]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/ptw.c
Merge tag 'for_upstream' of https://git.kernel.org/pub/scm/virt/kvm/mst/qemu into...
[mirror_qemu.git] / target / arm / ptw.c
1 /*
2 * ARM page table walking.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "idau.h"
17
18
19 typedef struct S1Translate {
20 ARMMMUIdx in_mmu_idx;
21 ARMMMUIdx in_ptw_idx;
22 bool in_secure;
23 bool in_debug;
24 bool out_secure;
25 bool out_rw;
26 bool out_be;
27 hwaddr out_virt;
28 hwaddr out_phys;
29 void *out_host;
30 } S1Translate;
31
32 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
33 uint64_t address,
34 MMUAccessType access_type, bool s1_is_el0,
35 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
36 __attribute__((nonnull));
37
38 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
39 target_ulong address,
40 MMUAccessType access_type,
41 GetPhysAddrResult *result,
42 ARMMMUFaultInfo *fi)
43 __attribute__((nonnull));
44
45 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
46 static const uint8_t pamax_map[] = {
47 [0] = 32,
48 [1] = 36,
49 [2] = 40,
50 [3] = 42,
51 [4] = 44,
52 [5] = 48,
53 [6] = 52,
54 };
55
56 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
57 unsigned int arm_pamax(ARMCPU *cpu)
58 {
59 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
60 unsigned int parange =
61 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
62
63 /*
64 * id_aa64mmfr0 is a read-only register so values outside of the
65 * supported mappings can be considered an implementation error.
66 */
67 assert(parange < ARRAY_SIZE(pamax_map));
68 return pamax_map[parange];
69 }
70
71 /*
72 * In machvirt_init, we call arm_pamax on a cpu that is not fully
73 * initialized, so we can't rely on the propagation done in realize.
74 */
75 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
76 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
77 /* v7 with LPAE */
78 return 40;
79 }
80 /* Anything else */
81 return 32;
82 }
83
84 /*
85 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
86 */
87 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
88 {
89 switch (mmu_idx) {
90 case ARMMMUIdx_E10_0:
91 return ARMMMUIdx_Stage1_E0;
92 case ARMMMUIdx_E10_1:
93 return ARMMMUIdx_Stage1_E1;
94 case ARMMMUIdx_E10_1_PAN:
95 return ARMMMUIdx_Stage1_E1_PAN;
96 default:
97 return mmu_idx;
98 }
99 }
100
101 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
102 {
103 return stage_1_mmu_idx(arm_mmu_idx(env));
104 }
105
106 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
107 {
108 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
109 }
110
111 /* Return the TTBR associated with this translation regime */
112 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
113 {
114 if (mmu_idx == ARMMMUIdx_Stage2) {
115 return env->cp15.vttbr_el2;
116 }
117 if (mmu_idx == ARMMMUIdx_Stage2_S) {
118 return env->cp15.vsttbr_el2;
119 }
120 if (ttbrn == 0) {
121 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
122 } else {
123 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
124 }
125 }
126
127 /* Return true if the specified stage of address translation is disabled */
128 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
129 bool is_secure)
130 {
131 uint64_t hcr_el2;
132
133 if (arm_feature(env, ARM_FEATURE_M)) {
134 switch (env->v7m.mpu_ctrl[is_secure] &
135 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
136 case R_V7M_MPU_CTRL_ENABLE_MASK:
137 /* Enabled, but not for HardFault and NMI */
138 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
139 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
140 /* Enabled for all cases */
141 return false;
142 case 0:
143 default:
144 /*
145 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
146 * we warned about that in armv7m_nvic.c when the guest set it.
147 */
148 return true;
149 }
150 }
151
152 hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure);
153
154 switch (mmu_idx) {
155 case ARMMMUIdx_Stage2:
156 case ARMMMUIdx_Stage2_S:
157 /* HCR.DC means HCR.VM behaves as 1 */
158 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
159
160 case ARMMMUIdx_E10_0:
161 case ARMMMUIdx_E10_1:
162 case ARMMMUIdx_E10_1_PAN:
163 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
164 if (hcr_el2 & HCR_TGE) {
165 return true;
166 }
167 break;
168
169 case ARMMMUIdx_Stage1_E0:
170 case ARMMMUIdx_Stage1_E1:
171 case ARMMMUIdx_Stage1_E1_PAN:
172 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
173 if (hcr_el2 & HCR_DC) {
174 return true;
175 }
176 break;
177
178 case ARMMMUIdx_E20_0:
179 case ARMMMUIdx_E20_2:
180 case ARMMMUIdx_E20_2_PAN:
181 case ARMMMUIdx_E2:
182 case ARMMMUIdx_E3:
183 break;
184
185 case ARMMMUIdx_Phys_NS:
186 case ARMMMUIdx_Phys_S:
187 /* No translation for physical address spaces. */
188 return true;
189
190 default:
191 g_assert_not_reached();
192 }
193
194 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
195 }
196
197 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
198 {
199 /*
200 * For an S1 page table walk, the stage 1 attributes are always
201 * some form of "this is Normal memory". The combined S1+S2
202 * attributes are therefore only Device if stage 2 specifies Device.
203 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
204 * ie when cacheattrs.attrs bits [3:2] are 0b00.
205 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
206 * when cacheattrs.attrs bit [2] is 0.
207 */
208 if (hcr & HCR_FWB) {
209 return (attrs & 0x4) == 0;
210 } else {
211 return (attrs & 0xc) == 0;
212 }
213 }
214
215 /* Translate a S1 pagetable walk through S2 if needed. */
216 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
217 hwaddr addr, ARMMMUFaultInfo *fi)
218 {
219 bool is_secure = ptw->in_secure;
220 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
221 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
222 uint8_t pte_attrs;
223 bool pte_secure;
224
225 ptw->out_virt = addr;
226
227 if (unlikely(ptw->in_debug)) {
228 /*
229 * From gdbstub, do not use softmmu so that we don't modify the
230 * state of the cpu at all, including softmmu tlb contents.
231 */
232 if (regime_is_stage2(s2_mmu_idx)) {
233 S1Translate s2ptw = {
234 .in_mmu_idx = s2_mmu_idx,
235 .in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS,
236 .in_secure = is_secure,
237 .in_debug = true,
238 };
239 GetPhysAddrResult s2 = { };
240
241 if (!get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD,
242 false, &s2, fi)) {
243 goto fail;
244 }
245 ptw->out_phys = s2.f.phys_addr;
246 pte_attrs = s2.cacheattrs.attrs;
247 pte_secure = s2.f.attrs.secure;
248 } else {
249 /* Regime is physical. */
250 ptw->out_phys = addr;
251 pte_attrs = 0;
252 pte_secure = is_secure;
253 }
254 ptw->out_host = NULL;
255 ptw->out_rw = false;
256 } else {
257 CPUTLBEntryFull *full;
258 int flags;
259
260 env->tlb_fi = fi;
261 flags = probe_access_full(env, addr, MMU_DATA_LOAD,
262 arm_to_core_mmu_idx(s2_mmu_idx),
263 true, &ptw->out_host, &full, 0);
264 env->tlb_fi = NULL;
265
266 if (unlikely(flags & TLB_INVALID_MASK)) {
267 goto fail;
268 }
269 ptw->out_phys = full->phys_addr;
270 ptw->out_rw = full->prot & PAGE_WRITE;
271 pte_attrs = full->pte_attrs;
272 pte_secure = full->attrs.secure;
273 }
274
275 if (regime_is_stage2(s2_mmu_idx)) {
276 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
277
278 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
279 /*
280 * PTW set and S1 walk touched S2 Device memory:
281 * generate Permission fault.
282 */
283 fi->type = ARMFault_Permission;
284 fi->s2addr = addr;
285 fi->stage2 = true;
286 fi->s1ptw = true;
287 fi->s1ns = !is_secure;
288 return false;
289 }
290 }
291
292 /* Check if page table walk is to secure or non-secure PA space. */
293 ptw->out_secure = (is_secure
294 && !(pte_secure
295 ? env->cp15.vstcr_el2 & VSTCR_SW
296 : env->cp15.vtcr_el2 & VTCR_NSW));
297 ptw->out_be = regime_translation_big_endian(env, mmu_idx);
298 return true;
299
300 fail:
301 assert(fi->type != ARMFault_None);
302 fi->s2addr = addr;
303 fi->stage2 = true;
304 fi->s1ptw = true;
305 fi->s1ns = !is_secure;
306 return false;
307 }
308
309 /* All loads done in the course of a page table walk go through here. */
310 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
311 ARMMMUFaultInfo *fi)
312 {
313 CPUState *cs = env_cpu(env);
314 void *host = ptw->out_host;
315 uint32_t data;
316
317 if (likely(host)) {
318 /* Page tables are in RAM, and we have the host address. */
319 data = qatomic_read((uint32_t *)host);
320 if (ptw->out_be) {
321 data = be32_to_cpu(data);
322 } else {
323 data = le32_to_cpu(data);
324 }
325 } else {
326 /* Page tables are in MMIO. */
327 MemTxAttrs attrs = { .secure = ptw->out_secure };
328 AddressSpace *as = arm_addressspace(cs, attrs);
329 MemTxResult result = MEMTX_OK;
330
331 if (ptw->out_be) {
332 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
333 } else {
334 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
335 }
336 if (unlikely(result != MEMTX_OK)) {
337 fi->type = ARMFault_SyncExternalOnWalk;
338 fi->ea = arm_extabort_type(result);
339 return 0;
340 }
341 }
342 return data;
343 }
344
345 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
346 ARMMMUFaultInfo *fi)
347 {
348 CPUState *cs = env_cpu(env);
349 void *host = ptw->out_host;
350 uint64_t data;
351
352 if (likely(host)) {
353 /* Page tables are in RAM, and we have the host address. */
354 #ifdef CONFIG_ATOMIC64
355 data = qatomic_read__nocheck((uint64_t *)host);
356 if (ptw->out_be) {
357 data = be64_to_cpu(data);
358 } else {
359 data = le64_to_cpu(data);
360 }
361 #else
362 if (ptw->out_be) {
363 data = ldq_be_p(host);
364 } else {
365 data = ldq_le_p(host);
366 }
367 #endif
368 } else {
369 /* Page tables are in MMIO. */
370 MemTxAttrs attrs = { .secure = ptw->out_secure };
371 AddressSpace *as = arm_addressspace(cs, attrs);
372 MemTxResult result = MEMTX_OK;
373
374 if (ptw->out_be) {
375 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
376 } else {
377 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
378 }
379 if (unlikely(result != MEMTX_OK)) {
380 fi->type = ARMFault_SyncExternalOnWalk;
381 fi->ea = arm_extabort_type(result);
382 return 0;
383 }
384 }
385 return data;
386 }
387
388 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
389 uint64_t new_val, S1Translate *ptw,
390 ARMMMUFaultInfo *fi)
391 {
392 uint64_t cur_val;
393 void *host = ptw->out_host;
394
395 if (unlikely(!host)) {
396 fi->type = ARMFault_UnsuppAtomicUpdate;
397 fi->s1ptw = true;
398 return 0;
399 }
400
401 /*
402 * Raising a stage2 Protection fault for an atomic update to a read-only
403 * page is delayed until it is certain that there is a change to make.
404 */
405 if (unlikely(!ptw->out_rw)) {
406 int flags;
407 void *discard;
408
409 env->tlb_fi = fi;
410 flags = probe_access_flags(env, ptw->out_virt, MMU_DATA_STORE,
411 arm_to_core_mmu_idx(ptw->in_ptw_idx),
412 true, &discard, 0);
413 env->tlb_fi = NULL;
414
415 if (unlikely(flags & TLB_INVALID_MASK)) {
416 assert(fi->type != ARMFault_None);
417 fi->s2addr = ptw->out_virt;
418 fi->stage2 = true;
419 fi->s1ptw = true;
420 fi->s1ns = !ptw->in_secure;
421 return 0;
422 }
423
424 /* In case CAS mismatches and we loop, remember writability. */
425 ptw->out_rw = true;
426 }
427
428 #ifdef CONFIG_ATOMIC64
429 if (ptw->out_be) {
430 old_val = cpu_to_be64(old_val);
431 new_val = cpu_to_be64(new_val);
432 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
433 cur_val = be64_to_cpu(cur_val);
434 } else {
435 old_val = cpu_to_le64(old_val);
436 new_val = cpu_to_le64(new_val);
437 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
438 cur_val = le64_to_cpu(cur_val);
439 }
440 #else
441 /*
442 * We can't support the full 64-bit atomic cmpxchg on the host.
443 * Because this is only used for FEAT_HAFDBS, which is only for AA64,
444 * we know that TCG_OVERSIZED_GUEST is set, which means that we are
445 * running in round-robin mode and could only race with dma i/o.
446 */
447 #ifndef TCG_OVERSIZED_GUEST
448 # error "Unexpected configuration"
449 #endif
450 bool locked = qemu_mutex_iothread_locked();
451 if (!locked) {
452 qemu_mutex_lock_iothread();
453 }
454 if (ptw->out_be) {
455 cur_val = ldq_be_p(host);
456 if (cur_val == old_val) {
457 stq_be_p(host, new_val);
458 }
459 } else {
460 cur_val = ldq_le_p(host);
461 if (cur_val == old_val) {
462 stq_le_p(host, new_val);
463 }
464 }
465 if (!locked) {
466 qemu_mutex_unlock_iothread();
467 }
468 #endif
469
470 return cur_val;
471 }
472
473 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
474 uint32_t *table, uint32_t address)
475 {
476 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
477 uint64_t tcr = regime_tcr(env, mmu_idx);
478 int maskshift = extract32(tcr, 0, 3);
479 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
480 uint32_t base_mask;
481
482 if (address & mask) {
483 if (tcr & TTBCR_PD1) {
484 /* Translation table walk disabled for TTBR1 */
485 return false;
486 }
487 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
488 } else {
489 if (tcr & TTBCR_PD0) {
490 /* Translation table walk disabled for TTBR0 */
491 return false;
492 }
493 base_mask = ~((uint32_t)0x3fffu >> maskshift);
494 *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
495 }
496 *table |= (address >> 18) & 0x3ffc;
497 return true;
498 }
499
500 /*
501 * Translate section/page access permissions to page R/W protection flags
502 * @env: CPUARMState
503 * @mmu_idx: MMU index indicating required translation regime
504 * @ap: The 3-bit access permissions (AP[2:0])
505 * @domain_prot: The 2-bit domain access permissions
506 * @is_user: TRUE if accessing from PL0
507 */
508 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
509 int ap, int domain_prot, bool is_user)
510 {
511 if (domain_prot == 3) {
512 return PAGE_READ | PAGE_WRITE;
513 }
514
515 switch (ap) {
516 case 0:
517 if (arm_feature(env, ARM_FEATURE_V7)) {
518 return 0;
519 }
520 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
521 case SCTLR_S:
522 return is_user ? 0 : PAGE_READ;
523 case SCTLR_R:
524 return PAGE_READ;
525 default:
526 return 0;
527 }
528 case 1:
529 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
530 case 2:
531 if (is_user) {
532 return PAGE_READ;
533 } else {
534 return PAGE_READ | PAGE_WRITE;
535 }
536 case 3:
537 return PAGE_READ | PAGE_WRITE;
538 case 4: /* Reserved. */
539 return 0;
540 case 5:
541 return is_user ? 0 : PAGE_READ;
542 case 6:
543 return PAGE_READ;
544 case 7:
545 if (!arm_feature(env, ARM_FEATURE_V6K)) {
546 return 0;
547 }
548 return PAGE_READ;
549 default:
550 g_assert_not_reached();
551 }
552 }
553
554 /*
555 * Translate section/page access permissions to page R/W protection flags
556 * @env: CPUARMState
557 * @mmu_idx: MMU index indicating required translation regime
558 * @ap: The 3-bit access permissions (AP[2:0])
559 * @domain_prot: The 2-bit domain access permissions
560 */
561 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
562 int ap, int domain_prot)
563 {
564 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
565 regime_is_user(env, mmu_idx));
566 }
567
568 /*
569 * Translate section/page access permissions to page R/W protection flags.
570 * @ap: The 2-bit simple AP (AP[2:1])
571 * @is_user: TRUE if accessing from PL0
572 */
573 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
574 {
575 switch (ap) {
576 case 0:
577 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
578 case 1:
579 return PAGE_READ | PAGE_WRITE;
580 case 2:
581 return is_user ? 0 : PAGE_READ;
582 case 3:
583 return PAGE_READ;
584 default:
585 g_assert_not_reached();
586 }
587 }
588
589 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
590 {
591 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
592 }
593
594 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
595 uint32_t address, MMUAccessType access_type,
596 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
597 {
598 int level = 1;
599 uint32_t table;
600 uint32_t desc;
601 int type;
602 int ap;
603 int domain = 0;
604 int domain_prot;
605 hwaddr phys_addr;
606 uint32_t dacr;
607
608 /* Pagetable walk. */
609 /* Lookup l1 descriptor. */
610 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
611 /* Section translation fault if page walk is disabled by PD0 or PD1 */
612 fi->type = ARMFault_Translation;
613 goto do_fault;
614 }
615 if (!S1_ptw_translate(env, ptw, table, fi)) {
616 goto do_fault;
617 }
618 desc = arm_ldl_ptw(env, ptw, fi);
619 if (fi->type != ARMFault_None) {
620 goto do_fault;
621 }
622 type = (desc & 3);
623 domain = (desc >> 5) & 0x0f;
624 if (regime_el(env, ptw->in_mmu_idx) == 1) {
625 dacr = env->cp15.dacr_ns;
626 } else {
627 dacr = env->cp15.dacr_s;
628 }
629 domain_prot = (dacr >> (domain * 2)) & 3;
630 if (type == 0) {
631 /* Section translation fault. */
632 fi->type = ARMFault_Translation;
633 goto do_fault;
634 }
635 if (type != 2) {
636 level = 2;
637 }
638 if (domain_prot == 0 || domain_prot == 2) {
639 fi->type = ARMFault_Domain;
640 goto do_fault;
641 }
642 if (type == 2) {
643 /* 1Mb section. */
644 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
645 ap = (desc >> 10) & 3;
646 result->f.lg_page_size = 20; /* 1MB */
647 } else {
648 /* Lookup l2 entry. */
649 if (type == 1) {
650 /* Coarse pagetable. */
651 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
652 } else {
653 /* Fine pagetable. */
654 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
655 }
656 if (!S1_ptw_translate(env, ptw, table, fi)) {
657 goto do_fault;
658 }
659 desc = arm_ldl_ptw(env, ptw, fi);
660 if (fi->type != ARMFault_None) {
661 goto do_fault;
662 }
663 switch (desc & 3) {
664 case 0: /* Page translation fault. */
665 fi->type = ARMFault_Translation;
666 goto do_fault;
667 case 1: /* 64k page. */
668 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
669 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
670 result->f.lg_page_size = 16;
671 break;
672 case 2: /* 4k page. */
673 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
674 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
675 result->f.lg_page_size = 12;
676 break;
677 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
678 if (type == 1) {
679 /* ARMv6/XScale extended small page format */
680 if (arm_feature(env, ARM_FEATURE_XSCALE)
681 || arm_feature(env, ARM_FEATURE_V6)) {
682 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
683 result->f.lg_page_size = 12;
684 } else {
685 /*
686 * UNPREDICTABLE in ARMv5; we choose to take a
687 * page translation fault.
688 */
689 fi->type = ARMFault_Translation;
690 goto do_fault;
691 }
692 } else {
693 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
694 result->f.lg_page_size = 10;
695 }
696 ap = (desc >> 4) & 3;
697 break;
698 default:
699 /* Never happens, but compiler isn't smart enough to tell. */
700 g_assert_not_reached();
701 }
702 }
703 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
704 result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
705 if (!(result->f.prot & (1 << access_type))) {
706 /* Access permission fault. */
707 fi->type = ARMFault_Permission;
708 goto do_fault;
709 }
710 result->f.phys_addr = phys_addr;
711 return false;
712 do_fault:
713 fi->domain = domain;
714 fi->level = level;
715 return true;
716 }
717
718 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
719 uint32_t address, MMUAccessType access_type,
720 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
721 {
722 ARMCPU *cpu = env_archcpu(env);
723 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
724 int level = 1;
725 uint32_t table;
726 uint32_t desc;
727 uint32_t xn;
728 uint32_t pxn = 0;
729 int type;
730 int ap;
731 int domain = 0;
732 int domain_prot;
733 hwaddr phys_addr;
734 uint32_t dacr;
735 bool ns;
736 int user_prot;
737
738 /* Pagetable walk. */
739 /* Lookup l1 descriptor. */
740 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
741 /* Section translation fault if page walk is disabled by PD0 or PD1 */
742 fi->type = ARMFault_Translation;
743 goto do_fault;
744 }
745 if (!S1_ptw_translate(env, ptw, table, fi)) {
746 goto do_fault;
747 }
748 desc = arm_ldl_ptw(env, ptw, fi);
749 if (fi->type != ARMFault_None) {
750 goto do_fault;
751 }
752 type = (desc & 3);
753 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
754 /* Section translation fault, or attempt to use the encoding
755 * which is Reserved on implementations without PXN.
756 */
757 fi->type = ARMFault_Translation;
758 goto do_fault;
759 }
760 if ((type == 1) || !(desc & (1 << 18))) {
761 /* Page or Section. */
762 domain = (desc >> 5) & 0x0f;
763 }
764 if (regime_el(env, mmu_idx) == 1) {
765 dacr = env->cp15.dacr_ns;
766 } else {
767 dacr = env->cp15.dacr_s;
768 }
769 if (type == 1) {
770 level = 2;
771 }
772 domain_prot = (dacr >> (domain * 2)) & 3;
773 if (domain_prot == 0 || domain_prot == 2) {
774 /* Section or Page domain fault */
775 fi->type = ARMFault_Domain;
776 goto do_fault;
777 }
778 if (type != 1) {
779 if (desc & (1 << 18)) {
780 /* Supersection. */
781 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
782 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
783 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
784 result->f.lg_page_size = 24; /* 16MB */
785 } else {
786 /* Section. */
787 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
788 result->f.lg_page_size = 20; /* 1MB */
789 }
790 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
791 xn = desc & (1 << 4);
792 pxn = desc & 1;
793 ns = extract32(desc, 19, 1);
794 } else {
795 if (cpu_isar_feature(aa32_pxn, cpu)) {
796 pxn = (desc >> 2) & 1;
797 }
798 ns = extract32(desc, 3, 1);
799 /* Lookup l2 entry. */
800 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
801 if (!S1_ptw_translate(env, ptw, table, fi)) {
802 goto do_fault;
803 }
804 desc = arm_ldl_ptw(env, ptw, fi);
805 if (fi->type != ARMFault_None) {
806 goto do_fault;
807 }
808 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
809 switch (desc & 3) {
810 case 0: /* Page translation fault. */
811 fi->type = ARMFault_Translation;
812 goto do_fault;
813 case 1: /* 64k page. */
814 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
815 xn = desc & (1 << 15);
816 result->f.lg_page_size = 16;
817 break;
818 case 2: case 3: /* 4k page. */
819 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
820 xn = desc & 1;
821 result->f.lg_page_size = 12;
822 break;
823 default:
824 /* Never happens, but compiler isn't smart enough to tell. */
825 g_assert_not_reached();
826 }
827 }
828 if (domain_prot == 3) {
829 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
830 } else {
831 if (pxn && !regime_is_user(env, mmu_idx)) {
832 xn = 1;
833 }
834 if (xn && access_type == MMU_INST_FETCH) {
835 fi->type = ARMFault_Permission;
836 goto do_fault;
837 }
838
839 if (arm_feature(env, ARM_FEATURE_V6K) &&
840 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
841 /* The simplified model uses AP[0] as an access control bit. */
842 if ((ap & 1) == 0) {
843 /* Access flag fault. */
844 fi->type = ARMFault_AccessFlag;
845 goto do_fault;
846 }
847 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
848 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
849 } else {
850 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
851 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
852 }
853 if (result->f.prot && !xn) {
854 result->f.prot |= PAGE_EXEC;
855 }
856 if (!(result->f.prot & (1 << access_type))) {
857 /* Access permission fault. */
858 fi->type = ARMFault_Permission;
859 goto do_fault;
860 }
861 if (regime_is_pan(env, mmu_idx) &&
862 !regime_is_user(env, mmu_idx) &&
863 user_prot &&
864 access_type != MMU_INST_FETCH) {
865 /* Privileged Access Never fault */
866 fi->type = ARMFault_Permission;
867 goto do_fault;
868 }
869 }
870 if (ns) {
871 /* The NS bit will (as required by the architecture) have no effect if
872 * the CPU doesn't support TZ or this is a non-secure translation
873 * regime, because the attribute will already be non-secure.
874 */
875 result->f.attrs.secure = false;
876 }
877 result->f.phys_addr = phys_addr;
878 return false;
879 do_fault:
880 fi->domain = domain;
881 fi->level = level;
882 return true;
883 }
884
885 /*
886 * Translate S2 section/page access permissions to protection flags
887 * @env: CPUARMState
888 * @s2ap: The 2-bit stage2 access permissions (S2AP)
889 * @xn: XN (execute-never) bits
890 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
891 */
892 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
893 {
894 int prot = 0;
895
896 if (s2ap & 1) {
897 prot |= PAGE_READ;
898 }
899 if (s2ap & 2) {
900 prot |= PAGE_WRITE;
901 }
902
903 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
904 switch (xn) {
905 case 0:
906 prot |= PAGE_EXEC;
907 break;
908 case 1:
909 if (s1_is_el0) {
910 prot |= PAGE_EXEC;
911 }
912 break;
913 case 2:
914 break;
915 case 3:
916 if (!s1_is_el0) {
917 prot |= PAGE_EXEC;
918 }
919 break;
920 default:
921 g_assert_not_reached();
922 }
923 } else {
924 if (!extract32(xn, 1, 1)) {
925 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
926 prot |= PAGE_EXEC;
927 }
928 }
929 }
930 return prot;
931 }
932
933 /*
934 * Translate section/page access permissions to protection flags
935 * @env: CPUARMState
936 * @mmu_idx: MMU index indicating required translation regime
937 * @is_aa64: TRUE if AArch64
938 * @ap: The 2-bit simple AP (AP[2:1])
939 * @ns: NS (non-secure) bit
940 * @xn: XN (execute-never) bit
941 * @pxn: PXN (privileged execute-never) bit
942 */
943 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
944 int ap, int ns, int xn, int pxn)
945 {
946 bool is_user = regime_is_user(env, mmu_idx);
947 int prot_rw, user_rw;
948 bool have_wxn;
949 int wxn = 0;
950
951 assert(!regime_is_stage2(mmu_idx));
952
953 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
954 if (is_user) {
955 prot_rw = user_rw;
956 } else {
957 if (user_rw && regime_is_pan(env, mmu_idx)) {
958 /* PAN forbids data accesses but doesn't affect insn fetch */
959 prot_rw = 0;
960 } else {
961 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
962 }
963 }
964
965 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
966 return prot_rw;
967 }
968
969 /* TODO have_wxn should be replaced with
970 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
971 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
972 * compatible processors have EL2, which is required for [U]WXN.
973 */
974 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
975
976 if (have_wxn) {
977 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
978 }
979
980 if (is_aa64) {
981 if (regime_has_2_ranges(mmu_idx) && !is_user) {
982 xn = pxn || (user_rw & PAGE_WRITE);
983 }
984 } else if (arm_feature(env, ARM_FEATURE_V7)) {
985 switch (regime_el(env, mmu_idx)) {
986 case 1:
987 case 3:
988 if (is_user) {
989 xn = xn || !(user_rw & PAGE_READ);
990 } else {
991 int uwxn = 0;
992 if (have_wxn) {
993 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
994 }
995 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
996 (uwxn && (user_rw & PAGE_WRITE));
997 }
998 break;
999 case 2:
1000 break;
1001 }
1002 } else {
1003 xn = wxn = 0;
1004 }
1005
1006 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1007 return prot_rw;
1008 }
1009 return prot_rw | PAGE_EXEC;
1010 }
1011
1012 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1013 ARMMMUIdx mmu_idx)
1014 {
1015 uint64_t tcr = regime_tcr(env, mmu_idx);
1016 uint32_t el = regime_el(env, mmu_idx);
1017 int select, tsz;
1018 bool epd, hpd;
1019
1020 assert(mmu_idx != ARMMMUIdx_Stage2_S);
1021
1022 if (mmu_idx == ARMMMUIdx_Stage2) {
1023 /* VTCR */
1024 bool sext = extract32(tcr, 4, 1);
1025 bool sign = extract32(tcr, 3, 1);
1026
1027 /*
1028 * If the sign-extend bit is not the same as t0sz[3], the result
1029 * is unpredictable. Flag this as a guest error.
1030 */
1031 if (sign != sext) {
1032 qemu_log_mask(LOG_GUEST_ERROR,
1033 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1034 }
1035 tsz = sextract32(tcr, 0, 4) + 8;
1036 select = 0;
1037 hpd = false;
1038 epd = false;
1039 } else if (el == 2) {
1040 /* HTCR */
1041 tsz = extract32(tcr, 0, 3);
1042 select = 0;
1043 hpd = extract64(tcr, 24, 1);
1044 epd = false;
1045 } else {
1046 int t0sz = extract32(tcr, 0, 3);
1047 int t1sz = extract32(tcr, 16, 3);
1048
1049 if (t1sz == 0) {
1050 select = va > (0xffffffffu >> t0sz);
1051 } else {
1052 /* Note that we will detect errors later. */
1053 select = va >= ~(0xffffffffu >> t1sz);
1054 }
1055 if (!select) {
1056 tsz = t0sz;
1057 epd = extract32(tcr, 7, 1);
1058 hpd = extract64(tcr, 41, 1);
1059 } else {
1060 tsz = t1sz;
1061 epd = extract32(tcr, 23, 1);
1062 hpd = extract64(tcr, 42, 1);
1063 }
1064 /* For aarch32, hpd0 is not enabled without t2e as well. */
1065 hpd &= extract32(tcr, 6, 1);
1066 }
1067
1068 return (ARMVAParameters) {
1069 .tsz = tsz,
1070 .select = select,
1071 .epd = epd,
1072 .hpd = hpd,
1073 };
1074 }
1075
1076 /*
1077 * check_s2_mmu_setup
1078 * @cpu: ARMCPU
1079 * @is_aa64: True if the translation regime is in AArch64 state
1080 * @startlevel: Suggested starting level
1081 * @inputsize: Bitsize of IPAs
1082 * @stride: Page-table stride (See the ARM ARM)
1083 *
1084 * Returns true if the suggested S2 translation parameters are OK and
1085 * false otherwise.
1086 */
1087 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
1088 int inputsize, int stride, int outputsize)
1089 {
1090 const int grainsize = stride + 3;
1091 int startsizecheck;
1092
1093 /*
1094 * Negative levels are usually not allowed...
1095 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which
1096 * begins with level -1. Note that previous feature tests will have
1097 * eliminated this combination if it is not enabled.
1098 */
1099 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) {
1100 return false;
1101 }
1102
1103 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
1104 if (startsizecheck < 1 || startsizecheck > stride + 4) {
1105 return false;
1106 }
1107
1108 if (is_aa64) {
1109 switch (stride) {
1110 case 13: /* 64KB Pages. */
1111 if (level == 0 || (level == 1 && outputsize <= 42)) {
1112 return false;
1113 }
1114 break;
1115 case 11: /* 16KB Pages. */
1116 if (level == 0 || (level == 1 && outputsize <= 40)) {
1117 return false;
1118 }
1119 break;
1120 case 9: /* 4KB Pages. */
1121 if (level == 0 && outputsize <= 42) {
1122 return false;
1123 }
1124 break;
1125 default:
1126 g_assert_not_reached();
1127 }
1128
1129 /* Inputsize checks. */
1130 if (inputsize > outputsize &&
1131 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) {
1132 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
1133 return false;
1134 }
1135 } else {
1136 /* AArch32 only supports 4KB pages. Assert on that. */
1137 assert(stride == 9);
1138
1139 if (level == 0) {
1140 return false;
1141 }
1142 }
1143 return true;
1144 }
1145
1146 /**
1147 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1148 *
1149 * Returns false if the translation was successful. Otherwise, phys_ptr,
1150 * attrs, prot and page_size may not be filled in, and the populated fsr
1151 * value provides information on why the translation aborted, in the format
1152 * of a long-format DFSR/IFSR fault register, with the following caveat:
1153 * the WnR bit is never set (the caller must do this).
1154 *
1155 * @env: CPUARMState
1156 * @ptw: Current and next stage parameters for the walk.
1157 * @address: virtual address to get physical address for
1158 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1159 * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2
1160 * (so this is a stage 2 page table walk),
1161 * must be true if this is stage 2 of a stage 1+2
1162 * walk for an EL0 access. If @mmu_idx is anything else,
1163 * @s1_is_el0 is ignored.
1164 * @result: set on translation success,
1165 * @fi: set to fault info if the translation fails
1166 */
1167 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1168 uint64_t address,
1169 MMUAccessType access_type, bool s1_is_el0,
1170 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1171 {
1172 ARMCPU *cpu = env_archcpu(env);
1173 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1174 bool is_secure = ptw->in_secure;
1175 uint32_t level;
1176 ARMVAParameters param;
1177 uint64_t ttbr;
1178 hwaddr descaddr, indexmask, indexmask_grainsize;
1179 uint32_t tableattrs;
1180 target_ulong page_size;
1181 uint64_t attrs;
1182 int32_t stride;
1183 int addrsize, inputsize, outputsize;
1184 uint64_t tcr = regime_tcr(env, mmu_idx);
1185 int ap, ns, xn, pxn;
1186 uint32_t el = regime_el(env, mmu_idx);
1187 uint64_t descaddrmask;
1188 bool aarch64 = arm_el_is_aa64(env, el);
1189 uint64_t descriptor, new_descriptor;
1190 bool nstable;
1191
1192 /* TODO: This code does not support shareability levels. */
1193 if (aarch64) {
1194 int ps;
1195
1196 param = aa64_va_parameters(env, address, mmu_idx,
1197 access_type != MMU_INST_FETCH);
1198 level = 0;
1199
1200 /*
1201 * If TxSZ is programmed to a value larger than the maximum,
1202 * or smaller than the effective minimum, it is IMPLEMENTATION
1203 * DEFINED whether we behave as if the field were programmed
1204 * within bounds, or if a level 0 Translation fault is generated.
1205 *
1206 * With FEAT_LVA, fault on less than minimum becomes required,
1207 * so our choice is to always raise the fault.
1208 */
1209 if (param.tsz_oob) {
1210 goto do_translation_fault;
1211 }
1212
1213 addrsize = 64 - 8 * param.tbi;
1214 inputsize = 64 - param.tsz;
1215
1216 /*
1217 * Bound PS by PARANGE to find the effective output address size.
1218 * ID_AA64MMFR0 is a read-only register so values outside of the
1219 * supported mappings can be considered an implementation error.
1220 */
1221 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1222 ps = MIN(ps, param.ps);
1223 assert(ps < ARRAY_SIZE(pamax_map));
1224 outputsize = pamax_map[ps];
1225
1226 /*
1227 * With LPA2, the effective output address (OA) size is at most 48 bits
1228 * unless TCR.DS == 1
1229 */
1230 if (!param.ds && param.gran != Gran64K) {
1231 outputsize = MIN(outputsize, 48);
1232 }
1233 } else {
1234 param = aa32_va_parameters(env, address, mmu_idx);
1235 level = 1;
1236 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1237 inputsize = addrsize - param.tsz;
1238 outputsize = 40;
1239 }
1240
1241 /*
1242 * We determined the region when collecting the parameters, but we
1243 * have not yet validated that the address is valid for the region.
1244 * Extract the top bits and verify that they all match select.
1245 *
1246 * For aa32, if inputsize == addrsize, then we have selected the
1247 * region by exclusion in aa32_va_parameters and there is no more
1248 * validation to do here.
1249 */
1250 if (inputsize < addrsize) {
1251 target_ulong top_bits = sextract64(address, inputsize,
1252 addrsize - inputsize);
1253 if (-top_bits != param.select) {
1254 /* The gap between the two regions is a Translation fault */
1255 goto do_translation_fault;
1256 }
1257 }
1258
1259 stride = arm_granule_bits(param.gran) - 3;
1260
1261 /*
1262 * Note that QEMU ignores shareability and cacheability attributes,
1263 * so we don't need to do anything with the SH, ORGN, IRGN fields
1264 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
1265 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1266 * implement any ASID-like capability so we can ignore it (instead
1267 * we will always flush the TLB any time the ASID is changed).
1268 */
1269 ttbr = regime_ttbr(env, mmu_idx, param.select);
1270
1271 /*
1272 * Here we should have set up all the parameters for the translation:
1273 * inputsize, ttbr, epd, stride, tbi
1274 */
1275
1276 if (param.epd) {
1277 /*
1278 * Translation table walk disabled => Translation fault on TLB miss
1279 * Note: This is always 0 on 64-bit EL2 and EL3.
1280 */
1281 goto do_translation_fault;
1282 }
1283
1284 if (!regime_is_stage2(mmu_idx)) {
1285 /*
1286 * The starting level depends on the virtual address size (which can
1287 * be up to 48 bits) and the translation granule size. It indicates
1288 * the number of strides (stride bits at a time) needed to
1289 * consume the bits of the input address. In the pseudocode this is:
1290 * level = 4 - RoundUp((inputsize - grainsize) / stride)
1291 * where their 'inputsize' is our 'inputsize', 'grainsize' is
1292 * our 'stride + 3' and 'stride' is our 'stride'.
1293 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1294 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1295 * = 4 - (inputsize - 4) / stride;
1296 */
1297 level = 4 - (inputsize - 4) / stride;
1298 } else {
1299 /*
1300 * For stage 2 translations the starting level is specified by the
1301 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
1302 */
1303 uint32_t sl0 = extract32(tcr, 6, 2);
1304 uint32_t sl2 = extract64(tcr, 33, 1);
1305 uint32_t startlevel;
1306 bool ok;
1307
1308 /* SL2 is RES0 unless DS=1 & 4kb granule. */
1309 if (param.ds && stride == 9 && sl2) {
1310 if (sl0 != 0) {
1311 level = 0;
1312 goto do_translation_fault;
1313 }
1314 startlevel = -1;
1315 } else if (!aarch64 || stride == 9) {
1316 /* AArch32 or 4KB pages */
1317 startlevel = 2 - sl0;
1318
1319 if (cpu_isar_feature(aa64_st, cpu)) {
1320 startlevel &= 3;
1321 }
1322 } else {
1323 /* 16KB or 64KB pages */
1324 startlevel = 3 - sl0;
1325 }
1326
1327 /* Check that the starting level is valid. */
1328 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
1329 inputsize, stride, outputsize);
1330 if (!ok) {
1331 goto do_translation_fault;
1332 }
1333 level = startlevel;
1334 }
1335
1336 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1337 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1338
1339 /* Now we can extract the actual base address from the TTBR */
1340 descaddr = extract64(ttbr, 0, 48);
1341
1342 /*
1343 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1344 *
1345 * Otherwise, if the base address is out of range, raise AddressSizeFault.
1346 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1347 * but we've just cleared the bits above 47, so simplify the test.
1348 */
1349 if (outputsize > 48) {
1350 descaddr |= extract64(ttbr, 2, 4) << 48;
1351 } else if (descaddr >> outputsize) {
1352 level = 0;
1353 fi->type = ARMFault_AddressSize;
1354 goto do_fault;
1355 }
1356
1357 /*
1358 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1359 * and also to mask out CnP (bit 0) which could validly be non-zero.
1360 */
1361 descaddr &= ~indexmask;
1362
1363 /*
1364 * For AArch32, the address field in the descriptor goes up to bit 39
1365 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
1366 * or an AddressSize fault is raised. So for v8 we extract those SBZ
1367 * bits as part of the address, which will be checked via outputsize.
1368 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1369 * the highest bits of a 52-bit output are placed elsewhere.
1370 */
1371 if (param.ds) {
1372 descaddrmask = MAKE_64BIT_MASK(0, 50);
1373 } else if (arm_feature(env, ARM_FEATURE_V8)) {
1374 descaddrmask = MAKE_64BIT_MASK(0, 48);
1375 } else {
1376 descaddrmask = MAKE_64BIT_MASK(0, 40);
1377 }
1378 descaddrmask &= ~indexmask_grainsize;
1379
1380 /*
1381 * Secure accesses start with the page table in secure memory and
1382 * can be downgraded to non-secure at any step. Non-secure accesses
1383 * remain non-secure. We implement this by just ORing in the NSTable/NS
1384 * bits at each step.
1385 */
1386 tableattrs = is_secure ? 0 : (1 << 4);
1387
1388 next_level:
1389 descaddr |= (address >> (stride * (4 - level))) & indexmask;
1390 descaddr &= ~7ULL;
1391 nstable = extract32(tableattrs, 4, 1);
1392 if (nstable) {
1393 /*
1394 * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1395 * Assert that the non-secure idx are even, and relative order.
1396 */
1397 QEMU_BUILD_BUG_ON((ARMMMUIdx_Phys_NS & 1) != 0);
1398 QEMU_BUILD_BUG_ON((ARMMMUIdx_Stage2 & 1) != 0);
1399 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS + 1 != ARMMMUIdx_Phys_S);
1400 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2 + 1 != ARMMMUIdx_Stage2_S);
1401 ptw->in_ptw_idx &= ~1;
1402 ptw->in_secure = false;
1403 }
1404 if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1405 goto do_fault;
1406 }
1407 descriptor = arm_ldq_ptw(env, ptw, fi);
1408 if (fi->type != ARMFault_None) {
1409 goto do_fault;
1410 }
1411 new_descriptor = descriptor;
1412
1413 restart_atomic_update:
1414 if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) {
1415 /* Invalid, or the Reserved level 3 encoding */
1416 goto do_translation_fault;
1417 }
1418
1419 descaddr = descriptor & descaddrmask;
1420
1421 /*
1422 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1423 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
1424 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
1425 * raise AddressSizeFault.
1426 */
1427 if (outputsize > 48) {
1428 if (param.ds) {
1429 descaddr |= extract64(descriptor, 8, 2) << 50;
1430 } else {
1431 descaddr |= extract64(descriptor, 12, 4) << 48;
1432 }
1433 } else if (descaddr >> outputsize) {
1434 fi->type = ARMFault_AddressSize;
1435 goto do_fault;
1436 }
1437
1438 if ((descriptor & 2) && (level < 3)) {
1439 /*
1440 * Table entry. The top five bits are attributes which may
1441 * propagate down through lower levels of the table (and
1442 * which are all arranged so that 0 means "no effect", so
1443 * we can gather them up by ORing in the bits at each level).
1444 */
1445 tableattrs |= extract64(descriptor, 59, 5);
1446 level++;
1447 indexmask = indexmask_grainsize;
1448 goto next_level;
1449 }
1450
1451 /*
1452 * Block entry at level 1 or 2, or page entry at level 3.
1453 * These are basically the same thing, although the number
1454 * of bits we pull in from the vaddr varies. Note that although
1455 * descaddrmask masks enough of the low bits of the descriptor
1456 * to give a correct page or table address, the address field
1457 * in a block descriptor is smaller; so we need to explicitly
1458 * clear the lower bits here before ORing in the low vaddr bits.
1459 *
1460 * Afterward, descaddr is the final physical address.
1461 */
1462 page_size = (1ULL << ((stride * (4 - level)) + 3));
1463 descaddr &= ~(hwaddr)(page_size - 1);
1464 descaddr |= (address & (page_size - 1));
1465
1466 if (likely(!ptw->in_debug)) {
1467 /*
1468 * Access flag.
1469 * If HA is enabled, prepare to update the descriptor below.
1470 * Otherwise, pass the access fault on to software.
1471 */
1472 if (!(descriptor & (1 << 10))) {
1473 if (param.ha) {
1474 new_descriptor |= 1 << 10; /* AF */
1475 } else {
1476 fi->type = ARMFault_AccessFlag;
1477 goto do_fault;
1478 }
1479 }
1480
1481 /*
1482 * Dirty Bit.
1483 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1484 * bit for writeback. The actual write protection test may still be
1485 * overridden by tableattrs, to be merged below.
1486 */
1487 if (param.hd
1488 && extract64(descriptor, 51, 1) /* DBM */
1489 && access_type == MMU_DATA_STORE) {
1490 if (regime_is_stage2(mmu_idx)) {
1491 new_descriptor |= 1ull << 7; /* set S2AP[1] */
1492 } else {
1493 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1494 }
1495 }
1496 }
1497
1498 /*
1499 * Extract attributes from the (modified) descriptor, and apply
1500 * table descriptors. Stage 2 table descriptors do not include
1501 * any attribute fields. HPD disables all the table attributes
1502 * except NSTable.
1503 */
1504 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1505 if (!regime_is_stage2(mmu_idx)) {
1506 attrs |= nstable << 5; /* NS */
1507 if (!param.hpd) {
1508 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */
1509 /*
1510 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1511 * means "force PL1 access only", which means forcing AP[1] to 0.
1512 */
1513 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1514 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */
1515 }
1516 }
1517
1518 ap = extract32(attrs, 6, 2);
1519 if (regime_is_stage2(mmu_idx)) {
1520 ns = mmu_idx == ARMMMUIdx_Stage2;
1521 xn = extract64(attrs, 53, 2);
1522 result->f.prot = get_S2prot(env, ap, xn, s1_is_el0);
1523 } else {
1524 ns = extract32(attrs, 5, 1);
1525 xn = extract64(attrs, 54, 1);
1526 pxn = extract64(attrs, 53, 1);
1527 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
1528 }
1529
1530 if (!(result->f.prot & (1 << access_type))) {
1531 fi->type = ARMFault_Permission;
1532 goto do_fault;
1533 }
1534
1535 /* If FEAT_HAFDBS has made changes, update the PTE. */
1536 if (new_descriptor != descriptor) {
1537 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
1538 if (fi->type != ARMFault_None) {
1539 goto do_fault;
1540 }
1541 /*
1542 * I_YZSVV says that if the in-memory descriptor has changed,
1543 * then we must use the information in that new value
1544 * (which might include a different output address, different
1545 * attributes, or generate a fault).
1546 * Restart the handling of the descriptor value from scratch.
1547 */
1548 if (new_descriptor != descriptor) {
1549 descriptor = new_descriptor;
1550 goto restart_atomic_update;
1551 }
1552 }
1553
1554 if (ns) {
1555 /*
1556 * The NS bit will (as required by the architecture) have no effect if
1557 * the CPU doesn't support TZ or this is a non-secure translation
1558 * regime, because the attribute will already be non-secure.
1559 */
1560 result->f.attrs.secure = false;
1561 }
1562
1563 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
1564 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
1565 result->f.guarded = extract64(attrs, 50, 1); /* GP */
1566 }
1567
1568 if (regime_is_stage2(mmu_idx)) {
1569 result->cacheattrs.is_s2_format = true;
1570 result->cacheattrs.attrs = extract32(attrs, 2, 4);
1571 } else {
1572 /* Index into MAIR registers for cache attributes */
1573 uint8_t attrindx = extract32(attrs, 2, 3);
1574 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
1575 assert(attrindx <= 7);
1576 result->cacheattrs.is_s2_format = false;
1577 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
1578 }
1579
1580 /*
1581 * For FEAT_LPA2 and effective DS, the SH field in the attributes
1582 * was re-purposed for output address bits. The SH attribute in
1583 * that case comes from TCR_ELx, which we extracted earlier.
1584 */
1585 if (param.ds) {
1586 result->cacheattrs.shareability = param.sh;
1587 } else {
1588 result->cacheattrs.shareability = extract32(attrs, 8, 2);
1589 }
1590
1591 result->f.phys_addr = descaddr;
1592 result->f.lg_page_size = ctz64(page_size);
1593 return false;
1594
1595 do_translation_fault:
1596 fi->type = ARMFault_Translation;
1597 do_fault:
1598 fi->level = level;
1599 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
1600 fi->stage2 = fi->s1ptw || regime_is_stage2(mmu_idx);
1601 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
1602 return true;
1603 }
1604
1605 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
1606 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1607 bool is_secure, GetPhysAddrResult *result,
1608 ARMMMUFaultInfo *fi)
1609 {
1610 int n;
1611 uint32_t mask;
1612 uint32_t base;
1613 bool is_user = regime_is_user(env, mmu_idx);
1614
1615 if (regime_translation_disabled(env, mmu_idx, is_secure)) {
1616 /* MPU disabled. */
1617 result->f.phys_addr = address;
1618 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1619 return false;
1620 }
1621
1622 result->f.phys_addr = address;
1623 for (n = 7; n >= 0; n--) {
1624 base = env->cp15.c6_region[n];
1625 if ((base & 1) == 0) {
1626 continue;
1627 }
1628 mask = 1 << ((base >> 1) & 0x1f);
1629 /* Keep this shift separate from the above to avoid an
1630 (undefined) << 32. */
1631 mask = (mask << 1) - 1;
1632 if (((base ^ address) & ~mask) == 0) {
1633 break;
1634 }
1635 }
1636 if (n < 0) {
1637 fi->type = ARMFault_Background;
1638 return true;
1639 }
1640
1641 if (access_type == MMU_INST_FETCH) {
1642 mask = env->cp15.pmsav5_insn_ap;
1643 } else {
1644 mask = env->cp15.pmsav5_data_ap;
1645 }
1646 mask = (mask >> (n * 4)) & 0xf;
1647 switch (mask) {
1648 case 0:
1649 fi->type = ARMFault_Permission;
1650 fi->level = 1;
1651 return true;
1652 case 1:
1653 if (is_user) {
1654 fi->type = ARMFault_Permission;
1655 fi->level = 1;
1656 return true;
1657 }
1658 result->f.prot = PAGE_READ | PAGE_WRITE;
1659 break;
1660 case 2:
1661 result->f.prot = PAGE_READ;
1662 if (!is_user) {
1663 result->f.prot |= PAGE_WRITE;
1664 }
1665 break;
1666 case 3:
1667 result->f.prot = PAGE_READ | PAGE_WRITE;
1668 break;
1669 case 5:
1670 if (is_user) {
1671 fi->type = ARMFault_Permission;
1672 fi->level = 1;
1673 return true;
1674 }
1675 result->f.prot = PAGE_READ;
1676 break;
1677 case 6:
1678 result->f.prot = PAGE_READ;
1679 break;
1680 default:
1681 /* Bad permission. */
1682 fi->type = ARMFault_Permission;
1683 fi->level = 1;
1684 return true;
1685 }
1686 result->f.prot |= PAGE_EXEC;
1687 return false;
1688 }
1689
1690 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
1691 int32_t address, uint8_t *prot)
1692 {
1693 if (!arm_feature(env, ARM_FEATURE_M)) {
1694 *prot = PAGE_READ | PAGE_WRITE;
1695 switch (address) {
1696 case 0xF0000000 ... 0xFFFFFFFF:
1697 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
1698 /* hivecs execing is ok */
1699 *prot |= PAGE_EXEC;
1700 }
1701 break;
1702 case 0x00000000 ... 0x7FFFFFFF:
1703 *prot |= PAGE_EXEC;
1704 break;
1705 }
1706 } else {
1707 /* Default system address map for M profile cores.
1708 * The architecture specifies which regions are execute-never;
1709 * at the MPU level no other checks are defined.
1710 */
1711 switch (address) {
1712 case 0x00000000 ... 0x1fffffff: /* ROM */
1713 case 0x20000000 ... 0x3fffffff: /* SRAM */
1714 case 0x60000000 ... 0x7fffffff: /* RAM */
1715 case 0x80000000 ... 0x9fffffff: /* RAM */
1716 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1717 break;
1718 case 0x40000000 ... 0x5fffffff: /* Peripheral */
1719 case 0xa0000000 ... 0xbfffffff: /* Device */
1720 case 0xc0000000 ... 0xdfffffff: /* Device */
1721 case 0xe0000000 ... 0xffffffff: /* System */
1722 *prot = PAGE_READ | PAGE_WRITE;
1723 break;
1724 default:
1725 g_assert_not_reached();
1726 }
1727 }
1728 }
1729
1730 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
1731 {
1732 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
1733 return arm_feature(env, ARM_FEATURE_M) &&
1734 extract32(address, 20, 12) == 0xe00;
1735 }
1736
1737 static bool m_is_system_region(CPUARMState *env, uint32_t address)
1738 {
1739 /*
1740 * True if address is in the M profile system region
1741 * 0xe0000000 - 0xffffffff
1742 */
1743 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
1744 }
1745
1746 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1747 bool is_secure, bool is_user)
1748 {
1749 /*
1750 * Return true if we should use the default memory map as a
1751 * "background" region if there are no hits against any MPU regions.
1752 */
1753 CPUARMState *env = &cpu->env;
1754
1755 if (is_user) {
1756 return false;
1757 }
1758
1759 if (arm_feature(env, ARM_FEATURE_M)) {
1760 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
1761 } else {
1762 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
1763 }
1764 }
1765
1766 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
1767 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1768 bool secure, GetPhysAddrResult *result,
1769 ARMMMUFaultInfo *fi)
1770 {
1771 ARMCPU *cpu = env_archcpu(env);
1772 int n;
1773 bool is_user = regime_is_user(env, mmu_idx);
1774
1775 result->f.phys_addr = address;
1776 result->f.lg_page_size = TARGET_PAGE_BITS;
1777 result->f.prot = 0;
1778
1779 if (regime_translation_disabled(env, mmu_idx, secure) ||
1780 m_is_ppb_region(env, address)) {
1781 /*
1782 * MPU disabled or M profile PPB access: use default memory map.
1783 * The other case which uses the default memory map in the
1784 * v7M ARM ARM pseudocode is exception vector reads from the vector
1785 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
1786 * which always does a direct read using address_space_ldl(), rather
1787 * than going via this function, so we don't need to check that here.
1788 */
1789 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
1790 } else { /* MPU enabled */
1791 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1792 /* region search */
1793 uint32_t base = env->pmsav7.drbar[n];
1794 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
1795 uint32_t rmask;
1796 bool srdis = false;
1797
1798 if (!(env->pmsav7.drsr[n] & 0x1)) {
1799 continue;
1800 }
1801
1802 if (!rsize) {
1803 qemu_log_mask(LOG_GUEST_ERROR,
1804 "DRSR[%d]: Rsize field cannot be 0\n", n);
1805 continue;
1806 }
1807 rsize++;
1808 rmask = (1ull << rsize) - 1;
1809
1810 if (base & rmask) {
1811 qemu_log_mask(LOG_GUEST_ERROR,
1812 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
1813 "to DRSR region size, mask = 0x%" PRIx32 "\n",
1814 n, base, rmask);
1815 continue;
1816 }
1817
1818 if (address < base || address > base + rmask) {
1819 /*
1820 * Address not in this region. We must check whether the
1821 * region covers addresses in the same page as our address.
1822 * In that case we must not report a size that covers the
1823 * whole page for a subsequent hit against a different MPU
1824 * region or the background region, because it would result in
1825 * incorrect TLB hits for subsequent accesses to addresses that
1826 * are in this MPU region.
1827 */
1828 if (ranges_overlap(base, rmask,
1829 address & TARGET_PAGE_MASK,
1830 TARGET_PAGE_SIZE)) {
1831 result->f.lg_page_size = 0;
1832 }
1833 continue;
1834 }
1835
1836 /* Region matched */
1837
1838 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
1839 int i, snd;
1840 uint32_t srdis_mask;
1841
1842 rsize -= 3; /* sub region size (power of 2) */
1843 snd = ((address - base) >> rsize) & 0x7;
1844 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
1845
1846 srdis_mask = srdis ? 0x3 : 0x0;
1847 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
1848 /*
1849 * This will check in groups of 2, 4 and then 8, whether
1850 * the subregion bits are consistent. rsize is incremented
1851 * back up to give the region size, considering consistent
1852 * adjacent subregions as one region. Stop testing if rsize
1853 * is already big enough for an entire QEMU page.
1854 */
1855 int snd_rounded = snd & ~(i - 1);
1856 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
1857 snd_rounded + 8, i);
1858 if (srdis_mask ^ srdis_multi) {
1859 break;
1860 }
1861 srdis_mask = (srdis_mask << i) | srdis_mask;
1862 rsize++;
1863 }
1864 }
1865 if (srdis) {
1866 continue;
1867 }
1868 if (rsize < TARGET_PAGE_BITS) {
1869 result->f.lg_page_size = rsize;
1870 }
1871 break;
1872 }
1873
1874 if (n == -1) { /* no hits */
1875 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1876 /* background fault */
1877 fi->type = ARMFault_Background;
1878 return true;
1879 }
1880 get_phys_addr_pmsav7_default(env, mmu_idx, address,
1881 &result->f.prot);
1882 } else { /* a MPU hit! */
1883 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
1884 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
1885
1886 if (m_is_system_region(env, address)) {
1887 /* System space is always execute never */
1888 xn = 1;
1889 }
1890
1891 if (is_user) { /* User mode AP bit decoding */
1892 switch (ap) {
1893 case 0:
1894 case 1:
1895 case 5:
1896 break; /* no access */
1897 case 3:
1898 result->f.prot |= PAGE_WRITE;
1899 /* fall through */
1900 case 2:
1901 case 6:
1902 result->f.prot |= PAGE_READ | PAGE_EXEC;
1903 break;
1904 case 7:
1905 /* for v7M, same as 6; for R profile a reserved value */
1906 if (arm_feature(env, ARM_FEATURE_M)) {
1907 result->f.prot |= PAGE_READ | PAGE_EXEC;
1908 break;
1909 }
1910 /* fall through */
1911 default:
1912 qemu_log_mask(LOG_GUEST_ERROR,
1913 "DRACR[%d]: Bad value for AP bits: 0x%"
1914 PRIx32 "\n", n, ap);
1915 }
1916 } else { /* Priv. mode AP bits decoding */
1917 switch (ap) {
1918 case 0:
1919 break; /* no access */
1920 case 1:
1921 case 2:
1922 case 3:
1923 result->f.prot |= PAGE_WRITE;
1924 /* fall through */
1925 case 5:
1926 case 6:
1927 result->f.prot |= PAGE_READ | PAGE_EXEC;
1928 break;
1929 case 7:
1930 /* for v7M, same as 6; for R profile a reserved value */
1931 if (arm_feature(env, ARM_FEATURE_M)) {
1932 result->f.prot |= PAGE_READ | PAGE_EXEC;
1933 break;
1934 }
1935 /* fall through */
1936 default:
1937 qemu_log_mask(LOG_GUEST_ERROR,
1938 "DRACR[%d]: Bad value for AP bits: 0x%"
1939 PRIx32 "\n", n, ap);
1940 }
1941 }
1942
1943 /* execute never */
1944 if (xn) {
1945 result->f.prot &= ~PAGE_EXEC;
1946 }
1947 }
1948 }
1949
1950 fi->type = ARMFault_Permission;
1951 fi->level = 1;
1952 return !(result->f.prot & (1 << access_type));
1953 }
1954
1955 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1956 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1957 bool secure, GetPhysAddrResult *result,
1958 ARMMMUFaultInfo *fi, uint32_t *mregion)
1959 {
1960 /*
1961 * Perform a PMSAv8 MPU lookup (without also doing the SAU check
1962 * that a full phys-to-virt translation does).
1963 * mregion is (if not NULL) set to the region number which matched,
1964 * or -1 if no region number is returned (MPU off, address did not
1965 * hit a region, address hit in multiple regions).
1966 * If the region hit doesn't cover the entire TARGET_PAGE the address
1967 * is within, then we set the result page_size to 1 to force the
1968 * memory system to use a subpage.
1969 */
1970 ARMCPU *cpu = env_archcpu(env);
1971 bool is_user = regime_is_user(env, mmu_idx);
1972 int n;
1973 int matchregion = -1;
1974 bool hit = false;
1975 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
1976 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
1977
1978 result->f.lg_page_size = TARGET_PAGE_BITS;
1979 result->f.phys_addr = address;
1980 result->f.prot = 0;
1981 if (mregion) {
1982 *mregion = -1;
1983 }
1984
1985 /*
1986 * Unlike the ARM ARM pseudocode, we don't need to check whether this
1987 * was an exception vector read from the vector table (which is always
1988 * done using the default system address map), because those accesses
1989 * are done in arm_v7m_load_vector(), which always does a direct
1990 * read using address_space_ldl(), rather than going via this function.
1991 */
1992 if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */
1993 hit = true;
1994 } else if (m_is_ppb_region(env, address)) {
1995 hit = true;
1996 } else {
1997 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1998 hit = true;
1999 }
2000
2001 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
2002 /* region search */
2003 /*
2004 * Note that the base address is bits [31:5] from the register
2005 * with bits [4:0] all zeroes, but the limit address is bits
2006 * [31:5] from the register with bits [4:0] all ones.
2007 */
2008 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
2009 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
2010
2011 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
2012 /* Region disabled */
2013 continue;
2014 }
2015
2016 if (address < base || address > limit) {
2017 /*
2018 * Address not in this region. We must check whether the
2019 * region covers addresses in the same page as our address.
2020 * In that case we must not report a size that covers the
2021 * whole page for a subsequent hit against a different MPU
2022 * region or the background region, because it would result in
2023 * incorrect TLB hits for subsequent accesses to addresses that
2024 * are in this MPU region.
2025 */
2026 if (limit >= base &&
2027 ranges_overlap(base, limit - base + 1,
2028 addr_page_base,
2029 TARGET_PAGE_SIZE)) {
2030 result->f.lg_page_size = 0;
2031 }
2032 continue;
2033 }
2034
2035 if (base > addr_page_base || limit < addr_page_limit) {
2036 result->f.lg_page_size = 0;
2037 }
2038
2039 if (matchregion != -1) {
2040 /*
2041 * Multiple regions match -- always a failure (unlike
2042 * PMSAv7 where highest-numbered-region wins)
2043 */
2044 fi->type = ARMFault_Permission;
2045 fi->level = 1;
2046 return true;
2047 }
2048
2049 matchregion = n;
2050 hit = true;
2051 }
2052 }
2053
2054 if (!hit) {
2055 /* background fault */
2056 fi->type = ARMFault_Background;
2057 return true;
2058 }
2059
2060 if (matchregion == -1) {
2061 /* hit using the background region */
2062 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2063 } else {
2064 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
2065 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
2066 bool pxn = false;
2067
2068 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2069 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
2070 }
2071
2072 if (m_is_system_region(env, address)) {
2073 /* System space is always execute never */
2074 xn = 1;
2075 }
2076
2077 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2078 if (result->f.prot && !xn && !(pxn && !is_user)) {
2079 result->f.prot |= PAGE_EXEC;
2080 }
2081 /*
2082 * We don't need to look the attribute up in the MAIR0/MAIR1
2083 * registers because that only tells us about cacheability.
2084 */
2085 if (mregion) {
2086 *mregion = matchregion;
2087 }
2088 }
2089
2090 fi->type = ARMFault_Permission;
2091 fi->level = 1;
2092 return !(result->f.prot & (1 << access_type));
2093 }
2094
2095 static bool v8m_is_sau_exempt(CPUARMState *env,
2096 uint32_t address, MMUAccessType access_type)
2097 {
2098 /*
2099 * The architecture specifies that certain address ranges are
2100 * exempt from v8M SAU/IDAU checks.
2101 */
2102 return
2103 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2104 (address >= 0xe0000000 && address <= 0xe0002fff) ||
2105 (address >= 0xe000e000 && address <= 0xe000efff) ||
2106 (address >= 0xe002e000 && address <= 0xe002efff) ||
2107 (address >= 0xe0040000 && address <= 0xe0041fff) ||
2108 (address >= 0xe00ff000 && address <= 0xe00fffff);
2109 }
2110
2111 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2112 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2113 bool is_secure, V8M_SAttributes *sattrs)
2114 {
2115 /*
2116 * Look up the security attributes for this address. Compare the
2117 * pseudocode SecurityCheck() function.
2118 * We assume the caller has zero-initialized *sattrs.
2119 */
2120 ARMCPU *cpu = env_archcpu(env);
2121 int r;
2122 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2123 int idau_region = IREGION_NOTVALID;
2124 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2125 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2126
2127 if (cpu->idau) {
2128 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2129 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2130
2131 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2132 &idau_nsc);
2133 }
2134
2135 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2136 /* 0xf0000000..0xffffffff is always S for insn fetches */
2137 return;
2138 }
2139
2140 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2141 sattrs->ns = !is_secure;
2142 return;
2143 }
2144
2145 if (idau_region != IREGION_NOTVALID) {
2146 sattrs->irvalid = true;
2147 sattrs->iregion = idau_region;
2148 }
2149
2150 switch (env->sau.ctrl & 3) {
2151 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2152 break;
2153 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2154 sattrs->ns = true;
2155 break;
2156 default: /* SAU.ENABLE == 1 */
2157 for (r = 0; r < cpu->sau_sregion; r++) {
2158 if (env->sau.rlar[r] & 1) {
2159 uint32_t base = env->sau.rbar[r] & ~0x1f;
2160 uint32_t limit = env->sau.rlar[r] | 0x1f;
2161
2162 if (base <= address && limit >= address) {
2163 if (base > addr_page_base || limit < addr_page_limit) {
2164 sattrs->subpage = true;
2165 }
2166 if (sattrs->srvalid) {
2167 /*
2168 * If we hit in more than one region then we must report
2169 * as Secure, not NS-Callable, with no valid region
2170 * number info.
2171 */
2172 sattrs->ns = false;
2173 sattrs->nsc = false;
2174 sattrs->sregion = 0;
2175 sattrs->srvalid = false;
2176 break;
2177 } else {
2178 if (env->sau.rlar[r] & 2) {
2179 sattrs->nsc = true;
2180 } else {
2181 sattrs->ns = true;
2182 }
2183 sattrs->srvalid = true;
2184 sattrs->sregion = r;
2185 }
2186 } else {
2187 /*
2188 * Address not in this region. We must check whether the
2189 * region covers addresses in the same page as our address.
2190 * In that case we must not report a size that covers the
2191 * whole page for a subsequent hit against a different MPU
2192 * region or the background region, because it would result
2193 * in incorrect TLB hits for subsequent accesses to
2194 * addresses that are in this MPU region.
2195 */
2196 if (limit >= base &&
2197 ranges_overlap(base, limit - base + 1,
2198 addr_page_base,
2199 TARGET_PAGE_SIZE)) {
2200 sattrs->subpage = true;
2201 }
2202 }
2203 }
2204 }
2205 break;
2206 }
2207
2208 /*
2209 * The IDAU will override the SAU lookup results if it specifies
2210 * higher security than the SAU does.
2211 */
2212 if (!idau_ns) {
2213 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2214 sattrs->ns = false;
2215 sattrs->nsc = idau_nsc;
2216 }
2217 }
2218 }
2219
2220 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
2221 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2222 bool secure, GetPhysAddrResult *result,
2223 ARMMMUFaultInfo *fi)
2224 {
2225 V8M_SAttributes sattrs = {};
2226 bool ret;
2227
2228 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2229 v8m_security_lookup(env, address, access_type, mmu_idx,
2230 secure, &sattrs);
2231 if (access_type == MMU_INST_FETCH) {
2232 /*
2233 * Instruction fetches always use the MMU bank and the
2234 * transaction attribute determined by the fetch address,
2235 * regardless of CPU state. This is painful for QEMU
2236 * to handle, because it would mean we need to encode
2237 * into the mmu_idx not just the (user, negpri) information
2238 * for the current security state but also that for the
2239 * other security state, which would balloon the number
2240 * of mmu_idx values needed alarmingly.
2241 * Fortunately we can avoid this because it's not actually
2242 * possible to arbitrarily execute code from memory with
2243 * the wrong security attribute: it will always generate
2244 * an exception of some kind or another, apart from the
2245 * special case of an NS CPU executing an SG instruction
2246 * in S&NSC memory. So we always just fail the translation
2247 * here and sort things out in the exception handler
2248 * (including possibly emulating an SG instruction).
2249 */
2250 if (sattrs.ns != !secure) {
2251 if (sattrs.nsc) {
2252 fi->type = ARMFault_QEMU_NSCExec;
2253 } else {
2254 fi->type = ARMFault_QEMU_SFault;
2255 }
2256 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2257 result->f.phys_addr = address;
2258 result->f.prot = 0;
2259 return true;
2260 }
2261 } else {
2262 /*
2263 * For data accesses we always use the MMU bank indicated
2264 * by the current CPU state, but the security attributes
2265 * might downgrade a secure access to nonsecure.
2266 */
2267 if (sattrs.ns) {
2268 result->f.attrs.secure = false;
2269 } else if (!secure) {
2270 /*
2271 * NS access to S memory must fault.
2272 * Architecturally we should first check whether the
2273 * MPU information for this address indicates that we
2274 * are doing an unaligned access to Device memory, which
2275 * should generate a UsageFault instead. QEMU does not
2276 * currently check for that kind of unaligned access though.
2277 * If we added it we would need to do so as a special case
2278 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2279 */
2280 fi->type = ARMFault_QEMU_SFault;
2281 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2282 result->f.phys_addr = address;
2283 result->f.prot = 0;
2284 return true;
2285 }
2286 }
2287 }
2288
2289 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2290 result, fi, NULL);
2291 if (sattrs.subpage) {
2292 result->f.lg_page_size = 0;
2293 }
2294 return ret;
2295 }
2296
2297 /*
2298 * Translate from the 4-bit stage 2 representation of
2299 * memory attributes (without cache-allocation hints) to
2300 * the 8-bit representation of the stage 1 MAIR registers
2301 * (which includes allocation hints).
2302 *
2303 * ref: shared/translation/attrs/S2AttrDecode()
2304 * .../S2ConvertAttrsHints()
2305 */
2306 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2307 {
2308 uint8_t hiattr = extract32(s2attrs, 2, 2);
2309 uint8_t loattr = extract32(s2attrs, 0, 2);
2310 uint8_t hihint = 0, lohint = 0;
2311
2312 if (hiattr != 0) { /* normal memory */
2313 if (hcr & HCR_CD) { /* cache disabled */
2314 hiattr = loattr = 1; /* non-cacheable */
2315 } else {
2316 if (hiattr != 1) { /* Write-through or write-back */
2317 hihint = 3; /* RW allocate */
2318 }
2319 if (loattr != 1) { /* Write-through or write-back */
2320 lohint = 3; /* RW allocate */
2321 }
2322 }
2323 }
2324
2325 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2326 }
2327
2328 /*
2329 * Combine either inner or outer cacheability attributes for normal
2330 * memory, according to table D4-42 and pseudocode procedure
2331 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2332 *
2333 * NB: only stage 1 includes allocation hints (RW bits), leading to
2334 * some asymmetry.
2335 */
2336 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2337 {
2338 if (s1 == 4 || s2 == 4) {
2339 /* non-cacheable has precedence */
2340 return 4;
2341 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2342 /* stage 1 write-through takes precedence */
2343 return s1;
2344 } else if (extract32(s2, 2, 2) == 2) {
2345 /* stage 2 write-through takes precedence, but the allocation hint
2346 * is still taken from stage 1
2347 */
2348 return (2 << 2) | extract32(s1, 0, 2);
2349 } else { /* write-back */
2350 return s1;
2351 }
2352 }
2353
2354 /*
2355 * Combine the memory type and cacheability attributes of
2356 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2357 * combined attributes in MAIR_EL1 format.
2358 */
2359 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2360 ARMCacheAttrs s1, ARMCacheAttrs s2)
2361 {
2362 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2363
2364 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2365
2366 s1lo = extract32(s1.attrs, 0, 4);
2367 s2lo = extract32(s2_mair_attrs, 0, 4);
2368 s1hi = extract32(s1.attrs, 4, 4);
2369 s2hi = extract32(s2_mair_attrs, 4, 4);
2370
2371 /* Combine memory type and cacheability attributes */
2372 if (s1hi == 0 || s2hi == 0) {
2373 /* Device has precedence over normal */
2374 if (s1lo == 0 || s2lo == 0) {
2375 /* nGnRnE has precedence over anything */
2376 ret_attrs = 0;
2377 } else if (s1lo == 4 || s2lo == 4) {
2378 /* non-Reordering has precedence over Reordering */
2379 ret_attrs = 4; /* nGnRE */
2380 } else if (s1lo == 8 || s2lo == 8) {
2381 /* non-Gathering has precedence over Gathering */
2382 ret_attrs = 8; /* nGRE */
2383 } else {
2384 ret_attrs = 0xc; /* GRE */
2385 }
2386 } else { /* Normal memory */
2387 /* Outer/inner cacheability combine independently */
2388 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2389 | combine_cacheattr_nibble(s1lo, s2lo);
2390 }
2391 return ret_attrs;
2392 }
2393
2394 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2395 {
2396 /*
2397 * Given the 4 bits specifying the outer or inner cacheability
2398 * in MAIR format, return a value specifying Normal Write-Back,
2399 * with the allocation and transient hints taken from the input
2400 * if the input specified some kind of cacheable attribute.
2401 */
2402 if (attr == 0 || attr == 4) {
2403 /*
2404 * 0 == an UNPREDICTABLE encoding
2405 * 4 == Non-cacheable
2406 * Either way, force Write-Back RW allocate non-transient
2407 */
2408 return 0xf;
2409 }
2410 /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2411 return attr | 4;
2412 }
2413
2414 /*
2415 * Combine the memory type and cacheability attributes of
2416 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2417 * combined attributes in MAIR_EL1 format.
2418 */
2419 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
2420 {
2421 switch (s2.attrs) {
2422 case 7:
2423 /* Use stage 1 attributes */
2424 return s1.attrs;
2425 case 6:
2426 /*
2427 * Force Normal Write-Back. Note that if S1 is Normal cacheable
2428 * then we take the allocation hints from it; otherwise it is
2429 * RW allocate, non-transient.
2430 */
2431 if ((s1.attrs & 0xf0) == 0) {
2432 /* S1 is Device */
2433 return 0xff;
2434 }
2435 /* Need to check the Inner and Outer nibbles separately */
2436 return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2437 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
2438 case 5:
2439 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
2440 if ((s1.attrs & 0xf0) == 0) {
2441 return s1.attrs;
2442 }
2443 return 0x44;
2444 case 0 ... 3:
2445 /* Force Device, of subtype specified by S2 */
2446 return s2.attrs << 2;
2447 default:
2448 /*
2449 * RESERVED values (including RES0 descriptor bit [5] being nonzero);
2450 * arbitrarily force Device.
2451 */
2452 return 0;
2453 }
2454 }
2455
2456 /*
2457 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
2458 * and CombineS1S2Desc()
2459 *
2460 * @env: CPUARMState
2461 * @s1: Attributes from stage 1 walk
2462 * @s2: Attributes from stage 2 walk
2463 */
2464 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
2465 ARMCacheAttrs s1, ARMCacheAttrs s2)
2466 {
2467 ARMCacheAttrs ret;
2468 bool tagged = false;
2469
2470 assert(s2.is_s2_format && !s1.is_s2_format);
2471 ret.is_s2_format = false;
2472
2473 if (s1.attrs == 0xf0) {
2474 tagged = true;
2475 s1.attrs = 0xff;
2476 }
2477
2478 /* Combine shareability attributes (table D4-43) */
2479 if (s1.shareability == 2 || s2.shareability == 2) {
2480 /* if either are outer-shareable, the result is outer-shareable */
2481 ret.shareability = 2;
2482 } else if (s1.shareability == 3 || s2.shareability == 3) {
2483 /* if either are inner-shareable, the result is inner-shareable */
2484 ret.shareability = 3;
2485 } else {
2486 /* both non-shareable */
2487 ret.shareability = 0;
2488 }
2489
2490 /* Combine memory type and cacheability attributes */
2491 if (hcr & HCR_FWB) {
2492 ret.attrs = combined_attrs_fwb(s1, s2);
2493 } else {
2494 ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
2495 }
2496
2497 /*
2498 * Any location for which the resultant memory type is any
2499 * type of Device memory is always treated as Outer Shareable.
2500 * Any location for which the resultant memory type is Normal
2501 * Inner Non-cacheable, Outer Non-cacheable is always treated
2502 * as Outer Shareable.
2503 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
2504 */
2505 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
2506 ret.shareability = 2;
2507 }
2508
2509 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
2510 if (tagged && ret.attrs == 0xff) {
2511 ret.attrs = 0xf0;
2512 }
2513
2514 return ret;
2515 }
2516
2517 /*
2518 * MMU disabled. S1 addresses within aa64 translation regimes are
2519 * still checked for bounds -- see AArch64.S1DisabledOutput().
2520 */
2521 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address,
2522 MMUAccessType access_type,
2523 ARMMMUIdx mmu_idx, bool is_secure,
2524 GetPhysAddrResult *result,
2525 ARMMMUFaultInfo *fi)
2526 {
2527 uint8_t memattr = 0x00; /* Device nGnRnE */
2528 uint8_t shareability = 0; /* non-sharable */
2529 int r_el;
2530
2531 switch (mmu_idx) {
2532 case ARMMMUIdx_Stage2:
2533 case ARMMMUIdx_Stage2_S:
2534 case ARMMMUIdx_Phys_NS:
2535 case ARMMMUIdx_Phys_S:
2536 break;
2537
2538 default:
2539 r_el = regime_el(env, mmu_idx);
2540 if (arm_el_is_aa64(env, r_el)) {
2541 int pamax = arm_pamax(env_archcpu(env));
2542 uint64_t tcr = env->cp15.tcr_el[r_el];
2543 int addrtop, tbi;
2544
2545 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
2546 if (access_type == MMU_INST_FETCH) {
2547 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
2548 }
2549 tbi = (tbi >> extract64(address, 55, 1)) & 1;
2550 addrtop = (tbi ? 55 : 63);
2551
2552 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
2553 fi->type = ARMFault_AddressSize;
2554 fi->level = 0;
2555 fi->stage2 = false;
2556 return 1;
2557 }
2558
2559 /*
2560 * When TBI is disabled, we've just validated that all of the
2561 * bits above PAMax are zero, so logically we only need to
2562 * clear the top byte for TBI. But it's clearer to follow
2563 * the pseudocode set of addrdesc.paddress.
2564 */
2565 address = extract64(address, 0, 52);
2566 }
2567
2568 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
2569 if (r_el == 1) {
2570 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2571 if (hcr & HCR_DC) {
2572 if (hcr & HCR_DCT) {
2573 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
2574 } else {
2575 memattr = 0xff; /* Normal, WB, RWA */
2576 }
2577 }
2578 }
2579 if (memattr == 0 && access_type == MMU_INST_FETCH) {
2580 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
2581 memattr = 0xee; /* Normal, WT, RA, NT */
2582 } else {
2583 memattr = 0x44; /* Normal, NC, No */
2584 }
2585 shareability = 2; /* outer sharable */
2586 }
2587 result->cacheattrs.is_s2_format = false;
2588 break;
2589 }
2590
2591 result->f.phys_addr = address;
2592 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2593 result->f.lg_page_size = TARGET_PAGE_BITS;
2594 result->cacheattrs.shareability = shareability;
2595 result->cacheattrs.attrs = memattr;
2596 return false;
2597 }
2598
2599 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
2600 target_ulong address,
2601 MMUAccessType access_type,
2602 GetPhysAddrResult *result,
2603 ARMMMUFaultInfo *fi)
2604 {
2605 hwaddr ipa;
2606 int s1_prot, s1_lgpgsz;
2607 bool is_secure = ptw->in_secure;
2608 bool ret, ipa_secure, s2walk_secure;
2609 ARMCacheAttrs cacheattrs1;
2610 bool is_el0;
2611 uint64_t hcr;
2612
2613 ret = get_phys_addr_with_struct(env, ptw, address, access_type, result, fi);
2614
2615 /* If S1 fails or S2 is disabled, return early. */
2616 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2, is_secure)) {
2617 return ret;
2618 }
2619
2620 ipa = result->f.phys_addr;
2621 ipa_secure = result->f.attrs.secure;
2622 if (is_secure) {
2623 /* Select TCR based on the NS bit from the S1 walk. */
2624 s2walk_secure = !(ipa_secure
2625 ? env->cp15.vstcr_el2 & VSTCR_SW
2626 : env->cp15.vtcr_el2 & VTCR_NSW);
2627 } else {
2628 assert(!ipa_secure);
2629 s2walk_secure = false;
2630 }
2631
2632 is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
2633 ptw->in_mmu_idx = s2walk_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2634 ptw->in_ptw_idx = s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
2635 ptw->in_secure = s2walk_secure;
2636
2637 /*
2638 * S1 is done, now do S2 translation.
2639 * Save the stage1 results so that we may merge prot and cacheattrs later.
2640 */
2641 s1_prot = result->f.prot;
2642 s1_lgpgsz = result->f.lg_page_size;
2643 cacheattrs1 = result->cacheattrs;
2644 memset(result, 0, sizeof(*result));
2645
2646 ret = get_phys_addr_lpae(env, ptw, ipa, access_type, is_el0, result, fi);
2647 fi->s2addr = ipa;
2648
2649 /* Combine the S1 and S2 perms. */
2650 result->f.prot &= s1_prot;
2651
2652 /* If S2 fails, return early. */
2653 if (ret) {
2654 return ret;
2655 }
2656
2657 /*
2658 * Use the maximum of the S1 & S2 page size, so that invalidation
2659 * of pages > TARGET_PAGE_SIZE works correctly.
2660 */
2661 if (result->f.lg_page_size < s1_lgpgsz) {
2662 result->f.lg_page_size = s1_lgpgsz;
2663 }
2664
2665 /* Combine the S1 and S2 cache attributes. */
2666 hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2667 if (hcr & HCR_DC) {
2668 /*
2669 * HCR.DC forces the first stage attributes to
2670 * Normal Non-Shareable,
2671 * Inner Write-Back Read-Allocate Write-Allocate,
2672 * Outer Write-Back Read-Allocate Write-Allocate.
2673 * Do not overwrite Tagged within attrs.
2674 */
2675 if (cacheattrs1.attrs != 0xf0) {
2676 cacheattrs1.attrs = 0xff;
2677 }
2678 cacheattrs1.shareability = 0;
2679 }
2680 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
2681 result->cacheattrs);
2682
2683 /*
2684 * Check if IPA translates to secure or non-secure PA space.
2685 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
2686 */
2687 result->f.attrs.secure =
2688 (is_secure
2689 && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
2690 && (ipa_secure
2691 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))));
2692
2693 return false;
2694 }
2695
2696 static bool get_phys_addr_with_struct(CPUARMState *env, S1Translate *ptw,
2697 target_ulong address,
2698 MMUAccessType access_type,
2699 GetPhysAddrResult *result,
2700 ARMMMUFaultInfo *fi)
2701 {
2702 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2703 bool is_secure = ptw->in_secure;
2704 ARMMMUIdx s1_mmu_idx;
2705
2706 /*
2707 * The page table entries may downgrade secure to non-secure, but
2708 * cannot upgrade an non-secure translation regime's attributes
2709 * to secure.
2710 */
2711 result->f.attrs.secure = is_secure;
2712
2713 switch (mmu_idx) {
2714 case ARMMMUIdx_Phys_S:
2715 case ARMMMUIdx_Phys_NS:
2716 /* Checking Phys early avoids special casing later vs regime_el. */
2717 return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2718 is_secure, result, fi);
2719
2720 case ARMMMUIdx_Stage1_E0:
2721 case ARMMMUIdx_Stage1_E1:
2722 case ARMMMUIdx_Stage1_E1_PAN:
2723 /* First stage lookup uses second stage for ptw. */
2724 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2725 break;
2726
2727 case ARMMMUIdx_E10_0:
2728 s1_mmu_idx = ARMMMUIdx_Stage1_E0;
2729 goto do_twostage;
2730 case ARMMMUIdx_E10_1:
2731 s1_mmu_idx = ARMMMUIdx_Stage1_E1;
2732 goto do_twostage;
2733 case ARMMMUIdx_E10_1_PAN:
2734 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
2735 do_twostage:
2736 /*
2737 * Call ourselves recursively to do the stage 1 and then stage 2
2738 * translations if mmu_idx is a two-stage regime, and EL2 present.
2739 * Otherwise, a stage1+stage2 translation is just stage 1.
2740 */
2741 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
2742 if (arm_feature(env, ARM_FEATURE_EL2)) {
2743 return get_phys_addr_twostage(env, ptw, address, access_type,
2744 result, fi);
2745 }
2746 /* fall through */
2747
2748 default:
2749 /* Single stage and second stage uses physical for ptw. */
2750 ptw->in_ptw_idx = is_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
2751 break;
2752 }
2753
2754 result->f.attrs.user = regime_is_user(env, mmu_idx);
2755
2756 /*
2757 * Fast Context Switch Extension. This doesn't exist at all in v8.
2758 * In v7 and earlier it affects all stage 1 translations.
2759 */
2760 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
2761 && !arm_feature(env, ARM_FEATURE_V8)) {
2762 if (regime_el(env, mmu_idx) == 3) {
2763 address += env->cp15.fcseidr_s;
2764 } else {
2765 address += env->cp15.fcseidr_ns;
2766 }
2767 }
2768
2769 if (arm_feature(env, ARM_FEATURE_PMSA)) {
2770 bool ret;
2771 result->f.lg_page_size = TARGET_PAGE_BITS;
2772
2773 if (arm_feature(env, ARM_FEATURE_V8)) {
2774 /* PMSAv8 */
2775 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
2776 is_secure, result, fi);
2777 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2778 /* PMSAv7 */
2779 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
2780 is_secure, result, fi);
2781 } else {
2782 /* Pre-v7 MPU */
2783 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
2784 is_secure, result, fi);
2785 }
2786 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
2787 " mmu_idx %u -> %s (prot %c%c%c)\n",
2788 access_type == MMU_DATA_LOAD ? "reading" :
2789 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
2790 (uint32_t)address, mmu_idx,
2791 ret ? "Miss" : "Hit",
2792 result->f.prot & PAGE_READ ? 'r' : '-',
2793 result->f.prot & PAGE_WRITE ? 'w' : '-',
2794 result->f.prot & PAGE_EXEC ? 'x' : '-');
2795
2796 return ret;
2797 }
2798
2799 /* Definitely a real MMU, not an MPU */
2800
2801 if (regime_translation_disabled(env, mmu_idx, is_secure)) {
2802 return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2803 is_secure, result, fi);
2804 }
2805
2806 if (regime_using_lpae_format(env, mmu_idx)) {
2807 return get_phys_addr_lpae(env, ptw, address, access_type, false,
2808 result, fi);
2809 } else if (arm_feature(env, ARM_FEATURE_V7) ||
2810 regime_sctlr(env, mmu_idx) & SCTLR_XP) {
2811 return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
2812 } else {
2813 return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
2814 }
2815 }
2816
2817 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
2818 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2819 bool is_secure, GetPhysAddrResult *result,
2820 ARMMMUFaultInfo *fi)
2821 {
2822 S1Translate ptw = {
2823 .in_mmu_idx = mmu_idx,
2824 .in_secure = is_secure,
2825 };
2826 return get_phys_addr_with_struct(env, &ptw, address, access_type,
2827 result, fi);
2828 }
2829
2830 bool get_phys_addr(CPUARMState *env, target_ulong address,
2831 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2832 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
2833 {
2834 bool is_secure;
2835
2836 switch (mmu_idx) {
2837 case ARMMMUIdx_E10_0:
2838 case ARMMMUIdx_E10_1:
2839 case ARMMMUIdx_E10_1_PAN:
2840 case ARMMMUIdx_E20_0:
2841 case ARMMMUIdx_E20_2:
2842 case ARMMMUIdx_E20_2_PAN:
2843 case ARMMMUIdx_Stage1_E0:
2844 case ARMMMUIdx_Stage1_E1:
2845 case ARMMMUIdx_Stage1_E1_PAN:
2846 case ARMMMUIdx_E2:
2847 is_secure = arm_is_secure_below_el3(env);
2848 break;
2849 case ARMMMUIdx_Stage2:
2850 case ARMMMUIdx_Phys_NS:
2851 case ARMMMUIdx_MPrivNegPri:
2852 case ARMMMUIdx_MUserNegPri:
2853 case ARMMMUIdx_MPriv:
2854 case ARMMMUIdx_MUser:
2855 is_secure = false;
2856 break;
2857 case ARMMMUIdx_E3:
2858 case ARMMMUIdx_Stage2_S:
2859 case ARMMMUIdx_Phys_S:
2860 case ARMMMUIdx_MSPrivNegPri:
2861 case ARMMMUIdx_MSUserNegPri:
2862 case ARMMMUIdx_MSPriv:
2863 case ARMMMUIdx_MSUser:
2864 is_secure = true;
2865 break;
2866 default:
2867 g_assert_not_reached();
2868 }
2869 return get_phys_addr_with_secure(env, address, access_type, mmu_idx,
2870 is_secure, result, fi);
2871 }
2872
2873 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
2874 MemTxAttrs *attrs)
2875 {
2876 ARMCPU *cpu = ARM_CPU(cs);
2877 CPUARMState *env = &cpu->env;
2878 S1Translate ptw = {
2879 .in_mmu_idx = arm_mmu_idx(env),
2880 .in_secure = arm_is_secure(env),
2881 .in_debug = true,
2882 };
2883 GetPhysAddrResult res = {};
2884 ARMMMUFaultInfo fi = {};
2885 bool ret;
2886
2887 ret = get_phys_addr_with_struct(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
2888 *attrs = res.f.attrs;
2889
2890 if (ret) {
2891 return -1;
2892 }
2893 return res.f.phys_addr;
2894 }