]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/ptw.c
Merge tag 'pull-tcg-20230605' of https://gitlab.com/rth7680/qemu into staging
[mirror_qemu.git] / target / arm / ptw.c
1 /*
2 * ARM page table walking.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "idau.h"
17 #include "tcg/oversized-guest.h"
18
19
20 typedef struct S1Translate {
21 ARMMMUIdx in_mmu_idx;
22 ARMMMUIdx in_ptw_idx;
23 bool in_secure;
24 bool in_debug;
25 bool out_secure;
26 bool out_rw;
27 bool out_be;
28 hwaddr out_virt;
29 hwaddr out_phys;
30 void *out_host;
31 } S1Translate;
32
33 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
34 uint64_t address,
35 MMUAccessType access_type, bool s1_is_el0,
36 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
37 __attribute__((nonnull));
38
39 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
40 target_ulong address,
41 MMUAccessType access_type,
42 GetPhysAddrResult *result,
43 ARMMMUFaultInfo *fi)
44 __attribute__((nonnull));
45
46 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
47 static const uint8_t pamax_map[] = {
48 [0] = 32,
49 [1] = 36,
50 [2] = 40,
51 [3] = 42,
52 [4] = 44,
53 [5] = 48,
54 [6] = 52,
55 };
56
57 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
58 unsigned int arm_pamax(ARMCPU *cpu)
59 {
60 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
61 unsigned int parange =
62 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
63
64 /*
65 * id_aa64mmfr0 is a read-only register so values outside of the
66 * supported mappings can be considered an implementation error.
67 */
68 assert(parange < ARRAY_SIZE(pamax_map));
69 return pamax_map[parange];
70 }
71
72 /*
73 * In machvirt_init, we call arm_pamax on a cpu that is not fully
74 * initialized, so we can't rely on the propagation done in realize.
75 */
76 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
77 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
78 /* v7 with LPAE */
79 return 40;
80 }
81 /* Anything else */
82 return 32;
83 }
84
85 /*
86 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
87 */
88 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
89 {
90 switch (mmu_idx) {
91 case ARMMMUIdx_E10_0:
92 return ARMMMUIdx_Stage1_E0;
93 case ARMMMUIdx_E10_1:
94 return ARMMMUIdx_Stage1_E1;
95 case ARMMMUIdx_E10_1_PAN:
96 return ARMMMUIdx_Stage1_E1_PAN;
97 default:
98 return mmu_idx;
99 }
100 }
101
102 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
103 {
104 return stage_1_mmu_idx(arm_mmu_idx(env));
105 }
106
107 /*
108 * Return where we should do ptw loads from for a stage 2 walk.
109 * This depends on whether the address we are looking up is a
110 * Secure IPA or a NonSecure IPA, which we know from whether this is
111 * Stage2 or Stage2_S.
112 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
113 */
114 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
115 {
116 bool s2walk_secure;
117
118 /*
119 * We're OK to check the current state of the CPU here because
120 * (1) we always invalidate all TLBs when the SCR_EL3.NS bit changes
121 * (2) there's no way to do a lookup that cares about Stage 2 for a
122 * different security state to the current one for AArch64, and AArch32
123 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
124 * an NS stage 1+2 lookup while the NS bit is 0.)
125 */
126 if (!arm_is_secure_below_el3(env) || !arm_el_is_aa64(env, 3)) {
127 return ARMMMUIdx_Phys_NS;
128 }
129 if (stage2idx == ARMMMUIdx_Stage2_S) {
130 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
131 } else {
132 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
133 }
134 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
135
136 }
137
138 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
139 {
140 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
141 }
142
143 /* Return the TTBR associated with this translation regime */
144 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
145 {
146 if (mmu_idx == ARMMMUIdx_Stage2) {
147 return env->cp15.vttbr_el2;
148 }
149 if (mmu_idx == ARMMMUIdx_Stage2_S) {
150 return env->cp15.vsttbr_el2;
151 }
152 if (ttbrn == 0) {
153 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
154 } else {
155 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
156 }
157 }
158
159 /* Return true if the specified stage of address translation is disabled */
160 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
161 bool is_secure)
162 {
163 uint64_t hcr_el2;
164
165 if (arm_feature(env, ARM_FEATURE_M)) {
166 switch (env->v7m.mpu_ctrl[is_secure] &
167 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
168 case R_V7M_MPU_CTRL_ENABLE_MASK:
169 /* Enabled, but not for HardFault and NMI */
170 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
171 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
172 /* Enabled for all cases */
173 return false;
174 case 0:
175 default:
176 /*
177 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
178 * we warned about that in armv7m_nvic.c when the guest set it.
179 */
180 return true;
181 }
182 }
183
184 hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure);
185
186 switch (mmu_idx) {
187 case ARMMMUIdx_Stage2:
188 case ARMMMUIdx_Stage2_S:
189 /* HCR.DC means HCR.VM behaves as 1 */
190 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
191
192 case ARMMMUIdx_E10_0:
193 case ARMMMUIdx_E10_1:
194 case ARMMMUIdx_E10_1_PAN:
195 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
196 if (hcr_el2 & HCR_TGE) {
197 return true;
198 }
199 break;
200
201 case ARMMMUIdx_Stage1_E0:
202 case ARMMMUIdx_Stage1_E1:
203 case ARMMMUIdx_Stage1_E1_PAN:
204 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
205 if (hcr_el2 & HCR_DC) {
206 return true;
207 }
208 break;
209
210 case ARMMMUIdx_E20_0:
211 case ARMMMUIdx_E20_2:
212 case ARMMMUIdx_E20_2_PAN:
213 case ARMMMUIdx_E2:
214 case ARMMMUIdx_E3:
215 break;
216
217 case ARMMMUIdx_Phys_NS:
218 case ARMMMUIdx_Phys_S:
219 /* No translation for physical address spaces. */
220 return true;
221
222 default:
223 g_assert_not_reached();
224 }
225
226 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
227 }
228
229 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
230 {
231 /*
232 * For an S1 page table walk, the stage 1 attributes are always
233 * some form of "this is Normal memory". The combined S1+S2
234 * attributes are therefore only Device if stage 2 specifies Device.
235 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
236 * ie when cacheattrs.attrs bits [3:2] are 0b00.
237 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
238 * when cacheattrs.attrs bit [2] is 0.
239 */
240 if (hcr & HCR_FWB) {
241 return (attrs & 0x4) == 0;
242 } else {
243 return (attrs & 0xc) == 0;
244 }
245 }
246
247 /* Translate a S1 pagetable walk through S2 if needed. */
248 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
249 hwaddr addr, ARMMMUFaultInfo *fi)
250 {
251 bool is_secure = ptw->in_secure;
252 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
253 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
254 uint8_t pte_attrs;
255
256 ptw->out_virt = addr;
257
258 if (unlikely(ptw->in_debug)) {
259 /*
260 * From gdbstub, do not use softmmu so that we don't modify the
261 * state of the cpu at all, including softmmu tlb contents.
262 */
263 if (regime_is_stage2(s2_mmu_idx)) {
264 S1Translate s2ptw = {
265 .in_mmu_idx = s2_mmu_idx,
266 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
267 .in_secure = s2_mmu_idx == ARMMMUIdx_Stage2_S,
268 .in_debug = true,
269 };
270 GetPhysAddrResult s2 = { };
271
272 if (get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD,
273 false, &s2, fi)) {
274 goto fail;
275 }
276 ptw->out_phys = s2.f.phys_addr;
277 pte_attrs = s2.cacheattrs.attrs;
278 ptw->out_secure = s2.f.attrs.secure;
279 } else {
280 /* Regime is physical. */
281 ptw->out_phys = addr;
282 pte_attrs = 0;
283 ptw->out_secure = s2_mmu_idx == ARMMMUIdx_Phys_S;
284 }
285 ptw->out_host = NULL;
286 ptw->out_rw = false;
287 } else {
288 #ifdef CONFIG_TCG
289 CPUTLBEntryFull *full;
290 int flags;
291
292 env->tlb_fi = fi;
293 flags = probe_access_full(env, addr, 0, MMU_DATA_LOAD,
294 arm_to_core_mmu_idx(s2_mmu_idx),
295 true, &ptw->out_host, &full, 0);
296 env->tlb_fi = NULL;
297
298 if (unlikely(flags & TLB_INVALID_MASK)) {
299 goto fail;
300 }
301 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
302 ptw->out_rw = full->prot & PAGE_WRITE;
303 pte_attrs = full->pte_attrs;
304 ptw->out_secure = full->attrs.secure;
305 #else
306 g_assert_not_reached();
307 #endif
308 }
309
310 if (regime_is_stage2(s2_mmu_idx)) {
311 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
312
313 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
314 /*
315 * PTW set and S1 walk touched S2 Device memory:
316 * generate Permission fault.
317 */
318 fi->type = ARMFault_Permission;
319 fi->s2addr = addr;
320 fi->stage2 = true;
321 fi->s1ptw = true;
322 fi->s1ns = !is_secure;
323 return false;
324 }
325 }
326
327 ptw->out_be = regime_translation_big_endian(env, mmu_idx);
328 return true;
329
330 fail:
331 assert(fi->type != ARMFault_None);
332 fi->s2addr = addr;
333 fi->stage2 = true;
334 fi->s1ptw = true;
335 fi->s1ns = !is_secure;
336 return false;
337 }
338
339 /* All loads done in the course of a page table walk go through here. */
340 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
341 ARMMMUFaultInfo *fi)
342 {
343 CPUState *cs = env_cpu(env);
344 void *host = ptw->out_host;
345 uint32_t data;
346
347 if (likely(host)) {
348 /* Page tables are in RAM, and we have the host address. */
349 data = qatomic_read((uint32_t *)host);
350 if (ptw->out_be) {
351 data = be32_to_cpu(data);
352 } else {
353 data = le32_to_cpu(data);
354 }
355 } else {
356 /* Page tables are in MMIO. */
357 MemTxAttrs attrs = { .secure = ptw->out_secure };
358 AddressSpace *as = arm_addressspace(cs, attrs);
359 MemTxResult result = MEMTX_OK;
360
361 if (ptw->out_be) {
362 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
363 } else {
364 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
365 }
366 if (unlikely(result != MEMTX_OK)) {
367 fi->type = ARMFault_SyncExternalOnWalk;
368 fi->ea = arm_extabort_type(result);
369 return 0;
370 }
371 }
372 return data;
373 }
374
375 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
376 ARMMMUFaultInfo *fi)
377 {
378 CPUState *cs = env_cpu(env);
379 void *host = ptw->out_host;
380 uint64_t data;
381
382 if (likely(host)) {
383 /* Page tables are in RAM, and we have the host address. */
384 #ifdef CONFIG_ATOMIC64
385 data = qatomic_read__nocheck((uint64_t *)host);
386 if (ptw->out_be) {
387 data = be64_to_cpu(data);
388 } else {
389 data = le64_to_cpu(data);
390 }
391 #else
392 if (ptw->out_be) {
393 data = ldq_be_p(host);
394 } else {
395 data = ldq_le_p(host);
396 }
397 #endif
398 } else {
399 /* Page tables are in MMIO. */
400 MemTxAttrs attrs = { .secure = ptw->out_secure };
401 AddressSpace *as = arm_addressspace(cs, attrs);
402 MemTxResult result = MEMTX_OK;
403
404 if (ptw->out_be) {
405 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
406 } else {
407 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
408 }
409 if (unlikely(result != MEMTX_OK)) {
410 fi->type = ARMFault_SyncExternalOnWalk;
411 fi->ea = arm_extabort_type(result);
412 return 0;
413 }
414 }
415 return data;
416 }
417
418 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
419 uint64_t new_val, S1Translate *ptw,
420 ARMMMUFaultInfo *fi)
421 {
422 #ifdef TARGET_AARCH64
423 uint64_t cur_val;
424 void *host = ptw->out_host;
425
426 if (unlikely(!host)) {
427 fi->type = ARMFault_UnsuppAtomicUpdate;
428 fi->s1ptw = true;
429 return 0;
430 }
431
432 /*
433 * Raising a stage2 Protection fault for an atomic update to a read-only
434 * page is delayed until it is certain that there is a change to make.
435 */
436 if (unlikely(!ptw->out_rw)) {
437 int flags;
438 void *discard;
439
440 env->tlb_fi = fi;
441 flags = probe_access_flags(env, ptw->out_virt, 0, MMU_DATA_STORE,
442 arm_to_core_mmu_idx(ptw->in_ptw_idx),
443 true, &discard, 0);
444 env->tlb_fi = NULL;
445
446 if (unlikely(flags & TLB_INVALID_MASK)) {
447 assert(fi->type != ARMFault_None);
448 fi->s2addr = ptw->out_virt;
449 fi->stage2 = true;
450 fi->s1ptw = true;
451 fi->s1ns = !ptw->in_secure;
452 return 0;
453 }
454
455 /* In case CAS mismatches and we loop, remember writability. */
456 ptw->out_rw = true;
457 }
458
459 #ifdef CONFIG_ATOMIC64
460 if (ptw->out_be) {
461 old_val = cpu_to_be64(old_val);
462 new_val = cpu_to_be64(new_val);
463 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
464 cur_val = be64_to_cpu(cur_val);
465 } else {
466 old_val = cpu_to_le64(old_val);
467 new_val = cpu_to_le64(new_val);
468 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
469 cur_val = le64_to_cpu(cur_val);
470 }
471 #else
472 /*
473 * We can't support the full 64-bit atomic cmpxchg on the host.
474 * Because this is only used for FEAT_HAFDBS, which is only for AA64,
475 * we know that TCG_OVERSIZED_GUEST is set, which means that we are
476 * running in round-robin mode and could only race with dma i/o.
477 */
478 #if !TCG_OVERSIZED_GUEST
479 # error "Unexpected configuration"
480 #endif
481 bool locked = qemu_mutex_iothread_locked();
482 if (!locked) {
483 qemu_mutex_lock_iothread();
484 }
485 if (ptw->out_be) {
486 cur_val = ldq_be_p(host);
487 if (cur_val == old_val) {
488 stq_be_p(host, new_val);
489 }
490 } else {
491 cur_val = ldq_le_p(host);
492 if (cur_val == old_val) {
493 stq_le_p(host, new_val);
494 }
495 }
496 if (!locked) {
497 qemu_mutex_unlock_iothread();
498 }
499 #endif
500
501 return cur_val;
502 #else
503 /* AArch32 does not have FEAT_HADFS. */
504 g_assert_not_reached();
505 #endif
506 }
507
508 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
509 uint32_t *table, uint32_t address)
510 {
511 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
512 uint64_t tcr = regime_tcr(env, mmu_idx);
513 int maskshift = extract32(tcr, 0, 3);
514 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
515 uint32_t base_mask;
516
517 if (address & mask) {
518 if (tcr & TTBCR_PD1) {
519 /* Translation table walk disabled for TTBR1 */
520 return false;
521 }
522 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
523 } else {
524 if (tcr & TTBCR_PD0) {
525 /* Translation table walk disabled for TTBR0 */
526 return false;
527 }
528 base_mask = ~((uint32_t)0x3fffu >> maskshift);
529 *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
530 }
531 *table |= (address >> 18) & 0x3ffc;
532 return true;
533 }
534
535 /*
536 * Translate section/page access permissions to page R/W protection flags
537 * @env: CPUARMState
538 * @mmu_idx: MMU index indicating required translation regime
539 * @ap: The 3-bit access permissions (AP[2:0])
540 * @domain_prot: The 2-bit domain access permissions
541 * @is_user: TRUE if accessing from PL0
542 */
543 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
544 int ap, int domain_prot, bool is_user)
545 {
546 if (domain_prot == 3) {
547 return PAGE_READ | PAGE_WRITE;
548 }
549
550 switch (ap) {
551 case 0:
552 if (arm_feature(env, ARM_FEATURE_V7)) {
553 return 0;
554 }
555 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
556 case SCTLR_S:
557 return is_user ? 0 : PAGE_READ;
558 case SCTLR_R:
559 return PAGE_READ;
560 default:
561 return 0;
562 }
563 case 1:
564 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
565 case 2:
566 if (is_user) {
567 return PAGE_READ;
568 } else {
569 return PAGE_READ | PAGE_WRITE;
570 }
571 case 3:
572 return PAGE_READ | PAGE_WRITE;
573 case 4: /* Reserved. */
574 return 0;
575 case 5:
576 return is_user ? 0 : PAGE_READ;
577 case 6:
578 return PAGE_READ;
579 case 7:
580 if (!arm_feature(env, ARM_FEATURE_V6K)) {
581 return 0;
582 }
583 return PAGE_READ;
584 default:
585 g_assert_not_reached();
586 }
587 }
588
589 /*
590 * Translate section/page access permissions to page R/W protection flags
591 * @env: CPUARMState
592 * @mmu_idx: MMU index indicating required translation regime
593 * @ap: The 3-bit access permissions (AP[2:0])
594 * @domain_prot: The 2-bit domain access permissions
595 */
596 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
597 int ap, int domain_prot)
598 {
599 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
600 regime_is_user(env, mmu_idx));
601 }
602
603 /*
604 * Translate section/page access permissions to page R/W protection flags.
605 * @ap: The 2-bit simple AP (AP[2:1])
606 * @is_user: TRUE if accessing from PL0
607 */
608 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
609 {
610 switch (ap) {
611 case 0:
612 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
613 case 1:
614 return PAGE_READ | PAGE_WRITE;
615 case 2:
616 return is_user ? 0 : PAGE_READ;
617 case 3:
618 return PAGE_READ;
619 default:
620 g_assert_not_reached();
621 }
622 }
623
624 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
625 {
626 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
627 }
628
629 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
630 uint32_t address, MMUAccessType access_type,
631 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
632 {
633 int level = 1;
634 uint32_t table;
635 uint32_t desc;
636 int type;
637 int ap;
638 int domain = 0;
639 int domain_prot;
640 hwaddr phys_addr;
641 uint32_t dacr;
642
643 /* Pagetable walk. */
644 /* Lookup l1 descriptor. */
645 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
646 /* Section translation fault if page walk is disabled by PD0 or PD1 */
647 fi->type = ARMFault_Translation;
648 goto do_fault;
649 }
650 if (!S1_ptw_translate(env, ptw, table, fi)) {
651 goto do_fault;
652 }
653 desc = arm_ldl_ptw(env, ptw, fi);
654 if (fi->type != ARMFault_None) {
655 goto do_fault;
656 }
657 type = (desc & 3);
658 domain = (desc >> 5) & 0x0f;
659 if (regime_el(env, ptw->in_mmu_idx) == 1) {
660 dacr = env->cp15.dacr_ns;
661 } else {
662 dacr = env->cp15.dacr_s;
663 }
664 domain_prot = (dacr >> (domain * 2)) & 3;
665 if (type == 0) {
666 /* Section translation fault. */
667 fi->type = ARMFault_Translation;
668 goto do_fault;
669 }
670 if (type != 2) {
671 level = 2;
672 }
673 if (domain_prot == 0 || domain_prot == 2) {
674 fi->type = ARMFault_Domain;
675 goto do_fault;
676 }
677 if (type == 2) {
678 /* 1Mb section. */
679 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
680 ap = (desc >> 10) & 3;
681 result->f.lg_page_size = 20; /* 1MB */
682 } else {
683 /* Lookup l2 entry. */
684 if (type == 1) {
685 /* Coarse pagetable. */
686 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
687 } else {
688 /* Fine pagetable. */
689 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
690 }
691 if (!S1_ptw_translate(env, ptw, table, fi)) {
692 goto do_fault;
693 }
694 desc = arm_ldl_ptw(env, ptw, fi);
695 if (fi->type != ARMFault_None) {
696 goto do_fault;
697 }
698 switch (desc & 3) {
699 case 0: /* Page translation fault. */
700 fi->type = ARMFault_Translation;
701 goto do_fault;
702 case 1: /* 64k page. */
703 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
704 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
705 result->f.lg_page_size = 16;
706 break;
707 case 2: /* 4k page. */
708 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
709 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
710 result->f.lg_page_size = 12;
711 break;
712 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
713 if (type == 1) {
714 /* ARMv6/XScale extended small page format */
715 if (arm_feature(env, ARM_FEATURE_XSCALE)
716 || arm_feature(env, ARM_FEATURE_V6)) {
717 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
718 result->f.lg_page_size = 12;
719 } else {
720 /*
721 * UNPREDICTABLE in ARMv5; we choose to take a
722 * page translation fault.
723 */
724 fi->type = ARMFault_Translation;
725 goto do_fault;
726 }
727 } else {
728 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
729 result->f.lg_page_size = 10;
730 }
731 ap = (desc >> 4) & 3;
732 break;
733 default:
734 /* Never happens, but compiler isn't smart enough to tell. */
735 g_assert_not_reached();
736 }
737 }
738 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
739 result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
740 if (!(result->f.prot & (1 << access_type))) {
741 /* Access permission fault. */
742 fi->type = ARMFault_Permission;
743 goto do_fault;
744 }
745 result->f.phys_addr = phys_addr;
746 return false;
747 do_fault:
748 fi->domain = domain;
749 fi->level = level;
750 return true;
751 }
752
753 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
754 uint32_t address, MMUAccessType access_type,
755 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
756 {
757 ARMCPU *cpu = env_archcpu(env);
758 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
759 int level = 1;
760 uint32_t table;
761 uint32_t desc;
762 uint32_t xn;
763 uint32_t pxn = 0;
764 int type;
765 int ap;
766 int domain = 0;
767 int domain_prot;
768 hwaddr phys_addr;
769 uint32_t dacr;
770 bool ns;
771 int user_prot;
772
773 /* Pagetable walk. */
774 /* Lookup l1 descriptor. */
775 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
776 /* Section translation fault if page walk is disabled by PD0 or PD1 */
777 fi->type = ARMFault_Translation;
778 goto do_fault;
779 }
780 if (!S1_ptw_translate(env, ptw, table, fi)) {
781 goto do_fault;
782 }
783 desc = arm_ldl_ptw(env, ptw, fi);
784 if (fi->type != ARMFault_None) {
785 goto do_fault;
786 }
787 type = (desc & 3);
788 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
789 /* Section translation fault, or attempt to use the encoding
790 * which is Reserved on implementations without PXN.
791 */
792 fi->type = ARMFault_Translation;
793 goto do_fault;
794 }
795 if ((type == 1) || !(desc & (1 << 18))) {
796 /* Page or Section. */
797 domain = (desc >> 5) & 0x0f;
798 }
799 if (regime_el(env, mmu_idx) == 1) {
800 dacr = env->cp15.dacr_ns;
801 } else {
802 dacr = env->cp15.dacr_s;
803 }
804 if (type == 1) {
805 level = 2;
806 }
807 domain_prot = (dacr >> (domain * 2)) & 3;
808 if (domain_prot == 0 || domain_prot == 2) {
809 /* Section or Page domain fault */
810 fi->type = ARMFault_Domain;
811 goto do_fault;
812 }
813 if (type != 1) {
814 if (desc & (1 << 18)) {
815 /* Supersection. */
816 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
817 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
818 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
819 result->f.lg_page_size = 24; /* 16MB */
820 } else {
821 /* Section. */
822 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
823 result->f.lg_page_size = 20; /* 1MB */
824 }
825 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
826 xn = desc & (1 << 4);
827 pxn = desc & 1;
828 ns = extract32(desc, 19, 1);
829 } else {
830 if (cpu_isar_feature(aa32_pxn, cpu)) {
831 pxn = (desc >> 2) & 1;
832 }
833 ns = extract32(desc, 3, 1);
834 /* Lookup l2 entry. */
835 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
836 if (!S1_ptw_translate(env, ptw, table, fi)) {
837 goto do_fault;
838 }
839 desc = arm_ldl_ptw(env, ptw, fi);
840 if (fi->type != ARMFault_None) {
841 goto do_fault;
842 }
843 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
844 switch (desc & 3) {
845 case 0: /* Page translation fault. */
846 fi->type = ARMFault_Translation;
847 goto do_fault;
848 case 1: /* 64k page. */
849 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
850 xn = desc & (1 << 15);
851 result->f.lg_page_size = 16;
852 break;
853 case 2: case 3: /* 4k page. */
854 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
855 xn = desc & 1;
856 result->f.lg_page_size = 12;
857 break;
858 default:
859 /* Never happens, but compiler isn't smart enough to tell. */
860 g_assert_not_reached();
861 }
862 }
863 if (domain_prot == 3) {
864 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
865 } else {
866 if (pxn && !regime_is_user(env, mmu_idx)) {
867 xn = 1;
868 }
869 if (xn && access_type == MMU_INST_FETCH) {
870 fi->type = ARMFault_Permission;
871 goto do_fault;
872 }
873
874 if (arm_feature(env, ARM_FEATURE_V6K) &&
875 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
876 /* The simplified model uses AP[0] as an access control bit. */
877 if ((ap & 1) == 0) {
878 /* Access flag fault. */
879 fi->type = ARMFault_AccessFlag;
880 goto do_fault;
881 }
882 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
883 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
884 } else {
885 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
886 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
887 }
888 if (result->f.prot && !xn) {
889 result->f.prot |= PAGE_EXEC;
890 }
891 if (!(result->f.prot & (1 << access_type))) {
892 /* Access permission fault. */
893 fi->type = ARMFault_Permission;
894 goto do_fault;
895 }
896 if (regime_is_pan(env, mmu_idx) &&
897 !regime_is_user(env, mmu_idx) &&
898 user_prot &&
899 access_type != MMU_INST_FETCH) {
900 /* Privileged Access Never fault */
901 fi->type = ARMFault_Permission;
902 goto do_fault;
903 }
904 }
905 if (ns) {
906 /* The NS bit will (as required by the architecture) have no effect if
907 * the CPU doesn't support TZ or this is a non-secure translation
908 * regime, because the attribute will already be non-secure.
909 */
910 result->f.attrs.secure = false;
911 }
912 result->f.phys_addr = phys_addr;
913 return false;
914 do_fault:
915 fi->domain = domain;
916 fi->level = level;
917 return true;
918 }
919
920 /*
921 * Translate S2 section/page access permissions to protection flags
922 * @env: CPUARMState
923 * @s2ap: The 2-bit stage2 access permissions (S2AP)
924 * @xn: XN (execute-never) bits
925 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
926 */
927 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
928 {
929 int prot = 0;
930
931 if (s2ap & 1) {
932 prot |= PAGE_READ;
933 }
934 if (s2ap & 2) {
935 prot |= PAGE_WRITE;
936 }
937
938 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
939 switch (xn) {
940 case 0:
941 prot |= PAGE_EXEC;
942 break;
943 case 1:
944 if (s1_is_el0) {
945 prot |= PAGE_EXEC;
946 }
947 break;
948 case 2:
949 break;
950 case 3:
951 if (!s1_is_el0) {
952 prot |= PAGE_EXEC;
953 }
954 break;
955 default:
956 g_assert_not_reached();
957 }
958 } else {
959 if (!extract32(xn, 1, 1)) {
960 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
961 prot |= PAGE_EXEC;
962 }
963 }
964 }
965 return prot;
966 }
967
968 /*
969 * Translate section/page access permissions to protection flags
970 * @env: CPUARMState
971 * @mmu_idx: MMU index indicating required translation regime
972 * @is_aa64: TRUE if AArch64
973 * @ap: The 2-bit simple AP (AP[2:1])
974 * @ns: NS (non-secure) bit
975 * @xn: XN (execute-never) bit
976 * @pxn: PXN (privileged execute-never) bit
977 */
978 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
979 int ap, int ns, int xn, int pxn)
980 {
981 ARMCPU *cpu = env_archcpu(env);
982 bool is_user = regime_is_user(env, mmu_idx);
983 int prot_rw, user_rw;
984 bool have_wxn;
985 int wxn = 0;
986
987 assert(!regime_is_stage2(mmu_idx));
988
989 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
990 if (is_user) {
991 prot_rw = user_rw;
992 } else {
993 /*
994 * PAN controls can forbid data accesses but don't affect insn fetch.
995 * Plain PAN forbids data accesses if EL0 has data permissions;
996 * PAN3 forbids data accesses if EL0 has either data or exec perms.
997 * Note that for AArch64 the 'user can exec' case is exactly !xn.
998 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
999 * do not affect EPAN.
1000 */
1001 if (user_rw && regime_is_pan(env, mmu_idx)) {
1002 prot_rw = 0;
1003 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
1004 regime_is_pan(env, mmu_idx) &&
1005 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1006 prot_rw = 0;
1007 } else {
1008 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
1009 }
1010 }
1011
1012 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
1013 return prot_rw;
1014 }
1015
1016 /* TODO have_wxn should be replaced with
1017 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1018 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1019 * compatible processors have EL2, which is required for [U]WXN.
1020 */
1021 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1022
1023 if (have_wxn) {
1024 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1025 }
1026
1027 if (is_aa64) {
1028 if (regime_has_2_ranges(mmu_idx) && !is_user) {
1029 xn = pxn || (user_rw & PAGE_WRITE);
1030 }
1031 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1032 switch (regime_el(env, mmu_idx)) {
1033 case 1:
1034 case 3:
1035 if (is_user) {
1036 xn = xn || !(user_rw & PAGE_READ);
1037 } else {
1038 int uwxn = 0;
1039 if (have_wxn) {
1040 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1041 }
1042 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1043 (uwxn && (user_rw & PAGE_WRITE));
1044 }
1045 break;
1046 case 2:
1047 break;
1048 }
1049 } else {
1050 xn = wxn = 0;
1051 }
1052
1053 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1054 return prot_rw;
1055 }
1056 return prot_rw | PAGE_EXEC;
1057 }
1058
1059 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1060 ARMMMUIdx mmu_idx)
1061 {
1062 uint64_t tcr = regime_tcr(env, mmu_idx);
1063 uint32_t el = regime_el(env, mmu_idx);
1064 int select, tsz;
1065 bool epd, hpd;
1066
1067 assert(mmu_idx != ARMMMUIdx_Stage2_S);
1068
1069 if (mmu_idx == ARMMMUIdx_Stage2) {
1070 /* VTCR */
1071 bool sext = extract32(tcr, 4, 1);
1072 bool sign = extract32(tcr, 3, 1);
1073
1074 /*
1075 * If the sign-extend bit is not the same as t0sz[3], the result
1076 * is unpredictable. Flag this as a guest error.
1077 */
1078 if (sign != sext) {
1079 qemu_log_mask(LOG_GUEST_ERROR,
1080 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1081 }
1082 tsz = sextract32(tcr, 0, 4) + 8;
1083 select = 0;
1084 hpd = false;
1085 epd = false;
1086 } else if (el == 2) {
1087 /* HTCR */
1088 tsz = extract32(tcr, 0, 3);
1089 select = 0;
1090 hpd = extract64(tcr, 24, 1);
1091 epd = false;
1092 } else {
1093 int t0sz = extract32(tcr, 0, 3);
1094 int t1sz = extract32(tcr, 16, 3);
1095
1096 if (t1sz == 0) {
1097 select = va > (0xffffffffu >> t0sz);
1098 } else {
1099 /* Note that we will detect errors later. */
1100 select = va >= ~(0xffffffffu >> t1sz);
1101 }
1102 if (!select) {
1103 tsz = t0sz;
1104 epd = extract32(tcr, 7, 1);
1105 hpd = extract64(tcr, 41, 1);
1106 } else {
1107 tsz = t1sz;
1108 epd = extract32(tcr, 23, 1);
1109 hpd = extract64(tcr, 42, 1);
1110 }
1111 /* For aarch32, hpd0 is not enabled without t2e as well. */
1112 hpd &= extract32(tcr, 6, 1);
1113 }
1114
1115 return (ARMVAParameters) {
1116 .tsz = tsz,
1117 .select = select,
1118 .epd = epd,
1119 .hpd = hpd,
1120 };
1121 }
1122
1123 /*
1124 * check_s2_mmu_setup
1125 * @cpu: ARMCPU
1126 * @is_aa64: True if the translation regime is in AArch64 state
1127 * @tcr: VTCR_EL2 or VSTCR_EL2
1128 * @ds: Effective value of TCR.DS.
1129 * @iasize: Bitsize of IPAs
1130 * @stride: Page-table stride (See the ARM ARM)
1131 *
1132 * Decode the starting level of the S2 lookup, returning INT_MIN if
1133 * the configuration is invalid.
1134 */
1135 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1136 bool ds, int iasize, int stride)
1137 {
1138 int sl0, sl2, startlevel, granulebits, levels;
1139 int s1_min_iasize, s1_max_iasize;
1140
1141 sl0 = extract32(tcr, 6, 2);
1142 if (is_aa64) {
1143 /*
1144 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1145 * so interleave AArch64.S2StartLevel.
1146 */
1147 switch (stride) {
1148 case 9: /* 4KB */
1149 /* SL2 is RES0 unless DS=1 & 4KB granule. */
1150 sl2 = extract64(tcr, 33, 1);
1151 if (ds && sl2) {
1152 if (sl0 != 0) {
1153 goto fail;
1154 }
1155 startlevel = -1;
1156 } else {
1157 startlevel = 2 - sl0;
1158 switch (sl0) {
1159 case 2:
1160 if (arm_pamax(cpu) < 44) {
1161 goto fail;
1162 }
1163 break;
1164 case 3:
1165 if (!cpu_isar_feature(aa64_st, cpu)) {
1166 goto fail;
1167 }
1168 startlevel = 3;
1169 break;
1170 }
1171 }
1172 break;
1173 case 11: /* 16KB */
1174 switch (sl0) {
1175 case 2:
1176 if (arm_pamax(cpu) < 42) {
1177 goto fail;
1178 }
1179 break;
1180 case 3:
1181 if (!ds) {
1182 goto fail;
1183 }
1184 break;
1185 }
1186 startlevel = 3 - sl0;
1187 break;
1188 case 13: /* 64KB */
1189 switch (sl0) {
1190 case 2:
1191 if (arm_pamax(cpu) < 44) {
1192 goto fail;
1193 }
1194 break;
1195 case 3:
1196 goto fail;
1197 }
1198 startlevel = 3 - sl0;
1199 break;
1200 default:
1201 g_assert_not_reached();
1202 }
1203 } else {
1204 /*
1205 * Things are simpler for AArch32 EL2, with only 4k pages.
1206 * There is no separate S2InvalidSL function, but AArch32.S2Walk
1207 * begins with walkparms.sl0 in {'1x'}.
1208 */
1209 assert(stride == 9);
1210 if (sl0 >= 2) {
1211 goto fail;
1212 }
1213 startlevel = 2 - sl0;
1214 }
1215
1216 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */
1217 levels = 3 - startlevel;
1218 granulebits = stride + 3;
1219
1220 s1_min_iasize = levels * stride + granulebits + 1;
1221 s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1222
1223 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1224 return startlevel;
1225 }
1226
1227 fail:
1228 return INT_MIN;
1229 }
1230
1231 /**
1232 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1233 *
1234 * Returns false if the translation was successful. Otherwise, phys_ptr,
1235 * attrs, prot and page_size may not be filled in, and the populated fsr
1236 * value provides information on why the translation aborted, in the format
1237 * of a long-format DFSR/IFSR fault register, with the following caveat:
1238 * the WnR bit is never set (the caller must do this).
1239 *
1240 * @env: CPUARMState
1241 * @ptw: Current and next stage parameters for the walk.
1242 * @address: virtual address to get physical address for
1243 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1244 * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2
1245 * (so this is a stage 2 page table walk),
1246 * must be true if this is stage 2 of a stage 1+2
1247 * walk for an EL0 access. If @mmu_idx is anything else,
1248 * @s1_is_el0 is ignored.
1249 * @result: set on translation success,
1250 * @fi: set to fault info if the translation fails
1251 */
1252 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1253 uint64_t address,
1254 MMUAccessType access_type, bool s1_is_el0,
1255 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1256 {
1257 ARMCPU *cpu = env_archcpu(env);
1258 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1259 bool is_secure = ptw->in_secure;
1260 int32_t level;
1261 ARMVAParameters param;
1262 uint64_t ttbr;
1263 hwaddr descaddr, indexmask, indexmask_grainsize;
1264 uint32_t tableattrs;
1265 target_ulong page_size;
1266 uint64_t attrs;
1267 int32_t stride;
1268 int addrsize, inputsize, outputsize;
1269 uint64_t tcr = regime_tcr(env, mmu_idx);
1270 int ap, ns, xn, pxn;
1271 uint32_t el = regime_el(env, mmu_idx);
1272 uint64_t descaddrmask;
1273 bool aarch64 = arm_el_is_aa64(env, el);
1274 uint64_t descriptor, new_descriptor;
1275 bool nstable;
1276
1277 /* TODO: This code does not support shareability levels. */
1278 if (aarch64) {
1279 int ps;
1280
1281 param = aa64_va_parameters(env, address, mmu_idx,
1282 access_type != MMU_INST_FETCH,
1283 !arm_el_is_aa64(env, 1));
1284 level = 0;
1285
1286 /*
1287 * If TxSZ is programmed to a value larger than the maximum,
1288 * or smaller than the effective minimum, it is IMPLEMENTATION
1289 * DEFINED whether we behave as if the field were programmed
1290 * within bounds, or if a level 0 Translation fault is generated.
1291 *
1292 * With FEAT_LVA, fault on less than minimum becomes required,
1293 * so our choice is to always raise the fault.
1294 */
1295 if (param.tsz_oob) {
1296 goto do_translation_fault;
1297 }
1298
1299 addrsize = 64 - 8 * param.tbi;
1300 inputsize = 64 - param.tsz;
1301
1302 /*
1303 * Bound PS by PARANGE to find the effective output address size.
1304 * ID_AA64MMFR0 is a read-only register so values outside of the
1305 * supported mappings can be considered an implementation error.
1306 */
1307 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1308 ps = MIN(ps, param.ps);
1309 assert(ps < ARRAY_SIZE(pamax_map));
1310 outputsize = pamax_map[ps];
1311
1312 /*
1313 * With LPA2, the effective output address (OA) size is at most 48 bits
1314 * unless TCR.DS == 1
1315 */
1316 if (!param.ds && param.gran != Gran64K) {
1317 outputsize = MIN(outputsize, 48);
1318 }
1319 } else {
1320 param = aa32_va_parameters(env, address, mmu_idx);
1321 level = 1;
1322 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1323 inputsize = addrsize - param.tsz;
1324 outputsize = 40;
1325 }
1326
1327 /*
1328 * We determined the region when collecting the parameters, but we
1329 * have not yet validated that the address is valid for the region.
1330 * Extract the top bits and verify that they all match select.
1331 *
1332 * For aa32, if inputsize == addrsize, then we have selected the
1333 * region by exclusion in aa32_va_parameters and there is no more
1334 * validation to do here.
1335 */
1336 if (inputsize < addrsize) {
1337 target_ulong top_bits = sextract64(address, inputsize,
1338 addrsize - inputsize);
1339 if (-top_bits != param.select) {
1340 /* The gap between the two regions is a Translation fault */
1341 goto do_translation_fault;
1342 }
1343 }
1344
1345 stride = arm_granule_bits(param.gran) - 3;
1346
1347 /*
1348 * Note that QEMU ignores shareability and cacheability attributes,
1349 * so we don't need to do anything with the SH, ORGN, IRGN fields
1350 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
1351 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1352 * implement any ASID-like capability so we can ignore it (instead
1353 * we will always flush the TLB any time the ASID is changed).
1354 */
1355 ttbr = regime_ttbr(env, mmu_idx, param.select);
1356
1357 /*
1358 * Here we should have set up all the parameters for the translation:
1359 * inputsize, ttbr, epd, stride, tbi
1360 */
1361
1362 if (param.epd) {
1363 /*
1364 * Translation table walk disabled => Translation fault on TLB miss
1365 * Note: This is always 0 on 64-bit EL2 and EL3.
1366 */
1367 goto do_translation_fault;
1368 }
1369
1370 if (!regime_is_stage2(mmu_idx)) {
1371 /*
1372 * The starting level depends on the virtual address size (which can
1373 * be up to 48 bits) and the translation granule size. It indicates
1374 * the number of strides (stride bits at a time) needed to
1375 * consume the bits of the input address. In the pseudocode this is:
1376 * level = 4 - RoundUp((inputsize - grainsize) / stride)
1377 * where their 'inputsize' is our 'inputsize', 'grainsize' is
1378 * our 'stride + 3' and 'stride' is our 'stride'.
1379 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1380 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1381 * = 4 - (inputsize - 4) / stride;
1382 */
1383 level = 4 - (inputsize - 4) / stride;
1384 } else {
1385 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1386 inputsize, stride);
1387 if (startlevel == INT_MIN) {
1388 level = 0;
1389 goto do_translation_fault;
1390 }
1391 level = startlevel;
1392 }
1393
1394 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1395 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1396
1397 /* Now we can extract the actual base address from the TTBR */
1398 descaddr = extract64(ttbr, 0, 48);
1399
1400 /*
1401 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1402 *
1403 * Otherwise, if the base address is out of range, raise AddressSizeFault.
1404 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1405 * but we've just cleared the bits above 47, so simplify the test.
1406 */
1407 if (outputsize > 48) {
1408 descaddr |= extract64(ttbr, 2, 4) << 48;
1409 } else if (descaddr >> outputsize) {
1410 level = 0;
1411 fi->type = ARMFault_AddressSize;
1412 goto do_fault;
1413 }
1414
1415 /*
1416 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1417 * and also to mask out CnP (bit 0) which could validly be non-zero.
1418 */
1419 descaddr &= ~indexmask;
1420
1421 /*
1422 * For AArch32, the address field in the descriptor goes up to bit 39
1423 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
1424 * or an AddressSize fault is raised. So for v8 we extract those SBZ
1425 * bits as part of the address, which will be checked via outputsize.
1426 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1427 * the highest bits of a 52-bit output are placed elsewhere.
1428 */
1429 if (param.ds) {
1430 descaddrmask = MAKE_64BIT_MASK(0, 50);
1431 } else if (arm_feature(env, ARM_FEATURE_V8)) {
1432 descaddrmask = MAKE_64BIT_MASK(0, 48);
1433 } else {
1434 descaddrmask = MAKE_64BIT_MASK(0, 40);
1435 }
1436 descaddrmask &= ~indexmask_grainsize;
1437
1438 /*
1439 * Secure stage 1 accesses start with the page table in secure memory and
1440 * can be downgraded to non-secure at any step. Non-secure accesses
1441 * remain non-secure. We implement this by just ORing in the NSTable/NS
1442 * bits at each step.
1443 * Stage 2 never gets this kind of downgrade.
1444 */
1445 tableattrs = is_secure ? 0 : (1 << 4);
1446
1447 next_level:
1448 descaddr |= (address >> (stride * (4 - level))) & indexmask;
1449 descaddr &= ~7ULL;
1450 nstable = !regime_is_stage2(mmu_idx) && extract32(tableattrs, 4, 1);
1451 if (nstable) {
1452 /*
1453 * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1454 * Assert that the non-secure idx are even, and relative order.
1455 */
1456 QEMU_BUILD_BUG_ON((ARMMMUIdx_Phys_NS & 1) != 0);
1457 QEMU_BUILD_BUG_ON((ARMMMUIdx_Stage2 & 1) != 0);
1458 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS + 1 != ARMMMUIdx_Phys_S);
1459 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2 + 1 != ARMMMUIdx_Stage2_S);
1460 ptw->in_ptw_idx &= ~1;
1461 ptw->in_secure = false;
1462 }
1463 if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1464 goto do_fault;
1465 }
1466 descriptor = arm_ldq_ptw(env, ptw, fi);
1467 if (fi->type != ARMFault_None) {
1468 goto do_fault;
1469 }
1470 new_descriptor = descriptor;
1471
1472 restart_atomic_update:
1473 if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) {
1474 /* Invalid, or the Reserved level 3 encoding */
1475 goto do_translation_fault;
1476 }
1477
1478 descaddr = descriptor & descaddrmask;
1479
1480 /*
1481 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1482 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
1483 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
1484 * raise AddressSizeFault.
1485 */
1486 if (outputsize > 48) {
1487 if (param.ds) {
1488 descaddr |= extract64(descriptor, 8, 2) << 50;
1489 } else {
1490 descaddr |= extract64(descriptor, 12, 4) << 48;
1491 }
1492 } else if (descaddr >> outputsize) {
1493 fi->type = ARMFault_AddressSize;
1494 goto do_fault;
1495 }
1496
1497 if ((descriptor & 2) && (level < 3)) {
1498 /*
1499 * Table entry. The top five bits are attributes which may
1500 * propagate down through lower levels of the table (and
1501 * which are all arranged so that 0 means "no effect", so
1502 * we can gather them up by ORing in the bits at each level).
1503 */
1504 tableattrs |= extract64(descriptor, 59, 5);
1505 level++;
1506 indexmask = indexmask_grainsize;
1507 goto next_level;
1508 }
1509
1510 /*
1511 * Block entry at level 1 or 2, or page entry at level 3.
1512 * These are basically the same thing, although the number
1513 * of bits we pull in from the vaddr varies. Note that although
1514 * descaddrmask masks enough of the low bits of the descriptor
1515 * to give a correct page or table address, the address field
1516 * in a block descriptor is smaller; so we need to explicitly
1517 * clear the lower bits here before ORing in the low vaddr bits.
1518 *
1519 * Afterward, descaddr is the final physical address.
1520 */
1521 page_size = (1ULL << ((stride * (4 - level)) + 3));
1522 descaddr &= ~(hwaddr)(page_size - 1);
1523 descaddr |= (address & (page_size - 1));
1524
1525 if (likely(!ptw->in_debug)) {
1526 /*
1527 * Access flag.
1528 * If HA is enabled, prepare to update the descriptor below.
1529 * Otherwise, pass the access fault on to software.
1530 */
1531 if (!(descriptor & (1 << 10))) {
1532 if (param.ha) {
1533 new_descriptor |= 1 << 10; /* AF */
1534 } else {
1535 fi->type = ARMFault_AccessFlag;
1536 goto do_fault;
1537 }
1538 }
1539
1540 /*
1541 * Dirty Bit.
1542 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1543 * bit for writeback. The actual write protection test may still be
1544 * overridden by tableattrs, to be merged below.
1545 */
1546 if (param.hd
1547 && extract64(descriptor, 51, 1) /* DBM */
1548 && access_type == MMU_DATA_STORE) {
1549 if (regime_is_stage2(mmu_idx)) {
1550 new_descriptor |= 1ull << 7; /* set S2AP[1] */
1551 } else {
1552 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1553 }
1554 }
1555 }
1556
1557 /*
1558 * Extract attributes from the (modified) descriptor, and apply
1559 * table descriptors. Stage 2 table descriptors do not include
1560 * any attribute fields. HPD disables all the table attributes
1561 * except NSTable.
1562 */
1563 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1564 if (!regime_is_stage2(mmu_idx)) {
1565 attrs |= nstable << 5; /* NS */
1566 if (!param.hpd) {
1567 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */
1568 /*
1569 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1570 * means "force PL1 access only", which means forcing AP[1] to 0.
1571 */
1572 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1573 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */
1574 }
1575 }
1576
1577 ap = extract32(attrs, 6, 2);
1578 if (regime_is_stage2(mmu_idx)) {
1579 ns = mmu_idx == ARMMMUIdx_Stage2;
1580 xn = extract64(attrs, 53, 2);
1581 result->f.prot = get_S2prot(env, ap, xn, s1_is_el0);
1582 } else {
1583 ns = extract32(attrs, 5, 1);
1584 xn = extract64(attrs, 54, 1);
1585 pxn = extract64(attrs, 53, 1);
1586 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
1587 }
1588
1589 if (!(result->f.prot & (1 << access_type))) {
1590 fi->type = ARMFault_Permission;
1591 goto do_fault;
1592 }
1593
1594 /* If FEAT_HAFDBS has made changes, update the PTE. */
1595 if (new_descriptor != descriptor) {
1596 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
1597 if (fi->type != ARMFault_None) {
1598 goto do_fault;
1599 }
1600 /*
1601 * I_YZSVV says that if the in-memory descriptor has changed,
1602 * then we must use the information in that new value
1603 * (which might include a different output address, different
1604 * attributes, or generate a fault).
1605 * Restart the handling of the descriptor value from scratch.
1606 */
1607 if (new_descriptor != descriptor) {
1608 descriptor = new_descriptor;
1609 goto restart_atomic_update;
1610 }
1611 }
1612
1613 if (ns) {
1614 /*
1615 * The NS bit will (as required by the architecture) have no effect if
1616 * the CPU doesn't support TZ or this is a non-secure translation
1617 * regime, because the attribute will already be non-secure.
1618 */
1619 result->f.attrs.secure = false;
1620 }
1621
1622 if (regime_is_stage2(mmu_idx)) {
1623 result->cacheattrs.is_s2_format = true;
1624 result->cacheattrs.attrs = extract32(attrs, 2, 4);
1625 } else {
1626 /* Index into MAIR registers for cache attributes */
1627 uint8_t attrindx = extract32(attrs, 2, 3);
1628 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
1629 assert(attrindx <= 7);
1630 result->cacheattrs.is_s2_format = false;
1631 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
1632
1633 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
1634 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
1635 result->f.guarded = extract64(attrs, 50, 1); /* GP */
1636 }
1637 }
1638
1639 /*
1640 * For FEAT_LPA2 and effective DS, the SH field in the attributes
1641 * was re-purposed for output address bits. The SH attribute in
1642 * that case comes from TCR_ELx, which we extracted earlier.
1643 */
1644 if (param.ds) {
1645 result->cacheattrs.shareability = param.sh;
1646 } else {
1647 result->cacheattrs.shareability = extract32(attrs, 8, 2);
1648 }
1649
1650 result->f.phys_addr = descaddr;
1651 result->f.lg_page_size = ctz64(page_size);
1652 return false;
1653
1654 do_translation_fault:
1655 fi->type = ARMFault_Translation;
1656 do_fault:
1657 fi->level = level;
1658 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
1659 fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx);
1660 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
1661 return true;
1662 }
1663
1664 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
1665 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1666 bool is_secure, GetPhysAddrResult *result,
1667 ARMMMUFaultInfo *fi)
1668 {
1669 int n;
1670 uint32_t mask;
1671 uint32_t base;
1672 bool is_user = regime_is_user(env, mmu_idx);
1673
1674 if (regime_translation_disabled(env, mmu_idx, is_secure)) {
1675 /* MPU disabled. */
1676 result->f.phys_addr = address;
1677 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1678 return false;
1679 }
1680
1681 result->f.phys_addr = address;
1682 for (n = 7; n >= 0; n--) {
1683 base = env->cp15.c6_region[n];
1684 if ((base & 1) == 0) {
1685 continue;
1686 }
1687 mask = 1 << ((base >> 1) & 0x1f);
1688 /* Keep this shift separate from the above to avoid an
1689 (undefined) << 32. */
1690 mask = (mask << 1) - 1;
1691 if (((base ^ address) & ~mask) == 0) {
1692 break;
1693 }
1694 }
1695 if (n < 0) {
1696 fi->type = ARMFault_Background;
1697 return true;
1698 }
1699
1700 if (access_type == MMU_INST_FETCH) {
1701 mask = env->cp15.pmsav5_insn_ap;
1702 } else {
1703 mask = env->cp15.pmsav5_data_ap;
1704 }
1705 mask = (mask >> (n * 4)) & 0xf;
1706 switch (mask) {
1707 case 0:
1708 fi->type = ARMFault_Permission;
1709 fi->level = 1;
1710 return true;
1711 case 1:
1712 if (is_user) {
1713 fi->type = ARMFault_Permission;
1714 fi->level = 1;
1715 return true;
1716 }
1717 result->f.prot = PAGE_READ | PAGE_WRITE;
1718 break;
1719 case 2:
1720 result->f.prot = PAGE_READ;
1721 if (!is_user) {
1722 result->f.prot |= PAGE_WRITE;
1723 }
1724 break;
1725 case 3:
1726 result->f.prot = PAGE_READ | PAGE_WRITE;
1727 break;
1728 case 5:
1729 if (is_user) {
1730 fi->type = ARMFault_Permission;
1731 fi->level = 1;
1732 return true;
1733 }
1734 result->f.prot = PAGE_READ;
1735 break;
1736 case 6:
1737 result->f.prot = PAGE_READ;
1738 break;
1739 default:
1740 /* Bad permission. */
1741 fi->type = ARMFault_Permission;
1742 fi->level = 1;
1743 return true;
1744 }
1745 result->f.prot |= PAGE_EXEC;
1746 return false;
1747 }
1748
1749 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
1750 int32_t address, uint8_t *prot)
1751 {
1752 if (!arm_feature(env, ARM_FEATURE_M)) {
1753 *prot = PAGE_READ | PAGE_WRITE;
1754 switch (address) {
1755 case 0xF0000000 ... 0xFFFFFFFF:
1756 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
1757 /* hivecs execing is ok */
1758 *prot |= PAGE_EXEC;
1759 }
1760 break;
1761 case 0x00000000 ... 0x7FFFFFFF:
1762 *prot |= PAGE_EXEC;
1763 break;
1764 }
1765 } else {
1766 /* Default system address map for M profile cores.
1767 * The architecture specifies which regions are execute-never;
1768 * at the MPU level no other checks are defined.
1769 */
1770 switch (address) {
1771 case 0x00000000 ... 0x1fffffff: /* ROM */
1772 case 0x20000000 ... 0x3fffffff: /* SRAM */
1773 case 0x60000000 ... 0x7fffffff: /* RAM */
1774 case 0x80000000 ... 0x9fffffff: /* RAM */
1775 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1776 break;
1777 case 0x40000000 ... 0x5fffffff: /* Peripheral */
1778 case 0xa0000000 ... 0xbfffffff: /* Device */
1779 case 0xc0000000 ... 0xdfffffff: /* Device */
1780 case 0xe0000000 ... 0xffffffff: /* System */
1781 *prot = PAGE_READ | PAGE_WRITE;
1782 break;
1783 default:
1784 g_assert_not_reached();
1785 }
1786 }
1787 }
1788
1789 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
1790 {
1791 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
1792 return arm_feature(env, ARM_FEATURE_M) &&
1793 extract32(address, 20, 12) == 0xe00;
1794 }
1795
1796 static bool m_is_system_region(CPUARMState *env, uint32_t address)
1797 {
1798 /*
1799 * True if address is in the M profile system region
1800 * 0xe0000000 - 0xffffffff
1801 */
1802 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
1803 }
1804
1805 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1806 bool is_secure, bool is_user)
1807 {
1808 /*
1809 * Return true if we should use the default memory map as a
1810 * "background" region if there are no hits against any MPU regions.
1811 */
1812 CPUARMState *env = &cpu->env;
1813
1814 if (is_user) {
1815 return false;
1816 }
1817
1818 if (arm_feature(env, ARM_FEATURE_M)) {
1819 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
1820 }
1821
1822 if (mmu_idx == ARMMMUIdx_Stage2) {
1823 return false;
1824 }
1825
1826 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
1827 }
1828
1829 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
1830 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1831 bool secure, GetPhysAddrResult *result,
1832 ARMMMUFaultInfo *fi)
1833 {
1834 ARMCPU *cpu = env_archcpu(env);
1835 int n;
1836 bool is_user = regime_is_user(env, mmu_idx);
1837
1838 result->f.phys_addr = address;
1839 result->f.lg_page_size = TARGET_PAGE_BITS;
1840 result->f.prot = 0;
1841
1842 if (regime_translation_disabled(env, mmu_idx, secure) ||
1843 m_is_ppb_region(env, address)) {
1844 /*
1845 * MPU disabled or M profile PPB access: use default memory map.
1846 * The other case which uses the default memory map in the
1847 * v7M ARM ARM pseudocode is exception vector reads from the vector
1848 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
1849 * which always does a direct read using address_space_ldl(), rather
1850 * than going via this function, so we don't need to check that here.
1851 */
1852 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
1853 } else { /* MPU enabled */
1854 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1855 /* region search */
1856 uint32_t base = env->pmsav7.drbar[n];
1857 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
1858 uint32_t rmask;
1859 bool srdis = false;
1860
1861 if (!(env->pmsav7.drsr[n] & 0x1)) {
1862 continue;
1863 }
1864
1865 if (!rsize) {
1866 qemu_log_mask(LOG_GUEST_ERROR,
1867 "DRSR[%d]: Rsize field cannot be 0\n", n);
1868 continue;
1869 }
1870 rsize++;
1871 rmask = (1ull << rsize) - 1;
1872
1873 if (base & rmask) {
1874 qemu_log_mask(LOG_GUEST_ERROR,
1875 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
1876 "to DRSR region size, mask = 0x%" PRIx32 "\n",
1877 n, base, rmask);
1878 continue;
1879 }
1880
1881 if (address < base || address > base + rmask) {
1882 /*
1883 * Address not in this region. We must check whether the
1884 * region covers addresses in the same page as our address.
1885 * In that case we must not report a size that covers the
1886 * whole page for a subsequent hit against a different MPU
1887 * region or the background region, because it would result in
1888 * incorrect TLB hits for subsequent accesses to addresses that
1889 * are in this MPU region.
1890 */
1891 if (ranges_overlap(base, rmask,
1892 address & TARGET_PAGE_MASK,
1893 TARGET_PAGE_SIZE)) {
1894 result->f.lg_page_size = 0;
1895 }
1896 continue;
1897 }
1898
1899 /* Region matched */
1900
1901 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
1902 int i, snd;
1903 uint32_t srdis_mask;
1904
1905 rsize -= 3; /* sub region size (power of 2) */
1906 snd = ((address - base) >> rsize) & 0x7;
1907 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
1908
1909 srdis_mask = srdis ? 0x3 : 0x0;
1910 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
1911 /*
1912 * This will check in groups of 2, 4 and then 8, whether
1913 * the subregion bits are consistent. rsize is incremented
1914 * back up to give the region size, considering consistent
1915 * adjacent subregions as one region. Stop testing if rsize
1916 * is already big enough for an entire QEMU page.
1917 */
1918 int snd_rounded = snd & ~(i - 1);
1919 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
1920 snd_rounded + 8, i);
1921 if (srdis_mask ^ srdis_multi) {
1922 break;
1923 }
1924 srdis_mask = (srdis_mask << i) | srdis_mask;
1925 rsize++;
1926 }
1927 }
1928 if (srdis) {
1929 continue;
1930 }
1931 if (rsize < TARGET_PAGE_BITS) {
1932 result->f.lg_page_size = rsize;
1933 }
1934 break;
1935 }
1936
1937 if (n == -1) { /* no hits */
1938 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1939 /* background fault */
1940 fi->type = ARMFault_Background;
1941 return true;
1942 }
1943 get_phys_addr_pmsav7_default(env, mmu_idx, address,
1944 &result->f.prot);
1945 } else { /* a MPU hit! */
1946 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
1947 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
1948
1949 if (m_is_system_region(env, address)) {
1950 /* System space is always execute never */
1951 xn = 1;
1952 }
1953
1954 if (is_user) { /* User mode AP bit decoding */
1955 switch (ap) {
1956 case 0:
1957 case 1:
1958 case 5:
1959 break; /* no access */
1960 case 3:
1961 result->f.prot |= PAGE_WRITE;
1962 /* fall through */
1963 case 2:
1964 case 6:
1965 result->f.prot |= PAGE_READ | PAGE_EXEC;
1966 break;
1967 case 7:
1968 /* for v7M, same as 6; for R profile a reserved value */
1969 if (arm_feature(env, ARM_FEATURE_M)) {
1970 result->f.prot |= PAGE_READ | PAGE_EXEC;
1971 break;
1972 }
1973 /* fall through */
1974 default:
1975 qemu_log_mask(LOG_GUEST_ERROR,
1976 "DRACR[%d]: Bad value for AP bits: 0x%"
1977 PRIx32 "\n", n, ap);
1978 }
1979 } else { /* Priv. mode AP bits decoding */
1980 switch (ap) {
1981 case 0:
1982 break; /* no access */
1983 case 1:
1984 case 2:
1985 case 3:
1986 result->f.prot |= PAGE_WRITE;
1987 /* fall through */
1988 case 5:
1989 case 6:
1990 result->f.prot |= PAGE_READ | PAGE_EXEC;
1991 break;
1992 case 7:
1993 /* for v7M, same as 6; for R profile a reserved value */
1994 if (arm_feature(env, ARM_FEATURE_M)) {
1995 result->f.prot |= PAGE_READ | PAGE_EXEC;
1996 break;
1997 }
1998 /* fall through */
1999 default:
2000 qemu_log_mask(LOG_GUEST_ERROR,
2001 "DRACR[%d]: Bad value for AP bits: 0x%"
2002 PRIx32 "\n", n, ap);
2003 }
2004 }
2005
2006 /* execute never */
2007 if (xn) {
2008 result->f.prot &= ~PAGE_EXEC;
2009 }
2010 }
2011 }
2012
2013 fi->type = ARMFault_Permission;
2014 fi->level = 1;
2015 return !(result->f.prot & (1 << access_type));
2016 }
2017
2018 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2019 uint32_t secure)
2020 {
2021 if (regime_el(env, mmu_idx) == 2) {
2022 return env->pmsav8.hprbar;
2023 } else {
2024 return env->pmsav8.rbar[secure];
2025 }
2026 }
2027
2028 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2029 uint32_t secure)
2030 {
2031 if (regime_el(env, mmu_idx) == 2) {
2032 return env->pmsav8.hprlar;
2033 } else {
2034 return env->pmsav8.rlar[secure];
2035 }
2036 }
2037
2038 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2039 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2040 bool secure, GetPhysAddrResult *result,
2041 ARMMMUFaultInfo *fi, uint32_t *mregion)
2042 {
2043 /*
2044 * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2045 * that a full phys-to-virt translation does).
2046 * mregion is (if not NULL) set to the region number which matched,
2047 * or -1 if no region number is returned (MPU off, address did not
2048 * hit a region, address hit in multiple regions).
2049 * If the region hit doesn't cover the entire TARGET_PAGE the address
2050 * is within, then we set the result page_size to 1 to force the
2051 * memory system to use a subpage.
2052 */
2053 ARMCPU *cpu = env_archcpu(env);
2054 bool is_user = regime_is_user(env, mmu_idx);
2055 int n;
2056 int matchregion = -1;
2057 bool hit = false;
2058 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2059 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2060 int region_counter;
2061
2062 if (regime_el(env, mmu_idx) == 2) {
2063 region_counter = cpu->pmsav8r_hdregion;
2064 } else {
2065 region_counter = cpu->pmsav7_dregion;
2066 }
2067
2068 result->f.lg_page_size = TARGET_PAGE_BITS;
2069 result->f.phys_addr = address;
2070 result->f.prot = 0;
2071 if (mregion) {
2072 *mregion = -1;
2073 }
2074
2075 if (mmu_idx == ARMMMUIdx_Stage2) {
2076 fi->stage2 = true;
2077 }
2078
2079 /*
2080 * Unlike the ARM ARM pseudocode, we don't need to check whether this
2081 * was an exception vector read from the vector table (which is always
2082 * done using the default system address map), because those accesses
2083 * are done in arm_v7m_load_vector(), which always does a direct
2084 * read using address_space_ldl(), rather than going via this function.
2085 */
2086 if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */
2087 hit = true;
2088 } else if (m_is_ppb_region(env, address)) {
2089 hit = true;
2090 } else {
2091 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2092 hit = true;
2093 }
2094
2095 uint32_t bitmask;
2096 if (arm_feature(env, ARM_FEATURE_M)) {
2097 bitmask = 0x1f;
2098 } else {
2099 bitmask = 0x3f;
2100 fi->level = 0;
2101 }
2102
2103 for (n = region_counter - 1; n >= 0; n--) {
2104 /* region search */
2105 /*
2106 * Note that the base address is bits [31:x] from the register
2107 * with bits [x-1:0] all zeroes, but the limit address is bits
2108 * [31:x] from the register with bits [x:0] all ones. Where x is
2109 * 5 for Cortex-M and 6 for Cortex-R
2110 */
2111 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2112 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2113
2114 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2115 /* Region disabled */
2116 continue;
2117 }
2118
2119 if (address < base || address > limit) {
2120 /*
2121 * Address not in this region. We must check whether the
2122 * region covers addresses in the same page as our address.
2123 * In that case we must not report a size that covers the
2124 * whole page for a subsequent hit against a different MPU
2125 * region or the background region, because it would result in
2126 * incorrect TLB hits for subsequent accesses to addresses that
2127 * are in this MPU region.
2128 */
2129 if (limit >= base &&
2130 ranges_overlap(base, limit - base + 1,
2131 addr_page_base,
2132 TARGET_PAGE_SIZE)) {
2133 result->f.lg_page_size = 0;
2134 }
2135 continue;
2136 }
2137
2138 if (base > addr_page_base || limit < addr_page_limit) {
2139 result->f.lg_page_size = 0;
2140 }
2141
2142 if (matchregion != -1) {
2143 /*
2144 * Multiple regions match -- always a failure (unlike
2145 * PMSAv7 where highest-numbered-region wins)
2146 */
2147 fi->type = ARMFault_Permission;
2148 if (arm_feature(env, ARM_FEATURE_M)) {
2149 fi->level = 1;
2150 }
2151 return true;
2152 }
2153
2154 matchregion = n;
2155 hit = true;
2156 }
2157 }
2158
2159 if (!hit) {
2160 if (arm_feature(env, ARM_FEATURE_M)) {
2161 fi->type = ARMFault_Background;
2162 } else {
2163 fi->type = ARMFault_Permission;
2164 }
2165 return true;
2166 }
2167
2168 if (matchregion == -1) {
2169 /* hit using the background region */
2170 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2171 } else {
2172 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2173 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2174 uint32_t ap = extract32(matched_rbar, 1, 2);
2175 uint32_t xn = extract32(matched_rbar, 0, 1);
2176 bool pxn = false;
2177
2178 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2179 pxn = extract32(matched_rlar, 4, 1);
2180 }
2181
2182 if (m_is_system_region(env, address)) {
2183 /* System space is always execute never */
2184 xn = 1;
2185 }
2186
2187 if (regime_el(env, mmu_idx) == 2) {
2188 result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2189 mmu_idx != ARMMMUIdx_E2);
2190 } else {
2191 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2192 }
2193
2194 if (!arm_feature(env, ARM_FEATURE_M)) {
2195 uint8_t attrindx = extract32(matched_rlar, 1, 3);
2196 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2197 uint8_t sh = extract32(matched_rlar, 3, 2);
2198
2199 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2200 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2201 xn = 0x1;
2202 }
2203
2204 if ((regime_el(env, mmu_idx) == 1) &&
2205 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2206 pxn = 0x1;
2207 }
2208
2209 result->cacheattrs.is_s2_format = false;
2210 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2211 result->cacheattrs.shareability = sh;
2212 }
2213
2214 if (result->f.prot && !xn && !(pxn && !is_user)) {
2215 result->f.prot |= PAGE_EXEC;
2216 }
2217
2218 if (mregion) {
2219 *mregion = matchregion;
2220 }
2221 }
2222
2223 fi->type = ARMFault_Permission;
2224 if (arm_feature(env, ARM_FEATURE_M)) {
2225 fi->level = 1;
2226 }
2227 return !(result->f.prot & (1 << access_type));
2228 }
2229
2230 static bool v8m_is_sau_exempt(CPUARMState *env,
2231 uint32_t address, MMUAccessType access_type)
2232 {
2233 /*
2234 * The architecture specifies that certain address ranges are
2235 * exempt from v8M SAU/IDAU checks.
2236 */
2237 return
2238 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2239 (address >= 0xe0000000 && address <= 0xe0002fff) ||
2240 (address >= 0xe000e000 && address <= 0xe000efff) ||
2241 (address >= 0xe002e000 && address <= 0xe002efff) ||
2242 (address >= 0xe0040000 && address <= 0xe0041fff) ||
2243 (address >= 0xe00ff000 && address <= 0xe00fffff);
2244 }
2245
2246 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2247 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2248 bool is_secure, V8M_SAttributes *sattrs)
2249 {
2250 /*
2251 * Look up the security attributes for this address. Compare the
2252 * pseudocode SecurityCheck() function.
2253 * We assume the caller has zero-initialized *sattrs.
2254 */
2255 ARMCPU *cpu = env_archcpu(env);
2256 int r;
2257 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2258 int idau_region = IREGION_NOTVALID;
2259 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2260 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2261
2262 if (cpu->idau) {
2263 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2264 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2265
2266 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2267 &idau_nsc);
2268 }
2269
2270 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2271 /* 0xf0000000..0xffffffff is always S for insn fetches */
2272 return;
2273 }
2274
2275 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2276 sattrs->ns = !is_secure;
2277 return;
2278 }
2279
2280 if (idau_region != IREGION_NOTVALID) {
2281 sattrs->irvalid = true;
2282 sattrs->iregion = idau_region;
2283 }
2284
2285 switch (env->sau.ctrl & 3) {
2286 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2287 break;
2288 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2289 sattrs->ns = true;
2290 break;
2291 default: /* SAU.ENABLE == 1 */
2292 for (r = 0; r < cpu->sau_sregion; r++) {
2293 if (env->sau.rlar[r] & 1) {
2294 uint32_t base = env->sau.rbar[r] & ~0x1f;
2295 uint32_t limit = env->sau.rlar[r] | 0x1f;
2296
2297 if (base <= address && limit >= address) {
2298 if (base > addr_page_base || limit < addr_page_limit) {
2299 sattrs->subpage = true;
2300 }
2301 if (sattrs->srvalid) {
2302 /*
2303 * If we hit in more than one region then we must report
2304 * as Secure, not NS-Callable, with no valid region
2305 * number info.
2306 */
2307 sattrs->ns = false;
2308 sattrs->nsc = false;
2309 sattrs->sregion = 0;
2310 sattrs->srvalid = false;
2311 break;
2312 } else {
2313 if (env->sau.rlar[r] & 2) {
2314 sattrs->nsc = true;
2315 } else {
2316 sattrs->ns = true;
2317 }
2318 sattrs->srvalid = true;
2319 sattrs->sregion = r;
2320 }
2321 } else {
2322 /*
2323 * Address not in this region. We must check whether the
2324 * region covers addresses in the same page as our address.
2325 * In that case we must not report a size that covers the
2326 * whole page for a subsequent hit against a different MPU
2327 * region or the background region, because it would result
2328 * in incorrect TLB hits for subsequent accesses to
2329 * addresses that are in this MPU region.
2330 */
2331 if (limit >= base &&
2332 ranges_overlap(base, limit - base + 1,
2333 addr_page_base,
2334 TARGET_PAGE_SIZE)) {
2335 sattrs->subpage = true;
2336 }
2337 }
2338 }
2339 }
2340 break;
2341 }
2342
2343 /*
2344 * The IDAU will override the SAU lookup results if it specifies
2345 * higher security than the SAU does.
2346 */
2347 if (!idau_ns) {
2348 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2349 sattrs->ns = false;
2350 sattrs->nsc = idau_nsc;
2351 }
2352 }
2353 }
2354
2355 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
2356 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2357 bool secure, GetPhysAddrResult *result,
2358 ARMMMUFaultInfo *fi)
2359 {
2360 V8M_SAttributes sattrs = {};
2361 bool ret;
2362
2363 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2364 v8m_security_lookup(env, address, access_type, mmu_idx,
2365 secure, &sattrs);
2366 if (access_type == MMU_INST_FETCH) {
2367 /*
2368 * Instruction fetches always use the MMU bank and the
2369 * transaction attribute determined by the fetch address,
2370 * regardless of CPU state. This is painful for QEMU
2371 * to handle, because it would mean we need to encode
2372 * into the mmu_idx not just the (user, negpri) information
2373 * for the current security state but also that for the
2374 * other security state, which would balloon the number
2375 * of mmu_idx values needed alarmingly.
2376 * Fortunately we can avoid this because it's not actually
2377 * possible to arbitrarily execute code from memory with
2378 * the wrong security attribute: it will always generate
2379 * an exception of some kind or another, apart from the
2380 * special case of an NS CPU executing an SG instruction
2381 * in S&NSC memory. So we always just fail the translation
2382 * here and sort things out in the exception handler
2383 * (including possibly emulating an SG instruction).
2384 */
2385 if (sattrs.ns != !secure) {
2386 if (sattrs.nsc) {
2387 fi->type = ARMFault_QEMU_NSCExec;
2388 } else {
2389 fi->type = ARMFault_QEMU_SFault;
2390 }
2391 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2392 result->f.phys_addr = address;
2393 result->f.prot = 0;
2394 return true;
2395 }
2396 } else {
2397 /*
2398 * For data accesses we always use the MMU bank indicated
2399 * by the current CPU state, but the security attributes
2400 * might downgrade a secure access to nonsecure.
2401 */
2402 if (sattrs.ns) {
2403 result->f.attrs.secure = false;
2404 } else if (!secure) {
2405 /*
2406 * NS access to S memory must fault.
2407 * Architecturally we should first check whether the
2408 * MPU information for this address indicates that we
2409 * are doing an unaligned access to Device memory, which
2410 * should generate a UsageFault instead. QEMU does not
2411 * currently check for that kind of unaligned access though.
2412 * If we added it we would need to do so as a special case
2413 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2414 */
2415 fi->type = ARMFault_QEMU_SFault;
2416 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2417 result->f.phys_addr = address;
2418 result->f.prot = 0;
2419 return true;
2420 }
2421 }
2422 }
2423
2424 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2425 result, fi, NULL);
2426 if (sattrs.subpage) {
2427 result->f.lg_page_size = 0;
2428 }
2429 return ret;
2430 }
2431
2432 /*
2433 * Translate from the 4-bit stage 2 representation of
2434 * memory attributes (without cache-allocation hints) to
2435 * the 8-bit representation of the stage 1 MAIR registers
2436 * (which includes allocation hints).
2437 *
2438 * ref: shared/translation/attrs/S2AttrDecode()
2439 * .../S2ConvertAttrsHints()
2440 */
2441 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2442 {
2443 uint8_t hiattr = extract32(s2attrs, 2, 2);
2444 uint8_t loattr = extract32(s2attrs, 0, 2);
2445 uint8_t hihint = 0, lohint = 0;
2446
2447 if (hiattr != 0) { /* normal memory */
2448 if (hcr & HCR_CD) { /* cache disabled */
2449 hiattr = loattr = 1; /* non-cacheable */
2450 } else {
2451 if (hiattr != 1) { /* Write-through or write-back */
2452 hihint = 3; /* RW allocate */
2453 }
2454 if (loattr != 1) { /* Write-through or write-back */
2455 lohint = 3; /* RW allocate */
2456 }
2457 }
2458 }
2459
2460 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2461 }
2462
2463 /*
2464 * Combine either inner or outer cacheability attributes for normal
2465 * memory, according to table D4-42 and pseudocode procedure
2466 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2467 *
2468 * NB: only stage 1 includes allocation hints (RW bits), leading to
2469 * some asymmetry.
2470 */
2471 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2472 {
2473 if (s1 == 4 || s2 == 4) {
2474 /* non-cacheable has precedence */
2475 return 4;
2476 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2477 /* stage 1 write-through takes precedence */
2478 return s1;
2479 } else if (extract32(s2, 2, 2) == 2) {
2480 /* stage 2 write-through takes precedence, but the allocation hint
2481 * is still taken from stage 1
2482 */
2483 return (2 << 2) | extract32(s1, 0, 2);
2484 } else { /* write-back */
2485 return s1;
2486 }
2487 }
2488
2489 /*
2490 * Combine the memory type and cacheability attributes of
2491 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2492 * combined attributes in MAIR_EL1 format.
2493 */
2494 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2495 ARMCacheAttrs s1, ARMCacheAttrs s2)
2496 {
2497 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2498
2499 if (s2.is_s2_format) {
2500 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2501 } else {
2502 s2_mair_attrs = s2.attrs;
2503 }
2504
2505 s1lo = extract32(s1.attrs, 0, 4);
2506 s2lo = extract32(s2_mair_attrs, 0, 4);
2507 s1hi = extract32(s1.attrs, 4, 4);
2508 s2hi = extract32(s2_mair_attrs, 4, 4);
2509
2510 /* Combine memory type and cacheability attributes */
2511 if (s1hi == 0 || s2hi == 0) {
2512 /* Device has precedence over normal */
2513 if (s1lo == 0 || s2lo == 0) {
2514 /* nGnRnE has precedence over anything */
2515 ret_attrs = 0;
2516 } else if (s1lo == 4 || s2lo == 4) {
2517 /* non-Reordering has precedence over Reordering */
2518 ret_attrs = 4; /* nGnRE */
2519 } else if (s1lo == 8 || s2lo == 8) {
2520 /* non-Gathering has precedence over Gathering */
2521 ret_attrs = 8; /* nGRE */
2522 } else {
2523 ret_attrs = 0xc; /* GRE */
2524 }
2525 } else { /* Normal memory */
2526 /* Outer/inner cacheability combine independently */
2527 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2528 | combine_cacheattr_nibble(s1lo, s2lo);
2529 }
2530 return ret_attrs;
2531 }
2532
2533 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2534 {
2535 /*
2536 * Given the 4 bits specifying the outer or inner cacheability
2537 * in MAIR format, return a value specifying Normal Write-Back,
2538 * with the allocation and transient hints taken from the input
2539 * if the input specified some kind of cacheable attribute.
2540 */
2541 if (attr == 0 || attr == 4) {
2542 /*
2543 * 0 == an UNPREDICTABLE encoding
2544 * 4 == Non-cacheable
2545 * Either way, force Write-Back RW allocate non-transient
2546 */
2547 return 0xf;
2548 }
2549 /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2550 return attr | 4;
2551 }
2552
2553 /*
2554 * Combine the memory type and cacheability attributes of
2555 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2556 * combined attributes in MAIR_EL1 format.
2557 */
2558 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
2559 {
2560 assert(s2.is_s2_format && !s1.is_s2_format);
2561
2562 switch (s2.attrs) {
2563 case 7:
2564 /* Use stage 1 attributes */
2565 return s1.attrs;
2566 case 6:
2567 /*
2568 * Force Normal Write-Back. Note that if S1 is Normal cacheable
2569 * then we take the allocation hints from it; otherwise it is
2570 * RW allocate, non-transient.
2571 */
2572 if ((s1.attrs & 0xf0) == 0) {
2573 /* S1 is Device */
2574 return 0xff;
2575 }
2576 /* Need to check the Inner and Outer nibbles separately */
2577 return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2578 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
2579 case 5:
2580 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
2581 if ((s1.attrs & 0xf0) == 0) {
2582 return s1.attrs;
2583 }
2584 return 0x44;
2585 case 0 ... 3:
2586 /* Force Device, of subtype specified by S2 */
2587 return s2.attrs << 2;
2588 default:
2589 /*
2590 * RESERVED values (including RES0 descriptor bit [5] being nonzero);
2591 * arbitrarily force Device.
2592 */
2593 return 0;
2594 }
2595 }
2596
2597 /*
2598 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
2599 * and CombineS1S2Desc()
2600 *
2601 * @env: CPUARMState
2602 * @s1: Attributes from stage 1 walk
2603 * @s2: Attributes from stage 2 walk
2604 */
2605 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
2606 ARMCacheAttrs s1, ARMCacheAttrs s2)
2607 {
2608 ARMCacheAttrs ret;
2609 bool tagged = false;
2610
2611 assert(!s1.is_s2_format);
2612 ret.is_s2_format = false;
2613 ret.guarded = s1.guarded;
2614
2615 if (s1.attrs == 0xf0) {
2616 tagged = true;
2617 s1.attrs = 0xff;
2618 }
2619
2620 /* Combine shareability attributes (table D4-43) */
2621 if (s1.shareability == 2 || s2.shareability == 2) {
2622 /* if either are outer-shareable, the result is outer-shareable */
2623 ret.shareability = 2;
2624 } else if (s1.shareability == 3 || s2.shareability == 3) {
2625 /* if either are inner-shareable, the result is inner-shareable */
2626 ret.shareability = 3;
2627 } else {
2628 /* both non-shareable */
2629 ret.shareability = 0;
2630 }
2631
2632 /* Combine memory type and cacheability attributes */
2633 if (hcr & HCR_FWB) {
2634 ret.attrs = combined_attrs_fwb(s1, s2);
2635 } else {
2636 ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
2637 }
2638
2639 /*
2640 * Any location for which the resultant memory type is any
2641 * type of Device memory is always treated as Outer Shareable.
2642 * Any location for which the resultant memory type is Normal
2643 * Inner Non-cacheable, Outer Non-cacheable is always treated
2644 * as Outer Shareable.
2645 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
2646 */
2647 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
2648 ret.shareability = 2;
2649 }
2650
2651 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
2652 if (tagged && ret.attrs == 0xff) {
2653 ret.attrs = 0xf0;
2654 }
2655
2656 return ret;
2657 }
2658
2659 /*
2660 * MMU disabled. S1 addresses within aa64 translation regimes are
2661 * still checked for bounds -- see AArch64.S1DisabledOutput().
2662 */
2663 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address,
2664 MMUAccessType access_type,
2665 ARMMMUIdx mmu_idx, bool is_secure,
2666 GetPhysAddrResult *result,
2667 ARMMMUFaultInfo *fi)
2668 {
2669 uint8_t memattr = 0x00; /* Device nGnRnE */
2670 uint8_t shareability = 0; /* non-sharable */
2671 int r_el;
2672
2673 switch (mmu_idx) {
2674 case ARMMMUIdx_Stage2:
2675 case ARMMMUIdx_Stage2_S:
2676 case ARMMMUIdx_Phys_NS:
2677 case ARMMMUIdx_Phys_S:
2678 break;
2679
2680 default:
2681 r_el = regime_el(env, mmu_idx);
2682 if (arm_el_is_aa64(env, r_el)) {
2683 int pamax = arm_pamax(env_archcpu(env));
2684 uint64_t tcr = env->cp15.tcr_el[r_el];
2685 int addrtop, tbi;
2686
2687 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
2688 if (access_type == MMU_INST_FETCH) {
2689 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
2690 }
2691 tbi = (tbi >> extract64(address, 55, 1)) & 1;
2692 addrtop = (tbi ? 55 : 63);
2693
2694 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
2695 fi->type = ARMFault_AddressSize;
2696 fi->level = 0;
2697 fi->stage2 = false;
2698 return 1;
2699 }
2700
2701 /*
2702 * When TBI is disabled, we've just validated that all of the
2703 * bits above PAMax are zero, so logically we only need to
2704 * clear the top byte for TBI. But it's clearer to follow
2705 * the pseudocode set of addrdesc.paddress.
2706 */
2707 address = extract64(address, 0, 52);
2708 }
2709
2710 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
2711 if (r_el == 1) {
2712 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2713 if (hcr & HCR_DC) {
2714 if (hcr & HCR_DCT) {
2715 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
2716 } else {
2717 memattr = 0xff; /* Normal, WB, RWA */
2718 }
2719 }
2720 }
2721 if (memattr == 0 && access_type == MMU_INST_FETCH) {
2722 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
2723 memattr = 0xee; /* Normal, WT, RA, NT */
2724 } else {
2725 memattr = 0x44; /* Normal, NC, No */
2726 }
2727 shareability = 2; /* outer sharable */
2728 }
2729 result->cacheattrs.is_s2_format = false;
2730 break;
2731 }
2732
2733 result->f.phys_addr = address;
2734 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2735 result->f.lg_page_size = TARGET_PAGE_BITS;
2736 result->cacheattrs.shareability = shareability;
2737 result->cacheattrs.attrs = memattr;
2738 return false;
2739 }
2740
2741 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
2742 target_ulong address,
2743 MMUAccessType access_type,
2744 GetPhysAddrResult *result,
2745 ARMMMUFaultInfo *fi)
2746 {
2747 hwaddr ipa;
2748 int s1_prot, s1_lgpgsz;
2749 bool is_secure = ptw->in_secure;
2750 bool ret, ipa_secure;
2751 ARMCacheAttrs cacheattrs1;
2752 bool is_el0;
2753 uint64_t hcr;
2754
2755 ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi);
2756
2757 /* If S1 fails, return early. */
2758 if (ret) {
2759 return ret;
2760 }
2761
2762 ipa = result->f.phys_addr;
2763 ipa_secure = result->f.attrs.secure;
2764
2765 is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
2766 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2767 ptw->in_secure = ipa_secure;
2768 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
2769
2770 /*
2771 * S1 is done, now do S2 translation.
2772 * Save the stage1 results so that we may merge prot and cacheattrs later.
2773 */
2774 s1_prot = result->f.prot;
2775 s1_lgpgsz = result->f.lg_page_size;
2776 cacheattrs1 = result->cacheattrs;
2777 memset(result, 0, sizeof(*result));
2778
2779 if (arm_feature(env, ARM_FEATURE_PMSA)) {
2780 ret = get_phys_addr_pmsav8(env, ipa, access_type,
2781 ptw->in_mmu_idx, is_secure, result, fi);
2782 } else {
2783 ret = get_phys_addr_lpae(env, ptw, ipa, access_type,
2784 is_el0, result, fi);
2785 }
2786 fi->s2addr = ipa;
2787
2788 /* Combine the S1 and S2 perms. */
2789 result->f.prot &= s1_prot;
2790
2791 /* If S2 fails, return early. */
2792 if (ret) {
2793 return ret;
2794 }
2795
2796 /*
2797 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
2798 * this means "don't put this in the TLB"; in this case, return a
2799 * result with lg_page_size == 0 to achieve that. Otherwise,
2800 * use the maximum of the S1 & S2 page size, so that invalidation
2801 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
2802 * we know the combined result permissions etc only cover the minimum
2803 * of the S1 and S2 page size, because we know that the common TLB code
2804 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
2805 * and passing a larger page size value only affects invalidations.)
2806 */
2807 if (result->f.lg_page_size < TARGET_PAGE_BITS ||
2808 s1_lgpgsz < TARGET_PAGE_BITS) {
2809 result->f.lg_page_size = 0;
2810 } else if (result->f.lg_page_size < s1_lgpgsz) {
2811 result->f.lg_page_size = s1_lgpgsz;
2812 }
2813
2814 /* Combine the S1 and S2 cache attributes. */
2815 hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2816 if (hcr & HCR_DC) {
2817 /*
2818 * HCR.DC forces the first stage attributes to
2819 * Normal Non-Shareable,
2820 * Inner Write-Back Read-Allocate Write-Allocate,
2821 * Outer Write-Back Read-Allocate Write-Allocate.
2822 * Do not overwrite Tagged within attrs.
2823 */
2824 if (cacheattrs1.attrs != 0xf0) {
2825 cacheattrs1.attrs = 0xff;
2826 }
2827 cacheattrs1.shareability = 0;
2828 }
2829 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
2830 result->cacheattrs);
2831
2832 /*
2833 * Check if IPA translates to secure or non-secure PA space.
2834 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
2835 */
2836 result->f.attrs.secure =
2837 (is_secure
2838 && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
2839 && (ipa_secure
2840 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))));
2841
2842 return false;
2843 }
2844
2845 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
2846 target_ulong address,
2847 MMUAccessType access_type,
2848 GetPhysAddrResult *result,
2849 ARMMMUFaultInfo *fi)
2850 {
2851 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2852 bool is_secure = ptw->in_secure;
2853 ARMMMUIdx s1_mmu_idx;
2854
2855 /*
2856 * The page table entries may downgrade secure to non-secure, but
2857 * cannot upgrade an non-secure translation regime's attributes
2858 * to secure.
2859 */
2860 result->f.attrs.secure = is_secure;
2861
2862 switch (mmu_idx) {
2863 case ARMMMUIdx_Phys_S:
2864 case ARMMMUIdx_Phys_NS:
2865 /* Checking Phys early avoids special casing later vs regime_el. */
2866 return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2867 is_secure, result, fi);
2868
2869 case ARMMMUIdx_Stage1_E0:
2870 case ARMMMUIdx_Stage1_E1:
2871 case ARMMMUIdx_Stage1_E1_PAN:
2872 /* First stage lookup uses second stage for ptw. */
2873 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2874 break;
2875
2876 case ARMMMUIdx_Stage2:
2877 case ARMMMUIdx_Stage2_S:
2878 /*
2879 * Second stage lookup uses physical for ptw; whether this is S or
2880 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
2881 * the Secure EL2&0 regime.
2882 */
2883 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
2884 break;
2885
2886 case ARMMMUIdx_E10_0:
2887 s1_mmu_idx = ARMMMUIdx_Stage1_E0;
2888 goto do_twostage;
2889 case ARMMMUIdx_E10_1:
2890 s1_mmu_idx = ARMMMUIdx_Stage1_E1;
2891 goto do_twostage;
2892 case ARMMMUIdx_E10_1_PAN:
2893 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
2894 do_twostage:
2895 /*
2896 * Call ourselves recursively to do the stage 1 and then stage 2
2897 * translations if mmu_idx is a two-stage regime, and EL2 present.
2898 * Otherwise, a stage1+stage2 translation is just stage 1.
2899 */
2900 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
2901 if (arm_feature(env, ARM_FEATURE_EL2) &&
2902 !regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) {
2903 return get_phys_addr_twostage(env, ptw, address, access_type,
2904 result, fi);
2905 }
2906 /* fall through */
2907
2908 default:
2909 /* Single stage uses physical for ptw. */
2910 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
2911 break;
2912 }
2913
2914 result->f.attrs.user = regime_is_user(env, mmu_idx);
2915
2916 /*
2917 * Fast Context Switch Extension. This doesn't exist at all in v8.
2918 * In v7 and earlier it affects all stage 1 translations.
2919 */
2920 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
2921 && !arm_feature(env, ARM_FEATURE_V8)) {
2922 if (regime_el(env, mmu_idx) == 3) {
2923 address += env->cp15.fcseidr_s;
2924 } else {
2925 address += env->cp15.fcseidr_ns;
2926 }
2927 }
2928
2929 if (arm_feature(env, ARM_FEATURE_PMSA)) {
2930 bool ret;
2931 result->f.lg_page_size = TARGET_PAGE_BITS;
2932
2933 if (arm_feature(env, ARM_FEATURE_V8)) {
2934 /* PMSAv8 */
2935 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
2936 is_secure, result, fi);
2937 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2938 /* PMSAv7 */
2939 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
2940 is_secure, result, fi);
2941 } else {
2942 /* Pre-v7 MPU */
2943 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
2944 is_secure, result, fi);
2945 }
2946 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
2947 " mmu_idx %u -> %s (prot %c%c%c)\n",
2948 access_type == MMU_DATA_LOAD ? "reading" :
2949 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
2950 (uint32_t)address, mmu_idx,
2951 ret ? "Miss" : "Hit",
2952 result->f.prot & PAGE_READ ? 'r' : '-',
2953 result->f.prot & PAGE_WRITE ? 'w' : '-',
2954 result->f.prot & PAGE_EXEC ? 'x' : '-');
2955
2956 return ret;
2957 }
2958
2959 /* Definitely a real MMU, not an MPU */
2960
2961 if (regime_translation_disabled(env, mmu_idx, is_secure)) {
2962 return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2963 is_secure, result, fi);
2964 }
2965
2966 if (regime_using_lpae_format(env, mmu_idx)) {
2967 return get_phys_addr_lpae(env, ptw, address, access_type, false,
2968 result, fi);
2969 } else if (arm_feature(env, ARM_FEATURE_V7) ||
2970 regime_sctlr(env, mmu_idx) & SCTLR_XP) {
2971 return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
2972 } else {
2973 return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
2974 }
2975 }
2976
2977 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
2978 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2979 bool is_secure, GetPhysAddrResult *result,
2980 ARMMMUFaultInfo *fi)
2981 {
2982 S1Translate ptw = {
2983 .in_mmu_idx = mmu_idx,
2984 .in_secure = is_secure,
2985 };
2986 return get_phys_addr_with_struct(env, &ptw, address, access_type,
2987 result, fi);
2988 }
2989
2990 bool get_phys_addr(CPUARMState *env, target_ulong address,
2991 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2992 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
2993 {
2994 bool is_secure;
2995
2996 switch (mmu_idx) {
2997 case ARMMMUIdx_E10_0:
2998 case ARMMMUIdx_E10_1:
2999 case ARMMMUIdx_E10_1_PAN:
3000 case ARMMMUIdx_E20_0:
3001 case ARMMMUIdx_E20_2:
3002 case ARMMMUIdx_E20_2_PAN:
3003 case ARMMMUIdx_Stage1_E0:
3004 case ARMMMUIdx_Stage1_E1:
3005 case ARMMMUIdx_Stage1_E1_PAN:
3006 case ARMMMUIdx_E2:
3007 is_secure = arm_is_secure_below_el3(env);
3008 break;
3009 case ARMMMUIdx_Stage2:
3010 case ARMMMUIdx_Phys_NS:
3011 case ARMMMUIdx_MPrivNegPri:
3012 case ARMMMUIdx_MUserNegPri:
3013 case ARMMMUIdx_MPriv:
3014 case ARMMMUIdx_MUser:
3015 is_secure = false;
3016 break;
3017 case ARMMMUIdx_E3:
3018 case ARMMMUIdx_Stage2_S:
3019 case ARMMMUIdx_Phys_S:
3020 case ARMMMUIdx_MSPrivNegPri:
3021 case ARMMMUIdx_MSUserNegPri:
3022 case ARMMMUIdx_MSPriv:
3023 case ARMMMUIdx_MSUser:
3024 is_secure = true;
3025 break;
3026 default:
3027 g_assert_not_reached();
3028 }
3029 return get_phys_addr_with_secure(env, address, access_type, mmu_idx,
3030 is_secure, result, fi);
3031 }
3032
3033 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3034 MemTxAttrs *attrs)
3035 {
3036 ARMCPU *cpu = ARM_CPU(cs);
3037 CPUARMState *env = &cpu->env;
3038 S1Translate ptw = {
3039 .in_mmu_idx = arm_mmu_idx(env),
3040 .in_secure = arm_is_secure(env),
3041 .in_debug = true,
3042 };
3043 GetPhysAddrResult res = {};
3044 ARMMMUFaultInfo fi = {};
3045 bool ret;
3046
3047 ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
3048 *attrs = res.f.attrs;
3049
3050 if (ret) {
3051 return -1;
3052 }
3053 return res.f.phys_addr;
3054 }