]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/ptw.c
Merge tag 'seabios-hppa-v7-pull-request' of https://github.com/hdeller/qemu-hppa...
[mirror_qemu.git] / target / arm / ptw.c
1 /*
2 * ARM page table walking.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "idau.h"
17 #ifdef CONFIG_TCG
18 # include "tcg/oversized-guest.h"
19 #endif
20
21 typedef struct S1Translate {
22 ARMMMUIdx in_mmu_idx;
23 ARMMMUIdx in_ptw_idx;
24 bool in_secure;
25 bool in_debug;
26 bool out_secure;
27 bool out_rw;
28 bool out_be;
29 hwaddr out_virt;
30 hwaddr out_phys;
31 void *out_host;
32 } S1Translate;
33
34 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
35 uint64_t address,
36 MMUAccessType access_type, bool s1_is_el0,
37 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
38 __attribute__((nonnull));
39
40 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
41 target_ulong address,
42 MMUAccessType access_type,
43 GetPhysAddrResult *result,
44 ARMMMUFaultInfo *fi)
45 __attribute__((nonnull));
46
47 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
48 static const uint8_t pamax_map[] = {
49 [0] = 32,
50 [1] = 36,
51 [2] = 40,
52 [3] = 42,
53 [4] = 44,
54 [5] = 48,
55 [6] = 52,
56 };
57
58 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
59 unsigned int arm_pamax(ARMCPU *cpu)
60 {
61 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
62 unsigned int parange =
63 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
64
65 /*
66 * id_aa64mmfr0 is a read-only register so values outside of the
67 * supported mappings can be considered an implementation error.
68 */
69 assert(parange < ARRAY_SIZE(pamax_map));
70 return pamax_map[parange];
71 }
72
73 /*
74 * In machvirt_init, we call arm_pamax on a cpu that is not fully
75 * initialized, so we can't rely on the propagation done in realize.
76 */
77 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
78 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
79 /* v7 with LPAE */
80 return 40;
81 }
82 /* Anything else */
83 return 32;
84 }
85
86 /*
87 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
88 */
89 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
90 {
91 switch (mmu_idx) {
92 case ARMMMUIdx_E10_0:
93 return ARMMMUIdx_Stage1_E0;
94 case ARMMMUIdx_E10_1:
95 return ARMMMUIdx_Stage1_E1;
96 case ARMMMUIdx_E10_1_PAN:
97 return ARMMMUIdx_Stage1_E1_PAN;
98 default:
99 return mmu_idx;
100 }
101 }
102
103 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
104 {
105 return stage_1_mmu_idx(arm_mmu_idx(env));
106 }
107
108 /*
109 * Return where we should do ptw loads from for a stage 2 walk.
110 * This depends on whether the address we are looking up is a
111 * Secure IPA or a NonSecure IPA, which we know from whether this is
112 * Stage2 or Stage2_S.
113 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
114 */
115 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
116 {
117 bool s2walk_secure;
118
119 /*
120 * We're OK to check the current state of the CPU here because
121 * (1) we always invalidate all TLBs when the SCR_EL3.NS bit changes
122 * (2) there's no way to do a lookup that cares about Stage 2 for a
123 * different security state to the current one for AArch64, and AArch32
124 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
125 * an NS stage 1+2 lookup while the NS bit is 0.)
126 */
127 if (!arm_is_secure_below_el3(env) || !arm_el_is_aa64(env, 3)) {
128 return ARMMMUIdx_Phys_NS;
129 }
130 if (stage2idx == ARMMMUIdx_Stage2_S) {
131 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
132 } else {
133 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
134 }
135 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
136
137 }
138
139 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
140 {
141 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
142 }
143
144 /* Return the TTBR associated with this translation regime */
145 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
146 {
147 if (mmu_idx == ARMMMUIdx_Stage2) {
148 return env->cp15.vttbr_el2;
149 }
150 if (mmu_idx == ARMMMUIdx_Stage2_S) {
151 return env->cp15.vsttbr_el2;
152 }
153 if (ttbrn == 0) {
154 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
155 } else {
156 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
157 }
158 }
159
160 /* Return true if the specified stage of address translation is disabled */
161 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
162 bool is_secure)
163 {
164 uint64_t hcr_el2;
165
166 if (arm_feature(env, ARM_FEATURE_M)) {
167 switch (env->v7m.mpu_ctrl[is_secure] &
168 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
169 case R_V7M_MPU_CTRL_ENABLE_MASK:
170 /* Enabled, but not for HardFault and NMI */
171 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
172 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
173 /* Enabled for all cases */
174 return false;
175 case 0:
176 default:
177 /*
178 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
179 * we warned about that in armv7m_nvic.c when the guest set it.
180 */
181 return true;
182 }
183 }
184
185 hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure);
186
187 switch (mmu_idx) {
188 case ARMMMUIdx_Stage2:
189 case ARMMMUIdx_Stage2_S:
190 /* HCR.DC means HCR.VM behaves as 1 */
191 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
192
193 case ARMMMUIdx_E10_0:
194 case ARMMMUIdx_E10_1:
195 case ARMMMUIdx_E10_1_PAN:
196 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
197 if (hcr_el2 & HCR_TGE) {
198 return true;
199 }
200 break;
201
202 case ARMMMUIdx_Stage1_E0:
203 case ARMMMUIdx_Stage1_E1:
204 case ARMMMUIdx_Stage1_E1_PAN:
205 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
206 if (hcr_el2 & HCR_DC) {
207 return true;
208 }
209 break;
210
211 case ARMMMUIdx_E20_0:
212 case ARMMMUIdx_E20_2:
213 case ARMMMUIdx_E20_2_PAN:
214 case ARMMMUIdx_E2:
215 case ARMMMUIdx_E3:
216 break;
217
218 case ARMMMUIdx_Phys_NS:
219 case ARMMMUIdx_Phys_S:
220 /* No translation for physical address spaces. */
221 return true;
222
223 default:
224 g_assert_not_reached();
225 }
226
227 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
228 }
229
230 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
231 {
232 /*
233 * For an S1 page table walk, the stage 1 attributes are always
234 * some form of "this is Normal memory". The combined S1+S2
235 * attributes are therefore only Device if stage 2 specifies Device.
236 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
237 * ie when cacheattrs.attrs bits [3:2] are 0b00.
238 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
239 * when cacheattrs.attrs bit [2] is 0.
240 */
241 if (hcr & HCR_FWB) {
242 return (attrs & 0x4) == 0;
243 } else {
244 return (attrs & 0xc) == 0;
245 }
246 }
247
248 /* Translate a S1 pagetable walk through S2 if needed. */
249 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
250 hwaddr addr, ARMMMUFaultInfo *fi)
251 {
252 bool is_secure = ptw->in_secure;
253 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
254 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
255 uint8_t pte_attrs;
256
257 ptw->out_virt = addr;
258
259 if (unlikely(ptw->in_debug)) {
260 /*
261 * From gdbstub, do not use softmmu so that we don't modify the
262 * state of the cpu at all, including softmmu tlb contents.
263 */
264 if (regime_is_stage2(s2_mmu_idx)) {
265 S1Translate s2ptw = {
266 .in_mmu_idx = s2_mmu_idx,
267 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
268 .in_secure = s2_mmu_idx == ARMMMUIdx_Stage2_S,
269 .in_debug = true,
270 };
271 GetPhysAddrResult s2 = { };
272
273 if (get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD,
274 false, &s2, fi)) {
275 goto fail;
276 }
277 ptw->out_phys = s2.f.phys_addr;
278 pte_attrs = s2.cacheattrs.attrs;
279 ptw->out_secure = s2.f.attrs.secure;
280 } else {
281 /* Regime is physical. */
282 ptw->out_phys = addr;
283 pte_attrs = 0;
284 ptw->out_secure = s2_mmu_idx == ARMMMUIdx_Phys_S;
285 }
286 ptw->out_host = NULL;
287 ptw->out_rw = false;
288 } else {
289 #ifdef CONFIG_TCG
290 CPUTLBEntryFull *full;
291 int flags;
292
293 env->tlb_fi = fi;
294 flags = probe_access_full(env, addr, 0, MMU_DATA_LOAD,
295 arm_to_core_mmu_idx(s2_mmu_idx),
296 true, &ptw->out_host, &full, 0);
297 env->tlb_fi = NULL;
298
299 if (unlikely(flags & TLB_INVALID_MASK)) {
300 goto fail;
301 }
302 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
303 ptw->out_rw = full->prot & PAGE_WRITE;
304 pte_attrs = full->pte_attrs;
305 ptw->out_secure = full->attrs.secure;
306 #else
307 g_assert_not_reached();
308 #endif
309 }
310
311 if (regime_is_stage2(s2_mmu_idx)) {
312 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
313
314 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
315 /*
316 * PTW set and S1 walk touched S2 Device memory:
317 * generate Permission fault.
318 */
319 fi->type = ARMFault_Permission;
320 fi->s2addr = addr;
321 fi->stage2 = true;
322 fi->s1ptw = true;
323 fi->s1ns = !is_secure;
324 return false;
325 }
326 }
327
328 ptw->out_be = regime_translation_big_endian(env, mmu_idx);
329 return true;
330
331 fail:
332 assert(fi->type != ARMFault_None);
333 fi->s2addr = addr;
334 fi->stage2 = true;
335 fi->s1ptw = true;
336 fi->s1ns = !is_secure;
337 return false;
338 }
339
340 /* All loads done in the course of a page table walk go through here. */
341 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
342 ARMMMUFaultInfo *fi)
343 {
344 CPUState *cs = env_cpu(env);
345 void *host = ptw->out_host;
346 uint32_t data;
347
348 if (likely(host)) {
349 /* Page tables are in RAM, and we have the host address. */
350 data = qatomic_read((uint32_t *)host);
351 if (ptw->out_be) {
352 data = be32_to_cpu(data);
353 } else {
354 data = le32_to_cpu(data);
355 }
356 } else {
357 /* Page tables are in MMIO. */
358 MemTxAttrs attrs = { .secure = ptw->out_secure };
359 AddressSpace *as = arm_addressspace(cs, attrs);
360 MemTxResult result = MEMTX_OK;
361
362 if (ptw->out_be) {
363 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
364 } else {
365 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
366 }
367 if (unlikely(result != MEMTX_OK)) {
368 fi->type = ARMFault_SyncExternalOnWalk;
369 fi->ea = arm_extabort_type(result);
370 return 0;
371 }
372 }
373 return data;
374 }
375
376 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
377 ARMMMUFaultInfo *fi)
378 {
379 CPUState *cs = env_cpu(env);
380 void *host = ptw->out_host;
381 uint64_t data;
382
383 if (likely(host)) {
384 /* Page tables are in RAM, and we have the host address. */
385 #ifdef CONFIG_ATOMIC64
386 data = qatomic_read__nocheck((uint64_t *)host);
387 if (ptw->out_be) {
388 data = be64_to_cpu(data);
389 } else {
390 data = le64_to_cpu(data);
391 }
392 #else
393 if (ptw->out_be) {
394 data = ldq_be_p(host);
395 } else {
396 data = ldq_le_p(host);
397 }
398 #endif
399 } else {
400 /* Page tables are in MMIO. */
401 MemTxAttrs attrs = { .secure = ptw->out_secure };
402 AddressSpace *as = arm_addressspace(cs, attrs);
403 MemTxResult result = MEMTX_OK;
404
405 if (ptw->out_be) {
406 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
407 } else {
408 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
409 }
410 if (unlikely(result != MEMTX_OK)) {
411 fi->type = ARMFault_SyncExternalOnWalk;
412 fi->ea = arm_extabort_type(result);
413 return 0;
414 }
415 }
416 return data;
417 }
418
419 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
420 uint64_t new_val, S1Translate *ptw,
421 ARMMMUFaultInfo *fi)
422 {
423 #ifdef TARGET_AARCH64
424 uint64_t cur_val;
425 void *host = ptw->out_host;
426
427 if (unlikely(!host)) {
428 fi->type = ARMFault_UnsuppAtomicUpdate;
429 fi->s1ptw = true;
430 return 0;
431 }
432
433 /*
434 * Raising a stage2 Protection fault for an atomic update to a read-only
435 * page is delayed until it is certain that there is a change to make.
436 */
437 if (unlikely(!ptw->out_rw)) {
438 int flags;
439 void *discard;
440
441 env->tlb_fi = fi;
442 flags = probe_access_flags(env, ptw->out_virt, 0, MMU_DATA_STORE,
443 arm_to_core_mmu_idx(ptw->in_ptw_idx),
444 true, &discard, 0);
445 env->tlb_fi = NULL;
446
447 if (unlikely(flags & TLB_INVALID_MASK)) {
448 assert(fi->type != ARMFault_None);
449 fi->s2addr = ptw->out_virt;
450 fi->stage2 = true;
451 fi->s1ptw = true;
452 fi->s1ns = !ptw->in_secure;
453 return 0;
454 }
455
456 /* In case CAS mismatches and we loop, remember writability. */
457 ptw->out_rw = true;
458 }
459
460 #ifdef CONFIG_ATOMIC64
461 if (ptw->out_be) {
462 old_val = cpu_to_be64(old_val);
463 new_val = cpu_to_be64(new_val);
464 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
465 cur_val = be64_to_cpu(cur_val);
466 } else {
467 old_val = cpu_to_le64(old_val);
468 new_val = cpu_to_le64(new_val);
469 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
470 cur_val = le64_to_cpu(cur_val);
471 }
472 #else
473 /*
474 * We can't support the full 64-bit atomic cmpxchg on the host.
475 * Because this is only used for FEAT_HAFDBS, which is only for AA64,
476 * we know that TCG_OVERSIZED_GUEST is set, which means that we are
477 * running in round-robin mode and could only race with dma i/o.
478 */
479 #if !TCG_OVERSIZED_GUEST
480 # error "Unexpected configuration"
481 #endif
482 bool locked = qemu_mutex_iothread_locked();
483 if (!locked) {
484 qemu_mutex_lock_iothread();
485 }
486 if (ptw->out_be) {
487 cur_val = ldq_be_p(host);
488 if (cur_val == old_val) {
489 stq_be_p(host, new_val);
490 }
491 } else {
492 cur_val = ldq_le_p(host);
493 if (cur_val == old_val) {
494 stq_le_p(host, new_val);
495 }
496 }
497 if (!locked) {
498 qemu_mutex_unlock_iothread();
499 }
500 #endif
501
502 return cur_val;
503 #else
504 /* AArch32 does not have FEAT_HADFS. */
505 g_assert_not_reached();
506 #endif
507 }
508
509 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
510 uint32_t *table, uint32_t address)
511 {
512 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
513 uint64_t tcr = regime_tcr(env, mmu_idx);
514 int maskshift = extract32(tcr, 0, 3);
515 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
516 uint32_t base_mask;
517
518 if (address & mask) {
519 if (tcr & TTBCR_PD1) {
520 /* Translation table walk disabled for TTBR1 */
521 return false;
522 }
523 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
524 } else {
525 if (tcr & TTBCR_PD0) {
526 /* Translation table walk disabled for TTBR0 */
527 return false;
528 }
529 base_mask = ~((uint32_t)0x3fffu >> maskshift);
530 *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
531 }
532 *table |= (address >> 18) & 0x3ffc;
533 return true;
534 }
535
536 /*
537 * Translate section/page access permissions to page R/W protection flags
538 * @env: CPUARMState
539 * @mmu_idx: MMU index indicating required translation regime
540 * @ap: The 3-bit access permissions (AP[2:0])
541 * @domain_prot: The 2-bit domain access permissions
542 * @is_user: TRUE if accessing from PL0
543 */
544 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
545 int ap, int domain_prot, bool is_user)
546 {
547 if (domain_prot == 3) {
548 return PAGE_READ | PAGE_WRITE;
549 }
550
551 switch (ap) {
552 case 0:
553 if (arm_feature(env, ARM_FEATURE_V7)) {
554 return 0;
555 }
556 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
557 case SCTLR_S:
558 return is_user ? 0 : PAGE_READ;
559 case SCTLR_R:
560 return PAGE_READ;
561 default:
562 return 0;
563 }
564 case 1:
565 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
566 case 2:
567 if (is_user) {
568 return PAGE_READ;
569 } else {
570 return PAGE_READ | PAGE_WRITE;
571 }
572 case 3:
573 return PAGE_READ | PAGE_WRITE;
574 case 4: /* Reserved. */
575 return 0;
576 case 5:
577 return is_user ? 0 : PAGE_READ;
578 case 6:
579 return PAGE_READ;
580 case 7:
581 if (!arm_feature(env, ARM_FEATURE_V6K)) {
582 return 0;
583 }
584 return PAGE_READ;
585 default:
586 g_assert_not_reached();
587 }
588 }
589
590 /*
591 * Translate section/page access permissions to page R/W protection flags
592 * @env: CPUARMState
593 * @mmu_idx: MMU index indicating required translation regime
594 * @ap: The 3-bit access permissions (AP[2:0])
595 * @domain_prot: The 2-bit domain access permissions
596 */
597 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
598 int ap, int domain_prot)
599 {
600 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
601 regime_is_user(env, mmu_idx));
602 }
603
604 /*
605 * Translate section/page access permissions to page R/W protection flags.
606 * @ap: The 2-bit simple AP (AP[2:1])
607 * @is_user: TRUE if accessing from PL0
608 */
609 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
610 {
611 switch (ap) {
612 case 0:
613 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
614 case 1:
615 return PAGE_READ | PAGE_WRITE;
616 case 2:
617 return is_user ? 0 : PAGE_READ;
618 case 3:
619 return PAGE_READ;
620 default:
621 g_assert_not_reached();
622 }
623 }
624
625 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
626 {
627 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
628 }
629
630 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
631 uint32_t address, MMUAccessType access_type,
632 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
633 {
634 int level = 1;
635 uint32_t table;
636 uint32_t desc;
637 int type;
638 int ap;
639 int domain = 0;
640 int domain_prot;
641 hwaddr phys_addr;
642 uint32_t dacr;
643
644 /* Pagetable walk. */
645 /* Lookup l1 descriptor. */
646 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
647 /* Section translation fault if page walk is disabled by PD0 or PD1 */
648 fi->type = ARMFault_Translation;
649 goto do_fault;
650 }
651 if (!S1_ptw_translate(env, ptw, table, fi)) {
652 goto do_fault;
653 }
654 desc = arm_ldl_ptw(env, ptw, fi);
655 if (fi->type != ARMFault_None) {
656 goto do_fault;
657 }
658 type = (desc & 3);
659 domain = (desc >> 5) & 0x0f;
660 if (regime_el(env, ptw->in_mmu_idx) == 1) {
661 dacr = env->cp15.dacr_ns;
662 } else {
663 dacr = env->cp15.dacr_s;
664 }
665 domain_prot = (dacr >> (domain * 2)) & 3;
666 if (type == 0) {
667 /* Section translation fault. */
668 fi->type = ARMFault_Translation;
669 goto do_fault;
670 }
671 if (type != 2) {
672 level = 2;
673 }
674 if (domain_prot == 0 || domain_prot == 2) {
675 fi->type = ARMFault_Domain;
676 goto do_fault;
677 }
678 if (type == 2) {
679 /* 1Mb section. */
680 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
681 ap = (desc >> 10) & 3;
682 result->f.lg_page_size = 20; /* 1MB */
683 } else {
684 /* Lookup l2 entry. */
685 if (type == 1) {
686 /* Coarse pagetable. */
687 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
688 } else {
689 /* Fine pagetable. */
690 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
691 }
692 if (!S1_ptw_translate(env, ptw, table, fi)) {
693 goto do_fault;
694 }
695 desc = arm_ldl_ptw(env, ptw, fi);
696 if (fi->type != ARMFault_None) {
697 goto do_fault;
698 }
699 switch (desc & 3) {
700 case 0: /* Page translation fault. */
701 fi->type = ARMFault_Translation;
702 goto do_fault;
703 case 1: /* 64k page. */
704 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
705 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
706 result->f.lg_page_size = 16;
707 break;
708 case 2: /* 4k page. */
709 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
710 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
711 result->f.lg_page_size = 12;
712 break;
713 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
714 if (type == 1) {
715 /* ARMv6/XScale extended small page format */
716 if (arm_feature(env, ARM_FEATURE_XSCALE)
717 || arm_feature(env, ARM_FEATURE_V6)) {
718 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
719 result->f.lg_page_size = 12;
720 } else {
721 /*
722 * UNPREDICTABLE in ARMv5; we choose to take a
723 * page translation fault.
724 */
725 fi->type = ARMFault_Translation;
726 goto do_fault;
727 }
728 } else {
729 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
730 result->f.lg_page_size = 10;
731 }
732 ap = (desc >> 4) & 3;
733 break;
734 default:
735 /* Never happens, but compiler isn't smart enough to tell. */
736 g_assert_not_reached();
737 }
738 }
739 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
740 result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
741 if (!(result->f.prot & (1 << access_type))) {
742 /* Access permission fault. */
743 fi->type = ARMFault_Permission;
744 goto do_fault;
745 }
746 result->f.phys_addr = phys_addr;
747 return false;
748 do_fault:
749 fi->domain = domain;
750 fi->level = level;
751 return true;
752 }
753
754 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
755 uint32_t address, MMUAccessType access_type,
756 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
757 {
758 ARMCPU *cpu = env_archcpu(env);
759 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
760 int level = 1;
761 uint32_t table;
762 uint32_t desc;
763 uint32_t xn;
764 uint32_t pxn = 0;
765 int type;
766 int ap;
767 int domain = 0;
768 int domain_prot;
769 hwaddr phys_addr;
770 uint32_t dacr;
771 bool ns;
772 int user_prot;
773
774 /* Pagetable walk. */
775 /* Lookup l1 descriptor. */
776 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
777 /* Section translation fault if page walk is disabled by PD0 or PD1 */
778 fi->type = ARMFault_Translation;
779 goto do_fault;
780 }
781 if (!S1_ptw_translate(env, ptw, table, fi)) {
782 goto do_fault;
783 }
784 desc = arm_ldl_ptw(env, ptw, fi);
785 if (fi->type != ARMFault_None) {
786 goto do_fault;
787 }
788 type = (desc & 3);
789 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
790 /* Section translation fault, or attempt to use the encoding
791 * which is Reserved on implementations without PXN.
792 */
793 fi->type = ARMFault_Translation;
794 goto do_fault;
795 }
796 if ((type == 1) || !(desc & (1 << 18))) {
797 /* Page or Section. */
798 domain = (desc >> 5) & 0x0f;
799 }
800 if (regime_el(env, mmu_idx) == 1) {
801 dacr = env->cp15.dacr_ns;
802 } else {
803 dacr = env->cp15.dacr_s;
804 }
805 if (type == 1) {
806 level = 2;
807 }
808 domain_prot = (dacr >> (domain * 2)) & 3;
809 if (domain_prot == 0 || domain_prot == 2) {
810 /* Section or Page domain fault */
811 fi->type = ARMFault_Domain;
812 goto do_fault;
813 }
814 if (type != 1) {
815 if (desc & (1 << 18)) {
816 /* Supersection. */
817 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
818 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
819 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
820 result->f.lg_page_size = 24; /* 16MB */
821 } else {
822 /* Section. */
823 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
824 result->f.lg_page_size = 20; /* 1MB */
825 }
826 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
827 xn = desc & (1 << 4);
828 pxn = desc & 1;
829 ns = extract32(desc, 19, 1);
830 } else {
831 if (cpu_isar_feature(aa32_pxn, cpu)) {
832 pxn = (desc >> 2) & 1;
833 }
834 ns = extract32(desc, 3, 1);
835 /* Lookup l2 entry. */
836 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
837 if (!S1_ptw_translate(env, ptw, table, fi)) {
838 goto do_fault;
839 }
840 desc = arm_ldl_ptw(env, ptw, fi);
841 if (fi->type != ARMFault_None) {
842 goto do_fault;
843 }
844 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
845 switch (desc & 3) {
846 case 0: /* Page translation fault. */
847 fi->type = ARMFault_Translation;
848 goto do_fault;
849 case 1: /* 64k page. */
850 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
851 xn = desc & (1 << 15);
852 result->f.lg_page_size = 16;
853 break;
854 case 2: case 3: /* 4k page. */
855 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
856 xn = desc & 1;
857 result->f.lg_page_size = 12;
858 break;
859 default:
860 /* Never happens, but compiler isn't smart enough to tell. */
861 g_assert_not_reached();
862 }
863 }
864 if (domain_prot == 3) {
865 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
866 } else {
867 if (pxn && !regime_is_user(env, mmu_idx)) {
868 xn = 1;
869 }
870 if (xn && access_type == MMU_INST_FETCH) {
871 fi->type = ARMFault_Permission;
872 goto do_fault;
873 }
874
875 if (arm_feature(env, ARM_FEATURE_V6K) &&
876 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
877 /* The simplified model uses AP[0] as an access control bit. */
878 if ((ap & 1) == 0) {
879 /* Access flag fault. */
880 fi->type = ARMFault_AccessFlag;
881 goto do_fault;
882 }
883 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
884 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
885 } else {
886 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
887 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
888 }
889 if (result->f.prot && !xn) {
890 result->f.prot |= PAGE_EXEC;
891 }
892 if (!(result->f.prot & (1 << access_type))) {
893 /* Access permission fault. */
894 fi->type = ARMFault_Permission;
895 goto do_fault;
896 }
897 if (regime_is_pan(env, mmu_idx) &&
898 !regime_is_user(env, mmu_idx) &&
899 user_prot &&
900 access_type != MMU_INST_FETCH) {
901 /* Privileged Access Never fault */
902 fi->type = ARMFault_Permission;
903 goto do_fault;
904 }
905 }
906 if (ns) {
907 /* The NS bit will (as required by the architecture) have no effect if
908 * the CPU doesn't support TZ or this is a non-secure translation
909 * regime, because the attribute will already be non-secure.
910 */
911 result->f.attrs.secure = false;
912 }
913 result->f.phys_addr = phys_addr;
914 return false;
915 do_fault:
916 fi->domain = domain;
917 fi->level = level;
918 return true;
919 }
920
921 /*
922 * Translate S2 section/page access permissions to protection flags
923 * @env: CPUARMState
924 * @s2ap: The 2-bit stage2 access permissions (S2AP)
925 * @xn: XN (execute-never) bits
926 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
927 */
928 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
929 {
930 int prot = 0;
931
932 if (s2ap & 1) {
933 prot |= PAGE_READ;
934 }
935 if (s2ap & 2) {
936 prot |= PAGE_WRITE;
937 }
938
939 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
940 switch (xn) {
941 case 0:
942 prot |= PAGE_EXEC;
943 break;
944 case 1:
945 if (s1_is_el0) {
946 prot |= PAGE_EXEC;
947 }
948 break;
949 case 2:
950 break;
951 case 3:
952 if (!s1_is_el0) {
953 prot |= PAGE_EXEC;
954 }
955 break;
956 default:
957 g_assert_not_reached();
958 }
959 } else {
960 if (!extract32(xn, 1, 1)) {
961 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
962 prot |= PAGE_EXEC;
963 }
964 }
965 }
966 return prot;
967 }
968
969 /*
970 * Translate section/page access permissions to protection flags
971 * @env: CPUARMState
972 * @mmu_idx: MMU index indicating required translation regime
973 * @is_aa64: TRUE if AArch64
974 * @ap: The 2-bit simple AP (AP[2:1])
975 * @ns: NS (non-secure) bit
976 * @xn: XN (execute-never) bit
977 * @pxn: PXN (privileged execute-never) bit
978 */
979 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
980 int ap, int ns, int xn, int pxn)
981 {
982 ARMCPU *cpu = env_archcpu(env);
983 bool is_user = regime_is_user(env, mmu_idx);
984 int prot_rw, user_rw;
985 bool have_wxn;
986 int wxn = 0;
987
988 assert(!regime_is_stage2(mmu_idx));
989
990 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
991 if (is_user) {
992 prot_rw = user_rw;
993 } else {
994 /*
995 * PAN controls can forbid data accesses but don't affect insn fetch.
996 * Plain PAN forbids data accesses if EL0 has data permissions;
997 * PAN3 forbids data accesses if EL0 has either data or exec perms.
998 * Note that for AArch64 the 'user can exec' case is exactly !xn.
999 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
1000 * do not affect EPAN.
1001 */
1002 if (user_rw && regime_is_pan(env, mmu_idx)) {
1003 prot_rw = 0;
1004 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
1005 regime_is_pan(env, mmu_idx) &&
1006 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1007 prot_rw = 0;
1008 } else {
1009 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
1010 }
1011 }
1012
1013 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
1014 return prot_rw;
1015 }
1016
1017 /* TODO have_wxn should be replaced with
1018 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1019 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1020 * compatible processors have EL2, which is required for [U]WXN.
1021 */
1022 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1023
1024 if (have_wxn) {
1025 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1026 }
1027
1028 if (is_aa64) {
1029 if (regime_has_2_ranges(mmu_idx) && !is_user) {
1030 xn = pxn || (user_rw & PAGE_WRITE);
1031 }
1032 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1033 switch (regime_el(env, mmu_idx)) {
1034 case 1:
1035 case 3:
1036 if (is_user) {
1037 xn = xn || !(user_rw & PAGE_READ);
1038 } else {
1039 int uwxn = 0;
1040 if (have_wxn) {
1041 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1042 }
1043 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1044 (uwxn && (user_rw & PAGE_WRITE));
1045 }
1046 break;
1047 case 2:
1048 break;
1049 }
1050 } else {
1051 xn = wxn = 0;
1052 }
1053
1054 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1055 return prot_rw;
1056 }
1057 return prot_rw | PAGE_EXEC;
1058 }
1059
1060 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1061 ARMMMUIdx mmu_idx)
1062 {
1063 uint64_t tcr = regime_tcr(env, mmu_idx);
1064 uint32_t el = regime_el(env, mmu_idx);
1065 int select, tsz;
1066 bool epd, hpd;
1067
1068 assert(mmu_idx != ARMMMUIdx_Stage2_S);
1069
1070 if (mmu_idx == ARMMMUIdx_Stage2) {
1071 /* VTCR */
1072 bool sext = extract32(tcr, 4, 1);
1073 bool sign = extract32(tcr, 3, 1);
1074
1075 /*
1076 * If the sign-extend bit is not the same as t0sz[3], the result
1077 * is unpredictable. Flag this as a guest error.
1078 */
1079 if (sign != sext) {
1080 qemu_log_mask(LOG_GUEST_ERROR,
1081 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1082 }
1083 tsz = sextract32(tcr, 0, 4) + 8;
1084 select = 0;
1085 hpd = false;
1086 epd = false;
1087 } else if (el == 2) {
1088 /* HTCR */
1089 tsz = extract32(tcr, 0, 3);
1090 select = 0;
1091 hpd = extract64(tcr, 24, 1);
1092 epd = false;
1093 } else {
1094 int t0sz = extract32(tcr, 0, 3);
1095 int t1sz = extract32(tcr, 16, 3);
1096
1097 if (t1sz == 0) {
1098 select = va > (0xffffffffu >> t0sz);
1099 } else {
1100 /* Note that we will detect errors later. */
1101 select = va >= ~(0xffffffffu >> t1sz);
1102 }
1103 if (!select) {
1104 tsz = t0sz;
1105 epd = extract32(tcr, 7, 1);
1106 hpd = extract64(tcr, 41, 1);
1107 } else {
1108 tsz = t1sz;
1109 epd = extract32(tcr, 23, 1);
1110 hpd = extract64(tcr, 42, 1);
1111 }
1112 /* For aarch32, hpd0 is not enabled without t2e as well. */
1113 hpd &= extract32(tcr, 6, 1);
1114 }
1115
1116 return (ARMVAParameters) {
1117 .tsz = tsz,
1118 .select = select,
1119 .epd = epd,
1120 .hpd = hpd,
1121 };
1122 }
1123
1124 /*
1125 * check_s2_mmu_setup
1126 * @cpu: ARMCPU
1127 * @is_aa64: True if the translation regime is in AArch64 state
1128 * @tcr: VTCR_EL2 or VSTCR_EL2
1129 * @ds: Effective value of TCR.DS.
1130 * @iasize: Bitsize of IPAs
1131 * @stride: Page-table stride (See the ARM ARM)
1132 *
1133 * Decode the starting level of the S2 lookup, returning INT_MIN if
1134 * the configuration is invalid.
1135 */
1136 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1137 bool ds, int iasize, int stride)
1138 {
1139 int sl0, sl2, startlevel, granulebits, levels;
1140 int s1_min_iasize, s1_max_iasize;
1141
1142 sl0 = extract32(tcr, 6, 2);
1143 if (is_aa64) {
1144 /*
1145 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1146 * so interleave AArch64.S2StartLevel.
1147 */
1148 switch (stride) {
1149 case 9: /* 4KB */
1150 /* SL2 is RES0 unless DS=1 & 4KB granule. */
1151 sl2 = extract64(tcr, 33, 1);
1152 if (ds && sl2) {
1153 if (sl0 != 0) {
1154 goto fail;
1155 }
1156 startlevel = -1;
1157 } else {
1158 startlevel = 2 - sl0;
1159 switch (sl0) {
1160 case 2:
1161 if (arm_pamax(cpu) < 44) {
1162 goto fail;
1163 }
1164 break;
1165 case 3:
1166 if (!cpu_isar_feature(aa64_st, cpu)) {
1167 goto fail;
1168 }
1169 startlevel = 3;
1170 break;
1171 }
1172 }
1173 break;
1174 case 11: /* 16KB */
1175 switch (sl0) {
1176 case 2:
1177 if (arm_pamax(cpu) < 42) {
1178 goto fail;
1179 }
1180 break;
1181 case 3:
1182 if (!ds) {
1183 goto fail;
1184 }
1185 break;
1186 }
1187 startlevel = 3 - sl0;
1188 break;
1189 case 13: /* 64KB */
1190 switch (sl0) {
1191 case 2:
1192 if (arm_pamax(cpu) < 44) {
1193 goto fail;
1194 }
1195 break;
1196 case 3:
1197 goto fail;
1198 }
1199 startlevel = 3 - sl0;
1200 break;
1201 default:
1202 g_assert_not_reached();
1203 }
1204 } else {
1205 /*
1206 * Things are simpler for AArch32 EL2, with only 4k pages.
1207 * There is no separate S2InvalidSL function, but AArch32.S2Walk
1208 * begins with walkparms.sl0 in {'1x'}.
1209 */
1210 assert(stride == 9);
1211 if (sl0 >= 2) {
1212 goto fail;
1213 }
1214 startlevel = 2 - sl0;
1215 }
1216
1217 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */
1218 levels = 3 - startlevel;
1219 granulebits = stride + 3;
1220
1221 s1_min_iasize = levels * stride + granulebits + 1;
1222 s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1223
1224 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1225 return startlevel;
1226 }
1227
1228 fail:
1229 return INT_MIN;
1230 }
1231
1232 /**
1233 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1234 *
1235 * Returns false if the translation was successful. Otherwise, phys_ptr,
1236 * attrs, prot and page_size may not be filled in, and the populated fsr
1237 * value provides information on why the translation aborted, in the format
1238 * of a long-format DFSR/IFSR fault register, with the following caveat:
1239 * the WnR bit is never set (the caller must do this).
1240 *
1241 * @env: CPUARMState
1242 * @ptw: Current and next stage parameters for the walk.
1243 * @address: virtual address to get physical address for
1244 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1245 * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2
1246 * (so this is a stage 2 page table walk),
1247 * must be true if this is stage 2 of a stage 1+2
1248 * walk for an EL0 access. If @mmu_idx is anything else,
1249 * @s1_is_el0 is ignored.
1250 * @result: set on translation success,
1251 * @fi: set to fault info if the translation fails
1252 */
1253 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1254 uint64_t address,
1255 MMUAccessType access_type, bool s1_is_el0,
1256 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1257 {
1258 ARMCPU *cpu = env_archcpu(env);
1259 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1260 bool is_secure = ptw->in_secure;
1261 int32_t level;
1262 ARMVAParameters param;
1263 uint64_t ttbr;
1264 hwaddr descaddr, indexmask, indexmask_grainsize;
1265 uint32_t tableattrs;
1266 target_ulong page_size;
1267 uint64_t attrs;
1268 int32_t stride;
1269 int addrsize, inputsize, outputsize;
1270 uint64_t tcr = regime_tcr(env, mmu_idx);
1271 int ap, ns, xn, pxn;
1272 uint32_t el = regime_el(env, mmu_idx);
1273 uint64_t descaddrmask;
1274 bool aarch64 = arm_el_is_aa64(env, el);
1275 uint64_t descriptor, new_descriptor;
1276 bool nstable;
1277
1278 /* TODO: This code does not support shareability levels. */
1279 if (aarch64) {
1280 int ps;
1281
1282 param = aa64_va_parameters(env, address, mmu_idx,
1283 access_type != MMU_INST_FETCH,
1284 !arm_el_is_aa64(env, 1));
1285 level = 0;
1286
1287 /*
1288 * If TxSZ is programmed to a value larger than the maximum,
1289 * or smaller than the effective minimum, it is IMPLEMENTATION
1290 * DEFINED whether we behave as if the field were programmed
1291 * within bounds, or if a level 0 Translation fault is generated.
1292 *
1293 * With FEAT_LVA, fault on less than minimum becomes required,
1294 * so our choice is to always raise the fault.
1295 */
1296 if (param.tsz_oob) {
1297 goto do_translation_fault;
1298 }
1299
1300 addrsize = 64 - 8 * param.tbi;
1301 inputsize = 64 - param.tsz;
1302
1303 /*
1304 * Bound PS by PARANGE to find the effective output address size.
1305 * ID_AA64MMFR0 is a read-only register so values outside of the
1306 * supported mappings can be considered an implementation error.
1307 */
1308 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1309 ps = MIN(ps, param.ps);
1310 assert(ps < ARRAY_SIZE(pamax_map));
1311 outputsize = pamax_map[ps];
1312
1313 /*
1314 * With LPA2, the effective output address (OA) size is at most 48 bits
1315 * unless TCR.DS == 1
1316 */
1317 if (!param.ds && param.gran != Gran64K) {
1318 outputsize = MIN(outputsize, 48);
1319 }
1320 } else {
1321 param = aa32_va_parameters(env, address, mmu_idx);
1322 level = 1;
1323 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1324 inputsize = addrsize - param.tsz;
1325 outputsize = 40;
1326 }
1327
1328 /*
1329 * We determined the region when collecting the parameters, but we
1330 * have not yet validated that the address is valid for the region.
1331 * Extract the top bits and verify that they all match select.
1332 *
1333 * For aa32, if inputsize == addrsize, then we have selected the
1334 * region by exclusion in aa32_va_parameters and there is no more
1335 * validation to do here.
1336 */
1337 if (inputsize < addrsize) {
1338 target_ulong top_bits = sextract64(address, inputsize,
1339 addrsize - inputsize);
1340 if (-top_bits != param.select) {
1341 /* The gap between the two regions is a Translation fault */
1342 goto do_translation_fault;
1343 }
1344 }
1345
1346 stride = arm_granule_bits(param.gran) - 3;
1347
1348 /*
1349 * Note that QEMU ignores shareability and cacheability attributes,
1350 * so we don't need to do anything with the SH, ORGN, IRGN fields
1351 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
1352 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1353 * implement any ASID-like capability so we can ignore it (instead
1354 * we will always flush the TLB any time the ASID is changed).
1355 */
1356 ttbr = regime_ttbr(env, mmu_idx, param.select);
1357
1358 /*
1359 * Here we should have set up all the parameters for the translation:
1360 * inputsize, ttbr, epd, stride, tbi
1361 */
1362
1363 if (param.epd) {
1364 /*
1365 * Translation table walk disabled => Translation fault on TLB miss
1366 * Note: This is always 0 on 64-bit EL2 and EL3.
1367 */
1368 goto do_translation_fault;
1369 }
1370
1371 if (!regime_is_stage2(mmu_idx)) {
1372 /*
1373 * The starting level depends on the virtual address size (which can
1374 * be up to 48 bits) and the translation granule size. It indicates
1375 * the number of strides (stride bits at a time) needed to
1376 * consume the bits of the input address. In the pseudocode this is:
1377 * level = 4 - RoundUp((inputsize - grainsize) / stride)
1378 * where their 'inputsize' is our 'inputsize', 'grainsize' is
1379 * our 'stride + 3' and 'stride' is our 'stride'.
1380 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1381 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1382 * = 4 - (inputsize - 4) / stride;
1383 */
1384 level = 4 - (inputsize - 4) / stride;
1385 } else {
1386 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1387 inputsize, stride);
1388 if (startlevel == INT_MIN) {
1389 level = 0;
1390 goto do_translation_fault;
1391 }
1392 level = startlevel;
1393 }
1394
1395 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1396 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1397
1398 /* Now we can extract the actual base address from the TTBR */
1399 descaddr = extract64(ttbr, 0, 48);
1400
1401 /*
1402 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1403 *
1404 * Otherwise, if the base address is out of range, raise AddressSizeFault.
1405 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1406 * but we've just cleared the bits above 47, so simplify the test.
1407 */
1408 if (outputsize > 48) {
1409 descaddr |= extract64(ttbr, 2, 4) << 48;
1410 } else if (descaddr >> outputsize) {
1411 level = 0;
1412 fi->type = ARMFault_AddressSize;
1413 goto do_fault;
1414 }
1415
1416 /*
1417 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1418 * and also to mask out CnP (bit 0) which could validly be non-zero.
1419 */
1420 descaddr &= ~indexmask;
1421
1422 /*
1423 * For AArch32, the address field in the descriptor goes up to bit 39
1424 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
1425 * or an AddressSize fault is raised. So for v8 we extract those SBZ
1426 * bits as part of the address, which will be checked via outputsize.
1427 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1428 * the highest bits of a 52-bit output are placed elsewhere.
1429 */
1430 if (param.ds) {
1431 descaddrmask = MAKE_64BIT_MASK(0, 50);
1432 } else if (arm_feature(env, ARM_FEATURE_V8)) {
1433 descaddrmask = MAKE_64BIT_MASK(0, 48);
1434 } else {
1435 descaddrmask = MAKE_64BIT_MASK(0, 40);
1436 }
1437 descaddrmask &= ~indexmask_grainsize;
1438
1439 /*
1440 * Secure stage 1 accesses start with the page table in secure memory and
1441 * can be downgraded to non-secure at any step. Non-secure accesses
1442 * remain non-secure. We implement this by just ORing in the NSTable/NS
1443 * bits at each step.
1444 * Stage 2 never gets this kind of downgrade.
1445 */
1446 tableattrs = is_secure ? 0 : (1 << 4);
1447
1448 next_level:
1449 descaddr |= (address >> (stride * (4 - level))) & indexmask;
1450 descaddr &= ~7ULL;
1451 nstable = !regime_is_stage2(mmu_idx) && extract32(tableattrs, 4, 1);
1452 if (nstable) {
1453 /*
1454 * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1455 * Assert that the non-secure idx are even, and relative order.
1456 */
1457 QEMU_BUILD_BUG_ON((ARMMMUIdx_Phys_NS & 1) != 0);
1458 QEMU_BUILD_BUG_ON((ARMMMUIdx_Stage2 & 1) != 0);
1459 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS + 1 != ARMMMUIdx_Phys_S);
1460 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2 + 1 != ARMMMUIdx_Stage2_S);
1461 ptw->in_ptw_idx &= ~1;
1462 ptw->in_secure = false;
1463 }
1464 if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1465 goto do_fault;
1466 }
1467 descriptor = arm_ldq_ptw(env, ptw, fi);
1468 if (fi->type != ARMFault_None) {
1469 goto do_fault;
1470 }
1471 new_descriptor = descriptor;
1472
1473 restart_atomic_update:
1474 if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) {
1475 /* Invalid, or the Reserved level 3 encoding */
1476 goto do_translation_fault;
1477 }
1478
1479 descaddr = descriptor & descaddrmask;
1480
1481 /*
1482 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1483 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
1484 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
1485 * raise AddressSizeFault.
1486 */
1487 if (outputsize > 48) {
1488 if (param.ds) {
1489 descaddr |= extract64(descriptor, 8, 2) << 50;
1490 } else {
1491 descaddr |= extract64(descriptor, 12, 4) << 48;
1492 }
1493 } else if (descaddr >> outputsize) {
1494 fi->type = ARMFault_AddressSize;
1495 goto do_fault;
1496 }
1497
1498 if ((descriptor & 2) && (level < 3)) {
1499 /*
1500 * Table entry. The top five bits are attributes which may
1501 * propagate down through lower levels of the table (and
1502 * which are all arranged so that 0 means "no effect", so
1503 * we can gather them up by ORing in the bits at each level).
1504 */
1505 tableattrs |= extract64(descriptor, 59, 5);
1506 level++;
1507 indexmask = indexmask_grainsize;
1508 goto next_level;
1509 }
1510
1511 /*
1512 * Block entry at level 1 or 2, or page entry at level 3.
1513 * These are basically the same thing, although the number
1514 * of bits we pull in from the vaddr varies. Note that although
1515 * descaddrmask masks enough of the low bits of the descriptor
1516 * to give a correct page or table address, the address field
1517 * in a block descriptor is smaller; so we need to explicitly
1518 * clear the lower bits here before ORing in the low vaddr bits.
1519 *
1520 * Afterward, descaddr is the final physical address.
1521 */
1522 page_size = (1ULL << ((stride * (4 - level)) + 3));
1523 descaddr &= ~(hwaddr)(page_size - 1);
1524 descaddr |= (address & (page_size - 1));
1525
1526 if (likely(!ptw->in_debug)) {
1527 /*
1528 * Access flag.
1529 * If HA is enabled, prepare to update the descriptor below.
1530 * Otherwise, pass the access fault on to software.
1531 */
1532 if (!(descriptor & (1 << 10))) {
1533 if (param.ha) {
1534 new_descriptor |= 1 << 10; /* AF */
1535 } else {
1536 fi->type = ARMFault_AccessFlag;
1537 goto do_fault;
1538 }
1539 }
1540
1541 /*
1542 * Dirty Bit.
1543 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1544 * bit for writeback. The actual write protection test may still be
1545 * overridden by tableattrs, to be merged below.
1546 */
1547 if (param.hd
1548 && extract64(descriptor, 51, 1) /* DBM */
1549 && access_type == MMU_DATA_STORE) {
1550 if (regime_is_stage2(mmu_idx)) {
1551 new_descriptor |= 1ull << 7; /* set S2AP[1] */
1552 } else {
1553 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1554 }
1555 }
1556 }
1557
1558 /*
1559 * Extract attributes from the (modified) descriptor, and apply
1560 * table descriptors. Stage 2 table descriptors do not include
1561 * any attribute fields. HPD disables all the table attributes
1562 * except NSTable.
1563 */
1564 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1565 if (!regime_is_stage2(mmu_idx)) {
1566 attrs |= nstable << 5; /* NS */
1567 if (!param.hpd) {
1568 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */
1569 /*
1570 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1571 * means "force PL1 access only", which means forcing AP[1] to 0.
1572 */
1573 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1574 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */
1575 }
1576 }
1577
1578 ap = extract32(attrs, 6, 2);
1579 if (regime_is_stage2(mmu_idx)) {
1580 ns = mmu_idx == ARMMMUIdx_Stage2;
1581 xn = extract64(attrs, 53, 2);
1582 result->f.prot = get_S2prot(env, ap, xn, s1_is_el0);
1583 } else {
1584 ns = extract32(attrs, 5, 1);
1585 xn = extract64(attrs, 54, 1);
1586 pxn = extract64(attrs, 53, 1);
1587 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
1588 }
1589
1590 if (!(result->f.prot & (1 << access_type))) {
1591 fi->type = ARMFault_Permission;
1592 goto do_fault;
1593 }
1594
1595 /* If FEAT_HAFDBS has made changes, update the PTE. */
1596 if (new_descriptor != descriptor) {
1597 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
1598 if (fi->type != ARMFault_None) {
1599 goto do_fault;
1600 }
1601 /*
1602 * I_YZSVV says that if the in-memory descriptor has changed,
1603 * then we must use the information in that new value
1604 * (which might include a different output address, different
1605 * attributes, or generate a fault).
1606 * Restart the handling of the descriptor value from scratch.
1607 */
1608 if (new_descriptor != descriptor) {
1609 descriptor = new_descriptor;
1610 goto restart_atomic_update;
1611 }
1612 }
1613
1614 if (ns) {
1615 /*
1616 * The NS bit will (as required by the architecture) have no effect if
1617 * the CPU doesn't support TZ or this is a non-secure translation
1618 * regime, because the attribute will already be non-secure.
1619 */
1620 result->f.attrs.secure = false;
1621 }
1622
1623 if (regime_is_stage2(mmu_idx)) {
1624 result->cacheattrs.is_s2_format = true;
1625 result->cacheattrs.attrs = extract32(attrs, 2, 4);
1626 } else {
1627 /* Index into MAIR registers for cache attributes */
1628 uint8_t attrindx = extract32(attrs, 2, 3);
1629 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
1630 assert(attrindx <= 7);
1631 result->cacheattrs.is_s2_format = false;
1632 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
1633
1634 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
1635 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
1636 result->f.guarded = extract64(attrs, 50, 1); /* GP */
1637 }
1638 }
1639
1640 /*
1641 * For FEAT_LPA2 and effective DS, the SH field in the attributes
1642 * was re-purposed for output address bits. The SH attribute in
1643 * that case comes from TCR_ELx, which we extracted earlier.
1644 */
1645 if (param.ds) {
1646 result->cacheattrs.shareability = param.sh;
1647 } else {
1648 result->cacheattrs.shareability = extract32(attrs, 8, 2);
1649 }
1650
1651 result->f.phys_addr = descaddr;
1652 result->f.lg_page_size = ctz64(page_size);
1653 return false;
1654
1655 do_translation_fault:
1656 fi->type = ARMFault_Translation;
1657 do_fault:
1658 fi->level = level;
1659 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
1660 fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx);
1661 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
1662 return true;
1663 }
1664
1665 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
1666 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1667 bool is_secure, GetPhysAddrResult *result,
1668 ARMMMUFaultInfo *fi)
1669 {
1670 int n;
1671 uint32_t mask;
1672 uint32_t base;
1673 bool is_user = regime_is_user(env, mmu_idx);
1674
1675 if (regime_translation_disabled(env, mmu_idx, is_secure)) {
1676 /* MPU disabled. */
1677 result->f.phys_addr = address;
1678 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1679 return false;
1680 }
1681
1682 result->f.phys_addr = address;
1683 for (n = 7; n >= 0; n--) {
1684 base = env->cp15.c6_region[n];
1685 if ((base & 1) == 0) {
1686 continue;
1687 }
1688 mask = 1 << ((base >> 1) & 0x1f);
1689 /* Keep this shift separate from the above to avoid an
1690 (undefined) << 32. */
1691 mask = (mask << 1) - 1;
1692 if (((base ^ address) & ~mask) == 0) {
1693 break;
1694 }
1695 }
1696 if (n < 0) {
1697 fi->type = ARMFault_Background;
1698 return true;
1699 }
1700
1701 if (access_type == MMU_INST_FETCH) {
1702 mask = env->cp15.pmsav5_insn_ap;
1703 } else {
1704 mask = env->cp15.pmsav5_data_ap;
1705 }
1706 mask = (mask >> (n * 4)) & 0xf;
1707 switch (mask) {
1708 case 0:
1709 fi->type = ARMFault_Permission;
1710 fi->level = 1;
1711 return true;
1712 case 1:
1713 if (is_user) {
1714 fi->type = ARMFault_Permission;
1715 fi->level = 1;
1716 return true;
1717 }
1718 result->f.prot = PAGE_READ | PAGE_WRITE;
1719 break;
1720 case 2:
1721 result->f.prot = PAGE_READ;
1722 if (!is_user) {
1723 result->f.prot |= PAGE_WRITE;
1724 }
1725 break;
1726 case 3:
1727 result->f.prot = PAGE_READ | PAGE_WRITE;
1728 break;
1729 case 5:
1730 if (is_user) {
1731 fi->type = ARMFault_Permission;
1732 fi->level = 1;
1733 return true;
1734 }
1735 result->f.prot = PAGE_READ;
1736 break;
1737 case 6:
1738 result->f.prot = PAGE_READ;
1739 break;
1740 default:
1741 /* Bad permission. */
1742 fi->type = ARMFault_Permission;
1743 fi->level = 1;
1744 return true;
1745 }
1746 result->f.prot |= PAGE_EXEC;
1747 return false;
1748 }
1749
1750 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
1751 int32_t address, uint8_t *prot)
1752 {
1753 if (!arm_feature(env, ARM_FEATURE_M)) {
1754 *prot = PAGE_READ | PAGE_WRITE;
1755 switch (address) {
1756 case 0xF0000000 ... 0xFFFFFFFF:
1757 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
1758 /* hivecs execing is ok */
1759 *prot |= PAGE_EXEC;
1760 }
1761 break;
1762 case 0x00000000 ... 0x7FFFFFFF:
1763 *prot |= PAGE_EXEC;
1764 break;
1765 }
1766 } else {
1767 /* Default system address map for M profile cores.
1768 * The architecture specifies which regions are execute-never;
1769 * at the MPU level no other checks are defined.
1770 */
1771 switch (address) {
1772 case 0x00000000 ... 0x1fffffff: /* ROM */
1773 case 0x20000000 ... 0x3fffffff: /* SRAM */
1774 case 0x60000000 ... 0x7fffffff: /* RAM */
1775 case 0x80000000 ... 0x9fffffff: /* RAM */
1776 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1777 break;
1778 case 0x40000000 ... 0x5fffffff: /* Peripheral */
1779 case 0xa0000000 ... 0xbfffffff: /* Device */
1780 case 0xc0000000 ... 0xdfffffff: /* Device */
1781 case 0xe0000000 ... 0xffffffff: /* System */
1782 *prot = PAGE_READ | PAGE_WRITE;
1783 break;
1784 default:
1785 g_assert_not_reached();
1786 }
1787 }
1788 }
1789
1790 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
1791 {
1792 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
1793 return arm_feature(env, ARM_FEATURE_M) &&
1794 extract32(address, 20, 12) == 0xe00;
1795 }
1796
1797 static bool m_is_system_region(CPUARMState *env, uint32_t address)
1798 {
1799 /*
1800 * True if address is in the M profile system region
1801 * 0xe0000000 - 0xffffffff
1802 */
1803 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
1804 }
1805
1806 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1807 bool is_secure, bool is_user)
1808 {
1809 /*
1810 * Return true if we should use the default memory map as a
1811 * "background" region if there are no hits against any MPU regions.
1812 */
1813 CPUARMState *env = &cpu->env;
1814
1815 if (is_user) {
1816 return false;
1817 }
1818
1819 if (arm_feature(env, ARM_FEATURE_M)) {
1820 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
1821 }
1822
1823 if (mmu_idx == ARMMMUIdx_Stage2) {
1824 return false;
1825 }
1826
1827 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
1828 }
1829
1830 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
1831 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1832 bool secure, GetPhysAddrResult *result,
1833 ARMMMUFaultInfo *fi)
1834 {
1835 ARMCPU *cpu = env_archcpu(env);
1836 int n;
1837 bool is_user = regime_is_user(env, mmu_idx);
1838
1839 result->f.phys_addr = address;
1840 result->f.lg_page_size = TARGET_PAGE_BITS;
1841 result->f.prot = 0;
1842
1843 if (regime_translation_disabled(env, mmu_idx, secure) ||
1844 m_is_ppb_region(env, address)) {
1845 /*
1846 * MPU disabled or M profile PPB access: use default memory map.
1847 * The other case which uses the default memory map in the
1848 * v7M ARM ARM pseudocode is exception vector reads from the vector
1849 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
1850 * which always does a direct read using address_space_ldl(), rather
1851 * than going via this function, so we don't need to check that here.
1852 */
1853 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
1854 } else { /* MPU enabled */
1855 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1856 /* region search */
1857 uint32_t base = env->pmsav7.drbar[n];
1858 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
1859 uint32_t rmask;
1860 bool srdis = false;
1861
1862 if (!(env->pmsav7.drsr[n] & 0x1)) {
1863 continue;
1864 }
1865
1866 if (!rsize) {
1867 qemu_log_mask(LOG_GUEST_ERROR,
1868 "DRSR[%d]: Rsize field cannot be 0\n", n);
1869 continue;
1870 }
1871 rsize++;
1872 rmask = (1ull << rsize) - 1;
1873
1874 if (base & rmask) {
1875 qemu_log_mask(LOG_GUEST_ERROR,
1876 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
1877 "to DRSR region size, mask = 0x%" PRIx32 "\n",
1878 n, base, rmask);
1879 continue;
1880 }
1881
1882 if (address < base || address > base + rmask) {
1883 /*
1884 * Address not in this region. We must check whether the
1885 * region covers addresses in the same page as our address.
1886 * In that case we must not report a size that covers the
1887 * whole page for a subsequent hit against a different MPU
1888 * region or the background region, because it would result in
1889 * incorrect TLB hits for subsequent accesses to addresses that
1890 * are in this MPU region.
1891 */
1892 if (ranges_overlap(base, rmask,
1893 address & TARGET_PAGE_MASK,
1894 TARGET_PAGE_SIZE)) {
1895 result->f.lg_page_size = 0;
1896 }
1897 continue;
1898 }
1899
1900 /* Region matched */
1901
1902 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
1903 int i, snd;
1904 uint32_t srdis_mask;
1905
1906 rsize -= 3; /* sub region size (power of 2) */
1907 snd = ((address - base) >> rsize) & 0x7;
1908 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
1909
1910 srdis_mask = srdis ? 0x3 : 0x0;
1911 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
1912 /*
1913 * This will check in groups of 2, 4 and then 8, whether
1914 * the subregion bits are consistent. rsize is incremented
1915 * back up to give the region size, considering consistent
1916 * adjacent subregions as one region. Stop testing if rsize
1917 * is already big enough for an entire QEMU page.
1918 */
1919 int snd_rounded = snd & ~(i - 1);
1920 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
1921 snd_rounded + 8, i);
1922 if (srdis_mask ^ srdis_multi) {
1923 break;
1924 }
1925 srdis_mask = (srdis_mask << i) | srdis_mask;
1926 rsize++;
1927 }
1928 }
1929 if (srdis) {
1930 continue;
1931 }
1932 if (rsize < TARGET_PAGE_BITS) {
1933 result->f.lg_page_size = rsize;
1934 }
1935 break;
1936 }
1937
1938 if (n == -1) { /* no hits */
1939 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1940 /* background fault */
1941 fi->type = ARMFault_Background;
1942 return true;
1943 }
1944 get_phys_addr_pmsav7_default(env, mmu_idx, address,
1945 &result->f.prot);
1946 } else { /* a MPU hit! */
1947 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
1948 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
1949
1950 if (m_is_system_region(env, address)) {
1951 /* System space is always execute never */
1952 xn = 1;
1953 }
1954
1955 if (is_user) { /* User mode AP bit decoding */
1956 switch (ap) {
1957 case 0:
1958 case 1:
1959 case 5:
1960 break; /* no access */
1961 case 3:
1962 result->f.prot |= PAGE_WRITE;
1963 /* fall through */
1964 case 2:
1965 case 6:
1966 result->f.prot |= PAGE_READ | PAGE_EXEC;
1967 break;
1968 case 7:
1969 /* for v7M, same as 6; for R profile a reserved value */
1970 if (arm_feature(env, ARM_FEATURE_M)) {
1971 result->f.prot |= PAGE_READ | PAGE_EXEC;
1972 break;
1973 }
1974 /* fall through */
1975 default:
1976 qemu_log_mask(LOG_GUEST_ERROR,
1977 "DRACR[%d]: Bad value for AP bits: 0x%"
1978 PRIx32 "\n", n, ap);
1979 }
1980 } else { /* Priv. mode AP bits decoding */
1981 switch (ap) {
1982 case 0:
1983 break; /* no access */
1984 case 1:
1985 case 2:
1986 case 3:
1987 result->f.prot |= PAGE_WRITE;
1988 /* fall through */
1989 case 5:
1990 case 6:
1991 result->f.prot |= PAGE_READ | PAGE_EXEC;
1992 break;
1993 case 7:
1994 /* for v7M, same as 6; for R profile a reserved value */
1995 if (arm_feature(env, ARM_FEATURE_M)) {
1996 result->f.prot |= PAGE_READ | PAGE_EXEC;
1997 break;
1998 }
1999 /* fall through */
2000 default:
2001 qemu_log_mask(LOG_GUEST_ERROR,
2002 "DRACR[%d]: Bad value for AP bits: 0x%"
2003 PRIx32 "\n", n, ap);
2004 }
2005 }
2006
2007 /* execute never */
2008 if (xn) {
2009 result->f.prot &= ~PAGE_EXEC;
2010 }
2011 }
2012 }
2013
2014 fi->type = ARMFault_Permission;
2015 fi->level = 1;
2016 return !(result->f.prot & (1 << access_type));
2017 }
2018
2019 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2020 uint32_t secure)
2021 {
2022 if (regime_el(env, mmu_idx) == 2) {
2023 return env->pmsav8.hprbar;
2024 } else {
2025 return env->pmsav8.rbar[secure];
2026 }
2027 }
2028
2029 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2030 uint32_t secure)
2031 {
2032 if (regime_el(env, mmu_idx) == 2) {
2033 return env->pmsav8.hprlar;
2034 } else {
2035 return env->pmsav8.rlar[secure];
2036 }
2037 }
2038
2039 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2040 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2041 bool secure, GetPhysAddrResult *result,
2042 ARMMMUFaultInfo *fi, uint32_t *mregion)
2043 {
2044 /*
2045 * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2046 * that a full phys-to-virt translation does).
2047 * mregion is (if not NULL) set to the region number which matched,
2048 * or -1 if no region number is returned (MPU off, address did not
2049 * hit a region, address hit in multiple regions).
2050 * If the region hit doesn't cover the entire TARGET_PAGE the address
2051 * is within, then we set the result page_size to 1 to force the
2052 * memory system to use a subpage.
2053 */
2054 ARMCPU *cpu = env_archcpu(env);
2055 bool is_user = regime_is_user(env, mmu_idx);
2056 int n;
2057 int matchregion = -1;
2058 bool hit = false;
2059 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2060 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2061 int region_counter;
2062
2063 if (regime_el(env, mmu_idx) == 2) {
2064 region_counter = cpu->pmsav8r_hdregion;
2065 } else {
2066 region_counter = cpu->pmsav7_dregion;
2067 }
2068
2069 result->f.lg_page_size = TARGET_PAGE_BITS;
2070 result->f.phys_addr = address;
2071 result->f.prot = 0;
2072 if (mregion) {
2073 *mregion = -1;
2074 }
2075
2076 if (mmu_idx == ARMMMUIdx_Stage2) {
2077 fi->stage2 = true;
2078 }
2079
2080 /*
2081 * Unlike the ARM ARM pseudocode, we don't need to check whether this
2082 * was an exception vector read from the vector table (which is always
2083 * done using the default system address map), because those accesses
2084 * are done in arm_v7m_load_vector(), which always does a direct
2085 * read using address_space_ldl(), rather than going via this function.
2086 */
2087 if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */
2088 hit = true;
2089 } else if (m_is_ppb_region(env, address)) {
2090 hit = true;
2091 } else {
2092 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2093 hit = true;
2094 }
2095
2096 uint32_t bitmask;
2097 if (arm_feature(env, ARM_FEATURE_M)) {
2098 bitmask = 0x1f;
2099 } else {
2100 bitmask = 0x3f;
2101 fi->level = 0;
2102 }
2103
2104 for (n = region_counter - 1; n >= 0; n--) {
2105 /* region search */
2106 /*
2107 * Note that the base address is bits [31:x] from the register
2108 * with bits [x-1:0] all zeroes, but the limit address is bits
2109 * [31:x] from the register with bits [x:0] all ones. Where x is
2110 * 5 for Cortex-M and 6 for Cortex-R
2111 */
2112 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2113 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2114
2115 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2116 /* Region disabled */
2117 continue;
2118 }
2119
2120 if (address < base || address > limit) {
2121 /*
2122 * Address not in this region. We must check whether the
2123 * region covers addresses in the same page as our address.
2124 * In that case we must not report a size that covers the
2125 * whole page for a subsequent hit against a different MPU
2126 * region or the background region, because it would result in
2127 * incorrect TLB hits for subsequent accesses to addresses that
2128 * are in this MPU region.
2129 */
2130 if (limit >= base &&
2131 ranges_overlap(base, limit - base + 1,
2132 addr_page_base,
2133 TARGET_PAGE_SIZE)) {
2134 result->f.lg_page_size = 0;
2135 }
2136 continue;
2137 }
2138
2139 if (base > addr_page_base || limit < addr_page_limit) {
2140 result->f.lg_page_size = 0;
2141 }
2142
2143 if (matchregion != -1) {
2144 /*
2145 * Multiple regions match -- always a failure (unlike
2146 * PMSAv7 where highest-numbered-region wins)
2147 */
2148 fi->type = ARMFault_Permission;
2149 if (arm_feature(env, ARM_FEATURE_M)) {
2150 fi->level = 1;
2151 }
2152 return true;
2153 }
2154
2155 matchregion = n;
2156 hit = true;
2157 }
2158 }
2159
2160 if (!hit) {
2161 if (arm_feature(env, ARM_FEATURE_M)) {
2162 fi->type = ARMFault_Background;
2163 } else {
2164 fi->type = ARMFault_Permission;
2165 }
2166 return true;
2167 }
2168
2169 if (matchregion == -1) {
2170 /* hit using the background region */
2171 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2172 } else {
2173 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2174 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2175 uint32_t ap = extract32(matched_rbar, 1, 2);
2176 uint32_t xn = extract32(matched_rbar, 0, 1);
2177 bool pxn = false;
2178
2179 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2180 pxn = extract32(matched_rlar, 4, 1);
2181 }
2182
2183 if (m_is_system_region(env, address)) {
2184 /* System space is always execute never */
2185 xn = 1;
2186 }
2187
2188 if (regime_el(env, mmu_idx) == 2) {
2189 result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2190 mmu_idx != ARMMMUIdx_E2);
2191 } else {
2192 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2193 }
2194
2195 if (!arm_feature(env, ARM_FEATURE_M)) {
2196 uint8_t attrindx = extract32(matched_rlar, 1, 3);
2197 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2198 uint8_t sh = extract32(matched_rlar, 3, 2);
2199
2200 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2201 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2202 xn = 0x1;
2203 }
2204
2205 if ((regime_el(env, mmu_idx) == 1) &&
2206 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2207 pxn = 0x1;
2208 }
2209
2210 result->cacheattrs.is_s2_format = false;
2211 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2212 result->cacheattrs.shareability = sh;
2213 }
2214
2215 if (result->f.prot && !xn && !(pxn && !is_user)) {
2216 result->f.prot |= PAGE_EXEC;
2217 }
2218
2219 if (mregion) {
2220 *mregion = matchregion;
2221 }
2222 }
2223
2224 fi->type = ARMFault_Permission;
2225 if (arm_feature(env, ARM_FEATURE_M)) {
2226 fi->level = 1;
2227 }
2228 return !(result->f.prot & (1 << access_type));
2229 }
2230
2231 static bool v8m_is_sau_exempt(CPUARMState *env,
2232 uint32_t address, MMUAccessType access_type)
2233 {
2234 /*
2235 * The architecture specifies that certain address ranges are
2236 * exempt from v8M SAU/IDAU checks.
2237 */
2238 return
2239 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2240 (address >= 0xe0000000 && address <= 0xe0002fff) ||
2241 (address >= 0xe000e000 && address <= 0xe000efff) ||
2242 (address >= 0xe002e000 && address <= 0xe002efff) ||
2243 (address >= 0xe0040000 && address <= 0xe0041fff) ||
2244 (address >= 0xe00ff000 && address <= 0xe00fffff);
2245 }
2246
2247 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2248 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2249 bool is_secure, V8M_SAttributes *sattrs)
2250 {
2251 /*
2252 * Look up the security attributes for this address. Compare the
2253 * pseudocode SecurityCheck() function.
2254 * We assume the caller has zero-initialized *sattrs.
2255 */
2256 ARMCPU *cpu = env_archcpu(env);
2257 int r;
2258 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2259 int idau_region = IREGION_NOTVALID;
2260 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2261 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2262
2263 if (cpu->idau) {
2264 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2265 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2266
2267 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2268 &idau_nsc);
2269 }
2270
2271 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2272 /* 0xf0000000..0xffffffff is always S for insn fetches */
2273 return;
2274 }
2275
2276 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2277 sattrs->ns = !is_secure;
2278 return;
2279 }
2280
2281 if (idau_region != IREGION_NOTVALID) {
2282 sattrs->irvalid = true;
2283 sattrs->iregion = idau_region;
2284 }
2285
2286 switch (env->sau.ctrl & 3) {
2287 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2288 break;
2289 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2290 sattrs->ns = true;
2291 break;
2292 default: /* SAU.ENABLE == 1 */
2293 for (r = 0; r < cpu->sau_sregion; r++) {
2294 if (env->sau.rlar[r] & 1) {
2295 uint32_t base = env->sau.rbar[r] & ~0x1f;
2296 uint32_t limit = env->sau.rlar[r] | 0x1f;
2297
2298 if (base <= address && limit >= address) {
2299 if (base > addr_page_base || limit < addr_page_limit) {
2300 sattrs->subpage = true;
2301 }
2302 if (sattrs->srvalid) {
2303 /*
2304 * If we hit in more than one region then we must report
2305 * as Secure, not NS-Callable, with no valid region
2306 * number info.
2307 */
2308 sattrs->ns = false;
2309 sattrs->nsc = false;
2310 sattrs->sregion = 0;
2311 sattrs->srvalid = false;
2312 break;
2313 } else {
2314 if (env->sau.rlar[r] & 2) {
2315 sattrs->nsc = true;
2316 } else {
2317 sattrs->ns = true;
2318 }
2319 sattrs->srvalid = true;
2320 sattrs->sregion = r;
2321 }
2322 } else {
2323 /*
2324 * Address not in this region. We must check whether the
2325 * region covers addresses in the same page as our address.
2326 * In that case we must not report a size that covers the
2327 * whole page for a subsequent hit against a different MPU
2328 * region or the background region, because it would result
2329 * in incorrect TLB hits for subsequent accesses to
2330 * addresses that are in this MPU region.
2331 */
2332 if (limit >= base &&
2333 ranges_overlap(base, limit - base + 1,
2334 addr_page_base,
2335 TARGET_PAGE_SIZE)) {
2336 sattrs->subpage = true;
2337 }
2338 }
2339 }
2340 }
2341 break;
2342 }
2343
2344 /*
2345 * The IDAU will override the SAU lookup results if it specifies
2346 * higher security than the SAU does.
2347 */
2348 if (!idau_ns) {
2349 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2350 sattrs->ns = false;
2351 sattrs->nsc = idau_nsc;
2352 }
2353 }
2354 }
2355
2356 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
2357 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2358 bool secure, GetPhysAddrResult *result,
2359 ARMMMUFaultInfo *fi)
2360 {
2361 V8M_SAttributes sattrs = {};
2362 bool ret;
2363
2364 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2365 v8m_security_lookup(env, address, access_type, mmu_idx,
2366 secure, &sattrs);
2367 if (access_type == MMU_INST_FETCH) {
2368 /*
2369 * Instruction fetches always use the MMU bank and the
2370 * transaction attribute determined by the fetch address,
2371 * regardless of CPU state. This is painful for QEMU
2372 * to handle, because it would mean we need to encode
2373 * into the mmu_idx not just the (user, negpri) information
2374 * for the current security state but also that for the
2375 * other security state, which would balloon the number
2376 * of mmu_idx values needed alarmingly.
2377 * Fortunately we can avoid this because it's not actually
2378 * possible to arbitrarily execute code from memory with
2379 * the wrong security attribute: it will always generate
2380 * an exception of some kind or another, apart from the
2381 * special case of an NS CPU executing an SG instruction
2382 * in S&NSC memory. So we always just fail the translation
2383 * here and sort things out in the exception handler
2384 * (including possibly emulating an SG instruction).
2385 */
2386 if (sattrs.ns != !secure) {
2387 if (sattrs.nsc) {
2388 fi->type = ARMFault_QEMU_NSCExec;
2389 } else {
2390 fi->type = ARMFault_QEMU_SFault;
2391 }
2392 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2393 result->f.phys_addr = address;
2394 result->f.prot = 0;
2395 return true;
2396 }
2397 } else {
2398 /*
2399 * For data accesses we always use the MMU bank indicated
2400 * by the current CPU state, but the security attributes
2401 * might downgrade a secure access to nonsecure.
2402 */
2403 if (sattrs.ns) {
2404 result->f.attrs.secure = false;
2405 } else if (!secure) {
2406 /*
2407 * NS access to S memory must fault.
2408 * Architecturally we should first check whether the
2409 * MPU information for this address indicates that we
2410 * are doing an unaligned access to Device memory, which
2411 * should generate a UsageFault instead. QEMU does not
2412 * currently check for that kind of unaligned access though.
2413 * If we added it we would need to do so as a special case
2414 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2415 */
2416 fi->type = ARMFault_QEMU_SFault;
2417 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2418 result->f.phys_addr = address;
2419 result->f.prot = 0;
2420 return true;
2421 }
2422 }
2423 }
2424
2425 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2426 result, fi, NULL);
2427 if (sattrs.subpage) {
2428 result->f.lg_page_size = 0;
2429 }
2430 return ret;
2431 }
2432
2433 /*
2434 * Translate from the 4-bit stage 2 representation of
2435 * memory attributes (without cache-allocation hints) to
2436 * the 8-bit representation of the stage 1 MAIR registers
2437 * (which includes allocation hints).
2438 *
2439 * ref: shared/translation/attrs/S2AttrDecode()
2440 * .../S2ConvertAttrsHints()
2441 */
2442 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2443 {
2444 uint8_t hiattr = extract32(s2attrs, 2, 2);
2445 uint8_t loattr = extract32(s2attrs, 0, 2);
2446 uint8_t hihint = 0, lohint = 0;
2447
2448 if (hiattr != 0) { /* normal memory */
2449 if (hcr & HCR_CD) { /* cache disabled */
2450 hiattr = loattr = 1; /* non-cacheable */
2451 } else {
2452 if (hiattr != 1) { /* Write-through or write-back */
2453 hihint = 3; /* RW allocate */
2454 }
2455 if (loattr != 1) { /* Write-through or write-back */
2456 lohint = 3; /* RW allocate */
2457 }
2458 }
2459 }
2460
2461 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2462 }
2463
2464 /*
2465 * Combine either inner or outer cacheability attributes for normal
2466 * memory, according to table D4-42 and pseudocode procedure
2467 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2468 *
2469 * NB: only stage 1 includes allocation hints (RW bits), leading to
2470 * some asymmetry.
2471 */
2472 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2473 {
2474 if (s1 == 4 || s2 == 4) {
2475 /* non-cacheable has precedence */
2476 return 4;
2477 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2478 /* stage 1 write-through takes precedence */
2479 return s1;
2480 } else if (extract32(s2, 2, 2) == 2) {
2481 /* stage 2 write-through takes precedence, but the allocation hint
2482 * is still taken from stage 1
2483 */
2484 return (2 << 2) | extract32(s1, 0, 2);
2485 } else { /* write-back */
2486 return s1;
2487 }
2488 }
2489
2490 /*
2491 * Combine the memory type and cacheability attributes of
2492 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2493 * combined attributes in MAIR_EL1 format.
2494 */
2495 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2496 ARMCacheAttrs s1, ARMCacheAttrs s2)
2497 {
2498 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2499
2500 if (s2.is_s2_format) {
2501 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2502 } else {
2503 s2_mair_attrs = s2.attrs;
2504 }
2505
2506 s1lo = extract32(s1.attrs, 0, 4);
2507 s2lo = extract32(s2_mair_attrs, 0, 4);
2508 s1hi = extract32(s1.attrs, 4, 4);
2509 s2hi = extract32(s2_mair_attrs, 4, 4);
2510
2511 /* Combine memory type and cacheability attributes */
2512 if (s1hi == 0 || s2hi == 0) {
2513 /* Device has precedence over normal */
2514 if (s1lo == 0 || s2lo == 0) {
2515 /* nGnRnE has precedence over anything */
2516 ret_attrs = 0;
2517 } else if (s1lo == 4 || s2lo == 4) {
2518 /* non-Reordering has precedence over Reordering */
2519 ret_attrs = 4; /* nGnRE */
2520 } else if (s1lo == 8 || s2lo == 8) {
2521 /* non-Gathering has precedence over Gathering */
2522 ret_attrs = 8; /* nGRE */
2523 } else {
2524 ret_attrs = 0xc; /* GRE */
2525 }
2526 } else { /* Normal memory */
2527 /* Outer/inner cacheability combine independently */
2528 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2529 | combine_cacheattr_nibble(s1lo, s2lo);
2530 }
2531 return ret_attrs;
2532 }
2533
2534 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2535 {
2536 /*
2537 * Given the 4 bits specifying the outer or inner cacheability
2538 * in MAIR format, return a value specifying Normal Write-Back,
2539 * with the allocation and transient hints taken from the input
2540 * if the input specified some kind of cacheable attribute.
2541 */
2542 if (attr == 0 || attr == 4) {
2543 /*
2544 * 0 == an UNPREDICTABLE encoding
2545 * 4 == Non-cacheable
2546 * Either way, force Write-Back RW allocate non-transient
2547 */
2548 return 0xf;
2549 }
2550 /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2551 return attr | 4;
2552 }
2553
2554 /*
2555 * Combine the memory type and cacheability attributes of
2556 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2557 * combined attributes in MAIR_EL1 format.
2558 */
2559 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
2560 {
2561 assert(s2.is_s2_format && !s1.is_s2_format);
2562
2563 switch (s2.attrs) {
2564 case 7:
2565 /* Use stage 1 attributes */
2566 return s1.attrs;
2567 case 6:
2568 /*
2569 * Force Normal Write-Back. Note that if S1 is Normal cacheable
2570 * then we take the allocation hints from it; otherwise it is
2571 * RW allocate, non-transient.
2572 */
2573 if ((s1.attrs & 0xf0) == 0) {
2574 /* S1 is Device */
2575 return 0xff;
2576 }
2577 /* Need to check the Inner and Outer nibbles separately */
2578 return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2579 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
2580 case 5:
2581 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
2582 if ((s1.attrs & 0xf0) == 0) {
2583 return s1.attrs;
2584 }
2585 return 0x44;
2586 case 0 ... 3:
2587 /* Force Device, of subtype specified by S2 */
2588 return s2.attrs << 2;
2589 default:
2590 /*
2591 * RESERVED values (including RES0 descriptor bit [5] being nonzero);
2592 * arbitrarily force Device.
2593 */
2594 return 0;
2595 }
2596 }
2597
2598 /*
2599 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
2600 * and CombineS1S2Desc()
2601 *
2602 * @env: CPUARMState
2603 * @s1: Attributes from stage 1 walk
2604 * @s2: Attributes from stage 2 walk
2605 */
2606 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
2607 ARMCacheAttrs s1, ARMCacheAttrs s2)
2608 {
2609 ARMCacheAttrs ret;
2610 bool tagged = false;
2611
2612 assert(!s1.is_s2_format);
2613 ret.is_s2_format = false;
2614 ret.guarded = s1.guarded;
2615
2616 if (s1.attrs == 0xf0) {
2617 tagged = true;
2618 s1.attrs = 0xff;
2619 }
2620
2621 /* Combine shareability attributes (table D4-43) */
2622 if (s1.shareability == 2 || s2.shareability == 2) {
2623 /* if either are outer-shareable, the result is outer-shareable */
2624 ret.shareability = 2;
2625 } else if (s1.shareability == 3 || s2.shareability == 3) {
2626 /* if either are inner-shareable, the result is inner-shareable */
2627 ret.shareability = 3;
2628 } else {
2629 /* both non-shareable */
2630 ret.shareability = 0;
2631 }
2632
2633 /* Combine memory type and cacheability attributes */
2634 if (hcr & HCR_FWB) {
2635 ret.attrs = combined_attrs_fwb(s1, s2);
2636 } else {
2637 ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
2638 }
2639
2640 /*
2641 * Any location for which the resultant memory type is any
2642 * type of Device memory is always treated as Outer Shareable.
2643 * Any location for which the resultant memory type is Normal
2644 * Inner Non-cacheable, Outer Non-cacheable is always treated
2645 * as Outer Shareable.
2646 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
2647 */
2648 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
2649 ret.shareability = 2;
2650 }
2651
2652 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
2653 if (tagged && ret.attrs == 0xff) {
2654 ret.attrs = 0xf0;
2655 }
2656
2657 return ret;
2658 }
2659
2660 /*
2661 * MMU disabled. S1 addresses within aa64 translation regimes are
2662 * still checked for bounds -- see AArch64.S1DisabledOutput().
2663 */
2664 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address,
2665 MMUAccessType access_type,
2666 ARMMMUIdx mmu_idx, bool is_secure,
2667 GetPhysAddrResult *result,
2668 ARMMMUFaultInfo *fi)
2669 {
2670 uint8_t memattr = 0x00; /* Device nGnRnE */
2671 uint8_t shareability = 0; /* non-sharable */
2672 int r_el;
2673
2674 switch (mmu_idx) {
2675 case ARMMMUIdx_Stage2:
2676 case ARMMMUIdx_Stage2_S:
2677 case ARMMMUIdx_Phys_NS:
2678 case ARMMMUIdx_Phys_S:
2679 break;
2680
2681 default:
2682 r_el = regime_el(env, mmu_idx);
2683 if (arm_el_is_aa64(env, r_el)) {
2684 int pamax = arm_pamax(env_archcpu(env));
2685 uint64_t tcr = env->cp15.tcr_el[r_el];
2686 int addrtop, tbi;
2687
2688 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
2689 if (access_type == MMU_INST_FETCH) {
2690 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
2691 }
2692 tbi = (tbi >> extract64(address, 55, 1)) & 1;
2693 addrtop = (tbi ? 55 : 63);
2694
2695 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
2696 fi->type = ARMFault_AddressSize;
2697 fi->level = 0;
2698 fi->stage2 = false;
2699 return 1;
2700 }
2701
2702 /*
2703 * When TBI is disabled, we've just validated that all of the
2704 * bits above PAMax are zero, so logically we only need to
2705 * clear the top byte for TBI. But it's clearer to follow
2706 * the pseudocode set of addrdesc.paddress.
2707 */
2708 address = extract64(address, 0, 52);
2709 }
2710
2711 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
2712 if (r_el == 1) {
2713 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2714 if (hcr & HCR_DC) {
2715 if (hcr & HCR_DCT) {
2716 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
2717 } else {
2718 memattr = 0xff; /* Normal, WB, RWA */
2719 }
2720 }
2721 }
2722 if (memattr == 0 && access_type == MMU_INST_FETCH) {
2723 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
2724 memattr = 0xee; /* Normal, WT, RA, NT */
2725 } else {
2726 memattr = 0x44; /* Normal, NC, No */
2727 }
2728 shareability = 2; /* outer sharable */
2729 }
2730 result->cacheattrs.is_s2_format = false;
2731 break;
2732 }
2733
2734 result->f.phys_addr = address;
2735 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2736 result->f.lg_page_size = TARGET_PAGE_BITS;
2737 result->cacheattrs.shareability = shareability;
2738 result->cacheattrs.attrs = memattr;
2739 return false;
2740 }
2741
2742 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
2743 target_ulong address,
2744 MMUAccessType access_type,
2745 GetPhysAddrResult *result,
2746 ARMMMUFaultInfo *fi)
2747 {
2748 hwaddr ipa;
2749 int s1_prot, s1_lgpgsz;
2750 bool is_secure = ptw->in_secure;
2751 bool ret, ipa_secure;
2752 ARMCacheAttrs cacheattrs1;
2753 bool is_el0;
2754 uint64_t hcr;
2755
2756 ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi);
2757
2758 /* If S1 fails, return early. */
2759 if (ret) {
2760 return ret;
2761 }
2762
2763 ipa = result->f.phys_addr;
2764 ipa_secure = result->f.attrs.secure;
2765
2766 is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
2767 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2768 ptw->in_secure = ipa_secure;
2769 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
2770
2771 /*
2772 * S1 is done, now do S2 translation.
2773 * Save the stage1 results so that we may merge prot and cacheattrs later.
2774 */
2775 s1_prot = result->f.prot;
2776 s1_lgpgsz = result->f.lg_page_size;
2777 cacheattrs1 = result->cacheattrs;
2778 memset(result, 0, sizeof(*result));
2779
2780 if (arm_feature(env, ARM_FEATURE_PMSA)) {
2781 ret = get_phys_addr_pmsav8(env, ipa, access_type,
2782 ptw->in_mmu_idx, is_secure, result, fi);
2783 } else {
2784 ret = get_phys_addr_lpae(env, ptw, ipa, access_type,
2785 is_el0, result, fi);
2786 }
2787 fi->s2addr = ipa;
2788
2789 /* Combine the S1 and S2 perms. */
2790 result->f.prot &= s1_prot;
2791
2792 /* If S2 fails, return early. */
2793 if (ret) {
2794 return ret;
2795 }
2796
2797 /*
2798 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
2799 * this means "don't put this in the TLB"; in this case, return a
2800 * result with lg_page_size == 0 to achieve that. Otherwise,
2801 * use the maximum of the S1 & S2 page size, so that invalidation
2802 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
2803 * we know the combined result permissions etc only cover the minimum
2804 * of the S1 and S2 page size, because we know that the common TLB code
2805 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
2806 * and passing a larger page size value only affects invalidations.)
2807 */
2808 if (result->f.lg_page_size < TARGET_PAGE_BITS ||
2809 s1_lgpgsz < TARGET_PAGE_BITS) {
2810 result->f.lg_page_size = 0;
2811 } else if (result->f.lg_page_size < s1_lgpgsz) {
2812 result->f.lg_page_size = s1_lgpgsz;
2813 }
2814
2815 /* Combine the S1 and S2 cache attributes. */
2816 hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2817 if (hcr & HCR_DC) {
2818 /*
2819 * HCR.DC forces the first stage attributes to
2820 * Normal Non-Shareable,
2821 * Inner Write-Back Read-Allocate Write-Allocate,
2822 * Outer Write-Back Read-Allocate Write-Allocate.
2823 * Do not overwrite Tagged within attrs.
2824 */
2825 if (cacheattrs1.attrs != 0xf0) {
2826 cacheattrs1.attrs = 0xff;
2827 }
2828 cacheattrs1.shareability = 0;
2829 }
2830 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
2831 result->cacheattrs);
2832
2833 /*
2834 * Check if IPA translates to secure or non-secure PA space.
2835 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
2836 */
2837 result->f.attrs.secure =
2838 (is_secure
2839 && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
2840 && (ipa_secure
2841 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))));
2842
2843 return false;
2844 }
2845
2846 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
2847 target_ulong address,
2848 MMUAccessType access_type,
2849 GetPhysAddrResult *result,
2850 ARMMMUFaultInfo *fi)
2851 {
2852 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2853 bool is_secure = ptw->in_secure;
2854 ARMMMUIdx s1_mmu_idx;
2855
2856 /*
2857 * The page table entries may downgrade secure to non-secure, but
2858 * cannot upgrade an non-secure translation regime's attributes
2859 * to secure.
2860 */
2861 result->f.attrs.secure = is_secure;
2862
2863 switch (mmu_idx) {
2864 case ARMMMUIdx_Phys_S:
2865 case ARMMMUIdx_Phys_NS:
2866 /* Checking Phys early avoids special casing later vs regime_el. */
2867 return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2868 is_secure, result, fi);
2869
2870 case ARMMMUIdx_Stage1_E0:
2871 case ARMMMUIdx_Stage1_E1:
2872 case ARMMMUIdx_Stage1_E1_PAN:
2873 /* First stage lookup uses second stage for ptw. */
2874 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2875 break;
2876
2877 case ARMMMUIdx_Stage2:
2878 case ARMMMUIdx_Stage2_S:
2879 /*
2880 * Second stage lookup uses physical for ptw; whether this is S or
2881 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
2882 * the Secure EL2&0 regime.
2883 */
2884 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
2885 break;
2886
2887 case ARMMMUIdx_E10_0:
2888 s1_mmu_idx = ARMMMUIdx_Stage1_E0;
2889 goto do_twostage;
2890 case ARMMMUIdx_E10_1:
2891 s1_mmu_idx = ARMMMUIdx_Stage1_E1;
2892 goto do_twostage;
2893 case ARMMMUIdx_E10_1_PAN:
2894 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
2895 do_twostage:
2896 /*
2897 * Call ourselves recursively to do the stage 1 and then stage 2
2898 * translations if mmu_idx is a two-stage regime, and EL2 present.
2899 * Otherwise, a stage1+stage2 translation is just stage 1.
2900 */
2901 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
2902 if (arm_feature(env, ARM_FEATURE_EL2) &&
2903 !regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) {
2904 return get_phys_addr_twostage(env, ptw, address, access_type,
2905 result, fi);
2906 }
2907 /* fall through */
2908
2909 default:
2910 /* Single stage uses physical for ptw. */
2911 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
2912 break;
2913 }
2914
2915 result->f.attrs.user = regime_is_user(env, mmu_idx);
2916
2917 /*
2918 * Fast Context Switch Extension. This doesn't exist at all in v8.
2919 * In v7 and earlier it affects all stage 1 translations.
2920 */
2921 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
2922 && !arm_feature(env, ARM_FEATURE_V8)) {
2923 if (regime_el(env, mmu_idx) == 3) {
2924 address += env->cp15.fcseidr_s;
2925 } else {
2926 address += env->cp15.fcseidr_ns;
2927 }
2928 }
2929
2930 if (arm_feature(env, ARM_FEATURE_PMSA)) {
2931 bool ret;
2932 result->f.lg_page_size = TARGET_PAGE_BITS;
2933
2934 if (arm_feature(env, ARM_FEATURE_V8)) {
2935 /* PMSAv8 */
2936 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
2937 is_secure, result, fi);
2938 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2939 /* PMSAv7 */
2940 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
2941 is_secure, result, fi);
2942 } else {
2943 /* Pre-v7 MPU */
2944 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
2945 is_secure, result, fi);
2946 }
2947 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
2948 " mmu_idx %u -> %s (prot %c%c%c)\n",
2949 access_type == MMU_DATA_LOAD ? "reading" :
2950 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
2951 (uint32_t)address, mmu_idx,
2952 ret ? "Miss" : "Hit",
2953 result->f.prot & PAGE_READ ? 'r' : '-',
2954 result->f.prot & PAGE_WRITE ? 'w' : '-',
2955 result->f.prot & PAGE_EXEC ? 'x' : '-');
2956
2957 return ret;
2958 }
2959
2960 /* Definitely a real MMU, not an MPU */
2961
2962 if (regime_translation_disabled(env, mmu_idx, is_secure)) {
2963 return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2964 is_secure, result, fi);
2965 }
2966
2967 if (regime_using_lpae_format(env, mmu_idx)) {
2968 return get_phys_addr_lpae(env, ptw, address, access_type, false,
2969 result, fi);
2970 } else if (arm_feature(env, ARM_FEATURE_V7) ||
2971 regime_sctlr(env, mmu_idx) & SCTLR_XP) {
2972 return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
2973 } else {
2974 return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
2975 }
2976 }
2977
2978 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
2979 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2980 bool is_secure, GetPhysAddrResult *result,
2981 ARMMMUFaultInfo *fi)
2982 {
2983 S1Translate ptw = {
2984 .in_mmu_idx = mmu_idx,
2985 .in_secure = is_secure,
2986 };
2987 return get_phys_addr_with_struct(env, &ptw, address, access_type,
2988 result, fi);
2989 }
2990
2991 bool get_phys_addr(CPUARMState *env, target_ulong address,
2992 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2993 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
2994 {
2995 bool is_secure;
2996
2997 switch (mmu_idx) {
2998 case ARMMMUIdx_E10_0:
2999 case ARMMMUIdx_E10_1:
3000 case ARMMMUIdx_E10_1_PAN:
3001 case ARMMMUIdx_E20_0:
3002 case ARMMMUIdx_E20_2:
3003 case ARMMMUIdx_E20_2_PAN:
3004 case ARMMMUIdx_Stage1_E0:
3005 case ARMMMUIdx_Stage1_E1:
3006 case ARMMMUIdx_Stage1_E1_PAN:
3007 case ARMMMUIdx_E2:
3008 is_secure = arm_is_secure_below_el3(env);
3009 break;
3010 case ARMMMUIdx_Stage2:
3011 case ARMMMUIdx_Phys_NS:
3012 case ARMMMUIdx_MPrivNegPri:
3013 case ARMMMUIdx_MUserNegPri:
3014 case ARMMMUIdx_MPriv:
3015 case ARMMMUIdx_MUser:
3016 is_secure = false;
3017 break;
3018 case ARMMMUIdx_E3:
3019 case ARMMMUIdx_Stage2_S:
3020 case ARMMMUIdx_Phys_S:
3021 case ARMMMUIdx_MSPrivNegPri:
3022 case ARMMMUIdx_MSUserNegPri:
3023 case ARMMMUIdx_MSPriv:
3024 case ARMMMUIdx_MSUser:
3025 is_secure = true;
3026 break;
3027 default:
3028 g_assert_not_reached();
3029 }
3030 return get_phys_addr_with_secure(env, address, access_type, mmu_idx,
3031 is_secure, result, fi);
3032 }
3033
3034 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3035 MemTxAttrs *attrs)
3036 {
3037 ARMCPU *cpu = ARM_CPU(cs);
3038 CPUARMState *env = &cpu->env;
3039 S1Translate ptw = {
3040 .in_mmu_idx = arm_mmu_idx(env),
3041 .in_secure = arm_is_secure(env),
3042 .in_debug = true,
3043 };
3044 GetPhysAddrResult res = {};
3045 ARMMMUFaultInfo fi = {};
3046 bool ret;
3047
3048 ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
3049 *attrs = res.f.attrs;
3050
3051 if (ret) {
3052 return -1;
3053 }
3054 return res.f.phys_addr;
3055 }