]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/ptw.c
target/arm: arm_pamax() no longer needs to do feature propagation
[mirror_qemu.git] / target / arm / ptw.c
1 /*
2 * ARM page table walking.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "cpu-features.h"
17 #include "idau.h"
18 #ifdef CONFIG_TCG
19 # include "tcg/oversized-guest.h"
20 #endif
21
22 typedef struct S1Translate {
23 /*
24 * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk.
25 * Together with in_space, specifies the architectural translation regime.
26 */
27 ARMMMUIdx in_mmu_idx;
28 /*
29 * in_ptw_idx: specifies which mmuidx to use for the actual
30 * page table descriptor load operations. This will be one of the
31 * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes.
32 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
33 * this field is updated accordingly.
34 */
35 ARMMMUIdx in_ptw_idx;
36 /*
37 * in_space: the security space for this walk. This plus
38 * the in_mmu_idx specify the architectural translation regime.
39 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
40 * this field is updated accordingly.
41 *
42 * Note that the security space for the in_ptw_idx may be different
43 * from that for the in_mmu_idx. We do not need to explicitly track
44 * the in_ptw_idx security space because:
45 * - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx
46 * itself specifies the security space
47 * - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security
48 * space used for ptw reads is the same as that of the security
49 * space of the stage 1 translation for all cases except where
50 * stage 1 is Secure; in that case the only possibilities for
51 * the ptw read are Secure and NonSecure, and the in_ptw_idx
52 * value being Stage2 vs Stage2_S distinguishes those.
53 */
54 ARMSecuritySpace in_space;
55 /*
56 * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug
57 * accesses will not update the guest page table access flags
58 * and will not change the state of the softmmu TLBs.
59 */
60 bool in_debug;
61 /*
62 * If this is stage 2 of a stage 1+2 page table walk, then this must
63 * be true if stage 1 is an EL0 access; otherwise this is ignored.
64 * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}.
65 */
66 bool in_s1_is_el0;
67 bool out_rw;
68 bool out_be;
69 ARMSecuritySpace out_space;
70 hwaddr out_virt;
71 hwaddr out_phys;
72 void *out_host;
73 } S1Translate;
74
75 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
76 target_ulong address,
77 MMUAccessType access_type,
78 GetPhysAddrResult *result,
79 ARMMMUFaultInfo *fi);
80
81 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
82 target_ulong address,
83 MMUAccessType access_type,
84 GetPhysAddrResult *result,
85 ARMMMUFaultInfo *fi);
86
87 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
88 static const uint8_t pamax_map[] = {
89 [0] = 32,
90 [1] = 36,
91 [2] = 40,
92 [3] = 42,
93 [4] = 44,
94 [5] = 48,
95 [6] = 52,
96 };
97
98 /*
99 * The cpu-specific constant value of PAMax; also used by hw/arm/virt.
100 * Note that machvirt_init calls this on a CPU that is inited but not realized!
101 */
102 unsigned int arm_pamax(ARMCPU *cpu)
103 {
104 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
105 unsigned int parange =
106 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
107
108 /*
109 * id_aa64mmfr0 is a read-only register so values outside of the
110 * supported mappings can be considered an implementation error.
111 */
112 assert(parange < ARRAY_SIZE(pamax_map));
113 return pamax_map[parange];
114 }
115
116 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
117 /* v7 or v8 with LPAE */
118 return 40;
119 }
120 /* Anything else */
121 return 32;
122 }
123
124 /*
125 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
126 */
127 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
128 {
129 switch (mmu_idx) {
130 case ARMMMUIdx_E10_0:
131 return ARMMMUIdx_Stage1_E0;
132 case ARMMMUIdx_E10_1:
133 return ARMMMUIdx_Stage1_E1;
134 case ARMMMUIdx_E10_1_PAN:
135 return ARMMMUIdx_Stage1_E1_PAN;
136 default:
137 return mmu_idx;
138 }
139 }
140
141 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
142 {
143 return stage_1_mmu_idx(arm_mmu_idx(env));
144 }
145
146 /*
147 * Return where we should do ptw loads from for a stage 2 walk.
148 * This depends on whether the address we are looking up is a
149 * Secure IPA or a NonSecure IPA, which we know from whether this is
150 * Stage2 or Stage2_S.
151 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
152 */
153 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
154 {
155 bool s2walk_secure;
156
157 /*
158 * We're OK to check the current state of the CPU here because
159 * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit
160 * changes.
161 * (2) there's no way to do a lookup that cares about Stage 2 for a
162 * different security state to the current one for AArch64, and AArch32
163 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
164 * an NS stage 1+2 lookup while the NS bit is 0.)
165 */
166 if (!arm_el_is_aa64(env, 3)) {
167 return ARMMMUIdx_Phys_NS;
168 }
169
170 switch (arm_security_space_below_el3(env)) {
171 case ARMSS_NonSecure:
172 return ARMMMUIdx_Phys_NS;
173 case ARMSS_Realm:
174 return ARMMMUIdx_Phys_Realm;
175 case ARMSS_Secure:
176 if (stage2idx == ARMMMUIdx_Stage2_S) {
177 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
178 } else {
179 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
180 }
181 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
182 default:
183 g_assert_not_reached();
184 }
185 }
186
187 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
188 {
189 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
190 }
191
192 /* Return the TTBR associated with this translation regime */
193 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
194 {
195 if (mmu_idx == ARMMMUIdx_Stage2) {
196 return env->cp15.vttbr_el2;
197 }
198 if (mmu_idx == ARMMMUIdx_Stage2_S) {
199 return env->cp15.vsttbr_el2;
200 }
201 if (ttbrn == 0) {
202 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
203 } else {
204 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
205 }
206 }
207
208 /* Return true if the specified stage of address translation is disabled */
209 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
210 ARMSecuritySpace space)
211 {
212 uint64_t hcr_el2;
213
214 if (arm_feature(env, ARM_FEATURE_M)) {
215 bool is_secure = arm_space_is_secure(space);
216 switch (env->v7m.mpu_ctrl[is_secure] &
217 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
218 case R_V7M_MPU_CTRL_ENABLE_MASK:
219 /* Enabled, but not for HardFault and NMI */
220 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
221 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
222 /* Enabled for all cases */
223 return false;
224 case 0:
225 default:
226 /*
227 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
228 * we warned about that in armv7m_nvic.c when the guest set it.
229 */
230 return true;
231 }
232 }
233
234
235 switch (mmu_idx) {
236 case ARMMMUIdx_Stage2:
237 case ARMMMUIdx_Stage2_S:
238 /* HCR.DC means HCR.VM behaves as 1 */
239 hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
240 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
241
242 case ARMMMUIdx_E10_0:
243 case ARMMMUIdx_E10_1:
244 case ARMMMUIdx_E10_1_PAN:
245 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
246 hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
247 if (hcr_el2 & HCR_TGE) {
248 return true;
249 }
250 break;
251
252 case ARMMMUIdx_Stage1_E0:
253 case ARMMMUIdx_Stage1_E1:
254 case ARMMMUIdx_Stage1_E1_PAN:
255 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
256 hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
257 if (hcr_el2 & HCR_DC) {
258 return true;
259 }
260 break;
261
262 case ARMMMUIdx_E20_0:
263 case ARMMMUIdx_E20_2:
264 case ARMMMUIdx_E20_2_PAN:
265 case ARMMMUIdx_E2:
266 case ARMMMUIdx_E3:
267 break;
268
269 case ARMMMUIdx_Phys_S:
270 case ARMMMUIdx_Phys_NS:
271 case ARMMMUIdx_Phys_Root:
272 case ARMMMUIdx_Phys_Realm:
273 /* No translation for physical address spaces. */
274 return true;
275
276 default:
277 g_assert_not_reached();
278 }
279
280 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
281 }
282
283 static bool granule_protection_check(CPUARMState *env, uint64_t paddress,
284 ARMSecuritySpace pspace,
285 ARMMMUFaultInfo *fi)
286 {
287 MemTxAttrs attrs = {
288 .secure = true,
289 .space = ARMSS_Root,
290 };
291 ARMCPU *cpu = env_archcpu(env);
292 uint64_t gpccr = env->cp15.gpccr_el3;
293 unsigned pps, pgs, l0gptsz, level = 0;
294 uint64_t tableaddr, pps_mask, align, entry, index;
295 AddressSpace *as;
296 MemTxResult result;
297 int gpi;
298
299 if (!FIELD_EX64(gpccr, GPCCR, GPC)) {
300 return true;
301 }
302
303 /*
304 * GPC Priority 1 (R_GMGRR):
305 * R_JWCSM: If the configuration of GPCCR_EL3 is invalid,
306 * the access fails as GPT walk fault at level 0.
307 */
308
309 /*
310 * Configuration of PPS to a value exceeding the implemented
311 * physical address size is invalid.
312 */
313 pps = FIELD_EX64(gpccr, GPCCR, PPS);
314 if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) {
315 goto fault_walk;
316 }
317 pps = pamax_map[pps];
318 pps_mask = MAKE_64BIT_MASK(0, pps);
319
320 switch (FIELD_EX64(gpccr, GPCCR, SH)) {
321 case 0b10: /* outer shareable */
322 break;
323 case 0b00: /* non-shareable */
324 case 0b11: /* inner shareable */
325 /* Inner and Outer non-cacheable requires Outer shareable. */
326 if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 &&
327 FIELD_EX64(gpccr, GPCCR, IRGN) == 0) {
328 goto fault_walk;
329 }
330 break;
331 default: /* reserved */
332 goto fault_walk;
333 }
334
335 switch (FIELD_EX64(gpccr, GPCCR, PGS)) {
336 case 0b00: /* 4KB */
337 pgs = 12;
338 break;
339 case 0b01: /* 64KB */
340 pgs = 16;
341 break;
342 case 0b10: /* 16KB */
343 pgs = 14;
344 break;
345 default: /* reserved */
346 goto fault_walk;
347 }
348
349 /* Note this field is read-only and fixed at reset. */
350 l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ);
351
352 /*
353 * GPC Priority 2: Secure, Realm or Root address exceeds PPS.
354 * R_CPDSB: A NonSecure physical address input exceeding PPS
355 * does not experience any fault.
356 */
357 if (paddress & ~pps_mask) {
358 if (pspace == ARMSS_NonSecure) {
359 return true;
360 }
361 goto fault_size;
362 }
363
364 /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */
365 tableaddr = env->cp15.gptbr_el3 << 12;
366 if (tableaddr & ~pps_mask) {
367 goto fault_size;
368 }
369
370 /*
371 * BADDR is aligned per a function of PPS and L0GPTSZ.
372 * These bits of GPTBR_EL3 are RES0, but are not a configuration error,
373 * unlike the RES0 bits of the GPT entries (R_XNKFZ).
374 */
375 align = MAX(pps - l0gptsz + 3, 12);
376 align = MAKE_64BIT_MASK(0, align);
377 tableaddr &= ~align;
378
379 as = arm_addressspace(env_cpu(env), attrs);
380
381 /* Level 0 lookup. */
382 index = extract64(paddress, l0gptsz, pps - l0gptsz);
383 tableaddr += index * 8;
384 entry = address_space_ldq_le(as, tableaddr, attrs, &result);
385 if (result != MEMTX_OK) {
386 goto fault_eabt;
387 }
388
389 switch (extract32(entry, 0, 4)) {
390 case 1: /* block descriptor */
391 if (entry >> 8) {
392 goto fault_walk; /* RES0 bits not 0 */
393 }
394 gpi = extract32(entry, 4, 4);
395 goto found;
396 case 3: /* table descriptor */
397 tableaddr = entry & ~0xf;
398 align = MAX(l0gptsz - pgs - 1, 12);
399 align = MAKE_64BIT_MASK(0, align);
400 if (tableaddr & (~pps_mask | align)) {
401 goto fault_walk; /* RES0 bits not 0 */
402 }
403 break;
404 default: /* invalid */
405 goto fault_walk;
406 }
407
408 /* Level 1 lookup */
409 level = 1;
410 index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4);
411 tableaddr += index * 8;
412 entry = address_space_ldq_le(as, tableaddr, attrs, &result);
413 if (result != MEMTX_OK) {
414 goto fault_eabt;
415 }
416
417 switch (extract32(entry, 0, 4)) {
418 case 1: /* contiguous descriptor */
419 if (entry >> 10) {
420 goto fault_walk; /* RES0 bits not 0 */
421 }
422 /*
423 * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE,
424 * and because we cannot invalidate by pa, and thus will always
425 * flush entire tlbs, we don't actually care about the range here
426 * and can simply extract the GPI as the result.
427 */
428 if (extract32(entry, 8, 2) == 0) {
429 goto fault_walk; /* reserved contig */
430 }
431 gpi = extract32(entry, 4, 4);
432 break;
433 default:
434 index = extract64(paddress, pgs, 4);
435 gpi = extract64(entry, index * 4, 4);
436 break;
437 }
438
439 found:
440 switch (gpi) {
441 case 0b0000: /* no access */
442 break;
443 case 0b1111: /* all access */
444 return true;
445 case 0b1000:
446 case 0b1001:
447 case 0b1010:
448 case 0b1011:
449 if (pspace == (gpi & 3)) {
450 return true;
451 }
452 break;
453 default:
454 goto fault_walk; /* reserved */
455 }
456
457 fi->gpcf = GPCF_Fail;
458 goto fault_common;
459 fault_eabt:
460 fi->gpcf = GPCF_EABT;
461 goto fault_common;
462 fault_size:
463 fi->gpcf = GPCF_AddressSize;
464 goto fault_common;
465 fault_walk:
466 fi->gpcf = GPCF_Walk;
467 fault_common:
468 fi->level = level;
469 fi->paddr = paddress;
470 fi->paddr_space = pspace;
471 return false;
472 }
473
474 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
475 {
476 /*
477 * For an S1 page table walk, the stage 1 attributes are always
478 * some form of "this is Normal memory". The combined S1+S2
479 * attributes are therefore only Device if stage 2 specifies Device.
480 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
481 * ie when cacheattrs.attrs bits [3:2] are 0b00.
482 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
483 * when cacheattrs.attrs bit [2] is 0.
484 */
485 if (hcr & HCR_FWB) {
486 return (attrs & 0x4) == 0;
487 } else {
488 return (attrs & 0xc) == 0;
489 }
490 }
491
492 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space,
493 ARMMMUIdx s2_mmu_idx)
494 {
495 /*
496 * Return the security space to use for stage 2 when doing
497 * the S1 page table descriptor load.
498 */
499 if (regime_is_stage2(s2_mmu_idx)) {
500 /*
501 * The security space for ptw reads is almost always the same
502 * as that of the security space of the stage 1 translation.
503 * The only exception is when stage 1 is Secure; in that case
504 * the ptw read might be to the Secure or the NonSecure space
505 * (but never Realm or Root), and the s2_mmu_idx tells us which.
506 * Root translations are always single-stage.
507 */
508 if (s1_space == ARMSS_Secure) {
509 return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S);
510 } else {
511 assert(s2_mmu_idx != ARMMMUIdx_Stage2_S);
512 assert(s1_space != ARMSS_Root);
513 return s1_space;
514 }
515 } else {
516 /* ptw loads are from phys: the mmu idx itself says which space */
517 return arm_phys_to_space(s2_mmu_idx);
518 }
519 }
520
521 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx)
522 {
523 /*
524 * For stage 2 faults in Secure EL22, S1NS indicates
525 * whether the faulting IPA is in the Secure or NonSecure
526 * IPA space. For all other kinds of fault, it is false.
527 */
528 return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx)
529 && s2_mmu_idx == ARMMMUIdx_Stage2_S;
530 }
531
532 /* Translate a S1 pagetable walk through S2 if needed. */
533 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
534 hwaddr addr, ARMMMUFaultInfo *fi)
535 {
536 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
537 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
538 uint8_t pte_attrs;
539
540 ptw->out_virt = addr;
541
542 if (unlikely(ptw->in_debug)) {
543 /*
544 * From gdbstub, do not use softmmu so that we don't modify the
545 * state of the cpu at all, including softmmu tlb contents.
546 */
547 ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx);
548 S1Translate s2ptw = {
549 .in_mmu_idx = s2_mmu_idx,
550 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
551 .in_space = s2_space,
552 .in_debug = true,
553 };
554 GetPhysAddrResult s2 = { };
555
556 if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, &s2, fi)) {
557 goto fail;
558 }
559
560 ptw->out_phys = s2.f.phys_addr;
561 pte_attrs = s2.cacheattrs.attrs;
562 ptw->out_host = NULL;
563 ptw->out_rw = false;
564 ptw->out_space = s2.f.attrs.space;
565 } else {
566 #ifdef CONFIG_TCG
567 CPUTLBEntryFull *full;
568 int flags;
569
570 env->tlb_fi = fi;
571 flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD,
572 arm_to_core_mmu_idx(s2_mmu_idx),
573 &ptw->out_host, &full);
574 env->tlb_fi = NULL;
575
576 if (unlikely(flags & TLB_INVALID_MASK)) {
577 goto fail;
578 }
579 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
580 ptw->out_rw = full->prot & PAGE_WRITE;
581 pte_attrs = full->extra.arm.pte_attrs;
582 ptw->out_space = full->attrs.space;
583 #else
584 g_assert_not_reached();
585 #endif
586 }
587
588 if (regime_is_stage2(s2_mmu_idx)) {
589 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
590
591 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
592 /*
593 * PTW set and S1 walk touched S2 Device memory:
594 * generate Permission fault.
595 */
596 fi->type = ARMFault_Permission;
597 fi->s2addr = addr;
598 fi->stage2 = true;
599 fi->s1ptw = true;
600 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
601 return false;
602 }
603 }
604
605 ptw->out_be = regime_translation_big_endian(env, mmu_idx);
606 return true;
607
608 fail:
609 assert(fi->type != ARMFault_None);
610 if (fi->type == ARMFault_GPCFOnOutput) {
611 fi->type = ARMFault_GPCFOnWalk;
612 }
613 fi->s2addr = addr;
614 fi->stage2 = regime_is_stage2(s2_mmu_idx);
615 fi->s1ptw = fi->stage2;
616 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
617 return false;
618 }
619
620 /* All loads done in the course of a page table walk go through here. */
621 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
622 ARMMMUFaultInfo *fi)
623 {
624 CPUState *cs = env_cpu(env);
625 void *host = ptw->out_host;
626 uint32_t data;
627
628 if (likely(host)) {
629 /* Page tables are in RAM, and we have the host address. */
630 data = qatomic_read((uint32_t *)host);
631 if (ptw->out_be) {
632 data = be32_to_cpu(data);
633 } else {
634 data = le32_to_cpu(data);
635 }
636 } else {
637 /* Page tables are in MMIO. */
638 MemTxAttrs attrs = {
639 .space = ptw->out_space,
640 .secure = arm_space_is_secure(ptw->out_space),
641 };
642 AddressSpace *as = arm_addressspace(cs, attrs);
643 MemTxResult result = MEMTX_OK;
644
645 if (ptw->out_be) {
646 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
647 } else {
648 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
649 }
650 if (unlikely(result != MEMTX_OK)) {
651 fi->type = ARMFault_SyncExternalOnWalk;
652 fi->ea = arm_extabort_type(result);
653 return 0;
654 }
655 }
656 return data;
657 }
658
659 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
660 ARMMMUFaultInfo *fi)
661 {
662 CPUState *cs = env_cpu(env);
663 void *host = ptw->out_host;
664 uint64_t data;
665
666 if (likely(host)) {
667 /* Page tables are in RAM, and we have the host address. */
668 #ifdef CONFIG_ATOMIC64
669 data = qatomic_read__nocheck((uint64_t *)host);
670 if (ptw->out_be) {
671 data = be64_to_cpu(data);
672 } else {
673 data = le64_to_cpu(data);
674 }
675 #else
676 if (ptw->out_be) {
677 data = ldq_be_p(host);
678 } else {
679 data = ldq_le_p(host);
680 }
681 #endif
682 } else {
683 /* Page tables are in MMIO. */
684 MemTxAttrs attrs = {
685 .space = ptw->out_space,
686 .secure = arm_space_is_secure(ptw->out_space),
687 };
688 AddressSpace *as = arm_addressspace(cs, attrs);
689 MemTxResult result = MEMTX_OK;
690
691 if (ptw->out_be) {
692 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
693 } else {
694 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
695 }
696 if (unlikely(result != MEMTX_OK)) {
697 fi->type = ARMFault_SyncExternalOnWalk;
698 fi->ea = arm_extabort_type(result);
699 return 0;
700 }
701 }
702 return data;
703 }
704
705 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
706 uint64_t new_val, S1Translate *ptw,
707 ARMMMUFaultInfo *fi)
708 {
709 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG)
710 uint64_t cur_val;
711 void *host = ptw->out_host;
712
713 if (unlikely(!host)) {
714 fi->type = ARMFault_UnsuppAtomicUpdate;
715 return 0;
716 }
717
718 /*
719 * Raising a stage2 Protection fault for an atomic update to a read-only
720 * page is delayed until it is certain that there is a change to make.
721 */
722 if (unlikely(!ptw->out_rw)) {
723 int flags;
724
725 env->tlb_fi = fi;
726 flags = probe_access_full_mmu(env, ptw->out_virt, 0,
727 MMU_DATA_STORE,
728 arm_to_core_mmu_idx(ptw->in_ptw_idx),
729 NULL, NULL);
730 env->tlb_fi = NULL;
731
732 if (unlikely(flags & TLB_INVALID_MASK)) {
733 /*
734 * We know this must be a stage 2 fault because the granule
735 * protection table does not separately track read and write
736 * permission, so all GPC faults are caught in S1_ptw_translate():
737 * we only get here for "readable but not writeable".
738 */
739 assert(fi->type != ARMFault_None);
740 fi->s2addr = ptw->out_virt;
741 fi->stage2 = true;
742 fi->s1ptw = true;
743 fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx);
744 return 0;
745 }
746
747 /* In case CAS mismatches and we loop, remember writability. */
748 ptw->out_rw = true;
749 }
750
751 #ifdef CONFIG_ATOMIC64
752 if (ptw->out_be) {
753 old_val = cpu_to_be64(old_val);
754 new_val = cpu_to_be64(new_val);
755 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
756 cur_val = be64_to_cpu(cur_val);
757 } else {
758 old_val = cpu_to_le64(old_val);
759 new_val = cpu_to_le64(new_val);
760 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
761 cur_val = le64_to_cpu(cur_val);
762 }
763 #else
764 /*
765 * We can't support the full 64-bit atomic cmpxchg on the host.
766 * Because this is only used for FEAT_HAFDBS, which is only for AA64,
767 * we know that TCG_OVERSIZED_GUEST is set, which means that we are
768 * running in round-robin mode and could only race with dma i/o.
769 */
770 #if !TCG_OVERSIZED_GUEST
771 # error "Unexpected configuration"
772 #endif
773 bool locked = bql_locked();
774 if (!locked) {
775 bql_lock();
776 }
777 if (ptw->out_be) {
778 cur_val = ldq_be_p(host);
779 if (cur_val == old_val) {
780 stq_be_p(host, new_val);
781 }
782 } else {
783 cur_val = ldq_le_p(host);
784 if (cur_val == old_val) {
785 stq_le_p(host, new_val);
786 }
787 }
788 if (!locked) {
789 bql_unlock();
790 }
791 #endif
792
793 return cur_val;
794 #else
795 /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */
796 g_assert_not_reached();
797 #endif
798 }
799
800 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
801 uint32_t *table, uint32_t address)
802 {
803 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
804 uint64_t tcr = regime_tcr(env, mmu_idx);
805 int maskshift = extract32(tcr, 0, 3);
806 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
807 uint32_t base_mask;
808
809 if (address & mask) {
810 if (tcr & TTBCR_PD1) {
811 /* Translation table walk disabled for TTBR1 */
812 return false;
813 }
814 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
815 } else {
816 if (tcr & TTBCR_PD0) {
817 /* Translation table walk disabled for TTBR0 */
818 return false;
819 }
820 base_mask = ~((uint32_t)0x3fffu >> maskshift);
821 *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
822 }
823 *table |= (address >> 18) & 0x3ffc;
824 return true;
825 }
826
827 /*
828 * Translate section/page access permissions to page R/W protection flags
829 * @env: CPUARMState
830 * @mmu_idx: MMU index indicating required translation regime
831 * @ap: The 3-bit access permissions (AP[2:0])
832 * @domain_prot: The 2-bit domain access permissions
833 * @is_user: TRUE if accessing from PL0
834 */
835 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
836 int ap, int domain_prot, bool is_user)
837 {
838 if (domain_prot == 3) {
839 return PAGE_READ | PAGE_WRITE;
840 }
841
842 switch (ap) {
843 case 0:
844 if (arm_feature(env, ARM_FEATURE_V7)) {
845 return 0;
846 }
847 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
848 case SCTLR_S:
849 return is_user ? 0 : PAGE_READ;
850 case SCTLR_R:
851 return PAGE_READ;
852 default:
853 return 0;
854 }
855 case 1:
856 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
857 case 2:
858 if (is_user) {
859 return PAGE_READ;
860 } else {
861 return PAGE_READ | PAGE_WRITE;
862 }
863 case 3:
864 return PAGE_READ | PAGE_WRITE;
865 case 4: /* Reserved. */
866 return 0;
867 case 5:
868 return is_user ? 0 : PAGE_READ;
869 case 6:
870 return PAGE_READ;
871 case 7:
872 if (!arm_feature(env, ARM_FEATURE_V6K)) {
873 return 0;
874 }
875 return PAGE_READ;
876 default:
877 g_assert_not_reached();
878 }
879 }
880
881 /*
882 * Translate section/page access permissions to page R/W protection flags
883 * @env: CPUARMState
884 * @mmu_idx: MMU index indicating required translation regime
885 * @ap: The 3-bit access permissions (AP[2:0])
886 * @domain_prot: The 2-bit domain access permissions
887 */
888 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
889 int ap, int domain_prot)
890 {
891 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
892 regime_is_user(env, mmu_idx));
893 }
894
895 /*
896 * Translate section/page access permissions to page R/W protection flags.
897 * @ap: The 2-bit simple AP (AP[2:1])
898 * @is_user: TRUE if accessing from PL0
899 */
900 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
901 {
902 switch (ap) {
903 case 0:
904 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
905 case 1:
906 return PAGE_READ | PAGE_WRITE;
907 case 2:
908 return is_user ? 0 : PAGE_READ;
909 case 3:
910 return PAGE_READ;
911 default:
912 g_assert_not_reached();
913 }
914 }
915
916 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
917 {
918 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
919 }
920
921 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
922 uint32_t address, MMUAccessType access_type,
923 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
924 {
925 int level = 1;
926 uint32_t table;
927 uint32_t desc;
928 int type;
929 int ap;
930 int domain = 0;
931 int domain_prot;
932 hwaddr phys_addr;
933 uint32_t dacr;
934
935 /* Pagetable walk. */
936 /* Lookup l1 descriptor. */
937 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
938 /* Section translation fault if page walk is disabled by PD0 or PD1 */
939 fi->type = ARMFault_Translation;
940 goto do_fault;
941 }
942 if (!S1_ptw_translate(env, ptw, table, fi)) {
943 goto do_fault;
944 }
945 desc = arm_ldl_ptw(env, ptw, fi);
946 if (fi->type != ARMFault_None) {
947 goto do_fault;
948 }
949 type = (desc & 3);
950 domain = (desc >> 5) & 0x0f;
951 if (regime_el(env, ptw->in_mmu_idx) == 1) {
952 dacr = env->cp15.dacr_ns;
953 } else {
954 dacr = env->cp15.dacr_s;
955 }
956 domain_prot = (dacr >> (domain * 2)) & 3;
957 if (type == 0) {
958 /* Section translation fault. */
959 fi->type = ARMFault_Translation;
960 goto do_fault;
961 }
962 if (type != 2) {
963 level = 2;
964 }
965 if (domain_prot == 0 || domain_prot == 2) {
966 fi->type = ARMFault_Domain;
967 goto do_fault;
968 }
969 if (type == 2) {
970 /* 1Mb section. */
971 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
972 ap = (desc >> 10) & 3;
973 result->f.lg_page_size = 20; /* 1MB */
974 } else {
975 /* Lookup l2 entry. */
976 if (type == 1) {
977 /* Coarse pagetable. */
978 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
979 } else {
980 /* Fine pagetable. */
981 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
982 }
983 if (!S1_ptw_translate(env, ptw, table, fi)) {
984 goto do_fault;
985 }
986 desc = arm_ldl_ptw(env, ptw, fi);
987 if (fi->type != ARMFault_None) {
988 goto do_fault;
989 }
990 switch (desc & 3) {
991 case 0: /* Page translation fault. */
992 fi->type = ARMFault_Translation;
993 goto do_fault;
994 case 1: /* 64k page. */
995 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
996 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
997 result->f.lg_page_size = 16;
998 break;
999 case 2: /* 4k page. */
1000 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1001 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
1002 result->f.lg_page_size = 12;
1003 break;
1004 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
1005 if (type == 1) {
1006 /* ARMv6/XScale extended small page format */
1007 if (arm_feature(env, ARM_FEATURE_XSCALE)
1008 || arm_feature(env, ARM_FEATURE_V6)) {
1009 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1010 result->f.lg_page_size = 12;
1011 } else {
1012 /*
1013 * UNPREDICTABLE in ARMv5; we choose to take a
1014 * page translation fault.
1015 */
1016 fi->type = ARMFault_Translation;
1017 goto do_fault;
1018 }
1019 } else {
1020 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1021 result->f.lg_page_size = 10;
1022 }
1023 ap = (desc >> 4) & 3;
1024 break;
1025 default:
1026 /* Never happens, but compiler isn't smart enough to tell. */
1027 g_assert_not_reached();
1028 }
1029 }
1030 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
1031 result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
1032 if (!(result->f.prot & (1 << access_type))) {
1033 /* Access permission fault. */
1034 fi->type = ARMFault_Permission;
1035 goto do_fault;
1036 }
1037 result->f.phys_addr = phys_addr;
1038 return false;
1039 do_fault:
1040 fi->domain = domain;
1041 fi->level = level;
1042 return true;
1043 }
1044
1045 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
1046 uint32_t address, MMUAccessType access_type,
1047 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1048 {
1049 ARMCPU *cpu = env_archcpu(env);
1050 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1051 int level = 1;
1052 uint32_t table;
1053 uint32_t desc;
1054 uint32_t xn;
1055 uint32_t pxn = 0;
1056 int type;
1057 int ap;
1058 int domain = 0;
1059 int domain_prot;
1060 hwaddr phys_addr;
1061 uint32_t dacr;
1062 bool ns;
1063 int user_prot;
1064
1065 /* Pagetable walk. */
1066 /* Lookup l1 descriptor. */
1067 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
1068 /* Section translation fault if page walk is disabled by PD0 or PD1 */
1069 fi->type = ARMFault_Translation;
1070 goto do_fault;
1071 }
1072 if (!S1_ptw_translate(env, ptw, table, fi)) {
1073 goto do_fault;
1074 }
1075 desc = arm_ldl_ptw(env, ptw, fi);
1076 if (fi->type != ARMFault_None) {
1077 goto do_fault;
1078 }
1079 type = (desc & 3);
1080 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
1081 /* Section translation fault, or attempt to use the encoding
1082 * which is Reserved on implementations without PXN.
1083 */
1084 fi->type = ARMFault_Translation;
1085 goto do_fault;
1086 }
1087 if ((type == 1) || !(desc & (1 << 18))) {
1088 /* Page or Section. */
1089 domain = (desc >> 5) & 0x0f;
1090 }
1091 if (regime_el(env, mmu_idx) == 1) {
1092 dacr = env->cp15.dacr_ns;
1093 } else {
1094 dacr = env->cp15.dacr_s;
1095 }
1096 if (type == 1) {
1097 level = 2;
1098 }
1099 domain_prot = (dacr >> (domain * 2)) & 3;
1100 if (domain_prot == 0 || domain_prot == 2) {
1101 /* Section or Page domain fault */
1102 fi->type = ARMFault_Domain;
1103 goto do_fault;
1104 }
1105 if (type != 1) {
1106 if (desc & (1 << 18)) {
1107 /* Supersection. */
1108 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1109 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
1110 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
1111 result->f.lg_page_size = 24; /* 16MB */
1112 } else {
1113 /* Section. */
1114 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1115 result->f.lg_page_size = 20; /* 1MB */
1116 }
1117 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1118 xn = desc & (1 << 4);
1119 pxn = desc & 1;
1120 ns = extract32(desc, 19, 1);
1121 } else {
1122 if (cpu_isar_feature(aa32_pxn, cpu)) {
1123 pxn = (desc >> 2) & 1;
1124 }
1125 ns = extract32(desc, 3, 1);
1126 /* Lookup l2 entry. */
1127 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1128 if (!S1_ptw_translate(env, ptw, table, fi)) {
1129 goto do_fault;
1130 }
1131 desc = arm_ldl_ptw(env, ptw, fi);
1132 if (fi->type != ARMFault_None) {
1133 goto do_fault;
1134 }
1135 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1136 switch (desc & 3) {
1137 case 0: /* Page translation fault. */
1138 fi->type = ARMFault_Translation;
1139 goto do_fault;
1140 case 1: /* 64k page. */
1141 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1142 xn = desc & (1 << 15);
1143 result->f.lg_page_size = 16;
1144 break;
1145 case 2: case 3: /* 4k page. */
1146 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1147 xn = desc & 1;
1148 result->f.lg_page_size = 12;
1149 break;
1150 default:
1151 /* Never happens, but compiler isn't smart enough to tell. */
1152 g_assert_not_reached();
1153 }
1154 }
1155 if (domain_prot == 3) {
1156 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1157 } else {
1158 if (pxn && !regime_is_user(env, mmu_idx)) {
1159 xn = 1;
1160 }
1161 if (xn && access_type == MMU_INST_FETCH) {
1162 fi->type = ARMFault_Permission;
1163 goto do_fault;
1164 }
1165
1166 if (arm_feature(env, ARM_FEATURE_V6K) &&
1167 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
1168 /* The simplified model uses AP[0] as an access control bit. */
1169 if ((ap & 1) == 0) {
1170 /* Access flag fault. */
1171 fi->type = ARMFault_AccessFlag;
1172 goto do_fault;
1173 }
1174 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
1175 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
1176 } else {
1177 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
1178 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
1179 }
1180 if (result->f.prot && !xn) {
1181 result->f.prot |= PAGE_EXEC;
1182 }
1183 if (!(result->f.prot & (1 << access_type))) {
1184 /* Access permission fault. */
1185 fi->type = ARMFault_Permission;
1186 goto do_fault;
1187 }
1188 if (regime_is_pan(env, mmu_idx) &&
1189 !regime_is_user(env, mmu_idx) &&
1190 user_prot &&
1191 access_type != MMU_INST_FETCH) {
1192 /* Privileged Access Never fault */
1193 fi->type = ARMFault_Permission;
1194 goto do_fault;
1195 }
1196 }
1197 if (ns) {
1198 /* The NS bit will (as required by the architecture) have no effect if
1199 * the CPU doesn't support TZ or this is a non-secure translation
1200 * regime, because the attribute will already be non-secure.
1201 */
1202 result->f.attrs.secure = false;
1203 result->f.attrs.space = ARMSS_NonSecure;
1204 }
1205 result->f.phys_addr = phys_addr;
1206 return false;
1207 do_fault:
1208 fi->domain = domain;
1209 fi->level = level;
1210 return true;
1211 }
1212
1213 /*
1214 * Translate S2 section/page access permissions to protection flags
1215 * @env: CPUARMState
1216 * @s2ap: The 2-bit stage2 access permissions (S2AP)
1217 * @xn: XN (execute-never) bits
1218 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
1219 */
1220 static int get_S2prot_noexecute(int s2ap)
1221 {
1222 int prot = 0;
1223
1224 if (s2ap & 1) {
1225 prot |= PAGE_READ;
1226 }
1227 if (s2ap & 2) {
1228 prot |= PAGE_WRITE;
1229 }
1230 return prot;
1231 }
1232
1233 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
1234 {
1235 int prot = get_S2prot_noexecute(s2ap);
1236
1237 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
1238 switch (xn) {
1239 case 0:
1240 prot |= PAGE_EXEC;
1241 break;
1242 case 1:
1243 if (s1_is_el0) {
1244 prot |= PAGE_EXEC;
1245 }
1246 break;
1247 case 2:
1248 break;
1249 case 3:
1250 if (!s1_is_el0) {
1251 prot |= PAGE_EXEC;
1252 }
1253 break;
1254 default:
1255 g_assert_not_reached();
1256 }
1257 } else {
1258 if (!extract32(xn, 1, 1)) {
1259 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
1260 prot |= PAGE_EXEC;
1261 }
1262 }
1263 }
1264 return prot;
1265 }
1266
1267 /*
1268 * Translate section/page access permissions to protection flags
1269 * @env: CPUARMState
1270 * @mmu_idx: MMU index indicating required translation regime
1271 * @is_aa64: TRUE if AArch64
1272 * @ap: The 2-bit simple AP (AP[2:1])
1273 * @xn: XN (execute-never) bit
1274 * @pxn: PXN (privileged execute-never) bit
1275 * @in_pa: The original input pa space
1276 * @out_pa: The output pa space, modified by NSTable, NS, and NSE
1277 */
1278 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
1279 int ap, int xn, int pxn,
1280 ARMSecuritySpace in_pa, ARMSecuritySpace out_pa)
1281 {
1282 ARMCPU *cpu = env_archcpu(env);
1283 bool is_user = regime_is_user(env, mmu_idx);
1284 int prot_rw, user_rw;
1285 bool have_wxn;
1286 int wxn = 0;
1287
1288 assert(!regime_is_stage2(mmu_idx));
1289
1290 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
1291 if (is_user) {
1292 prot_rw = user_rw;
1293 } else {
1294 /*
1295 * PAN controls can forbid data accesses but don't affect insn fetch.
1296 * Plain PAN forbids data accesses if EL0 has data permissions;
1297 * PAN3 forbids data accesses if EL0 has either data or exec perms.
1298 * Note that for AArch64 the 'user can exec' case is exactly !xn.
1299 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
1300 * do not affect EPAN.
1301 */
1302 if (user_rw && regime_is_pan(env, mmu_idx)) {
1303 prot_rw = 0;
1304 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
1305 regime_is_pan(env, mmu_idx) &&
1306 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1307 prot_rw = 0;
1308 } else {
1309 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
1310 }
1311 }
1312
1313 if (in_pa != out_pa) {
1314 switch (in_pa) {
1315 case ARMSS_Root:
1316 /*
1317 * R_ZWRVD: permission fault for insn fetched from non-Root,
1318 * I_WWBFB: SIF has no effect in EL3.
1319 */
1320 return prot_rw;
1321 case ARMSS_Realm:
1322 /*
1323 * R_PKTDS: permission fault for insn fetched from non-Realm,
1324 * for Realm EL2 or EL2&0. The corresponding fault for EL1&0
1325 * happens during any stage2 translation.
1326 */
1327 switch (mmu_idx) {
1328 case ARMMMUIdx_E2:
1329 case ARMMMUIdx_E20_0:
1330 case ARMMMUIdx_E20_2:
1331 case ARMMMUIdx_E20_2_PAN:
1332 return prot_rw;
1333 default:
1334 break;
1335 }
1336 break;
1337 case ARMSS_Secure:
1338 if (env->cp15.scr_el3 & SCR_SIF) {
1339 return prot_rw;
1340 }
1341 break;
1342 default:
1343 /* Input NonSecure must have output NonSecure. */
1344 g_assert_not_reached();
1345 }
1346 }
1347
1348 /* TODO have_wxn should be replaced with
1349 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1350 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1351 * compatible processors have EL2, which is required for [U]WXN.
1352 */
1353 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1354
1355 if (have_wxn) {
1356 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1357 }
1358
1359 if (is_aa64) {
1360 if (regime_has_2_ranges(mmu_idx) && !is_user) {
1361 xn = pxn || (user_rw & PAGE_WRITE);
1362 }
1363 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1364 switch (regime_el(env, mmu_idx)) {
1365 case 1:
1366 case 3:
1367 if (is_user) {
1368 xn = xn || !(user_rw & PAGE_READ);
1369 } else {
1370 int uwxn = 0;
1371 if (have_wxn) {
1372 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1373 }
1374 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1375 (uwxn && (user_rw & PAGE_WRITE));
1376 }
1377 break;
1378 case 2:
1379 break;
1380 }
1381 } else {
1382 xn = wxn = 0;
1383 }
1384
1385 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1386 return prot_rw;
1387 }
1388 return prot_rw | PAGE_EXEC;
1389 }
1390
1391 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1392 ARMMMUIdx mmu_idx)
1393 {
1394 uint64_t tcr = regime_tcr(env, mmu_idx);
1395 uint32_t el = regime_el(env, mmu_idx);
1396 int select, tsz;
1397 bool epd, hpd;
1398
1399 assert(mmu_idx != ARMMMUIdx_Stage2_S);
1400
1401 if (mmu_idx == ARMMMUIdx_Stage2) {
1402 /* VTCR */
1403 bool sext = extract32(tcr, 4, 1);
1404 bool sign = extract32(tcr, 3, 1);
1405
1406 /*
1407 * If the sign-extend bit is not the same as t0sz[3], the result
1408 * is unpredictable. Flag this as a guest error.
1409 */
1410 if (sign != sext) {
1411 qemu_log_mask(LOG_GUEST_ERROR,
1412 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1413 }
1414 tsz = sextract32(tcr, 0, 4) + 8;
1415 select = 0;
1416 hpd = false;
1417 epd = false;
1418 } else if (el == 2) {
1419 /* HTCR */
1420 tsz = extract32(tcr, 0, 3);
1421 select = 0;
1422 hpd = extract64(tcr, 24, 1);
1423 epd = false;
1424 } else {
1425 int t0sz = extract32(tcr, 0, 3);
1426 int t1sz = extract32(tcr, 16, 3);
1427
1428 if (t1sz == 0) {
1429 select = va > (0xffffffffu >> t0sz);
1430 } else {
1431 /* Note that we will detect errors later. */
1432 select = va >= ~(0xffffffffu >> t1sz);
1433 }
1434 if (!select) {
1435 tsz = t0sz;
1436 epd = extract32(tcr, 7, 1);
1437 hpd = extract64(tcr, 41, 1);
1438 } else {
1439 tsz = t1sz;
1440 epd = extract32(tcr, 23, 1);
1441 hpd = extract64(tcr, 42, 1);
1442 }
1443 /* For aarch32, hpd0 is not enabled without t2e as well. */
1444 hpd &= extract32(tcr, 6, 1);
1445 }
1446
1447 return (ARMVAParameters) {
1448 .tsz = tsz,
1449 .select = select,
1450 .epd = epd,
1451 .hpd = hpd,
1452 };
1453 }
1454
1455 /*
1456 * check_s2_mmu_setup
1457 * @cpu: ARMCPU
1458 * @is_aa64: True if the translation regime is in AArch64 state
1459 * @tcr: VTCR_EL2 or VSTCR_EL2
1460 * @ds: Effective value of TCR.DS.
1461 * @iasize: Bitsize of IPAs
1462 * @stride: Page-table stride (See the ARM ARM)
1463 *
1464 * Decode the starting level of the S2 lookup, returning INT_MIN if
1465 * the configuration is invalid.
1466 */
1467 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1468 bool ds, int iasize, int stride)
1469 {
1470 int sl0, sl2, startlevel, granulebits, levels;
1471 int s1_min_iasize, s1_max_iasize;
1472
1473 sl0 = extract32(tcr, 6, 2);
1474 if (is_aa64) {
1475 /*
1476 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1477 * so interleave AArch64.S2StartLevel.
1478 */
1479 switch (stride) {
1480 case 9: /* 4KB */
1481 /* SL2 is RES0 unless DS=1 & 4KB granule. */
1482 sl2 = extract64(tcr, 33, 1);
1483 if (ds && sl2) {
1484 if (sl0 != 0) {
1485 goto fail;
1486 }
1487 startlevel = -1;
1488 } else {
1489 startlevel = 2 - sl0;
1490 switch (sl0) {
1491 case 2:
1492 if (arm_pamax(cpu) < 44) {
1493 goto fail;
1494 }
1495 break;
1496 case 3:
1497 if (!cpu_isar_feature(aa64_st, cpu)) {
1498 goto fail;
1499 }
1500 startlevel = 3;
1501 break;
1502 }
1503 }
1504 break;
1505 case 11: /* 16KB */
1506 switch (sl0) {
1507 case 2:
1508 if (arm_pamax(cpu) < 42) {
1509 goto fail;
1510 }
1511 break;
1512 case 3:
1513 if (!ds) {
1514 goto fail;
1515 }
1516 break;
1517 }
1518 startlevel = 3 - sl0;
1519 break;
1520 case 13: /* 64KB */
1521 switch (sl0) {
1522 case 2:
1523 if (arm_pamax(cpu) < 44) {
1524 goto fail;
1525 }
1526 break;
1527 case 3:
1528 goto fail;
1529 }
1530 startlevel = 3 - sl0;
1531 break;
1532 default:
1533 g_assert_not_reached();
1534 }
1535 } else {
1536 /*
1537 * Things are simpler for AArch32 EL2, with only 4k pages.
1538 * There is no separate S2InvalidSL function, but AArch32.S2Walk
1539 * begins with walkparms.sl0 in {'1x'}.
1540 */
1541 assert(stride == 9);
1542 if (sl0 >= 2) {
1543 goto fail;
1544 }
1545 startlevel = 2 - sl0;
1546 }
1547
1548 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */
1549 levels = 3 - startlevel;
1550 granulebits = stride + 3;
1551
1552 s1_min_iasize = levels * stride + granulebits + 1;
1553 s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1554
1555 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1556 return startlevel;
1557 }
1558
1559 fail:
1560 return INT_MIN;
1561 }
1562
1563 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds,
1564 ARMGranuleSize gran, int level)
1565 {
1566 /*
1567 * See pseudocode AArch46.BlockDescSupported(): block descriptors
1568 * are not valid at all levels, depending on the page size.
1569 */
1570 switch (gran) {
1571 case Gran4K:
1572 return (level == 0 && ds) || level == 1 || level == 2;
1573 case Gran16K:
1574 return (level == 1 && ds) || level == 2;
1575 case Gran64K:
1576 return (level == 1 && arm_pamax(cpu) == 52) || level == 2;
1577 default:
1578 g_assert_not_reached();
1579 }
1580 }
1581
1582 static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw)
1583 {
1584 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
1585 return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1);
1586 }
1587
1588 /**
1589 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1590 *
1591 * Returns false if the translation was successful. Otherwise, phys_ptr,
1592 * attrs, prot and page_size may not be filled in, and the populated fsr
1593 * value provides information on why the translation aborted, in the format
1594 * of a long-format DFSR/IFSR fault register, with the following caveat:
1595 * the WnR bit is never set (the caller must do this).
1596 *
1597 * @env: CPUARMState
1598 * @ptw: Current and next stage parameters for the walk.
1599 * @address: virtual address to get physical address for
1600 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1601 * @result: set on translation success,
1602 * @fi: set to fault info if the translation fails
1603 */
1604 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1605 uint64_t address,
1606 MMUAccessType access_type,
1607 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1608 {
1609 ARMCPU *cpu = env_archcpu(env);
1610 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1611 int32_t level;
1612 ARMVAParameters param;
1613 uint64_t ttbr;
1614 hwaddr descaddr, indexmask, indexmask_grainsize;
1615 uint32_t tableattrs;
1616 target_ulong page_size;
1617 uint64_t attrs;
1618 int32_t stride;
1619 int addrsize, inputsize, outputsize;
1620 uint64_t tcr = regime_tcr(env, mmu_idx);
1621 int ap, xn, pxn;
1622 uint32_t el = regime_el(env, mmu_idx);
1623 uint64_t descaddrmask;
1624 bool aarch64 = arm_el_is_aa64(env, el);
1625 uint64_t descriptor, new_descriptor;
1626 ARMSecuritySpace out_space;
1627
1628 /* TODO: This code does not support shareability levels. */
1629 if (aarch64) {
1630 int ps;
1631
1632 param = aa64_va_parameters(env, address, mmu_idx,
1633 access_type != MMU_INST_FETCH,
1634 !arm_el_is_aa64(env, 1));
1635 level = 0;
1636
1637 /*
1638 * If TxSZ is programmed to a value larger than the maximum,
1639 * or smaller than the effective minimum, it is IMPLEMENTATION
1640 * DEFINED whether we behave as if the field were programmed
1641 * within bounds, or if a level 0 Translation fault is generated.
1642 *
1643 * With FEAT_LVA, fault on less than minimum becomes required,
1644 * so our choice is to always raise the fault.
1645 */
1646 if (param.tsz_oob) {
1647 goto do_translation_fault;
1648 }
1649
1650 addrsize = 64 - 8 * param.tbi;
1651 inputsize = 64 - param.tsz;
1652
1653 /*
1654 * Bound PS by PARANGE to find the effective output address size.
1655 * ID_AA64MMFR0 is a read-only register so values outside of the
1656 * supported mappings can be considered an implementation error.
1657 */
1658 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1659 ps = MIN(ps, param.ps);
1660 assert(ps < ARRAY_SIZE(pamax_map));
1661 outputsize = pamax_map[ps];
1662
1663 /*
1664 * With LPA2, the effective output address (OA) size is at most 48 bits
1665 * unless TCR.DS == 1
1666 */
1667 if (!param.ds && param.gran != Gran64K) {
1668 outputsize = MIN(outputsize, 48);
1669 }
1670 } else {
1671 param = aa32_va_parameters(env, address, mmu_idx);
1672 level = 1;
1673 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1674 inputsize = addrsize - param.tsz;
1675 outputsize = 40;
1676 }
1677
1678 /*
1679 * We determined the region when collecting the parameters, but we
1680 * have not yet validated that the address is valid for the region.
1681 * Extract the top bits and verify that they all match select.
1682 *
1683 * For aa32, if inputsize == addrsize, then we have selected the
1684 * region by exclusion in aa32_va_parameters and there is no more
1685 * validation to do here.
1686 */
1687 if (inputsize < addrsize) {
1688 target_ulong top_bits = sextract64(address, inputsize,
1689 addrsize - inputsize);
1690 if (-top_bits != param.select) {
1691 /* The gap between the two regions is a Translation fault */
1692 goto do_translation_fault;
1693 }
1694 }
1695
1696 stride = arm_granule_bits(param.gran) - 3;
1697
1698 /*
1699 * Note that QEMU ignores shareability and cacheability attributes,
1700 * so we don't need to do anything with the SH, ORGN, IRGN fields
1701 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
1702 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1703 * implement any ASID-like capability so we can ignore it (instead
1704 * we will always flush the TLB any time the ASID is changed).
1705 */
1706 ttbr = regime_ttbr(env, mmu_idx, param.select);
1707
1708 /*
1709 * Here we should have set up all the parameters for the translation:
1710 * inputsize, ttbr, epd, stride, tbi
1711 */
1712
1713 if (param.epd) {
1714 /*
1715 * Translation table walk disabled => Translation fault on TLB miss
1716 * Note: This is always 0 on 64-bit EL2 and EL3.
1717 */
1718 goto do_translation_fault;
1719 }
1720
1721 if (!regime_is_stage2(mmu_idx)) {
1722 /*
1723 * The starting level depends on the virtual address size (which can
1724 * be up to 48 bits) and the translation granule size. It indicates
1725 * the number of strides (stride bits at a time) needed to
1726 * consume the bits of the input address. In the pseudocode this is:
1727 * level = 4 - RoundUp((inputsize - grainsize) / stride)
1728 * where their 'inputsize' is our 'inputsize', 'grainsize' is
1729 * our 'stride + 3' and 'stride' is our 'stride'.
1730 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1731 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1732 * = 4 - (inputsize - 4) / stride;
1733 */
1734 level = 4 - (inputsize - 4) / stride;
1735 } else {
1736 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1737 inputsize, stride);
1738 if (startlevel == INT_MIN) {
1739 level = 0;
1740 goto do_translation_fault;
1741 }
1742 level = startlevel;
1743 }
1744
1745 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1746 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1747
1748 /* Now we can extract the actual base address from the TTBR */
1749 descaddr = extract64(ttbr, 0, 48);
1750
1751 /*
1752 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1753 *
1754 * Otherwise, if the base address is out of range, raise AddressSizeFault.
1755 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1756 * but we've just cleared the bits above 47, so simplify the test.
1757 */
1758 if (outputsize > 48) {
1759 descaddr |= extract64(ttbr, 2, 4) << 48;
1760 } else if (descaddr >> outputsize) {
1761 level = 0;
1762 fi->type = ARMFault_AddressSize;
1763 goto do_fault;
1764 }
1765
1766 /*
1767 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1768 * and also to mask out CnP (bit 0) which could validly be non-zero.
1769 */
1770 descaddr &= ~indexmask;
1771
1772 /*
1773 * For AArch32, the address field in the descriptor goes up to bit 39
1774 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
1775 * or an AddressSize fault is raised. So for v8 we extract those SBZ
1776 * bits as part of the address, which will be checked via outputsize.
1777 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1778 * the highest bits of a 52-bit output are placed elsewhere.
1779 */
1780 if (param.ds) {
1781 descaddrmask = MAKE_64BIT_MASK(0, 50);
1782 } else if (arm_feature(env, ARM_FEATURE_V8)) {
1783 descaddrmask = MAKE_64BIT_MASK(0, 48);
1784 } else {
1785 descaddrmask = MAKE_64BIT_MASK(0, 40);
1786 }
1787 descaddrmask &= ~indexmask_grainsize;
1788 tableattrs = 0;
1789
1790 next_level:
1791 descaddr |= (address >> (stride * (4 - level))) & indexmask;
1792 descaddr &= ~7ULL;
1793
1794 /*
1795 * Process the NSTable bit from the previous level. This changes
1796 * the table address space and the output space from Secure to
1797 * NonSecure. With RME, the EL3 translation regime does not change
1798 * from Root to NonSecure.
1799 */
1800 if (ptw->in_space == ARMSS_Secure
1801 && !regime_is_stage2(mmu_idx)
1802 && extract32(tableattrs, 4, 1)) {
1803 /*
1804 * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1805 * Assert the relative order of the secure/non-secure indexes.
1806 */
1807 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS);
1808 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2);
1809 ptw->in_ptw_idx += 1;
1810 ptw->in_space = ARMSS_NonSecure;
1811 }
1812
1813 if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1814 goto do_fault;
1815 }
1816 descriptor = arm_ldq_ptw(env, ptw, fi);
1817 if (fi->type != ARMFault_None) {
1818 goto do_fault;
1819 }
1820 new_descriptor = descriptor;
1821
1822 restart_atomic_update:
1823 if (!(descriptor & 1) ||
1824 (!(descriptor & 2) &&
1825 !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) {
1826 /* Invalid, or a block descriptor at an invalid level */
1827 goto do_translation_fault;
1828 }
1829
1830 descaddr = descriptor & descaddrmask;
1831
1832 /*
1833 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1834 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
1835 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
1836 * raise AddressSizeFault.
1837 */
1838 if (outputsize > 48) {
1839 if (param.ds) {
1840 descaddr |= extract64(descriptor, 8, 2) << 50;
1841 } else {
1842 descaddr |= extract64(descriptor, 12, 4) << 48;
1843 }
1844 } else if (descaddr >> outputsize) {
1845 fi->type = ARMFault_AddressSize;
1846 goto do_fault;
1847 }
1848
1849 if ((descriptor & 2) && (level < 3)) {
1850 /*
1851 * Table entry. The top five bits are attributes which may
1852 * propagate down through lower levels of the table (and
1853 * which are all arranged so that 0 means "no effect", so
1854 * we can gather them up by ORing in the bits at each level).
1855 */
1856 tableattrs |= extract64(descriptor, 59, 5);
1857 level++;
1858 indexmask = indexmask_grainsize;
1859 goto next_level;
1860 }
1861
1862 /*
1863 * Block entry at level 1 or 2, or page entry at level 3.
1864 * These are basically the same thing, although the number
1865 * of bits we pull in from the vaddr varies. Note that although
1866 * descaddrmask masks enough of the low bits of the descriptor
1867 * to give a correct page or table address, the address field
1868 * in a block descriptor is smaller; so we need to explicitly
1869 * clear the lower bits here before ORing in the low vaddr bits.
1870 *
1871 * Afterward, descaddr is the final physical address.
1872 */
1873 page_size = (1ULL << ((stride * (4 - level)) + 3));
1874 descaddr &= ~(hwaddr)(page_size - 1);
1875 descaddr |= (address & (page_size - 1));
1876
1877 if (likely(!ptw->in_debug)) {
1878 /*
1879 * Access flag.
1880 * If HA is enabled, prepare to update the descriptor below.
1881 * Otherwise, pass the access fault on to software.
1882 */
1883 if (!(descriptor & (1 << 10))) {
1884 if (param.ha) {
1885 new_descriptor |= 1 << 10; /* AF */
1886 } else {
1887 fi->type = ARMFault_AccessFlag;
1888 goto do_fault;
1889 }
1890 }
1891
1892 /*
1893 * Dirty Bit.
1894 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1895 * bit for writeback. The actual write protection test may still be
1896 * overridden by tableattrs, to be merged below.
1897 */
1898 if (param.hd
1899 && extract64(descriptor, 51, 1) /* DBM */
1900 && access_type == MMU_DATA_STORE) {
1901 if (regime_is_stage2(mmu_idx)) {
1902 new_descriptor |= 1ull << 7; /* set S2AP[1] */
1903 } else {
1904 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1905 }
1906 }
1907 }
1908
1909 /*
1910 * Extract attributes from the (modified) descriptor, and apply
1911 * table descriptors. Stage 2 table descriptors do not include
1912 * any attribute fields. HPD disables all the table attributes
1913 * except NSTable (which we have already handled).
1914 */
1915 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1916 if (!regime_is_stage2(mmu_idx)) {
1917 if (!param.hpd) {
1918 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */
1919 /*
1920 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1921 * means "force PL1 access only", which means forcing AP[1] to 0.
1922 */
1923 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1924 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */
1925 }
1926 }
1927
1928 ap = extract32(attrs, 6, 2);
1929 out_space = ptw->in_space;
1930 if (regime_is_stage2(mmu_idx)) {
1931 /*
1932 * R_GYNXY: For stage2 in Realm security state, bit 55 is NS.
1933 * The bit remains ignored for other security states.
1934 * R_YMCSL: Executing an insn fetched from non-Realm causes
1935 * a stage2 permission fault.
1936 */
1937 if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) {
1938 out_space = ARMSS_NonSecure;
1939 result->f.prot = get_S2prot_noexecute(ap);
1940 } else {
1941 xn = extract64(attrs, 53, 2);
1942 result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0);
1943 }
1944 } else {
1945 int nse, ns = extract32(attrs, 5, 1);
1946 switch (out_space) {
1947 case ARMSS_Root:
1948 /*
1949 * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime.
1950 * R_XTYPW: NSE and NS together select the output pa space.
1951 */
1952 nse = extract32(attrs, 11, 1);
1953 out_space = (nse << 1) | ns;
1954 if (out_space == ARMSS_Secure &&
1955 !cpu_isar_feature(aa64_sel2, cpu)) {
1956 out_space = ARMSS_NonSecure;
1957 }
1958 break;
1959 case ARMSS_Secure:
1960 if (ns) {
1961 out_space = ARMSS_NonSecure;
1962 }
1963 break;
1964 case ARMSS_Realm:
1965 switch (mmu_idx) {
1966 case ARMMMUIdx_Stage1_E0:
1967 case ARMMMUIdx_Stage1_E1:
1968 case ARMMMUIdx_Stage1_E1_PAN:
1969 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */
1970 break;
1971 case ARMMMUIdx_E2:
1972 case ARMMMUIdx_E20_0:
1973 case ARMMMUIdx_E20_2:
1974 case ARMMMUIdx_E20_2_PAN:
1975 /*
1976 * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1,
1977 * NS changes the output to non-secure space.
1978 */
1979 if (ns) {
1980 out_space = ARMSS_NonSecure;
1981 }
1982 break;
1983 default:
1984 g_assert_not_reached();
1985 }
1986 break;
1987 case ARMSS_NonSecure:
1988 /* R_QRMFF: For NonSecure state, the NS bit is RES0. */
1989 break;
1990 default:
1991 g_assert_not_reached();
1992 }
1993 xn = extract64(attrs, 54, 1);
1994 pxn = extract64(attrs, 53, 1);
1995
1996 if (el == 1 && nv_nv1_enabled(env, ptw)) {
1997 /*
1998 * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page
1999 * descriptor bit 54 holds PXN, 53 is RES0, and the effective value
2000 * of UXN is 0. Similarly for bits 59 and 60 in table descriptors
2001 * (which we have already folded into bits 53 and 54 of attrs).
2002 * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0.
2003 * Similarly, APTable[0] from the table descriptor is treated as 0;
2004 * we already folded this into AP[1] and squashing that to 0 does
2005 * the right thing.
2006 */
2007 pxn = xn;
2008 xn = 0;
2009 ap &= ~1;
2010 }
2011 /*
2012 * Note that we modified ptw->in_space earlier for NSTable, but
2013 * result->f.attrs retains a copy of the original security space.
2014 */
2015 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn,
2016 result->f.attrs.space, out_space);
2017 }
2018
2019 if (!(result->f.prot & (1 << access_type))) {
2020 fi->type = ARMFault_Permission;
2021 goto do_fault;
2022 }
2023
2024 /* If FEAT_HAFDBS has made changes, update the PTE. */
2025 if (new_descriptor != descriptor) {
2026 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
2027 if (fi->type != ARMFault_None) {
2028 goto do_fault;
2029 }
2030 /*
2031 * I_YZSVV says that if the in-memory descriptor has changed,
2032 * then we must use the information in that new value
2033 * (which might include a different output address, different
2034 * attributes, or generate a fault).
2035 * Restart the handling of the descriptor value from scratch.
2036 */
2037 if (new_descriptor != descriptor) {
2038 descriptor = new_descriptor;
2039 goto restart_atomic_update;
2040 }
2041 }
2042
2043 result->f.attrs.space = out_space;
2044 result->f.attrs.secure = arm_space_is_secure(out_space);
2045
2046 if (regime_is_stage2(mmu_idx)) {
2047 result->cacheattrs.is_s2_format = true;
2048 result->cacheattrs.attrs = extract32(attrs, 2, 4);
2049 } else {
2050 /* Index into MAIR registers for cache attributes */
2051 uint8_t attrindx = extract32(attrs, 2, 3);
2052 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2053 assert(attrindx <= 7);
2054 result->cacheattrs.is_s2_format = false;
2055 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2056
2057 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
2058 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
2059 result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */
2060 }
2061 }
2062
2063 /*
2064 * For FEAT_LPA2 and effective DS, the SH field in the attributes
2065 * was re-purposed for output address bits. The SH attribute in
2066 * that case comes from TCR_ELx, which we extracted earlier.
2067 */
2068 if (param.ds) {
2069 result->cacheattrs.shareability = param.sh;
2070 } else {
2071 result->cacheattrs.shareability = extract32(attrs, 8, 2);
2072 }
2073
2074 result->f.phys_addr = descaddr;
2075 result->f.lg_page_size = ctz64(page_size);
2076 return false;
2077
2078 do_translation_fault:
2079 fi->type = ARMFault_Translation;
2080 do_fault:
2081 if (fi->s1ptw) {
2082 /* Retain the existing stage 2 fi->level */
2083 assert(fi->stage2);
2084 } else {
2085 fi->level = level;
2086 fi->stage2 = regime_is_stage2(mmu_idx);
2087 }
2088 fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx);
2089 return true;
2090 }
2091
2092 static bool get_phys_addr_pmsav5(CPUARMState *env,
2093 S1Translate *ptw,
2094 uint32_t address,
2095 MMUAccessType access_type,
2096 GetPhysAddrResult *result,
2097 ARMMMUFaultInfo *fi)
2098 {
2099 int n;
2100 uint32_t mask;
2101 uint32_t base;
2102 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2103 bool is_user = regime_is_user(env, mmu_idx);
2104
2105 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
2106 /* MPU disabled. */
2107 result->f.phys_addr = address;
2108 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2109 return false;
2110 }
2111
2112 result->f.phys_addr = address;
2113 for (n = 7; n >= 0; n--) {
2114 base = env->cp15.c6_region[n];
2115 if ((base & 1) == 0) {
2116 continue;
2117 }
2118 mask = 1 << ((base >> 1) & 0x1f);
2119 /* Keep this shift separate from the above to avoid an
2120 (undefined) << 32. */
2121 mask = (mask << 1) - 1;
2122 if (((base ^ address) & ~mask) == 0) {
2123 break;
2124 }
2125 }
2126 if (n < 0) {
2127 fi->type = ARMFault_Background;
2128 return true;
2129 }
2130
2131 if (access_type == MMU_INST_FETCH) {
2132 mask = env->cp15.pmsav5_insn_ap;
2133 } else {
2134 mask = env->cp15.pmsav5_data_ap;
2135 }
2136 mask = (mask >> (n * 4)) & 0xf;
2137 switch (mask) {
2138 case 0:
2139 fi->type = ARMFault_Permission;
2140 fi->level = 1;
2141 return true;
2142 case 1:
2143 if (is_user) {
2144 fi->type = ARMFault_Permission;
2145 fi->level = 1;
2146 return true;
2147 }
2148 result->f.prot = PAGE_READ | PAGE_WRITE;
2149 break;
2150 case 2:
2151 result->f.prot = PAGE_READ;
2152 if (!is_user) {
2153 result->f.prot |= PAGE_WRITE;
2154 }
2155 break;
2156 case 3:
2157 result->f.prot = PAGE_READ | PAGE_WRITE;
2158 break;
2159 case 5:
2160 if (is_user) {
2161 fi->type = ARMFault_Permission;
2162 fi->level = 1;
2163 return true;
2164 }
2165 result->f.prot = PAGE_READ;
2166 break;
2167 case 6:
2168 result->f.prot = PAGE_READ;
2169 break;
2170 default:
2171 /* Bad permission. */
2172 fi->type = ARMFault_Permission;
2173 fi->level = 1;
2174 return true;
2175 }
2176 result->f.prot |= PAGE_EXEC;
2177 return false;
2178 }
2179
2180 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
2181 int32_t address, uint8_t *prot)
2182 {
2183 if (!arm_feature(env, ARM_FEATURE_M)) {
2184 *prot = PAGE_READ | PAGE_WRITE;
2185 switch (address) {
2186 case 0xF0000000 ... 0xFFFFFFFF:
2187 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
2188 /* hivecs execing is ok */
2189 *prot |= PAGE_EXEC;
2190 }
2191 break;
2192 case 0x00000000 ... 0x7FFFFFFF:
2193 *prot |= PAGE_EXEC;
2194 break;
2195 }
2196 } else {
2197 /* Default system address map for M profile cores.
2198 * The architecture specifies which regions are execute-never;
2199 * at the MPU level no other checks are defined.
2200 */
2201 switch (address) {
2202 case 0x00000000 ... 0x1fffffff: /* ROM */
2203 case 0x20000000 ... 0x3fffffff: /* SRAM */
2204 case 0x60000000 ... 0x7fffffff: /* RAM */
2205 case 0x80000000 ... 0x9fffffff: /* RAM */
2206 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2207 break;
2208 case 0x40000000 ... 0x5fffffff: /* Peripheral */
2209 case 0xa0000000 ... 0xbfffffff: /* Device */
2210 case 0xc0000000 ... 0xdfffffff: /* Device */
2211 case 0xe0000000 ... 0xffffffff: /* System */
2212 *prot = PAGE_READ | PAGE_WRITE;
2213 break;
2214 default:
2215 g_assert_not_reached();
2216 }
2217 }
2218 }
2219
2220 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
2221 {
2222 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
2223 return arm_feature(env, ARM_FEATURE_M) &&
2224 extract32(address, 20, 12) == 0xe00;
2225 }
2226
2227 static bool m_is_system_region(CPUARMState *env, uint32_t address)
2228 {
2229 /*
2230 * True if address is in the M profile system region
2231 * 0xe0000000 - 0xffffffff
2232 */
2233 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
2234 }
2235
2236 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2237 bool is_secure, bool is_user)
2238 {
2239 /*
2240 * Return true if we should use the default memory map as a
2241 * "background" region if there are no hits against any MPU regions.
2242 */
2243 CPUARMState *env = &cpu->env;
2244
2245 if (is_user) {
2246 return false;
2247 }
2248
2249 if (arm_feature(env, ARM_FEATURE_M)) {
2250 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
2251 }
2252
2253 if (mmu_idx == ARMMMUIdx_Stage2) {
2254 return false;
2255 }
2256
2257 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
2258 }
2259
2260 static bool get_phys_addr_pmsav7(CPUARMState *env,
2261 S1Translate *ptw,
2262 uint32_t address,
2263 MMUAccessType access_type,
2264 GetPhysAddrResult *result,
2265 ARMMMUFaultInfo *fi)
2266 {
2267 ARMCPU *cpu = env_archcpu(env);
2268 int n;
2269 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2270 bool is_user = regime_is_user(env, mmu_idx);
2271 bool secure = arm_space_is_secure(ptw->in_space);
2272
2273 result->f.phys_addr = address;
2274 result->f.lg_page_size = TARGET_PAGE_BITS;
2275 result->f.prot = 0;
2276
2277 if (regime_translation_disabled(env, mmu_idx, ptw->in_space) ||
2278 m_is_ppb_region(env, address)) {
2279 /*
2280 * MPU disabled or M profile PPB access: use default memory map.
2281 * The other case which uses the default memory map in the
2282 * v7M ARM ARM pseudocode is exception vector reads from the vector
2283 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
2284 * which always does a direct read using address_space_ldl(), rather
2285 * than going via this function, so we don't need to check that here.
2286 */
2287 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2288 } else { /* MPU enabled */
2289 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
2290 /* region search */
2291 uint32_t base = env->pmsav7.drbar[n];
2292 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
2293 uint32_t rmask;
2294 bool srdis = false;
2295
2296 if (!(env->pmsav7.drsr[n] & 0x1)) {
2297 continue;
2298 }
2299
2300 if (!rsize) {
2301 qemu_log_mask(LOG_GUEST_ERROR,
2302 "DRSR[%d]: Rsize field cannot be 0\n", n);
2303 continue;
2304 }
2305 rsize++;
2306 rmask = (1ull << rsize) - 1;
2307
2308 if (base & rmask) {
2309 qemu_log_mask(LOG_GUEST_ERROR,
2310 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
2311 "to DRSR region size, mask = 0x%" PRIx32 "\n",
2312 n, base, rmask);
2313 continue;
2314 }
2315
2316 if (address < base || address > base + rmask) {
2317 /*
2318 * Address not in this region. We must check whether the
2319 * region covers addresses in the same page as our address.
2320 * In that case we must not report a size that covers the
2321 * whole page for a subsequent hit against a different MPU
2322 * region or the background region, because it would result in
2323 * incorrect TLB hits for subsequent accesses to addresses that
2324 * are in this MPU region.
2325 */
2326 if (ranges_overlap(base, rmask,
2327 address & TARGET_PAGE_MASK,
2328 TARGET_PAGE_SIZE)) {
2329 result->f.lg_page_size = 0;
2330 }
2331 continue;
2332 }
2333
2334 /* Region matched */
2335
2336 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
2337 int i, snd;
2338 uint32_t srdis_mask;
2339
2340 rsize -= 3; /* sub region size (power of 2) */
2341 snd = ((address - base) >> rsize) & 0x7;
2342 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
2343
2344 srdis_mask = srdis ? 0x3 : 0x0;
2345 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
2346 /*
2347 * This will check in groups of 2, 4 and then 8, whether
2348 * the subregion bits are consistent. rsize is incremented
2349 * back up to give the region size, considering consistent
2350 * adjacent subregions as one region. Stop testing if rsize
2351 * is already big enough for an entire QEMU page.
2352 */
2353 int snd_rounded = snd & ~(i - 1);
2354 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
2355 snd_rounded + 8, i);
2356 if (srdis_mask ^ srdis_multi) {
2357 break;
2358 }
2359 srdis_mask = (srdis_mask << i) | srdis_mask;
2360 rsize++;
2361 }
2362 }
2363 if (srdis) {
2364 continue;
2365 }
2366 if (rsize < TARGET_PAGE_BITS) {
2367 result->f.lg_page_size = rsize;
2368 }
2369 break;
2370 }
2371
2372 if (n == -1) { /* no hits */
2373 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2374 /* background fault */
2375 fi->type = ARMFault_Background;
2376 return true;
2377 }
2378 get_phys_addr_pmsav7_default(env, mmu_idx, address,
2379 &result->f.prot);
2380 } else { /* a MPU hit! */
2381 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
2382 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
2383
2384 if (m_is_system_region(env, address)) {
2385 /* System space is always execute never */
2386 xn = 1;
2387 }
2388
2389 if (is_user) { /* User mode AP bit decoding */
2390 switch (ap) {
2391 case 0:
2392 case 1:
2393 case 5:
2394 break; /* no access */
2395 case 3:
2396 result->f.prot |= PAGE_WRITE;
2397 /* fall through */
2398 case 2:
2399 case 6:
2400 result->f.prot |= PAGE_READ | PAGE_EXEC;
2401 break;
2402 case 7:
2403 /* for v7M, same as 6; for R profile a reserved value */
2404 if (arm_feature(env, ARM_FEATURE_M)) {
2405 result->f.prot |= PAGE_READ | PAGE_EXEC;
2406 break;
2407 }
2408 /* fall through */
2409 default:
2410 qemu_log_mask(LOG_GUEST_ERROR,
2411 "DRACR[%d]: Bad value for AP bits: 0x%"
2412 PRIx32 "\n", n, ap);
2413 }
2414 } else { /* Priv. mode AP bits decoding */
2415 switch (ap) {
2416 case 0:
2417 break; /* no access */
2418 case 1:
2419 case 2:
2420 case 3:
2421 result->f.prot |= PAGE_WRITE;
2422 /* fall through */
2423 case 5:
2424 case 6:
2425 result->f.prot |= PAGE_READ | PAGE_EXEC;
2426 break;
2427 case 7:
2428 /* for v7M, same as 6; for R profile a reserved value */
2429 if (arm_feature(env, ARM_FEATURE_M)) {
2430 result->f.prot |= PAGE_READ | PAGE_EXEC;
2431 break;
2432 }
2433 /* fall through */
2434 default:
2435 qemu_log_mask(LOG_GUEST_ERROR,
2436 "DRACR[%d]: Bad value for AP bits: 0x%"
2437 PRIx32 "\n", n, ap);
2438 }
2439 }
2440
2441 /* execute never */
2442 if (xn) {
2443 result->f.prot &= ~PAGE_EXEC;
2444 }
2445 }
2446 }
2447
2448 fi->type = ARMFault_Permission;
2449 fi->level = 1;
2450 return !(result->f.prot & (1 << access_type));
2451 }
2452
2453 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2454 uint32_t secure)
2455 {
2456 if (regime_el(env, mmu_idx) == 2) {
2457 return env->pmsav8.hprbar;
2458 } else {
2459 return env->pmsav8.rbar[secure];
2460 }
2461 }
2462
2463 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2464 uint32_t secure)
2465 {
2466 if (regime_el(env, mmu_idx) == 2) {
2467 return env->pmsav8.hprlar;
2468 } else {
2469 return env->pmsav8.rlar[secure];
2470 }
2471 }
2472
2473 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2474 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2475 bool secure, GetPhysAddrResult *result,
2476 ARMMMUFaultInfo *fi, uint32_t *mregion)
2477 {
2478 /*
2479 * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2480 * that a full phys-to-virt translation does).
2481 * mregion is (if not NULL) set to the region number which matched,
2482 * or -1 if no region number is returned (MPU off, address did not
2483 * hit a region, address hit in multiple regions).
2484 * If the region hit doesn't cover the entire TARGET_PAGE the address
2485 * is within, then we set the result page_size to 1 to force the
2486 * memory system to use a subpage.
2487 */
2488 ARMCPU *cpu = env_archcpu(env);
2489 bool is_user = regime_is_user(env, mmu_idx);
2490 int n;
2491 int matchregion = -1;
2492 bool hit = false;
2493 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2494 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2495 int region_counter;
2496
2497 if (regime_el(env, mmu_idx) == 2) {
2498 region_counter = cpu->pmsav8r_hdregion;
2499 } else {
2500 region_counter = cpu->pmsav7_dregion;
2501 }
2502
2503 result->f.lg_page_size = TARGET_PAGE_BITS;
2504 result->f.phys_addr = address;
2505 result->f.prot = 0;
2506 if (mregion) {
2507 *mregion = -1;
2508 }
2509
2510 if (mmu_idx == ARMMMUIdx_Stage2) {
2511 fi->stage2 = true;
2512 }
2513
2514 /*
2515 * Unlike the ARM ARM pseudocode, we don't need to check whether this
2516 * was an exception vector read from the vector table (which is always
2517 * done using the default system address map), because those accesses
2518 * are done in arm_v7m_load_vector(), which always does a direct
2519 * read using address_space_ldl(), rather than going via this function.
2520 */
2521 if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) {
2522 /* MPU disabled */
2523 hit = true;
2524 } else if (m_is_ppb_region(env, address)) {
2525 hit = true;
2526 } else {
2527 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2528 hit = true;
2529 }
2530
2531 uint32_t bitmask;
2532 if (arm_feature(env, ARM_FEATURE_M)) {
2533 bitmask = 0x1f;
2534 } else {
2535 bitmask = 0x3f;
2536 fi->level = 0;
2537 }
2538
2539 for (n = region_counter - 1; n >= 0; n--) {
2540 /* region search */
2541 /*
2542 * Note that the base address is bits [31:x] from the register
2543 * with bits [x-1:0] all zeroes, but the limit address is bits
2544 * [31:x] from the register with bits [x:0] all ones. Where x is
2545 * 5 for Cortex-M and 6 for Cortex-R
2546 */
2547 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2548 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2549
2550 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2551 /* Region disabled */
2552 continue;
2553 }
2554
2555 if (address < base || address > limit) {
2556 /*
2557 * Address not in this region. We must check whether the
2558 * region covers addresses in the same page as our address.
2559 * In that case we must not report a size that covers the
2560 * whole page for a subsequent hit against a different MPU
2561 * region or the background region, because it would result in
2562 * incorrect TLB hits for subsequent accesses to addresses that
2563 * are in this MPU region.
2564 */
2565 if (limit >= base &&
2566 ranges_overlap(base, limit - base + 1,
2567 addr_page_base,
2568 TARGET_PAGE_SIZE)) {
2569 result->f.lg_page_size = 0;
2570 }
2571 continue;
2572 }
2573
2574 if (base > addr_page_base || limit < addr_page_limit) {
2575 result->f.lg_page_size = 0;
2576 }
2577
2578 if (matchregion != -1) {
2579 /*
2580 * Multiple regions match -- always a failure (unlike
2581 * PMSAv7 where highest-numbered-region wins)
2582 */
2583 fi->type = ARMFault_Permission;
2584 if (arm_feature(env, ARM_FEATURE_M)) {
2585 fi->level = 1;
2586 }
2587 return true;
2588 }
2589
2590 matchregion = n;
2591 hit = true;
2592 }
2593 }
2594
2595 if (!hit) {
2596 if (arm_feature(env, ARM_FEATURE_M)) {
2597 fi->type = ARMFault_Background;
2598 } else {
2599 fi->type = ARMFault_Permission;
2600 }
2601 return true;
2602 }
2603
2604 if (matchregion == -1) {
2605 /* hit using the background region */
2606 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2607 } else {
2608 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2609 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2610 uint32_t ap = extract32(matched_rbar, 1, 2);
2611 uint32_t xn = extract32(matched_rbar, 0, 1);
2612 bool pxn = false;
2613
2614 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2615 pxn = extract32(matched_rlar, 4, 1);
2616 }
2617
2618 if (m_is_system_region(env, address)) {
2619 /* System space is always execute never */
2620 xn = 1;
2621 }
2622
2623 if (regime_el(env, mmu_idx) == 2) {
2624 result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2625 mmu_idx != ARMMMUIdx_E2);
2626 } else {
2627 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2628 }
2629
2630 if (!arm_feature(env, ARM_FEATURE_M)) {
2631 uint8_t attrindx = extract32(matched_rlar, 1, 3);
2632 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2633 uint8_t sh = extract32(matched_rlar, 3, 2);
2634
2635 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2636 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2637 xn = 0x1;
2638 }
2639
2640 if ((regime_el(env, mmu_idx) == 1) &&
2641 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2642 pxn = 0x1;
2643 }
2644
2645 result->cacheattrs.is_s2_format = false;
2646 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2647 result->cacheattrs.shareability = sh;
2648 }
2649
2650 if (result->f.prot && !xn && !(pxn && !is_user)) {
2651 result->f.prot |= PAGE_EXEC;
2652 }
2653
2654 if (mregion) {
2655 *mregion = matchregion;
2656 }
2657 }
2658
2659 fi->type = ARMFault_Permission;
2660 if (arm_feature(env, ARM_FEATURE_M)) {
2661 fi->level = 1;
2662 }
2663 return !(result->f.prot & (1 << access_type));
2664 }
2665
2666 static bool v8m_is_sau_exempt(CPUARMState *env,
2667 uint32_t address, MMUAccessType access_type)
2668 {
2669 /*
2670 * The architecture specifies that certain address ranges are
2671 * exempt from v8M SAU/IDAU checks.
2672 */
2673 return
2674 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2675 (address >= 0xe0000000 && address <= 0xe0002fff) ||
2676 (address >= 0xe000e000 && address <= 0xe000efff) ||
2677 (address >= 0xe002e000 && address <= 0xe002efff) ||
2678 (address >= 0xe0040000 && address <= 0xe0041fff) ||
2679 (address >= 0xe00ff000 && address <= 0xe00fffff);
2680 }
2681
2682 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2683 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2684 bool is_secure, V8M_SAttributes *sattrs)
2685 {
2686 /*
2687 * Look up the security attributes for this address. Compare the
2688 * pseudocode SecurityCheck() function.
2689 * We assume the caller has zero-initialized *sattrs.
2690 */
2691 ARMCPU *cpu = env_archcpu(env);
2692 int r;
2693 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2694 int idau_region = IREGION_NOTVALID;
2695 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2696 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2697
2698 if (cpu->idau) {
2699 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2700 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2701
2702 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2703 &idau_nsc);
2704 }
2705
2706 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2707 /* 0xf0000000..0xffffffff is always S for insn fetches */
2708 return;
2709 }
2710
2711 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2712 sattrs->ns = !is_secure;
2713 return;
2714 }
2715
2716 if (idau_region != IREGION_NOTVALID) {
2717 sattrs->irvalid = true;
2718 sattrs->iregion = idau_region;
2719 }
2720
2721 switch (env->sau.ctrl & 3) {
2722 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2723 break;
2724 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2725 sattrs->ns = true;
2726 break;
2727 default: /* SAU.ENABLE == 1 */
2728 for (r = 0; r < cpu->sau_sregion; r++) {
2729 if (env->sau.rlar[r] & 1) {
2730 uint32_t base = env->sau.rbar[r] & ~0x1f;
2731 uint32_t limit = env->sau.rlar[r] | 0x1f;
2732
2733 if (base <= address && limit >= address) {
2734 if (base > addr_page_base || limit < addr_page_limit) {
2735 sattrs->subpage = true;
2736 }
2737 if (sattrs->srvalid) {
2738 /*
2739 * If we hit in more than one region then we must report
2740 * as Secure, not NS-Callable, with no valid region
2741 * number info.
2742 */
2743 sattrs->ns = false;
2744 sattrs->nsc = false;
2745 sattrs->sregion = 0;
2746 sattrs->srvalid = false;
2747 break;
2748 } else {
2749 if (env->sau.rlar[r] & 2) {
2750 sattrs->nsc = true;
2751 } else {
2752 sattrs->ns = true;
2753 }
2754 sattrs->srvalid = true;
2755 sattrs->sregion = r;
2756 }
2757 } else {
2758 /*
2759 * Address not in this region. We must check whether the
2760 * region covers addresses in the same page as our address.
2761 * In that case we must not report a size that covers the
2762 * whole page for a subsequent hit against a different MPU
2763 * region or the background region, because it would result
2764 * in incorrect TLB hits for subsequent accesses to
2765 * addresses that are in this MPU region.
2766 */
2767 if (limit >= base &&
2768 ranges_overlap(base, limit - base + 1,
2769 addr_page_base,
2770 TARGET_PAGE_SIZE)) {
2771 sattrs->subpage = true;
2772 }
2773 }
2774 }
2775 }
2776 break;
2777 }
2778
2779 /*
2780 * The IDAU will override the SAU lookup results if it specifies
2781 * higher security than the SAU does.
2782 */
2783 if (!idau_ns) {
2784 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2785 sattrs->ns = false;
2786 sattrs->nsc = idau_nsc;
2787 }
2788 }
2789 }
2790
2791 static bool get_phys_addr_pmsav8(CPUARMState *env,
2792 S1Translate *ptw,
2793 uint32_t address,
2794 MMUAccessType access_type,
2795 GetPhysAddrResult *result,
2796 ARMMMUFaultInfo *fi)
2797 {
2798 V8M_SAttributes sattrs = {};
2799 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2800 bool secure = arm_space_is_secure(ptw->in_space);
2801 bool ret;
2802
2803 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2804 v8m_security_lookup(env, address, access_type, mmu_idx,
2805 secure, &sattrs);
2806 if (access_type == MMU_INST_FETCH) {
2807 /*
2808 * Instruction fetches always use the MMU bank and the
2809 * transaction attribute determined by the fetch address,
2810 * regardless of CPU state. This is painful for QEMU
2811 * to handle, because it would mean we need to encode
2812 * into the mmu_idx not just the (user, negpri) information
2813 * for the current security state but also that for the
2814 * other security state, which would balloon the number
2815 * of mmu_idx values needed alarmingly.
2816 * Fortunately we can avoid this because it's not actually
2817 * possible to arbitrarily execute code from memory with
2818 * the wrong security attribute: it will always generate
2819 * an exception of some kind or another, apart from the
2820 * special case of an NS CPU executing an SG instruction
2821 * in S&NSC memory. So we always just fail the translation
2822 * here and sort things out in the exception handler
2823 * (including possibly emulating an SG instruction).
2824 */
2825 if (sattrs.ns != !secure) {
2826 if (sattrs.nsc) {
2827 fi->type = ARMFault_QEMU_NSCExec;
2828 } else {
2829 fi->type = ARMFault_QEMU_SFault;
2830 }
2831 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2832 result->f.phys_addr = address;
2833 result->f.prot = 0;
2834 return true;
2835 }
2836 } else {
2837 /*
2838 * For data accesses we always use the MMU bank indicated
2839 * by the current CPU state, but the security attributes
2840 * might downgrade a secure access to nonsecure.
2841 */
2842 if (sattrs.ns) {
2843 result->f.attrs.secure = false;
2844 result->f.attrs.space = ARMSS_NonSecure;
2845 } else if (!secure) {
2846 /*
2847 * NS access to S memory must fault.
2848 * Architecturally we should first check whether the
2849 * MPU information for this address indicates that we
2850 * are doing an unaligned access to Device memory, which
2851 * should generate a UsageFault instead. QEMU does not
2852 * currently check for that kind of unaligned access though.
2853 * If we added it we would need to do so as a special case
2854 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2855 */
2856 fi->type = ARMFault_QEMU_SFault;
2857 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2858 result->f.phys_addr = address;
2859 result->f.prot = 0;
2860 return true;
2861 }
2862 }
2863 }
2864
2865 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2866 result, fi, NULL);
2867 if (sattrs.subpage) {
2868 result->f.lg_page_size = 0;
2869 }
2870 return ret;
2871 }
2872
2873 /*
2874 * Translate from the 4-bit stage 2 representation of
2875 * memory attributes (without cache-allocation hints) to
2876 * the 8-bit representation of the stage 1 MAIR registers
2877 * (which includes allocation hints).
2878 *
2879 * ref: shared/translation/attrs/S2AttrDecode()
2880 * .../S2ConvertAttrsHints()
2881 */
2882 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2883 {
2884 uint8_t hiattr = extract32(s2attrs, 2, 2);
2885 uint8_t loattr = extract32(s2attrs, 0, 2);
2886 uint8_t hihint = 0, lohint = 0;
2887
2888 if (hiattr != 0) { /* normal memory */
2889 if (hcr & HCR_CD) { /* cache disabled */
2890 hiattr = loattr = 1; /* non-cacheable */
2891 } else {
2892 if (hiattr != 1) { /* Write-through or write-back */
2893 hihint = 3; /* RW allocate */
2894 }
2895 if (loattr != 1) { /* Write-through or write-back */
2896 lohint = 3; /* RW allocate */
2897 }
2898 }
2899 }
2900
2901 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2902 }
2903
2904 /*
2905 * Combine either inner or outer cacheability attributes for normal
2906 * memory, according to table D4-42 and pseudocode procedure
2907 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2908 *
2909 * NB: only stage 1 includes allocation hints (RW bits), leading to
2910 * some asymmetry.
2911 */
2912 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2913 {
2914 if (s1 == 4 || s2 == 4) {
2915 /* non-cacheable has precedence */
2916 return 4;
2917 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2918 /* stage 1 write-through takes precedence */
2919 return s1;
2920 } else if (extract32(s2, 2, 2) == 2) {
2921 /* stage 2 write-through takes precedence, but the allocation hint
2922 * is still taken from stage 1
2923 */
2924 return (2 << 2) | extract32(s1, 0, 2);
2925 } else { /* write-back */
2926 return s1;
2927 }
2928 }
2929
2930 /*
2931 * Combine the memory type and cacheability attributes of
2932 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2933 * combined attributes in MAIR_EL1 format.
2934 */
2935 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2936 ARMCacheAttrs s1, ARMCacheAttrs s2)
2937 {
2938 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2939
2940 if (s2.is_s2_format) {
2941 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2942 } else {
2943 s2_mair_attrs = s2.attrs;
2944 }
2945
2946 s1lo = extract32(s1.attrs, 0, 4);
2947 s2lo = extract32(s2_mair_attrs, 0, 4);
2948 s1hi = extract32(s1.attrs, 4, 4);
2949 s2hi = extract32(s2_mair_attrs, 4, 4);
2950
2951 /* Combine memory type and cacheability attributes */
2952 if (s1hi == 0 || s2hi == 0) {
2953 /* Device has precedence over normal */
2954 if (s1lo == 0 || s2lo == 0) {
2955 /* nGnRnE has precedence over anything */
2956 ret_attrs = 0;
2957 } else if (s1lo == 4 || s2lo == 4) {
2958 /* non-Reordering has precedence over Reordering */
2959 ret_attrs = 4; /* nGnRE */
2960 } else if (s1lo == 8 || s2lo == 8) {
2961 /* non-Gathering has precedence over Gathering */
2962 ret_attrs = 8; /* nGRE */
2963 } else {
2964 ret_attrs = 0xc; /* GRE */
2965 }
2966 } else { /* Normal memory */
2967 /* Outer/inner cacheability combine independently */
2968 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2969 | combine_cacheattr_nibble(s1lo, s2lo);
2970 }
2971 return ret_attrs;
2972 }
2973
2974 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2975 {
2976 /*
2977 * Given the 4 bits specifying the outer or inner cacheability
2978 * in MAIR format, return a value specifying Normal Write-Back,
2979 * with the allocation and transient hints taken from the input
2980 * if the input specified some kind of cacheable attribute.
2981 */
2982 if (attr == 0 || attr == 4) {
2983 /*
2984 * 0 == an UNPREDICTABLE encoding
2985 * 4 == Non-cacheable
2986 * Either way, force Write-Back RW allocate non-transient
2987 */
2988 return 0xf;
2989 }
2990 /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2991 return attr | 4;
2992 }
2993
2994 /*
2995 * Combine the memory type and cacheability attributes of
2996 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2997 * combined attributes in MAIR_EL1 format.
2998 */
2999 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
3000 {
3001 assert(s2.is_s2_format && !s1.is_s2_format);
3002
3003 switch (s2.attrs) {
3004 case 7:
3005 /* Use stage 1 attributes */
3006 return s1.attrs;
3007 case 6:
3008 /*
3009 * Force Normal Write-Back. Note that if S1 is Normal cacheable
3010 * then we take the allocation hints from it; otherwise it is
3011 * RW allocate, non-transient.
3012 */
3013 if ((s1.attrs & 0xf0) == 0) {
3014 /* S1 is Device */
3015 return 0xff;
3016 }
3017 /* Need to check the Inner and Outer nibbles separately */
3018 return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
3019 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
3020 case 5:
3021 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
3022 if ((s1.attrs & 0xf0) == 0) {
3023 return s1.attrs;
3024 }
3025 return 0x44;
3026 case 0 ... 3:
3027 /* Force Device, of subtype specified by S2 */
3028 return s2.attrs << 2;
3029 default:
3030 /*
3031 * RESERVED values (including RES0 descriptor bit [5] being nonzero);
3032 * arbitrarily force Device.
3033 */
3034 return 0;
3035 }
3036 }
3037
3038 /*
3039 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
3040 * and CombineS1S2Desc()
3041 *
3042 * @env: CPUARMState
3043 * @s1: Attributes from stage 1 walk
3044 * @s2: Attributes from stage 2 walk
3045 */
3046 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
3047 ARMCacheAttrs s1, ARMCacheAttrs s2)
3048 {
3049 ARMCacheAttrs ret;
3050 bool tagged = false;
3051
3052 assert(!s1.is_s2_format);
3053 ret.is_s2_format = false;
3054
3055 if (s1.attrs == 0xf0) {
3056 tagged = true;
3057 s1.attrs = 0xff;
3058 }
3059
3060 /* Combine shareability attributes (table D4-43) */
3061 if (s1.shareability == 2 || s2.shareability == 2) {
3062 /* if either are outer-shareable, the result is outer-shareable */
3063 ret.shareability = 2;
3064 } else if (s1.shareability == 3 || s2.shareability == 3) {
3065 /* if either are inner-shareable, the result is inner-shareable */
3066 ret.shareability = 3;
3067 } else {
3068 /* both non-shareable */
3069 ret.shareability = 0;
3070 }
3071
3072 /* Combine memory type and cacheability attributes */
3073 if (hcr & HCR_FWB) {
3074 ret.attrs = combined_attrs_fwb(s1, s2);
3075 } else {
3076 ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
3077 }
3078
3079 /*
3080 * Any location for which the resultant memory type is any
3081 * type of Device memory is always treated as Outer Shareable.
3082 * Any location for which the resultant memory type is Normal
3083 * Inner Non-cacheable, Outer Non-cacheable is always treated
3084 * as Outer Shareable.
3085 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
3086 */
3087 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
3088 ret.shareability = 2;
3089 }
3090
3091 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
3092 if (tagged && ret.attrs == 0xff) {
3093 ret.attrs = 0xf0;
3094 }
3095
3096 return ret;
3097 }
3098
3099 /*
3100 * MMU disabled. S1 addresses within aa64 translation regimes are
3101 * still checked for bounds -- see AArch64.S1DisabledOutput().
3102 */
3103 static bool get_phys_addr_disabled(CPUARMState *env,
3104 S1Translate *ptw,
3105 target_ulong address,
3106 MMUAccessType access_type,
3107 GetPhysAddrResult *result,
3108 ARMMMUFaultInfo *fi)
3109 {
3110 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3111 uint8_t memattr = 0x00; /* Device nGnRnE */
3112 uint8_t shareability = 0; /* non-shareable */
3113 int r_el;
3114
3115 switch (mmu_idx) {
3116 case ARMMMUIdx_Stage2:
3117 case ARMMMUIdx_Stage2_S:
3118 case ARMMMUIdx_Phys_S:
3119 case ARMMMUIdx_Phys_NS:
3120 case ARMMMUIdx_Phys_Root:
3121 case ARMMMUIdx_Phys_Realm:
3122 break;
3123
3124 default:
3125 r_el = regime_el(env, mmu_idx);
3126 if (arm_el_is_aa64(env, r_el)) {
3127 int pamax = arm_pamax(env_archcpu(env));
3128 uint64_t tcr = env->cp15.tcr_el[r_el];
3129 int addrtop, tbi;
3130
3131 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
3132 if (access_type == MMU_INST_FETCH) {
3133 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
3134 }
3135 tbi = (tbi >> extract64(address, 55, 1)) & 1;
3136 addrtop = (tbi ? 55 : 63);
3137
3138 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
3139 fi->type = ARMFault_AddressSize;
3140 fi->level = 0;
3141 fi->stage2 = false;
3142 return 1;
3143 }
3144
3145 /*
3146 * When TBI is disabled, we've just validated that all of the
3147 * bits above PAMax are zero, so logically we only need to
3148 * clear the top byte for TBI. But it's clearer to follow
3149 * the pseudocode set of addrdesc.paddress.
3150 */
3151 address = extract64(address, 0, 52);
3152 }
3153
3154 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
3155 if (r_el == 1) {
3156 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
3157 if (hcr & HCR_DC) {
3158 if (hcr & HCR_DCT) {
3159 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
3160 } else {
3161 memattr = 0xff; /* Normal, WB, RWA */
3162 }
3163 }
3164 }
3165 if (memattr == 0) {
3166 if (access_type == MMU_INST_FETCH) {
3167 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
3168 memattr = 0xee; /* Normal, WT, RA, NT */
3169 } else {
3170 memattr = 0x44; /* Normal, NC, No */
3171 }
3172 }
3173 shareability = 2; /* outer shareable */
3174 }
3175 result->cacheattrs.is_s2_format = false;
3176 break;
3177 }
3178
3179 result->f.phys_addr = address;
3180 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3181 result->f.lg_page_size = TARGET_PAGE_BITS;
3182 result->cacheattrs.shareability = shareability;
3183 result->cacheattrs.attrs = memattr;
3184 return false;
3185 }
3186
3187 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
3188 target_ulong address,
3189 MMUAccessType access_type,
3190 GetPhysAddrResult *result,
3191 ARMMMUFaultInfo *fi)
3192 {
3193 hwaddr ipa;
3194 int s1_prot, s1_lgpgsz;
3195 ARMSecuritySpace in_space = ptw->in_space;
3196 bool ret, ipa_secure, s1_guarded;
3197 ARMCacheAttrs cacheattrs1;
3198 ARMSecuritySpace ipa_space;
3199 uint64_t hcr;
3200
3201 ret = get_phys_addr_nogpc(env, ptw, address, access_type, result, fi);
3202
3203 /* If S1 fails, return early. */
3204 if (ret) {
3205 return ret;
3206 }
3207
3208 ipa = result->f.phys_addr;
3209 ipa_secure = result->f.attrs.secure;
3210 ipa_space = result->f.attrs.space;
3211
3212 ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
3213 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3214 ptw->in_space = ipa_space;
3215 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
3216
3217 /*
3218 * S1 is done, now do S2 translation.
3219 * Save the stage1 results so that we may merge prot and cacheattrs later.
3220 */
3221 s1_prot = result->f.prot;
3222 s1_lgpgsz = result->f.lg_page_size;
3223 s1_guarded = result->f.extra.arm.guarded;
3224 cacheattrs1 = result->cacheattrs;
3225 memset(result, 0, sizeof(*result));
3226
3227 ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, result, fi);
3228 fi->s2addr = ipa;
3229
3230 /* Combine the S1 and S2 perms. */
3231 result->f.prot &= s1_prot;
3232
3233 /* If S2 fails, return early. */
3234 if (ret) {
3235 return ret;
3236 }
3237
3238 /*
3239 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
3240 * this means "don't put this in the TLB"; in this case, return a
3241 * result with lg_page_size == 0 to achieve that. Otherwise,
3242 * use the maximum of the S1 & S2 page size, so that invalidation
3243 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
3244 * we know the combined result permissions etc only cover the minimum
3245 * of the S1 and S2 page size, because we know that the common TLB code
3246 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
3247 * and passing a larger page size value only affects invalidations.)
3248 */
3249 if (result->f.lg_page_size < TARGET_PAGE_BITS ||
3250 s1_lgpgsz < TARGET_PAGE_BITS) {
3251 result->f.lg_page_size = 0;
3252 } else if (result->f.lg_page_size < s1_lgpgsz) {
3253 result->f.lg_page_size = s1_lgpgsz;
3254 }
3255
3256 /* Combine the S1 and S2 cache attributes. */
3257 hcr = arm_hcr_el2_eff_secstate(env, in_space);
3258 if (hcr & HCR_DC) {
3259 /*
3260 * HCR.DC forces the first stage attributes to
3261 * Normal Non-Shareable,
3262 * Inner Write-Back Read-Allocate Write-Allocate,
3263 * Outer Write-Back Read-Allocate Write-Allocate.
3264 * Do not overwrite Tagged within attrs.
3265 */
3266 if (cacheattrs1.attrs != 0xf0) {
3267 cacheattrs1.attrs = 0xff;
3268 }
3269 cacheattrs1.shareability = 0;
3270 }
3271 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
3272 result->cacheattrs);
3273
3274 /* No BTI GP information in stage 2, we just use the S1 value */
3275 result->f.extra.arm.guarded = s1_guarded;
3276
3277 /*
3278 * Check if IPA translates to secure or non-secure PA space.
3279 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
3280 */
3281 if (in_space == ARMSS_Secure) {
3282 result->f.attrs.secure =
3283 !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
3284 && (ipa_secure
3285 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)));
3286 result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure);
3287 }
3288
3289 return false;
3290 }
3291
3292 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
3293 target_ulong address,
3294 MMUAccessType access_type,
3295 GetPhysAddrResult *result,
3296 ARMMMUFaultInfo *fi)
3297 {
3298 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3299 ARMMMUIdx s1_mmu_idx;
3300
3301 /*
3302 * The page table entries may downgrade Secure to NonSecure, but
3303 * cannot upgrade a NonSecure translation regime's attributes
3304 * to Secure or Realm.
3305 */
3306 result->f.attrs.space = ptw->in_space;
3307 result->f.attrs.secure = arm_space_is_secure(ptw->in_space);
3308
3309 switch (mmu_idx) {
3310 case ARMMMUIdx_Phys_S:
3311 case ARMMMUIdx_Phys_NS:
3312 case ARMMMUIdx_Phys_Root:
3313 case ARMMMUIdx_Phys_Realm:
3314 /* Checking Phys early avoids special casing later vs regime_el. */
3315 return get_phys_addr_disabled(env, ptw, address, access_type,
3316 result, fi);
3317
3318 case ARMMMUIdx_Stage1_E0:
3319 case ARMMMUIdx_Stage1_E1:
3320 case ARMMMUIdx_Stage1_E1_PAN:
3321 /*
3322 * First stage lookup uses second stage for ptw; only
3323 * Secure has both S and NS IPA and starts with Stage2_S.
3324 */
3325 ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ?
3326 ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3327 break;
3328
3329 case ARMMMUIdx_Stage2:
3330 case ARMMMUIdx_Stage2_S:
3331 /*
3332 * Second stage lookup uses physical for ptw; whether this is S or
3333 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
3334 * the Secure EL2&0 regime.
3335 */
3336 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
3337 break;
3338
3339 case ARMMMUIdx_E10_0:
3340 s1_mmu_idx = ARMMMUIdx_Stage1_E0;
3341 goto do_twostage;
3342 case ARMMMUIdx_E10_1:
3343 s1_mmu_idx = ARMMMUIdx_Stage1_E1;
3344 goto do_twostage;
3345 case ARMMMUIdx_E10_1_PAN:
3346 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3347 do_twostage:
3348 /*
3349 * Call ourselves recursively to do the stage 1 and then stage 2
3350 * translations if mmu_idx is a two-stage regime, and EL2 present.
3351 * Otherwise, a stage1+stage2 translation is just stage 1.
3352 */
3353 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
3354 if (arm_feature(env, ARM_FEATURE_EL2) &&
3355 !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) {
3356 return get_phys_addr_twostage(env, ptw, address, access_type,
3357 result, fi);
3358 }
3359 /* fall through */
3360
3361 default:
3362 /* Single stage uses physical for ptw. */
3363 ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space);
3364 break;
3365 }
3366
3367 result->f.attrs.user = regime_is_user(env, mmu_idx);
3368
3369 /*
3370 * Fast Context Switch Extension. This doesn't exist at all in v8.
3371 * In v7 and earlier it affects all stage 1 translations.
3372 */
3373 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
3374 && !arm_feature(env, ARM_FEATURE_V8)) {
3375 if (regime_el(env, mmu_idx) == 3) {
3376 address += env->cp15.fcseidr_s;
3377 } else {
3378 address += env->cp15.fcseidr_ns;
3379 }
3380 }
3381
3382 if (arm_feature(env, ARM_FEATURE_PMSA)) {
3383 bool ret;
3384 result->f.lg_page_size = TARGET_PAGE_BITS;
3385
3386 if (arm_feature(env, ARM_FEATURE_V8)) {
3387 /* PMSAv8 */
3388 ret = get_phys_addr_pmsav8(env, ptw, address, access_type,
3389 result, fi);
3390 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3391 /* PMSAv7 */
3392 ret = get_phys_addr_pmsav7(env, ptw, address, access_type,
3393 result, fi);
3394 } else {
3395 /* Pre-v7 MPU */
3396 ret = get_phys_addr_pmsav5(env, ptw, address, access_type,
3397 result, fi);
3398 }
3399 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
3400 " mmu_idx %u -> %s (prot %c%c%c)\n",
3401 access_type == MMU_DATA_LOAD ? "reading" :
3402 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
3403 (uint32_t)address, mmu_idx,
3404 ret ? "Miss" : "Hit",
3405 result->f.prot & PAGE_READ ? 'r' : '-',
3406 result->f.prot & PAGE_WRITE ? 'w' : '-',
3407 result->f.prot & PAGE_EXEC ? 'x' : '-');
3408
3409 return ret;
3410 }
3411
3412 /* Definitely a real MMU, not an MPU */
3413
3414 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
3415 return get_phys_addr_disabled(env, ptw, address, access_type,
3416 result, fi);
3417 }
3418
3419 if (regime_using_lpae_format(env, mmu_idx)) {
3420 return get_phys_addr_lpae(env, ptw, address, access_type, result, fi);
3421 } else if (arm_feature(env, ARM_FEATURE_V7) ||
3422 regime_sctlr(env, mmu_idx) & SCTLR_XP) {
3423 return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
3424 } else {
3425 return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
3426 }
3427 }
3428
3429 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
3430 target_ulong address,
3431 MMUAccessType access_type,
3432 GetPhysAddrResult *result,
3433 ARMMMUFaultInfo *fi)
3434 {
3435 if (get_phys_addr_nogpc(env, ptw, address, access_type, result, fi)) {
3436 return true;
3437 }
3438 if (!granule_protection_check(env, result->f.phys_addr,
3439 result->f.attrs.space, fi)) {
3440 fi->type = ARMFault_GPCFOnOutput;
3441 return true;
3442 }
3443 return false;
3444 }
3445
3446 bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address,
3447 MMUAccessType access_type,
3448 ARMMMUIdx mmu_idx, ARMSecuritySpace space,
3449 GetPhysAddrResult *result,
3450 ARMMMUFaultInfo *fi)
3451 {
3452 S1Translate ptw = {
3453 .in_mmu_idx = mmu_idx,
3454 .in_space = space,
3455 };
3456 return get_phys_addr_nogpc(env, &ptw, address, access_type, result, fi);
3457 }
3458
3459 bool get_phys_addr(CPUARMState *env, target_ulong address,
3460 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3461 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
3462 {
3463 S1Translate ptw = {
3464 .in_mmu_idx = mmu_idx,
3465 };
3466 ARMSecuritySpace ss;
3467
3468 switch (mmu_idx) {
3469 case ARMMMUIdx_E10_0:
3470 case ARMMMUIdx_E10_1:
3471 case ARMMMUIdx_E10_1_PAN:
3472 case ARMMMUIdx_E20_0:
3473 case ARMMMUIdx_E20_2:
3474 case ARMMMUIdx_E20_2_PAN:
3475 case ARMMMUIdx_Stage1_E0:
3476 case ARMMMUIdx_Stage1_E1:
3477 case ARMMMUIdx_Stage1_E1_PAN:
3478 case ARMMMUIdx_E2:
3479 ss = arm_security_space_below_el3(env);
3480 break;
3481 case ARMMMUIdx_Stage2:
3482 /*
3483 * For Secure EL2, we need this index to be NonSecure;
3484 * otherwise this will already be NonSecure or Realm.
3485 */
3486 ss = arm_security_space_below_el3(env);
3487 if (ss == ARMSS_Secure) {
3488 ss = ARMSS_NonSecure;
3489 }
3490 break;
3491 case ARMMMUIdx_Phys_NS:
3492 case ARMMMUIdx_MPrivNegPri:
3493 case ARMMMUIdx_MUserNegPri:
3494 case ARMMMUIdx_MPriv:
3495 case ARMMMUIdx_MUser:
3496 ss = ARMSS_NonSecure;
3497 break;
3498 case ARMMMUIdx_Stage2_S:
3499 case ARMMMUIdx_Phys_S:
3500 case ARMMMUIdx_MSPrivNegPri:
3501 case ARMMMUIdx_MSUserNegPri:
3502 case ARMMMUIdx_MSPriv:
3503 case ARMMMUIdx_MSUser:
3504 ss = ARMSS_Secure;
3505 break;
3506 case ARMMMUIdx_E3:
3507 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
3508 cpu_isar_feature(aa64_rme, env_archcpu(env))) {
3509 ss = ARMSS_Root;
3510 } else {
3511 ss = ARMSS_Secure;
3512 }
3513 break;
3514 case ARMMMUIdx_Phys_Root:
3515 ss = ARMSS_Root;
3516 break;
3517 case ARMMMUIdx_Phys_Realm:
3518 ss = ARMSS_Realm;
3519 break;
3520 default:
3521 g_assert_not_reached();
3522 }
3523
3524 ptw.in_space = ss;
3525 return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi);
3526 }
3527
3528 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3529 MemTxAttrs *attrs)
3530 {
3531 ARMCPU *cpu = ARM_CPU(cs);
3532 CPUARMState *env = &cpu->env;
3533 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
3534 ARMSecuritySpace ss = arm_security_space(env);
3535 S1Translate ptw = {
3536 .in_mmu_idx = mmu_idx,
3537 .in_space = ss,
3538 .in_debug = true,
3539 };
3540 GetPhysAddrResult res = {};
3541 ARMMMUFaultInfo fi = {};
3542 bool ret;
3543
3544 ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
3545 *attrs = res.f.attrs;
3546
3547 if (ret) {
3548 return -1;
3549 }
3550 return res.f.phys_addr;
3551 }