure = true,
291 .space = ARMSS_Root,
292 };
293 ARMCPU *cpu = env_archcpu(env);
294 uint64_t gpccr = env->cp15.gpccr_el3;
295 unsigned pps, pgs, l0gptsz, level = 0;
296 uint64_t tableaddr, pps_mask, align, entry, index;
297 AddressSpace *as;
298 MemTxResult result;
299 int gpi;
300
301 if (!FIELD_EX64(gpccr, GPCCR, GPC)) {
302 return true;
303 }
304
305 /*
306 * GPC Priority 1 (R_GMGRR):
307 * R_JWCSM: If the configuration of GPCCR_EL3 is invalid,
308 * the access fails as GPT walk fault at level 0.
309 */
310
311 /*
312 * Configuration of PPS to a value exceeding the implemented
313 * physical address size is invalid.
314 */
315 pps = FIELD_EX64(gpccr, GPCCR, PPS);
316 if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) {
317 goto fault_walk;
318 }
319 pps = pamax_map[pps];
320 pps_mask = MAKE_64BIT_MASK(0, pps);
321
322 switch (FIELD_EX64(gpccr, GPCCR, SH)) {
323 case 0b10: /* outer shareable */
324 break;
325 case 0b00: /* non-shareable */
326 case 0b11: /* inner shareable */
327 /* Inner and Outer non-cacheable requires Outer shareable. */
328 if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 &&
329 FIELD_EX64(gpccr, GPCCR, IRGN) == 0) {
330 goto fault_walk;
331 }
332 break;
333 default: /* reserved */
334 goto fault_walk;
335 }
336
337 switch (FIELD_EX64(gpccr, GPCCR, PGS)) {
338 case 0b00: /* 4KB */
339 pgs = 12;
340 break;
341 case 0b01: /* 64KB */
342 pgs = 16;
343 break;
344 case 0b10: /* 16KB */
345 pgs = 14;
346 break;
347 default: /* reserved */
348 goto fault_walk;
349 }
350
351 /* Note this field is read-only and fixed at reset. */
352 l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ);
353
354 /*
355 * GPC Priority 2: Secure, Realm or Root address exceeds PPS.
356 * R_CPDSB: A NonSecure physical address input exceeding PPS
357 * does not experience any fault.
358 */
359 if (paddress & ~pps_mask) {
360 if (pspace == ARMSS_NonSecure) {
361 return true;
362 }
363 goto fault_size;
364 }
365
366 /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */
367 tableaddr = env->cp15.gptbr_el3 << 12;
368 if (tableaddr & ~pps_mask) {
369 goto fault_size;
370 }
371
372 /*
373 * BADDR is aligned per a function of PPS and L0GPTSZ.
374 * These bits of GPTBR_EL3 are RES0, but are not a configuration error,
375 * unlike the RES0 bits of the GPT entries (R_XNKFZ).
376 */
377 align = MAX(pps - l0gptsz + 3, 12);
378 align = MAKE_64BIT_MASK(0, align);
379 tableaddr &= ~align;
380
381 as = arm_addressspace(env_cpu(env), attrs);
382
383 /* Level 0 lookup. */
384 index = extract64(paddress, l0gptsz, pps - l0gptsz);
385 tableaddr += index * 8;
386 entry = address_space_ldq_le(as, tableaddr, attrs, &result);
387 if (result != MEMTX_OK) {
388 goto fault_eabt;
389 }
390
391 switch (extract32(entry, 0, 4)) {
392 case 1: /* block descriptor */
393 if (entry >> 8) {
394 goto fault_walk; /* RES0 bits not 0 */
395 }
396 gpi = extract32(entry, 4, 4);
397 goto found;
398 case 3: /* table descriptor */
399 tableaddr = entry & ~0xf;
400 align = MAX(l0gptsz - pgs - 1, 12);
401 align = MAKE_64BIT_MASK(0, align);
402 if (tableaddr & (~pps_mask | align)) {
403 goto fault_walk; /* RES0 bits not 0 */
404 }
405 break;
406 default: /* invalid */
407 goto fault_walk;
408 }
409
410 /* Level 1 lookup */
411 level = 1;
412 index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4);
413 tableaddr += index * 8;
414 entry = address_space_ldq_le(as, tableaddr, attrs, &result);
415 if (result != MEMTX_OK) {
416 goto fault_eabt;
417 }
418
419 switch (extract32(entry, 0, 4)) {
420 case 1: /* contiguous descriptor */
421 if (entry >> 10) {
422 goto fault_walk; /* RES0 bits not 0 */
423 }
424 /*
425 * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE,
426 * and because we cannot invalidate by pa, and thus will always
427 * flush entire tlbs, we don't actually care about the range here
428 * and can simply extract the GPI as the result.
429 */
430 if (extract32(entry, 8, 2) == 0) {
431 goto fault_walk; /* reserved contig */
432 }
433 gpi = extract32(entry, 4, 4);
434 break;
435 default:
436 index = extract64(paddress, pgs, 4);
437 gpi = extract64(entry, index * 4, 4);
438 break;
439 }
440
441 found:
442 switch (gpi) {
443 case 0b0000: /* no access */
444 break;
445 case 0b1111: /* all access */
446 return true;
447 case 0b1000:
448 case 0b1001:
449 case 0b1010:
450 case 0b1011:
451 if (pspace == (gpi & 3)) {
452 return true;
453 }
454 break;
455 default:
456 goto fault_walk; /* reserved */
457 }
458
459 fi->gpcf = GPCF_Fail;
460 goto fault_common;
461 fault_eabt:
462 fi->gpcf = GPCF_EABT;
463 goto fault_common;
464 fault_size:
465 fi->gpcf = GPCF_AddressSize;
466 goto fault_common;
467 fault_walk:
468 fi->gpcf = GPCF_Walk;
469 fault_common:
470 fi->level = level;
471 fi->paddr = paddress;
472 fi->paddr_space = pspace;
473 return false;
474 }
475
476 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
477 {
478 /*
479 * For an S1 page table walk, the stage 1 attributes are always
480 * some form of "this is Normal memory". The combined S1+S2
481 * attributes are therefore only Device if stage 2 specifies Device.
482 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
483 * ie when cacheattrs.attrs bits [3:2] are 0b00.
484 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
485 * when cacheattrs.attrs bit [2] is 0.
486 */
487 if (hcr & HCR_FWB) {
488 return (attrs & 0x4) == 0;
489 } else {
490 return (attrs & 0xc) == 0;
491 }
492 }
493
494 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space,
495 ARMMMUIdx s2_mmu_idx)
496 {
497 /*
498 * Return the security space to use for stage 2 when doing
499 * the S1 page table descriptor load.
500 */
501 if (regime_is_stage2(s2_mmu_idx)) {
502 /*
503 * The security space for ptw reads is almost always the same
504 * as that of the security space of the stage 1 translation.
505 * The only exception is when stage 1 is Secure; in that case
506 * the ptw read might be to the Secure or the NonSecure space
507 * (but never Realm or Root), and the s2_mmu_idx tells us which.
508 * Root translations are always single-stage.
509 */
510 if (s1_space == ARMSS_Secure) {
511 return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S);
512 } else {
513 assert(s2_mmu_idx != ARMMMUIdx_Stage2_S);
514 assert(s1_space != ARMSS_Root);
515 return s1_space;
516 }
517 } else {
518 /* ptw loads are from phys: the mmu idx itself says which space */
519 return arm_phys_to_space(s2_mmu_idx);
520 }
521 }
522
523 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx)
524 {
525 /*
526 * For stage 2 faults in Secure EL22, S1NS indicates
527 * whether the faulting IPA is in the Secure or NonSecure
528 * IPA space. For all other kinds of fault, it is false.
529 */
530 return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx)
531 && s2_mmu_idx == ARMMMUIdx_Stage2_S;
532 }
533
534 /* Translate a S1 pagetable walk through S2 if needed. */
535 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
536 hwaddr addr, ARMMMUFaultInfo *fi)
537 {
538 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
539 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
540 uint8_t pte_attrs;
541
542 ptw->out_virt = addr;
543
544 if (unlikely(ptw->in_debug)) {
545 /*
546 * From gdbstub, do not use softmmu so that we don't modify the
547 * state of the cpu at all, including softmmu tlb contents.
548 */
549 ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx);
550 S1Translate s2ptw = {
551 .in_mmu_idx = s2_mmu_idx,
552 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
553 .in_space = s2_space,
554 .in_debug = true,
555 };
556 GetPhysAddrResult s2 = { };
557
558 if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, &s2, fi)) {
559 goto fail;
560 }
561
562 ptw->out_phys = s2.f.phys_addr;
563 pte_attrs = s2.cacheattrs.attrs;
564 ptw->out_host = NULL;
565 ptw->out_rw = false;
566 ptw->out_space = s2.f.attrs.space;
567 } else {
568 #ifdef CONFIG_TCG
569 CPUTLBEntryFull *full;
570 int flags;
571
572 env->tlb_fi = fi;
573 flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD,
574 arm_to_core_mmu_idx(s2_mmu_idx),
575 &ptw->out_host, &full);
576 env->tlb_fi = NULL;
577
578 if (unlikely(flags & TLB_INVALID_MASK)) {
579 goto fail;
580 }
581 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
582 ptw->out_rw = full->prot & PAGE_WRITE;
583 pte_attrs = full->extra.arm.pte_attrs;
584 ptw->out_space = full->attrs.space;
585 #else
586 g_assert_not_reached();
587 #endif
588 }
589
590 if (regime_is_stage2(s2_mmu_idx)) {
591 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
592
593 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
594 /*
595 * PTW set and S1 walk touched S2 Device memory:
596 * generate Permission fault.
597 */
598 fi->type = ARMFault_Permission;
599 fi->s2addr = addr;
600 fi->stage2 = true;
601 fi->s1ptw = true;
602 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
603 return false;
604 }
605 }
606
607 ptw->out_be = regime_translation_big_endian(env, mmu_idx);
608 return true;
609
610 fail:
611 assert(fi->type != ARMFault_None);
612 if (fi->type == ARMFault_GPCFOnOutput) {
613 fi->type = ARMFault_GPCFOnWalk;
614 }
615 fi->s2addr = addr;
616 fi->stage2 = regime_is_stage2(s2_mmu_idx);
617 fi->s1ptw = fi->stage2;
618 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
619 return false;
620 }
621
622 /* All loads done in the course of a page table walk go through here. */
623 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
624 ARMMMUFaultInfo *fi)
625 {
626 CPUState *cs = env_cpu(env);
627 void *host = ptw->out_host;
628 uint32_t data;
629
630 if (likely(host)) {
631 /* Page tables are in RAM, and we have the host address. */
632 data = qatomic_read((uint32_t *)host);
633 if (ptw->out_be) {
634 data = be32_to_cpu(data);
635 } else {
636 data = le32_to_cpu(data);
637 }
638 } else {
639 /* Page tables are in MMIO. */
640 MemTxAttrs attrs = {
641 .space = ptw->out_space,
642 .secure = arm_space_is_secure(ptw->out_space),
643 };
644 AddressSpace *as = arm_addressspace(cs, attrs);
645 MemTxResult result = MEMTX_OK;
646
647 if (ptw->out_be) {
648 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
649 } else {
650 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
651 }
652 if (unlikely(result != MEMTX_OK)) {
653 fi->type = ARMFault_SyncExternalOnWalk;
654 fi->ea = arm_extabort_type(result);
655 return 0;
656 }
657 }
658 return data;
659 }
660
661 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
662 ARMMMUFaultInfo *fi)
663 {
664 CPUState *cs = env_cpu(env);
665 void *host = ptw->out_host;
666 uint64_t data;
667
668 if (likely(host)) {
669 /* Page tables are in RAM, and we have the host address. */
670 #ifdef CONFIG_ATOMIC64
671 data = qatomic_read__nocheck((uint64_t *)host);
672 if (ptw->out_be) {
673 data = be64_to_cpu(data);
674 } else {
675 data = le64_to_cpu(data);
676 }
677 #else
678 if (ptw->out_be) {
679 data = ldq_be_p(host);
680 } else {
681 data = ldq_le_p(host);
682 }
683 #endif
684 } else {
685 /* Page tables are in MMIO. */
686 MemTxAttrs attrs = {
687 .space = ptw->out_space,
688 .secure = arm_space_is_secure(ptw->out_space),
689 };
690 AddressSpace *as = arm_addressspace(cs, attrs);
691 MemTxResult result = MEMTX_OK;
692
693 if (ptw->out_be) {
694 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
695 } else {
696 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
697 }
698 if (unlikely(result != MEMTX_OK)) {
699 fi->type = ARMFault_SyncExternalOnWalk;
700 fi->ea = arm_extabort_type(result);
701 return 0;
702 }
703 }
704 return data;
705 }
706
707 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
708 uint64_t new_val, S1Translate *ptw,
709 ARMMMUFaultInfo *fi)
710 {
711 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG)
712 uint64_t cur_val;
713 void *host = ptw->out_host;
714
715 if (unlikely(!host)) {
716 fi->type = ARMFault_UnsuppAtomicUpdate;
717 return 0;
718 }
719
720 /*
721 * Raising a stage2 Protection fault for an atomic update to a read-only
722 * page is delayed until it is certain that there is a change to make.
723 */
724 if (unlikely(!ptw->out_rw)) {
725 int flags;
726
727 env->tlb_fi = fi;
728 flags = probe_access_full_mmu(env, ptw->out_virt, 0,
729 MMU_DATA_STORE,
730 arm_to_core_mmu_idx(ptw->in_ptw_idx),
731 NULL, NULL);
732 env->tlb_fi = NULL;
733
734 if (unlikely(flags & TLB_INVALID_MASK)) {
735 /*
736 * We know this must be a stage 2 fault because the granule
737 * protection table does not separately track read and write
738 * permission, so all GPC faults are caught in S1_ptw_translate():
739 * we only get here for "readable but not writeable".
740 */
741 assert(fi->type != ARMFault_None);
742 fi->s2addr = ptw->out_virt;
743 fi->stage2 = true;
744 fi->s1ptw = true;
745 fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx);
746 return 0;
747 }
748
749 /* In case CAS mismatches and we loop, remember writability. */
750 ptw->out_rw = true;
751 }
752
753 #ifdef CONFIG_ATOMIC64
754 if (ptw->out_be) {
755 old_val = cpu_to_be64(old_val);
756 new_val = cpu_to_be64(new_val);
757 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
758 cur_val = be64_to_cpu(cur_val);
759 } else {
760 old_val = cpu_to_le64(old_val);
761 new_val = cpu_to_le64(new_val);
762 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
763 cur_val = le64_to_cpu(cur_val);
764 }
765 #else
766 /*
767 * We can't support the full 64-bit atomic cmpxchg on the host.
768 * Because this is only used for FEAT_HAFDBS, which is only for AA64,
769 * we know that TCG_OVERSIZED_GUEST is set, which means that we are
770 * running in round-robin mode and could only race with dma i/o.
771 */
772 #if !TCG_OVERSIZED_GUEST
773 # error "Unexpected configuration"
774 #endif
775 bool locked = bql_locked();
776 if (!locked) {
777 bql_lock();
778 }
779 if (ptw->out_be) {
780 cur_val = ldq_be_p(host);
781 if (cur_val == old_val) {
782 stq_be_p(host, new_val);
783 }
784 } else {
785 cur_val = ldq_le_p(host);
786 if (cur_val == old_val) {
787 stq_le_p(host, new_val);
788 }
789 }
790 if (!locked) {
791 bql_unlock();
792 }
793 #endif
794
795 return cur_val;
796 #else
797 /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */
798 g_assert_not_reached();
799 #endif
800 }
801
802 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
803 uint32_t *table, uint32_t address)
804 {
805 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
806 uint64_t tcr = regime_tcr(env, mmu_idx);
807 int maskshift = extract32(tcr, 0, 3);
808 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
809 uint32_t base_mask;
810
811 if (address & mask) {
812 if (tcr & TTBCR_PD1) {
813 /* Translation table walk disabled for TTBR1 */
814 return false;
815 }
816 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
817 } else {
818 if (tcr & TTBCR_PD0) {
819 /* Translation table walk disabled for TTBR0 */
820 return false;
821 }
822 base_mask = ~((uint32_t)0x3fffu >> maskshift);
823 *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
824 }
825 *table |= (address >> 18) & 0x3ffc;
826 return true;
827 }
828
829 /*
830 * Translate section/page access permissions to page R/W protection flags
831 * @env: CPUARMState
832 * @mmu_idx: MMU index indicating required translation regime
833 * @ap: The 3-bit access permissions (AP[2:0])
834 * @domain_prot: The 2-bit domain access permissions
835 * @is_user: TRUE if accessing from PL0
836 */
837 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
838 int ap, int domain_prot, bool is_user)
839 {
840 if (domain_prot == 3) {
841 return PAGE_READ | PAGE_WRITE;
842 }
843
844 switch (ap) {
845 case 0:
846 if (arm_feature(env, ARM_FEATURE_V7)) {
847 return 0;
848 }
849 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
850 case SCTLR_S:
851 return is_user ? 0 : PAGE_READ;
852 case SCTLR_R:
853 return PAGE_READ;
854 default:
855 return 0;
856 }
857 case 1:
858 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
859 case 2:
860 if (is_user) {
861 return PAGE_READ;
862 } else {
863 return PAGE_READ | PAGE_WRITE;
864 }
865 case 3:
866 return PAGE_READ | PAGE_WRITE;
867 case 4: /* Reserved. */
868 return 0;
869 case 5:
870 return is_user ? 0 : PAGE_READ;
871 case 6:
872 return PAGE_READ;
873 case 7:
874 if (!arm_feature(env, ARM_FEATURE_V6K)) {
875 return 0;
876 }
877 return PAGE_READ;
878 default:
879 g_assert_not_reached();
880 }
881 }
882
883 /*
884 * Translate section/page access permissions to page R/W protection flags
885 * @env: CPUARMState
886 * @mmu_idx: MMU index indicating required translation regime
887 * @ap: The 3-bit access permissions (AP[2:0])
888 * @domain_prot: The 2-bit domain access permissions
889 */
890 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
891 int ap, int domain_prot)
892 {
893 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
894 regime_is_user(env, mmu_idx));
895 }
896
897 /*
898 * Translate section/page access permissions to page R/W protection flags.
899 * @ap: The 2-bit simple AP (AP[2:1])
900 * @is_user: TRUE if accessing from PL0
901 */
902 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
903 {
904 switch (ap) {
905 case 0:
906 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
907 case 1:
908 return PAGE_READ | PAGE_WRITE;
909 case 2:
910 return is_user ? 0 : PAGE_READ;
911 case 3:
912 return PAGE_READ;
913 default:
914 g_assert_not_reached();
915 }
916 }
917
918 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
919 {
920 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
921 }
922
923 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
924 uint32_t address, MMUAccessType access_type,
925 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
926 {
927 int level = 1;
928 uint32_t table;
929 uint32_t desc;
930 int type;
931 int ap;
932 int domain = 0;
933 int domain_prot;
934 hwaddr phys_addr;
935 uint32_t dacr;
936
937 /* Pagetable walk. */
938 /* Lookup l1 descriptor. */
939 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
940 /* Section translation fault if page walk is disabled by PD0 or PD1 */
941 fi->type = ARMFault_Translation;
942 goto do_fault;
943 }
944 if (!S1_ptw_translate(env, ptw, table, fi)) {
945 goto do_fault;
946 }
947 desc = arm_ldl_ptw(env, ptw, fi);
948 if (fi->type != ARMFault_None) {
949 goto do_fault;
950 }
951 type = (desc & 3);
952 domain = (desc >> 5) & 0x0f;
953 if (regime_el(env, ptw->in_mmu_idx) == 1) {
954 dacr = env->cp15.dacr_ns;
955 } else {
956 dacr = env->cp15.dacr_s;
957 }
958 domain_prot = (dacr >> (domain * 2)) & 3;
959 if (type == 0) {
960 /* Section translation fault. */
961 fi->type = ARMFault_Translation;
962 goto do_fault;
963 }
964 if (type != 2) {
965 level = 2;
966 }
967 if (domain_prot == 0 || domain_prot == 2) {
968 fi->type = ARMFault_Domain;
969 goto do_fault;
970 }
971 if (type == 2) {
972 /* 1Mb section. */
973 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
974 ap = (desc >> 10) & 3;
975 result->f.lg_page_size = 20; /* 1MB */
976 } else {
977 /* Lookup l2 entry. */
978 if (type == 1) {
979 /* Coarse pagetable. */
980 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
981 } else {
982 /* Fine pagetable. */
983 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
984 }
985 if (!S1_ptw_translate(env, ptw, table, fi)) {
986 goto do_fault;
987 }
988 desc = arm_ldl_ptw(env, ptw, fi);
989 if (fi->type != ARMFault_None) {
990 goto do_fault;
991 }
992 switch (desc & 3) {
993 case 0: /* Page translation fault. */
994 fi->type = ARMFault_Translation;
995 goto do_fault;
996 case 1: /* 64k page. */
997 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
998 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
999 result->f.lg_page_size = 16;
1000 break;
1001 case 2: /* 4k page. */
1002 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1003 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
1004 result->f.lg_page_size = 12;
1005 break;
1006 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
1007 if (type == 1) {
1008 /* ARMv6/XScale extended small page format */
1009 if (arm_feature(env, ARM_FEATURE_XSCALE)
1010 || arm_feature(env, ARM_FEATURE_V6)) {
1011 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1012 result->f.lg_page_size = 12;
1013 } else {
1014 /*
1015 * UNPREDICTABLE in ARMv5; we choose to take a
1016 * page translation fault.
1017 */
1018 fi->type = ARMFault_Translation;
1019 goto do_fault;
1020 }
1021 } else {
1022 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1023 result->f.lg_page_size = 10;
1024 }
1025 ap = (desc >> 4) & 3;
1026 break;
1027 default:
1028 /* Never happens, but compiler isn't smart enough to tell. */
1029 g_assert_not_reached();
1030 }
1031 }
1032 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
1033 result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
1034 if (!(result->f.prot & (1 << access_type))) {
1035 /* Access permission fault. */
1036 fi->type = ARMFault_Permission;
1037 goto do_fault;
1038 }
1039 result->f.phys_addr = phys_addr;
1040 return false;
1041 do_fault:
1042 fi->domain = domain;
1043 fi->level = level;
1044 return true;
1045 }
1046
1047 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
1048 uint32_t address, MMUAccessType access_type,
1049 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1050 {
1051 ARMCPU *cpu = env_archcpu(env);
1052 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1053 int level = 1;
1054 uint32_t table;
1055 uint32_t desc;
1056 uint32_t xn;
1057 uint32_t pxn = 0;
1058 int type;
1059 int ap;
1060 int domain = 0;
1061 int domain_prot;
1062 hwaddr phys_addr;
1063 uint32_t dacr;
1064 bool ns;
1065 int user_prot;
1066
1067 /* Pagetable walk. */
1068 /* Lookup l1 descriptor. */
1069 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
1070 /* Section translation fault if page walk is disabled by PD0 or PD1 */
1071 fi->type = ARMFault_Translation;
1072 goto do_fault;
1073 }
1074 if (!S1_ptw_translate(env, ptw, table, fi)) {
1075 goto do_fault;
1076 }
1077 desc = arm_ldl_ptw(env, ptw, fi);
1078 if (fi->type != ARMFault_None) {
1079 goto do_fault;
1080 }
1081 type = (desc & 3);
1082 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
1083 /* Section translation fault, or attempt to use the encoding
1084 * which is Reserved on implementations without PXN.
1085 */
1086 fi->type = ARMFault_Translation;
1087 goto do_fault;
1088 }
1089 if ((type == 1) || !(desc & (1 << 18))) {
1090 /* Page or Section. */
1091 domain = (desc >> 5) & 0x0f;
1092 }
1093 if (regime_el(env, mmu_idx) == 1) {
1094 dacr = env->cp15.dacr_ns;
1095 } else {
1096 dacr = env->cp15.dacr_s;
1097 }
1098 if (type == 1) {
1099 level = 2;
1100 }
1101 domain_prot = (dacr >> (domain * 2)) & 3;
1102 if (domain_prot == 0 || domain_prot == 2) {
1103 /* Section or Page domain fault */
1104 fi->type = ARMFault_Domain;
1105 goto do_fault;
1106 }
1107 if (type != 1) {
1108 if (desc & (1 << 18)) {
1109 /* Supersection. */
1110 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1111 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
1112 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
1113 result->f.lg_page_size = 24; /* 16MB */
1114 } else {
1115 /* Section. */
1116 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1117 result->f.lg_page_size = 20; /* 1MB */
1118 }
1119 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1120 xn = desc & (1 << 4);
1121 pxn = desc & 1;
1122 ns = extract32(desc, 19, 1);
1123 } else {
1124 if (cpu_isar_feature(aa32_pxn, cpu)) {
1125 pxn = (desc >> 2) & 1;
1126 }
1127 ns = extract32(desc, 3, 1);
1128 /* Lookup l2 entry. */
1129 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1130 if (!S1_ptw_translate(env, ptw, table, fi)) {
1131 goto do_fault;
1132 }
1133 desc = arm_ldl_ptw(env, ptw, fi);
1134 if (fi->type != ARMFault_None) {
1135 goto do_fault;
1136 }
1137 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1138 switch (desc & 3) {
1139 case 0: /* Page translation fault. */
1140 fi->type = ARMFault_Translation;
1141 goto do_fault;
1142 case 1: /* 64k page. */
1143 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1144 xn = desc & (1 << 15);
1145 result->f.lg_page_size = 16;
1146 break;
1147 case 2: case 3: /* 4k page. */
1148 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1149 xn = desc & 1;
1150 result->f.lg_page_size = 12;
1151 break;
1152 default:
1153 /* Never happens, but compiler isn't smart enough to tell. */
1154 g_assert_not_reached();
1155 }
1156 }
1157 if (domain_prot == 3) {
1158 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1159 } else {
1160 if (pxn && !regime_is_user(env, mmu_idx)) {
1161 xn = 1;
1162 }
1163 if (xn && access_type == MMU_INST_FETCH) {
1164 fi->type = ARMFault_Permission;
1165 goto do_fault;
1166 }
1167
1168 if (arm_feature(env, ARM_FEATURE_V6K) &&
1169 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
1170 /* The simplified model uses AP[0] as an access control bit. */
1171 if ((ap & 1) == 0) {
1172 /* Access flag fault. */
1173 fi->type = ARMFault_AccessFlag;
1174 goto do_fault;
1175 }
1176 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
1177 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
1178 } else {
1179 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
1180 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
1181 }
1182 if (result->f.prot && !xn) {
1183 result->f.prot |= PAGE_EXEC;
1184 }
1185 if (!(result->f.prot & (1 << access_type))) {
1186 /* Access permission fault. */
1187 fi->type = ARMFault_Permission;
1188 goto do_fault;
1189 }
1190 if (regime_is_pan(env, mmu_idx) &&
1191 !regime_is_user(env, mmu_idx) &&
1192 user_prot &&
1193 access_type != MMU_INST_FETCH) {
1194 /* Privileged Access Never fault */
1195 fi->type = ARMFault_Permission;
1196 goto do_fault;
1197 }
1198 }
1199 if (ns) {
1200 /* The NS bit will (as required by the architecture) have no effect if
1201 * the CPU doesn't support TZ or this is a non-secure translation
1202 * regime, because the attribute will already be non-secure.
1203 */
1204 result->f.attrs.secure = false;
1205 result->f.attrs.space = ARMSS_NonSecure;
1206 }
1207 result->f.phys_addr = phys_addr;
1208 return false;
1209 do_fault:
1210 fi->domain = domain;
1211 fi->level = level;
1212 return true;
1213 }
1214
1215 /*
1216 * Translate S2 section/page access permissions to protection flags
1217 * @env: CPUARMState
1218 * @s2ap: The 2-bit stage2 access permissions (S2AP)
1219 * @xn: XN (execute-never) bits
1220 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
1221 */
1222 static int get_S2prot_noexecute(int s2ap)
1223 {
1224 int prot = 0;
1225
1226 if (s2ap & 1) {
1227 prot |= PAGE_READ;
1228 }
1229 if (s2ap & 2) {
1230 prot |= PAGE_WRITE;
1231 }
1232 return prot;
1233 }
1234
1235 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
1236 {
1237 int prot = get_S2prot_noexecute(s2ap);
1238
1239 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
1240 switch (xn) {
1241 case 0:
1242 prot |= PAGE_EXEC;
1243 break;
1244 case 1:
1245 if (s1_is_el0) {
1246 prot |= PAGE_EXEC;
1247 }
1248 break;
1249 case 2:
1250 break;
1251 case 3:
1252 if (!s1_is_el0) {
1253 prot |= PAGE_EXEC;
1254 }
1255 break;
1256 default:
1257 g_assert_not_reached();
1258 }
1259 } else {
1260 if (!extract32(xn, 1, 1)) {
1261 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
1262 prot |= PAGE_EXEC;
1263 }
1264 }
1265 }
1266 return prot;
1267 }
1268
1269 /*
1270 * Translate section/page access permissions to protection flags
1271 * @env: CPUARMState
1272 * @mmu_idx: MMU index indicating required translation regime
1273 * @is_aa64: TRUE if AArch64
1274 * @ap: The 2-bit simple AP (AP[2:1])
1275 * @xn: XN (execute-never) bit
1276 * @pxn: PXN (privileged execute-never) bit
1277 * @in_pa: The original input pa space
1278 * @out_pa: The output pa space, modified by NSTable, NS, and NSE
1279 */
1280 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
1281 int ap, int xn, int pxn,
1282 ARMSecuritySpace in_pa, ARMSecuritySpace out_pa)
1283 {
1284 ARMCPU *cpu = env_archcpu(env);
1285 bool is_user = regime_is_user(env, mmu_idx);
1286 int prot_rw, user_rw;
1287 bool have_wxn;
1288 int wxn = 0;
1289
1290 assert(!regime_is_stage2(mmu_idx));
1291
1292 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
1293 if (is_user) {
1294 prot_rw = user_rw;
1295 } else {
1296 /*
1297 * PAN controls can forbid data accesses but don't affect insn fetch.
1298 * Plain PAN forbids data accesses if EL0 has data permissions;
1299 * PAN3 forbids data accesses if EL0 has either data or exec perms.
1300 * Note that for AArch64 the 'user can exec' case is exactly !xn.
1301 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
1302 * do not affect EPAN.
1303 */
1304 if (user_rw && regime_is_pan(env, mmu_idx)) {
1305 prot_rw = 0;
1306 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
1307 regime_is_pan(env, mmu_idx) &&
1308 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1309 prot_rw = 0;
1310 } else {
1311 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
1312 }
1313 }
1314
1315 if (in_pa != out_pa) {
1316 switch (in_pa) {
1317 case ARMSS_Root:
1318 /*
1319 * R_ZWRVD: permission fault for insn fetched from non-Root,
1320 * I_WWBFB: SIF has no effect in EL3.
1321 */
1322 return prot_rw;
1323 case ARMSS_Realm:
1324 /*
1325 * R_PKTDS: permission fault for insn fetched from non-Realm,
1326 * for Realm EL2 or EL2&0. The corresponding fault for EL1&0
1327 * happens during any stage2 translation.
1328 */
1329 switch (mmu_idx) {
1330 case ARMMMUIdx_E2:
1331 case ARMMMUIdx_E20_0:
1332 case ARMMMUIdx_E20_2:
1333 case ARMMMUIdx_E20_2_PAN:
1334 return prot_rw;
1335 default:
1336 break;
1337 }
1338 break;
1339 case ARMSS_Secure:
1340 if (env->cp15.scr_el3 & SCR_SIF) {
1341 return prot_rw;
1342 }
1343 break;
1344 default:
1345 /* Input NonSecure must have output NonSecure. */
1346 g_assert_not_reached();
1347 }
1348 }
1349
1350 /* TODO have_wxn should be replaced with
1351 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1352 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1353 * compatible processors have EL2, which is required for [U]WXN.
1354 */
1355 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1356
1357 if (have_wxn) {
1358 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1359 }
1360
1361 if (is_aa64) {
1362 if (regime_has_2_ranges(mmu_idx) && !is_user) {
1363 xn = pxn || (user_rw & PAGE_WRITE);
1364 }
1365 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1366 switch (regime_el(env, mmu_idx)) {
1367 case 1:
1368 case 3:
1369 if (is_user) {
1370 xn = xn || !(user_rw & PAGE_READ);
1371 } else {
1372 int uwxn = 0;
1373 if (have_wxn) {
1374 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1375 }
1376 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1377 (uwxn && (user_rw & PAGE_WRITE));
1378 }
1379 break;
1380 case 2:
1381 break;
1382 }
1383 } else {
1384 xn = wxn = 0;
1385 }
1386
1387 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1388 return prot_rw;
1389 }
1390 return prot_rw | PAGE_EXEC;
1391 }
1392
1393 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1394 ARMMMUIdx mmu_idx)
1395 {
1396 uint64_t tcr = regime_tcr(env, mmu_idx);
1397 uint32_t el = regime_el(env, mmu_idx);
1398 int select, tsz;
1399 bool epd, hpd;
1400
1401 assert(mmu_idx != ARMMMUIdx_Stage2_S);
1402
1403 if (mmu_idx == ARMMMUIdx_Stage2) {
1404 /* VTCR */
1405 bool sext = extract32(tcr, 4, 1);
1406 bool sign = extract32(tcr, 3, 1);
1407
1408 /*
1409 * If the sign-extend bit is not the same as t0sz[3], the result
1410 * is unpredictable. Flag this as a guest error.
1411 */
1412 if (sign != sext) {
1413 qemu_log_mask(LOG_GUEST_ERROR,
1414 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1415 }
1416 tsz = sextract32(tcr, 0, 4) + 8;
1417 select = 0;
1418 hpd = false;
1419 epd = false;
1420 } else if (el == 2) {
1421 /* HTCR */
1422 tsz = extract32(tcr, 0, 3);
1423 select = 0;
1424 hpd = extract64(tcr, 24, 1);
1425 epd = false;
1426 } else {
1427 int t0sz = extract32(tcr, 0, 3);
1428 int t1sz = extract32(tcr, 16, 3);
1429
1430 if (t1sz == 0) {
1431 select = va > (0xffffffffu >> t0sz);
1432 } else {
1433 /* Note that we will detect errors later. */
1434 select = va >= ~(0xffffffffu >> t1sz);
1435 }
1436 if (!select) {
1437 tsz = t0sz;
1438 epd = extract32(tcr, 7, 1);
1439 hpd = extract64(tcr, 41, 1);
1440 } else {
1441 tsz = t1sz;
1442 epd = extract32(tcr, 23, 1);
1443 hpd = extract64(tcr, 42, 1);
1444 }
1445 /* For aarch32, hpd0 is not enabled without t2e as well. */
1446 hpd &= extract32(tcr, 6, 1);
1447 }
1448
1449 return (ARMVAParameters) {
1450 .tsz = tsz,
1451 .select = select,
1452 .epd = epd,
1453 .hpd = hpd,
1454 };
1455 }
1456
1457 /*
1458 * check_s2_mmu_setup
1459 * @cpu: ARMCPU
1460 * @is_aa64: True if the translation regime is in AArch64 state
1461 * @tcr: VTCR_EL2 or VSTCR_EL2
1462 * @ds: Effective value of TCR.DS.
1463 * @iasize: Bitsize of IPAs
1464 * @stride: Page-table stride (See the ARM ARM)
1465 *
1466 * Decode the starting level of the S2 lookup, returning INT_MIN if
1467 * the configuration is invalid.
1468 */
1469 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1470 bool ds, int iasize, int stride)
1471 {
1472 int sl0, sl2, startlevel, granulebits, levels;
1473 int s1_min_iasize, s1_max_iasize;
1474
1475 sl0 = extract32(tcr, 6, 2);
1476 if (is_aa64) {
1477 /*
1478 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1479 * so interleave AArch64.S2StartLevel.
1480 */
1481 switch (stride) {
1482 case 9: /* 4KB */
1483 /* SL2 is RES0 unless DS=1 & 4KB granule. */
1484 sl2 = extract64(tcr, 33, 1);
1485 if (ds && sl2) {
1486 if (sl0 != 0) {
1487 goto fail;
1488 }
1489 startlevel = -1;
1490 } else {
1491 startlevel = 2 - sl0;
1492 switch (sl0) {
1493 case 2:
1494 if (arm_pamax(cpu) < 44) {
1495 goto fail;
1496 }
1497 break;
1498 case 3:
1499 if (!cpu_isar_feature(aa64_st, cpu)) {
1500 goto fail;
1501 }
1502 startlevel = 3;
1503 break;
1504 }
1505 }
1506 break;
1507 case 11: /* 16KB */
1508 switch (sl0) {
1509 case 2:
1510 if (arm_pamax(cpu) < 42) {
1511 goto fail;
1512 }
1513 break;
1514 case 3:
1515 if (!ds) {
1516 goto fail;
1517 }
1518 break;
1519 }
1520 startlevel = 3 - sl0;
1521 break;
1522 case 13: /* 64KB */
1523 switch (sl0) {
1524 case 2:
1525 if (arm_pamax(cpu) < 44) {
1526 goto fail;
1527 }
1528 break;
1529 case 3:
1530 goto fail;
1531 }
1532 startlevel = 3 - sl0;
1533 break;
1534 default:
1535 g_assert_not_reached();
1536 }
1537 } else {
1538 /*
1539 * Things are simpler for AArch32 EL2, with only 4k pages.
1540 * There is no separate S2InvalidSL function, but AArch32.S2Walk
1541 * begins with walkparms.sl0 in {'1x'}.
1542 */
1543 assert(stride == 9);
1544 if (sl0 >= 2) {
1545 goto fail;
1546 }
1547 startlevel = 2 - sl0;
1548 }
1549
1550 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */
1551 levels = 3 - startlevel;
1552 granulebits = stride + 3;
1553
1554 s1_min_iasize = levels * stride + granulebits + 1;
1555 s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1556
1557 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1558 return startlevel;
1559 }
1560
1561 fail:
1562 return INT_MIN;
1563 }
1564
1565 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds,
1566 ARMGranuleSize gran, int level)
1567 {
1568 /*
1569 * See pseudocode AArch46.BlockDescSupported(): block descriptors
1570 * are not valid at all levels, depending on the page size.
1571 */
1572 switch (gran) {
1573 case Gran4K:
1574 return (level == 0 && ds) || level == 1 || level == 2;
1575 case Gran16K:
1576 return (level == 1 && ds) || level == 2;
1577 case Gran64K:
1578 return (level == 1 && arm_pamax(cpu) == 52) || level == 2;
1579 default:
1580 g_assert_not_reached();
1581 }
1582 }
1583
1584 static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw)
1585 {
1586 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
1587 return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1);
1588 }
1589
1590 /**
1591 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1592 *
1593 * Returns false if the translation was successful. Otherwise, phys_ptr,
1594 * attrs, prot and page_size may not be filled in, and the populated fsr
1595 * value provides information on why the translation aborted, in the format
1596 * of a long-format DFSR/IFSR fault register, with the following caveat:
1597 * the WnR bit is never set (the caller must do this).
1598 *
1599 * @env: CPUARMState
1600 * @ptw: Current and next stage parameters for the walk.
1601 * @address: virtual address to get physical address for
1602 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1603 * @result: set on translation success,
1604 * @fi: set to fault info if the translation fails
1605 */
1606 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1607 uint64_t address,
1608 MMUAccessType access_type,
1609 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1610 {
1611 ARMCPU *cpu = env_archcpu(env);
1612 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1613 int32_t level;
1614 ARMVAParameters param;
1615 uint64_t ttbr;
1616 hwaddr descaddr, indexmask, indexmask_grainsize;
1617 uint32_t tableattrs;
1618 target_ulong page_size;
1619 uint64_t attrs;
1620 int32_t stride;
1621 int addrsize, inputsize, outputsize;
1622 uint64_t tcr = regime_tcr(env, mmu_idx);
1623 int ap, xn, pxn;
1624 uint32_t el = regime_el(env, mmu_idx);
1625 uint64_t descaddrmask;
1626 bool aarch64 = arm_el_is_aa64(env, el);
1627 uint64_t descriptor, new_descriptor;
1628 ARMSecuritySpace out_space;
1629
1630 /* TODO: This code does not support shareability levels. */
1631 if (aarch64) {
1632 int ps;
1633
1634 param = aa64_va_parameters(env, address, mmu_idx,
1635 access_type != MMU_INST_FETCH,
1636 !arm_el_is_aa64(env, 1));
1637 level = 0;
1638
1639 /*
1640 * If TxSZ is programmed to a value larger than the maximum,
1641 * or smaller than the effective minimum, it is IMPLEMENTATION
1642 * DEFINED whether we behave as if the field were programmed
1643 * within bounds, or if a level 0 Translation fault is generated.
1644 *
1645 * With FEAT_LVA, fault on less than minimum becomes required,
1646 * so our choice is to always raise the fault.
1647 */
1648 if (param.tsz_oob) {
1649 goto do_translation_fault;
1650 }
1651
1652 addrsize = 64 - 8 * param.tbi;
1653 inputsize = 64 - param.tsz;
1654
1655 /*
1656 * Bound PS by PARANGE to find the effective output address size.
1657 * ID_AA64MMFR0 is a read-only register so values outside of the
1658 * supported mappings can be considered an implementation error.
1659 */
1660 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1661 ps = MIN(ps, param.ps);
1662 assert(ps < ARRAY_SIZE(pamax_map));
1663 outputsize = pamax_map[ps];
1664
1665 /*
1666 * With LPA2, the effective output address (OA) size is at most 48 bits
1667 * unless TCR.DS == 1
1668 */
1669 if (!param.ds && param.gran != Gran64K) {
1670 outputsize = MIN(outputsize, 48);
1671 }
1672 } else {
1673 param = aa32_va_parameters(env, address, mmu_idx);
1674 level = 1;
1675 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1676 inputsize = addrsize - param.tsz;
1677 outputsize = 40;
1678 }
1679
1680 /*
1681 * We determined the region when collecting the parameters, but we
1682 * have not yet validated that the address is valid for the region.
1683 * Extract the top bits and verify that they all match select.
1684 *
1685 * For aa32, if inputsize == addrsize, then we have selected the
1686 * region by exclusion in aa32_va_parameters and there is no more
1687 * validation to do here.
1688 */
1689 if (inputsize < addrsize) {
1690 target_ulong top_bits = sextract64(address, inputsize,
1691 addrsize - inputsize);
1692 if (-top_bits != param.select) {
1693 /* The gap between the two regions is a Translation fault */
1694 goto do_translation_fault;
1695 }
1696 }
1697
1698 stride = arm_granule_bits(param.gran) - 3;
1699
1700 /*
1701 * Note that QEMU ignores shareability and cacheability attributes,
1702 * so we don't need to do anything with the SH, ORGN, IRGN fields
1703 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
1704 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1705 * implement any ASID-like capability so we can ignore it (instead
1706 * we will always flush the TLB any time the ASID is changed).
1707 */
1708 ttbr = regime_ttbr(env, mmu_idx, param.select);
1709
1710 /*
1711 * Here we should have set up all the parameters for the translation:
1712 * inputsize, ttbr, epd, stride, tbi
1713 */
1714
1715 if (param.epd) {
1716 /*
1717 * Translation table walk disabled => Translation fault on TLB miss
1718 * Note: This is always 0 on 64-bit EL2 and EL3.
1719 */
1720 goto do_translation_fault;
1721 }
1722
1723 if (!regime_is_stage2(mmu_idx)) {
1724 /*
1725 * The starting level depends on the virtual address size (which can
1726 * be up to 48 bits) and the translation granule size. It indicates
1727 * the number of strides (stride bits at a time) needed to
1728 * consume the bits of the input address. In the pseudocode this is:
1729 * level = 4 - RoundUp((inputsize - grainsize) / stride)
1730 * where their 'inputsize' is our 'inputsize', 'grainsize' is
1731 * our 'stride + 3' and 'stride' is our 'stride'.
1732 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1733 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1734 * = 4 - (inputsize - 4) / stride;
1735 */
1736 level = 4 - (inputsize - 4) / stride;
1737 } else {
1738 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1739 inputsize, stride);
1740 if (startlevel == INT_MIN) {
1741 level = 0;
1742 goto do_translation_fault;
1743 }
1744 level = startlevel;
1745 }
1746
1747 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1748 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1749
1750 /* Now we can extract the actual base address from the TTBR */
1751 descaddr = extract64(ttbr, 0, 48);
1752
1753 /*
1754 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1755 *
1756 * Otherwise, if the base address is out of range, raise AddressSizeFault.
1757 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1758 * but we've just cleared the bits above 47, so simplify the test.
1759 */
1760 if (outputsize > 48) {
1761 descaddr |= extract64(ttbr, 2, 4) << 48;
1762 } else if (descaddr >> outputsize) {
1763 level = 0;
1764 fi->type = ARMFault_AddressSize;
1765 goto do_fault;
1766 }
1767
1768 /*
1769 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1770 * and also to mask out CnP (bit 0) which could validly be non-zero.
1771 */
1772 descaddr &= ~indexmask;
1773
1774 /*
1775 * For AArch32, the address field in the descriptor goes up to bit 39
1776 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
1777 * or an AddressSize fault is raised. So for v8 we extract those SBZ
1778 * bits as part of the address, which will be checked via outputsize.
1779 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1780 * the highest bits of a 52-bit output are placed elsewhere.
1781 */
1782 if (param.ds) {
1783 descaddrmask = MAKE_64BIT_MASK(0, 50);
1784 } else if (arm_feature(env, ARM_FEATURE_V8)) {
1785 descaddrmask = MAKE_64BIT_MASK(0, 48);
1786 } else {
1787 descaddrmask = MAKE_64BIT_MASK(0, 40);
1788 }
1789 descaddrmask &= ~indexmask_grainsize;
1790 tableattrs = 0;
1791
1792 next_level:
1793 descaddr |= (address >> (stride * (4 - level))) & indexmask;
1794 descaddr &= ~7ULL;
1795
1796 /*
1797 * Process the NSTable bit from the previous level. This changes
1798 * the table address space and the output space from Secure to
1799 * NonSecure. With RME, the EL3 translation regime does not change
1800 * from Root to NonSecure.
1801 */
1802 if (ptw->in_space == ARMSS_Secure
1803 && !regime_is_stage2(mmu_idx)
1804 && extract32(tableattrs, 4, 1)) {
1805 /*
1806 * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1807 * Assert the relative order of the secure/non-secure indexes.
1808 */
1809 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS);
1810 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2);
1811 ptw->in_ptw_idx += 1;
1812 ptw->in_space = ARMSS_NonSecure;
1813 }
1814
1815 if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1816 goto do_fault;
1817 }
1818 descriptor = arm_ldq_ptw(env, ptw, fi);
1819 if (fi->type != ARMFault_None) {
1820 goto do_fault;
1821 }
1822 new_descriptor = descriptor;
1823
1824 restart_atomic_update:
1825 if (!(descriptor & 1) ||
1826 (!(descriptor & 2) &&
1827 !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) {
1828 /* Invalid, or a block descriptor at an invalid level */
1829 goto do_translation_fault;
1830 }
1831
1832 descaddr = descriptor & descaddrmask;
1833
1834 /*
1835 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1836 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
1837 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
1838 * raise AddressSizeFault.
1839 */
1840 if (outputsize > 48) {
1841 if (param.ds) {
1842 descaddr |= extract64(descriptor, 8, 2) << 50;
1843 } else {
1844 descaddr |= extract64(descriptor, 12, 4) << 48;
1845 }
1846 } else if (descaddr >> outputsize) {
1847 fi->type = ARMFault_AddressSize;
1848 goto do_fault;
1849 }
1850
1851 if ((descriptor & 2) && (level < 3)) {
1852 /*
1853 * Table entry. The top five bits are attributes which may
1854 * propagate down through lower levels of the table (and
1855 * which are all arranged so that 0 means "no effect", so
1856 * we can gather them up by ORing in the bits at each level).
1857 */
1858 tableattrs |= extract64(descriptor, 59, 5);
1859 level++;
1860 indexmask = indexmask_grainsize;
1861 goto next_level;
1862 }
1863
1864 /*
1865 * Block entry at level 1 or 2, or page entry at level 3.
1866 * These are basically the same thing, although the number
1867 * of bits we pull in from the vaddr varies. Note that although
1868 * descaddrmask masks enough of the low bits of the descriptor
1869 * to give a correct page or table address, the address field
1870 * in a block descriptor is smaller; so we need to explicitly
1871 * clear the lower bits here before ORing in the low vaddr bits.
1872 *
1873 * Afterward, descaddr is the final physical address.
1874 */
1875 page_size = (1ULL << ((stride * (4 - level)) + 3));
1876 descaddr &= ~(hwaddr)(page_size - 1);
1877 descaddr |= (address & (page_size - 1));
1878
1879 if (likely(!ptw->in_debug)) {
1880 /*
1881 * Access flag.
1882 * If HA is enabled, prepare to update the descriptor below.
1883 * Otherwise, pass the access fault on to software.
1884 */
1885 if (!(descriptor & (1 << 10))) {
1886 if (param.ha) {
1887 new_descriptor |= 1 << 10; /* AF */
1888 } else {
1889 fi->type = ARMFault_AccessFlag;
1890 goto do_fault;
1891 }
1892 }
1893
1894 /*
1895 * Dirty Bit.
1896 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1897 * bit for writeback. The actual write protection test may still be
1898 * overridden by tableattrs, to be merged below.
1899 */
1900 if (param.hd
1901 && extract64(descriptor, 51, 1) /* DBM */
1902 && access_type == MMU_DATA_STORE) {
1903 if (regime_is_stage2(mmu_idx)) {
1904 new_descriptor |= 1ull << 7; /* set S2AP[1] */
1905 } else {
1906 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1907 }
1908 }
1909 }
1910
1911 /*
1912 * Extract attributes from the (modified) descriptor, and apply
1913 * table descriptors. Stage 2 table descriptors do not include
1914 * any attribute fields. HPD disables all the table attributes
1915 * except NSTable (which we have already handled).
1916 */
1917 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1918 if (!regime_is_stage2(mmu_idx)) {
1919 if (!param.hpd) {
1920 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */
1921 /*
1922 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1923 * means "force PL1 access only", which means forcing AP[1] to 0.
1924 */
1925 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1926 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */
1927 }
1928 }
1929
1930 ap = extract32(attrs, 6, 2);
1931 out_space = ptw->in_space;
1932 if (regime_is_stage2(mmu_idx)) {
1933 /*
1934 * R_GYNXY: For stage2 in Realm security state, bit 55 is NS.
1935 * The bit remains ignored for other security states.
1936 * R_YMCSL: Executing an insn fetched from non-Realm causes
1937 * a stage2 permission fault.
1938 */
1939 if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) {
1940 out_space = ARMSS_NonSecure;
1941 result->f.prot = get_S2prot_noexecute(ap);
1942 } else {
1943 xn = extract64(attrs, 53, 2);
1944 result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0);
1945 }
1946 } else {
1947 int nse, ns = extract32(attrs, 5, 1);
1948 switch (out_space) {
1949 case ARMSS_Root:
1950 /*
1951 * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime.
1952 * R_XTYPW: NSE and NS together select the output pa space.
1953 */
1954 nse = extract32(attrs, 11, 1);
1955 out_space = (nse << 1) | ns;
1956 if (out_space == ARMSS_Secure &&
1957 !cpu_isar_feature(aa64_sel2, cpu)) {
1958 out_space = ARMSS_NonSecure;
1959 }
1960 break;
1961 case ARMSS_Secure:
1962 if (ns) {
1963 out_space = ARMSS_NonSecure;
1964 }
1965 break;
1966 case ARMSS_Realm:
1967 switch (mmu_idx) {
1968 case ARMMMUIdx_Stage1_E0:
1969 case ARMMMUIdx_Stage1_E1:
1970 case ARMMMUIdx_Stage1_E1_PAN:
1971 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */
1972 break;
1973 case ARMMMUIdx_E2:
1974 case ARMMMUIdx_E20_0:
1975 case ARMMMUIdx_E20_2:
1976 case ARMMMUIdx_E20_2_PAN:
1977 /*
1978 * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1,
1979 * NS changes the output to non-secure space.
1980 */
1981 if (ns) {
1982 out_space = ARMSS_NonSecure;
1983 }
1984 break;
1985 default:
1986 g_assert_not_reached();
1987 }
1988 break;
1989 case ARMSS_NonSecure:
1990 /* R_QRMFF: For NonSecure state, the NS bit is RES0. */
1991 break;
1992 default:
1993 g_assert_not_reached();
1994 }
1995 xn = extract64(attrs, 54, 1);
1996 pxn = extract64(attrs, 53, 1);
1997
1998 if (el == 1 && nv_nv1_enabled(env, ptw)) {
1999 /*
2000 * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page
2001 * descriptor bit 54 holds PXN, 53 is RES0, and the effective value
2002 * of UXN is 0. Similarly for bits 59 and 60 in table descriptors
2003 * (which we have already folded into bits 53 and 54 of attrs).
2004 * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0.
2005 * Similarly, APTable[0] from the table descriptor is treated as 0;
2006 * we already folded this into AP[1] and squashing that to 0 does
2007 * the right thing.
2008 */
2009 pxn = xn;
2010 xn = 0;
2011 ap &= ~1;
2012 }
2013 /*
2014 * Note that we modified ptw->in_space earlier for NSTable, but
2015 * result->f.attrs retains a copy of the original security space.
2016 */
2017 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn,
2018 result->f.attrs.space, out_space);
2019 }
2020
2021 if (!(result->f.prot & (1 << access_type))) {
2022 fi->type = ARMFault_Permission;
2023 goto do_fault;
2024 }
2025
2026 /* If FEAT_HAFDBS has made changes, update the PTE. */
2027 if (new_descriptor != descriptor) {
2028 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
2029 if (fi->type != ARMFault_None) {
2030 goto do_fault;
2031 }
2032 /*
2033 * I_YZSVV says that if the in-memory descriptor has changed,
2034 * then we must use the information in that new value
2035 * (which might include a different output address, different
2036 * attributes, or generate a fault).
2037 * Restart the handling of the descriptor value from scratch.
2038 */
2039 if (new_descriptor != descriptor) {
2040 descriptor = new_descriptor;
2041 goto restart_atomic_update;
2042 }
2043 }
2044
2045 result->f.attrs.space = out_space;
2046 result->f.attrs.secure = arm_space_is_secure(out_space);
2047
2048 if (regime_is_stage2(mmu_idx)) {
2049 result->cacheattrs.is_s2_format = true;
2050 result->cacheattrs.attrs = extract32(attrs, 2, 4);
2051 } else {
2052 /* Index into MAIR registers for cache attributes */
2053 uint8_t attrindx = extract32(attrs, 2, 3);
2054 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2055 assert(attrindx <= 7);
2056 result->cacheattrs.is_s2_format = false;
2057 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2058
2059 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
2060 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
2061 result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */
2062 }
2063 }
2064
2065 /*
2066 * For FEAT_LPA2 and effective DS, the SH field in the attributes
2067 * was re-purposed for output address bits. The SH attribute in
2068 * that case comes from TCR_ELx, which we extracted earlier.
2069 */
2070 if (param.ds) {
2071 result->cacheattrs.shareability = param.sh;
2072 } else {
2073 result->cacheattrs.shareability = extract32(attrs, 8, 2);
2074 }
2075
2076 result->f.phys_addr = descaddr;
2077 result->f.lg_page_size = ctz64(page_size);
2078 return false;
2079
2080 do_translation_fault:
2081 fi->type = ARMFault_Translation;
2082 do_fault:
2083 if (fi->s1ptw) {
2084 /* Retain the existing stage 2 fi->level */
2085 assert(fi->stage2);
2086 } else {
2087 fi->level = level;
2088 fi->stage2 = regime_is_stage2(mmu_idx);
2089 }
2090 fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx);
2091 return true;
2092 }
2093
2094 static bool get_phys_addr_pmsav5(CPUARMState *env,
2095 S1Translate *ptw,
2096 uint32_t address,
2097 MMUAccessType access_type,
2098 GetPhysAddrResult *result,
2099 ARMMMUFaultInfo *fi)
2100 {
2101 int n;
2102 uint32_t mask;
2103 uint32_t base;
2104 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2105 bool is_user = regime_is_user(env, mmu_idx);
2106
2107 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
2108 /* MPU disabled. */
2109 result->f.phys_addr = address;
2110 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2111 return false;
2112 }
2113
2114 result->f.phys_addr = address;
2115 for (n = 7; n >= 0; n--) {
2116 base = env->cp15.c6_region[n];
2117 if ((base & 1) == 0) {
2118 continue;
2119 }
2120 mask = 1 << ((base >> 1) & 0x1f);
2121 /* Keep this shift separate from the above to avoid an
2122 (undefined) << 32. */
2123 mask = (mask << 1) - 1;
2124 if (((base ^ address) & ~mask) == 0) {
2125 break;
2126 }
2127 }
2128 if (n < 0) {
2129 fi->type = ARMFault_Background;
2130 return true;
2131 }
2132
2133 if (access_type == MMU_INST_FETCH) {
2134 mask = env->cp15.pmsav5_insn_ap;
2135 } else {
2136 mask = env->cp15.pmsav5_data_ap;
2137 }
2138 mask = (mask >> (n * 4)) & 0xf;
2139 switch (mask) {
2140 case 0:
2141 fi->type = ARMFault_Permission;
2142 fi->level = 1;
2143 return true;
2144 case 1:
2145 if (is_user) {
2146 fi->type = ARMFault_Permission;
2147 fi->level = 1;
2148 return true;
2149 }
2150 result->f.prot = PAGE_READ | PAGE_WRITE;
2151 break;
2152 case 2:
2153 result->f.prot = PAGE_READ;
2154 if (!is_user) {
2155 result->f.prot |= PAGE_WRITE;
2156 }
2157 break;
2158 case 3:
2159 result->f.prot = PAGE_READ | PAGE_WRITE;
2160 break;
2161 case 5:
2162 if (is_user) {
2163 fi->type = ARMFault_Permission;
2164 fi->level = 1;
2165 return true;
2166 }
2167 result->f.prot = PAGE_READ;
2168 break;
2169 case 6:
2170 result->f.prot = PAGE_READ;
2171 break;
2172 default:
2173 /* Bad permission. */
2174 fi->type = ARMFault_Permission;
2175 fi->level = 1;
2176 return true;
2177 }
2178 result->f.prot |= PAGE_EXEC;
2179 return false;
2180 }
2181
2182 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
2183 int32_t address, uint8_t *prot)
2184 {
2185 if (!arm_feature(env, ARM_FEATURE_M)) {
2186 *prot = PAGE_READ | PAGE_WRITE;
2187 switch (address) {
2188 case 0xF0000000 ... 0xFFFFFFFF:
2189 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
2190 /* hivecs execing is ok */
2191 *prot |= PAGE_EXEC;
2192 }
2193 break;
2194 case 0x00000000 ... 0x7FFFFFFF:
2195 *prot |= PAGE_EXEC;
2196 break;
2197 }
2198 } else {
2199 /* Default system address map for M profile cores.
2200 * The architecture specifies which regions are execute-never;
2201 * at the MPU level no other checks are defined.
2202 */
2203 switch (address) {
2204 case 0x00000000 ... 0x1fffffff: /* ROM */
2205 case 0x20000000 ... 0x3fffffff: /* SRAM */
2206 case 0x60000000 ... 0x7fffffff: /* RAM */
2207 case 0x80000000 ... 0x9fffffff: /* RAM */
2208 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2209 break;
2210 case 0x40000000 ... 0x5fffffff: /* Peripheral */
2211 case 0xa0000000 ... 0xbfffffff: /* Device */
2212 case 0xc0000000 ... 0xdfffffff: /* Device */
2213 case 0xe0000000 ... 0xffffffff: /* System */
2214 *prot = PAGE_READ | PAGE_WRITE;
2215 break;
2216 default:
2217 g_assert_not_reached();
2218 }
2219 }
2220 }
2221
2222 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
2223 {
2224 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
2225 return arm_feature(env, ARM_FEATURE_M) &&
2226 extract32(address, 20, 12) == 0xe00;
2227 }
2228
2229 static bool m_is_system_region(CPUARMState *env, uint32_t address)
2230 {
2231 /*
2232 * True if address is in the M profile system region
2233 * 0xe0000000 - 0xffffffff
2234 */
2235 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
2236 }
2237
2238 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2239 bool is_secure, bool is_user)
2240 {
2241 /*
2242 * Return true if we should use the default memory map as a
2243 * "background" region if there are no hits against any MPU regions.
2244 */
2245 CPUARMState *env = &cpu->env;
2246
2247 if (is_user) {
2248 return false;
2249 }
2250
2251 if (arm_feature(env, ARM_FEATURE_M)) {
2252 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
2253 }
2254
2255 if (mmu_idx == ARMMMUIdx_Stage2) {
2256 return false;
2257 }
2258
2259 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
2260 }
2261
2262 static bool get_phys_addr_pmsav7(CPUARMState *env,
2263 S1Translate *ptw,
2264 uint32_t address,
2265 MMUAccessType access_type,
2266 GetPhysAddrResult *result,
2267 ARMMMUFaultInfo *fi)
2268 {
2269 ARMCPU *cpu = env_archcpu(env);
2270 int n;
2271 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2272 bool is_user = regime_is_user(env, mmu_idx);
2273 bool secure = arm_space_is_secure(ptw->in_space);
2274
2275 result->f.phys_addr = address;
2276 result->f.lg_page_size = TARGET_PAGE_BITS;
2277 result->f.prot = 0;
2278
2279 if (regime_translation_disabled(env, mmu_idx, ptw->in_space) ||
2280 m_is_ppb_region(env, address)) {
2281 /*
2282 * MPU disabled or M profile PPB access: use default memory map.
2283 * The other case which uses the default memory map in the
2284 * v7M ARM ARM pseudocode is exception vector reads from the vector
2285 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
2286 * which always does a direct read using address_space_ldl(), rather
2287 * than going via this function, so we don't need to check that here.
2288 */
2289 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2290 } else { /* MPU enabled */
2291 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
2292 /* region search */
2293 uint32_t base = env->pmsav7.drbar[n];
2294 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
2295 uint32_t rmask;
2296 bool srdis = false;
2297
2298 if (!(env->pmsav7.drsr[n] & 0x1)) {
2299 continue;
2300 }
2301
2302 if (!rsize) {
2303 qemu_log_mask(LOG_GUEST_ERROR,
2304 "DRSR[%d]: Rsize field cannot be 0\n", n);
2305 continue;
2306 }
2307 rsize++;
2308 rmask = (1ull << rsize) - 1;
2309
2310 if (base & rmask) {
2311 qemu_log_mask(LOG_GUEST_ERROR,
2312 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
2313 "to DRSR region size, mask = 0x%" PRIx32 "\n",
2314 n, base, rmask);
2315 continue;
2316 }
2317
2318 if (address < base || address > base + rmask) {
2319 /*
2320 * Address not in this region. We must check whether the
2321 * region covers addresses in the same page as our address.
2322 * In that case we must not report a size that covers the
2323 * whole page for a subsequent hit against a different MPU
2324 * region or the background region, because it would result in
2325 * incorrect TLB hits for subsequent accesses to addresses that
2326 * are in this MPU region.
2327 */
2328 if (ranges_overlap(base, rmask,
2329 address & TARGET_PAGE_MASK,
2330 TARGET_PAGE_SIZE)) {
2331 result->f.lg_page_size = 0;
2332 }
2333 continue;
2334 }
2335
2336 /* Region matched */
2337
2338 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
2339 int i, snd;
2340 uint32_t srdis_mask;
2341
2342 rsize -= 3; /* sub region size (power of 2) */
2343 snd = ((address - base) >> rsize) & 0x7;
2344 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
2345
2346 srdis_mask = srdis ? 0x3 : 0x0;
2347 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
2348 /*
2349 * This will check in groups of 2, 4 and then 8, whether
2350 * the subregion bits are consistent. rsize is incremented
2351 * back up to give the region size, considering consistent
2352 * adjacent subregions as one region. Stop testing if rsize
2353 * is already big enough for an entire QEMU page.
2354 */
2355 int snd_rounded = snd & ~(i - 1);
2356 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
2357 snd_rounded + 8, i);
2358 if (srdis_mask ^ srdis_multi) {
2359 break;
2360 }
2361 srdis_mask = (srdis_mask << i) | srdis_mask;
2362 rsize++;
2363 }
2364 }
2365 if (srdis) {
2366 continue;
2367 }
2368 if (rsize < TARGET_PAGE_BITS) {
2369 result->f.lg_page_size = rsize;
2370 }
2371 break;
2372 }
2373
2374 if (n == -1) { /* no hits */
2375 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2376 /* background fault */
2377 fi->type = ARMFault_Background;
2378 return true;
2379 }
2380 get_phys_addr_pmsav7_default(env, mmu_idx, address,
2381 &result->f.prot);
2382 } else { /* a MPU hit! */
2383 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
2384 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
2385
2386 if (m_is_system_region(env, address)) {
2387 /* System space is always execute never */
2388 xn = 1;
2389 }
2390
2391 if (is_user) { /* User mode AP bit decoding */
2392 switch (ap) {
2393 case 0:
2394 case 1:
2395 case 5:
2396 break; /* no access */
2397 case 3:
2398 result->f.prot |= PAGE_WRITE;
2399 /* fall through */
2400 case 2:
2401 case 6:
2402 result->f.prot |= PAGE_READ | PAGE_EXEC;
2403 break;
2404 case 7:
2405 /* for v7M, same as 6; for R profile a reserved value */
2406 if (arm_feature(env, ARM_FEATURE_M)) {
2407 result->f.prot |= PAGE_READ | PAGE_EXEC;
2408 break;
2409 }
2410 /* fall through */
2411 default:
2412 qemu_log_mask(LOG_GUEST_ERROR,
2413 "DRACR[%d]: Bad value for AP bits: 0x%"
2414 PRIx32 "\n", n, ap);
2415 }
2416 } else { /* Priv. mode AP bits decoding */
2417 switch (ap) {
2418 case 0:
2419 break; /* no access */
2420 case 1:
2421 case 2:
2422 case 3:
2423 result->f.prot |= PAGE_WRITE;
2424 /* fall through */
2425 case 5:
2426 case 6:
2427 result->f.prot |= PAGE_READ | PAGE_EXEC;
2428 break;
2429 case 7:
2430 /* for v7M, same as 6; for R profile a reserved value */
2431 if (arm_feature(env, ARM_FEATURE_M)) {
2432 result->f.prot |= PAGE_READ | PAGE_EXEC;
2433 break;
2434 }
2435 /* fall through */
2436 default:
2437 qemu_log_mask(LOG_GUEST_ERROR,
2438 "DRACR[%d]: Bad value for AP bits: 0x%"
2439 PRIx32 "\n", n, ap);
2440 }
2441 }
2442
2443 /* execute never */
2444 if (xn) {
2445 result->f.prot &= ~PAGE_EXEC;
2446 }
2447 }
2448 }
2449
2450 fi->type = ARMFault_Permission;
2451 fi->level = 1;
2452 return !(result->f.prot & (1 << access_type));
2453 }
2454
2455 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2456 uint32_t secure)
2457 {
2458 if (regime_el(env, mmu_idx) == 2) {
2459 return env->pmsav8.hprbar;
2460 } else {
2461 return env->pmsav8.rbar[secure];
2462 }
2463 }
2464
2465 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2466 uint32_t secure)
2467 {
2468 if (regime_el(env, mmu_idx) == 2) {
2469 return env->pmsav8.hprlar;
2470 } else {
2471 return env->pmsav8.rlar[secure];
2472 }
2473 }
2474
2475 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2476 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2477 bool secure, GetPhysAddrResult *result,
2478 ARMMMUFaultInfo *fi, uint32_t *mregion)
2479 {
2480 /*
2481 * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2482 * that a full phys-to-virt translation does).
2483 * mregion is (if not NULL) set to the region number which matched,
2484 * or -1 if no region number is returned (MPU off, address did not
2485 * hit a region, address hit in multiple regions).
2486 * If the region hit doesn't cover the entire TARGET_PAGE the address
2487 * is within, then we set the result page_size to 1 to force the
2488 * memory system to use a subpage.
2489 */
2490 ARMCPU *cpu = env_archcpu(env);
2491 bool is_user = regime_is_user(env, mmu_idx);
2492 int n;
2493 int matchregion = -1;
2494 bool hit = false;
2495 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2496 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2497 int region_counter;
2498
2499 if (regime_el(env, mmu_idx) == 2) {
2500 region_counter = cpu->pmsav8r_hdregion;
2501 } else {
2502 region_counter = cpu->pmsav7_dregion;
2503 }
2504
2505 result->f.lg_page_size = TARGET_PAGE_BITS;
2506 result->f.phys_addr = address;
2507 result->f.prot = 0;
2508 if (mregion) {
2509 *mregion = -1;
2510 }
2511
2512 if (mmu_idx == ARMMMUIdx_Stage2) {
2513 fi->stage2 = true;
2514 }
2515
2516 /*
2517 * Unlike the ARM ARM pseudocode, we don't need to check whether this
2518 * was an exception vector read from the vector table (which is always
2519 * done using the default system address map), because those accesses
2520 * are done in arm_v7m_load_vector(), which always does a direct
2521 * read using address_space_ldl(), rather than going via this function.
2522 */
2523 if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) {
2524 /* MPU disabled */
2525 hit = true;
2526 } else if (m_is_ppb_region(env, address)) {
2527 hit = true;
2528 } else {
2529 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2530 hit = true;
2531 }
2532
2533 uint32_t bitmask;
2534 if (arm_feature(env, ARM_FEATURE_M)) {
2535 bitmask = 0x1f;
2536 } else {
2537 bitmask = 0x3f;
2538 fi->level = 0;
2539 }
2540
2541 for (n = region_counter - 1; n >= 0; n--) {
2542 /* region search */
2543 /*
2544 * Note that the base address is bits [31:x] from the register
2545 * with bits [x-1:0] all zeroes, but the limit address is bits
2546 * [31:x] from the register with bits [x:0] all ones. Where x is
2547 * 5 for Cortex-M and 6 for Cortex-R
2548 */
2549 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2550 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2551
2552 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2553 /* Region disabled */
2554 continue;
2555 }
2556
2557 if (address < base || address > limit) {
2558 /*
2559 * Address not in this region. We must check whether the
2560 * region covers addresses in the same page as our address.
2561 * In that case we must not report a size that covers the
2562 * whole page for a subsequent hit against a different MPU
2563 * region or the background region, because it would result in
2564 * incorrect TLB hits for subsequent accesses to addresses that
2565 * are in this MPU region.
2566 */
2567 if (limit >= base &&
2568 ranges_overlap(base, limit - base + 1,
2569 addr_page_base,
2570 TARGET_PAGE_SIZE)) {
2571 result->f.lg_page_size = 0;
2572 }
2573 continue;
2574 }
2575
2576 if (base > addr_page_base || limit < addr_page_limit) {
2577 result->f.lg_page_size = 0;
2578 }
2579
2580 if (matchregion != -1) {
2581 /*
2582 * Multiple regions match -- always a failure (unlike
2583 * PMSAv7 where highest-numbered-region wins)
2584 */
2585 fi->type = ARMFault_Permission;
2586 if (arm_feature(env, ARM_FEATURE_M)) {
2587 fi->level = 1;
2588 }
2589 return true;
2590 }
2591
2592 matchregion = n;
2593 hit = true;
2594 }
2595 }
2596
2597 if (!hit) {
2598 if (arm_feature(env, ARM_FEATURE_M)) {
2599 fi->type = ARMFault_Background;
2600 } else {
2601 fi->type = ARMFault_Permission;
2602 }
2603 return true;
2604 }
2605
2606 if (matchregion == -1) {
2607 /* hit using the background region */
2608 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2609 } else {
2610 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2611 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2612 uint32_t ap = extract32(matched_rbar, 1, 2);
2613 uint32_t xn = extract32(matched_rbar, 0, 1);
2614 bool pxn = false;
2615
2616 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2617 pxn = extract32(matched_rlar, 4, 1);
2618 }
2619
2620 if (m_is_system_region(env, address)) {
2621 /* System space is always execute never */
2622 xn = 1;
2623 }
2624
2625 if (regime_el(env, mmu_idx) == 2) {
2626 result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2627 mmu_idx != ARMMMUIdx_E2);
2628 } else {
2629 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2630 }
2631
2632 if (!arm_feature(env, ARM_FEATURE_M)) {
2633 uint8_t attrindx = extract32(matched_rlar, 1, 3);
2634 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2635 uint8_t sh = extract32(matched_rlar, 3, 2);
2636
2637 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2638 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2639 xn = 0x1;
2640 }
2641
2642 if ((regime_el(env, mmu_idx) == 1) &&
2643 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2644 pxn = 0x1;
2645 }
2646
2647 result->cacheattrs.is_s2_format = false;
2648 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2649 result->cacheattrs.shareability = sh;
2650 }
2651
2652 if (result->f.prot && !xn && !(pxn && !is_user)) {
2653 result->f.prot |= PAGE_EXEC;
2654 }
2655
2656 if (mregion) {
2657 *mregion = matchregion;
2658 }
2659 }
2660
2661 fi->type = ARMFault_Permission;
2662 if (arm_feature(env, ARM_FEATURE_M)) {
2663 fi->level = 1;
2664 }
2665 return !(result->f.prot & (1 << access_type));
2666 }
2667
2668 static bool v8m_is_sau_exempt(CPUARMState *env,
2669 uint32_t address, MMUAccessType access_type)
2670 {
2671 /*
2672 * The architecture specifies that certain address ranges are
2673 * exempt from v8M SAU/IDAU checks.
2674 */
2675 return
2676 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2677 (address >= 0xe0000000 && address <= 0xe0002fff) ||
2678 (address >= 0xe000e000 && address <= 0xe000efff) ||
2679 (address >= 0xe002e000 && address <= 0xe002efff) ||
2680 (address >= 0xe0040000 && address <= 0xe0041fff) ||
2681 (address >= 0xe00ff000 && address <= 0xe00fffff);
2682 }
2683
2684 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2685 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2686 bool is_secure, V8M_SAttributes *sattrs)
2687 {
2688 /*
2689 * Look up the security attributes for this address. Compare the
2690 * pseudocode SecurityCheck() function.
2691 * We assume the caller has zero-initialized *sattrs.
2692 */
2693 ARMCPU *cpu = env_archcpu(env);
2694 int r;
2695 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2696 int idau_region = IREGION_NOTVALID;
2697 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2698 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2699
2700 if (cpu->idau) {
2701 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2702 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2703
2704 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2705 &idau_nsc);
2706 }
2707
2708 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2709 /* 0xf0000000..0xffffffff is always S for insn fetches */
2710 return;
2711 }
2712
2713 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2714 sattrs->ns = !is_secure;
2715 return;
2716 }
2717
2718 if (idau_region != IREGION_NOTVALID) {
2719 sattrs->irvalid = true;
2720 sattrs->iregion = idau_region;
2721 }
2722
2723 switch (env->sau.ctrl & 3) {
2724 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2725 break;
2726 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2727 sattrs->ns = true;
2728 break;
2729 default: /* SAU.ENABLE == 1 */
2730 for (r = 0; r < cpu->sau_sregion; r++) {
2731 if (env->sau.rlar[r] & 1) {
2732 uint32_t base = env->sau.rbar[r] & ~0x1f;
2733 uint32_t limit = env->sau.rlar[r] | 0x1f;
2734
2735 if (base <= address && limit >= address) {
2736 if (base > addr_page_base || limit < addr_page_limit) {
2737 sattrs->subpage = true;
2738 }
2739 if (sattrs->srvalid) {
2740 /*
2741 * If we hit in more than one region then we must report
2742 * as Secure, not NS-Callable, with no valid region
2743 * number info.
2744 */
2745 sattrs->ns = false;
2746 sattrs->nsc = false;
2747 sattrs->sregion = 0;
2748 sattrs->srvalid = false;
2749 break;
2750 } else {
2751 if (env->sau.rlar[r] & 2) {
2752 sattrs->nsc = true;
2753 } else {
2754 sattrs->ns = true;
2755 }
2756 sattrs->srvalid = true;
2757 sattrs->sregion = r;
2758 }
2759 } else {
2760 /*
2761 * Address not in this region. We must check whether the
2762 * region covers addresses in the same page as our address.
2763 * In that case we must not report a size that covers the
2764 * whole page for a subsequent hit against a different MPU
2765 * region or the background region, because it would result
2766 * in incorrect TLB hits for subsequent accesses to
2767 * addresses that are in this MPU region.
2768 */
2769 if (limit >= base &&
2770 ranges_overlap(base, limit - base + 1,
2771 addr_page_base,
2772 TARGET_PAGE_SIZE)) {
2773 sattrs->subpage = true;
2774 }
2775 }
2776 }
2777 }
2778 break;
2779 }
2780
2781 /*
2782 * The IDAU will override the SAU lookup results if it specifies
2783 * higher security than the SAU does.
2784 */
2785 if (!idau_ns) {
2786 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2787 sattrs->ns = false;
2788 sattrs->nsc = idau_nsc;
2789 }
2790 }
2791 }
2792
2793 static bool get_phys_addr_pmsav8(CPUARMState *env,
2794 S1Translate *ptw,
2795 uint32_t address,
2796 MMUAccessType access_type,
2797 GetPhysAddrResult *result,
2798 ARMMMUFaultInfo *fi)
2799 {
2800 V8M_SAttributes sattrs = {};
2801 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2802 bool secure = arm_space_is_secure(ptw->in_space);
2803 bool ret;
2804
2805 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2806 v8m_security_lookup(env, address, access_type, mmu_idx,
2807 secure, &sattrs);
2808 if (access_type == MMU_INST_FETCH) {
2809 /*
2810 * Instruction fetches always use the MMU bank and the
2811 * transaction attribute determined by the fetch address,
2812 * regardless of CPU state. This is painful for QEMU
2813 * to handle, because it would mean we need to encode
2814 * into the mmu_idx not just the (user, negpri) information
2815 * for the current security state but also that for the
2816 * other security state, which would balloon the number
2817 * of mmu_idx values needed alarmingly.
2818 * Fortunately we can avoid this because it's not actually
2819 * possible to arbitrarily execute code from memory with
2820 * the wrong security attribute: it will always generate
2821 * an exception of some kind or another, apart from the
2822 * special case of an NS CPU executing an SG instruction
2823 * in S&NSC memory. So we always just fail the translation
2824 * here and sort things out in the exception handler
2825 * (including possibly emulating an SG instruction).
2826 */
2827 if (sattrs.ns != !secure) {
2828 if (sattrs.nsc) {
2829 fi->type = ARMFault_QEMU_NSCExec;
2830 } else {
2831 fi->type = ARMFault_QEMU_SFault;
2832 }
2833 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2834 result->f.phys_addr = address;
2835 result->f.prot = 0;
2836 return true;
2837 }
2838 } else {
2839 /*
2840 * For data accesses we always use the MMU bank indicated
2841 * by the current CPU state, but the security attributes
2842 * might downgrade a secure access to nonsecure.
2843 */
2844 if (sattrs.ns) {
2845 result->f.attrs.secure = false;
2846 result->f.attrs.space = ARMSS_NonSecure;
2847 } else if (!secure) {
2848 /*
2849 * NS access to S memory must fault.
2850 * Architecturally we should first check whether the
2851 * MPU information for this address indicates that we
2852 * are doing an unaligned access to Device memory, which
2853 * should generate a UsageFault instead. QEMU does not
2854 * currently check for that kind of unaligned access though.
2855 * If we added it we would need to do so as a special case
2856 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2857 */
2858 fi->type = ARMFault_QEMU_SFault;
2859 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2860 result->f.phys_addr = address;
2861 result->f.prot = 0;
2862 return true;
2863 }
2864 }
2865 }
2866
2867 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2868 result, fi, NULL);
2869 if (sattrs.subpage) {
2870 result->f.lg_page_size = 0;
2871 }
2872 return ret;
2873 }
2874
2875 /*
2876 * Translate from the 4-bit stage 2 representation of
2877 * memory attributes (without cache-allocation hints) to
2878 * the 8-bit representation of the stage 1 MAIR registers
2879 * (which includes allocation hints).
2880 *
2881 * ref: shared/translation/attrs/S2AttrDecode()
2882 * .../S2ConvertAttrsHints()
2883 */
2884 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2885 {
2886 uint8_t hiattr = extract32(s2attrs, 2, 2);
2887 uint8_t loattr = extract32(s2attrs, 0, 2);
2888 uint8_t hihint = 0, lohint = 0;
2889
2890 if (hiattr != 0) { /* normal memory */
2891 if (hcr & HCR_CD) { /* cache disabled */
2892 hiattr = loattr = 1; /* non-cacheable */
2893 } else {
2894 if (hiattr != 1) { /* Write-through or write-back */
2895 hihint = 3; /* RW allocate */
2896 }
2897 if (loattr != 1) { /* Write-through or write-back */
2898 lohint = 3; /* RW allocate */
2899 }
2900 }
2901 }
2902
2903 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2904 }
2905
2906 /*
2907 * Combine either inner or outer cacheability attributes for normal
2908 * memory, according to table D4-42 and pseudocode procedure
2909 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2910 *
2911 * NB: only stage 1 includes allocation hints (RW bits), leading to
2912 * some asymmetry.
2913 */
2914 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2915 {
2916 if (s1 == 4 || s2 == 4) {
2917 /* non-cacheable has precedence */
2918 return 4;
2919 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2920 /* stage 1 write-through takes precedence */
2921 return s1;
2922 } else if (extract32(s2, 2, 2) == 2) {
2923 /* stage 2 write-through takes precedence, but the allocation hint
2924 * is still taken from stage 1
2925 */
2926 return (2 << 2) | extract32(s1, 0, 2);
2927 } else { /* write-back */
2928 return s1;
2929 }
2930 }
2931
2932 /*
2933 * Combine the memory type and cacheability attributes of
2934 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2935 * combined attributes in MAIR_EL1 format.
2936 */
2937 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2938 ARMCacheAttrs s1, ARMCacheAttrs s2)
2939 {
2940 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2941
2942 if (s2.is_s2_format) {
2943 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2944 } else {
2945 s2_mair_attrs = s2.attrs;
2946 }
2947
2948 s1lo = extract32(s1.attrs, 0, 4);
2949 s2lo = extract32(s2_mair_attrs, 0, 4);
2950 s1hi = extract32(s1.attrs, 4, 4);
2951 s2hi = extract32(s2_mair_attrs, 4, 4);
2952
2953 /* Combine memory type and cacheability attributes */
2954 if (s1hi == 0 || s2hi == 0) {
2955 /* Device has precedence over normal */
2956 if (s1lo == 0 || s2lo == 0) {
2957 /* nGnRnE has precedence over anything */
2958 ret_attrs = 0;
2959 } else if (s1lo == 4 || s2lo == 4) {
2960 /* non-Reordering has precedence over Reordering */
2961 ret_attrs = 4; /* nGnRE */
2962 } else if (s1lo == 8 || s2lo == 8) {
2963 /* non-Gathering has precedence over Gathering */
2964 ret_attrs = 8; /* nGRE */
2965 } else {
2966 ret_attrs = 0xc; /* GRE */
2967 }
2968 } else { /* Normal memory */
2969 /* Outer/inner cacheability combine independently */
2970 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2971 | combine_cacheattr_nibble(s1lo, s2lo);
2972 }
2973 return ret_attrs;
2974 }
2975
2976 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2977 {
2978 /*
2979 * Given the 4 bits specifying the outer or inner cacheability
2980 * in MAIR format, return a value specifying Normal Write-Back,
2981 * with the allocation and transient hints taken from the input
2982 * if the input specified some kind of cacheable attribute.
2983 */
2984 if (attr == 0 || attr == 4) {
2985 /*
2986 * 0 == an UNPREDICTABLE encoding
2987 * 4 == Non-cacheable
2988 * Either way, force Write-Back RW allocate non-transient
2989 */
2990 return 0xf;
2991 }
2992 /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2993 return attr | 4;
2994 }
2995
2996 /*
2997 * Combine the memory type and cacheability attributes of
2998 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2999 * combined attributes in MAIR_EL1 format.
3000 */
3001 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
3002 {
3003 assert(s2.is_s2_format && !s1.is_s2_format);
3004
3005 switch (s2.attrs) {
3006 case 7:
3007 /* Use stage 1 attributes */
3008 return s1.attrs;
3009 case 6:
3010 /*
3011 * Force Normal Write-Back. Note that if S1 is Normal cacheable
3012 * then we take the allocation hints from it; otherwise it is
3013 * RW allocate, non-transient.
3014 */
3015 if ((s1.attrs & 0xf0) == 0) {
3016 /* S1 is Device */
3017 return 0xff;
3018 }
3019 /* Need to check the Inner and Outer nibbles separately */
3020 return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
3021 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
3022 case 5:
3023 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
3024 if ((s1.attrs & 0xf0) == 0) {
3025 return s1.attrs;
3026 }
3027 return 0x44;
3028 case 0 ... 3:
3029 /* Force Device, of subtype specified by S2 */
3030 return s2.attrs << 2;
3031 default:
3032 /*
3033 * RESERVED values (including RES0 descriptor bit [5] being nonzero);
3034 * arbitrarily force Device.
3035 */
3036 return 0;
3037 }
3038 }
3039
3040 /*
3041 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
3042 * and CombineS1S2Desc()
3043 *
3044 * @env: CPUARMState
3045 * @s1: Attributes from stage 1 walk
3046 * @s2: Attributes from stage 2 walk
3047 */
3048 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
3049 ARMCacheAttrs s1, ARMCacheAttrs s2)
3050 {
3051 ARMCacheAttrs ret;
3052 bool tagged = false;
3053
3054 assert(!s1.is_s2_format);
3055 ret.is_s2_format = false;
3056
3057 if (s1.attrs == 0xf0) {
3058 tagged = true;
3059 s1.attrs = 0xff;
3060 }
3061
3062 /* Combine shareability attributes (table D4-43) */
3063 if (s1.shareability == 2 || s2.shareability == 2) {
3064 /* if either are outer-shareable, the result is outer-shareable */
3065 ret.shareability = 2;
3066 } else if (s1.shareability == 3 || s2.shareability == 3) {
3067 /* if either are inner-shareable, the result is inner-shareable */
3068 ret.shareability = 3;
3069 } else {
3070 /* both non-shareable */
3071 ret.shareability = 0;
3072 }
3073
3074 /* Combine memory type and cacheability attributes */
3075 if (hcr & HCR_FWB) {
3076 ret.attrs = combined_attrs_fwb(s1, s2);
3077 } else {
3078 ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
3079 }
3080
3081 /*
3082 * Any location for which the resultant memory type is any
3083 * type of Device memory is always treated as Outer Shareable.
3084 * Any location for which the resultant memory type is Normal
3085 * Inner Non-cacheable, Outer Non-cacheable is always treated
3086 * as Outer Shareable.
3087 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
3088 */
3089 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
3090 ret.shareability = 2;
3091 }
3092
3093 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
3094 if (tagged && ret.attrs == 0xff) {
3095 ret.attrs = 0xf0;
3096 }
3097
3098 return ret;
3099 }
3100
3101 /*
3102 * MMU disabled. S1 addresses within aa64 translation regimes are
3103 * still checked for bounds -- see AArch64.S1DisabledOutput().
3104 */
3105 static bool get_phys_addr_disabled(CPUARMState *env,
3106 S1Translate *ptw,
3107 target_ulong address,
3108 MMUAccessType access_type,
3109 GetPhysAddrResult *result,
3110 ARMMMUFaultInfo *fi)
3111 {
3112 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3113 uint8_t memattr = 0x00; /* Device nGnRnE */
3114 uint8_t shareability = 0; /* non-shareable */
3115 int r_el;
3116
3117 switch (mmu_idx) {
3118 case ARMMMUIdx_Stage2:
3119 case ARMMMUIdx_Stage2_S:
3120 case ARMMMUIdx_Phys_S:
3121 case ARMMMUIdx_Phys_NS:
3122 case ARMMMUIdx_Phys_Root:
3123 case ARMMMUIdx_Phys_Realm:
3124 break;
3125
3126 default:
3127 r_el = regime_el(env, mmu_idx);
3128 if (arm_el_is_aa64(env, r_el)) {
3129 int pamax = arm_pamax(env_archcpu(env));
3130 uint64_t tcr = env->cp15.tcr_el[r_el];
3131 int addrtop, tbi;
3132
3133 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
3134 if (access_type == MMU_INST_FETCH) {
3135 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
3136 }
3137 tbi = (tbi >> extract64(address, 55, 1)) & 1;
3138 addrtop = (tbi ? 55 : 63);
3139
3140 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
3141 fi->type = ARMFault_AddressSize;
3142 fi->level = 0;
3143 fi->stage2 = false;
3144 return 1;
3145 }
3146
3147 /*
3148 * When TBI is disabled, we've just validated that all of the
3149 * bits above PAMax are zero, so logically we only need to
3150 * clear the top byte for TBI. But it's clearer to follow
3151 * the pseudocode set of addrdesc.paddress.
3152 */
3153 address = extract64(address, 0, 52);
3154 }
3155
3156 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
3157 if (r_el == 1) {
3158 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
3159 if (hcr & HCR_DC) {
3160 if (hcr & HCR_DCT) {
3161 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
3162 } else {
3163 memattr = 0xff; /* Normal, WB, RWA */
3164 }
3165 }
3166 }
3167 if (memattr == 0) {
3168 if (access_type == MMU_INST_FETCH) {
3169 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
3170 memattr = 0xee; /* Normal, WT, RA, NT */
3171 } else {
3172 memattr = 0x44; /* Normal, NC, No */
3173 }
3174 }
3175 shareability = 2; /* outer shareable */
3176 }
3177 result->cacheattrs.is_s2_format = false;
3178 break;
3179 }
3180
3181 result->f.phys_addr = address;
3182 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3183 result->f.lg_page_size = TARGET_PAGE_BITS;
3184 result->cacheattrs.shareability = shareability;
3185 result->cacheattrs.attrs = memattr;
3186 return false;
3187 }
3188
3189 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
3190 target_ulong address,
3191 MMUAccessType access_type,
3192 GetPhysAddrResult *result,
3193 ARMMMUFaultInfo *fi)
3194 {
3195 hwaddr ipa;
3196 int s1_prot, s1_lgpgsz;
3197 ARMSecuritySpace in_space = ptw->in_space;
3198 bool ret, ipa_secure, s1_guarded;
3199 ARMCacheAttrs cacheattrs1;
3200 ARMSecuritySpace ipa_space;
3201 uint64_t hcr;
3202
3203 ret = get_phys_addr_nogpc(env, ptw, address, access_type, result, fi);
3204
3205 /* If S1 fails, return early. */
3206 if (ret) {
3207 return ret;
3208 }
3209
3210 ipa = result->f.phys_addr;
3211 ipa_secure = result->f.attrs.secure;
3212 ipa_space = result->f.attrs.space;
3213
3214 ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
3215 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3216 ptw->in_space = ipa_space;
3217 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
3218
3219 /*
3220 * S1 is done, now do S2 translation.
3221 * Save the stage1 results so that we may merge prot and cacheattrs later.
3222 */
3223 s1_prot = result->f.prot;
3224 s1_lgpgsz = result->f.lg_page_size;
3225 s1_guarded = result->f.extra.arm.guarded;
3226 cacheattrs1 = result->cacheattrs;
3227 memset(result, 0, sizeof(*result));
3228
3229 ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, result, fi);
3230 fi->s2addr = ipa;
3231
3232 /* Combine the S1 and S2 perms. */
3233 result->f.prot &= s1_prot;
3234
3235 /* If S2 fails, return early. */
3236 if (ret) {
3237 return ret;
3238 }
3239
3240 /*
3241 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
3242 * this means "don't put this in the TLB"; in this case, return a
3243 * result with lg_page_size == 0 to achieve that. Otherwise,
3244 * use the maximum of the S1 & S2 page size, so that invalidation
3245 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
3246 * we know the combined result permissions etc only cover the minimum
3247 * of the S1 and S2 page size, because we know that the common TLB code
3248 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
3249 * and passing a larger page size value only affects invalidations.)
3250 */
3251 if (result->f.lg_page_size < TARGET_PAGE_BITS ||
3252 s1_lgpgsz < TARGET_PAGE_BITS) {
3253 result->f.lg_page_size = 0;
3254 } else if (result->f.lg_page_size < s1_lgpgsz) {
3255 result->f.lg_page_size = s1_lgpgsz;
3256 }
3257
3258 /* Combine the S1 and S2 cache attributes. */
3259 hcr = arm_hcr_el2_eff_secstate(env, in_space);
3260 if (hcr & HCR_DC) {
3261 /*
3262 * HCR.DC forces the first stage attributes to
3263 * Normal Non-Shareable,
3264 * Inner Write-Back Read-Allocate Write-Allocate,
3265 * Outer Write-Back Read-Allocate Write-Allocate.
3266 * Do not overwrite Tagged within attrs.
3267 */
3268 if (cacheattrs1.attrs != 0xf0) {
3269 cacheattrs1.attrs = 0xff;
3270 }
3271 cacheattrs1.shareability = 0;
3272 }
3273 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
3274 result->cacheattrs);
3275
3276 /* No BTI GP information in stage 2, we just use the S1 value */
3277 result->f.extra.arm.guarded = s1_guarded;
3278
3279 /*
3280 * Check if IPA translates to secure or non-secure PA space.
3281 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
3282 */
3283 if (in_space == ARMSS_Secure) {
3284 result->f.attrs.secure =
3285 !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
3286 && (ipa_secure
3287 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)));
3288 result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure);
3289 }
3290
3291 return false;
3292 }
3293
3294 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
3295 target_ulong address,
3296 MMUAccessType access_type,
3297 GetPhysAddrResult *result,
3298 ARMMMUFaultInfo *fi)
3299 {
3300 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3301 ARMMMUIdx s1_mmu_idx;
3302
3303 /*
3304 * The page table entries may downgrade Secure to NonSecure, but
3305 * cannot upgrade a NonSecure translation regime's attributes
3306 * to Secure or Realm.
3307 */
3308 result->f.attrs.space = ptw->in_space;
3309 result->f.attrs.secure = arm_space_is_secure(ptw->in_space);
3310
3311 switch (mmu_idx) {
3312 case ARMMMUIdx_Phys_S:
3313 case ARMMMUIdx_Phys_NS:
3314 case ARMMMUIdx_Phys_Root:
3315 case ARMMMUIdx_Phys_Realm:
3316 /* Checking Phys early avoids special casing later vs regime_el. */
3317 return get_phys_addr_disabled(env, ptw, address, access_type,
3318 result, fi);
3319
3320 case ARMMMUIdx_Stage1_E0:
3321 case ARMMMUIdx_Stage1_E1:
3322 case ARMMMUIdx_Stage1_E1_PAN:
3323 /*
3324 * First stage lookup uses second stage for ptw; only
3325 * Secure has both S and NS IPA and starts with Stage2_S.
3326 */
3327 ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ?
3328 ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3329 break;
3330
3331 case ARMMMUIdx_Stage2:
3332 case ARMMMUIdx_Stage2_S:
3333 /*
3334 * Second stage lookup uses physical for ptw; whether this is S or
3335 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
3336 * the Secure EL2&0 regime.
3337 */
3338 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
3339 break;
3340
3341 case ARMMMUIdx_E10_0:
3342 s1_mmu_idx = ARMMMUIdx_Stage1_E0;
3343 goto do_twostage;
3344 case ARMMMUIdx_E10_1:
3345 s1_mmu_idx = ARMMMUIdx_Stage1_E1;
3346 goto do_twostage;
3347 case ARMMMUIdx_E10_1_PAN:
3348 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3349 do_twostage:
3350 /*
3351 * Call ourselves recursively to do the stage 1 and then stage 2
3352 * translations if mmu_idx is a two-stage regime, and EL2 present.
3353 * Otherwise, a stage1+stage2 translation is just stage 1.
3354 */
3355 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
3356 if (arm_feature(env, ARM_FEATURE_EL2) &&
3357 !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) {
3358 return get_phys_addr_twostage(env, ptw, address, access_type,
3359 result, fi);
3360 }
3361 /* fall through */
3362
3363 default:
3364 /* Single stage uses physical for ptw. */
3365 ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space);
3366 break;
3367 }
3368
3369 result->f.attrs.user = regime_is_user(env, mmu_idx);
3370
3371 /*
3372 * Fast Context Switch Extension. This doesn't exist at all in v8.
3373 * In v7 and earlier it affects all stage 1 translations.
3374 */
3375 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
3376 && !arm_feature(env, ARM_FEATURE_V8)) {
3377 if (regime_el(env, mmu_idx) == 3) {
3378 address += env->cp15.fcseidr_s;
3379 } else {
3380 address += env->cp15.fcseidr_ns;
3381 }
3382 }
3383
3384 if (arm_feature(env, ARM_FEATURE_PMSA)) {
3385 bool ret;
3386 result->f.lg_page_size = TARGET_PAGE_BITS;
3387
3388 if (arm_feature(env, ARM_FEATURE_V8)) {
3389 /* PMSAv8 */
3390 ret = get_phys_addr_pmsav8(env, ptw, address, access_type,
3391 result, fi);
3392 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3393 /* PMSAv7 */
3394 ret = get_phys_addr_pmsav7(env, ptw, address, access_type,
3395 result, fi);
3396 } else {
3397 /* Pre-v7 MPU */
3398 ret = get_phys_addr_pmsav5(env, ptw, address, access_type,
3399 result, fi);
3400 }
3401 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
3402 " mmu_idx %u -> %s (prot %c%c%c)\n",
3403 access_type == MMU_DATA_LOAD ? "reading" :
3404 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
3405 (uint32_t)address, mmu_idx,
3406 ret ? "Miss" : "Hit",
3407 result->f.prot & PAGE_READ ? 'r' : '-',
3408 result->f.prot & PAGE_WRITE ? 'w' : '-',
3409 result->f.prot & PAGE_EXEC ? 'x' : '-');
3410
3411 return ret;
3412 }
3413
3414 /* Definitely a real MMU, not an MPU */
3415
3416 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
3417 return get_phys_addr_disabled(env, ptw, address, access_type,
3418 result, fi);
3419 }
3420
3421 if (regime_using_lpae_format(env, mmu_idx)) {
3422 return get_phys_addr_lpae(env, ptw, address, access_type, result, fi);
3423 } else if (arm_feature(env, ARM_FEATURE_V7) ||
3424 regime_sctlr(env, mmu_idx) & SCTLR_XP) {
3425 return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
3426 } else {
3427 return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
3428 }
3429 }
3430
3431 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
3432 target_ulong address,
3433 MMUAccessType access_type,
3434 GetPhysAddrResult *result,
3435 ARMMMUFaultInfo *fi)
3436 {
3437 if (get_phys_addr_nogpc(env, ptw, address, access_type, result, fi)) {
3438 return true;
3439 }
3440 if (!granule_protection_check(env, result->f.phys_addr,
3441 result->f.attrs.space, fi)) {
3442 fi->type = ARMFault_GPCFOnOutput;
3443 return true;
3444 }
3445 return false;
3446 }
3447
3448 bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address,
3449 MMUAccessType access_type,
3450 ARMMMUIdx mmu_idx, ARMSecuritySpace space,
3451 GetPhysAddrResult *result,
3452 ARMMMUFaultInfo *fi)
3453 {
3454 S1Translate ptw = {
3455 .in_mmu_idx = mmu_idx,
3456 .in_space = space,
3457 };
3458 return get_phys_addr_nogpc(env, &ptw, address, access_type, result, fi);
3459 }
3460
3461 bool get_phys_addr(CPUARMState *env, target_ulong address,
3462 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3463 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
3464 {
3465 S1Translate ptw = {
3466 .in_mmu_idx = mmu_idx,
3467 };
3468 ARMSecuritySpace ss;
3469
3470 switch (mmu_idx) {
3471 case ARMMMUIdx_E10_0:
3472 case ARMMMUIdx_E10_1:
3473 case ARMMMUIdx_E10_1_PAN:
3474 case ARMMMUIdx_E20_0:
3475 case ARMMMUIdx_E20_2:
3476 case ARMMMUIdx_E20_2_PAN:
3477 case ARMMMUIdx_Stage1_E0:
3478 case ARMMMUIdx_Stage1_E1:
3479 case ARMMMUIdx_Stage1_E1_PAN:
3480 case ARMMMUIdx_E2:
3481 ss = arm_security_space_below_el3(env);
3482 break;
3483 case ARMMMUIdx_Stage2:
3484 /*
3485 * For Secure EL2, we need this index to be NonSecure;
3486 * otherwise this will already be NonSecure or Realm.
3487 */
3488 ss = arm_security_space_below_el3(env);
3489 if (ss == ARMSS_Secure) {
3490 ss = ARMSS_NonSecure;
3491 }
3492 break;
3493 case ARMMMUIdx_Phys_NS:
3494 case ARMMMUIdx_MPrivNegPri:
3495 case ARMMMUIdx_MUserNegPri:
3496 case ARMMMUIdx_MPriv:
3497 case ARMMMUIdx_MUser:
3498 ss = ARMSS_NonSecure;
3499 break;
3500 case ARMMMUIdx_Stage2_S:
3501 case ARMMMUIdx_Phys_S:
3502 case ARMMMUIdx_MSPrivNegPri:
3503 case ARMMMUIdx_MSUserNegPri:
3504 case ARMMMUIdx_MSPriv:
3505 case ARMMMUIdx_MSUser:
3506 ss = ARMSS_Secure;
3507 break;
3508 case ARMMMUIdx_E3:
3509 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
3510 cpu_isar_feature(aa64_rme, env_archcpu(env))) {
3511 ss = ARMSS_Root;
3512 } else {
3513 ss = ARMSS_Secure;
3514 }
3515 break;
3516 case ARMMMUIdx_Phys_Root:
3517 ss = ARMSS_Root;
3518 break;
3519 case ARMMMUIdx_Phys_Realm:
3520 ss = ARMSS_Realm;
3521 break;
3522 default:
3523 g_assert_not_reached();
3524 }
3525
3526 ptw.in_space = ss;
3527 return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi);
3528 }
3529
3530 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3531 MemTxAttrs *attrs)
3532 {
3533 ARMCPU *cpu = ARM_CPU(cs);
3534 CPUARMState *env = &cpu->env;
3535 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
3536 ARMSecuritySpace ss = arm_security_space(env);
3537 S1Translate ptw = {
3538 .in_mmu_idx = mmu_idx,
3539 .in_space = ss,
3540 .in_debug = true,
3541 };
3542 GetPhysAddrResult res = {};
3543 ARMMMUFaultInfo fi = {};
3544 bool ret;
3545
3546 ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
3547 *attrs = res.f.attrs;
3548
3549 if (ret) {
3550 return -1;
3551 }
3552 return res.f.phys_addr;
3553 }