]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/ptw.c
Merge tag 'or1k-pull-request-20230513' of https://github.com/stffrdhrn/qemu into...
[mirror_qemu.git] / target / arm / ptw.c
1 /*
2 * ARM page table walking.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "idau.h"
17
18
19 typedef struct S1Translate {
20 ARMMMUIdx in_mmu_idx;
21 ARMMMUIdx in_ptw_idx;
22 bool in_secure;
23 bool in_debug;
24 bool out_secure;
25 bool out_rw;
26 bool out_be;
27 hwaddr out_virt;
28 hwaddr out_phys;
29 void *out_host;
30 } S1Translate;
31
32 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
33 uint64_t address,
34 MMUAccessType access_type, bool s1_is_el0,
35 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
36 __attribute__((nonnull));
37
38 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
39 target_ulong address,
40 MMUAccessType access_type,
41 GetPhysAddrResult *result,
42 ARMMMUFaultInfo *fi)
43 __attribute__((nonnull));
44
45 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
46 static const uint8_t pamax_map[] = {
47 [0] = 32,
48 [1] = 36,
49 [2] = 40,
50 [3] = 42,
51 [4] = 44,
52 [5] = 48,
53 [6] = 52,
54 };
55
56 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
57 unsigned int arm_pamax(ARMCPU *cpu)
58 {
59 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
60 unsigned int parange =
61 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
62
63 /*
64 * id_aa64mmfr0 is a read-only register so values outside of the
65 * supported mappings can be considered an implementation error.
66 */
67 assert(parange < ARRAY_SIZE(pamax_map));
68 return pamax_map[parange];
69 }
70
71 /*
72 * In machvirt_init, we call arm_pamax on a cpu that is not fully
73 * initialized, so we can't rely on the propagation done in realize.
74 */
75 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
76 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
77 /* v7 with LPAE */
78 return 40;
79 }
80 /* Anything else */
81 return 32;
82 }
83
84 /*
85 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
86 */
87 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
88 {
89 switch (mmu_idx) {
90 case ARMMMUIdx_E10_0:
91 return ARMMMUIdx_Stage1_E0;
92 case ARMMMUIdx_E10_1:
93 return ARMMMUIdx_Stage1_E1;
94 case ARMMMUIdx_E10_1_PAN:
95 return ARMMMUIdx_Stage1_E1_PAN;
96 default:
97 return mmu_idx;
98 }
99 }
100
101 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
102 {
103 return stage_1_mmu_idx(arm_mmu_idx(env));
104 }
105
106 /*
107 * Return where we should do ptw loads from for a stage 2 walk.
108 * This depends on whether the address we are looking up is a
109 * Secure IPA or a NonSecure IPA, which we know from whether this is
110 * Stage2 or Stage2_S.
111 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
112 */
113 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
114 {
115 bool s2walk_secure;
116
117 /*
118 * We're OK to check the current state of the CPU here because
119 * (1) we always invalidate all TLBs when the SCR_EL3.NS bit changes
120 * (2) there's no way to do a lookup that cares about Stage 2 for a
121 * different security state to the current one for AArch64, and AArch32
122 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
123 * an NS stage 1+2 lookup while the NS bit is 0.)
124 */
125 if (!arm_is_secure_below_el3(env) || !arm_el_is_aa64(env, 3)) {
126 return ARMMMUIdx_Phys_NS;
127 }
128 if (stage2idx == ARMMMUIdx_Stage2_S) {
129 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
130 } else {
131 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
132 }
133 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
134
135 }
136
137 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
138 {
139 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
140 }
141
142 /* Return the TTBR associated with this translation regime */
143 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
144 {
145 if (mmu_idx == ARMMMUIdx_Stage2) {
146 return env->cp15.vttbr_el2;
147 }
148 if (mmu_idx == ARMMMUIdx_Stage2_S) {
149 return env->cp15.vsttbr_el2;
150 }
151 if (ttbrn == 0) {
152 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
153 } else {
154 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
155 }
156 }
157
158 /* Return true if the specified stage of address translation is disabled */
159 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
160 bool is_secure)
161 {
162 uint64_t hcr_el2;
163
164 if (arm_feature(env, ARM_FEATURE_M)) {
165 switch (env->v7m.mpu_ctrl[is_secure] &
166 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
167 case R_V7M_MPU_CTRL_ENABLE_MASK:
168 /* Enabled, but not for HardFault and NMI */
169 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
170 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
171 /* Enabled for all cases */
172 return false;
173 case 0:
174 default:
175 /*
176 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
177 * we warned about that in armv7m_nvic.c when the guest set it.
178 */
179 return true;
180 }
181 }
182
183 hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure);
184
185 switch (mmu_idx) {
186 case ARMMMUIdx_Stage2:
187 case ARMMMUIdx_Stage2_S:
188 /* HCR.DC means HCR.VM behaves as 1 */
189 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
190
191 case ARMMMUIdx_E10_0:
192 case ARMMMUIdx_E10_1:
193 case ARMMMUIdx_E10_1_PAN:
194 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
195 if (hcr_el2 & HCR_TGE) {
196 return true;
197 }
198 break;
199
200 case ARMMMUIdx_Stage1_E0:
201 case ARMMMUIdx_Stage1_E1:
202 case ARMMMUIdx_Stage1_E1_PAN:
203 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
204 if (hcr_el2 & HCR_DC) {
205 return true;
206 }
207 break;
208
209 case ARMMMUIdx_E20_0:
210 case ARMMMUIdx_E20_2:
211 case ARMMMUIdx_E20_2_PAN:
212 case ARMMMUIdx_E2:
213 case ARMMMUIdx_E3:
214 break;
215
216 case ARMMMUIdx_Phys_NS:
217 case ARMMMUIdx_Phys_S:
218 /* No translation for physical address spaces. */
219 return true;
220
221 default:
222 g_assert_not_reached();
223 }
224
225 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
226 }
227
228 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
229 {
230 /*
231 * For an S1 page table walk, the stage 1 attributes are always
232 * some form of "this is Normal memory". The combined S1+S2
233 * attributes are therefore only Device if stage 2 specifies Device.
234 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
235 * ie when cacheattrs.attrs bits [3:2] are 0b00.
236 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
237 * when cacheattrs.attrs bit [2] is 0.
238 */
239 if (hcr & HCR_FWB) {
240 return (attrs & 0x4) == 0;
241 } else {
242 return (attrs & 0xc) == 0;
243 }
244 }
245
246 /* Translate a S1 pagetable walk through S2 if needed. */
247 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
248 hwaddr addr, ARMMMUFaultInfo *fi)
249 {
250 bool is_secure = ptw->in_secure;
251 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
252 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
253 uint8_t pte_attrs;
254
255 ptw->out_virt = addr;
256
257 if (unlikely(ptw->in_debug)) {
258 /*
259 * From gdbstub, do not use softmmu so that we don't modify the
260 * state of the cpu at all, including softmmu tlb contents.
261 */
262 if (regime_is_stage2(s2_mmu_idx)) {
263 S1Translate s2ptw = {
264 .in_mmu_idx = s2_mmu_idx,
265 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
266 .in_secure = s2_mmu_idx == ARMMMUIdx_Stage2_S,
267 .in_debug = true,
268 };
269 GetPhysAddrResult s2 = { };
270
271 if (get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD,
272 false, &s2, fi)) {
273 goto fail;
274 }
275 ptw->out_phys = s2.f.phys_addr;
276 pte_attrs = s2.cacheattrs.attrs;
277 ptw->out_secure = s2.f.attrs.secure;
278 } else {
279 /* Regime is physical. */
280 ptw->out_phys = addr;
281 pte_attrs = 0;
282 ptw->out_secure = s2_mmu_idx == ARMMMUIdx_Phys_S;
283 }
284 ptw->out_host = NULL;
285 ptw->out_rw = false;
286 } else {
287 #ifdef CONFIG_TCG
288 CPUTLBEntryFull *full;
289 int flags;
290
291 env->tlb_fi = fi;
292 flags = probe_access_full(env, addr, 0, MMU_DATA_LOAD,
293 arm_to_core_mmu_idx(s2_mmu_idx),
294 true, &ptw->out_host, &full, 0);
295 env->tlb_fi = NULL;
296
297 if (unlikely(flags & TLB_INVALID_MASK)) {
298 goto fail;
299 }
300 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
301 ptw->out_rw = full->prot & PAGE_WRITE;
302 pte_attrs = full->pte_attrs;
303 ptw->out_secure = full->attrs.secure;
304 #else
305 g_assert_not_reached();
306 #endif
307 }
308
309 if (regime_is_stage2(s2_mmu_idx)) {
310 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
311
312 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
313 /*
314 * PTW set and S1 walk touched S2 Device memory:
315 * generate Permission fault.
316 */
317 fi->type = ARMFault_Permission;
318 fi->s2addr = addr;
319 fi->stage2 = true;
320 fi->s1ptw = true;
321 fi->s1ns = !is_secure;
322 return false;
323 }
324 }
325
326 ptw->out_be = regime_translation_big_endian(env, mmu_idx);
327 return true;
328
329 fail:
330 assert(fi->type != ARMFault_None);
331 fi->s2addr = addr;
332 fi->stage2 = true;
333 fi->s1ptw = true;
334 fi->s1ns = !is_secure;
335 return false;
336 }
337
338 /* All loads done in the course of a page table walk go through here. */
339 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
340 ARMMMUFaultInfo *fi)
341 {
342 CPUState *cs = env_cpu(env);
343 void *host = ptw->out_host;
344 uint32_t data;
345
346 if (likely(host)) {
347 /* Page tables are in RAM, and we have the host address. */
348 data = qatomic_read((uint32_t *)host);
349 if (ptw->out_be) {
350 data = be32_to_cpu(data);
351 } else {
352 data = le32_to_cpu(data);
353 }
354 } else {
355 /* Page tables are in MMIO. */
356 MemTxAttrs attrs = { .secure = ptw->out_secure };
357 AddressSpace *as = arm_addressspace(cs, attrs);
358 MemTxResult result = MEMTX_OK;
359
360 if (ptw->out_be) {
361 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
362 } else {
363 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
364 }
365 if (unlikely(result != MEMTX_OK)) {
366 fi->type = ARMFault_SyncExternalOnWalk;
367 fi->ea = arm_extabort_type(result);
368 return 0;
369 }
370 }
371 return data;
372 }
373
374 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
375 ARMMMUFaultInfo *fi)
376 {
377 CPUState *cs = env_cpu(env);
378 void *host = ptw->out_host;
379 uint64_t data;
380
381 if (likely(host)) {
382 /* Page tables are in RAM, and we have the host address. */
383 #ifdef CONFIG_ATOMIC64
384 data = qatomic_read__nocheck((uint64_t *)host);
385 if (ptw->out_be) {
386 data = be64_to_cpu(data);
387 } else {
388 data = le64_to_cpu(data);
389 }
390 #else
391 if (ptw->out_be) {
392 data = ldq_be_p(host);
393 } else {
394 data = ldq_le_p(host);
395 }
396 #endif
397 } else {
398 /* Page tables are in MMIO. */
399 MemTxAttrs attrs = { .secure = ptw->out_secure };
400 AddressSpace *as = arm_addressspace(cs, attrs);
401 MemTxResult result = MEMTX_OK;
402
403 if (ptw->out_be) {
404 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
405 } else {
406 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
407 }
408 if (unlikely(result != MEMTX_OK)) {
409 fi->type = ARMFault_SyncExternalOnWalk;
410 fi->ea = arm_extabort_type(result);
411 return 0;
412 }
413 }
414 return data;
415 }
416
417 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
418 uint64_t new_val, S1Translate *ptw,
419 ARMMMUFaultInfo *fi)
420 {
421 uint64_t cur_val;
422 void *host = ptw->out_host;
423
424 if (unlikely(!host)) {
425 fi->type = ARMFault_UnsuppAtomicUpdate;
426 fi->s1ptw = true;
427 return 0;
428 }
429
430 /*
431 * Raising a stage2 Protection fault for an atomic update to a read-only
432 * page is delayed until it is certain that there is a change to make.
433 */
434 if (unlikely(!ptw->out_rw)) {
435 int flags;
436 void *discard;
437
438 env->tlb_fi = fi;
439 flags = probe_access_flags(env, ptw->out_virt, 0, MMU_DATA_STORE,
440 arm_to_core_mmu_idx(ptw->in_ptw_idx),
441 true, &discard, 0);
442 env->tlb_fi = NULL;
443
444 if (unlikely(flags & TLB_INVALID_MASK)) {
445 assert(fi->type != ARMFault_None);
446 fi->s2addr = ptw->out_virt;
447 fi->stage2 = true;
448 fi->s1ptw = true;
449 fi->s1ns = !ptw->in_secure;
450 return 0;
451 }
452
453 /* In case CAS mismatches and we loop, remember writability. */
454 ptw->out_rw = true;
455 }
456
457 #ifdef CONFIG_ATOMIC64
458 if (ptw->out_be) {
459 old_val = cpu_to_be64(old_val);
460 new_val = cpu_to_be64(new_val);
461 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
462 cur_val = be64_to_cpu(cur_val);
463 } else {
464 old_val = cpu_to_le64(old_val);
465 new_val = cpu_to_le64(new_val);
466 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
467 cur_val = le64_to_cpu(cur_val);
468 }
469 #else
470 /*
471 * We can't support the full 64-bit atomic cmpxchg on the host.
472 * Because this is only used for FEAT_HAFDBS, which is only for AA64,
473 * we know that TCG_OVERSIZED_GUEST is set, which means that we are
474 * running in round-robin mode and could only race with dma i/o.
475 */
476 #ifndef TCG_OVERSIZED_GUEST
477 # error "Unexpected configuration"
478 #endif
479 bool locked = qemu_mutex_iothread_locked();
480 if (!locked) {
481 qemu_mutex_lock_iothread();
482 }
483 if (ptw->out_be) {
484 cur_val = ldq_be_p(host);
485 if (cur_val == old_val) {
486 stq_be_p(host, new_val);
487 }
488 } else {
489 cur_val = ldq_le_p(host);
490 if (cur_val == old_val) {
491 stq_le_p(host, new_val);
492 }
493 }
494 if (!locked) {
495 qemu_mutex_unlock_iothread();
496 }
497 #endif
498
499 return cur_val;
500 }
501
502 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
503 uint32_t *table, uint32_t address)
504 {
505 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
506 uint64_t tcr = regime_tcr(env, mmu_idx);
507 int maskshift = extract32(tcr, 0, 3);
508 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
509 uint32_t base_mask;
510
511 if (address & mask) {
512 if (tcr & TTBCR_PD1) {
513 /* Translation table walk disabled for TTBR1 */
514 return false;
515 }
516 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
517 } else {
518 if (tcr & TTBCR_PD0) {
519 /* Translation table walk disabled for TTBR0 */
520 return false;
521 }
522 base_mask = ~((uint32_t)0x3fffu >> maskshift);
523 *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
524 }
525 *table |= (address >> 18) & 0x3ffc;
526 return true;
527 }
528
529 /*
530 * Translate section/page access permissions to page R/W protection flags
531 * @env: CPUARMState
532 * @mmu_idx: MMU index indicating required translation regime
533 * @ap: The 3-bit access permissions (AP[2:0])
534 * @domain_prot: The 2-bit domain access permissions
535 * @is_user: TRUE if accessing from PL0
536 */
537 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
538 int ap, int domain_prot, bool is_user)
539 {
540 if (domain_prot == 3) {
541 return PAGE_READ | PAGE_WRITE;
542 }
543
544 switch (ap) {
545 case 0:
546 if (arm_feature(env, ARM_FEATURE_V7)) {
547 return 0;
548 }
549 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
550 case SCTLR_S:
551 return is_user ? 0 : PAGE_READ;
552 case SCTLR_R:
553 return PAGE_READ;
554 default:
555 return 0;
556 }
557 case 1:
558 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
559 case 2:
560 if (is_user) {
561 return PAGE_READ;
562 } else {
563 return PAGE_READ | PAGE_WRITE;
564 }
565 case 3:
566 return PAGE_READ | PAGE_WRITE;
567 case 4: /* Reserved. */
568 return 0;
569 case 5:
570 return is_user ? 0 : PAGE_READ;
571 case 6:
572 return PAGE_READ;
573 case 7:
574 if (!arm_feature(env, ARM_FEATURE_V6K)) {
575 return 0;
576 }
577 return PAGE_READ;
578 default:
579 g_assert_not_reached();
580 }
581 }
582
583 /*
584 * Translate section/page access permissions to page R/W protection flags
585 * @env: CPUARMState
586 * @mmu_idx: MMU index indicating required translation regime
587 * @ap: The 3-bit access permissions (AP[2:0])
588 * @domain_prot: The 2-bit domain access permissions
589 */
590 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
591 int ap, int domain_prot)
592 {
593 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
594 regime_is_user(env, mmu_idx));
595 }
596
597 /*
598 * Translate section/page access permissions to page R/W protection flags.
599 * @ap: The 2-bit simple AP (AP[2:1])
600 * @is_user: TRUE if accessing from PL0
601 */
602 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
603 {
604 switch (ap) {
605 case 0:
606 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
607 case 1:
608 return PAGE_READ | PAGE_WRITE;
609 case 2:
610 return is_user ? 0 : PAGE_READ;
611 case 3:
612 return PAGE_READ;
613 default:
614 g_assert_not_reached();
615 }
616 }
617
618 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
619 {
620 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
621 }
622
623 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
624 uint32_t address, MMUAccessType access_type,
625 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
626 {
627 int level = 1;
628 uint32_t table;
629 uint32_t desc;
630 int type;
631 int ap;
632 int domain = 0;
633 int domain_prot;
634 hwaddr phys_addr;
635 uint32_t dacr;
636
637 /* Pagetable walk. */
638 /* Lookup l1 descriptor. */
639 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
640 /* Section translation fault if page walk is disabled by PD0 or PD1 */
641 fi->type = ARMFault_Translation;
642 goto do_fault;
643 }
644 if (!S1_ptw_translate(env, ptw, table, fi)) {
645 goto do_fault;
646 }
647 desc = arm_ldl_ptw(env, ptw, fi);
648 if (fi->type != ARMFault_None) {
649 goto do_fault;
650 }
651 type = (desc & 3);
652 domain = (desc >> 5) & 0x0f;
653 if (regime_el(env, ptw->in_mmu_idx) == 1) {
654 dacr = env->cp15.dacr_ns;
655 } else {
656 dacr = env->cp15.dacr_s;
657 }
658 domain_prot = (dacr >> (domain * 2)) & 3;
659 if (type == 0) {
660 /* Section translation fault. */
661 fi->type = ARMFault_Translation;
662 goto do_fault;
663 }
664 if (type != 2) {
665 level = 2;
666 }
667 if (domain_prot == 0 || domain_prot == 2) {
668 fi->type = ARMFault_Domain;
669 goto do_fault;
670 }
671 if (type == 2) {
672 /* 1Mb section. */
673 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
674 ap = (desc >> 10) & 3;
675 result->f.lg_page_size = 20; /* 1MB */
676 } else {
677 /* Lookup l2 entry. */
678 if (type == 1) {
679 /* Coarse pagetable. */
680 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
681 } else {
682 /* Fine pagetable. */
683 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
684 }
685 if (!S1_ptw_translate(env, ptw, table, fi)) {
686 goto do_fault;
687 }
688 desc = arm_ldl_ptw(env, ptw, fi);
689 if (fi->type != ARMFault_None) {
690 goto do_fault;
691 }
692 switch (desc & 3) {
693 case 0: /* Page translation fault. */
694 fi->type = ARMFault_Translation;
695 goto do_fault;
696 case 1: /* 64k page. */
697 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
698 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
699 result->f.lg_page_size = 16;
700 break;
701 case 2: /* 4k page. */
702 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
703 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
704 result->f.lg_page_size = 12;
705 break;
706 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
707 if (type == 1) {
708 /* ARMv6/XScale extended small page format */
709 if (arm_feature(env, ARM_FEATURE_XSCALE)
710 || arm_feature(env, ARM_FEATURE_V6)) {
711 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
712 result->f.lg_page_size = 12;
713 } else {
714 /*
715 * UNPREDICTABLE in ARMv5; we choose to take a
716 * page translation fault.
717 */
718 fi->type = ARMFault_Translation;
719 goto do_fault;
720 }
721 } else {
722 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
723 result->f.lg_page_size = 10;
724 }
725 ap = (desc >> 4) & 3;
726 break;
727 default:
728 /* Never happens, but compiler isn't smart enough to tell. */
729 g_assert_not_reached();
730 }
731 }
732 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
733 result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
734 if (!(result->f.prot & (1 << access_type))) {
735 /* Access permission fault. */
736 fi->type = ARMFault_Permission;
737 goto do_fault;
738 }
739 result->f.phys_addr = phys_addr;
740 return false;
741 do_fault:
742 fi->domain = domain;
743 fi->level = level;
744 return true;
745 }
746
747 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
748 uint32_t address, MMUAccessType access_type,
749 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
750 {
751 ARMCPU *cpu = env_archcpu(env);
752 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
753 int level = 1;
754 uint32_t table;
755 uint32_t desc;
756 uint32_t xn;
757 uint32_t pxn = 0;
758 int type;
759 int ap;
760 int domain = 0;
761 int domain_prot;
762 hwaddr phys_addr;
763 uint32_t dacr;
764 bool ns;
765 int user_prot;
766
767 /* Pagetable walk. */
768 /* Lookup l1 descriptor. */
769 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
770 /* Section translation fault if page walk is disabled by PD0 or PD1 */
771 fi->type = ARMFault_Translation;
772 goto do_fault;
773 }
774 if (!S1_ptw_translate(env, ptw, table, fi)) {
775 goto do_fault;
776 }
777 desc = arm_ldl_ptw(env, ptw, fi);
778 if (fi->type != ARMFault_None) {
779 goto do_fault;
780 }
781 type = (desc & 3);
782 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
783 /* Section translation fault, or attempt to use the encoding
784 * which is Reserved on implementations without PXN.
785 */
786 fi->type = ARMFault_Translation;
787 goto do_fault;
788 }
789 if ((type == 1) || !(desc & (1 << 18))) {
790 /* Page or Section. */
791 domain = (desc >> 5) & 0x0f;
792 }
793 if (regime_el(env, mmu_idx) == 1) {
794 dacr = env->cp15.dacr_ns;
795 } else {
796 dacr = env->cp15.dacr_s;
797 }
798 if (type == 1) {
799 level = 2;
800 }
801 domain_prot = (dacr >> (domain * 2)) & 3;
802 if (domain_prot == 0 || domain_prot == 2) {
803 /* Section or Page domain fault */
804 fi->type = ARMFault_Domain;
805 goto do_fault;
806 }
807 if (type != 1) {
808 if (desc & (1 << 18)) {
809 /* Supersection. */
810 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
811 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
812 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
813 result->f.lg_page_size = 24; /* 16MB */
814 } else {
815 /* Section. */
816 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
817 result->f.lg_page_size = 20; /* 1MB */
818 }
819 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
820 xn = desc & (1 << 4);
821 pxn = desc & 1;
822 ns = extract32(desc, 19, 1);
823 } else {
824 if (cpu_isar_feature(aa32_pxn, cpu)) {
825 pxn = (desc >> 2) & 1;
826 }
827 ns = extract32(desc, 3, 1);
828 /* Lookup l2 entry. */
829 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
830 if (!S1_ptw_translate(env, ptw, table, fi)) {
831 goto do_fault;
832 }
833 desc = arm_ldl_ptw(env, ptw, fi);
834 if (fi->type != ARMFault_None) {
835 goto do_fault;
836 }
837 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
838 switch (desc & 3) {
839 case 0: /* Page translation fault. */
840 fi->type = ARMFault_Translation;
841 goto do_fault;
842 case 1: /* 64k page. */
843 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
844 xn = desc & (1 << 15);
845 result->f.lg_page_size = 16;
846 break;
847 case 2: case 3: /* 4k page. */
848 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
849 xn = desc & 1;
850 result->f.lg_page_size = 12;
851 break;
852 default:
853 /* Never happens, but compiler isn't smart enough to tell. */
854 g_assert_not_reached();
855 }
856 }
857 if (domain_prot == 3) {
858 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
859 } else {
860 if (pxn && !regime_is_user(env, mmu_idx)) {
861 xn = 1;
862 }
863 if (xn && access_type == MMU_INST_FETCH) {
864 fi->type = ARMFault_Permission;
865 goto do_fault;
866 }
867
868 if (arm_feature(env, ARM_FEATURE_V6K) &&
869 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
870 /* The simplified model uses AP[0] as an access control bit. */
871 if ((ap & 1) == 0) {
872 /* Access flag fault. */
873 fi->type = ARMFault_AccessFlag;
874 goto do_fault;
875 }
876 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
877 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
878 } else {
879 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
880 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
881 }
882 if (result->f.prot && !xn) {
883 result->f.prot |= PAGE_EXEC;
884 }
885 if (!(result->f.prot & (1 << access_type))) {
886 /* Access permission fault. */
887 fi->type = ARMFault_Permission;
888 goto do_fault;
889 }
890 if (regime_is_pan(env, mmu_idx) &&
891 !regime_is_user(env, mmu_idx) &&
892 user_prot &&
893 access_type != MMU_INST_FETCH) {
894 /* Privileged Access Never fault */
895 fi->type = ARMFault_Permission;
896 goto do_fault;
897 }
898 }
899 if (ns) {
900 /* The NS bit will (as required by the architecture) have no effect if
901 * the CPU doesn't support TZ or this is a non-secure translation
902 * regime, because the attribute will already be non-secure.
903 */
904 result->f.attrs.secure = false;
905 }
906 result->f.phys_addr = phys_addr;
907 return false;
908 do_fault:
909 fi->domain = domain;
910 fi->level = level;
911 return true;
912 }
913
914 /*
915 * Translate S2 section/page access permissions to protection flags
916 * @env: CPUARMState
917 * @s2ap: The 2-bit stage2 access permissions (S2AP)
918 * @xn: XN (execute-never) bits
919 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
920 */
921 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
922 {
923 int prot = 0;
924
925 if (s2ap & 1) {
926 prot |= PAGE_READ;
927 }
928 if (s2ap & 2) {
929 prot |= PAGE_WRITE;
930 }
931
932 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
933 switch (xn) {
934 case 0:
935 prot |= PAGE_EXEC;
936 break;
937 case 1:
938 if (s1_is_el0) {
939 prot |= PAGE_EXEC;
940 }
941 break;
942 case 2:
943 break;
944 case 3:
945 if (!s1_is_el0) {
946 prot |= PAGE_EXEC;
947 }
948 break;
949 default:
950 g_assert_not_reached();
951 }
952 } else {
953 if (!extract32(xn, 1, 1)) {
954 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
955 prot |= PAGE_EXEC;
956 }
957 }
958 }
959 return prot;
960 }
961
962 /*
963 * Translate section/page access permissions to protection flags
964 * @env: CPUARMState
965 * @mmu_idx: MMU index indicating required translation regime
966 * @is_aa64: TRUE if AArch64
967 * @ap: The 2-bit simple AP (AP[2:1])
968 * @ns: NS (non-secure) bit
969 * @xn: XN (execute-never) bit
970 * @pxn: PXN (privileged execute-never) bit
971 */
972 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
973 int ap, int ns, int xn, int pxn)
974 {
975 ARMCPU *cpu = env_archcpu(env);
976 bool is_user = regime_is_user(env, mmu_idx);
977 int prot_rw, user_rw;
978 bool have_wxn;
979 int wxn = 0;
980
981 assert(!regime_is_stage2(mmu_idx));
982
983 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
984 if (is_user) {
985 prot_rw = user_rw;
986 } else {
987 /*
988 * PAN controls can forbid data accesses but don't affect insn fetch.
989 * Plain PAN forbids data accesses if EL0 has data permissions;
990 * PAN3 forbids data accesses if EL0 has either data or exec perms.
991 * Note that for AArch64 the 'user can exec' case is exactly !xn.
992 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
993 * do not affect EPAN.
994 */
995 if (user_rw && regime_is_pan(env, mmu_idx)) {
996 prot_rw = 0;
997 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
998 regime_is_pan(env, mmu_idx) &&
999 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1000 prot_rw = 0;
1001 } else {
1002 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
1003 }
1004 }
1005
1006 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
1007 return prot_rw;
1008 }
1009
1010 /* TODO have_wxn should be replaced with
1011 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1012 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1013 * compatible processors have EL2, which is required for [U]WXN.
1014 */
1015 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1016
1017 if (have_wxn) {
1018 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1019 }
1020
1021 if (is_aa64) {
1022 if (regime_has_2_ranges(mmu_idx) && !is_user) {
1023 xn = pxn || (user_rw & PAGE_WRITE);
1024 }
1025 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1026 switch (regime_el(env, mmu_idx)) {
1027 case 1:
1028 case 3:
1029 if (is_user) {
1030 xn = xn || !(user_rw & PAGE_READ);
1031 } else {
1032 int uwxn = 0;
1033 if (have_wxn) {
1034 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1035 }
1036 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1037 (uwxn && (user_rw & PAGE_WRITE));
1038 }
1039 break;
1040 case 2:
1041 break;
1042 }
1043 } else {
1044 xn = wxn = 0;
1045 }
1046
1047 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1048 return prot_rw;
1049 }
1050 return prot_rw | PAGE_EXEC;
1051 }
1052
1053 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1054 ARMMMUIdx mmu_idx)
1055 {
1056 uint64_t tcr = regime_tcr(env, mmu_idx);
1057 uint32_t el = regime_el(env, mmu_idx);
1058 int select, tsz;
1059 bool epd, hpd;
1060
1061 assert(mmu_idx != ARMMMUIdx_Stage2_S);
1062
1063 if (mmu_idx == ARMMMUIdx_Stage2) {
1064 /* VTCR */
1065 bool sext = extract32(tcr, 4, 1);
1066 bool sign = extract32(tcr, 3, 1);
1067
1068 /*
1069 * If the sign-extend bit is not the same as t0sz[3], the result
1070 * is unpredictable. Flag this as a guest error.
1071 */
1072 if (sign != sext) {
1073 qemu_log_mask(LOG_GUEST_ERROR,
1074 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1075 }
1076 tsz = sextract32(tcr, 0, 4) + 8;
1077 select = 0;
1078 hpd = false;
1079 epd = false;
1080 } else if (el == 2) {
1081 /* HTCR */
1082 tsz = extract32(tcr, 0, 3);
1083 select = 0;
1084 hpd = extract64(tcr, 24, 1);
1085 epd = false;
1086 } else {
1087 int t0sz = extract32(tcr, 0, 3);
1088 int t1sz = extract32(tcr, 16, 3);
1089
1090 if (t1sz == 0) {
1091 select = va > (0xffffffffu >> t0sz);
1092 } else {
1093 /* Note that we will detect errors later. */
1094 select = va >= ~(0xffffffffu >> t1sz);
1095 }
1096 if (!select) {
1097 tsz = t0sz;
1098 epd = extract32(tcr, 7, 1);
1099 hpd = extract64(tcr, 41, 1);
1100 } else {
1101 tsz = t1sz;
1102 epd = extract32(tcr, 23, 1);
1103 hpd = extract64(tcr, 42, 1);
1104 }
1105 /* For aarch32, hpd0 is not enabled without t2e as well. */
1106 hpd &= extract32(tcr, 6, 1);
1107 }
1108
1109 return (ARMVAParameters) {
1110 .tsz = tsz,
1111 .select = select,
1112 .epd = epd,
1113 .hpd = hpd,
1114 };
1115 }
1116
1117 /*
1118 * check_s2_mmu_setup
1119 * @cpu: ARMCPU
1120 * @is_aa64: True if the translation regime is in AArch64 state
1121 * @tcr: VTCR_EL2 or VSTCR_EL2
1122 * @ds: Effective value of TCR.DS.
1123 * @iasize: Bitsize of IPAs
1124 * @stride: Page-table stride (See the ARM ARM)
1125 *
1126 * Decode the starting level of the S2 lookup, returning INT_MIN if
1127 * the configuration is invalid.
1128 */
1129 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1130 bool ds, int iasize, int stride)
1131 {
1132 int sl0, sl2, startlevel, granulebits, levels;
1133 int s1_min_iasize, s1_max_iasize;
1134
1135 sl0 = extract32(tcr, 6, 2);
1136 if (is_aa64) {
1137 /*
1138 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1139 * so interleave AArch64.S2StartLevel.
1140 */
1141 switch (stride) {
1142 case 9: /* 4KB */
1143 /* SL2 is RES0 unless DS=1 & 4KB granule. */
1144 sl2 = extract64(tcr, 33, 1);
1145 if (ds && sl2) {
1146 if (sl0 != 0) {
1147 goto fail;
1148 }
1149 startlevel = -1;
1150 } else {
1151 startlevel = 2 - sl0;
1152 switch (sl0) {
1153 case 2:
1154 if (arm_pamax(cpu) < 44) {
1155 goto fail;
1156 }
1157 break;
1158 case 3:
1159 if (!cpu_isar_feature(aa64_st, cpu)) {
1160 goto fail;
1161 }
1162 startlevel = 3;
1163 break;
1164 }
1165 }
1166 break;
1167 case 11: /* 16KB */
1168 switch (sl0) {
1169 case 2:
1170 if (arm_pamax(cpu) < 42) {
1171 goto fail;
1172 }
1173 break;
1174 case 3:
1175 if (!ds) {
1176 goto fail;
1177 }
1178 break;
1179 }
1180 startlevel = 3 - sl0;
1181 break;
1182 case 13: /* 64KB */
1183 switch (sl0) {
1184 case 2:
1185 if (arm_pamax(cpu) < 44) {
1186 goto fail;
1187 }
1188 break;
1189 case 3:
1190 goto fail;
1191 }
1192 startlevel = 3 - sl0;
1193 break;
1194 default:
1195 g_assert_not_reached();
1196 }
1197 } else {
1198 /*
1199 * Things are simpler for AArch32 EL2, with only 4k pages.
1200 * There is no separate S2InvalidSL function, but AArch32.S2Walk
1201 * begins with walkparms.sl0 in {'1x'}.
1202 */
1203 assert(stride == 9);
1204 if (sl0 >= 2) {
1205 goto fail;
1206 }
1207 startlevel = 2 - sl0;
1208 }
1209
1210 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */
1211 levels = 3 - startlevel;
1212 granulebits = stride + 3;
1213
1214 s1_min_iasize = levels * stride + granulebits + 1;
1215 s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1216
1217 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1218 return startlevel;
1219 }
1220
1221 fail:
1222 return INT_MIN;
1223 }
1224
1225 /**
1226 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1227 *
1228 * Returns false if the translation was successful. Otherwise, phys_ptr,
1229 * attrs, prot and page_size may not be filled in, and the populated fsr
1230 * value provides information on why the translation aborted, in the format
1231 * of a long-format DFSR/IFSR fault register, with the following caveat:
1232 * the WnR bit is never set (the caller must do this).
1233 *
1234 * @env: CPUARMState
1235 * @ptw: Current and next stage parameters for the walk.
1236 * @address: virtual address to get physical address for
1237 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1238 * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2
1239 * (so this is a stage 2 page table walk),
1240 * must be true if this is stage 2 of a stage 1+2
1241 * walk for an EL0 access. If @mmu_idx is anything else,
1242 * @s1_is_el0 is ignored.
1243 * @result: set on translation success,
1244 * @fi: set to fault info if the translation fails
1245 */
1246 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1247 uint64_t address,
1248 MMUAccessType access_type, bool s1_is_el0,
1249 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1250 {
1251 ARMCPU *cpu = env_archcpu(env);
1252 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1253 bool is_secure = ptw->in_secure;
1254 int32_t level;
1255 ARMVAParameters param;
1256 uint64_t ttbr;
1257 hwaddr descaddr, indexmask, indexmask_grainsize;
1258 uint32_t tableattrs;
1259 target_ulong page_size;
1260 uint64_t attrs;
1261 int32_t stride;
1262 int addrsize, inputsize, outputsize;
1263 uint64_t tcr = regime_tcr(env, mmu_idx);
1264 int ap, ns, xn, pxn;
1265 uint32_t el = regime_el(env, mmu_idx);
1266 uint64_t descaddrmask;
1267 bool aarch64 = arm_el_is_aa64(env, el);
1268 uint64_t descriptor, new_descriptor;
1269 bool nstable;
1270
1271 /* TODO: This code does not support shareability levels. */
1272 if (aarch64) {
1273 int ps;
1274
1275 param = aa64_va_parameters(env, address, mmu_idx,
1276 access_type != MMU_INST_FETCH,
1277 !arm_el_is_aa64(env, 1));
1278 level = 0;
1279
1280 /*
1281 * If TxSZ is programmed to a value larger than the maximum,
1282 * or smaller than the effective minimum, it is IMPLEMENTATION
1283 * DEFINED whether we behave as if the field were programmed
1284 * within bounds, or if a level 0 Translation fault is generated.
1285 *
1286 * With FEAT_LVA, fault on less than minimum becomes required,
1287 * so our choice is to always raise the fault.
1288 */
1289 if (param.tsz_oob) {
1290 goto do_translation_fault;
1291 }
1292
1293 addrsize = 64 - 8 * param.tbi;
1294 inputsize = 64 - param.tsz;
1295
1296 /*
1297 * Bound PS by PARANGE to find the effective output address size.
1298 * ID_AA64MMFR0 is a read-only register so values outside of the
1299 * supported mappings can be considered an implementation error.
1300 */
1301 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1302 ps = MIN(ps, param.ps);
1303 assert(ps < ARRAY_SIZE(pamax_map));
1304 outputsize = pamax_map[ps];
1305
1306 /*
1307 * With LPA2, the effective output address (OA) size is at most 48 bits
1308 * unless TCR.DS == 1
1309 */
1310 if (!param.ds && param.gran != Gran64K) {
1311 outputsize = MIN(outputsize, 48);
1312 }
1313 } else {
1314 param = aa32_va_parameters(env, address, mmu_idx);
1315 level = 1;
1316 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1317 inputsize = addrsize - param.tsz;
1318 outputsize = 40;
1319 }
1320
1321 /*
1322 * We determined the region when collecting the parameters, but we
1323 * have not yet validated that the address is valid for the region.
1324 * Extract the top bits and verify that they all match select.
1325 *
1326 * For aa32, if inputsize == addrsize, then we have selected the
1327 * region by exclusion in aa32_va_parameters and there is no more
1328 * validation to do here.
1329 */
1330 if (inputsize < addrsize) {
1331 target_ulong top_bits = sextract64(address, inputsize,
1332 addrsize - inputsize);
1333 if (-top_bits != param.select) {
1334 /* The gap between the two regions is a Translation fault */
1335 goto do_translation_fault;
1336 }
1337 }
1338
1339 stride = arm_granule_bits(param.gran) - 3;
1340
1341 /*
1342 * Note that QEMU ignores shareability and cacheability attributes,
1343 * so we don't need to do anything with the SH, ORGN, IRGN fields
1344 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
1345 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1346 * implement any ASID-like capability so we can ignore it (instead
1347 * we will always flush the TLB any time the ASID is changed).
1348 */
1349 ttbr = regime_ttbr(env, mmu_idx, param.select);
1350
1351 /*
1352 * Here we should have set up all the parameters for the translation:
1353 * inputsize, ttbr, epd, stride, tbi
1354 */
1355
1356 if (param.epd) {
1357 /*
1358 * Translation table walk disabled => Translation fault on TLB miss
1359 * Note: This is always 0 on 64-bit EL2 and EL3.
1360 */
1361 goto do_translation_fault;
1362 }
1363
1364 if (!regime_is_stage2(mmu_idx)) {
1365 /*
1366 * The starting level depends on the virtual address size (which can
1367 * be up to 48 bits) and the translation granule size. It indicates
1368 * the number of strides (stride bits at a time) needed to
1369 * consume the bits of the input address. In the pseudocode this is:
1370 * level = 4 - RoundUp((inputsize - grainsize) / stride)
1371 * where their 'inputsize' is our 'inputsize', 'grainsize' is
1372 * our 'stride + 3' and 'stride' is our 'stride'.
1373 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1374 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1375 * = 4 - (inputsize - 4) / stride;
1376 */
1377 level = 4 - (inputsize - 4) / stride;
1378 } else {
1379 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1380 inputsize, stride);
1381 if (startlevel == INT_MIN) {
1382 level = 0;
1383 goto do_translation_fault;
1384 }
1385 level = startlevel;
1386 }
1387
1388 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1389 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1390
1391 /* Now we can extract the actual base address from the TTBR */
1392 descaddr = extract64(ttbr, 0, 48);
1393
1394 /*
1395 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1396 *
1397 * Otherwise, if the base address is out of range, raise AddressSizeFault.
1398 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1399 * but we've just cleared the bits above 47, so simplify the test.
1400 */
1401 if (outputsize > 48) {
1402 descaddr |= extract64(ttbr, 2, 4) << 48;
1403 } else if (descaddr >> outputsize) {
1404 level = 0;
1405 fi->type = ARMFault_AddressSize;
1406 goto do_fault;
1407 }
1408
1409 /*
1410 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1411 * and also to mask out CnP (bit 0) which could validly be non-zero.
1412 */
1413 descaddr &= ~indexmask;
1414
1415 /*
1416 * For AArch32, the address field in the descriptor goes up to bit 39
1417 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
1418 * or an AddressSize fault is raised. So for v8 we extract those SBZ
1419 * bits as part of the address, which will be checked via outputsize.
1420 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1421 * the highest bits of a 52-bit output are placed elsewhere.
1422 */
1423 if (param.ds) {
1424 descaddrmask = MAKE_64BIT_MASK(0, 50);
1425 } else if (arm_feature(env, ARM_FEATURE_V8)) {
1426 descaddrmask = MAKE_64BIT_MASK(0, 48);
1427 } else {
1428 descaddrmask = MAKE_64BIT_MASK(0, 40);
1429 }
1430 descaddrmask &= ~indexmask_grainsize;
1431
1432 /*
1433 * Secure stage 1 accesses start with the page table in secure memory and
1434 * can be downgraded to non-secure at any step. Non-secure accesses
1435 * remain non-secure. We implement this by just ORing in the NSTable/NS
1436 * bits at each step.
1437 * Stage 2 never gets this kind of downgrade.
1438 */
1439 tableattrs = is_secure ? 0 : (1 << 4);
1440
1441 next_level:
1442 descaddr |= (address >> (stride * (4 - level))) & indexmask;
1443 descaddr &= ~7ULL;
1444 nstable = !regime_is_stage2(mmu_idx) && extract32(tableattrs, 4, 1);
1445 if (nstable) {
1446 /*
1447 * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1448 * Assert that the non-secure idx are even, and relative order.
1449 */
1450 QEMU_BUILD_BUG_ON((ARMMMUIdx_Phys_NS & 1) != 0);
1451 QEMU_BUILD_BUG_ON((ARMMMUIdx_Stage2 & 1) != 0);
1452 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS + 1 != ARMMMUIdx_Phys_S);
1453 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2 + 1 != ARMMMUIdx_Stage2_S);
1454 ptw->in_ptw_idx &= ~1;
1455 ptw->in_secure = false;
1456 }
1457 if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1458 goto do_fault;
1459 }
1460 descriptor = arm_ldq_ptw(env, ptw, fi);
1461 if (fi->type != ARMFault_None) {
1462 goto do_fault;
1463 }
1464 new_descriptor = descriptor;
1465
1466 restart_atomic_update:
1467 if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) {
1468 /* Invalid, or the Reserved level 3 encoding */
1469 goto do_translation_fault;
1470 }
1471
1472 descaddr = descriptor & descaddrmask;
1473
1474 /*
1475 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1476 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
1477 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
1478 * raise AddressSizeFault.
1479 */
1480 if (outputsize > 48) {
1481 if (param.ds) {
1482 descaddr |= extract64(descriptor, 8, 2) << 50;
1483 } else {
1484 descaddr |= extract64(descriptor, 12, 4) << 48;
1485 }
1486 } else if (descaddr >> outputsize) {
1487 fi->type = ARMFault_AddressSize;
1488 goto do_fault;
1489 }
1490
1491 if ((descriptor & 2) && (level < 3)) {
1492 /*
1493 * Table entry. The top five bits are attributes which may
1494 * propagate down through lower levels of the table (and
1495 * which are all arranged so that 0 means "no effect", so
1496 * we can gather them up by ORing in the bits at each level).
1497 */
1498 tableattrs |= extract64(descriptor, 59, 5);
1499 level++;
1500 indexmask = indexmask_grainsize;
1501 goto next_level;
1502 }
1503
1504 /*
1505 * Block entry at level 1 or 2, or page entry at level 3.
1506 * These are basically the same thing, although the number
1507 * of bits we pull in from the vaddr varies. Note that although
1508 * descaddrmask masks enough of the low bits of the descriptor
1509 * to give a correct page or table address, the address field
1510 * in a block descriptor is smaller; so we need to explicitly
1511 * clear the lower bits here before ORing in the low vaddr bits.
1512 *
1513 * Afterward, descaddr is the final physical address.
1514 */
1515 page_size = (1ULL << ((stride * (4 - level)) + 3));
1516 descaddr &= ~(hwaddr)(page_size - 1);
1517 descaddr |= (address & (page_size - 1));
1518
1519 if (likely(!ptw->in_debug)) {
1520 /*
1521 * Access flag.
1522 * If HA is enabled, prepare to update the descriptor below.
1523 * Otherwise, pass the access fault on to software.
1524 */
1525 if (!(descriptor & (1 << 10))) {
1526 if (param.ha) {
1527 new_descriptor |= 1 << 10; /* AF */
1528 } else {
1529 fi->type = ARMFault_AccessFlag;
1530 goto do_fault;
1531 }
1532 }
1533
1534 /*
1535 * Dirty Bit.
1536 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1537 * bit for writeback. The actual write protection test may still be
1538 * overridden by tableattrs, to be merged below.
1539 */
1540 if (param.hd
1541 && extract64(descriptor, 51, 1) /* DBM */
1542 && access_type == MMU_DATA_STORE) {
1543 if (regime_is_stage2(mmu_idx)) {
1544 new_descriptor |= 1ull << 7; /* set S2AP[1] */
1545 } else {
1546 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1547 }
1548 }
1549 }
1550
1551 /*
1552 * Extract attributes from the (modified) descriptor, and apply
1553 * table descriptors. Stage 2 table descriptors do not include
1554 * any attribute fields. HPD disables all the table attributes
1555 * except NSTable.
1556 */
1557 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1558 if (!regime_is_stage2(mmu_idx)) {
1559 attrs |= nstable << 5; /* NS */
1560 if (!param.hpd) {
1561 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */
1562 /*
1563 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1564 * means "force PL1 access only", which means forcing AP[1] to 0.
1565 */
1566 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1567 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */
1568 }
1569 }
1570
1571 ap = extract32(attrs, 6, 2);
1572 if (regime_is_stage2(mmu_idx)) {
1573 ns = mmu_idx == ARMMMUIdx_Stage2;
1574 xn = extract64(attrs, 53, 2);
1575 result->f.prot = get_S2prot(env, ap, xn, s1_is_el0);
1576 } else {
1577 ns = extract32(attrs, 5, 1);
1578 xn = extract64(attrs, 54, 1);
1579 pxn = extract64(attrs, 53, 1);
1580 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
1581 }
1582
1583 if (!(result->f.prot & (1 << access_type))) {
1584 fi->type = ARMFault_Permission;
1585 goto do_fault;
1586 }
1587
1588 /* If FEAT_HAFDBS has made changes, update the PTE. */
1589 if (new_descriptor != descriptor) {
1590 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
1591 if (fi->type != ARMFault_None) {
1592 goto do_fault;
1593 }
1594 /*
1595 * I_YZSVV says that if the in-memory descriptor has changed,
1596 * then we must use the information in that new value
1597 * (which might include a different output address, different
1598 * attributes, or generate a fault).
1599 * Restart the handling of the descriptor value from scratch.
1600 */
1601 if (new_descriptor != descriptor) {
1602 descriptor = new_descriptor;
1603 goto restart_atomic_update;
1604 }
1605 }
1606
1607 if (ns) {
1608 /*
1609 * The NS bit will (as required by the architecture) have no effect if
1610 * the CPU doesn't support TZ or this is a non-secure translation
1611 * regime, because the attribute will already be non-secure.
1612 */
1613 result->f.attrs.secure = false;
1614 }
1615
1616 if (regime_is_stage2(mmu_idx)) {
1617 result->cacheattrs.is_s2_format = true;
1618 result->cacheattrs.attrs = extract32(attrs, 2, 4);
1619 } else {
1620 /* Index into MAIR registers for cache attributes */
1621 uint8_t attrindx = extract32(attrs, 2, 3);
1622 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
1623 assert(attrindx <= 7);
1624 result->cacheattrs.is_s2_format = false;
1625 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
1626
1627 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
1628 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
1629 result->f.guarded = extract64(attrs, 50, 1); /* GP */
1630 }
1631 }
1632
1633 /*
1634 * For FEAT_LPA2 and effective DS, the SH field in the attributes
1635 * was re-purposed for output address bits. The SH attribute in
1636 * that case comes from TCR_ELx, which we extracted earlier.
1637 */
1638 if (param.ds) {
1639 result->cacheattrs.shareability = param.sh;
1640 } else {
1641 result->cacheattrs.shareability = extract32(attrs, 8, 2);
1642 }
1643
1644 result->f.phys_addr = descaddr;
1645 result->f.lg_page_size = ctz64(page_size);
1646 return false;
1647
1648 do_translation_fault:
1649 fi->type = ARMFault_Translation;
1650 do_fault:
1651 fi->level = level;
1652 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
1653 fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx);
1654 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
1655 return true;
1656 }
1657
1658 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
1659 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1660 bool is_secure, GetPhysAddrResult *result,
1661 ARMMMUFaultInfo *fi)
1662 {
1663 int n;
1664 uint32_t mask;
1665 uint32_t base;
1666 bool is_user = regime_is_user(env, mmu_idx);
1667
1668 if (regime_translation_disabled(env, mmu_idx, is_secure)) {
1669 /* MPU disabled. */
1670 result->f.phys_addr = address;
1671 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1672 return false;
1673 }
1674
1675 result->f.phys_addr = address;
1676 for (n = 7; n >= 0; n--) {
1677 base = env->cp15.c6_region[n];
1678 if ((base & 1) == 0) {
1679 continue;
1680 }
1681 mask = 1 << ((base >> 1) & 0x1f);
1682 /* Keep this shift separate from the above to avoid an
1683 (undefined) << 32. */
1684 mask = (mask << 1) - 1;
1685 if (((base ^ address) & ~mask) == 0) {
1686 break;
1687 }
1688 }
1689 if (n < 0) {
1690 fi->type = ARMFault_Background;
1691 return true;
1692 }
1693
1694 if (access_type == MMU_INST_FETCH) {
1695 mask = env->cp15.pmsav5_insn_ap;
1696 } else {
1697 mask = env->cp15.pmsav5_data_ap;
1698 }
1699 mask = (mask >> (n * 4)) & 0xf;
1700 switch (mask) {
1701 case 0:
1702 fi->type = ARMFault_Permission;
1703 fi->level = 1;
1704 return true;
1705 case 1:
1706 if (is_user) {
1707 fi->type = ARMFault_Permission;
1708 fi->level = 1;
1709 return true;
1710 }
1711 result->f.prot = PAGE_READ | PAGE_WRITE;
1712 break;
1713 case 2:
1714 result->f.prot = PAGE_READ;
1715 if (!is_user) {
1716 result->f.prot |= PAGE_WRITE;
1717 }
1718 break;
1719 case 3:
1720 result->f.prot = PAGE_READ | PAGE_WRITE;
1721 break;
1722 case 5:
1723 if (is_user) {
1724 fi->type = ARMFault_Permission;
1725 fi->level = 1;
1726 return true;
1727 }
1728 result->f.prot = PAGE_READ;
1729 break;
1730 case 6:
1731 result->f.prot = PAGE_READ;
1732 break;
1733 default:
1734 /* Bad permission. */
1735 fi->type = ARMFault_Permission;
1736 fi->level = 1;
1737 return true;
1738 }
1739 result->f.prot |= PAGE_EXEC;
1740 return false;
1741 }
1742
1743 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
1744 int32_t address, uint8_t *prot)
1745 {
1746 if (!arm_feature(env, ARM_FEATURE_M)) {
1747 *prot = PAGE_READ | PAGE_WRITE;
1748 switch (address) {
1749 case 0xF0000000 ... 0xFFFFFFFF:
1750 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
1751 /* hivecs execing is ok */
1752 *prot |= PAGE_EXEC;
1753 }
1754 break;
1755 case 0x00000000 ... 0x7FFFFFFF:
1756 *prot |= PAGE_EXEC;
1757 break;
1758 }
1759 } else {
1760 /* Default system address map for M profile cores.
1761 * The architecture specifies which regions are execute-never;
1762 * at the MPU level no other checks are defined.
1763 */
1764 switch (address) {
1765 case 0x00000000 ... 0x1fffffff: /* ROM */
1766 case 0x20000000 ... 0x3fffffff: /* SRAM */
1767 case 0x60000000 ... 0x7fffffff: /* RAM */
1768 case 0x80000000 ... 0x9fffffff: /* RAM */
1769 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1770 break;
1771 case 0x40000000 ... 0x5fffffff: /* Peripheral */
1772 case 0xa0000000 ... 0xbfffffff: /* Device */
1773 case 0xc0000000 ... 0xdfffffff: /* Device */
1774 case 0xe0000000 ... 0xffffffff: /* System */
1775 *prot = PAGE_READ | PAGE_WRITE;
1776 break;
1777 default:
1778 g_assert_not_reached();
1779 }
1780 }
1781 }
1782
1783 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
1784 {
1785 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
1786 return arm_feature(env, ARM_FEATURE_M) &&
1787 extract32(address, 20, 12) == 0xe00;
1788 }
1789
1790 static bool m_is_system_region(CPUARMState *env, uint32_t address)
1791 {
1792 /*
1793 * True if address is in the M profile system region
1794 * 0xe0000000 - 0xffffffff
1795 */
1796 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
1797 }
1798
1799 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1800 bool is_secure, bool is_user)
1801 {
1802 /*
1803 * Return true if we should use the default memory map as a
1804 * "background" region if there are no hits against any MPU regions.
1805 */
1806 CPUARMState *env = &cpu->env;
1807
1808 if (is_user) {
1809 return false;
1810 }
1811
1812 if (arm_feature(env, ARM_FEATURE_M)) {
1813 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
1814 }
1815
1816 if (mmu_idx == ARMMMUIdx_Stage2) {
1817 return false;
1818 }
1819
1820 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
1821 }
1822
1823 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
1824 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1825 bool secure, GetPhysAddrResult *result,
1826 ARMMMUFaultInfo *fi)
1827 {
1828 ARMCPU *cpu = env_archcpu(env);
1829 int n;
1830 bool is_user = regime_is_user(env, mmu_idx);
1831
1832 result->f.phys_addr = address;
1833 result->f.lg_page_size = TARGET_PAGE_BITS;
1834 result->f.prot = 0;
1835
1836 if (regime_translation_disabled(env, mmu_idx, secure) ||
1837 m_is_ppb_region(env, address)) {
1838 /*
1839 * MPU disabled or M profile PPB access: use default memory map.
1840 * The other case which uses the default memory map in the
1841 * v7M ARM ARM pseudocode is exception vector reads from the vector
1842 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
1843 * which always does a direct read using address_space_ldl(), rather
1844 * than going via this function, so we don't need to check that here.
1845 */
1846 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
1847 } else { /* MPU enabled */
1848 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1849 /* region search */
1850 uint32_t base = env->pmsav7.drbar[n];
1851 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
1852 uint32_t rmask;
1853 bool srdis = false;
1854
1855 if (!(env->pmsav7.drsr[n] & 0x1)) {
1856 continue;
1857 }
1858
1859 if (!rsize) {
1860 qemu_log_mask(LOG_GUEST_ERROR,
1861 "DRSR[%d]: Rsize field cannot be 0\n", n);
1862 continue;
1863 }
1864 rsize++;
1865 rmask = (1ull << rsize) - 1;
1866
1867 if (base & rmask) {
1868 qemu_log_mask(LOG_GUEST_ERROR,
1869 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
1870 "to DRSR region size, mask = 0x%" PRIx32 "\n",
1871 n, base, rmask);
1872 continue;
1873 }
1874
1875 if (address < base || address > base + rmask) {
1876 /*
1877 * Address not in this region. We must check whether the
1878 * region covers addresses in the same page as our address.
1879 * In that case we must not report a size that covers the
1880 * whole page for a subsequent hit against a different MPU
1881 * region or the background region, because it would result in
1882 * incorrect TLB hits for subsequent accesses to addresses that
1883 * are in this MPU region.
1884 */
1885 if (ranges_overlap(base, rmask,
1886 address & TARGET_PAGE_MASK,
1887 TARGET_PAGE_SIZE)) {
1888 result->f.lg_page_size = 0;
1889 }
1890 continue;
1891 }
1892
1893 /* Region matched */
1894
1895 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
1896 int i, snd;
1897 uint32_t srdis_mask;
1898
1899 rsize -= 3; /* sub region size (power of 2) */
1900 snd = ((address - base) >> rsize) & 0x7;
1901 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
1902
1903 srdis_mask = srdis ? 0x3 : 0x0;
1904 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
1905 /*
1906 * This will check in groups of 2, 4 and then 8, whether
1907 * the subregion bits are consistent. rsize is incremented
1908 * back up to give the region size, considering consistent
1909 * adjacent subregions as one region. Stop testing if rsize
1910 * is already big enough for an entire QEMU page.
1911 */
1912 int snd_rounded = snd & ~(i - 1);
1913 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
1914 snd_rounded + 8, i);
1915 if (srdis_mask ^ srdis_multi) {
1916 break;
1917 }
1918 srdis_mask = (srdis_mask << i) | srdis_mask;
1919 rsize++;
1920 }
1921 }
1922 if (srdis) {
1923 continue;
1924 }
1925 if (rsize < TARGET_PAGE_BITS) {
1926 result->f.lg_page_size = rsize;
1927 }
1928 break;
1929 }
1930
1931 if (n == -1) { /* no hits */
1932 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1933 /* background fault */
1934 fi->type = ARMFault_Background;
1935 return true;
1936 }
1937 get_phys_addr_pmsav7_default(env, mmu_idx, address,
1938 &result->f.prot);
1939 } else { /* a MPU hit! */
1940 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
1941 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
1942
1943 if (m_is_system_region(env, address)) {
1944 /* System space is always execute never */
1945 xn = 1;
1946 }
1947
1948 if (is_user) { /* User mode AP bit decoding */
1949 switch (ap) {
1950 case 0:
1951 case 1:
1952 case 5:
1953 break; /* no access */
1954 case 3:
1955 result->f.prot |= PAGE_WRITE;
1956 /* fall through */
1957 case 2:
1958 case 6:
1959 result->f.prot |= PAGE_READ | PAGE_EXEC;
1960 break;
1961 case 7:
1962 /* for v7M, same as 6; for R profile a reserved value */
1963 if (arm_feature(env, ARM_FEATURE_M)) {
1964 result->f.prot |= PAGE_READ | PAGE_EXEC;
1965 break;
1966 }
1967 /* fall through */
1968 default:
1969 qemu_log_mask(LOG_GUEST_ERROR,
1970 "DRACR[%d]: Bad value for AP bits: 0x%"
1971 PRIx32 "\n", n, ap);
1972 }
1973 } else { /* Priv. mode AP bits decoding */
1974 switch (ap) {
1975 case 0:
1976 break; /* no access */
1977 case 1:
1978 case 2:
1979 case 3:
1980 result->f.prot |= PAGE_WRITE;
1981 /* fall through */
1982 case 5:
1983 case 6:
1984 result->f.prot |= PAGE_READ | PAGE_EXEC;
1985 break;
1986 case 7:
1987 /* for v7M, same as 6; for R profile a reserved value */
1988 if (arm_feature(env, ARM_FEATURE_M)) {
1989 result->f.prot |= PAGE_READ | PAGE_EXEC;
1990 break;
1991 }
1992 /* fall through */
1993 default:
1994 qemu_log_mask(LOG_GUEST_ERROR,
1995 "DRACR[%d]: Bad value for AP bits: 0x%"
1996 PRIx32 "\n", n, ap);
1997 }
1998 }
1999
2000 /* execute never */
2001 if (xn) {
2002 result->f.prot &= ~PAGE_EXEC;
2003 }
2004 }
2005 }
2006
2007 fi->type = ARMFault_Permission;
2008 fi->level = 1;
2009 return !(result->f.prot & (1 << access_type));
2010 }
2011
2012 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2013 uint32_t secure)
2014 {
2015 if (regime_el(env, mmu_idx) == 2) {
2016 return env->pmsav8.hprbar;
2017 } else {
2018 return env->pmsav8.rbar[secure];
2019 }
2020 }
2021
2022 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2023 uint32_t secure)
2024 {
2025 if (regime_el(env, mmu_idx) == 2) {
2026 return env->pmsav8.hprlar;
2027 } else {
2028 return env->pmsav8.rlar[secure];
2029 }
2030 }
2031
2032 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2033 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2034 bool secure, GetPhysAddrResult *result,
2035 ARMMMUFaultInfo *fi, uint32_t *mregion)
2036 {
2037 /*
2038 * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2039 * that a full phys-to-virt translation does).
2040 * mregion is (if not NULL) set to the region number which matched,
2041 * or -1 if no region number is returned (MPU off, address did not
2042 * hit a region, address hit in multiple regions).
2043 * If the region hit doesn't cover the entire TARGET_PAGE the address
2044 * is within, then we set the result page_size to 1 to force the
2045 * memory system to use a subpage.
2046 */
2047 ARMCPU *cpu = env_archcpu(env);
2048 bool is_user = regime_is_user(env, mmu_idx);
2049 int n;
2050 int matchregion = -1;
2051 bool hit = false;
2052 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2053 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2054 int region_counter;
2055
2056 if (regime_el(env, mmu_idx) == 2) {
2057 region_counter = cpu->pmsav8r_hdregion;
2058 } else {
2059 region_counter = cpu->pmsav7_dregion;
2060 }
2061
2062 result->f.lg_page_size = TARGET_PAGE_BITS;
2063 result->f.phys_addr = address;
2064 result->f.prot = 0;
2065 if (mregion) {
2066 *mregion = -1;
2067 }
2068
2069 if (mmu_idx == ARMMMUIdx_Stage2) {
2070 fi->stage2 = true;
2071 }
2072
2073 /*
2074 * Unlike the ARM ARM pseudocode, we don't need to check whether this
2075 * was an exception vector read from the vector table (which is always
2076 * done using the default system address map), because those accesses
2077 * are done in arm_v7m_load_vector(), which always does a direct
2078 * read using address_space_ldl(), rather than going via this function.
2079 */
2080 if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */
2081 hit = true;
2082 } else if (m_is_ppb_region(env, address)) {
2083 hit = true;
2084 } else {
2085 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2086 hit = true;
2087 }
2088
2089 uint32_t bitmask;
2090 if (arm_feature(env, ARM_FEATURE_M)) {
2091 bitmask = 0x1f;
2092 } else {
2093 bitmask = 0x3f;
2094 fi->level = 0;
2095 }
2096
2097 for (n = region_counter - 1; n >= 0; n--) {
2098 /* region search */
2099 /*
2100 * Note that the base address is bits [31:x] from the register
2101 * with bits [x-1:0] all zeroes, but the limit address is bits
2102 * [31:x] from the register with bits [x:0] all ones. Where x is
2103 * 5 for Cortex-M and 6 for Cortex-R
2104 */
2105 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2106 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2107
2108 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2109 /* Region disabled */
2110 continue;
2111 }
2112
2113 if (address < base || address > limit) {
2114 /*
2115 * Address not in this region. We must check whether the
2116 * region covers addresses in the same page as our address.
2117 * In that case we must not report a size that covers the
2118 * whole page for a subsequent hit against a different MPU
2119 * region or the background region, because it would result in
2120 * incorrect TLB hits for subsequent accesses to addresses that
2121 * are in this MPU region.
2122 */
2123 if (limit >= base &&
2124 ranges_overlap(base, limit - base + 1,
2125 addr_page_base,
2126 TARGET_PAGE_SIZE)) {
2127 result->f.lg_page_size = 0;
2128 }
2129 continue;
2130 }
2131
2132 if (base > addr_page_base || limit < addr_page_limit) {
2133 result->f.lg_page_size = 0;
2134 }
2135
2136 if (matchregion != -1) {
2137 /*
2138 * Multiple regions match -- always a failure (unlike
2139 * PMSAv7 where highest-numbered-region wins)
2140 */
2141 fi->type = ARMFault_Permission;
2142 if (arm_feature(env, ARM_FEATURE_M)) {
2143 fi->level = 1;
2144 }
2145 return true;
2146 }
2147
2148 matchregion = n;
2149 hit = true;
2150 }
2151 }
2152
2153 if (!hit) {
2154 if (arm_feature(env, ARM_FEATURE_M)) {
2155 fi->type = ARMFault_Background;
2156 } else {
2157 fi->type = ARMFault_Permission;
2158 }
2159 return true;
2160 }
2161
2162 if (matchregion == -1) {
2163 /* hit using the background region */
2164 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2165 } else {
2166 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2167 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2168 uint32_t ap = extract32(matched_rbar, 1, 2);
2169 uint32_t xn = extract32(matched_rbar, 0, 1);
2170 bool pxn = false;
2171
2172 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2173 pxn = extract32(matched_rlar, 4, 1);
2174 }
2175
2176 if (m_is_system_region(env, address)) {
2177 /* System space is always execute never */
2178 xn = 1;
2179 }
2180
2181 if (regime_el(env, mmu_idx) == 2) {
2182 result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2183 mmu_idx != ARMMMUIdx_E2);
2184 } else {
2185 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2186 }
2187
2188 if (!arm_feature(env, ARM_FEATURE_M)) {
2189 uint8_t attrindx = extract32(matched_rlar, 1, 3);
2190 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2191 uint8_t sh = extract32(matched_rlar, 3, 2);
2192
2193 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2194 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2195 xn = 0x1;
2196 }
2197
2198 if ((regime_el(env, mmu_idx) == 1) &&
2199 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2200 pxn = 0x1;
2201 }
2202
2203 result->cacheattrs.is_s2_format = false;
2204 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2205 result->cacheattrs.shareability = sh;
2206 }
2207
2208 if (result->f.prot && !xn && !(pxn && !is_user)) {
2209 result->f.prot |= PAGE_EXEC;
2210 }
2211
2212 if (mregion) {
2213 *mregion = matchregion;
2214 }
2215 }
2216
2217 fi->type = ARMFault_Permission;
2218 if (arm_feature(env, ARM_FEATURE_M)) {
2219 fi->level = 1;
2220 }
2221 return !(result->f.prot & (1 << access_type));
2222 }
2223
2224 static bool v8m_is_sau_exempt(CPUARMState *env,
2225 uint32_t address, MMUAccessType access_type)
2226 {
2227 /*
2228 * The architecture specifies that certain address ranges are
2229 * exempt from v8M SAU/IDAU checks.
2230 */
2231 return
2232 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2233 (address >= 0xe0000000 && address <= 0xe0002fff) ||
2234 (address >= 0xe000e000 && address <= 0xe000efff) ||
2235 (address >= 0xe002e000 && address <= 0xe002efff) ||
2236 (address >= 0xe0040000 && address <= 0xe0041fff) ||
2237 (address >= 0xe00ff000 && address <= 0xe00fffff);
2238 }
2239
2240 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2241 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2242 bool is_secure, V8M_SAttributes *sattrs)
2243 {
2244 /*
2245 * Look up the security attributes for this address. Compare the
2246 * pseudocode SecurityCheck() function.
2247 * We assume the caller has zero-initialized *sattrs.
2248 */
2249 ARMCPU *cpu = env_archcpu(env);
2250 int r;
2251 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2252 int idau_region = IREGION_NOTVALID;
2253 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2254 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2255
2256 if (cpu->idau) {
2257 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2258 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2259
2260 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2261 &idau_nsc);
2262 }
2263
2264 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2265 /* 0xf0000000..0xffffffff is always S for insn fetches */
2266 return;
2267 }
2268
2269 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2270 sattrs->ns = !is_secure;
2271 return;
2272 }
2273
2274 if (idau_region != IREGION_NOTVALID) {
2275 sattrs->irvalid = true;
2276 sattrs->iregion = idau_region;
2277 }
2278
2279 switch (env->sau.ctrl & 3) {
2280 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2281 break;
2282 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2283 sattrs->ns = true;
2284 break;
2285 default: /* SAU.ENABLE == 1 */
2286 for (r = 0; r < cpu->sau_sregion; r++) {
2287 if (env->sau.rlar[r] & 1) {
2288 uint32_t base = env->sau.rbar[r] & ~0x1f;
2289 uint32_t limit = env->sau.rlar[r] | 0x1f;
2290
2291 if (base <= address && limit >= address) {
2292 if (base > addr_page_base || limit < addr_page_limit) {
2293 sattrs->subpage = true;
2294 }
2295 if (sattrs->srvalid) {
2296 /*
2297 * If we hit in more than one region then we must report
2298 * as Secure, not NS-Callable, with no valid region
2299 * number info.
2300 */
2301 sattrs->ns = false;
2302 sattrs->nsc = false;
2303 sattrs->sregion = 0;
2304 sattrs->srvalid = false;
2305 break;
2306 } else {
2307 if (env->sau.rlar[r] & 2) {
2308 sattrs->nsc = true;
2309 } else {
2310 sattrs->ns = true;
2311 }
2312 sattrs->srvalid = true;
2313 sattrs->sregion = r;
2314 }
2315 } else {
2316 /*
2317 * Address not in this region. We must check whether the
2318 * region covers addresses in the same page as our address.
2319 * In that case we must not report a size that covers the
2320 * whole page for a subsequent hit against a different MPU
2321 * region or the background region, because it would result
2322 * in incorrect TLB hits for subsequent accesses to
2323 * addresses that are in this MPU region.
2324 */
2325 if (limit >= base &&
2326 ranges_overlap(base, limit - base + 1,
2327 addr_page_base,
2328 TARGET_PAGE_SIZE)) {
2329 sattrs->subpage = true;
2330 }
2331 }
2332 }
2333 }
2334 break;
2335 }
2336
2337 /*
2338 * The IDAU will override the SAU lookup results if it specifies
2339 * higher security than the SAU does.
2340 */
2341 if (!idau_ns) {
2342 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2343 sattrs->ns = false;
2344 sattrs->nsc = idau_nsc;
2345 }
2346 }
2347 }
2348
2349 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
2350 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2351 bool secure, GetPhysAddrResult *result,
2352 ARMMMUFaultInfo *fi)
2353 {
2354 V8M_SAttributes sattrs = {};
2355 bool ret;
2356
2357 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2358 v8m_security_lookup(env, address, access_type, mmu_idx,
2359 secure, &sattrs);
2360 if (access_type == MMU_INST_FETCH) {
2361 /*
2362 * Instruction fetches always use the MMU bank and the
2363 * transaction attribute determined by the fetch address,
2364 * regardless of CPU state. This is painful for QEMU
2365 * to handle, because it would mean we need to encode
2366 * into the mmu_idx not just the (user, negpri) information
2367 * for the current security state but also that for the
2368 * other security state, which would balloon the number
2369 * of mmu_idx values needed alarmingly.
2370 * Fortunately we can avoid this because it's not actually
2371 * possible to arbitrarily execute code from memory with
2372 * the wrong security attribute: it will always generate
2373 * an exception of some kind or another, apart from the
2374 * special case of an NS CPU executing an SG instruction
2375 * in S&NSC memory. So we always just fail the translation
2376 * here and sort things out in the exception handler
2377 * (including possibly emulating an SG instruction).
2378 */
2379 if (sattrs.ns != !secure) {
2380 if (sattrs.nsc) {
2381 fi->type = ARMFault_QEMU_NSCExec;
2382 } else {
2383 fi->type = ARMFault_QEMU_SFault;
2384 }
2385 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2386 result->f.phys_addr = address;
2387 result->f.prot = 0;
2388 return true;
2389 }
2390 } else {
2391 /*
2392 * For data accesses we always use the MMU bank indicated
2393 * by the current CPU state, but the security attributes
2394 * might downgrade a secure access to nonsecure.
2395 */
2396 if (sattrs.ns) {
2397 result->f.attrs.secure = false;
2398 } else if (!secure) {
2399 /*
2400 * NS access to S memory must fault.
2401 * Architecturally we should first check whether the
2402 * MPU information for this address indicates that we
2403 * are doing an unaligned access to Device memory, which
2404 * should generate a UsageFault instead. QEMU does not
2405 * currently check for that kind of unaligned access though.
2406 * If we added it we would need to do so as a special case
2407 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2408 */
2409 fi->type = ARMFault_QEMU_SFault;
2410 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2411 result->f.phys_addr = address;
2412 result->f.prot = 0;
2413 return true;
2414 }
2415 }
2416 }
2417
2418 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2419 result, fi, NULL);
2420 if (sattrs.subpage) {
2421 result->f.lg_page_size = 0;
2422 }
2423 return ret;
2424 }
2425
2426 /*
2427 * Translate from the 4-bit stage 2 representation of
2428 * memory attributes (without cache-allocation hints) to
2429 * the 8-bit representation of the stage 1 MAIR registers
2430 * (which includes allocation hints).
2431 *
2432 * ref: shared/translation/attrs/S2AttrDecode()
2433 * .../S2ConvertAttrsHints()
2434 */
2435 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2436 {
2437 uint8_t hiattr = extract32(s2attrs, 2, 2);
2438 uint8_t loattr = extract32(s2attrs, 0, 2);
2439 uint8_t hihint = 0, lohint = 0;
2440
2441 if (hiattr != 0) { /* normal memory */
2442 if (hcr & HCR_CD) { /* cache disabled */
2443 hiattr = loattr = 1; /* non-cacheable */
2444 } else {
2445 if (hiattr != 1) { /* Write-through or write-back */
2446 hihint = 3; /* RW allocate */
2447 }
2448 if (loattr != 1) { /* Write-through or write-back */
2449 lohint = 3; /* RW allocate */
2450 }
2451 }
2452 }
2453
2454 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2455 }
2456
2457 /*
2458 * Combine either inner or outer cacheability attributes for normal
2459 * memory, according to table D4-42 and pseudocode procedure
2460 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2461 *
2462 * NB: only stage 1 includes allocation hints (RW bits), leading to
2463 * some asymmetry.
2464 */
2465 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2466 {
2467 if (s1 == 4 || s2 == 4) {
2468 /* non-cacheable has precedence */
2469 return 4;
2470 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2471 /* stage 1 write-through takes precedence */
2472 return s1;
2473 } else if (extract32(s2, 2, 2) == 2) {
2474 /* stage 2 write-through takes precedence, but the allocation hint
2475 * is still taken from stage 1
2476 */
2477 return (2 << 2) | extract32(s1, 0, 2);
2478 } else { /* write-back */
2479 return s1;
2480 }
2481 }
2482
2483 /*
2484 * Combine the memory type and cacheability attributes of
2485 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2486 * combined attributes in MAIR_EL1 format.
2487 */
2488 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2489 ARMCacheAttrs s1, ARMCacheAttrs s2)
2490 {
2491 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2492
2493 if (s2.is_s2_format) {
2494 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2495 } else {
2496 s2_mair_attrs = s2.attrs;
2497 }
2498
2499 s1lo = extract32(s1.attrs, 0, 4);
2500 s2lo = extract32(s2_mair_attrs, 0, 4);
2501 s1hi = extract32(s1.attrs, 4, 4);
2502 s2hi = extract32(s2_mair_attrs, 4, 4);
2503
2504 /* Combine memory type and cacheability attributes */
2505 if (s1hi == 0 || s2hi == 0) {
2506 /* Device has precedence over normal */
2507 if (s1lo == 0 || s2lo == 0) {
2508 /* nGnRnE has precedence over anything */
2509 ret_attrs = 0;
2510 } else if (s1lo == 4 || s2lo == 4) {
2511 /* non-Reordering has precedence over Reordering */
2512 ret_attrs = 4; /* nGnRE */
2513 } else if (s1lo == 8 || s2lo == 8) {
2514 /* non-Gathering has precedence over Gathering */
2515 ret_attrs = 8; /* nGRE */
2516 } else {
2517 ret_attrs = 0xc; /* GRE */
2518 }
2519 } else { /* Normal memory */
2520 /* Outer/inner cacheability combine independently */
2521 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2522 | combine_cacheattr_nibble(s1lo, s2lo);
2523 }
2524 return ret_attrs;
2525 }
2526
2527 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2528 {
2529 /*
2530 * Given the 4 bits specifying the outer or inner cacheability
2531 * in MAIR format, return a value specifying Normal Write-Back,
2532 * with the allocation and transient hints taken from the input
2533 * if the input specified some kind of cacheable attribute.
2534 */
2535 if (attr == 0 || attr == 4) {
2536 /*
2537 * 0 == an UNPREDICTABLE encoding
2538 * 4 == Non-cacheable
2539 * Either way, force Write-Back RW allocate non-transient
2540 */
2541 return 0xf;
2542 }
2543 /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2544 return attr | 4;
2545 }
2546
2547 /*
2548 * Combine the memory type and cacheability attributes of
2549 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2550 * combined attributes in MAIR_EL1 format.
2551 */
2552 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
2553 {
2554 assert(s2.is_s2_format && !s1.is_s2_format);
2555
2556 switch (s2.attrs) {
2557 case 7:
2558 /* Use stage 1 attributes */
2559 return s1.attrs;
2560 case 6:
2561 /*
2562 * Force Normal Write-Back. Note that if S1 is Normal cacheable
2563 * then we take the allocation hints from it; otherwise it is
2564 * RW allocate, non-transient.
2565 */
2566 if ((s1.attrs & 0xf0) == 0) {
2567 /* S1 is Device */
2568 return 0xff;
2569 }
2570 /* Need to check the Inner and Outer nibbles separately */
2571 return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2572 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
2573 case 5:
2574 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
2575 if ((s1.attrs & 0xf0) == 0) {
2576 return s1.attrs;
2577 }
2578 return 0x44;
2579 case 0 ... 3:
2580 /* Force Device, of subtype specified by S2 */
2581 return s2.attrs << 2;
2582 default:
2583 /*
2584 * RESERVED values (including RES0 descriptor bit [5] being nonzero);
2585 * arbitrarily force Device.
2586 */
2587 return 0;
2588 }
2589 }
2590
2591 /*
2592 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
2593 * and CombineS1S2Desc()
2594 *
2595 * @env: CPUARMState
2596 * @s1: Attributes from stage 1 walk
2597 * @s2: Attributes from stage 2 walk
2598 */
2599 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
2600 ARMCacheAttrs s1, ARMCacheAttrs s2)
2601 {
2602 ARMCacheAttrs ret;
2603 bool tagged = false;
2604
2605 assert(!s1.is_s2_format);
2606 ret.is_s2_format = false;
2607 ret.guarded = s1.guarded;
2608
2609 if (s1.attrs == 0xf0) {
2610 tagged = true;
2611 s1.attrs = 0xff;
2612 }
2613
2614 /* Combine shareability attributes (table D4-43) */
2615 if (s1.shareability == 2 || s2.shareability == 2) {
2616 /* if either are outer-shareable, the result is outer-shareable */
2617 ret.shareability = 2;
2618 } else if (s1.shareability == 3 || s2.shareability == 3) {
2619 /* if either are inner-shareable, the result is inner-shareable */
2620 ret.shareability = 3;
2621 } else {
2622 /* both non-shareable */
2623 ret.shareability = 0;
2624 }
2625
2626 /* Combine memory type and cacheability attributes */
2627 if (hcr & HCR_FWB) {
2628 ret.attrs = combined_attrs_fwb(s1, s2);
2629 } else {
2630 ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
2631 }
2632
2633 /*
2634 * Any location for which the resultant memory type is any
2635 * type of Device memory is always treated as Outer Shareable.
2636 * Any location for which the resultant memory type is Normal
2637 * Inner Non-cacheable, Outer Non-cacheable is always treated
2638 * as Outer Shareable.
2639 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
2640 */
2641 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
2642 ret.shareability = 2;
2643 }
2644
2645 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
2646 if (tagged && ret.attrs == 0xff) {
2647 ret.attrs = 0xf0;
2648 }
2649
2650 return ret;
2651 }
2652
2653 /*
2654 * MMU disabled. S1 addresses within aa64 translation regimes are
2655 * still checked for bounds -- see AArch64.S1DisabledOutput().
2656 */
2657 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address,
2658 MMUAccessType access_type,
2659 ARMMMUIdx mmu_idx, bool is_secure,
2660 GetPhysAddrResult *result,
2661 ARMMMUFaultInfo *fi)
2662 {
2663 uint8_t memattr = 0x00; /* Device nGnRnE */
2664 uint8_t shareability = 0; /* non-sharable */
2665 int r_el;
2666
2667 switch (mmu_idx) {
2668 case ARMMMUIdx_Stage2:
2669 case ARMMMUIdx_Stage2_S:
2670 case ARMMMUIdx_Phys_NS:
2671 case ARMMMUIdx_Phys_S:
2672 break;
2673
2674 default:
2675 r_el = regime_el(env, mmu_idx);
2676 if (arm_el_is_aa64(env, r_el)) {
2677 int pamax = arm_pamax(env_archcpu(env));
2678 uint64_t tcr = env->cp15.tcr_el[r_el];
2679 int addrtop, tbi;
2680
2681 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
2682 if (access_type == MMU_INST_FETCH) {
2683 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
2684 }
2685 tbi = (tbi >> extract64(address, 55, 1)) & 1;
2686 addrtop = (tbi ? 55 : 63);
2687
2688 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
2689 fi->type = ARMFault_AddressSize;
2690 fi->level = 0;
2691 fi->stage2 = false;
2692 return 1;
2693 }
2694
2695 /*
2696 * When TBI is disabled, we've just validated that all of the
2697 * bits above PAMax are zero, so logically we only need to
2698 * clear the top byte for TBI. But it's clearer to follow
2699 * the pseudocode set of addrdesc.paddress.
2700 */
2701 address = extract64(address, 0, 52);
2702 }
2703
2704 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
2705 if (r_el == 1) {
2706 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2707 if (hcr & HCR_DC) {
2708 if (hcr & HCR_DCT) {
2709 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
2710 } else {
2711 memattr = 0xff; /* Normal, WB, RWA */
2712 }
2713 }
2714 }
2715 if (memattr == 0 && access_type == MMU_INST_FETCH) {
2716 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
2717 memattr = 0xee; /* Normal, WT, RA, NT */
2718 } else {
2719 memattr = 0x44; /* Normal, NC, No */
2720 }
2721 shareability = 2; /* outer sharable */
2722 }
2723 result->cacheattrs.is_s2_format = false;
2724 break;
2725 }
2726
2727 result->f.phys_addr = address;
2728 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2729 result->f.lg_page_size = TARGET_PAGE_BITS;
2730 result->cacheattrs.shareability = shareability;
2731 result->cacheattrs.attrs = memattr;
2732 return false;
2733 }
2734
2735 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
2736 target_ulong address,
2737 MMUAccessType access_type,
2738 GetPhysAddrResult *result,
2739 ARMMMUFaultInfo *fi)
2740 {
2741 hwaddr ipa;
2742 int s1_prot, s1_lgpgsz;
2743 bool is_secure = ptw->in_secure;
2744 bool ret, ipa_secure;
2745 ARMCacheAttrs cacheattrs1;
2746 bool is_el0;
2747 uint64_t hcr;
2748
2749 ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi);
2750
2751 /* If S1 fails, return early. */
2752 if (ret) {
2753 return ret;
2754 }
2755
2756 ipa = result->f.phys_addr;
2757 ipa_secure = result->f.attrs.secure;
2758
2759 is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
2760 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2761 ptw->in_secure = ipa_secure;
2762 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
2763
2764 /*
2765 * S1 is done, now do S2 translation.
2766 * Save the stage1 results so that we may merge prot and cacheattrs later.
2767 */
2768 s1_prot = result->f.prot;
2769 s1_lgpgsz = result->f.lg_page_size;
2770 cacheattrs1 = result->cacheattrs;
2771 memset(result, 0, sizeof(*result));
2772
2773 if (arm_feature(env, ARM_FEATURE_PMSA)) {
2774 ret = get_phys_addr_pmsav8(env, ipa, access_type,
2775 ptw->in_mmu_idx, is_secure, result, fi);
2776 } else {
2777 ret = get_phys_addr_lpae(env, ptw, ipa, access_type,
2778 is_el0, result, fi);
2779 }
2780 fi->s2addr = ipa;
2781
2782 /* Combine the S1 and S2 perms. */
2783 result->f.prot &= s1_prot;
2784
2785 /* If S2 fails, return early. */
2786 if (ret) {
2787 return ret;
2788 }
2789
2790 /*
2791 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
2792 * this means "don't put this in the TLB"; in this case, return a
2793 * result with lg_page_size == 0 to achieve that. Otherwise,
2794 * use the maximum of the S1 & S2 page size, so that invalidation
2795 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
2796 * we know the combined result permissions etc only cover the minimum
2797 * of the S1 and S2 page size, because we know that the common TLB code
2798 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
2799 * and passing a larger page size value only affects invalidations.)
2800 */
2801 if (result->f.lg_page_size < TARGET_PAGE_BITS ||
2802 s1_lgpgsz < TARGET_PAGE_BITS) {
2803 result->f.lg_page_size = 0;
2804 } else if (result->f.lg_page_size < s1_lgpgsz) {
2805 result->f.lg_page_size = s1_lgpgsz;
2806 }
2807
2808 /* Combine the S1 and S2 cache attributes. */
2809 hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2810 if (hcr & HCR_DC) {
2811 /*
2812 * HCR.DC forces the first stage attributes to
2813 * Normal Non-Shareable,
2814 * Inner Write-Back Read-Allocate Write-Allocate,
2815 * Outer Write-Back Read-Allocate Write-Allocate.
2816 * Do not overwrite Tagged within attrs.
2817 */
2818 if (cacheattrs1.attrs != 0xf0) {
2819 cacheattrs1.attrs = 0xff;
2820 }
2821 cacheattrs1.shareability = 0;
2822 }
2823 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
2824 result->cacheattrs);
2825
2826 /*
2827 * Check if IPA translates to secure or non-secure PA space.
2828 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
2829 */
2830 result->f.attrs.secure =
2831 (is_secure
2832 && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
2833 && (ipa_secure
2834 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))));
2835
2836 return false;
2837 }
2838
2839 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
2840 target_ulong address,
2841 MMUAccessType access_type,
2842 GetPhysAddrResult *result,
2843 ARMMMUFaultInfo *fi)
2844 {
2845 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2846 bool is_secure = ptw->in_secure;
2847 ARMMMUIdx s1_mmu_idx;
2848
2849 /*
2850 * The page table entries may downgrade secure to non-secure, but
2851 * cannot upgrade an non-secure translation regime's attributes
2852 * to secure.
2853 */
2854 result->f.attrs.secure = is_secure;
2855
2856 switch (mmu_idx) {
2857 case ARMMMUIdx_Phys_S:
2858 case ARMMMUIdx_Phys_NS:
2859 /* Checking Phys early avoids special casing later vs regime_el. */
2860 return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2861 is_secure, result, fi);
2862
2863 case ARMMMUIdx_Stage1_E0:
2864 case ARMMMUIdx_Stage1_E1:
2865 case ARMMMUIdx_Stage1_E1_PAN:
2866 /* First stage lookup uses second stage for ptw. */
2867 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2868 break;
2869
2870 case ARMMMUIdx_Stage2:
2871 case ARMMMUIdx_Stage2_S:
2872 /*
2873 * Second stage lookup uses physical for ptw; whether this is S or
2874 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
2875 * the Secure EL2&0 regime.
2876 */
2877 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
2878 break;
2879
2880 case ARMMMUIdx_E10_0:
2881 s1_mmu_idx = ARMMMUIdx_Stage1_E0;
2882 goto do_twostage;
2883 case ARMMMUIdx_E10_1:
2884 s1_mmu_idx = ARMMMUIdx_Stage1_E1;
2885 goto do_twostage;
2886 case ARMMMUIdx_E10_1_PAN:
2887 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
2888 do_twostage:
2889 /*
2890 * Call ourselves recursively to do the stage 1 and then stage 2
2891 * translations if mmu_idx is a two-stage regime, and EL2 present.
2892 * Otherwise, a stage1+stage2 translation is just stage 1.
2893 */
2894 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
2895 if (arm_feature(env, ARM_FEATURE_EL2) &&
2896 !regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) {
2897 return get_phys_addr_twostage(env, ptw, address, access_type,
2898 result, fi);
2899 }
2900 /* fall through */
2901
2902 default:
2903 /* Single stage uses physical for ptw. */
2904 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
2905 break;
2906 }
2907
2908 result->f.attrs.user = regime_is_user(env, mmu_idx);
2909
2910 /*
2911 * Fast Context Switch Extension. This doesn't exist at all in v8.
2912 * In v7 and earlier it affects all stage 1 translations.
2913 */
2914 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
2915 && !arm_feature(env, ARM_FEATURE_V8)) {
2916 if (regime_el(env, mmu_idx) == 3) {
2917 address += env->cp15.fcseidr_s;
2918 } else {
2919 address += env->cp15.fcseidr_ns;
2920 }
2921 }
2922
2923 if (arm_feature(env, ARM_FEATURE_PMSA)) {
2924 bool ret;
2925 result->f.lg_page_size = TARGET_PAGE_BITS;
2926
2927 if (arm_feature(env, ARM_FEATURE_V8)) {
2928 /* PMSAv8 */
2929 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
2930 is_secure, result, fi);
2931 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2932 /* PMSAv7 */
2933 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
2934 is_secure, result, fi);
2935 } else {
2936 /* Pre-v7 MPU */
2937 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
2938 is_secure, result, fi);
2939 }
2940 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
2941 " mmu_idx %u -> %s (prot %c%c%c)\n",
2942 access_type == MMU_DATA_LOAD ? "reading" :
2943 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
2944 (uint32_t)address, mmu_idx,
2945 ret ? "Miss" : "Hit",
2946 result->f.prot & PAGE_READ ? 'r' : '-',
2947 result->f.prot & PAGE_WRITE ? 'w' : '-',
2948 result->f.prot & PAGE_EXEC ? 'x' : '-');
2949
2950 return ret;
2951 }
2952
2953 /* Definitely a real MMU, not an MPU */
2954
2955 if (regime_translation_disabled(env, mmu_idx, is_secure)) {
2956 return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2957 is_secure, result, fi);
2958 }
2959
2960 if (regime_using_lpae_format(env, mmu_idx)) {
2961 return get_phys_addr_lpae(env, ptw, address, access_type, false,
2962 result, fi);
2963 } else if (arm_feature(env, ARM_FEATURE_V7) ||
2964 regime_sctlr(env, mmu_idx) & SCTLR_XP) {
2965 return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
2966 } else {
2967 return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
2968 }
2969 }
2970
2971 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
2972 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2973 bool is_secure, GetPhysAddrResult *result,
2974 ARMMMUFaultInfo *fi)
2975 {
2976 S1Translate ptw = {
2977 .in_mmu_idx = mmu_idx,
2978 .in_secure = is_secure,
2979 };
2980 return get_phys_addr_with_struct(env, &ptw, address, access_type,
2981 result, fi);
2982 }
2983
2984 bool get_phys_addr(CPUARMState *env, target_ulong address,
2985 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2986 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
2987 {
2988 bool is_secure;
2989
2990 switch (mmu_idx) {
2991 case ARMMMUIdx_E10_0:
2992 case ARMMMUIdx_E10_1:
2993 case ARMMMUIdx_E10_1_PAN:
2994 case ARMMMUIdx_E20_0:
2995 case ARMMMUIdx_E20_2:
2996 case ARMMMUIdx_E20_2_PAN:
2997 case ARMMMUIdx_Stage1_E0:
2998 case ARMMMUIdx_Stage1_E1:
2999 case ARMMMUIdx_Stage1_E1_PAN:
3000 case ARMMMUIdx_E2:
3001 is_secure = arm_is_secure_below_el3(env);
3002 break;
3003 case ARMMMUIdx_Stage2:
3004 case ARMMMUIdx_Phys_NS:
3005 case ARMMMUIdx_MPrivNegPri:
3006 case ARMMMUIdx_MUserNegPri:
3007 case ARMMMUIdx_MPriv:
3008 case ARMMMUIdx_MUser:
3009 is_secure = false;
3010 break;
3011 case ARMMMUIdx_E3:
3012 case ARMMMUIdx_Stage2_S:
3013 case ARMMMUIdx_Phys_S:
3014 case ARMMMUIdx_MSPrivNegPri:
3015 case ARMMMUIdx_MSUserNegPri:
3016 case ARMMMUIdx_MSPriv:
3017 case ARMMMUIdx_MSUser:
3018 is_secure = true;
3019 break;
3020 default:
3021 g_assert_not_reached();
3022 }
3023 return get_phys_addr_with_secure(env, address, access_type, mmu_idx,
3024 is_secure, result, fi);
3025 }
3026
3027 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3028 MemTxAttrs *attrs)
3029 {
3030 ARMCPU *cpu = ARM_CPU(cs);
3031 CPUARMState *env = &cpu->env;
3032 S1Translate ptw = {
3033 .in_mmu_idx = arm_mmu_idx(env),
3034 .in_secure = arm_is_secure(env),
3035 .in_debug = true,
3036 };
3037 GetPhysAddrResult res = {};
3038 ARMMMUFaultInfo fi = {};
3039 bool ret;
3040
3041 ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
3042 *attrs = res.f.attrs;
3043
3044 if (ret) {
3045 return -1;
3046 }
3047 return res.f.phys_addr;
3048 }