]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/sve_helper.c
Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20210430' into...
[mirror_qemu.git] / target / arm / sve_helper.c
1 /*
2 * ARM SVE Operations
3 *
4 * Copyright (c) 2018 Linaro, Ltd.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "exec/exec-all.h"
24 #include "exec/cpu_ldst.h"
25 #include "exec/helper-proto.h"
26 #include "tcg/tcg-gvec-desc.h"
27 #include "fpu/softfloat.h"
28 #include "tcg/tcg.h"
29
30
31 /* Note that vector data is stored in host-endian 64-bit chunks,
32 so addressing units smaller than that needs a host-endian fixup. */
33 #ifdef HOST_WORDS_BIGENDIAN
34 #define H1(x) ((x) ^ 7)
35 #define H1_2(x) ((x) ^ 6)
36 #define H1_4(x) ((x) ^ 4)
37 #define H2(x) ((x) ^ 3)
38 #define H4(x) ((x) ^ 1)
39 #else
40 #define H1(x) (x)
41 #define H1_2(x) (x)
42 #define H1_4(x) (x)
43 #define H2(x) (x)
44 #define H4(x) (x)
45 #endif
46
47 /* Return a value for NZCV as per the ARM PredTest pseudofunction.
48 *
49 * The return value has bit 31 set if N is set, bit 1 set if Z is clear,
50 * and bit 0 set if C is set. Compare the definitions of these variables
51 * within CPUARMState.
52 */
53
54 /* For no G bits set, NZCV = C. */
55 #define PREDTEST_INIT 1
56
57 /* This is an iterative function, called for each Pd and Pg word
58 * moving forward.
59 */
60 static uint32_t iter_predtest_fwd(uint64_t d, uint64_t g, uint32_t flags)
61 {
62 if (likely(g)) {
63 /* Compute N from first D & G.
64 Use bit 2 to signal first G bit seen. */
65 if (!(flags & 4)) {
66 flags |= ((d & (g & -g)) != 0) << 31;
67 flags |= 4;
68 }
69
70 /* Accumulate Z from each D & G. */
71 flags |= ((d & g) != 0) << 1;
72
73 /* Compute C from last !(D & G). Replace previous. */
74 flags = deposit32(flags, 0, 1, (d & pow2floor(g)) == 0);
75 }
76 return flags;
77 }
78
79 /* This is an iterative function, called for each Pd and Pg word
80 * moving backward.
81 */
82 static uint32_t iter_predtest_bwd(uint64_t d, uint64_t g, uint32_t flags)
83 {
84 if (likely(g)) {
85 /* Compute C from first (i.e last) !(D & G).
86 Use bit 2 to signal first G bit seen. */
87 if (!(flags & 4)) {
88 flags += 4 - 1; /* add bit 2, subtract C from PREDTEST_INIT */
89 flags |= (d & pow2floor(g)) == 0;
90 }
91
92 /* Accumulate Z from each D & G. */
93 flags |= ((d & g) != 0) << 1;
94
95 /* Compute N from last (i.e first) D & G. Replace previous. */
96 flags = deposit32(flags, 31, 1, (d & (g & -g)) != 0);
97 }
98 return flags;
99 }
100
101 /* The same for a single word predicate. */
102 uint32_t HELPER(sve_predtest1)(uint64_t d, uint64_t g)
103 {
104 return iter_predtest_fwd(d, g, PREDTEST_INIT);
105 }
106
107 /* The same for a multi-word predicate. */
108 uint32_t HELPER(sve_predtest)(void *vd, void *vg, uint32_t words)
109 {
110 uint32_t flags = PREDTEST_INIT;
111 uint64_t *d = vd, *g = vg;
112 uintptr_t i = 0;
113
114 do {
115 flags = iter_predtest_fwd(d[i], g[i], flags);
116 } while (++i < words);
117
118 return flags;
119 }
120
121 /* Expand active predicate bits to bytes, for byte elements.
122 * for (i = 0; i < 256; ++i) {
123 * unsigned long m = 0;
124 * for (j = 0; j < 8; j++) {
125 * if ((i >> j) & 1) {
126 * m |= 0xfful << (j << 3);
127 * }
128 * }
129 * printf("0x%016lx,\n", m);
130 * }
131 */
132 static inline uint64_t expand_pred_b(uint8_t byte)
133 {
134 static const uint64_t word[256] = {
135 0x0000000000000000, 0x00000000000000ff, 0x000000000000ff00,
136 0x000000000000ffff, 0x0000000000ff0000, 0x0000000000ff00ff,
137 0x0000000000ffff00, 0x0000000000ffffff, 0x00000000ff000000,
138 0x00000000ff0000ff, 0x00000000ff00ff00, 0x00000000ff00ffff,
139 0x00000000ffff0000, 0x00000000ffff00ff, 0x00000000ffffff00,
140 0x00000000ffffffff, 0x000000ff00000000, 0x000000ff000000ff,
141 0x000000ff0000ff00, 0x000000ff0000ffff, 0x000000ff00ff0000,
142 0x000000ff00ff00ff, 0x000000ff00ffff00, 0x000000ff00ffffff,
143 0x000000ffff000000, 0x000000ffff0000ff, 0x000000ffff00ff00,
144 0x000000ffff00ffff, 0x000000ffffff0000, 0x000000ffffff00ff,
145 0x000000ffffffff00, 0x000000ffffffffff, 0x0000ff0000000000,
146 0x0000ff00000000ff, 0x0000ff000000ff00, 0x0000ff000000ffff,
147 0x0000ff0000ff0000, 0x0000ff0000ff00ff, 0x0000ff0000ffff00,
148 0x0000ff0000ffffff, 0x0000ff00ff000000, 0x0000ff00ff0000ff,
149 0x0000ff00ff00ff00, 0x0000ff00ff00ffff, 0x0000ff00ffff0000,
150 0x0000ff00ffff00ff, 0x0000ff00ffffff00, 0x0000ff00ffffffff,
151 0x0000ffff00000000, 0x0000ffff000000ff, 0x0000ffff0000ff00,
152 0x0000ffff0000ffff, 0x0000ffff00ff0000, 0x0000ffff00ff00ff,
153 0x0000ffff00ffff00, 0x0000ffff00ffffff, 0x0000ffffff000000,
154 0x0000ffffff0000ff, 0x0000ffffff00ff00, 0x0000ffffff00ffff,
155 0x0000ffffffff0000, 0x0000ffffffff00ff, 0x0000ffffffffff00,
156 0x0000ffffffffffff, 0x00ff000000000000, 0x00ff0000000000ff,
157 0x00ff00000000ff00, 0x00ff00000000ffff, 0x00ff000000ff0000,
158 0x00ff000000ff00ff, 0x00ff000000ffff00, 0x00ff000000ffffff,
159 0x00ff0000ff000000, 0x00ff0000ff0000ff, 0x00ff0000ff00ff00,
160 0x00ff0000ff00ffff, 0x00ff0000ffff0000, 0x00ff0000ffff00ff,
161 0x00ff0000ffffff00, 0x00ff0000ffffffff, 0x00ff00ff00000000,
162 0x00ff00ff000000ff, 0x00ff00ff0000ff00, 0x00ff00ff0000ffff,
163 0x00ff00ff00ff0000, 0x00ff00ff00ff00ff, 0x00ff00ff00ffff00,
164 0x00ff00ff00ffffff, 0x00ff00ffff000000, 0x00ff00ffff0000ff,
165 0x00ff00ffff00ff00, 0x00ff00ffff00ffff, 0x00ff00ffffff0000,
166 0x00ff00ffffff00ff, 0x00ff00ffffffff00, 0x00ff00ffffffffff,
167 0x00ffff0000000000, 0x00ffff00000000ff, 0x00ffff000000ff00,
168 0x00ffff000000ffff, 0x00ffff0000ff0000, 0x00ffff0000ff00ff,
169 0x00ffff0000ffff00, 0x00ffff0000ffffff, 0x00ffff00ff000000,
170 0x00ffff00ff0000ff, 0x00ffff00ff00ff00, 0x00ffff00ff00ffff,
171 0x00ffff00ffff0000, 0x00ffff00ffff00ff, 0x00ffff00ffffff00,
172 0x00ffff00ffffffff, 0x00ffffff00000000, 0x00ffffff000000ff,
173 0x00ffffff0000ff00, 0x00ffffff0000ffff, 0x00ffffff00ff0000,
174 0x00ffffff00ff00ff, 0x00ffffff00ffff00, 0x00ffffff00ffffff,
175 0x00ffffffff000000, 0x00ffffffff0000ff, 0x00ffffffff00ff00,
176 0x00ffffffff00ffff, 0x00ffffffffff0000, 0x00ffffffffff00ff,
177 0x00ffffffffffff00, 0x00ffffffffffffff, 0xff00000000000000,
178 0xff000000000000ff, 0xff0000000000ff00, 0xff0000000000ffff,
179 0xff00000000ff0000, 0xff00000000ff00ff, 0xff00000000ffff00,
180 0xff00000000ffffff, 0xff000000ff000000, 0xff000000ff0000ff,
181 0xff000000ff00ff00, 0xff000000ff00ffff, 0xff000000ffff0000,
182 0xff000000ffff00ff, 0xff000000ffffff00, 0xff000000ffffffff,
183 0xff0000ff00000000, 0xff0000ff000000ff, 0xff0000ff0000ff00,
184 0xff0000ff0000ffff, 0xff0000ff00ff0000, 0xff0000ff00ff00ff,
185 0xff0000ff00ffff00, 0xff0000ff00ffffff, 0xff0000ffff000000,
186 0xff0000ffff0000ff, 0xff0000ffff00ff00, 0xff0000ffff00ffff,
187 0xff0000ffffff0000, 0xff0000ffffff00ff, 0xff0000ffffffff00,
188 0xff0000ffffffffff, 0xff00ff0000000000, 0xff00ff00000000ff,
189 0xff00ff000000ff00, 0xff00ff000000ffff, 0xff00ff0000ff0000,
190 0xff00ff0000ff00ff, 0xff00ff0000ffff00, 0xff00ff0000ffffff,
191 0xff00ff00ff000000, 0xff00ff00ff0000ff, 0xff00ff00ff00ff00,
192 0xff00ff00ff00ffff, 0xff00ff00ffff0000, 0xff00ff00ffff00ff,
193 0xff00ff00ffffff00, 0xff00ff00ffffffff, 0xff00ffff00000000,
194 0xff00ffff000000ff, 0xff00ffff0000ff00, 0xff00ffff0000ffff,
195 0xff00ffff00ff0000, 0xff00ffff00ff00ff, 0xff00ffff00ffff00,
196 0xff00ffff00ffffff, 0xff00ffffff000000, 0xff00ffffff0000ff,
197 0xff00ffffff00ff00, 0xff00ffffff00ffff, 0xff00ffffffff0000,
198 0xff00ffffffff00ff, 0xff00ffffffffff00, 0xff00ffffffffffff,
199 0xffff000000000000, 0xffff0000000000ff, 0xffff00000000ff00,
200 0xffff00000000ffff, 0xffff000000ff0000, 0xffff000000ff00ff,
201 0xffff000000ffff00, 0xffff000000ffffff, 0xffff0000ff000000,
202 0xffff0000ff0000ff, 0xffff0000ff00ff00, 0xffff0000ff00ffff,
203 0xffff0000ffff0000, 0xffff0000ffff00ff, 0xffff0000ffffff00,
204 0xffff0000ffffffff, 0xffff00ff00000000, 0xffff00ff000000ff,
205 0xffff00ff0000ff00, 0xffff00ff0000ffff, 0xffff00ff00ff0000,
206 0xffff00ff00ff00ff, 0xffff00ff00ffff00, 0xffff00ff00ffffff,
207 0xffff00ffff000000, 0xffff00ffff0000ff, 0xffff00ffff00ff00,
208 0xffff00ffff00ffff, 0xffff00ffffff0000, 0xffff00ffffff00ff,
209 0xffff00ffffffff00, 0xffff00ffffffffff, 0xffffff0000000000,
210 0xffffff00000000ff, 0xffffff000000ff00, 0xffffff000000ffff,
211 0xffffff0000ff0000, 0xffffff0000ff00ff, 0xffffff0000ffff00,
212 0xffffff0000ffffff, 0xffffff00ff000000, 0xffffff00ff0000ff,
213 0xffffff00ff00ff00, 0xffffff00ff00ffff, 0xffffff00ffff0000,
214 0xffffff00ffff00ff, 0xffffff00ffffff00, 0xffffff00ffffffff,
215 0xffffffff00000000, 0xffffffff000000ff, 0xffffffff0000ff00,
216 0xffffffff0000ffff, 0xffffffff00ff0000, 0xffffffff00ff00ff,
217 0xffffffff00ffff00, 0xffffffff00ffffff, 0xffffffffff000000,
218 0xffffffffff0000ff, 0xffffffffff00ff00, 0xffffffffff00ffff,
219 0xffffffffffff0000, 0xffffffffffff00ff, 0xffffffffffffff00,
220 0xffffffffffffffff,
221 };
222 return word[byte];
223 }
224
225 /* Similarly for half-word elements.
226 * for (i = 0; i < 256; ++i) {
227 * unsigned long m = 0;
228 * if (i & 0xaa) {
229 * continue;
230 * }
231 * for (j = 0; j < 8; j += 2) {
232 * if ((i >> j) & 1) {
233 * m |= 0xfffful << (j << 3);
234 * }
235 * }
236 * printf("[0x%x] = 0x%016lx,\n", i, m);
237 * }
238 */
239 static inline uint64_t expand_pred_h(uint8_t byte)
240 {
241 static const uint64_t word[] = {
242 [0x01] = 0x000000000000ffff, [0x04] = 0x00000000ffff0000,
243 [0x05] = 0x00000000ffffffff, [0x10] = 0x0000ffff00000000,
244 [0x11] = 0x0000ffff0000ffff, [0x14] = 0x0000ffffffff0000,
245 [0x15] = 0x0000ffffffffffff, [0x40] = 0xffff000000000000,
246 [0x41] = 0xffff00000000ffff, [0x44] = 0xffff0000ffff0000,
247 [0x45] = 0xffff0000ffffffff, [0x50] = 0xffffffff00000000,
248 [0x51] = 0xffffffff0000ffff, [0x54] = 0xffffffffffff0000,
249 [0x55] = 0xffffffffffffffff,
250 };
251 return word[byte & 0x55];
252 }
253
254 /* Similarly for single word elements. */
255 static inline uint64_t expand_pred_s(uint8_t byte)
256 {
257 static const uint64_t word[] = {
258 [0x01] = 0x00000000ffffffffull,
259 [0x10] = 0xffffffff00000000ull,
260 [0x11] = 0xffffffffffffffffull,
261 };
262 return word[byte & 0x11];
263 }
264
265 /* Swap 16-bit words within a 32-bit word. */
266 static inline uint32_t hswap32(uint32_t h)
267 {
268 return rol32(h, 16);
269 }
270
271 /* Swap 16-bit words within a 64-bit word. */
272 static inline uint64_t hswap64(uint64_t h)
273 {
274 uint64_t m = 0x0000ffff0000ffffull;
275 h = rol64(h, 32);
276 return ((h & m) << 16) | ((h >> 16) & m);
277 }
278
279 /* Swap 32-bit words within a 64-bit word. */
280 static inline uint64_t wswap64(uint64_t h)
281 {
282 return rol64(h, 32);
283 }
284
285 #define LOGICAL_PPPP(NAME, FUNC) \
286 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
287 { \
288 uintptr_t opr_sz = simd_oprsz(desc); \
289 uint64_t *d = vd, *n = vn, *m = vm, *g = vg; \
290 uintptr_t i; \
291 for (i = 0; i < opr_sz / 8; ++i) { \
292 d[i] = FUNC(n[i], m[i], g[i]); \
293 } \
294 }
295
296 #define DO_AND(N, M, G) (((N) & (M)) & (G))
297 #define DO_BIC(N, M, G) (((N) & ~(M)) & (G))
298 #define DO_EOR(N, M, G) (((N) ^ (M)) & (G))
299 #define DO_ORR(N, M, G) (((N) | (M)) & (G))
300 #define DO_ORN(N, M, G) (((N) | ~(M)) & (G))
301 #define DO_NOR(N, M, G) (~((N) | (M)) & (G))
302 #define DO_NAND(N, M, G) (~((N) & (M)) & (G))
303 #define DO_SEL(N, M, G) (((N) & (G)) | ((M) & ~(G)))
304
305 LOGICAL_PPPP(sve_and_pppp, DO_AND)
306 LOGICAL_PPPP(sve_bic_pppp, DO_BIC)
307 LOGICAL_PPPP(sve_eor_pppp, DO_EOR)
308 LOGICAL_PPPP(sve_sel_pppp, DO_SEL)
309 LOGICAL_PPPP(sve_orr_pppp, DO_ORR)
310 LOGICAL_PPPP(sve_orn_pppp, DO_ORN)
311 LOGICAL_PPPP(sve_nor_pppp, DO_NOR)
312 LOGICAL_PPPP(sve_nand_pppp, DO_NAND)
313
314 #undef DO_AND
315 #undef DO_BIC
316 #undef DO_EOR
317 #undef DO_ORR
318 #undef DO_ORN
319 #undef DO_NOR
320 #undef DO_NAND
321 #undef DO_SEL
322 #undef LOGICAL_PPPP
323
324 /* Fully general three-operand expander, controlled by a predicate.
325 * This is complicated by the host-endian storage of the register file.
326 */
327 /* ??? I don't expect the compiler could ever vectorize this itself.
328 * With some tables we can convert bit masks to byte masks, and with
329 * extra care wrt byte/word ordering we could use gcc generic vectors
330 * and do 16 bytes at a time.
331 */
332 #define DO_ZPZZ(NAME, TYPE, H, OP) \
333 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
334 { \
335 intptr_t i, opr_sz = simd_oprsz(desc); \
336 for (i = 0; i < opr_sz; ) { \
337 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
338 do { \
339 if (pg & 1) { \
340 TYPE nn = *(TYPE *)(vn + H(i)); \
341 TYPE mm = *(TYPE *)(vm + H(i)); \
342 *(TYPE *)(vd + H(i)) = OP(nn, mm); \
343 } \
344 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
345 } while (i & 15); \
346 } \
347 }
348
349 /* Similarly, specialized for 64-bit operands. */
350 #define DO_ZPZZ_D(NAME, TYPE, OP) \
351 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
352 { \
353 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
354 TYPE *d = vd, *n = vn, *m = vm; \
355 uint8_t *pg = vg; \
356 for (i = 0; i < opr_sz; i += 1) { \
357 if (pg[H1(i)] & 1) { \
358 TYPE nn = n[i], mm = m[i]; \
359 d[i] = OP(nn, mm); \
360 } \
361 } \
362 }
363
364 #define DO_AND(N, M) (N & M)
365 #define DO_EOR(N, M) (N ^ M)
366 #define DO_ORR(N, M) (N | M)
367 #define DO_BIC(N, M) (N & ~M)
368 #define DO_ADD(N, M) (N + M)
369 #define DO_SUB(N, M) (N - M)
370 #define DO_MAX(N, M) ((N) >= (M) ? (N) : (M))
371 #define DO_MIN(N, M) ((N) >= (M) ? (M) : (N))
372 #define DO_ABD(N, M) ((N) >= (M) ? (N) - (M) : (M) - (N))
373 #define DO_MUL(N, M) (N * M)
374
375
376 /*
377 * We must avoid the C undefined behaviour cases: division by
378 * zero and signed division of INT_MIN by -1. Both of these
379 * have architecturally defined required results for Arm.
380 * We special case all signed divisions by -1 to avoid having
381 * to deduce the minimum integer for the type involved.
382 */
383 #define DO_SDIV(N, M) (unlikely(M == 0) ? 0 : unlikely(M == -1) ? -N : N / M)
384 #define DO_UDIV(N, M) (unlikely(M == 0) ? 0 : N / M)
385
386 DO_ZPZZ(sve_and_zpzz_b, uint8_t, H1, DO_AND)
387 DO_ZPZZ(sve_and_zpzz_h, uint16_t, H1_2, DO_AND)
388 DO_ZPZZ(sve_and_zpzz_s, uint32_t, H1_4, DO_AND)
389 DO_ZPZZ_D(sve_and_zpzz_d, uint64_t, DO_AND)
390
391 DO_ZPZZ(sve_orr_zpzz_b, uint8_t, H1, DO_ORR)
392 DO_ZPZZ(sve_orr_zpzz_h, uint16_t, H1_2, DO_ORR)
393 DO_ZPZZ(sve_orr_zpzz_s, uint32_t, H1_4, DO_ORR)
394 DO_ZPZZ_D(sve_orr_zpzz_d, uint64_t, DO_ORR)
395
396 DO_ZPZZ(sve_eor_zpzz_b, uint8_t, H1, DO_EOR)
397 DO_ZPZZ(sve_eor_zpzz_h, uint16_t, H1_2, DO_EOR)
398 DO_ZPZZ(sve_eor_zpzz_s, uint32_t, H1_4, DO_EOR)
399 DO_ZPZZ_D(sve_eor_zpzz_d, uint64_t, DO_EOR)
400
401 DO_ZPZZ(sve_bic_zpzz_b, uint8_t, H1, DO_BIC)
402 DO_ZPZZ(sve_bic_zpzz_h, uint16_t, H1_2, DO_BIC)
403 DO_ZPZZ(sve_bic_zpzz_s, uint32_t, H1_4, DO_BIC)
404 DO_ZPZZ_D(sve_bic_zpzz_d, uint64_t, DO_BIC)
405
406 DO_ZPZZ(sve_add_zpzz_b, uint8_t, H1, DO_ADD)
407 DO_ZPZZ(sve_add_zpzz_h, uint16_t, H1_2, DO_ADD)
408 DO_ZPZZ(sve_add_zpzz_s, uint32_t, H1_4, DO_ADD)
409 DO_ZPZZ_D(sve_add_zpzz_d, uint64_t, DO_ADD)
410
411 DO_ZPZZ(sve_sub_zpzz_b, uint8_t, H1, DO_SUB)
412 DO_ZPZZ(sve_sub_zpzz_h, uint16_t, H1_2, DO_SUB)
413 DO_ZPZZ(sve_sub_zpzz_s, uint32_t, H1_4, DO_SUB)
414 DO_ZPZZ_D(sve_sub_zpzz_d, uint64_t, DO_SUB)
415
416 DO_ZPZZ(sve_smax_zpzz_b, int8_t, H1, DO_MAX)
417 DO_ZPZZ(sve_smax_zpzz_h, int16_t, H1_2, DO_MAX)
418 DO_ZPZZ(sve_smax_zpzz_s, int32_t, H1_4, DO_MAX)
419 DO_ZPZZ_D(sve_smax_zpzz_d, int64_t, DO_MAX)
420
421 DO_ZPZZ(sve_umax_zpzz_b, uint8_t, H1, DO_MAX)
422 DO_ZPZZ(sve_umax_zpzz_h, uint16_t, H1_2, DO_MAX)
423 DO_ZPZZ(sve_umax_zpzz_s, uint32_t, H1_4, DO_MAX)
424 DO_ZPZZ_D(sve_umax_zpzz_d, uint64_t, DO_MAX)
425
426 DO_ZPZZ(sve_smin_zpzz_b, int8_t, H1, DO_MIN)
427 DO_ZPZZ(sve_smin_zpzz_h, int16_t, H1_2, DO_MIN)
428 DO_ZPZZ(sve_smin_zpzz_s, int32_t, H1_4, DO_MIN)
429 DO_ZPZZ_D(sve_smin_zpzz_d, int64_t, DO_MIN)
430
431 DO_ZPZZ(sve_umin_zpzz_b, uint8_t, H1, DO_MIN)
432 DO_ZPZZ(sve_umin_zpzz_h, uint16_t, H1_2, DO_MIN)
433 DO_ZPZZ(sve_umin_zpzz_s, uint32_t, H1_4, DO_MIN)
434 DO_ZPZZ_D(sve_umin_zpzz_d, uint64_t, DO_MIN)
435
436 DO_ZPZZ(sve_sabd_zpzz_b, int8_t, H1, DO_ABD)
437 DO_ZPZZ(sve_sabd_zpzz_h, int16_t, H1_2, DO_ABD)
438 DO_ZPZZ(sve_sabd_zpzz_s, int32_t, H1_4, DO_ABD)
439 DO_ZPZZ_D(sve_sabd_zpzz_d, int64_t, DO_ABD)
440
441 DO_ZPZZ(sve_uabd_zpzz_b, uint8_t, H1, DO_ABD)
442 DO_ZPZZ(sve_uabd_zpzz_h, uint16_t, H1_2, DO_ABD)
443 DO_ZPZZ(sve_uabd_zpzz_s, uint32_t, H1_4, DO_ABD)
444 DO_ZPZZ_D(sve_uabd_zpzz_d, uint64_t, DO_ABD)
445
446 /* Because the computation type is at least twice as large as required,
447 these work for both signed and unsigned source types. */
448 static inline uint8_t do_mulh_b(int32_t n, int32_t m)
449 {
450 return (n * m) >> 8;
451 }
452
453 static inline uint16_t do_mulh_h(int32_t n, int32_t m)
454 {
455 return (n * m) >> 16;
456 }
457
458 static inline uint32_t do_mulh_s(int64_t n, int64_t m)
459 {
460 return (n * m) >> 32;
461 }
462
463 static inline uint64_t do_smulh_d(uint64_t n, uint64_t m)
464 {
465 uint64_t lo, hi;
466 muls64(&lo, &hi, n, m);
467 return hi;
468 }
469
470 static inline uint64_t do_umulh_d(uint64_t n, uint64_t m)
471 {
472 uint64_t lo, hi;
473 mulu64(&lo, &hi, n, m);
474 return hi;
475 }
476
477 DO_ZPZZ(sve_mul_zpzz_b, uint8_t, H1, DO_MUL)
478 DO_ZPZZ(sve_mul_zpzz_h, uint16_t, H1_2, DO_MUL)
479 DO_ZPZZ(sve_mul_zpzz_s, uint32_t, H1_4, DO_MUL)
480 DO_ZPZZ_D(sve_mul_zpzz_d, uint64_t, DO_MUL)
481
482 DO_ZPZZ(sve_smulh_zpzz_b, int8_t, H1, do_mulh_b)
483 DO_ZPZZ(sve_smulh_zpzz_h, int16_t, H1_2, do_mulh_h)
484 DO_ZPZZ(sve_smulh_zpzz_s, int32_t, H1_4, do_mulh_s)
485 DO_ZPZZ_D(sve_smulh_zpzz_d, uint64_t, do_smulh_d)
486
487 DO_ZPZZ(sve_umulh_zpzz_b, uint8_t, H1, do_mulh_b)
488 DO_ZPZZ(sve_umulh_zpzz_h, uint16_t, H1_2, do_mulh_h)
489 DO_ZPZZ(sve_umulh_zpzz_s, uint32_t, H1_4, do_mulh_s)
490 DO_ZPZZ_D(sve_umulh_zpzz_d, uint64_t, do_umulh_d)
491
492 DO_ZPZZ(sve_sdiv_zpzz_s, int32_t, H1_4, DO_SDIV)
493 DO_ZPZZ_D(sve_sdiv_zpzz_d, int64_t, DO_SDIV)
494
495 DO_ZPZZ(sve_udiv_zpzz_s, uint32_t, H1_4, DO_UDIV)
496 DO_ZPZZ_D(sve_udiv_zpzz_d, uint64_t, DO_UDIV)
497
498 /* Note that all bits of the shift are significant
499 and not modulo the element size. */
500 #define DO_ASR(N, M) (N >> MIN(M, sizeof(N) * 8 - 1))
501 #define DO_LSR(N, M) (M < sizeof(N) * 8 ? N >> M : 0)
502 #define DO_LSL(N, M) (M < sizeof(N) * 8 ? N << M : 0)
503
504 DO_ZPZZ(sve_asr_zpzz_b, int8_t, H1, DO_ASR)
505 DO_ZPZZ(sve_lsr_zpzz_b, uint8_t, H1_2, DO_LSR)
506 DO_ZPZZ(sve_lsl_zpzz_b, uint8_t, H1_4, DO_LSL)
507
508 DO_ZPZZ(sve_asr_zpzz_h, int16_t, H1, DO_ASR)
509 DO_ZPZZ(sve_lsr_zpzz_h, uint16_t, H1_2, DO_LSR)
510 DO_ZPZZ(sve_lsl_zpzz_h, uint16_t, H1_4, DO_LSL)
511
512 DO_ZPZZ(sve_asr_zpzz_s, int32_t, H1, DO_ASR)
513 DO_ZPZZ(sve_lsr_zpzz_s, uint32_t, H1_2, DO_LSR)
514 DO_ZPZZ(sve_lsl_zpzz_s, uint32_t, H1_4, DO_LSL)
515
516 DO_ZPZZ_D(sve_asr_zpzz_d, int64_t, DO_ASR)
517 DO_ZPZZ_D(sve_lsr_zpzz_d, uint64_t, DO_LSR)
518 DO_ZPZZ_D(sve_lsl_zpzz_d, uint64_t, DO_LSL)
519
520 #undef DO_ZPZZ
521 #undef DO_ZPZZ_D
522
523 /* Three-operand expander, controlled by a predicate, in which the
524 * third operand is "wide". That is, for D = N op M, the same 64-bit
525 * value of M is used with all of the narrower values of N.
526 */
527 #define DO_ZPZW(NAME, TYPE, TYPEW, H, OP) \
528 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
529 { \
530 intptr_t i, opr_sz = simd_oprsz(desc); \
531 for (i = 0; i < opr_sz; ) { \
532 uint8_t pg = *(uint8_t *)(vg + H1(i >> 3)); \
533 TYPEW mm = *(TYPEW *)(vm + i); \
534 do { \
535 if (pg & 1) { \
536 TYPE nn = *(TYPE *)(vn + H(i)); \
537 *(TYPE *)(vd + H(i)) = OP(nn, mm); \
538 } \
539 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
540 } while (i & 7); \
541 } \
542 }
543
544 DO_ZPZW(sve_asr_zpzw_b, int8_t, uint64_t, H1, DO_ASR)
545 DO_ZPZW(sve_lsr_zpzw_b, uint8_t, uint64_t, H1, DO_LSR)
546 DO_ZPZW(sve_lsl_zpzw_b, uint8_t, uint64_t, H1, DO_LSL)
547
548 DO_ZPZW(sve_asr_zpzw_h, int16_t, uint64_t, H1_2, DO_ASR)
549 DO_ZPZW(sve_lsr_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSR)
550 DO_ZPZW(sve_lsl_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSL)
551
552 DO_ZPZW(sve_asr_zpzw_s, int32_t, uint64_t, H1_4, DO_ASR)
553 DO_ZPZW(sve_lsr_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSR)
554 DO_ZPZW(sve_lsl_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSL)
555
556 #undef DO_ZPZW
557
558 /* Fully general two-operand expander, controlled by a predicate.
559 */
560 #define DO_ZPZ(NAME, TYPE, H, OP) \
561 void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
562 { \
563 intptr_t i, opr_sz = simd_oprsz(desc); \
564 for (i = 0; i < opr_sz; ) { \
565 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
566 do { \
567 if (pg & 1) { \
568 TYPE nn = *(TYPE *)(vn + H(i)); \
569 *(TYPE *)(vd + H(i)) = OP(nn); \
570 } \
571 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
572 } while (i & 15); \
573 } \
574 }
575
576 /* Similarly, specialized for 64-bit operands. */
577 #define DO_ZPZ_D(NAME, TYPE, OP) \
578 void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
579 { \
580 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
581 TYPE *d = vd, *n = vn; \
582 uint8_t *pg = vg; \
583 for (i = 0; i < opr_sz; i += 1) { \
584 if (pg[H1(i)] & 1) { \
585 TYPE nn = n[i]; \
586 d[i] = OP(nn); \
587 } \
588 } \
589 }
590
591 #define DO_CLS_B(N) (clrsb32(N) - 24)
592 #define DO_CLS_H(N) (clrsb32(N) - 16)
593
594 DO_ZPZ(sve_cls_b, int8_t, H1, DO_CLS_B)
595 DO_ZPZ(sve_cls_h, int16_t, H1_2, DO_CLS_H)
596 DO_ZPZ(sve_cls_s, int32_t, H1_4, clrsb32)
597 DO_ZPZ_D(sve_cls_d, int64_t, clrsb64)
598
599 #define DO_CLZ_B(N) (clz32(N) - 24)
600 #define DO_CLZ_H(N) (clz32(N) - 16)
601
602 DO_ZPZ(sve_clz_b, uint8_t, H1, DO_CLZ_B)
603 DO_ZPZ(sve_clz_h, uint16_t, H1_2, DO_CLZ_H)
604 DO_ZPZ(sve_clz_s, uint32_t, H1_4, clz32)
605 DO_ZPZ_D(sve_clz_d, uint64_t, clz64)
606
607 DO_ZPZ(sve_cnt_zpz_b, uint8_t, H1, ctpop8)
608 DO_ZPZ(sve_cnt_zpz_h, uint16_t, H1_2, ctpop16)
609 DO_ZPZ(sve_cnt_zpz_s, uint32_t, H1_4, ctpop32)
610 DO_ZPZ_D(sve_cnt_zpz_d, uint64_t, ctpop64)
611
612 #define DO_CNOT(N) (N == 0)
613
614 DO_ZPZ(sve_cnot_b, uint8_t, H1, DO_CNOT)
615 DO_ZPZ(sve_cnot_h, uint16_t, H1_2, DO_CNOT)
616 DO_ZPZ(sve_cnot_s, uint32_t, H1_4, DO_CNOT)
617 DO_ZPZ_D(sve_cnot_d, uint64_t, DO_CNOT)
618
619 #define DO_FABS(N) (N & ((__typeof(N))-1 >> 1))
620
621 DO_ZPZ(sve_fabs_h, uint16_t, H1_2, DO_FABS)
622 DO_ZPZ(sve_fabs_s, uint32_t, H1_4, DO_FABS)
623 DO_ZPZ_D(sve_fabs_d, uint64_t, DO_FABS)
624
625 #define DO_FNEG(N) (N ^ ~((__typeof(N))-1 >> 1))
626
627 DO_ZPZ(sve_fneg_h, uint16_t, H1_2, DO_FNEG)
628 DO_ZPZ(sve_fneg_s, uint32_t, H1_4, DO_FNEG)
629 DO_ZPZ_D(sve_fneg_d, uint64_t, DO_FNEG)
630
631 #define DO_NOT(N) (~N)
632
633 DO_ZPZ(sve_not_zpz_b, uint8_t, H1, DO_NOT)
634 DO_ZPZ(sve_not_zpz_h, uint16_t, H1_2, DO_NOT)
635 DO_ZPZ(sve_not_zpz_s, uint32_t, H1_4, DO_NOT)
636 DO_ZPZ_D(sve_not_zpz_d, uint64_t, DO_NOT)
637
638 #define DO_SXTB(N) ((int8_t)N)
639 #define DO_SXTH(N) ((int16_t)N)
640 #define DO_SXTS(N) ((int32_t)N)
641 #define DO_UXTB(N) ((uint8_t)N)
642 #define DO_UXTH(N) ((uint16_t)N)
643 #define DO_UXTS(N) ((uint32_t)N)
644
645 DO_ZPZ(sve_sxtb_h, uint16_t, H1_2, DO_SXTB)
646 DO_ZPZ(sve_sxtb_s, uint32_t, H1_4, DO_SXTB)
647 DO_ZPZ(sve_sxth_s, uint32_t, H1_4, DO_SXTH)
648 DO_ZPZ_D(sve_sxtb_d, uint64_t, DO_SXTB)
649 DO_ZPZ_D(sve_sxth_d, uint64_t, DO_SXTH)
650 DO_ZPZ_D(sve_sxtw_d, uint64_t, DO_SXTS)
651
652 DO_ZPZ(sve_uxtb_h, uint16_t, H1_2, DO_UXTB)
653 DO_ZPZ(sve_uxtb_s, uint32_t, H1_4, DO_UXTB)
654 DO_ZPZ(sve_uxth_s, uint32_t, H1_4, DO_UXTH)
655 DO_ZPZ_D(sve_uxtb_d, uint64_t, DO_UXTB)
656 DO_ZPZ_D(sve_uxth_d, uint64_t, DO_UXTH)
657 DO_ZPZ_D(sve_uxtw_d, uint64_t, DO_UXTS)
658
659 #define DO_ABS(N) (N < 0 ? -N : N)
660
661 DO_ZPZ(sve_abs_b, int8_t, H1, DO_ABS)
662 DO_ZPZ(sve_abs_h, int16_t, H1_2, DO_ABS)
663 DO_ZPZ(sve_abs_s, int32_t, H1_4, DO_ABS)
664 DO_ZPZ_D(sve_abs_d, int64_t, DO_ABS)
665
666 #define DO_NEG(N) (-N)
667
668 DO_ZPZ(sve_neg_b, uint8_t, H1, DO_NEG)
669 DO_ZPZ(sve_neg_h, uint16_t, H1_2, DO_NEG)
670 DO_ZPZ(sve_neg_s, uint32_t, H1_4, DO_NEG)
671 DO_ZPZ_D(sve_neg_d, uint64_t, DO_NEG)
672
673 DO_ZPZ(sve_revb_h, uint16_t, H1_2, bswap16)
674 DO_ZPZ(sve_revb_s, uint32_t, H1_4, bswap32)
675 DO_ZPZ_D(sve_revb_d, uint64_t, bswap64)
676
677 DO_ZPZ(sve_revh_s, uint32_t, H1_4, hswap32)
678 DO_ZPZ_D(sve_revh_d, uint64_t, hswap64)
679
680 DO_ZPZ_D(sve_revw_d, uint64_t, wswap64)
681
682 DO_ZPZ(sve_rbit_b, uint8_t, H1, revbit8)
683 DO_ZPZ(sve_rbit_h, uint16_t, H1_2, revbit16)
684 DO_ZPZ(sve_rbit_s, uint32_t, H1_4, revbit32)
685 DO_ZPZ_D(sve_rbit_d, uint64_t, revbit64)
686
687 /* Three-operand expander, unpredicated, in which the third operand is "wide".
688 */
689 #define DO_ZZW(NAME, TYPE, TYPEW, H, OP) \
690 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
691 { \
692 intptr_t i, opr_sz = simd_oprsz(desc); \
693 for (i = 0; i < opr_sz; ) { \
694 TYPEW mm = *(TYPEW *)(vm + i); \
695 do { \
696 TYPE nn = *(TYPE *)(vn + H(i)); \
697 *(TYPE *)(vd + H(i)) = OP(nn, mm); \
698 i += sizeof(TYPE); \
699 } while (i & 7); \
700 } \
701 }
702
703 DO_ZZW(sve_asr_zzw_b, int8_t, uint64_t, H1, DO_ASR)
704 DO_ZZW(sve_lsr_zzw_b, uint8_t, uint64_t, H1, DO_LSR)
705 DO_ZZW(sve_lsl_zzw_b, uint8_t, uint64_t, H1, DO_LSL)
706
707 DO_ZZW(sve_asr_zzw_h, int16_t, uint64_t, H1_2, DO_ASR)
708 DO_ZZW(sve_lsr_zzw_h, uint16_t, uint64_t, H1_2, DO_LSR)
709 DO_ZZW(sve_lsl_zzw_h, uint16_t, uint64_t, H1_2, DO_LSL)
710
711 DO_ZZW(sve_asr_zzw_s, int32_t, uint64_t, H1_4, DO_ASR)
712 DO_ZZW(sve_lsr_zzw_s, uint32_t, uint64_t, H1_4, DO_LSR)
713 DO_ZZW(sve_lsl_zzw_s, uint32_t, uint64_t, H1_4, DO_LSL)
714
715 #undef DO_ZZW
716
717 #undef DO_CLS_B
718 #undef DO_CLS_H
719 #undef DO_CLZ_B
720 #undef DO_CLZ_H
721 #undef DO_CNOT
722 #undef DO_FABS
723 #undef DO_FNEG
724 #undef DO_ABS
725 #undef DO_NEG
726 #undef DO_ZPZ
727 #undef DO_ZPZ_D
728
729 /* Two-operand reduction expander, controlled by a predicate.
730 * The difference between TYPERED and TYPERET has to do with
731 * sign-extension. E.g. for SMAX, TYPERED must be signed,
732 * but TYPERET must be unsigned so that e.g. a 32-bit value
733 * is not sign-extended to the ABI uint64_t return type.
734 */
735 /* ??? If we were to vectorize this by hand the reduction ordering
736 * would change. For integer operands, this is perfectly fine.
737 */
738 #define DO_VPZ(NAME, TYPEELT, TYPERED, TYPERET, H, INIT, OP) \
739 uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \
740 { \
741 intptr_t i, opr_sz = simd_oprsz(desc); \
742 TYPERED ret = INIT; \
743 for (i = 0; i < opr_sz; ) { \
744 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
745 do { \
746 if (pg & 1) { \
747 TYPEELT nn = *(TYPEELT *)(vn + H(i)); \
748 ret = OP(ret, nn); \
749 } \
750 i += sizeof(TYPEELT), pg >>= sizeof(TYPEELT); \
751 } while (i & 15); \
752 } \
753 return (TYPERET)ret; \
754 }
755
756 #define DO_VPZ_D(NAME, TYPEE, TYPER, INIT, OP) \
757 uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \
758 { \
759 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
760 TYPEE *n = vn; \
761 uint8_t *pg = vg; \
762 TYPER ret = INIT; \
763 for (i = 0; i < opr_sz; i += 1) { \
764 if (pg[H1(i)] & 1) { \
765 TYPEE nn = n[i]; \
766 ret = OP(ret, nn); \
767 } \
768 } \
769 return ret; \
770 }
771
772 DO_VPZ(sve_orv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_ORR)
773 DO_VPZ(sve_orv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_ORR)
774 DO_VPZ(sve_orv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_ORR)
775 DO_VPZ_D(sve_orv_d, uint64_t, uint64_t, 0, DO_ORR)
776
777 DO_VPZ(sve_eorv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_EOR)
778 DO_VPZ(sve_eorv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_EOR)
779 DO_VPZ(sve_eorv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_EOR)
780 DO_VPZ_D(sve_eorv_d, uint64_t, uint64_t, 0, DO_EOR)
781
782 DO_VPZ(sve_andv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_AND)
783 DO_VPZ(sve_andv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_AND)
784 DO_VPZ(sve_andv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_AND)
785 DO_VPZ_D(sve_andv_d, uint64_t, uint64_t, -1, DO_AND)
786
787 DO_VPZ(sve_saddv_b, int8_t, uint64_t, uint64_t, H1, 0, DO_ADD)
788 DO_VPZ(sve_saddv_h, int16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD)
789 DO_VPZ(sve_saddv_s, int32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD)
790
791 DO_VPZ(sve_uaddv_b, uint8_t, uint64_t, uint64_t, H1, 0, DO_ADD)
792 DO_VPZ(sve_uaddv_h, uint16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD)
793 DO_VPZ(sve_uaddv_s, uint32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD)
794 DO_VPZ_D(sve_uaddv_d, uint64_t, uint64_t, 0, DO_ADD)
795
796 DO_VPZ(sve_smaxv_b, int8_t, int8_t, uint8_t, H1, INT8_MIN, DO_MAX)
797 DO_VPZ(sve_smaxv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MIN, DO_MAX)
798 DO_VPZ(sve_smaxv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MIN, DO_MAX)
799 DO_VPZ_D(sve_smaxv_d, int64_t, int64_t, INT64_MIN, DO_MAX)
800
801 DO_VPZ(sve_umaxv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_MAX)
802 DO_VPZ(sve_umaxv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_MAX)
803 DO_VPZ(sve_umaxv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_MAX)
804 DO_VPZ_D(sve_umaxv_d, uint64_t, uint64_t, 0, DO_MAX)
805
806 DO_VPZ(sve_sminv_b, int8_t, int8_t, uint8_t, H1, INT8_MAX, DO_MIN)
807 DO_VPZ(sve_sminv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MAX, DO_MIN)
808 DO_VPZ(sve_sminv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MAX, DO_MIN)
809 DO_VPZ_D(sve_sminv_d, int64_t, int64_t, INT64_MAX, DO_MIN)
810
811 DO_VPZ(sve_uminv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_MIN)
812 DO_VPZ(sve_uminv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_MIN)
813 DO_VPZ(sve_uminv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_MIN)
814 DO_VPZ_D(sve_uminv_d, uint64_t, uint64_t, -1, DO_MIN)
815
816 #undef DO_VPZ
817 #undef DO_VPZ_D
818
819 /* Two vector operand, one scalar operand, unpredicated. */
820 #define DO_ZZI(NAME, TYPE, OP) \
821 void HELPER(NAME)(void *vd, void *vn, uint64_t s64, uint32_t desc) \
822 { \
823 intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(TYPE); \
824 TYPE s = s64, *d = vd, *n = vn; \
825 for (i = 0; i < opr_sz; ++i) { \
826 d[i] = OP(n[i], s); \
827 } \
828 }
829
830 #define DO_SUBR(X, Y) (Y - X)
831
832 DO_ZZI(sve_subri_b, uint8_t, DO_SUBR)
833 DO_ZZI(sve_subri_h, uint16_t, DO_SUBR)
834 DO_ZZI(sve_subri_s, uint32_t, DO_SUBR)
835 DO_ZZI(sve_subri_d, uint64_t, DO_SUBR)
836
837 DO_ZZI(sve_smaxi_b, int8_t, DO_MAX)
838 DO_ZZI(sve_smaxi_h, int16_t, DO_MAX)
839 DO_ZZI(sve_smaxi_s, int32_t, DO_MAX)
840 DO_ZZI(sve_smaxi_d, int64_t, DO_MAX)
841
842 DO_ZZI(sve_smini_b, int8_t, DO_MIN)
843 DO_ZZI(sve_smini_h, int16_t, DO_MIN)
844 DO_ZZI(sve_smini_s, int32_t, DO_MIN)
845 DO_ZZI(sve_smini_d, int64_t, DO_MIN)
846
847 DO_ZZI(sve_umaxi_b, uint8_t, DO_MAX)
848 DO_ZZI(sve_umaxi_h, uint16_t, DO_MAX)
849 DO_ZZI(sve_umaxi_s, uint32_t, DO_MAX)
850 DO_ZZI(sve_umaxi_d, uint64_t, DO_MAX)
851
852 DO_ZZI(sve_umini_b, uint8_t, DO_MIN)
853 DO_ZZI(sve_umini_h, uint16_t, DO_MIN)
854 DO_ZZI(sve_umini_s, uint32_t, DO_MIN)
855 DO_ZZI(sve_umini_d, uint64_t, DO_MIN)
856
857 #undef DO_ZZI
858
859 #undef DO_AND
860 #undef DO_ORR
861 #undef DO_EOR
862 #undef DO_BIC
863 #undef DO_ADD
864 #undef DO_SUB
865 #undef DO_MAX
866 #undef DO_MIN
867 #undef DO_ABD
868 #undef DO_MUL
869 #undef DO_DIV
870 #undef DO_ASR
871 #undef DO_LSR
872 #undef DO_LSL
873 #undef DO_SUBR
874
875 /* Similar to the ARM LastActiveElement pseudocode function, except the
876 result is multiplied by the element size. This includes the not found
877 indication; e.g. not found for esz=3 is -8. */
878 static intptr_t last_active_element(uint64_t *g, intptr_t words, intptr_t esz)
879 {
880 uint64_t mask = pred_esz_masks[esz];
881 intptr_t i = words;
882
883 do {
884 uint64_t this_g = g[--i] & mask;
885 if (this_g) {
886 return i * 64 + (63 - clz64(this_g));
887 }
888 } while (i > 0);
889 return (intptr_t)-1 << esz;
890 }
891
892 uint32_t HELPER(sve_pfirst)(void *vd, void *vg, uint32_t pred_desc)
893 {
894 intptr_t words = DIV_ROUND_UP(FIELD_EX32(pred_desc, PREDDESC, OPRSZ), 8);
895 uint32_t flags = PREDTEST_INIT;
896 uint64_t *d = vd, *g = vg;
897 intptr_t i = 0;
898
899 do {
900 uint64_t this_d = d[i];
901 uint64_t this_g = g[i];
902
903 if (this_g) {
904 if (!(flags & 4)) {
905 /* Set in D the first bit of G. */
906 this_d |= this_g & -this_g;
907 d[i] = this_d;
908 }
909 flags = iter_predtest_fwd(this_d, this_g, flags);
910 }
911 } while (++i < words);
912
913 return flags;
914 }
915
916 uint32_t HELPER(sve_pnext)(void *vd, void *vg, uint32_t pred_desc)
917 {
918 intptr_t words = DIV_ROUND_UP(FIELD_EX32(pred_desc, PREDDESC, OPRSZ), 8);
919 intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
920 uint32_t flags = PREDTEST_INIT;
921 uint64_t *d = vd, *g = vg, esz_mask;
922 intptr_t i, next;
923
924 next = last_active_element(vd, words, esz) + (1 << esz);
925 esz_mask = pred_esz_masks[esz];
926
927 /* Similar to the pseudocode for pnext, but scaled by ESZ
928 so that we find the correct bit. */
929 if (next < words * 64) {
930 uint64_t mask = -1;
931
932 if (next & 63) {
933 mask = ~((1ull << (next & 63)) - 1);
934 next &= -64;
935 }
936 do {
937 uint64_t this_g = g[next / 64] & esz_mask & mask;
938 if (this_g != 0) {
939 next = (next & -64) + ctz64(this_g);
940 break;
941 }
942 next += 64;
943 mask = -1;
944 } while (next < words * 64);
945 }
946
947 i = 0;
948 do {
949 uint64_t this_d = 0;
950 if (i == next / 64) {
951 this_d = 1ull << (next & 63);
952 }
953 d[i] = this_d;
954 flags = iter_predtest_fwd(this_d, g[i] & esz_mask, flags);
955 } while (++i < words);
956
957 return flags;
958 }
959
960 /*
961 * Copy Zn into Zd, and store zero into inactive elements.
962 * If inv, store zeros into the active elements.
963 */
964 void HELPER(sve_movz_b)(void *vd, void *vn, void *vg, uint32_t desc)
965 {
966 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
967 uint64_t inv = -(uint64_t)(simd_data(desc) & 1);
968 uint64_t *d = vd, *n = vn;
969 uint8_t *pg = vg;
970
971 for (i = 0; i < opr_sz; i += 1) {
972 d[i] = n[i] & (expand_pred_b(pg[H1(i)]) ^ inv);
973 }
974 }
975
976 void HELPER(sve_movz_h)(void *vd, void *vn, void *vg, uint32_t desc)
977 {
978 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
979 uint64_t inv = -(uint64_t)(simd_data(desc) & 1);
980 uint64_t *d = vd, *n = vn;
981 uint8_t *pg = vg;
982
983 for (i = 0; i < opr_sz; i += 1) {
984 d[i] = n[i] & (expand_pred_h(pg[H1(i)]) ^ inv);
985 }
986 }
987
988 void HELPER(sve_movz_s)(void *vd, void *vn, void *vg, uint32_t desc)
989 {
990 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
991 uint64_t inv = -(uint64_t)(simd_data(desc) & 1);
992 uint64_t *d = vd, *n = vn;
993 uint8_t *pg = vg;
994
995 for (i = 0; i < opr_sz; i += 1) {
996 d[i] = n[i] & (expand_pred_s(pg[H1(i)]) ^ inv);
997 }
998 }
999
1000 void HELPER(sve_movz_d)(void *vd, void *vn, void *vg, uint32_t desc)
1001 {
1002 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1003 uint64_t *d = vd, *n = vn;
1004 uint8_t *pg = vg;
1005 uint8_t inv = simd_data(desc);
1006
1007 for (i = 0; i < opr_sz; i += 1) {
1008 d[i] = n[i] & -(uint64_t)((pg[H1(i)] ^ inv) & 1);
1009 }
1010 }
1011
1012 /* Three-operand expander, immediate operand, controlled by a predicate.
1013 */
1014 #define DO_ZPZI(NAME, TYPE, H, OP) \
1015 void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
1016 { \
1017 intptr_t i, opr_sz = simd_oprsz(desc); \
1018 TYPE imm = simd_data(desc); \
1019 for (i = 0; i < opr_sz; ) { \
1020 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
1021 do { \
1022 if (pg & 1) { \
1023 TYPE nn = *(TYPE *)(vn + H(i)); \
1024 *(TYPE *)(vd + H(i)) = OP(nn, imm); \
1025 } \
1026 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
1027 } while (i & 15); \
1028 } \
1029 }
1030
1031 /* Similarly, specialized for 64-bit operands. */
1032 #define DO_ZPZI_D(NAME, TYPE, OP) \
1033 void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
1034 { \
1035 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
1036 TYPE *d = vd, *n = vn; \
1037 TYPE imm = simd_data(desc); \
1038 uint8_t *pg = vg; \
1039 for (i = 0; i < opr_sz; i += 1) { \
1040 if (pg[H1(i)] & 1) { \
1041 TYPE nn = n[i]; \
1042 d[i] = OP(nn, imm); \
1043 } \
1044 } \
1045 }
1046
1047 #define DO_SHR(N, M) (N >> M)
1048 #define DO_SHL(N, M) (N << M)
1049
1050 /* Arithmetic shift right for division. This rounds negative numbers
1051 toward zero as per signed division. Therefore before shifting,
1052 when N is negative, add 2**M-1. */
1053 #define DO_ASRD(N, M) ((N + (N < 0 ? ((__typeof(N))1 << M) - 1 : 0)) >> M)
1054
1055 DO_ZPZI(sve_asr_zpzi_b, int8_t, H1, DO_SHR)
1056 DO_ZPZI(sve_asr_zpzi_h, int16_t, H1_2, DO_SHR)
1057 DO_ZPZI(sve_asr_zpzi_s, int32_t, H1_4, DO_SHR)
1058 DO_ZPZI_D(sve_asr_zpzi_d, int64_t, DO_SHR)
1059
1060 DO_ZPZI(sve_lsr_zpzi_b, uint8_t, H1, DO_SHR)
1061 DO_ZPZI(sve_lsr_zpzi_h, uint16_t, H1_2, DO_SHR)
1062 DO_ZPZI(sve_lsr_zpzi_s, uint32_t, H1_4, DO_SHR)
1063 DO_ZPZI_D(sve_lsr_zpzi_d, uint64_t, DO_SHR)
1064
1065 DO_ZPZI(sve_lsl_zpzi_b, uint8_t, H1, DO_SHL)
1066 DO_ZPZI(sve_lsl_zpzi_h, uint16_t, H1_2, DO_SHL)
1067 DO_ZPZI(sve_lsl_zpzi_s, uint32_t, H1_4, DO_SHL)
1068 DO_ZPZI_D(sve_lsl_zpzi_d, uint64_t, DO_SHL)
1069
1070 DO_ZPZI(sve_asrd_b, int8_t, H1, DO_ASRD)
1071 DO_ZPZI(sve_asrd_h, int16_t, H1_2, DO_ASRD)
1072 DO_ZPZI(sve_asrd_s, int32_t, H1_4, DO_ASRD)
1073 DO_ZPZI_D(sve_asrd_d, int64_t, DO_ASRD)
1074
1075 #undef DO_SHR
1076 #undef DO_SHL
1077 #undef DO_ASRD
1078 #undef DO_ZPZI
1079 #undef DO_ZPZI_D
1080
1081 /* Fully general four-operand expander, controlled by a predicate.
1082 */
1083 #define DO_ZPZZZ(NAME, TYPE, H, OP) \
1084 void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \
1085 void *vg, uint32_t desc) \
1086 { \
1087 intptr_t i, opr_sz = simd_oprsz(desc); \
1088 for (i = 0; i < opr_sz; ) { \
1089 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
1090 do { \
1091 if (pg & 1) { \
1092 TYPE nn = *(TYPE *)(vn + H(i)); \
1093 TYPE mm = *(TYPE *)(vm + H(i)); \
1094 TYPE aa = *(TYPE *)(va + H(i)); \
1095 *(TYPE *)(vd + H(i)) = OP(aa, nn, mm); \
1096 } \
1097 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
1098 } while (i & 15); \
1099 } \
1100 }
1101
1102 /* Similarly, specialized for 64-bit operands. */
1103 #define DO_ZPZZZ_D(NAME, TYPE, OP) \
1104 void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \
1105 void *vg, uint32_t desc) \
1106 { \
1107 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
1108 TYPE *d = vd, *a = va, *n = vn, *m = vm; \
1109 uint8_t *pg = vg; \
1110 for (i = 0; i < opr_sz; i += 1) { \
1111 if (pg[H1(i)] & 1) { \
1112 TYPE aa = a[i], nn = n[i], mm = m[i]; \
1113 d[i] = OP(aa, nn, mm); \
1114 } \
1115 } \
1116 }
1117
1118 #define DO_MLA(A, N, M) (A + N * M)
1119 #define DO_MLS(A, N, M) (A - N * M)
1120
1121 DO_ZPZZZ(sve_mla_b, uint8_t, H1, DO_MLA)
1122 DO_ZPZZZ(sve_mls_b, uint8_t, H1, DO_MLS)
1123
1124 DO_ZPZZZ(sve_mla_h, uint16_t, H1_2, DO_MLA)
1125 DO_ZPZZZ(sve_mls_h, uint16_t, H1_2, DO_MLS)
1126
1127 DO_ZPZZZ(sve_mla_s, uint32_t, H1_4, DO_MLA)
1128 DO_ZPZZZ(sve_mls_s, uint32_t, H1_4, DO_MLS)
1129
1130 DO_ZPZZZ_D(sve_mla_d, uint64_t, DO_MLA)
1131 DO_ZPZZZ_D(sve_mls_d, uint64_t, DO_MLS)
1132
1133 #undef DO_MLA
1134 #undef DO_MLS
1135 #undef DO_ZPZZZ
1136 #undef DO_ZPZZZ_D
1137
1138 void HELPER(sve_index_b)(void *vd, uint32_t start,
1139 uint32_t incr, uint32_t desc)
1140 {
1141 intptr_t i, opr_sz = simd_oprsz(desc);
1142 uint8_t *d = vd;
1143 for (i = 0; i < opr_sz; i += 1) {
1144 d[H1(i)] = start + i * incr;
1145 }
1146 }
1147
1148 void HELPER(sve_index_h)(void *vd, uint32_t start,
1149 uint32_t incr, uint32_t desc)
1150 {
1151 intptr_t i, opr_sz = simd_oprsz(desc) / 2;
1152 uint16_t *d = vd;
1153 for (i = 0; i < opr_sz; i += 1) {
1154 d[H2(i)] = start + i * incr;
1155 }
1156 }
1157
1158 void HELPER(sve_index_s)(void *vd, uint32_t start,
1159 uint32_t incr, uint32_t desc)
1160 {
1161 intptr_t i, opr_sz = simd_oprsz(desc) / 4;
1162 uint32_t *d = vd;
1163 for (i = 0; i < opr_sz; i += 1) {
1164 d[H4(i)] = start + i * incr;
1165 }
1166 }
1167
1168 void HELPER(sve_index_d)(void *vd, uint64_t start,
1169 uint64_t incr, uint32_t desc)
1170 {
1171 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1172 uint64_t *d = vd;
1173 for (i = 0; i < opr_sz; i += 1) {
1174 d[i] = start + i * incr;
1175 }
1176 }
1177
1178 void HELPER(sve_adr_p32)(void *vd, void *vn, void *vm, uint32_t desc)
1179 {
1180 intptr_t i, opr_sz = simd_oprsz(desc) / 4;
1181 uint32_t sh = simd_data(desc);
1182 uint32_t *d = vd, *n = vn, *m = vm;
1183 for (i = 0; i < opr_sz; i += 1) {
1184 d[i] = n[i] + (m[i] << sh);
1185 }
1186 }
1187
1188 void HELPER(sve_adr_p64)(void *vd, void *vn, void *vm, uint32_t desc)
1189 {
1190 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1191 uint64_t sh = simd_data(desc);
1192 uint64_t *d = vd, *n = vn, *m = vm;
1193 for (i = 0; i < opr_sz; i += 1) {
1194 d[i] = n[i] + (m[i] << sh);
1195 }
1196 }
1197
1198 void HELPER(sve_adr_s32)(void *vd, void *vn, void *vm, uint32_t desc)
1199 {
1200 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1201 uint64_t sh = simd_data(desc);
1202 uint64_t *d = vd, *n = vn, *m = vm;
1203 for (i = 0; i < opr_sz; i += 1) {
1204 d[i] = n[i] + ((uint64_t)(int32_t)m[i] << sh);
1205 }
1206 }
1207
1208 void HELPER(sve_adr_u32)(void *vd, void *vn, void *vm, uint32_t desc)
1209 {
1210 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1211 uint64_t sh = simd_data(desc);
1212 uint64_t *d = vd, *n = vn, *m = vm;
1213 for (i = 0; i < opr_sz; i += 1) {
1214 d[i] = n[i] + ((uint64_t)(uint32_t)m[i] << sh);
1215 }
1216 }
1217
1218 void HELPER(sve_fexpa_h)(void *vd, void *vn, uint32_t desc)
1219 {
1220 /* These constants are cut-and-paste directly from the ARM pseudocode. */
1221 static const uint16_t coeff[] = {
1222 0x0000, 0x0016, 0x002d, 0x0045, 0x005d, 0x0075, 0x008e, 0x00a8,
1223 0x00c2, 0x00dc, 0x00f8, 0x0114, 0x0130, 0x014d, 0x016b, 0x0189,
1224 0x01a8, 0x01c8, 0x01e8, 0x0209, 0x022b, 0x024e, 0x0271, 0x0295,
1225 0x02ba, 0x02e0, 0x0306, 0x032e, 0x0356, 0x037f, 0x03a9, 0x03d4,
1226 };
1227 intptr_t i, opr_sz = simd_oprsz(desc) / 2;
1228 uint16_t *d = vd, *n = vn;
1229
1230 for (i = 0; i < opr_sz; i++) {
1231 uint16_t nn = n[i];
1232 intptr_t idx = extract32(nn, 0, 5);
1233 uint16_t exp = extract32(nn, 5, 5);
1234 d[i] = coeff[idx] | (exp << 10);
1235 }
1236 }
1237
1238 void HELPER(sve_fexpa_s)(void *vd, void *vn, uint32_t desc)
1239 {
1240 /* These constants are cut-and-paste directly from the ARM pseudocode. */
1241 static const uint32_t coeff[] = {
1242 0x000000, 0x0164d2, 0x02cd87, 0x043a29,
1243 0x05aac3, 0x071f62, 0x08980f, 0x0a14d5,
1244 0x0b95c2, 0x0d1adf, 0x0ea43a, 0x1031dc,
1245 0x11c3d3, 0x135a2b, 0x14f4f0, 0x16942d,
1246 0x1837f0, 0x19e046, 0x1b8d3a, 0x1d3eda,
1247 0x1ef532, 0x20b051, 0x227043, 0x243516,
1248 0x25fed7, 0x27cd94, 0x29a15b, 0x2b7a3a,
1249 0x2d583f, 0x2f3b79, 0x3123f6, 0x3311c4,
1250 0x3504f3, 0x36fd92, 0x38fbaf, 0x3aff5b,
1251 0x3d08a4, 0x3f179a, 0x412c4d, 0x4346cd,
1252 0x45672a, 0x478d75, 0x49b9be, 0x4bec15,
1253 0x4e248c, 0x506334, 0x52a81e, 0x54f35b,
1254 0x5744fd, 0x599d16, 0x5bfbb8, 0x5e60f5,
1255 0x60ccdf, 0x633f89, 0x65b907, 0x68396a,
1256 0x6ac0c7, 0x6d4f30, 0x6fe4ba, 0x728177,
1257 0x75257d, 0x77d0df, 0x7a83b3, 0x7d3e0c,
1258 };
1259 intptr_t i, opr_sz = simd_oprsz(desc) / 4;
1260 uint32_t *d = vd, *n = vn;
1261
1262 for (i = 0; i < opr_sz; i++) {
1263 uint32_t nn = n[i];
1264 intptr_t idx = extract32(nn, 0, 6);
1265 uint32_t exp = extract32(nn, 6, 8);
1266 d[i] = coeff[idx] | (exp << 23);
1267 }
1268 }
1269
1270 void HELPER(sve_fexpa_d)(void *vd, void *vn, uint32_t desc)
1271 {
1272 /* These constants are cut-and-paste directly from the ARM pseudocode. */
1273 static const uint64_t coeff[] = {
1274 0x0000000000000ull, 0x02C9A3E778061ull, 0x059B0D3158574ull,
1275 0x0874518759BC8ull, 0x0B5586CF9890Full, 0x0E3EC32D3D1A2ull,
1276 0x11301D0125B51ull, 0x1429AAEA92DE0ull, 0x172B83C7D517Bull,
1277 0x1A35BEB6FCB75ull, 0x1D4873168B9AAull, 0x2063B88628CD6ull,
1278 0x2387A6E756238ull, 0x26B4565E27CDDull, 0x29E9DF51FDEE1ull,
1279 0x2D285A6E4030Bull, 0x306FE0A31B715ull, 0x33C08B26416FFull,
1280 0x371A7373AA9CBull, 0x3A7DB34E59FF7ull, 0x3DEA64C123422ull,
1281 0x4160A21F72E2Aull, 0x44E086061892Dull, 0x486A2B5C13CD0ull,
1282 0x4BFDAD5362A27ull, 0x4F9B2769D2CA7ull, 0x5342B569D4F82ull,
1283 0x56F4736B527DAull, 0x5AB07DD485429ull, 0x5E76F15AD2148ull,
1284 0x6247EB03A5585ull, 0x6623882552225ull, 0x6A09E667F3BCDull,
1285 0x6DFB23C651A2Full, 0x71F75E8EC5F74ull, 0x75FEB564267C9ull,
1286 0x7A11473EB0187ull, 0x7E2F336CF4E62ull, 0x82589994CCE13ull,
1287 0x868D99B4492EDull, 0x8ACE5422AA0DBull, 0x8F1AE99157736ull,
1288 0x93737B0CDC5E5ull, 0x97D829FDE4E50ull, 0x9C49182A3F090ull,
1289 0xA0C667B5DE565ull, 0xA5503B23E255Dull, 0xA9E6B5579FDBFull,
1290 0xAE89F995AD3ADull, 0xB33A2B84F15FBull, 0xB7F76F2FB5E47ull,
1291 0xBCC1E904BC1D2ull, 0xC199BDD85529Cull, 0xC67F12E57D14Bull,
1292 0xCB720DCEF9069ull, 0xD072D4A07897Cull, 0xD5818DCFBA487ull,
1293 0xDA9E603DB3285ull, 0xDFC97337B9B5Full, 0xE502EE78B3FF6ull,
1294 0xEA4AFA2A490DAull, 0xEFA1BEE615A27ull, 0xF50765B6E4540ull,
1295 0xFA7C1819E90D8ull,
1296 };
1297 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1298 uint64_t *d = vd, *n = vn;
1299
1300 for (i = 0; i < opr_sz; i++) {
1301 uint64_t nn = n[i];
1302 intptr_t idx = extract32(nn, 0, 6);
1303 uint64_t exp = extract32(nn, 6, 11);
1304 d[i] = coeff[idx] | (exp << 52);
1305 }
1306 }
1307
1308 void HELPER(sve_ftssel_h)(void *vd, void *vn, void *vm, uint32_t desc)
1309 {
1310 intptr_t i, opr_sz = simd_oprsz(desc) / 2;
1311 uint16_t *d = vd, *n = vn, *m = vm;
1312 for (i = 0; i < opr_sz; i += 1) {
1313 uint16_t nn = n[i];
1314 uint16_t mm = m[i];
1315 if (mm & 1) {
1316 nn = float16_one;
1317 }
1318 d[i] = nn ^ (mm & 2) << 14;
1319 }
1320 }
1321
1322 void HELPER(sve_ftssel_s)(void *vd, void *vn, void *vm, uint32_t desc)
1323 {
1324 intptr_t i, opr_sz = simd_oprsz(desc) / 4;
1325 uint32_t *d = vd, *n = vn, *m = vm;
1326 for (i = 0; i < opr_sz; i += 1) {
1327 uint32_t nn = n[i];
1328 uint32_t mm = m[i];
1329 if (mm & 1) {
1330 nn = float32_one;
1331 }
1332 d[i] = nn ^ (mm & 2) << 30;
1333 }
1334 }
1335
1336 void HELPER(sve_ftssel_d)(void *vd, void *vn, void *vm, uint32_t desc)
1337 {
1338 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1339 uint64_t *d = vd, *n = vn, *m = vm;
1340 for (i = 0; i < opr_sz; i += 1) {
1341 uint64_t nn = n[i];
1342 uint64_t mm = m[i];
1343 if (mm & 1) {
1344 nn = float64_one;
1345 }
1346 d[i] = nn ^ (mm & 2) << 62;
1347 }
1348 }
1349
1350 /*
1351 * Signed saturating addition with scalar operand.
1352 */
1353
1354 void HELPER(sve_sqaddi_b)(void *d, void *a, int32_t b, uint32_t desc)
1355 {
1356 intptr_t i, oprsz = simd_oprsz(desc);
1357
1358 for (i = 0; i < oprsz; i += sizeof(int8_t)) {
1359 int r = *(int8_t *)(a + i) + b;
1360 if (r > INT8_MAX) {
1361 r = INT8_MAX;
1362 } else if (r < INT8_MIN) {
1363 r = INT8_MIN;
1364 }
1365 *(int8_t *)(d + i) = r;
1366 }
1367 }
1368
1369 void HELPER(sve_sqaddi_h)(void *d, void *a, int32_t b, uint32_t desc)
1370 {
1371 intptr_t i, oprsz = simd_oprsz(desc);
1372
1373 for (i = 0; i < oprsz; i += sizeof(int16_t)) {
1374 int r = *(int16_t *)(a + i) + b;
1375 if (r > INT16_MAX) {
1376 r = INT16_MAX;
1377 } else if (r < INT16_MIN) {
1378 r = INT16_MIN;
1379 }
1380 *(int16_t *)(d + i) = r;
1381 }
1382 }
1383
1384 void HELPER(sve_sqaddi_s)(void *d, void *a, int64_t b, uint32_t desc)
1385 {
1386 intptr_t i, oprsz = simd_oprsz(desc);
1387
1388 for (i = 0; i < oprsz; i += sizeof(int32_t)) {
1389 int64_t r = *(int32_t *)(a + i) + b;
1390 if (r > INT32_MAX) {
1391 r = INT32_MAX;
1392 } else if (r < INT32_MIN) {
1393 r = INT32_MIN;
1394 }
1395 *(int32_t *)(d + i) = r;
1396 }
1397 }
1398
1399 void HELPER(sve_sqaddi_d)(void *d, void *a, int64_t b, uint32_t desc)
1400 {
1401 intptr_t i, oprsz = simd_oprsz(desc);
1402
1403 for (i = 0; i < oprsz; i += sizeof(int64_t)) {
1404 int64_t ai = *(int64_t *)(a + i);
1405 int64_t r = ai + b;
1406 if (((r ^ ai) & ~(ai ^ b)) < 0) {
1407 /* Signed overflow. */
1408 r = (r < 0 ? INT64_MAX : INT64_MIN);
1409 }
1410 *(int64_t *)(d + i) = r;
1411 }
1412 }
1413
1414 /*
1415 * Unsigned saturating addition with scalar operand.
1416 */
1417
1418 void HELPER(sve_uqaddi_b)(void *d, void *a, int32_t b, uint32_t desc)
1419 {
1420 intptr_t i, oprsz = simd_oprsz(desc);
1421
1422 for (i = 0; i < oprsz; i += sizeof(uint8_t)) {
1423 int r = *(uint8_t *)(a + i) + b;
1424 if (r > UINT8_MAX) {
1425 r = UINT8_MAX;
1426 } else if (r < 0) {
1427 r = 0;
1428 }
1429 *(uint8_t *)(d + i) = r;
1430 }
1431 }
1432
1433 void HELPER(sve_uqaddi_h)(void *d, void *a, int32_t b, uint32_t desc)
1434 {
1435 intptr_t i, oprsz = simd_oprsz(desc);
1436
1437 for (i = 0; i < oprsz; i += sizeof(uint16_t)) {
1438 int r = *(uint16_t *)(a + i) + b;
1439 if (r > UINT16_MAX) {
1440 r = UINT16_MAX;
1441 } else if (r < 0) {
1442 r = 0;
1443 }
1444 *(uint16_t *)(d + i) = r;
1445 }
1446 }
1447
1448 void HELPER(sve_uqaddi_s)(void *d, void *a, int64_t b, uint32_t desc)
1449 {
1450 intptr_t i, oprsz = simd_oprsz(desc);
1451
1452 for (i = 0; i < oprsz; i += sizeof(uint32_t)) {
1453 int64_t r = *(uint32_t *)(a + i) + b;
1454 if (r > UINT32_MAX) {
1455 r = UINT32_MAX;
1456 } else if (r < 0) {
1457 r = 0;
1458 }
1459 *(uint32_t *)(d + i) = r;
1460 }
1461 }
1462
1463 void HELPER(sve_uqaddi_d)(void *d, void *a, uint64_t b, uint32_t desc)
1464 {
1465 intptr_t i, oprsz = simd_oprsz(desc);
1466
1467 for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
1468 uint64_t r = *(uint64_t *)(a + i) + b;
1469 if (r < b) {
1470 r = UINT64_MAX;
1471 }
1472 *(uint64_t *)(d + i) = r;
1473 }
1474 }
1475
1476 void HELPER(sve_uqsubi_d)(void *d, void *a, uint64_t b, uint32_t desc)
1477 {
1478 intptr_t i, oprsz = simd_oprsz(desc);
1479
1480 for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
1481 uint64_t ai = *(uint64_t *)(a + i);
1482 *(uint64_t *)(d + i) = (ai < b ? 0 : ai - b);
1483 }
1484 }
1485
1486 /* Two operand predicated copy immediate with merge. All valid immediates
1487 * can fit within 17 signed bits in the simd_data field.
1488 */
1489 void HELPER(sve_cpy_m_b)(void *vd, void *vn, void *vg,
1490 uint64_t mm, uint32_t desc)
1491 {
1492 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1493 uint64_t *d = vd, *n = vn;
1494 uint8_t *pg = vg;
1495
1496 mm = dup_const(MO_8, mm);
1497 for (i = 0; i < opr_sz; i += 1) {
1498 uint64_t nn = n[i];
1499 uint64_t pp = expand_pred_b(pg[H1(i)]);
1500 d[i] = (mm & pp) | (nn & ~pp);
1501 }
1502 }
1503
1504 void HELPER(sve_cpy_m_h)(void *vd, void *vn, void *vg,
1505 uint64_t mm, uint32_t desc)
1506 {
1507 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1508 uint64_t *d = vd, *n = vn;
1509 uint8_t *pg = vg;
1510
1511 mm = dup_const(MO_16, mm);
1512 for (i = 0; i < opr_sz; i += 1) {
1513 uint64_t nn = n[i];
1514 uint64_t pp = expand_pred_h(pg[H1(i)]);
1515 d[i] = (mm & pp) | (nn & ~pp);
1516 }
1517 }
1518
1519 void HELPER(sve_cpy_m_s)(void *vd, void *vn, void *vg,
1520 uint64_t mm, uint32_t desc)
1521 {
1522 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1523 uint64_t *d = vd, *n = vn;
1524 uint8_t *pg = vg;
1525
1526 mm = dup_const(MO_32, mm);
1527 for (i = 0; i < opr_sz; i += 1) {
1528 uint64_t nn = n[i];
1529 uint64_t pp = expand_pred_s(pg[H1(i)]);
1530 d[i] = (mm & pp) | (nn & ~pp);
1531 }
1532 }
1533
1534 void HELPER(sve_cpy_m_d)(void *vd, void *vn, void *vg,
1535 uint64_t mm, uint32_t desc)
1536 {
1537 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1538 uint64_t *d = vd, *n = vn;
1539 uint8_t *pg = vg;
1540
1541 for (i = 0; i < opr_sz; i += 1) {
1542 uint64_t nn = n[i];
1543 d[i] = (pg[H1(i)] & 1 ? mm : nn);
1544 }
1545 }
1546
1547 void HELPER(sve_cpy_z_b)(void *vd, void *vg, uint64_t val, uint32_t desc)
1548 {
1549 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1550 uint64_t *d = vd;
1551 uint8_t *pg = vg;
1552
1553 val = dup_const(MO_8, val);
1554 for (i = 0; i < opr_sz; i += 1) {
1555 d[i] = val & expand_pred_b(pg[H1(i)]);
1556 }
1557 }
1558
1559 void HELPER(sve_cpy_z_h)(void *vd, void *vg, uint64_t val, uint32_t desc)
1560 {
1561 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1562 uint64_t *d = vd;
1563 uint8_t *pg = vg;
1564
1565 val = dup_const(MO_16, val);
1566 for (i = 0; i < opr_sz; i += 1) {
1567 d[i] = val & expand_pred_h(pg[H1(i)]);
1568 }
1569 }
1570
1571 void HELPER(sve_cpy_z_s)(void *vd, void *vg, uint64_t val, uint32_t desc)
1572 {
1573 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1574 uint64_t *d = vd;
1575 uint8_t *pg = vg;
1576
1577 val = dup_const(MO_32, val);
1578 for (i = 0; i < opr_sz; i += 1) {
1579 d[i] = val & expand_pred_s(pg[H1(i)]);
1580 }
1581 }
1582
1583 void HELPER(sve_cpy_z_d)(void *vd, void *vg, uint64_t val, uint32_t desc)
1584 {
1585 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1586 uint64_t *d = vd;
1587 uint8_t *pg = vg;
1588
1589 for (i = 0; i < opr_sz; i += 1) {
1590 d[i] = (pg[H1(i)] & 1 ? val : 0);
1591 }
1592 }
1593
1594 /* Big-endian hosts need to frob the byte indices. If the copy
1595 * happens to be 8-byte aligned, then no frobbing necessary.
1596 */
1597 static void swap_memmove(void *vd, void *vs, size_t n)
1598 {
1599 uintptr_t d = (uintptr_t)vd;
1600 uintptr_t s = (uintptr_t)vs;
1601 uintptr_t o = (d | s | n) & 7;
1602 size_t i;
1603
1604 #ifndef HOST_WORDS_BIGENDIAN
1605 o = 0;
1606 #endif
1607 switch (o) {
1608 case 0:
1609 memmove(vd, vs, n);
1610 break;
1611
1612 case 4:
1613 if (d < s || d >= s + n) {
1614 for (i = 0; i < n; i += 4) {
1615 *(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i);
1616 }
1617 } else {
1618 for (i = n; i > 0; ) {
1619 i -= 4;
1620 *(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i);
1621 }
1622 }
1623 break;
1624
1625 case 2:
1626 case 6:
1627 if (d < s || d >= s + n) {
1628 for (i = 0; i < n; i += 2) {
1629 *(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i);
1630 }
1631 } else {
1632 for (i = n; i > 0; ) {
1633 i -= 2;
1634 *(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i);
1635 }
1636 }
1637 break;
1638
1639 default:
1640 if (d < s || d >= s + n) {
1641 for (i = 0; i < n; i++) {
1642 *(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i);
1643 }
1644 } else {
1645 for (i = n; i > 0; ) {
1646 i -= 1;
1647 *(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i);
1648 }
1649 }
1650 break;
1651 }
1652 }
1653
1654 /* Similarly for memset of 0. */
1655 static void swap_memzero(void *vd, size_t n)
1656 {
1657 uintptr_t d = (uintptr_t)vd;
1658 uintptr_t o = (d | n) & 7;
1659 size_t i;
1660
1661 /* Usually, the first bit of a predicate is set, so N is 0. */
1662 if (likely(n == 0)) {
1663 return;
1664 }
1665
1666 #ifndef HOST_WORDS_BIGENDIAN
1667 o = 0;
1668 #endif
1669 switch (o) {
1670 case 0:
1671 memset(vd, 0, n);
1672 break;
1673
1674 case 4:
1675 for (i = 0; i < n; i += 4) {
1676 *(uint32_t *)H1_4(d + i) = 0;
1677 }
1678 break;
1679
1680 case 2:
1681 case 6:
1682 for (i = 0; i < n; i += 2) {
1683 *(uint16_t *)H1_2(d + i) = 0;
1684 }
1685 break;
1686
1687 default:
1688 for (i = 0; i < n; i++) {
1689 *(uint8_t *)H1(d + i) = 0;
1690 }
1691 break;
1692 }
1693 }
1694
1695 void HELPER(sve_ext)(void *vd, void *vn, void *vm, uint32_t desc)
1696 {
1697 intptr_t opr_sz = simd_oprsz(desc);
1698 size_t n_ofs = simd_data(desc);
1699 size_t n_siz = opr_sz - n_ofs;
1700
1701 if (vd != vm) {
1702 swap_memmove(vd, vn + n_ofs, n_siz);
1703 swap_memmove(vd + n_siz, vm, n_ofs);
1704 } else if (vd != vn) {
1705 swap_memmove(vd + n_siz, vd, n_ofs);
1706 swap_memmove(vd, vn + n_ofs, n_siz);
1707 } else {
1708 /* vd == vn == vm. Need temp space. */
1709 ARMVectorReg tmp;
1710 swap_memmove(&tmp, vm, n_ofs);
1711 swap_memmove(vd, vd + n_ofs, n_siz);
1712 memcpy(vd + n_siz, &tmp, n_ofs);
1713 }
1714 }
1715
1716 #define DO_INSR(NAME, TYPE, H) \
1717 void HELPER(NAME)(void *vd, void *vn, uint64_t val, uint32_t desc) \
1718 { \
1719 intptr_t opr_sz = simd_oprsz(desc); \
1720 swap_memmove(vd + sizeof(TYPE), vn, opr_sz - sizeof(TYPE)); \
1721 *(TYPE *)(vd + H(0)) = val; \
1722 }
1723
1724 DO_INSR(sve_insr_b, uint8_t, H1)
1725 DO_INSR(sve_insr_h, uint16_t, H1_2)
1726 DO_INSR(sve_insr_s, uint32_t, H1_4)
1727 DO_INSR(sve_insr_d, uint64_t, )
1728
1729 #undef DO_INSR
1730
1731 void HELPER(sve_rev_b)(void *vd, void *vn, uint32_t desc)
1732 {
1733 intptr_t i, j, opr_sz = simd_oprsz(desc);
1734 for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
1735 uint64_t f = *(uint64_t *)(vn + i);
1736 uint64_t b = *(uint64_t *)(vn + j);
1737 *(uint64_t *)(vd + i) = bswap64(b);
1738 *(uint64_t *)(vd + j) = bswap64(f);
1739 }
1740 }
1741
1742 void HELPER(sve_rev_h)(void *vd, void *vn, uint32_t desc)
1743 {
1744 intptr_t i, j, opr_sz = simd_oprsz(desc);
1745 for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
1746 uint64_t f = *(uint64_t *)(vn + i);
1747 uint64_t b = *(uint64_t *)(vn + j);
1748 *(uint64_t *)(vd + i) = hswap64(b);
1749 *(uint64_t *)(vd + j) = hswap64(f);
1750 }
1751 }
1752
1753 void HELPER(sve_rev_s)(void *vd, void *vn, uint32_t desc)
1754 {
1755 intptr_t i, j, opr_sz = simd_oprsz(desc);
1756 for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
1757 uint64_t f = *(uint64_t *)(vn + i);
1758 uint64_t b = *(uint64_t *)(vn + j);
1759 *(uint64_t *)(vd + i) = rol64(b, 32);
1760 *(uint64_t *)(vd + j) = rol64(f, 32);
1761 }
1762 }
1763
1764 void HELPER(sve_rev_d)(void *vd, void *vn, uint32_t desc)
1765 {
1766 intptr_t i, j, opr_sz = simd_oprsz(desc);
1767 for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
1768 uint64_t f = *(uint64_t *)(vn + i);
1769 uint64_t b = *(uint64_t *)(vn + j);
1770 *(uint64_t *)(vd + i) = b;
1771 *(uint64_t *)(vd + j) = f;
1772 }
1773 }
1774
1775 #define DO_TBL(NAME, TYPE, H) \
1776 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
1777 { \
1778 intptr_t i, opr_sz = simd_oprsz(desc); \
1779 uintptr_t elem = opr_sz / sizeof(TYPE); \
1780 TYPE *d = vd, *n = vn, *m = vm; \
1781 ARMVectorReg tmp; \
1782 if (unlikely(vd == vn)) { \
1783 n = memcpy(&tmp, vn, opr_sz); \
1784 } \
1785 for (i = 0; i < elem; i++) { \
1786 TYPE j = m[H(i)]; \
1787 d[H(i)] = j < elem ? n[H(j)] : 0; \
1788 } \
1789 }
1790
1791 DO_TBL(sve_tbl_b, uint8_t, H1)
1792 DO_TBL(sve_tbl_h, uint16_t, H2)
1793 DO_TBL(sve_tbl_s, uint32_t, H4)
1794 DO_TBL(sve_tbl_d, uint64_t, )
1795
1796 #undef TBL
1797
1798 #define DO_UNPK(NAME, TYPED, TYPES, HD, HS) \
1799 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
1800 { \
1801 intptr_t i, opr_sz = simd_oprsz(desc); \
1802 TYPED *d = vd; \
1803 TYPES *n = vn; \
1804 ARMVectorReg tmp; \
1805 if (unlikely(vn - vd < opr_sz)) { \
1806 n = memcpy(&tmp, n, opr_sz / 2); \
1807 } \
1808 for (i = 0; i < opr_sz / sizeof(TYPED); i++) { \
1809 d[HD(i)] = n[HS(i)]; \
1810 } \
1811 }
1812
1813 DO_UNPK(sve_sunpk_h, int16_t, int8_t, H2, H1)
1814 DO_UNPK(sve_sunpk_s, int32_t, int16_t, H4, H2)
1815 DO_UNPK(sve_sunpk_d, int64_t, int32_t, , H4)
1816
1817 DO_UNPK(sve_uunpk_h, uint16_t, uint8_t, H2, H1)
1818 DO_UNPK(sve_uunpk_s, uint32_t, uint16_t, H4, H2)
1819 DO_UNPK(sve_uunpk_d, uint64_t, uint32_t, , H4)
1820
1821 #undef DO_UNPK
1822
1823 /* Mask of bits included in the even numbered predicates of width esz.
1824 * We also use this for expand_bits/compress_bits, and so extend the
1825 * same pattern out to 16-bit units.
1826 */
1827 static const uint64_t even_bit_esz_masks[5] = {
1828 0x5555555555555555ull,
1829 0x3333333333333333ull,
1830 0x0f0f0f0f0f0f0f0full,
1831 0x00ff00ff00ff00ffull,
1832 0x0000ffff0000ffffull,
1833 };
1834
1835 /* Zero-extend units of 2**N bits to units of 2**(N+1) bits.
1836 * For N==0, this corresponds to the operation that in qemu/bitops.h
1837 * we call half_shuffle64; this algorithm is from Hacker's Delight,
1838 * section 7-2 Shuffling Bits.
1839 */
1840 static uint64_t expand_bits(uint64_t x, int n)
1841 {
1842 int i;
1843
1844 x &= 0xffffffffu;
1845 for (i = 4; i >= n; i--) {
1846 int sh = 1 << i;
1847 x = ((x << sh) | x) & even_bit_esz_masks[i];
1848 }
1849 return x;
1850 }
1851
1852 /* Compress units of 2**(N+1) bits to units of 2**N bits.
1853 * For N==0, this corresponds to the operation that in qemu/bitops.h
1854 * we call half_unshuffle64; this algorithm is from Hacker's Delight,
1855 * section 7-2 Shuffling Bits, where it is called an inverse half shuffle.
1856 */
1857 static uint64_t compress_bits(uint64_t x, int n)
1858 {
1859 int i;
1860
1861 for (i = n; i <= 4; i++) {
1862 int sh = 1 << i;
1863 x &= even_bit_esz_masks[i];
1864 x = (x >> sh) | x;
1865 }
1866 return x & 0xffffffffu;
1867 }
1868
1869 void HELPER(sve_zip_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
1870 {
1871 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
1872 int esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
1873 intptr_t high = FIELD_EX32(pred_desc, PREDDESC, DATA);
1874 int esize = 1 << esz;
1875 uint64_t *d = vd;
1876 intptr_t i;
1877
1878 if (oprsz <= 8) {
1879 uint64_t nn = *(uint64_t *)vn;
1880 uint64_t mm = *(uint64_t *)vm;
1881 int half = 4 * oprsz;
1882
1883 nn = extract64(nn, high * half, half);
1884 mm = extract64(mm, high * half, half);
1885 nn = expand_bits(nn, esz);
1886 mm = expand_bits(mm, esz);
1887 d[0] = nn | (mm << esize);
1888 } else {
1889 ARMPredicateReg tmp;
1890
1891 /* We produce output faster than we consume input.
1892 Therefore we must be mindful of possible overlap. */
1893 if (vd == vn) {
1894 vn = memcpy(&tmp, vn, oprsz);
1895 if (vd == vm) {
1896 vm = vn;
1897 }
1898 } else if (vd == vm) {
1899 vm = memcpy(&tmp, vm, oprsz);
1900 }
1901 if (high) {
1902 high = oprsz >> 1;
1903 }
1904
1905 if ((oprsz & 7) == 0) {
1906 uint32_t *n = vn, *m = vm;
1907 high >>= 2;
1908
1909 for (i = 0; i < oprsz / 8; i++) {
1910 uint64_t nn = n[H4(high + i)];
1911 uint64_t mm = m[H4(high + i)];
1912
1913 nn = expand_bits(nn, esz);
1914 mm = expand_bits(mm, esz);
1915 d[i] = nn | (mm << esize);
1916 }
1917 } else {
1918 uint8_t *n = vn, *m = vm;
1919 uint16_t *d16 = vd;
1920
1921 for (i = 0; i < oprsz / 2; i++) {
1922 uint16_t nn = n[H1(high + i)];
1923 uint16_t mm = m[H1(high + i)];
1924
1925 nn = expand_bits(nn, esz);
1926 mm = expand_bits(mm, esz);
1927 d16[H2(i)] = nn | (mm << esize);
1928 }
1929 }
1930 }
1931 }
1932
1933 void HELPER(sve_uzp_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
1934 {
1935 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
1936 int esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
1937 int odd = FIELD_EX32(pred_desc, PREDDESC, DATA) << esz;
1938 uint64_t *d = vd, *n = vn, *m = vm;
1939 uint64_t l, h;
1940 intptr_t i;
1941
1942 if (oprsz <= 8) {
1943 l = compress_bits(n[0] >> odd, esz);
1944 h = compress_bits(m[0] >> odd, esz);
1945 d[0] = l | (h << (4 * oprsz));
1946 } else {
1947 ARMPredicateReg tmp_m;
1948 intptr_t oprsz_16 = oprsz / 16;
1949
1950 if ((vm - vd) < (uintptr_t)oprsz) {
1951 m = memcpy(&tmp_m, vm, oprsz);
1952 }
1953
1954 for (i = 0; i < oprsz_16; i++) {
1955 l = n[2 * i + 0];
1956 h = n[2 * i + 1];
1957 l = compress_bits(l >> odd, esz);
1958 h = compress_bits(h >> odd, esz);
1959 d[i] = l | (h << 32);
1960 }
1961
1962 /*
1963 * For VL which is not a multiple of 512, the results from M do not
1964 * align nicely with the uint64_t for D. Put the aligned results
1965 * from M into TMP_M and then copy it into place afterward.
1966 */
1967 if (oprsz & 15) {
1968 int final_shift = (oprsz & 15) * 2;
1969
1970 l = n[2 * i + 0];
1971 h = n[2 * i + 1];
1972 l = compress_bits(l >> odd, esz);
1973 h = compress_bits(h >> odd, esz);
1974 d[i] = l | (h << final_shift);
1975
1976 for (i = 0; i < oprsz_16; i++) {
1977 l = m[2 * i + 0];
1978 h = m[2 * i + 1];
1979 l = compress_bits(l >> odd, esz);
1980 h = compress_bits(h >> odd, esz);
1981 tmp_m.p[i] = l | (h << 32);
1982 }
1983 l = m[2 * i + 0];
1984 h = m[2 * i + 1];
1985 l = compress_bits(l >> odd, esz);
1986 h = compress_bits(h >> odd, esz);
1987 tmp_m.p[i] = l | (h << final_shift);
1988
1989 swap_memmove(vd + oprsz / 2, &tmp_m, oprsz / 2);
1990 } else {
1991 for (i = 0; i < oprsz_16; i++) {
1992 l = m[2 * i + 0];
1993 h = m[2 * i + 1];
1994 l = compress_bits(l >> odd, esz);
1995 h = compress_bits(h >> odd, esz);
1996 d[oprsz_16 + i] = l | (h << 32);
1997 }
1998 }
1999 }
2000 }
2001
2002 void HELPER(sve_trn_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
2003 {
2004 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
2005 int esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
2006 int odd = FIELD_EX32(pred_desc, PREDDESC, DATA);
2007 uint64_t *d = vd, *n = vn, *m = vm;
2008 uint64_t mask;
2009 int shr, shl;
2010 intptr_t i;
2011
2012 shl = 1 << esz;
2013 shr = 0;
2014 mask = even_bit_esz_masks[esz];
2015 if (odd) {
2016 mask <<= shl;
2017 shr = shl;
2018 shl = 0;
2019 }
2020
2021 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) {
2022 uint64_t nn = (n[i] & mask) >> shr;
2023 uint64_t mm = (m[i] & mask) << shl;
2024 d[i] = nn + mm;
2025 }
2026 }
2027
2028 /* Reverse units of 2**N bits. */
2029 static uint64_t reverse_bits_64(uint64_t x, int n)
2030 {
2031 int i, sh;
2032
2033 x = bswap64(x);
2034 for (i = 2, sh = 4; i >= n; i--, sh >>= 1) {
2035 uint64_t mask = even_bit_esz_masks[i];
2036 x = ((x & mask) << sh) | ((x >> sh) & mask);
2037 }
2038 return x;
2039 }
2040
2041 static uint8_t reverse_bits_8(uint8_t x, int n)
2042 {
2043 static const uint8_t mask[3] = { 0x55, 0x33, 0x0f };
2044 int i, sh;
2045
2046 for (i = 2, sh = 4; i >= n; i--, sh >>= 1) {
2047 x = ((x & mask[i]) << sh) | ((x >> sh) & mask[i]);
2048 }
2049 return x;
2050 }
2051
2052 void HELPER(sve_rev_p)(void *vd, void *vn, uint32_t pred_desc)
2053 {
2054 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
2055 int esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
2056 intptr_t i, oprsz_2 = oprsz / 2;
2057
2058 if (oprsz <= 8) {
2059 uint64_t l = *(uint64_t *)vn;
2060 l = reverse_bits_64(l << (64 - 8 * oprsz), esz);
2061 *(uint64_t *)vd = l;
2062 } else if ((oprsz & 15) == 0) {
2063 for (i = 0; i < oprsz_2; i += 8) {
2064 intptr_t ih = oprsz - 8 - i;
2065 uint64_t l = reverse_bits_64(*(uint64_t *)(vn + i), esz);
2066 uint64_t h = reverse_bits_64(*(uint64_t *)(vn + ih), esz);
2067 *(uint64_t *)(vd + i) = h;
2068 *(uint64_t *)(vd + ih) = l;
2069 }
2070 } else {
2071 for (i = 0; i < oprsz_2; i += 1) {
2072 intptr_t il = H1(i);
2073 intptr_t ih = H1(oprsz - 1 - i);
2074 uint8_t l = reverse_bits_8(*(uint8_t *)(vn + il), esz);
2075 uint8_t h = reverse_bits_8(*(uint8_t *)(vn + ih), esz);
2076 *(uint8_t *)(vd + il) = h;
2077 *(uint8_t *)(vd + ih) = l;
2078 }
2079 }
2080 }
2081
2082 void HELPER(sve_punpk_p)(void *vd, void *vn, uint32_t pred_desc)
2083 {
2084 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
2085 intptr_t high = FIELD_EX32(pred_desc, PREDDESC, DATA);
2086 uint64_t *d = vd;
2087 intptr_t i;
2088
2089 if (oprsz <= 8) {
2090 uint64_t nn = *(uint64_t *)vn;
2091 int half = 4 * oprsz;
2092
2093 nn = extract64(nn, high * half, half);
2094 nn = expand_bits(nn, 0);
2095 d[0] = nn;
2096 } else {
2097 ARMPredicateReg tmp_n;
2098
2099 /* We produce output faster than we consume input.
2100 Therefore we must be mindful of possible overlap. */
2101 if ((vn - vd) < (uintptr_t)oprsz) {
2102 vn = memcpy(&tmp_n, vn, oprsz);
2103 }
2104 if (high) {
2105 high = oprsz >> 1;
2106 }
2107
2108 if ((oprsz & 7) == 0) {
2109 uint32_t *n = vn;
2110 high >>= 2;
2111
2112 for (i = 0; i < oprsz / 8; i++) {
2113 uint64_t nn = n[H4(high + i)];
2114 d[i] = expand_bits(nn, 0);
2115 }
2116 } else {
2117 uint16_t *d16 = vd;
2118 uint8_t *n = vn;
2119
2120 for (i = 0; i < oprsz / 2; i++) {
2121 uint16_t nn = n[H1(high + i)];
2122 d16[H2(i)] = expand_bits(nn, 0);
2123 }
2124 }
2125 }
2126 }
2127
2128 #define DO_ZIP(NAME, TYPE, H) \
2129 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
2130 { \
2131 intptr_t oprsz = simd_oprsz(desc); \
2132 intptr_t i, oprsz_2 = oprsz / 2; \
2133 ARMVectorReg tmp_n, tmp_m; \
2134 /* We produce output faster than we consume input. \
2135 Therefore we must be mindful of possible overlap. */ \
2136 if (unlikely((vn - vd) < (uintptr_t)oprsz)) { \
2137 vn = memcpy(&tmp_n, vn, oprsz_2); \
2138 } \
2139 if (unlikely((vm - vd) < (uintptr_t)oprsz)) { \
2140 vm = memcpy(&tmp_m, vm, oprsz_2); \
2141 } \
2142 for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \
2143 *(TYPE *)(vd + H(2 * i + 0)) = *(TYPE *)(vn + H(i)); \
2144 *(TYPE *)(vd + H(2 * i + sizeof(TYPE))) = *(TYPE *)(vm + H(i)); \
2145 } \
2146 }
2147
2148 DO_ZIP(sve_zip_b, uint8_t, H1)
2149 DO_ZIP(sve_zip_h, uint16_t, H1_2)
2150 DO_ZIP(sve_zip_s, uint32_t, H1_4)
2151 DO_ZIP(sve_zip_d, uint64_t, )
2152
2153 #define DO_UZP(NAME, TYPE, H) \
2154 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
2155 { \
2156 intptr_t oprsz = simd_oprsz(desc); \
2157 intptr_t oprsz_2 = oprsz / 2; \
2158 intptr_t odd_ofs = simd_data(desc); \
2159 intptr_t i; \
2160 ARMVectorReg tmp_m; \
2161 if (unlikely((vm - vd) < (uintptr_t)oprsz)) { \
2162 vm = memcpy(&tmp_m, vm, oprsz); \
2163 } \
2164 for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \
2165 *(TYPE *)(vd + H(i)) = *(TYPE *)(vn + H(2 * i + odd_ofs)); \
2166 } \
2167 for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \
2168 *(TYPE *)(vd + H(oprsz_2 + i)) = *(TYPE *)(vm + H(2 * i + odd_ofs)); \
2169 } \
2170 }
2171
2172 DO_UZP(sve_uzp_b, uint8_t, H1)
2173 DO_UZP(sve_uzp_h, uint16_t, H1_2)
2174 DO_UZP(sve_uzp_s, uint32_t, H1_4)
2175 DO_UZP(sve_uzp_d, uint64_t, )
2176
2177 #define DO_TRN(NAME, TYPE, H) \
2178 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
2179 { \
2180 intptr_t oprsz = simd_oprsz(desc); \
2181 intptr_t odd_ofs = simd_data(desc); \
2182 intptr_t i; \
2183 for (i = 0; i < oprsz; i += 2 * sizeof(TYPE)) { \
2184 TYPE ae = *(TYPE *)(vn + H(i + odd_ofs)); \
2185 TYPE be = *(TYPE *)(vm + H(i + odd_ofs)); \
2186 *(TYPE *)(vd + H(i + 0)) = ae; \
2187 *(TYPE *)(vd + H(i + sizeof(TYPE))) = be; \
2188 } \
2189 }
2190
2191 DO_TRN(sve_trn_b, uint8_t, H1)
2192 DO_TRN(sve_trn_h, uint16_t, H1_2)
2193 DO_TRN(sve_trn_s, uint32_t, H1_4)
2194 DO_TRN(sve_trn_d, uint64_t, )
2195
2196 #undef DO_ZIP
2197 #undef DO_UZP
2198 #undef DO_TRN
2199
2200 void HELPER(sve_compact_s)(void *vd, void *vn, void *vg, uint32_t desc)
2201 {
2202 intptr_t i, j, opr_sz = simd_oprsz(desc) / 4;
2203 uint32_t *d = vd, *n = vn;
2204 uint8_t *pg = vg;
2205
2206 for (i = j = 0; i < opr_sz; i++) {
2207 if (pg[H1(i / 2)] & (i & 1 ? 0x10 : 0x01)) {
2208 d[H4(j)] = n[H4(i)];
2209 j++;
2210 }
2211 }
2212 for (; j < opr_sz; j++) {
2213 d[H4(j)] = 0;
2214 }
2215 }
2216
2217 void HELPER(sve_compact_d)(void *vd, void *vn, void *vg, uint32_t desc)
2218 {
2219 intptr_t i, j, opr_sz = simd_oprsz(desc) / 8;
2220 uint64_t *d = vd, *n = vn;
2221 uint8_t *pg = vg;
2222
2223 for (i = j = 0; i < opr_sz; i++) {
2224 if (pg[H1(i)] & 1) {
2225 d[j] = n[i];
2226 j++;
2227 }
2228 }
2229 for (; j < opr_sz; j++) {
2230 d[j] = 0;
2231 }
2232 }
2233
2234 /* Similar to the ARM LastActiveElement pseudocode function, except the
2235 * result is multiplied by the element size. This includes the not found
2236 * indication; e.g. not found for esz=3 is -8.
2237 */
2238 int32_t HELPER(sve_last_active_element)(void *vg, uint32_t pred_desc)
2239 {
2240 intptr_t words = DIV_ROUND_UP(FIELD_EX32(pred_desc, PREDDESC, OPRSZ), 8);
2241 intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
2242
2243 return last_active_element(vg, words, esz);
2244 }
2245
2246 void HELPER(sve_splice)(void *vd, void *vn, void *vm, void *vg, uint32_t desc)
2247 {
2248 intptr_t opr_sz = simd_oprsz(desc) / 8;
2249 int esz = simd_data(desc);
2250 uint64_t pg, first_g, last_g, len, mask = pred_esz_masks[esz];
2251 intptr_t i, first_i, last_i;
2252 ARMVectorReg tmp;
2253
2254 first_i = last_i = 0;
2255 first_g = last_g = 0;
2256
2257 /* Find the extent of the active elements within VG. */
2258 for (i = QEMU_ALIGN_UP(opr_sz, 8) - 8; i >= 0; i -= 8) {
2259 pg = *(uint64_t *)(vg + i) & mask;
2260 if (pg) {
2261 if (last_g == 0) {
2262 last_g = pg;
2263 last_i = i;
2264 }
2265 first_g = pg;
2266 first_i = i;
2267 }
2268 }
2269
2270 len = 0;
2271 if (first_g != 0) {
2272 first_i = first_i * 8 + ctz64(first_g);
2273 last_i = last_i * 8 + 63 - clz64(last_g);
2274 len = last_i - first_i + (1 << esz);
2275 if (vd == vm) {
2276 vm = memcpy(&tmp, vm, opr_sz * 8);
2277 }
2278 swap_memmove(vd, vn + first_i, len);
2279 }
2280 swap_memmove(vd + len, vm, opr_sz * 8 - len);
2281 }
2282
2283 void HELPER(sve_sel_zpzz_b)(void *vd, void *vn, void *vm,
2284 void *vg, uint32_t desc)
2285 {
2286 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
2287 uint64_t *d = vd, *n = vn, *m = vm;
2288 uint8_t *pg = vg;
2289
2290 for (i = 0; i < opr_sz; i += 1) {
2291 uint64_t nn = n[i], mm = m[i];
2292 uint64_t pp = expand_pred_b(pg[H1(i)]);
2293 d[i] = (nn & pp) | (mm & ~pp);
2294 }
2295 }
2296
2297 void HELPER(sve_sel_zpzz_h)(void *vd, void *vn, void *vm,
2298 void *vg, uint32_t desc)
2299 {
2300 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
2301 uint64_t *d = vd, *n = vn, *m = vm;
2302 uint8_t *pg = vg;
2303
2304 for (i = 0; i < opr_sz; i += 1) {
2305 uint64_t nn = n[i], mm = m[i];
2306 uint64_t pp = expand_pred_h(pg[H1(i)]);
2307 d[i] = (nn & pp) | (mm & ~pp);
2308 }
2309 }
2310
2311 void HELPER(sve_sel_zpzz_s)(void *vd, void *vn, void *vm,
2312 void *vg, uint32_t desc)
2313 {
2314 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
2315 uint64_t *d = vd, *n = vn, *m = vm;
2316 uint8_t *pg = vg;
2317
2318 for (i = 0; i < opr_sz; i += 1) {
2319 uint64_t nn = n[i], mm = m[i];
2320 uint64_t pp = expand_pred_s(pg[H1(i)]);
2321 d[i] = (nn & pp) | (mm & ~pp);
2322 }
2323 }
2324
2325 void HELPER(sve_sel_zpzz_d)(void *vd, void *vn, void *vm,
2326 void *vg, uint32_t desc)
2327 {
2328 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
2329 uint64_t *d = vd, *n = vn, *m = vm;
2330 uint8_t *pg = vg;
2331
2332 for (i = 0; i < opr_sz; i += 1) {
2333 uint64_t nn = n[i], mm = m[i];
2334 d[i] = (pg[H1(i)] & 1 ? nn : mm);
2335 }
2336 }
2337
2338 /* Two operand comparison controlled by a predicate.
2339 * ??? It is very tempting to want to be able to expand this inline
2340 * with x86 instructions, e.g.
2341 *
2342 * vcmpeqw zm, zn, %ymm0
2343 * vpmovmskb %ymm0, %eax
2344 * and $0x5555, %eax
2345 * and pg, %eax
2346 *
2347 * or even aarch64, e.g.
2348 *
2349 * // mask = 4000 1000 0400 0100 0040 0010 0004 0001
2350 * cmeq v0.8h, zn, zm
2351 * and v0.8h, v0.8h, mask
2352 * addv h0, v0.8h
2353 * and v0.8b, pg
2354 *
2355 * However, coming up with an abstraction that allows vector inputs and
2356 * a scalar output, and also handles the byte-ordering of sub-uint64_t
2357 * scalar outputs, is tricky.
2358 */
2359 #define DO_CMP_PPZZ(NAME, TYPE, OP, H, MASK) \
2360 uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
2361 { \
2362 intptr_t opr_sz = simd_oprsz(desc); \
2363 uint32_t flags = PREDTEST_INIT; \
2364 intptr_t i = opr_sz; \
2365 do { \
2366 uint64_t out = 0, pg; \
2367 do { \
2368 i -= sizeof(TYPE), out <<= sizeof(TYPE); \
2369 TYPE nn = *(TYPE *)(vn + H(i)); \
2370 TYPE mm = *(TYPE *)(vm + H(i)); \
2371 out |= nn OP mm; \
2372 } while (i & 63); \
2373 pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \
2374 out &= pg; \
2375 *(uint64_t *)(vd + (i >> 3)) = out; \
2376 flags = iter_predtest_bwd(out, pg, flags); \
2377 } while (i > 0); \
2378 return flags; \
2379 }
2380
2381 #define DO_CMP_PPZZ_B(NAME, TYPE, OP) \
2382 DO_CMP_PPZZ(NAME, TYPE, OP, H1, 0xffffffffffffffffull)
2383 #define DO_CMP_PPZZ_H(NAME, TYPE, OP) \
2384 DO_CMP_PPZZ(NAME, TYPE, OP, H1_2, 0x5555555555555555ull)
2385 #define DO_CMP_PPZZ_S(NAME, TYPE, OP) \
2386 DO_CMP_PPZZ(NAME, TYPE, OP, H1_4, 0x1111111111111111ull)
2387 #define DO_CMP_PPZZ_D(NAME, TYPE, OP) \
2388 DO_CMP_PPZZ(NAME, TYPE, OP, , 0x0101010101010101ull)
2389
2390 DO_CMP_PPZZ_B(sve_cmpeq_ppzz_b, uint8_t, ==)
2391 DO_CMP_PPZZ_H(sve_cmpeq_ppzz_h, uint16_t, ==)
2392 DO_CMP_PPZZ_S(sve_cmpeq_ppzz_s, uint32_t, ==)
2393 DO_CMP_PPZZ_D(sve_cmpeq_ppzz_d, uint64_t, ==)
2394
2395 DO_CMP_PPZZ_B(sve_cmpne_ppzz_b, uint8_t, !=)
2396 DO_CMP_PPZZ_H(sve_cmpne_ppzz_h, uint16_t, !=)
2397 DO_CMP_PPZZ_S(sve_cmpne_ppzz_s, uint32_t, !=)
2398 DO_CMP_PPZZ_D(sve_cmpne_ppzz_d, uint64_t, !=)
2399
2400 DO_CMP_PPZZ_B(sve_cmpgt_ppzz_b, int8_t, >)
2401 DO_CMP_PPZZ_H(sve_cmpgt_ppzz_h, int16_t, >)
2402 DO_CMP_PPZZ_S(sve_cmpgt_ppzz_s, int32_t, >)
2403 DO_CMP_PPZZ_D(sve_cmpgt_ppzz_d, int64_t, >)
2404
2405 DO_CMP_PPZZ_B(sve_cmpge_ppzz_b, int8_t, >=)
2406 DO_CMP_PPZZ_H(sve_cmpge_ppzz_h, int16_t, >=)
2407 DO_CMP_PPZZ_S(sve_cmpge_ppzz_s, int32_t, >=)
2408 DO_CMP_PPZZ_D(sve_cmpge_ppzz_d, int64_t, >=)
2409
2410 DO_CMP_PPZZ_B(sve_cmphi_ppzz_b, uint8_t, >)
2411 DO_CMP_PPZZ_H(sve_cmphi_ppzz_h, uint16_t, >)
2412 DO_CMP_PPZZ_S(sve_cmphi_ppzz_s, uint32_t, >)
2413 DO_CMP_PPZZ_D(sve_cmphi_ppzz_d, uint64_t, >)
2414
2415 DO_CMP_PPZZ_B(sve_cmphs_ppzz_b, uint8_t, >=)
2416 DO_CMP_PPZZ_H(sve_cmphs_ppzz_h, uint16_t, >=)
2417 DO_CMP_PPZZ_S(sve_cmphs_ppzz_s, uint32_t, >=)
2418 DO_CMP_PPZZ_D(sve_cmphs_ppzz_d, uint64_t, >=)
2419
2420 #undef DO_CMP_PPZZ_B
2421 #undef DO_CMP_PPZZ_H
2422 #undef DO_CMP_PPZZ_S
2423 #undef DO_CMP_PPZZ_D
2424 #undef DO_CMP_PPZZ
2425
2426 /* Similar, but the second source is "wide". */
2427 #define DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H, MASK) \
2428 uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
2429 { \
2430 intptr_t opr_sz = simd_oprsz(desc); \
2431 uint32_t flags = PREDTEST_INIT; \
2432 intptr_t i = opr_sz; \
2433 do { \
2434 uint64_t out = 0, pg; \
2435 do { \
2436 TYPEW mm = *(TYPEW *)(vm + i - 8); \
2437 do { \
2438 i -= sizeof(TYPE), out <<= sizeof(TYPE); \
2439 TYPE nn = *(TYPE *)(vn + H(i)); \
2440 out |= nn OP mm; \
2441 } while (i & 7); \
2442 } while (i & 63); \
2443 pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \
2444 out &= pg; \
2445 *(uint64_t *)(vd + (i >> 3)) = out; \
2446 flags = iter_predtest_bwd(out, pg, flags); \
2447 } while (i > 0); \
2448 return flags; \
2449 }
2450
2451 #define DO_CMP_PPZW_B(NAME, TYPE, TYPEW, OP) \
2452 DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1, 0xffffffffffffffffull)
2453 #define DO_CMP_PPZW_H(NAME, TYPE, TYPEW, OP) \
2454 DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_2, 0x5555555555555555ull)
2455 #define DO_CMP_PPZW_S(NAME, TYPE, TYPEW, OP) \
2456 DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_4, 0x1111111111111111ull)
2457
2458 DO_CMP_PPZW_B(sve_cmpeq_ppzw_b, int8_t, uint64_t, ==)
2459 DO_CMP_PPZW_H(sve_cmpeq_ppzw_h, int16_t, uint64_t, ==)
2460 DO_CMP_PPZW_S(sve_cmpeq_ppzw_s, int32_t, uint64_t, ==)
2461
2462 DO_CMP_PPZW_B(sve_cmpne_ppzw_b, int8_t, uint64_t, !=)
2463 DO_CMP_PPZW_H(sve_cmpne_ppzw_h, int16_t, uint64_t, !=)
2464 DO_CMP_PPZW_S(sve_cmpne_ppzw_s, int32_t, uint64_t, !=)
2465
2466 DO_CMP_PPZW_B(sve_cmpgt_ppzw_b, int8_t, int64_t, >)
2467 DO_CMP_PPZW_H(sve_cmpgt_ppzw_h, int16_t, int64_t, >)
2468 DO_CMP_PPZW_S(sve_cmpgt_ppzw_s, int32_t, int64_t, >)
2469
2470 DO_CMP_PPZW_B(sve_cmpge_ppzw_b, int8_t, int64_t, >=)
2471 DO_CMP_PPZW_H(sve_cmpge_ppzw_h, int16_t, int64_t, >=)
2472 DO_CMP_PPZW_S(sve_cmpge_ppzw_s, int32_t, int64_t, >=)
2473
2474 DO_CMP_PPZW_B(sve_cmphi_ppzw_b, uint8_t, uint64_t, >)
2475 DO_CMP_PPZW_H(sve_cmphi_ppzw_h, uint16_t, uint64_t, >)
2476 DO_CMP_PPZW_S(sve_cmphi_ppzw_s, uint32_t, uint64_t, >)
2477
2478 DO_CMP_PPZW_B(sve_cmphs_ppzw_b, uint8_t, uint64_t, >=)
2479 DO_CMP_PPZW_H(sve_cmphs_ppzw_h, uint16_t, uint64_t, >=)
2480 DO_CMP_PPZW_S(sve_cmphs_ppzw_s, uint32_t, uint64_t, >=)
2481
2482 DO_CMP_PPZW_B(sve_cmplt_ppzw_b, int8_t, int64_t, <)
2483 DO_CMP_PPZW_H(sve_cmplt_ppzw_h, int16_t, int64_t, <)
2484 DO_CMP_PPZW_S(sve_cmplt_ppzw_s, int32_t, int64_t, <)
2485
2486 DO_CMP_PPZW_B(sve_cmple_ppzw_b, int8_t, int64_t, <=)
2487 DO_CMP_PPZW_H(sve_cmple_ppzw_h, int16_t, int64_t, <=)
2488 DO_CMP_PPZW_S(sve_cmple_ppzw_s, int32_t, int64_t, <=)
2489
2490 DO_CMP_PPZW_B(sve_cmplo_ppzw_b, uint8_t, uint64_t, <)
2491 DO_CMP_PPZW_H(sve_cmplo_ppzw_h, uint16_t, uint64_t, <)
2492 DO_CMP_PPZW_S(sve_cmplo_ppzw_s, uint32_t, uint64_t, <)
2493
2494 DO_CMP_PPZW_B(sve_cmpls_ppzw_b, uint8_t, uint64_t, <=)
2495 DO_CMP_PPZW_H(sve_cmpls_ppzw_h, uint16_t, uint64_t, <=)
2496 DO_CMP_PPZW_S(sve_cmpls_ppzw_s, uint32_t, uint64_t, <=)
2497
2498 #undef DO_CMP_PPZW_B
2499 #undef DO_CMP_PPZW_H
2500 #undef DO_CMP_PPZW_S
2501 #undef DO_CMP_PPZW
2502
2503 /* Similar, but the second source is immediate. */
2504 #define DO_CMP_PPZI(NAME, TYPE, OP, H, MASK) \
2505 uint32_t HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
2506 { \
2507 intptr_t opr_sz = simd_oprsz(desc); \
2508 uint32_t flags = PREDTEST_INIT; \
2509 TYPE mm = simd_data(desc); \
2510 intptr_t i = opr_sz; \
2511 do { \
2512 uint64_t out = 0, pg; \
2513 do { \
2514 i -= sizeof(TYPE), out <<= sizeof(TYPE); \
2515 TYPE nn = *(TYPE *)(vn + H(i)); \
2516 out |= nn OP mm; \
2517 } while (i & 63); \
2518 pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \
2519 out &= pg; \
2520 *(uint64_t *)(vd + (i >> 3)) = out; \
2521 flags = iter_predtest_bwd(out, pg, flags); \
2522 } while (i > 0); \
2523 return flags; \
2524 }
2525
2526 #define DO_CMP_PPZI_B(NAME, TYPE, OP) \
2527 DO_CMP_PPZI(NAME, TYPE, OP, H1, 0xffffffffffffffffull)
2528 #define DO_CMP_PPZI_H(NAME, TYPE, OP) \
2529 DO_CMP_PPZI(NAME, TYPE, OP, H1_2, 0x5555555555555555ull)
2530 #define DO_CMP_PPZI_S(NAME, TYPE, OP) \
2531 DO_CMP_PPZI(NAME, TYPE, OP, H1_4, 0x1111111111111111ull)
2532 #define DO_CMP_PPZI_D(NAME, TYPE, OP) \
2533 DO_CMP_PPZI(NAME, TYPE, OP, , 0x0101010101010101ull)
2534
2535 DO_CMP_PPZI_B(sve_cmpeq_ppzi_b, uint8_t, ==)
2536 DO_CMP_PPZI_H(sve_cmpeq_ppzi_h, uint16_t, ==)
2537 DO_CMP_PPZI_S(sve_cmpeq_ppzi_s, uint32_t, ==)
2538 DO_CMP_PPZI_D(sve_cmpeq_ppzi_d, uint64_t, ==)
2539
2540 DO_CMP_PPZI_B(sve_cmpne_ppzi_b, uint8_t, !=)
2541 DO_CMP_PPZI_H(sve_cmpne_ppzi_h, uint16_t, !=)
2542 DO_CMP_PPZI_S(sve_cmpne_ppzi_s, uint32_t, !=)
2543 DO_CMP_PPZI_D(sve_cmpne_ppzi_d, uint64_t, !=)
2544
2545 DO_CMP_PPZI_B(sve_cmpgt_ppzi_b, int8_t, >)
2546 DO_CMP_PPZI_H(sve_cmpgt_ppzi_h, int16_t, >)
2547 DO_CMP_PPZI_S(sve_cmpgt_ppzi_s, int32_t, >)
2548 DO_CMP_PPZI_D(sve_cmpgt_ppzi_d, int64_t, >)
2549
2550 DO_CMP_PPZI_B(sve_cmpge_ppzi_b, int8_t, >=)
2551 DO_CMP_PPZI_H(sve_cmpge_ppzi_h, int16_t, >=)
2552 DO_CMP_PPZI_S(sve_cmpge_ppzi_s, int32_t, >=)
2553 DO_CMP_PPZI_D(sve_cmpge_ppzi_d, int64_t, >=)
2554
2555 DO_CMP_PPZI_B(sve_cmphi_ppzi_b, uint8_t, >)
2556 DO_CMP_PPZI_H(sve_cmphi_ppzi_h, uint16_t, >)
2557 DO_CMP_PPZI_S(sve_cmphi_ppzi_s, uint32_t, >)
2558 DO_CMP_PPZI_D(sve_cmphi_ppzi_d, uint64_t, >)
2559
2560 DO_CMP_PPZI_B(sve_cmphs_ppzi_b, uint8_t, >=)
2561 DO_CMP_PPZI_H(sve_cmphs_ppzi_h, uint16_t, >=)
2562 DO_CMP_PPZI_S(sve_cmphs_ppzi_s, uint32_t, >=)
2563 DO_CMP_PPZI_D(sve_cmphs_ppzi_d, uint64_t, >=)
2564
2565 DO_CMP_PPZI_B(sve_cmplt_ppzi_b, int8_t, <)
2566 DO_CMP_PPZI_H(sve_cmplt_ppzi_h, int16_t, <)
2567 DO_CMP_PPZI_S(sve_cmplt_ppzi_s, int32_t, <)
2568 DO_CMP_PPZI_D(sve_cmplt_ppzi_d, int64_t, <)
2569
2570 DO_CMP_PPZI_B(sve_cmple_ppzi_b, int8_t, <=)
2571 DO_CMP_PPZI_H(sve_cmple_ppzi_h, int16_t, <=)
2572 DO_CMP_PPZI_S(sve_cmple_ppzi_s, int32_t, <=)
2573 DO_CMP_PPZI_D(sve_cmple_ppzi_d, int64_t, <=)
2574
2575 DO_CMP_PPZI_B(sve_cmplo_ppzi_b, uint8_t, <)
2576 DO_CMP_PPZI_H(sve_cmplo_ppzi_h, uint16_t, <)
2577 DO_CMP_PPZI_S(sve_cmplo_ppzi_s, uint32_t, <)
2578 DO_CMP_PPZI_D(sve_cmplo_ppzi_d, uint64_t, <)
2579
2580 DO_CMP_PPZI_B(sve_cmpls_ppzi_b, uint8_t, <=)
2581 DO_CMP_PPZI_H(sve_cmpls_ppzi_h, uint16_t, <=)
2582 DO_CMP_PPZI_S(sve_cmpls_ppzi_s, uint32_t, <=)
2583 DO_CMP_PPZI_D(sve_cmpls_ppzi_d, uint64_t, <=)
2584
2585 #undef DO_CMP_PPZI_B
2586 #undef DO_CMP_PPZI_H
2587 #undef DO_CMP_PPZI_S
2588 #undef DO_CMP_PPZI_D
2589 #undef DO_CMP_PPZI
2590
2591 /* Similar to the ARM LastActive pseudocode function. */
2592 static bool last_active_pred(void *vd, void *vg, intptr_t oprsz)
2593 {
2594 intptr_t i;
2595
2596 for (i = QEMU_ALIGN_UP(oprsz, 8) - 8; i >= 0; i -= 8) {
2597 uint64_t pg = *(uint64_t *)(vg + i);
2598 if (pg) {
2599 return (pow2floor(pg) & *(uint64_t *)(vd + i)) != 0;
2600 }
2601 }
2602 return 0;
2603 }
2604
2605 /* Compute a mask into RETB that is true for all G, up to and including
2606 * (if after) or excluding (if !after) the first G & N.
2607 * Return true if BRK found.
2608 */
2609 static bool compute_brk(uint64_t *retb, uint64_t n, uint64_t g,
2610 bool brk, bool after)
2611 {
2612 uint64_t b;
2613
2614 if (brk) {
2615 b = 0;
2616 } else if ((g & n) == 0) {
2617 /* For all G, no N are set; break not found. */
2618 b = g;
2619 } else {
2620 /* Break somewhere in N. Locate it. */
2621 b = g & n; /* guard true, pred true */
2622 b = b & -b; /* first such */
2623 if (after) {
2624 b = b | (b - 1); /* break after same */
2625 } else {
2626 b = b - 1; /* break before same */
2627 }
2628 brk = true;
2629 }
2630
2631 *retb = b;
2632 return brk;
2633 }
2634
2635 /* Compute a zeroing BRK. */
2636 static void compute_brk_z(uint64_t *d, uint64_t *n, uint64_t *g,
2637 intptr_t oprsz, bool after)
2638 {
2639 bool brk = false;
2640 intptr_t i;
2641
2642 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
2643 uint64_t this_b, this_g = g[i];
2644
2645 brk = compute_brk(&this_b, n[i], this_g, brk, after);
2646 d[i] = this_b & this_g;
2647 }
2648 }
2649
2650 /* Likewise, but also compute flags. */
2651 static uint32_t compute_brks_z(uint64_t *d, uint64_t *n, uint64_t *g,
2652 intptr_t oprsz, bool after)
2653 {
2654 uint32_t flags = PREDTEST_INIT;
2655 bool brk = false;
2656 intptr_t i;
2657
2658 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
2659 uint64_t this_b, this_d, this_g = g[i];
2660
2661 brk = compute_brk(&this_b, n[i], this_g, brk, after);
2662 d[i] = this_d = this_b & this_g;
2663 flags = iter_predtest_fwd(this_d, this_g, flags);
2664 }
2665 return flags;
2666 }
2667
2668 /* Compute a merging BRK. */
2669 static void compute_brk_m(uint64_t *d, uint64_t *n, uint64_t *g,
2670 intptr_t oprsz, bool after)
2671 {
2672 bool brk = false;
2673 intptr_t i;
2674
2675 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
2676 uint64_t this_b, this_g = g[i];
2677
2678 brk = compute_brk(&this_b, n[i], this_g, brk, after);
2679 d[i] = (this_b & this_g) | (d[i] & ~this_g);
2680 }
2681 }
2682
2683 /* Likewise, but also compute flags. */
2684 static uint32_t compute_brks_m(uint64_t *d, uint64_t *n, uint64_t *g,
2685 intptr_t oprsz, bool after)
2686 {
2687 uint32_t flags = PREDTEST_INIT;
2688 bool brk = false;
2689 intptr_t i;
2690
2691 for (i = 0; i < oprsz / 8; ++i) {
2692 uint64_t this_b, this_d = d[i], this_g = g[i];
2693
2694 brk = compute_brk(&this_b, n[i], this_g, brk, after);
2695 d[i] = this_d = (this_b & this_g) | (this_d & ~this_g);
2696 flags = iter_predtest_fwd(this_d, this_g, flags);
2697 }
2698 return flags;
2699 }
2700
2701 static uint32_t do_zero(ARMPredicateReg *d, intptr_t oprsz)
2702 {
2703 /* It is quicker to zero the whole predicate than loop on OPRSZ.
2704 * The compiler should turn this into 4 64-bit integer stores.
2705 */
2706 memset(d, 0, sizeof(ARMPredicateReg));
2707 return PREDTEST_INIT;
2708 }
2709
2710 void HELPER(sve_brkpa)(void *vd, void *vn, void *vm, void *vg,
2711 uint32_t pred_desc)
2712 {
2713 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
2714 if (last_active_pred(vn, vg, oprsz)) {
2715 compute_brk_z(vd, vm, vg, oprsz, true);
2716 } else {
2717 do_zero(vd, oprsz);
2718 }
2719 }
2720
2721 uint32_t HELPER(sve_brkpas)(void *vd, void *vn, void *vm, void *vg,
2722 uint32_t pred_desc)
2723 {
2724 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
2725 if (last_active_pred(vn, vg, oprsz)) {
2726 return compute_brks_z(vd, vm, vg, oprsz, true);
2727 } else {
2728 return do_zero(vd, oprsz);
2729 }
2730 }
2731
2732 void HELPER(sve_brkpb)(void *vd, void *vn, void *vm, void *vg,
2733 uint32_t pred_desc)
2734 {
2735 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
2736 if (last_active_pred(vn, vg, oprsz)) {
2737 compute_brk_z(vd, vm, vg, oprsz, false);
2738 } else {
2739 do_zero(vd, oprsz);
2740 }
2741 }
2742
2743 uint32_t HELPER(sve_brkpbs)(void *vd, void *vn, void *vm, void *vg,
2744 uint32_t pred_desc)
2745 {
2746 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
2747 if (last_active_pred(vn, vg, oprsz)) {
2748 return compute_brks_z(vd, vm, vg, oprsz, false);
2749 } else {
2750 return do_zero(vd, oprsz);
2751 }
2752 }
2753
2754 void HELPER(sve_brka_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2755 {
2756 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
2757 compute_brk_z(vd, vn, vg, oprsz, true);
2758 }
2759
2760 uint32_t HELPER(sve_brkas_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2761 {
2762 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
2763 return compute_brks_z(vd, vn, vg, oprsz, true);
2764 }
2765
2766 void HELPER(sve_brkb_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2767 {
2768 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
2769 compute_brk_z(vd, vn, vg, oprsz, false);
2770 }
2771
2772 uint32_t HELPER(sve_brkbs_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2773 {
2774 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
2775 return compute_brks_z(vd, vn, vg, oprsz, false);
2776 }
2777
2778 void HELPER(sve_brka_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2779 {
2780 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
2781 compute_brk_m(vd, vn, vg, oprsz, true);
2782 }
2783
2784 uint32_t HELPER(sve_brkas_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2785 {
2786 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
2787 return compute_brks_m(vd, vn, vg, oprsz, true);
2788 }
2789
2790 void HELPER(sve_brkb_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2791 {
2792 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
2793 compute_brk_m(vd, vn, vg, oprsz, false);
2794 }
2795
2796 uint32_t HELPER(sve_brkbs_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2797 {
2798 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
2799 return compute_brks_m(vd, vn, vg, oprsz, false);
2800 }
2801
2802 void HELPER(sve_brkn)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2803 {
2804 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
2805 if (!last_active_pred(vn, vg, oprsz)) {
2806 do_zero(vd, oprsz);
2807 }
2808 }
2809
2810 /* As if PredTest(Ones(PL), D, esz). */
2811 static uint32_t predtest_ones(ARMPredicateReg *d, intptr_t oprsz,
2812 uint64_t esz_mask)
2813 {
2814 uint32_t flags = PREDTEST_INIT;
2815 intptr_t i;
2816
2817 for (i = 0; i < oprsz / 8; i++) {
2818 flags = iter_predtest_fwd(d->p[i], esz_mask, flags);
2819 }
2820 if (oprsz & 7) {
2821 uint64_t mask = ~(-1ULL << (8 * (oprsz & 7)));
2822 flags = iter_predtest_fwd(d->p[i], esz_mask & mask, flags);
2823 }
2824 return flags;
2825 }
2826
2827 uint32_t HELPER(sve_brkns)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2828 {
2829 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
2830 if (last_active_pred(vn, vg, oprsz)) {
2831 return predtest_ones(vd, oprsz, -1);
2832 } else {
2833 return do_zero(vd, oprsz);
2834 }
2835 }
2836
2837 uint64_t HELPER(sve_cntp)(void *vn, void *vg, uint32_t pred_desc)
2838 {
2839 intptr_t words = DIV_ROUND_UP(FIELD_EX32(pred_desc, PREDDESC, OPRSZ), 8);
2840 intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
2841 uint64_t *n = vn, *g = vg, sum = 0, mask = pred_esz_masks[esz];
2842 intptr_t i;
2843
2844 for (i = 0; i < words; ++i) {
2845 uint64_t t = n[i] & g[i] & mask;
2846 sum += ctpop64(t);
2847 }
2848 return sum;
2849 }
2850
2851 uint32_t HELPER(sve_while)(void *vd, uint32_t count, uint32_t pred_desc)
2852 {
2853 intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
2854 intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
2855 uint64_t esz_mask = pred_esz_masks[esz];
2856 ARMPredicateReg *d = vd;
2857 uint32_t flags;
2858 intptr_t i;
2859
2860 /* Begin with a zero predicate register. */
2861 flags = do_zero(d, oprsz);
2862 if (count == 0) {
2863 return flags;
2864 }
2865
2866 /* Set all of the requested bits. */
2867 for (i = 0; i < count / 64; ++i) {
2868 d->p[i] = esz_mask;
2869 }
2870 if (count & 63) {
2871 d->p[i] = MAKE_64BIT_MASK(0, count & 63) & esz_mask;
2872 }
2873
2874 return predtest_ones(d, oprsz, esz_mask);
2875 }
2876
2877 /* Recursive reduction on a function;
2878 * C.f. the ARM ARM function ReducePredicated.
2879 *
2880 * While it would be possible to write this without the DATA temporary,
2881 * it is much simpler to process the predicate register this way.
2882 * The recursion is bounded to depth 7 (128 fp16 elements), so there's
2883 * little to gain with a more complex non-recursive form.
2884 */
2885 #define DO_REDUCE(NAME, TYPE, H, FUNC, IDENT) \
2886 static TYPE NAME##_reduce(TYPE *data, float_status *status, uintptr_t n) \
2887 { \
2888 if (n == 1) { \
2889 return *data; \
2890 } else { \
2891 uintptr_t half = n / 2; \
2892 TYPE lo = NAME##_reduce(data, status, half); \
2893 TYPE hi = NAME##_reduce(data + half, status, half); \
2894 return TYPE##_##FUNC(lo, hi, status); \
2895 } \
2896 } \
2897 uint64_t HELPER(NAME)(void *vn, void *vg, void *vs, uint32_t desc) \
2898 { \
2899 uintptr_t i, oprsz = simd_oprsz(desc), maxsz = simd_data(desc); \
2900 TYPE data[sizeof(ARMVectorReg) / sizeof(TYPE)]; \
2901 for (i = 0; i < oprsz; ) { \
2902 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
2903 do { \
2904 TYPE nn = *(TYPE *)(vn + H(i)); \
2905 *(TYPE *)((void *)data + i) = (pg & 1 ? nn : IDENT); \
2906 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
2907 } while (i & 15); \
2908 } \
2909 for (; i < maxsz; i += sizeof(TYPE)) { \
2910 *(TYPE *)((void *)data + i) = IDENT; \
2911 } \
2912 return NAME##_reduce(data, vs, maxsz / sizeof(TYPE)); \
2913 }
2914
2915 DO_REDUCE(sve_faddv_h, float16, H1_2, add, float16_zero)
2916 DO_REDUCE(sve_faddv_s, float32, H1_4, add, float32_zero)
2917 DO_REDUCE(sve_faddv_d, float64, , add, float64_zero)
2918
2919 /* Identity is floatN_default_nan, without the function call. */
2920 DO_REDUCE(sve_fminnmv_h, float16, H1_2, minnum, 0x7E00)
2921 DO_REDUCE(sve_fminnmv_s, float32, H1_4, minnum, 0x7FC00000)
2922 DO_REDUCE(sve_fminnmv_d, float64, , minnum, 0x7FF8000000000000ULL)
2923
2924 DO_REDUCE(sve_fmaxnmv_h, float16, H1_2, maxnum, 0x7E00)
2925 DO_REDUCE(sve_fmaxnmv_s, float32, H1_4, maxnum, 0x7FC00000)
2926 DO_REDUCE(sve_fmaxnmv_d, float64, , maxnum, 0x7FF8000000000000ULL)
2927
2928 DO_REDUCE(sve_fminv_h, float16, H1_2, min, float16_infinity)
2929 DO_REDUCE(sve_fminv_s, float32, H1_4, min, float32_infinity)
2930 DO_REDUCE(sve_fminv_d, float64, , min, float64_infinity)
2931
2932 DO_REDUCE(sve_fmaxv_h, float16, H1_2, max, float16_chs(float16_infinity))
2933 DO_REDUCE(sve_fmaxv_s, float32, H1_4, max, float32_chs(float32_infinity))
2934 DO_REDUCE(sve_fmaxv_d, float64, , max, float64_chs(float64_infinity))
2935
2936 #undef DO_REDUCE
2937
2938 uint64_t HELPER(sve_fadda_h)(uint64_t nn, void *vm, void *vg,
2939 void *status, uint32_t desc)
2940 {
2941 intptr_t i = 0, opr_sz = simd_oprsz(desc);
2942 float16 result = nn;
2943
2944 do {
2945 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
2946 do {
2947 if (pg & 1) {
2948 float16 mm = *(float16 *)(vm + H1_2(i));
2949 result = float16_add(result, mm, status);
2950 }
2951 i += sizeof(float16), pg >>= sizeof(float16);
2952 } while (i & 15);
2953 } while (i < opr_sz);
2954
2955 return result;
2956 }
2957
2958 uint64_t HELPER(sve_fadda_s)(uint64_t nn, void *vm, void *vg,
2959 void *status, uint32_t desc)
2960 {
2961 intptr_t i = 0, opr_sz = simd_oprsz(desc);
2962 float32 result = nn;
2963
2964 do {
2965 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
2966 do {
2967 if (pg & 1) {
2968 float32 mm = *(float32 *)(vm + H1_2(i));
2969 result = float32_add(result, mm, status);
2970 }
2971 i += sizeof(float32), pg >>= sizeof(float32);
2972 } while (i & 15);
2973 } while (i < opr_sz);
2974
2975 return result;
2976 }
2977
2978 uint64_t HELPER(sve_fadda_d)(uint64_t nn, void *vm, void *vg,
2979 void *status, uint32_t desc)
2980 {
2981 intptr_t i = 0, opr_sz = simd_oprsz(desc) / 8;
2982 uint64_t *m = vm;
2983 uint8_t *pg = vg;
2984
2985 for (i = 0; i < opr_sz; i++) {
2986 if (pg[H1(i)] & 1) {
2987 nn = float64_add(nn, m[i], status);
2988 }
2989 }
2990
2991 return nn;
2992 }
2993
2994 /* Fully general three-operand expander, controlled by a predicate,
2995 * With the extra float_status parameter.
2996 */
2997 #define DO_ZPZZ_FP(NAME, TYPE, H, OP) \
2998 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, \
2999 void *status, uint32_t desc) \
3000 { \
3001 intptr_t i = simd_oprsz(desc); \
3002 uint64_t *g = vg; \
3003 do { \
3004 uint64_t pg = g[(i - 1) >> 6]; \
3005 do { \
3006 i -= sizeof(TYPE); \
3007 if (likely((pg >> (i & 63)) & 1)) { \
3008 TYPE nn = *(TYPE *)(vn + H(i)); \
3009 TYPE mm = *(TYPE *)(vm + H(i)); \
3010 *(TYPE *)(vd + H(i)) = OP(nn, mm, status); \
3011 } \
3012 } while (i & 63); \
3013 } while (i != 0); \
3014 }
3015
3016 DO_ZPZZ_FP(sve_fadd_h, uint16_t, H1_2, float16_add)
3017 DO_ZPZZ_FP(sve_fadd_s, uint32_t, H1_4, float32_add)
3018 DO_ZPZZ_FP(sve_fadd_d, uint64_t, , float64_add)
3019
3020 DO_ZPZZ_FP(sve_fsub_h, uint16_t, H1_2, float16_sub)
3021 DO_ZPZZ_FP(sve_fsub_s, uint32_t, H1_4, float32_sub)
3022 DO_ZPZZ_FP(sve_fsub_d, uint64_t, , float64_sub)
3023
3024 DO_ZPZZ_FP(sve_fmul_h, uint16_t, H1_2, float16_mul)
3025 DO_ZPZZ_FP(sve_fmul_s, uint32_t, H1_4, float32_mul)
3026 DO_ZPZZ_FP(sve_fmul_d, uint64_t, , float64_mul)
3027
3028 DO_ZPZZ_FP(sve_fdiv_h, uint16_t, H1_2, float16_div)
3029 DO_ZPZZ_FP(sve_fdiv_s, uint32_t, H1_4, float32_div)
3030 DO_ZPZZ_FP(sve_fdiv_d, uint64_t, , float64_div)
3031
3032 DO_ZPZZ_FP(sve_fmin_h, uint16_t, H1_2, float16_min)
3033 DO_ZPZZ_FP(sve_fmin_s, uint32_t, H1_4, float32_min)
3034 DO_ZPZZ_FP(sve_fmin_d, uint64_t, , float64_min)
3035
3036 DO_ZPZZ_FP(sve_fmax_h, uint16_t, H1_2, float16_max)
3037 DO_ZPZZ_FP(sve_fmax_s, uint32_t, H1_4, float32_max)
3038 DO_ZPZZ_FP(sve_fmax_d, uint64_t, , float64_max)
3039
3040 DO_ZPZZ_FP(sve_fminnum_h, uint16_t, H1_2, float16_minnum)
3041 DO_ZPZZ_FP(sve_fminnum_s, uint32_t, H1_4, float32_minnum)
3042 DO_ZPZZ_FP(sve_fminnum_d, uint64_t, , float64_minnum)
3043
3044 DO_ZPZZ_FP(sve_fmaxnum_h, uint16_t, H1_2, float16_maxnum)
3045 DO_ZPZZ_FP(sve_fmaxnum_s, uint32_t, H1_4, float32_maxnum)
3046 DO_ZPZZ_FP(sve_fmaxnum_d, uint64_t, , float64_maxnum)
3047
3048 static inline float16 abd_h(float16 a, float16 b, float_status *s)
3049 {
3050 return float16_abs(float16_sub(a, b, s));
3051 }
3052
3053 static inline float32 abd_s(float32 a, float32 b, float_status *s)
3054 {
3055 return float32_abs(float32_sub(a, b, s));
3056 }
3057
3058 static inline float64 abd_d(float64 a, float64 b, float_status *s)
3059 {
3060 return float64_abs(float64_sub(a, b, s));
3061 }
3062
3063 DO_ZPZZ_FP(sve_fabd_h, uint16_t, H1_2, abd_h)
3064 DO_ZPZZ_FP(sve_fabd_s, uint32_t, H1_4, abd_s)
3065 DO_ZPZZ_FP(sve_fabd_d, uint64_t, , abd_d)
3066
3067 static inline float64 scalbn_d(float64 a, int64_t b, float_status *s)
3068 {
3069 int b_int = MIN(MAX(b, INT_MIN), INT_MAX);
3070 return float64_scalbn(a, b_int, s);
3071 }
3072
3073 DO_ZPZZ_FP(sve_fscalbn_h, int16_t, H1_2, float16_scalbn)
3074 DO_ZPZZ_FP(sve_fscalbn_s, int32_t, H1_4, float32_scalbn)
3075 DO_ZPZZ_FP(sve_fscalbn_d, int64_t, , scalbn_d)
3076
3077 DO_ZPZZ_FP(sve_fmulx_h, uint16_t, H1_2, helper_advsimd_mulxh)
3078 DO_ZPZZ_FP(sve_fmulx_s, uint32_t, H1_4, helper_vfp_mulxs)
3079 DO_ZPZZ_FP(sve_fmulx_d, uint64_t, , helper_vfp_mulxd)
3080
3081 #undef DO_ZPZZ_FP
3082
3083 /* Three-operand expander, with one scalar operand, controlled by
3084 * a predicate, with the extra float_status parameter.
3085 */
3086 #define DO_ZPZS_FP(NAME, TYPE, H, OP) \
3087 void HELPER(NAME)(void *vd, void *vn, void *vg, uint64_t scalar, \
3088 void *status, uint32_t desc) \
3089 { \
3090 intptr_t i = simd_oprsz(desc); \
3091 uint64_t *g = vg; \
3092 TYPE mm = scalar; \
3093 do { \
3094 uint64_t pg = g[(i - 1) >> 6]; \
3095 do { \
3096 i -= sizeof(TYPE); \
3097 if (likely((pg >> (i & 63)) & 1)) { \
3098 TYPE nn = *(TYPE *)(vn + H(i)); \
3099 *(TYPE *)(vd + H(i)) = OP(nn, mm, status); \
3100 } \
3101 } while (i & 63); \
3102 } while (i != 0); \
3103 }
3104
3105 DO_ZPZS_FP(sve_fadds_h, float16, H1_2, float16_add)
3106 DO_ZPZS_FP(sve_fadds_s, float32, H1_4, float32_add)
3107 DO_ZPZS_FP(sve_fadds_d, float64, , float64_add)
3108
3109 DO_ZPZS_FP(sve_fsubs_h, float16, H1_2, float16_sub)
3110 DO_ZPZS_FP(sve_fsubs_s, float32, H1_4, float32_sub)
3111 DO_ZPZS_FP(sve_fsubs_d, float64, , float64_sub)
3112
3113 DO_ZPZS_FP(sve_fmuls_h, float16, H1_2, float16_mul)
3114 DO_ZPZS_FP(sve_fmuls_s, float32, H1_4, float32_mul)
3115 DO_ZPZS_FP(sve_fmuls_d, float64, , float64_mul)
3116
3117 static inline float16 subr_h(float16 a, float16 b, float_status *s)
3118 {
3119 return float16_sub(b, a, s);
3120 }
3121
3122 static inline float32 subr_s(float32 a, float32 b, float_status *s)
3123 {
3124 return float32_sub(b, a, s);
3125 }
3126
3127 static inline float64 subr_d(float64 a, float64 b, float_status *s)
3128 {
3129 return float64_sub(b, a, s);
3130 }
3131
3132 DO_ZPZS_FP(sve_fsubrs_h, float16, H1_2, subr_h)
3133 DO_ZPZS_FP(sve_fsubrs_s, float32, H1_4, subr_s)
3134 DO_ZPZS_FP(sve_fsubrs_d, float64, , subr_d)
3135
3136 DO_ZPZS_FP(sve_fmaxnms_h, float16, H1_2, float16_maxnum)
3137 DO_ZPZS_FP(sve_fmaxnms_s, float32, H1_4, float32_maxnum)
3138 DO_ZPZS_FP(sve_fmaxnms_d, float64, , float64_maxnum)
3139
3140 DO_ZPZS_FP(sve_fminnms_h, float16, H1_2, float16_minnum)
3141 DO_ZPZS_FP(sve_fminnms_s, float32, H1_4, float32_minnum)
3142 DO_ZPZS_FP(sve_fminnms_d, float64, , float64_minnum)
3143
3144 DO_ZPZS_FP(sve_fmaxs_h, float16, H1_2, float16_max)
3145 DO_ZPZS_FP(sve_fmaxs_s, float32, H1_4, float32_max)
3146 DO_ZPZS_FP(sve_fmaxs_d, float64, , float64_max)
3147
3148 DO_ZPZS_FP(sve_fmins_h, float16, H1_2, float16_min)
3149 DO_ZPZS_FP(sve_fmins_s, float32, H1_4, float32_min)
3150 DO_ZPZS_FP(sve_fmins_d, float64, , float64_min)
3151
3152 /* Fully general two-operand expander, controlled by a predicate,
3153 * With the extra float_status parameter.
3154 */
3155 #define DO_ZPZ_FP(NAME, TYPE, H, OP) \
3156 void HELPER(NAME)(void *vd, void *vn, void *vg, void *status, uint32_t desc) \
3157 { \
3158 intptr_t i = simd_oprsz(desc); \
3159 uint64_t *g = vg; \
3160 do { \
3161 uint64_t pg = g[(i - 1) >> 6]; \
3162 do { \
3163 i -= sizeof(TYPE); \
3164 if (likely((pg >> (i & 63)) & 1)) { \
3165 TYPE nn = *(TYPE *)(vn + H(i)); \
3166 *(TYPE *)(vd + H(i)) = OP(nn, status); \
3167 } \
3168 } while (i & 63); \
3169 } while (i != 0); \
3170 }
3171
3172 /* SVE fp16 conversions always use IEEE mode. Like AdvSIMD, they ignore
3173 * FZ16. When converting from fp16, this affects flushing input denormals;
3174 * when converting to fp16, this affects flushing output denormals.
3175 */
3176 static inline float32 sve_f16_to_f32(float16 f, float_status *fpst)
3177 {
3178 bool save = get_flush_inputs_to_zero(fpst);
3179 float32 ret;
3180
3181 set_flush_inputs_to_zero(false, fpst);
3182 ret = float16_to_float32(f, true, fpst);
3183 set_flush_inputs_to_zero(save, fpst);
3184 return ret;
3185 }
3186
3187 static inline float64 sve_f16_to_f64(float16 f, float_status *fpst)
3188 {
3189 bool save = get_flush_inputs_to_zero(fpst);
3190 float64 ret;
3191
3192 set_flush_inputs_to_zero(false, fpst);
3193 ret = float16_to_float64(f, true, fpst);
3194 set_flush_inputs_to_zero(save, fpst);
3195 return ret;
3196 }
3197
3198 static inline float16 sve_f32_to_f16(float32 f, float_status *fpst)
3199 {
3200 bool save = get_flush_to_zero(fpst);
3201 float16 ret;
3202
3203 set_flush_to_zero(false, fpst);
3204 ret = float32_to_float16(f, true, fpst);
3205 set_flush_to_zero(save, fpst);
3206 return ret;
3207 }
3208
3209 static inline float16 sve_f64_to_f16(float64 f, float_status *fpst)
3210 {
3211 bool save = get_flush_to_zero(fpst);
3212 float16 ret;
3213
3214 set_flush_to_zero(false, fpst);
3215 ret = float64_to_float16(f, true, fpst);
3216 set_flush_to_zero(save, fpst);
3217 return ret;
3218 }
3219
3220 static inline int16_t vfp_float16_to_int16_rtz(float16 f, float_status *s)
3221 {
3222 if (float16_is_any_nan(f)) {
3223 float_raise(float_flag_invalid, s);
3224 return 0;
3225 }
3226 return float16_to_int16_round_to_zero(f, s);
3227 }
3228
3229 static inline int64_t vfp_float16_to_int64_rtz(float16 f, float_status *s)
3230 {
3231 if (float16_is_any_nan(f)) {
3232 float_raise(float_flag_invalid, s);
3233 return 0;
3234 }
3235 return float16_to_int64_round_to_zero(f, s);
3236 }
3237
3238 static inline int64_t vfp_float32_to_int64_rtz(float32 f, float_status *s)
3239 {
3240 if (float32_is_any_nan(f)) {
3241 float_raise(float_flag_invalid, s);
3242 return 0;
3243 }
3244 return float32_to_int64_round_to_zero(f, s);
3245 }
3246
3247 static inline int64_t vfp_float64_to_int64_rtz(float64 f, float_status *s)
3248 {
3249 if (float64_is_any_nan(f)) {
3250 float_raise(float_flag_invalid, s);
3251 return 0;
3252 }
3253 return float64_to_int64_round_to_zero(f, s);
3254 }
3255
3256 static inline uint16_t vfp_float16_to_uint16_rtz(float16 f, float_status *s)
3257 {
3258 if (float16_is_any_nan(f)) {
3259 float_raise(float_flag_invalid, s);
3260 return 0;
3261 }
3262 return float16_to_uint16_round_to_zero(f, s);
3263 }
3264
3265 static inline uint64_t vfp_float16_to_uint64_rtz(float16 f, float_status *s)
3266 {
3267 if (float16_is_any_nan(f)) {
3268 float_raise(float_flag_invalid, s);
3269 return 0;
3270 }
3271 return float16_to_uint64_round_to_zero(f, s);
3272 }
3273
3274 static inline uint64_t vfp_float32_to_uint64_rtz(float32 f, float_status *s)
3275 {
3276 if (float32_is_any_nan(f)) {
3277 float_raise(float_flag_invalid, s);
3278 return 0;
3279 }
3280 return float32_to_uint64_round_to_zero(f, s);
3281 }
3282
3283 static inline uint64_t vfp_float64_to_uint64_rtz(float64 f, float_status *s)
3284 {
3285 if (float64_is_any_nan(f)) {
3286 float_raise(float_flag_invalid, s);
3287 return 0;
3288 }
3289 return float64_to_uint64_round_to_zero(f, s);
3290 }
3291
3292 DO_ZPZ_FP(sve_fcvt_sh, uint32_t, H1_4, sve_f32_to_f16)
3293 DO_ZPZ_FP(sve_fcvt_hs, uint32_t, H1_4, sve_f16_to_f32)
3294 DO_ZPZ_FP(sve_fcvt_dh, uint64_t, , sve_f64_to_f16)
3295 DO_ZPZ_FP(sve_fcvt_hd, uint64_t, , sve_f16_to_f64)
3296 DO_ZPZ_FP(sve_fcvt_ds, uint64_t, , float64_to_float32)
3297 DO_ZPZ_FP(sve_fcvt_sd, uint64_t, , float32_to_float64)
3298
3299 DO_ZPZ_FP(sve_fcvtzs_hh, uint16_t, H1_2, vfp_float16_to_int16_rtz)
3300 DO_ZPZ_FP(sve_fcvtzs_hs, uint32_t, H1_4, helper_vfp_tosizh)
3301 DO_ZPZ_FP(sve_fcvtzs_ss, uint32_t, H1_4, helper_vfp_tosizs)
3302 DO_ZPZ_FP(sve_fcvtzs_hd, uint64_t, , vfp_float16_to_int64_rtz)
3303 DO_ZPZ_FP(sve_fcvtzs_sd, uint64_t, , vfp_float32_to_int64_rtz)
3304 DO_ZPZ_FP(sve_fcvtzs_ds, uint64_t, , helper_vfp_tosizd)
3305 DO_ZPZ_FP(sve_fcvtzs_dd, uint64_t, , vfp_float64_to_int64_rtz)
3306
3307 DO_ZPZ_FP(sve_fcvtzu_hh, uint16_t, H1_2, vfp_float16_to_uint16_rtz)
3308 DO_ZPZ_FP(sve_fcvtzu_hs, uint32_t, H1_4, helper_vfp_touizh)
3309 DO_ZPZ_FP(sve_fcvtzu_ss, uint32_t, H1_4, helper_vfp_touizs)
3310 DO_ZPZ_FP(sve_fcvtzu_hd, uint64_t, , vfp_float16_to_uint64_rtz)
3311 DO_ZPZ_FP(sve_fcvtzu_sd, uint64_t, , vfp_float32_to_uint64_rtz)
3312 DO_ZPZ_FP(sve_fcvtzu_ds, uint64_t, , helper_vfp_touizd)
3313 DO_ZPZ_FP(sve_fcvtzu_dd, uint64_t, , vfp_float64_to_uint64_rtz)
3314
3315 DO_ZPZ_FP(sve_frint_h, uint16_t, H1_2, helper_advsimd_rinth)
3316 DO_ZPZ_FP(sve_frint_s, uint32_t, H1_4, helper_rints)
3317 DO_ZPZ_FP(sve_frint_d, uint64_t, , helper_rintd)
3318
3319 DO_ZPZ_FP(sve_frintx_h, uint16_t, H1_2, float16_round_to_int)
3320 DO_ZPZ_FP(sve_frintx_s, uint32_t, H1_4, float32_round_to_int)
3321 DO_ZPZ_FP(sve_frintx_d, uint64_t, , float64_round_to_int)
3322
3323 DO_ZPZ_FP(sve_frecpx_h, uint16_t, H1_2, helper_frecpx_f16)
3324 DO_ZPZ_FP(sve_frecpx_s, uint32_t, H1_4, helper_frecpx_f32)
3325 DO_ZPZ_FP(sve_frecpx_d, uint64_t, , helper_frecpx_f64)
3326
3327 DO_ZPZ_FP(sve_fsqrt_h, uint16_t, H1_2, float16_sqrt)
3328 DO_ZPZ_FP(sve_fsqrt_s, uint32_t, H1_4, float32_sqrt)
3329 DO_ZPZ_FP(sve_fsqrt_d, uint64_t, , float64_sqrt)
3330
3331 DO_ZPZ_FP(sve_scvt_hh, uint16_t, H1_2, int16_to_float16)
3332 DO_ZPZ_FP(sve_scvt_sh, uint32_t, H1_4, int32_to_float16)
3333 DO_ZPZ_FP(sve_scvt_ss, uint32_t, H1_4, int32_to_float32)
3334 DO_ZPZ_FP(sve_scvt_sd, uint64_t, , int32_to_float64)
3335 DO_ZPZ_FP(sve_scvt_dh, uint64_t, , int64_to_float16)
3336 DO_ZPZ_FP(sve_scvt_ds, uint64_t, , int64_to_float32)
3337 DO_ZPZ_FP(sve_scvt_dd, uint64_t, , int64_to_float64)
3338
3339 DO_ZPZ_FP(sve_ucvt_hh, uint16_t, H1_2, uint16_to_float16)
3340 DO_ZPZ_FP(sve_ucvt_sh, uint32_t, H1_4, uint32_to_float16)
3341 DO_ZPZ_FP(sve_ucvt_ss, uint32_t, H1_4, uint32_to_float32)
3342 DO_ZPZ_FP(sve_ucvt_sd, uint64_t, , uint32_to_float64)
3343 DO_ZPZ_FP(sve_ucvt_dh, uint64_t, , uint64_to_float16)
3344 DO_ZPZ_FP(sve_ucvt_ds, uint64_t, , uint64_to_float32)
3345 DO_ZPZ_FP(sve_ucvt_dd, uint64_t, , uint64_to_float64)
3346
3347 #undef DO_ZPZ_FP
3348
3349 static void do_fmla_zpzzz_h(void *vd, void *vn, void *vm, void *va, void *vg,
3350 float_status *status, uint32_t desc,
3351 uint16_t neg1, uint16_t neg3)
3352 {
3353 intptr_t i = simd_oprsz(desc);
3354 uint64_t *g = vg;
3355
3356 do {
3357 uint64_t pg = g[(i - 1) >> 6];
3358 do {
3359 i -= 2;
3360 if (likely((pg >> (i & 63)) & 1)) {
3361 float16 e1, e2, e3, r;
3362
3363 e1 = *(uint16_t *)(vn + H1_2(i)) ^ neg1;
3364 e2 = *(uint16_t *)(vm + H1_2(i));
3365 e3 = *(uint16_t *)(va + H1_2(i)) ^ neg3;
3366 r = float16_muladd(e1, e2, e3, 0, status);
3367 *(uint16_t *)(vd + H1_2(i)) = r;
3368 }
3369 } while (i & 63);
3370 } while (i != 0);
3371 }
3372
3373 void HELPER(sve_fmla_zpzzz_h)(void *vd, void *vn, void *vm, void *va,
3374 void *vg, void *status, uint32_t desc)
3375 {
3376 do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0, 0);
3377 }
3378
3379 void HELPER(sve_fmls_zpzzz_h)(void *vd, void *vn, void *vm, void *va,
3380 void *vg, void *status, uint32_t desc)
3381 {
3382 do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0x8000, 0);
3383 }
3384
3385 void HELPER(sve_fnmla_zpzzz_h)(void *vd, void *vn, void *vm, void *va,
3386 void *vg, void *status, uint32_t desc)
3387 {
3388 do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0x8000, 0x8000);
3389 }
3390
3391 void HELPER(sve_fnmls_zpzzz_h)(void *vd, void *vn, void *vm, void *va,
3392 void *vg, void *status, uint32_t desc)
3393 {
3394 do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0, 0x8000);
3395 }
3396
3397 static void do_fmla_zpzzz_s(void *vd, void *vn, void *vm, void *va, void *vg,
3398 float_status *status, uint32_t desc,
3399 uint32_t neg1, uint32_t neg3)
3400 {
3401 intptr_t i = simd_oprsz(desc);
3402 uint64_t *g = vg;
3403
3404 do {
3405 uint64_t pg = g[(i - 1) >> 6];
3406 do {
3407 i -= 4;
3408 if (likely((pg >> (i & 63)) & 1)) {
3409 float32 e1, e2, e3, r;
3410
3411 e1 = *(uint32_t *)(vn + H1_4(i)) ^ neg1;
3412 e2 = *(uint32_t *)(vm + H1_4(i));
3413 e3 = *(uint32_t *)(va + H1_4(i)) ^ neg3;
3414 r = float32_muladd(e1, e2, e3, 0, status);
3415 *(uint32_t *)(vd + H1_4(i)) = r;
3416 }
3417 } while (i & 63);
3418 } while (i != 0);
3419 }
3420
3421 void HELPER(sve_fmla_zpzzz_s)(void *vd, void *vn, void *vm, void *va,
3422 void *vg, void *status, uint32_t desc)
3423 {
3424 do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0, 0);
3425 }
3426
3427 void HELPER(sve_fmls_zpzzz_s)(void *vd, void *vn, void *vm, void *va,
3428 void *vg, void *status, uint32_t desc)
3429 {
3430 do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0x80000000, 0);
3431 }
3432
3433 void HELPER(sve_fnmla_zpzzz_s)(void *vd, void *vn, void *vm, void *va,
3434 void *vg, void *status, uint32_t desc)
3435 {
3436 do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0x80000000, 0x80000000);
3437 }
3438
3439 void HELPER(sve_fnmls_zpzzz_s)(void *vd, void *vn, void *vm, void *va,
3440 void *vg, void *status, uint32_t desc)
3441 {
3442 do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0, 0x80000000);
3443 }
3444
3445 static void do_fmla_zpzzz_d(void *vd, void *vn, void *vm, void *va, void *vg,
3446 float_status *status, uint32_t desc,
3447 uint64_t neg1, uint64_t neg3)
3448 {
3449 intptr_t i = simd_oprsz(desc);
3450 uint64_t *g = vg;
3451
3452 do {
3453 uint64_t pg = g[(i - 1) >> 6];
3454 do {
3455 i -= 8;
3456 if (likely((pg >> (i & 63)) & 1)) {
3457 float64 e1, e2, e3, r;
3458
3459 e1 = *(uint64_t *)(vn + i) ^ neg1;
3460 e2 = *(uint64_t *)(vm + i);
3461 e3 = *(uint64_t *)(va + i) ^ neg3;
3462 r = float64_muladd(e1, e2, e3, 0, status);
3463 *(uint64_t *)(vd + i) = r;
3464 }
3465 } while (i & 63);
3466 } while (i != 0);
3467 }
3468
3469 void HELPER(sve_fmla_zpzzz_d)(void *vd, void *vn, void *vm, void *va,
3470 void *vg, void *status, uint32_t desc)
3471 {
3472 do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, 0, 0);
3473 }
3474
3475 void HELPER(sve_fmls_zpzzz_d)(void *vd, void *vn, void *vm, void *va,
3476 void *vg, void *status, uint32_t desc)
3477 {
3478 do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, INT64_MIN, 0);
3479 }
3480
3481 void HELPER(sve_fnmla_zpzzz_d)(void *vd, void *vn, void *vm, void *va,
3482 void *vg, void *status, uint32_t desc)
3483 {
3484 do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, INT64_MIN, INT64_MIN);
3485 }
3486
3487 void HELPER(sve_fnmls_zpzzz_d)(void *vd, void *vn, void *vm, void *va,
3488 void *vg, void *status, uint32_t desc)
3489 {
3490 do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, 0, INT64_MIN);
3491 }
3492
3493 /* Two operand floating-point comparison controlled by a predicate.
3494 * Unlike the integer version, we are not allowed to optimistically
3495 * compare operands, since the comparison may have side effects wrt
3496 * the FPSR.
3497 */
3498 #define DO_FPCMP_PPZZ(NAME, TYPE, H, OP) \
3499 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, \
3500 void *status, uint32_t desc) \
3501 { \
3502 intptr_t i = simd_oprsz(desc), j = (i - 1) >> 6; \
3503 uint64_t *d = vd, *g = vg; \
3504 do { \
3505 uint64_t out = 0, pg = g[j]; \
3506 do { \
3507 i -= sizeof(TYPE), out <<= sizeof(TYPE); \
3508 if (likely((pg >> (i & 63)) & 1)) { \
3509 TYPE nn = *(TYPE *)(vn + H(i)); \
3510 TYPE mm = *(TYPE *)(vm + H(i)); \
3511 out |= OP(TYPE, nn, mm, status); \
3512 } \
3513 } while (i & 63); \
3514 d[j--] = out; \
3515 } while (i > 0); \
3516 }
3517
3518 #define DO_FPCMP_PPZZ_H(NAME, OP) \
3519 DO_FPCMP_PPZZ(NAME##_h, float16, H1_2, OP)
3520 #define DO_FPCMP_PPZZ_S(NAME, OP) \
3521 DO_FPCMP_PPZZ(NAME##_s, float32, H1_4, OP)
3522 #define DO_FPCMP_PPZZ_D(NAME, OP) \
3523 DO_FPCMP_PPZZ(NAME##_d, float64, , OP)
3524
3525 #define DO_FPCMP_PPZZ_ALL(NAME, OP) \
3526 DO_FPCMP_PPZZ_H(NAME, OP) \
3527 DO_FPCMP_PPZZ_S(NAME, OP) \
3528 DO_FPCMP_PPZZ_D(NAME, OP)
3529
3530 #define DO_FCMGE(TYPE, X, Y, ST) TYPE##_compare(Y, X, ST) <= 0
3531 #define DO_FCMGT(TYPE, X, Y, ST) TYPE##_compare(Y, X, ST) < 0
3532 #define DO_FCMLE(TYPE, X, Y, ST) TYPE##_compare(X, Y, ST) <= 0
3533 #define DO_FCMLT(TYPE, X, Y, ST) TYPE##_compare(X, Y, ST) < 0
3534 #define DO_FCMEQ(TYPE, X, Y, ST) TYPE##_compare_quiet(X, Y, ST) == 0
3535 #define DO_FCMNE(TYPE, X, Y, ST) TYPE##_compare_quiet(X, Y, ST) != 0
3536 #define DO_FCMUO(TYPE, X, Y, ST) \
3537 TYPE##_compare_quiet(X, Y, ST) == float_relation_unordered
3538 #define DO_FACGE(TYPE, X, Y, ST) \
3539 TYPE##_compare(TYPE##_abs(Y), TYPE##_abs(X), ST) <= 0
3540 #define DO_FACGT(TYPE, X, Y, ST) \
3541 TYPE##_compare(TYPE##_abs(Y), TYPE##_abs(X), ST) < 0
3542
3543 DO_FPCMP_PPZZ_ALL(sve_fcmge, DO_FCMGE)
3544 DO_FPCMP_PPZZ_ALL(sve_fcmgt, DO_FCMGT)
3545 DO_FPCMP_PPZZ_ALL(sve_fcmeq, DO_FCMEQ)
3546 DO_FPCMP_PPZZ_ALL(sve_fcmne, DO_FCMNE)
3547 DO_FPCMP_PPZZ_ALL(sve_fcmuo, DO_FCMUO)
3548 DO_FPCMP_PPZZ_ALL(sve_facge, DO_FACGE)
3549 DO_FPCMP_PPZZ_ALL(sve_facgt, DO_FACGT)
3550
3551 #undef DO_FPCMP_PPZZ_ALL
3552 #undef DO_FPCMP_PPZZ_D
3553 #undef DO_FPCMP_PPZZ_S
3554 #undef DO_FPCMP_PPZZ_H
3555 #undef DO_FPCMP_PPZZ
3556
3557 /* One operand floating-point comparison against zero, controlled
3558 * by a predicate.
3559 */
3560 #define DO_FPCMP_PPZ0(NAME, TYPE, H, OP) \
3561 void HELPER(NAME)(void *vd, void *vn, void *vg, \
3562 void *status, uint32_t desc) \
3563 { \
3564 intptr_t i = simd_oprsz(desc), j = (i - 1) >> 6; \
3565 uint64_t *d = vd, *g = vg; \
3566 do { \
3567 uint64_t out = 0, pg = g[j]; \
3568 do { \
3569 i -= sizeof(TYPE), out <<= sizeof(TYPE); \
3570 if ((pg >> (i & 63)) & 1) { \
3571 TYPE nn = *(TYPE *)(vn + H(i)); \
3572 out |= OP(TYPE, nn, 0, status); \
3573 } \
3574 } while (i & 63); \
3575 d[j--] = out; \
3576 } while (i > 0); \
3577 }
3578
3579 #define DO_FPCMP_PPZ0_H(NAME, OP) \
3580 DO_FPCMP_PPZ0(NAME##_h, float16, H1_2, OP)
3581 #define DO_FPCMP_PPZ0_S(NAME, OP) \
3582 DO_FPCMP_PPZ0(NAME##_s, float32, H1_4, OP)
3583 #define DO_FPCMP_PPZ0_D(NAME, OP) \
3584 DO_FPCMP_PPZ0(NAME##_d, float64, , OP)
3585
3586 #define DO_FPCMP_PPZ0_ALL(NAME, OP) \
3587 DO_FPCMP_PPZ0_H(NAME, OP) \
3588 DO_FPCMP_PPZ0_S(NAME, OP) \
3589 DO_FPCMP_PPZ0_D(NAME, OP)
3590
3591 DO_FPCMP_PPZ0_ALL(sve_fcmge0, DO_FCMGE)
3592 DO_FPCMP_PPZ0_ALL(sve_fcmgt0, DO_FCMGT)
3593 DO_FPCMP_PPZ0_ALL(sve_fcmle0, DO_FCMLE)
3594 DO_FPCMP_PPZ0_ALL(sve_fcmlt0, DO_FCMLT)
3595 DO_FPCMP_PPZ0_ALL(sve_fcmeq0, DO_FCMEQ)
3596 DO_FPCMP_PPZ0_ALL(sve_fcmne0, DO_FCMNE)
3597
3598 /* FP Trig Multiply-Add. */
3599
3600 void HELPER(sve_ftmad_h)(void *vd, void *vn, void *vm, void *vs, uint32_t desc)
3601 {
3602 static const float16 coeff[16] = {
3603 0x3c00, 0xb155, 0x2030, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
3604 0x3c00, 0xb800, 0x293a, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
3605 };
3606 intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float16);
3607 intptr_t x = simd_data(desc);
3608 float16 *d = vd, *n = vn, *m = vm;
3609 for (i = 0; i < opr_sz; i++) {
3610 float16 mm = m[i];
3611 intptr_t xx = x;
3612 if (float16_is_neg(mm)) {
3613 mm = float16_abs(mm);
3614 xx += 8;
3615 }
3616 d[i] = float16_muladd(n[i], mm, coeff[xx], 0, vs);
3617 }
3618 }
3619
3620 void HELPER(sve_ftmad_s)(void *vd, void *vn, void *vm, void *vs, uint32_t desc)
3621 {
3622 static const float32 coeff[16] = {
3623 0x3f800000, 0xbe2aaaab, 0x3c088886, 0xb95008b9,
3624 0x36369d6d, 0x00000000, 0x00000000, 0x00000000,
3625 0x3f800000, 0xbf000000, 0x3d2aaaa6, 0xbab60705,
3626 0x37cd37cc, 0x00000000, 0x00000000, 0x00000000,
3627 };
3628 intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float32);
3629 intptr_t x = simd_data(desc);
3630 float32 *d = vd, *n = vn, *m = vm;
3631 for (i = 0; i < opr_sz; i++) {
3632 float32 mm = m[i];
3633 intptr_t xx = x;
3634 if (float32_is_neg(mm)) {
3635 mm = float32_abs(mm);
3636 xx += 8;
3637 }
3638 d[i] = float32_muladd(n[i], mm, coeff[xx], 0, vs);
3639 }
3640 }
3641
3642 void HELPER(sve_ftmad_d)(void *vd, void *vn, void *vm, void *vs, uint32_t desc)
3643 {
3644 static const float64 coeff[16] = {
3645 0x3ff0000000000000ull, 0xbfc5555555555543ull,
3646 0x3f8111111110f30cull, 0xbf2a01a019b92fc6ull,
3647 0x3ec71de351f3d22bull, 0xbe5ae5e2b60f7b91ull,
3648 0x3de5d8408868552full, 0x0000000000000000ull,
3649 0x3ff0000000000000ull, 0xbfe0000000000000ull,
3650 0x3fa5555555555536ull, 0xbf56c16c16c13a0bull,
3651 0x3efa01a019b1e8d8ull, 0xbe927e4f7282f468ull,
3652 0x3e21ee96d2641b13ull, 0xbda8f76380fbb401ull,
3653 };
3654 intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float64);
3655 intptr_t x = simd_data(desc);
3656 float64 *d = vd, *n = vn, *m = vm;
3657 for (i = 0; i < opr_sz; i++) {
3658 float64 mm = m[i];
3659 intptr_t xx = x;
3660 if (float64_is_neg(mm)) {
3661 mm = float64_abs(mm);
3662 xx += 8;
3663 }
3664 d[i] = float64_muladd(n[i], mm, coeff[xx], 0, vs);
3665 }
3666 }
3667
3668 /*
3669 * FP Complex Add
3670 */
3671
3672 void HELPER(sve_fcadd_h)(void *vd, void *vn, void *vm, void *vg,
3673 void *vs, uint32_t desc)
3674 {
3675 intptr_t j, i = simd_oprsz(desc);
3676 uint64_t *g = vg;
3677 float16 neg_imag = float16_set_sign(0, simd_data(desc));
3678 float16 neg_real = float16_chs(neg_imag);
3679
3680 do {
3681 uint64_t pg = g[(i - 1) >> 6];
3682 do {
3683 float16 e0, e1, e2, e3;
3684
3685 /* I holds the real index; J holds the imag index. */
3686 j = i - sizeof(float16);
3687 i -= 2 * sizeof(float16);
3688
3689 e0 = *(float16 *)(vn + H1_2(i));
3690 e1 = *(float16 *)(vm + H1_2(j)) ^ neg_real;
3691 e2 = *(float16 *)(vn + H1_2(j));
3692 e3 = *(float16 *)(vm + H1_2(i)) ^ neg_imag;
3693
3694 if (likely((pg >> (i & 63)) & 1)) {
3695 *(float16 *)(vd + H1_2(i)) = float16_add(e0, e1, vs);
3696 }
3697 if (likely((pg >> (j & 63)) & 1)) {
3698 *(float16 *)(vd + H1_2(j)) = float16_add(e2, e3, vs);
3699 }
3700 } while (i & 63);
3701 } while (i != 0);
3702 }
3703
3704 void HELPER(sve_fcadd_s)(void *vd, void *vn, void *vm, void *vg,
3705 void *vs, uint32_t desc)
3706 {
3707 intptr_t j, i = simd_oprsz(desc);
3708 uint64_t *g = vg;
3709 float32 neg_imag = float32_set_sign(0, simd_data(desc));
3710 float32 neg_real = float32_chs(neg_imag);
3711
3712 do {
3713 uint64_t pg = g[(i - 1) >> 6];
3714 do {
3715 float32 e0, e1, e2, e3;
3716
3717 /* I holds the real index; J holds the imag index. */
3718 j = i - sizeof(float32);
3719 i -= 2 * sizeof(float32);
3720
3721 e0 = *(float32 *)(vn + H1_2(i));
3722 e1 = *(float32 *)(vm + H1_2(j)) ^ neg_real;
3723 e2 = *(float32 *)(vn + H1_2(j));
3724 e3 = *(float32 *)(vm + H1_2(i)) ^ neg_imag;
3725
3726 if (likely((pg >> (i & 63)) & 1)) {
3727 *(float32 *)(vd + H1_2(i)) = float32_add(e0, e1, vs);
3728 }
3729 if (likely((pg >> (j & 63)) & 1)) {
3730 *(float32 *)(vd + H1_2(j)) = float32_add(e2, e3, vs);
3731 }
3732 } while (i & 63);
3733 } while (i != 0);
3734 }
3735
3736 void HELPER(sve_fcadd_d)(void *vd, void *vn, void *vm, void *vg,
3737 void *vs, uint32_t desc)
3738 {
3739 intptr_t j, i = simd_oprsz(desc);
3740 uint64_t *g = vg;
3741 float64 neg_imag = float64_set_sign(0, simd_data(desc));
3742 float64 neg_real = float64_chs(neg_imag);
3743
3744 do {
3745 uint64_t pg = g[(i - 1) >> 6];
3746 do {
3747 float64 e0, e1, e2, e3;
3748
3749 /* I holds the real index; J holds the imag index. */
3750 j = i - sizeof(float64);
3751 i -= 2 * sizeof(float64);
3752
3753 e0 = *(float64 *)(vn + H1_2(i));
3754 e1 = *(float64 *)(vm + H1_2(j)) ^ neg_real;
3755 e2 = *(float64 *)(vn + H1_2(j));
3756 e3 = *(float64 *)(vm + H1_2(i)) ^ neg_imag;
3757
3758 if (likely((pg >> (i & 63)) & 1)) {
3759 *(float64 *)(vd + H1_2(i)) = float64_add(e0, e1, vs);
3760 }
3761 if (likely((pg >> (j & 63)) & 1)) {
3762 *(float64 *)(vd + H1_2(j)) = float64_add(e2, e3, vs);
3763 }
3764 } while (i & 63);
3765 } while (i != 0);
3766 }
3767
3768 /*
3769 * FP Complex Multiply
3770 */
3771
3772 void HELPER(sve_fcmla_zpzzz_h)(void *vd, void *vn, void *vm, void *va,
3773 void *vg, void *status, uint32_t desc)
3774 {
3775 intptr_t j, i = simd_oprsz(desc);
3776 unsigned rot = simd_data(desc);
3777 bool flip = rot & 1;
3778 float16 neg_imag, neg_real;
3779 uint64_t *g = vg;
3780
3781 neg_imag = float16_set_sign(0, (rot & 2) != 0);
3782 neg_real = float16_set_sign(0, rot == 1 || rot == 2);
3783
3784 do {
3785 uint64_t pg = g[(i - 1) >> 6];
3786 do {
3787 float16 e1, e2, e3, e4, nr, ni, mr, mi, d;
3788
3789 /* I holds the real index; J holds the imag index. */
3790 j = i - sizeof(float16);
3791 i -= 2 * sizeof(float16);
3792
3793 nr = *(float16 *)(vn + H1_2(i));
3794 ni = *(float16 *)(vn + H1_2(j));
3795 mr = *(float16 *)(vm + H1_2(i));
3796 mi = *(float16 *)(vm + H1_2(j));
3797
3798 e2 = (flip ? ni : nr);
3799 e1 = (flip ? mi : mr) ^ neg_real;
3800 e4 = e2;
3801 e3 = (flip ? mr : mi) ^ neg_imag;
3802
3803 if (likely((pg >> (i & 63)) & 1)) {
3804 d = *(float16 *)(va + H1_2(i));
3805 d = float16_muladd(e2, e1, d, 0, status);
3806 *(float16 *)(vd + H1_2(i)) = d;
3807 }
3808 if (likely((pg >> (j & 63)) & 1)) {
3809 d = *(float16 *)(va + H1_2(j));
3810 d = float16_muladd(e4, e3, d, 0, status);
3811 *(float16 *)(vd + H1_2(j)) = d;
3812 }
3813 } while (i & 63);
3814 } while (i != 0);
3815 }
3816
3817 void HELPER(sve_fcmla_zpzzz_s)(void *vd, void *vn, void *vm, void *va,
3818 void *vg, void *status, uint32_t desc)
3819 {
3820 intptr_t j, i = simd_oprsz(desc);
3821 unsigned rot = simd_data(desc);
3822 bool flip = rot & 1;
3823 float32 neg_imag, neg_real;
3824 uint64_t *g = vg;
3825
3826 neg_imag = float32_set_sign(0, (rot & 2) != 0);
3827 neg_real = float32_set_sign(0, rot == 1 || rot == 2);
3828
3829 do {
3830 uint64_t pg = g[(i - 1) >> 6];
3831 do {
3832 float32 e1, e2, e3, e4, nr, ni, mr, mi, d;
3833
3834 /* I holds the real index; J holds the imag index. */
3835 j = i - sizeof(float32);
3836 i -= 2 * sizeof(float32);
3837
3838 nr = *(float32 *)(vn + H1_2(i));
3839 ni = *(float32 *)(vn + H1_2(j));
3840 mr = *(float32 *)(vm + H1_2(i));
3841 mi = *(float32 *)(vm + H1_2(j));
3842
3843 e2 = (flip ? ni : nr);
3844 e1 = (flip ? mi : mr) ^ neg_real;
3845 e4 = e2;
3846 e3 = (flip ? mr : mi) ^ neg_imag;
3847
3848 if (likely((pg >> (i & 63)) & 1)) {
3849 d = *(float32 *)(va + H1_2(i));
3850 d = float32_muladd(e2, e1, d, 0, status);
3851 *(float32 *)(vd + H1_2(i)) = d;
3852 }
3853 if (likely((pg >> (j & 63)) & 1)) {
3854 d = *(float32 *)(va + H1_2(j));
3855 d = float32_muladd(e4, e3, d, 0, status);
3856 *(float32 *)(vd + H1_2(j)) = d;
3857 }
3858 } while (i & 63);
3859 } while (i != 0);
3860 }
3861
3862 void HELPER(sve_fcmla_zpzzz_d)(void *vd, void *vn, void *vm, void *va,
3863 void *vg, void *status, uint32_t desc)
3864 {
3865 intptr_t j, i = simd_oprsz(desc);
3866 unsigned rot = simd_data(desc);
3867 bool flip = rot & 1;
3868 float64 neg_imag, neg_real;
3869 uint64_t *g = vg;
3870
3871 neg_imag = float64_set_sign(0, (rot & 2) != 0);
3872 neg_real = float64_set_sign(0, rot == 1 || rot == 2);
3873
3874 do {
3875 uint64_t pg = g[(i - 1) >> 6];
3876 do {
3877 float64 e1, e2, e3, e4, nr, ni, mr, mi, d;
3878
3879 /* I holds the real index; J holds the imag index. */
3880 j = i - sizeof(float64);
3881 i -= 2 * sizeof(float64);
3882
3883 nr = *(float64 *)(vn + H1_2(i));
3884 ni = *(float64 *)(vn + H1_2(j));
3885 mr = *(float64 *)(vm + H1_2(i));
3886 mi = *(float64 *)(vm + H1_2(j));
3887
3888 e2 = (flip ? ni : nr);
3889 e1 = (flip ? mi : mr) ^ neg_real;
3890 e4 = e2;
3891 e3 = (flip ? mr : mi) ^ neg_imag;
3892
3893 if (likely((pg >> (i & 63)) & 1)) {
3894 d = *(float64 *)(va + H1_2(i));
3895 d = float64_muladd(e2, e1, d, 0, status);
3896 *(float64 *)(vd + H1_2(i)) = d;
3897 }
3898 if (likely((pg >> (j & 63)) & 1)) {
3899 d = *(float64 *)(va + H1_2(j));
3900 d = float64_muladd(e4, e3, d, 0, status);
3901 *(float64 *)(vd + H1_2(j)) = d;
3902 }
3903 } while (i & 63);
3904 } while (i != 0);
3905 }
3906
3907 /*
3908 * Load contiguous data, protected by a governing predicate.
3909 */
3910
3911 /*
3912 * Load one element into @vd + @reg_off from @host.
3913 * The controlling predicate is known to be true.
3914 */
3915 typedef void sve_ldst1_host_fn(void *vd, intptr_t reg_off, void *host);
3916
3917 /*
3918 * Load one element into @vd + @reg_off from (@env, @vaddr, @ra).
3919 * The controlling predicate is known to be true.
3920 */
3921 typedef void sve_ldst1_tlb_fn(CPUARMState *env, void *vd, intptr_t reg_off,
3922 target_ulong vaddr, uintptr_t retaddr);
3923
3924 /*
3925 * Generate the above primitives.
3926 */
3927
3928 #define DO_LD_HOST(NAME, H, TYPEE, TYPEM, HOST) \
3929 static void sve_##NAME##_host(void *vd, intptr_t reg_off, void *host) \
3930 { \
3931 TYPEM val = HOST(host); \
3932 *(TYPEE *)(vd + H(reg_off)) = val; \
3933 }
3934
3935 #define DO_ST_HOST(NAME, H, TYPEE, TYPEM, HOST) \
3936 static void sve_##NAME##_host(void *vd, intptr_t reg_off, void *host) \
3937 { HOST(host, (TYPEM)*(TYPEE *)(vd + H(reg_off))); }
3938
3939 #define DO_LD_TLB(NAME, H, TYPEE, TYPEM, TLB) \
3940 static void sve_##NAME##_tlb(CPUARMState *env, void *vd, intptr_t reg_off, \
3941 target_ulong addr, uintptr_t ra) \
3942 { \
3943 *(TYPEE *)(vd + H(reg_off)) = \
3944 (TYPEM)TLB(env, useronly_clean_ptr(addr), ra); \
3945 }
3946
3947 #define DO_ST_TLB(NAME, H, TYPEE, TYPEM, TLB) \
3948 static void sve_##NAME##_tlb(CPUARMState *env, void *vd, intptr_t reg_off, \
3949 target_ulong addr, uintptr_t ra) \
3950 { \
3951 TLB(env, useronly_clean_ptr(addr), \
3952 (TYPEM)*(TYPEE *)(vd + H(reg_off)), ra); \
3953 }
3954
3955 #define DO_LD_PRIM_1(NAME, H, TE, TM) \
3956 DO_LD_HOST(NAME, H, TE, TM, ldub_p) \
3957 DO_LD_TLB(NAME, H, TE, TM, cpu_ldub_data_ra)
3958
3959 DO_LD_PRIM_1(ld1bb, H1, uint8_t, uint8_t)
3960 DO_LD_PRIM_1(ld1bhu, H1_2, uint16_t, uint8_t)
3961 DO_LD_PRIM_1(ld1bhs, H1_2, uint16_t, int8_t)
3962 DO_LD_PRIM_1(ld1bsu, H1_4, uint32_t, uint8_t)
3963 DO_LD_PRIM_1(ld1bss, H1_4, uint32_t, int8_t)
3964 DO_LD_PRIM_1(ld1bdu, , uint64_t, uint8_t)
3965 DO_LD_PRIM_1(ld1bds, , uint64_t, int8_t)
3966
3967 #define DO_ST_PRIM_1(NAME, H, TE, TM) \
3968 DO_ST_HOST(st1##NAME, H, TE, TM, stb_p) \
3969 DO_ST_TLB(st1##NAME, H, TE, TM, cpu_stb_data_ra)
3970
3971 DO_ST_PRIM_1(bb, H1, uint8_t, uint8_t)
3972 DO_ST_PRIM_1(bh, H1_2, uint16_t, uint8_t)
3973 DO_ST_PRIM_1(bs, H1_4, uint32_t, uint8_t)
3974 DO_ST_PRIM_1(bd, , uint64_t, uint8_t)
3975
3976 #define DO_LD_PRIM_2(NAME, H, TE, TM, LD) \
3977 DO_LD_HOST(ld1##NAME##_be, H, TE, TM, LD##_be_p) \
3978 DO_LD_HOST(ld1##NAME##_le, H, TE, TM, LD##_le_p) \
3979 DO_LD_TLB(ld1##NAME##_be, H, TE, TM, cpu_##LD##_be_data_ra) \
3980 DO_LD_TLB(ld1##NAME##_le, H, TE, TM, cpu_##LD##_le_data_ra)
3981
3982 #define DO_ST_PRIM_2(NAME, H, TE, TM, ST) \
3983 DO_ST_HOST(st1##NAME##_be, H, TE, TM, ST##_be_p) \
3984 DO_ST_HOST(st1##NAME##_le, H, TE, TM, ST##_le_p) \
3985 DO_ST_TLB(st1##NAME##_be, H, TE, TM, cpu_##ST##_be_data_ra) \
3986 DO_ST_TLB(st1##NAME##_le, H, TE, TM, cpu_##ST##_le_data_ra)
3987
3988 DO_LD_PRIM_2(hh, H1_2, uint16_t, uint16_t, lduw)
3989 DO_LD_PRIM_2(hsu, H1_4, uint32_t, uint16_t, lduw)
3990 DO_LD_PRIM_2(hss, H1_4, uint32_t, int16_t, lduw)
3991 DO_LD_PRIM_2(hdu, , uint64_t, uint16_t, lduw)
3992 DO_LD_PRIM_2(hds, , uint64_t, int16_t, lduw)
3993
3994 DO_ST_PRIM_2(hh, H1_2, uint16_t, uint16_t, stw)
3995 DO_ST_PRIM_2(hs, H1_4, uint32_t, uint16_t, stw)
3996 DO_ST_PRIM_2(hd, , uint64_t, uint16_t, stw)
3997
3998 DO_LD_PRIM_2(ss, H1_4, uint32_t, uint32_t, ldl)
3999 DO_LD_PRIM_2(sdu, , uint64_t, uint32_t, ldl)
4000 DO_LD_PRIM_2(sds, , uint64_t, int32_t, ldl)
4001
4002 DO_ST_PRIM_2(ss, H1_4, uint32_t, uint32_t, stl)
4003 DO_ST_PRIM_2(sd, , uint64_t, uint32_t, stl)
4004
4005 DO_LD_PRIM_2(dd, , uint64_t, uint64_t, ldq)
4006 DO_ST_PRIM_2(dd, , uint64_t, uint64_t, stq)
4007
4008 #undef DO_LD_TLB
4009 #undef DO_ST_TLB
4010 #undef DO_LD_HOST
4011 #undef DO_LD_PRIM_1
4012 #undef DO_ST_PRIM_1
4013 #undef DO_LD_PRIM_2
4014 #undef DO_ST_PRIM_2
4015
4016 /*
4017 * Skip through a sequence of inactive elements in the guarding predicate @vg,
4018 * beginning at @reg_off bounded by @reg_max. Return the offset of the active
4019 * element >= @reg_off, or @reg_max if there were no active elements at all.
4020 */
4021 static intptr_t find_next_active(uint64_t *vg, intptr_t reg_off,
4022 intptr_t reg_max, int esz)
4023 {
4024 uint64_t pg_mask = pred_esz_masks[esz];
4025 uint64_t pg = (vg[reg_off >> 6] & pg_mask) >> (reg_off & 63);
4026
4027 /* In normal usage, the first element is active. */
4028 if (likely(pg & 1)) {
4029 return reg_off;
4030 }
4031
4032 if (pg == 0) {
4033 reg_off &= -64;
4034 do {
4035 reg_off += 64;
4036 if (unlikely(reg_off >= reg_max)) {
4037 /* The entire predicate was false. */
4038 return reg_max;
4039 }
4040 pg = vg[reg_off >> 6] & pg_mask;
4041 } while (pg == 0);
4042 }
4043 reg_off += ctz64(pg);
4044
4045 /* We should never see an out of range predicate bit set. */
4046 tcg_debug_assert(reg_off < reg_max);
4047 return reg_off;
4048 }
4049
4050 /*
4051 * Resolve the guest virtual address to info->host and info->flags.
4052 * If @nofault, return false if the page is invalid, otherwise
4053 * exit via page fault exception.
4054 */
4055
4056 typedef struct {
4057 void *host;
4058 int flags;
4059 MemTxAttrs attrs;
4060 } SVEHostPage;
4061
4062 static bool sve_probe_page(SVEHostPage *info, bool nofault,
4063 CPUARMState *env, target_ulong addr,
4064 int mem_off, MMUAccessType access_type,
4065 int mmu_idx, uintptr_t retaddr)
4066 {
4067 int flags;
4068
4069 addr += mem_off;
4070
4071 /*
4072 * User-only currently always issues with TBI. See the comment
4073 * above useronly_clean_ptr. Usually we clean this top byte away
4074 * during translation, but we can't do that for e.g. vector + imm
4075 * addressing modes.
4076 *
4077 * We currently always enable TBI for user-only, and do not provide
4078 * a way to turn it off. So clean the pointer unconditionally here,
4079 * rather than look it up here, or pass it down from above.
4080 */
4081 addr = useronly_clean_ptr(addr);
4082
4083 flags = probe_access_flags(env, addr, access_type, mmu_idx, nofault,
4084 &info->host, retaddr);
4085 info->flags = flags;
4086
4087 if (flags & TLB_INVALID_MASK) {
4088 g_assert(nofault);
4089 return false;
4090 }
4091
4092 /* Ensure that info->host[] is relative to addr, not addr + mem_off. */
4093 info->host -= mem_off;
4094
4095 #ifdef CONFIG_USER_ONLY
4096 memset(&info->attrs, 0, sizeof(info->attrs));
4097 #else
4098 /*
4099 * Find the iotlbentry for addr and return the transaction attributes.
4100 * This *must* be present in the TLB because we just found the mapping.
4101 */
4102 {
4103 uintptr_t index = tlb_index(env, mmu_idx, addr);
4104
4105 # ifdef CONFIG_DEBUG_TCG
4106 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
4107 target_ulong comparator = (access_type == MMU_DATA_LOAD
4108 ? entry->addr_read
4109 : tlb_addr_write(entry));
4110 g_assert(tlb_hit(comparator, addr));
4111 # endif
4112
4113 CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
4114 info->attrs = iotlbentry->attrs;
4115 }
4116 #endif
4117
4118 return true;
4119 }
4120
4121
4122 /*
4123 * Analyse contiguous data, protected by a governing predicate.
4124 */
4125
4126 typedef enum {
4127 FAULT_NO,
4128 FAULT_FIRST,
4129 FAULT_ALL,
4130 } SVEContFault;
4131
4132 typedef struct {
4133 /*
4134 * First and last element wholly contained within the two pages.
4135 * mem_off_first[0] and reg_off_first[0] are always set >= 0.
4136 * reg_off_last[0] may be < 0 if the first element crosses pages.
4137 * All of mem_off_first[1], reg_off_first[1] and reg_off_last[1]
4138 * are set >= 0 only if there are complete elements on a second page.
4139 *
4140 * The reg_off_* offsets are relative to the internal vector register.
4141 * The mem_off_first offset is relative to the memory address; the
4142 * two offsets are different when a load operation extends, a store
4143 * operation truncates, or for multi-register operations.
4144 */
4145 int16_t mem_off_first[2];
4146 int16_t reg_off_first[2];
4147 int16_t reg_off_last[2];
4148
4149 /*
4150 * One element that is misaligned and spans both pages,
4151 * or -1 if there is no such active element.
4152 */
4153 int16_t mem_off_split;
4154 int16_t reg_off_split;
4155
4156 /*
4157 * The byte offset at which the entire operation crosses a page boundary.
4158 * Set >= 0 if and only if the entire operation spans two pages.
4159 */
4160 int16_t page_split;
4161
4162 /* TLB data for the two pages. */
4163 SVEHostPage page[2];
4164 } SVEContLdSt;
4165
4166 /*
4167 * Find first active element on each page, and a loose bound for the
4168 * final element on each page. Identify any single element that spans
4169 * the page boundary. Return true if there are any active elements.
4170 */
4171 static bool sve_cont_ldst_elements(SVEContLdSt *info, target_ulong addr,
4172 uint64_t *vg, intptr_t reg_max,
4173 int esz, int msize)
4174 {
4175 const int esize = 1 << esz;
4176 const uint64_t pg_mask = pred_esz_masks[esz];
4177 intptr_t reg_off_first = -1, reg_off_last = -1, reg_off_split;
4178 intptr_t mem_off_last, mem_off_split;
4179 intptr_t page_split, elt_split;
4180 intptr_t i;
4181
4182 /* Set all of the element indices to -1, and the TLB data to 0. */
4183 memset(info, -1, offsetof(SVEContLdSt, page));
4184 memset(info->page, 0, sizeof(info->page));
4185
4186 /* Gross scan over the entire predicate to find bounds. */
4187 i = 0;
4188 do {
4189 uint64_t pg = vg[i] & pg_mask;
4190 if (pg) {
4191 reg_off_last = i * 64 + 63 - clz64(pg);
4192 if (reg_off_first < 0) {
4193 reg_off_first = i * 64 + ctz64(pg);
4194 }
4195 }
4196 } while (++i * 64 < reg_max);
4197
4198 if (unlikely(reg_off_first < 0)) {
4199 /* No active elements, no pages touched. */
4200 return false;
4201 }
4202 tcg_debug_assert(reg_off_last >= 0 && reg_off_last < reg_max);
4203
4204 info->reg_off_first[0] = reg_off_first;
4205 info->mem_off_first[0] = (reg_off_first >> esz) * msize;
4206 mem_off_last = (reg_off_last >> esz) * msize;
4207
4208 page_split = -(addr | TARGET_PAGE_MASK);
4209 if (likely(mem_off_last + msize <= page_split)) {
4210 /* The entire operation fits within a single page. */
4211 info->reg_off_last[0] = reg_off_last;
4212 return true;
4213 }
4214
4215 info->page_split = page_split;
4216 elt_split = page_split / msize;
4217 reg_off_split = elt_split << esz;
4218 mem_off_split = elt_split * msize;
4219
4220 /*
4221 * This is the last full element on the first page, but it is not
4222 * necessarily active. If there is no full element, i.e. the first
4223 * active element is the one that's split, this value remains -1.
4224 * It is useful as iteration bounds.
4225 */
4226 if (elt_split != 0) {
4227 info->reg_off_last[0] = reg_off_split - esize;
4228 }
4229
4230 /* Determine if an unaligned element spans the pages. */
4231 if (page_split % msize != 0) {
4232 /* It is helpful to know if the split element is active. */
4233 if ((vg[reg_off_split >> 6] >> (reg_off_split & 63)) & 1) {
4234 info->reg_off_split = reg_off_split;
4235 info->mem_off_split = mem_off_split;
4236
4237 if (reg_off_split == reg_off_last) {
4238 /* The page crossing element is last. */
4239 return true;
4240 }
4241 }
4242 reg_off_split += esize;
4243 mem_off_split += msize;
4244 }
4245
4246 /*
4247 * We do want the first active element on the second page, because
4248 * this may affect the address reported in an exception.
4249 */
4250 reg_off_split = find_next_active(vg, reg_off_split, reg_max, esz);
4251 tcg_debug_assert(reg_off_split <= reg_off_last);
4252 info->reg_off_first[1] = reg_off_split;
4253 info->mem_off_first[1] = (reg_off_split >> esz) * msize;
4254 info->reg_off_last[1] = reg_off_last;
4255 return true;
4256 }
4257
4258 /*
4259 * Resolve the guest virtual addresses to info->page[].
4260 * Control the generation of page faults with @fault. Return false if
4261 * there is no work to do, which can only happen with @fault == FAULT_NO.
4262 */
4263 static bool sve_cont_ldst_pages(SVEContLdSt *info, SVEContFault fault,
4264 CPUARMState *env, target_ulong addr,
4265 MMUAccessType access_type, uintptr_t retaddr)
4266 {
4267 int mmu_idx = cpu_mmu_index(env, false);
4268 int mem_off = info->mem_off_first[0];
4269 bool nofault = fault == FAULT_NO;
4270 bool have_work = true;
4271
4272 if (!sve_probe_page(&info->page[0], nofault, env, addr, mem_off,
4273 access_type, mmu_idx, retaddr)) {
4274 /* No work to be done. */
4275 return false;
4276 }
4277
4278 if (likely(info->page_split < 0)) {
4279 /* The entire operation was on the one page. */
4280 return true;
4281 }
4282
4283 /*
4284 * If the second page is invalid, then we want the fault address to be
4285 * the first byte on that page which is accessed.
4286 */
4287 if (info->mem_off_split >= 0) {
4288 /*
4289 * There is an element split across the pages. The fault address
4290 * should be the first byte of the second page.
4291 */
4292 mem_off = info->page_split;
4293 /*
4294 * If the split element is also the first active element
4295 * of the vector, then: For first-fault we should continue
4296 * to generate faults for the second page. For no-fault,
4297 * we have work only if the second page is valid.
4298 */
4299 if (info->mem_off_first[0] < info->mem_off_split) {
4300 nofault = FAULT_FIRST;
4301 have_work = false;
4302 }
4303 } else {
4304 /*
4305 * There is no element split across the pages. The fault address
4306 * should be the first active element on the second page.
4307 */
4308 mem_off = info->mem_off_first[1];
4309 /*
4310 * There must have been one active element on the first page,
4311 * so we're out of first-fault territory.
4312 */
4313 nofault = fault != FAULT_ALL;
4314 }
4315
4316 have_work |= sve_probe_page(&info->page[1], nofault, env, addr, mem_off,
4317 access_type, mmu_idx, retaddr);
4318 return have_work;
4319 }
4320
4321 static void sve_cont_ldst_watchpoints(SVEContLdSt *info, CPUARMState *env,
4322 uint64_t *vg, target_ulong addr,
4323 int esize, int msize, int wp_access,
4324 uintptr_t retaddr)
4325 {
4326 #ifndef CONFIG_USER_ONLY
4327 intptr_t mem_off, reg_off, reg_last;
4328 int flags0 = info->page[0].flags;
4329 int flags1 = info->page[1].flags;
4330
4331 if (likely(!((flags0 | flags1) & TLB_WATCHPOINT))) {
4332 return;
4333 }
4334
4335 /* Indicate that watchpoints are handled. */
4336 info->page[0].flags = flags0 & ~TLB_WATCHPOINT;
4337 info->page[1].flags = flags1 & ~TLB_WATCHPOINT;
4338
4339 if (flags0 & TLB_WATCHPOINT) {
4340 mem_off = info->mem_off_first[0];
4341 reg_off = info->reg_off_first[0];
4342 reg_last = info->reg_off_last[0];
4343
4344 while (reg_off <= reg_last) {
4345 uint64_t pg = vg[reg_off >> 6];
4346 do {
4347 if ((pg >> (reg_off & 63)) & 1) {
4348 cpu_check_watchpoint(env_cpu(env), addr + mem_off,
4349 msize, info->page[0].attrs,
4350 wp_access, retaddr);
4351 }
4352 reg_off += esize;
4353 mem_off += msize;
4354 } while (reg_off <= reg_last && (reg_off & 63));
4355 }
4356 }
4357
4358 mem_off = info->mem_off_split;
4359 if (mem_off >= 0) {
4360 cpu_check_watchpoint(env_cpu(env), addr + mem_off, msize,
4361 info->page[0].attrs, wp_access, retaddr);
4362 }
4363
4364 mem_off = info->mem_off_first[1];
4365 if ((flags1 & TLB_WATCHPOINT) && mem_off >= 0) {
4366 reg_off = info->reg_off_first[1];
4367 reg_last = info->reg_off_last[1];
4368
4369 do {
4370 uint64_t pg = vg[reg_off >> 6];
4371 do {
4372 if ((pg >> (reg_off & 63)) & 1) {
4373 cpu_check_watchpoint(env_cpu(env), addr + mem_off,
4374 msize, info->page[1].attrs,
4375 wp_access, retaddr);
4376 }
4377 reg_off += esize;
4378 mem_off += msize;
4379 } while (reg_off & 63);
4380 } while (reg_off <= reg_last);
4381 }
4382 #endif
4383 }
4384
4385 static void sve_cont_ldst_mte_check(SVEContLdSt *info, CPUARMState *env,
4386 uint64_t *vg, target_ulong addr, int esize,
4387 int msize, uint32_t mtedesc, uintptr_t ra)
4388 {
4389 intptr_t mem_off, reg_off, reg_last;
4390
4391 /* Process the page only if MemAttr == Tagged. */
4392 if (arm_tlb_mte_tagged(&info->page[0].attrs)) {
4393 mem_off = info->mem_off_first[0];
4394 reg_off = info->reg_off_first[0];
4395 reg_last = info->reg_off_split;
4396 if (reg_last < 0) {
4397 reg_last = info->reg_off_last[0];
4398 }
4399
4400 do {
4401 uint64_t pg = vg[reg_off >> 6];
4402 do {
4403 if ((pg >> (reg_off & 63)) & 1) {
4404 mte_check(env, mtedesc, addr, ra);
4405 }
4406 reg_off += esize;
4407 mem_off += msize;
4408 } while (reg_off <= reg_last && (reg_off & 63));
4409 } while (reg_off <= reg_last);
4410 }
4411
4412 mem_off = info->mem_off_first[1];
4413 if (mem_off >= 0 && arm_tlb_mte_tagged(&info->page[1].attrs)) {
4414 reg_off = info->reg_off_first[1];
4415 reg_last = info->reg_off_last[1];
4416
4417 do {
4418 uint64_t pg = vg[reg_off >> 6];
4419 do {
4420 if ((pg >> (reg_off & 63)) & 1) {
4421 mte_check(env, mtedesc, addr, ra);
4422 }
4423 reg_off += esize;
4424 mem_off += msize;
4425 } while (reg_off & 63);
4426 } while (reg_off <= reg_last);
4427 }
4428 }
4429
4430 /*
4431 * Common helper for all contiguous 1,2,3,4-register predicated stores.
4432 */
4433 static inline QEMU_ALWAYS_INLINE
4434 void sve_ldN_r(CPUARMState *env, uint64_t *vg, const target_ulong addr,
4435 uint32_t desc, const uintptr_t retaddr,
4436 const int esz, const int msz, const int N, uint32_t mtedesc,
4437 sve_ldst1_host_fn *host_fn,
4438 sve_ldst1_tlb_fn *tlb_fn)
4439 {
4440 const unsigned rd = simd_data(desc);
4441 const intptr_t reg_max = simd_oprsz(desc);
4442 intptr_t reg_off, reg_last, mem_off;
4443 SVEContLdSt info;
4444 void *host;
4445 int flags, i;
4446
4447 /* Find the active elements. */
4448 if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, N << msz)) {
4449 /* The entire predicate was false; no load occurs. */
4450 for (i = 0; i < N; ++i) {
4451 memset(&env->vfp.zregs[(rd + i) & 31], 0, reg_max);
4452 }
4453 return;
4454 }
4455
4456 /* Probe the page(s). Exit with exception for any invalid page. */
4457 sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_LOAD, retaddr);
4458
4459 /* Handle watchpoints for all active elements. */
4460 sve_cont_ldst_watchpoints(&info, env, vg, addr, 1 << esz, N << msz,
4461 BP_MEM_READ, retaddr);
4462
4463 /*
4464 * Handle mte checks for all active elements.
4465 * Since TBI must be set for MTE, !mtedesc => !mte_active.
4466 */
4467 if (mtedesc) {
4468 sve_cont_ldst_mte_check(&info, env, vg, addr, 1 << esz, N << msz,
4469 mtedesc, retaddr);
4470 }
4471
4472 flags = info.page[0].flags | info.page[1].flags;
4473 if (unlikely(flags != 0)) {
4474 #ifdef CONFIG_USER_ONLY
4475 g_assert_not_reached();
4476 #else
4477 /*
4478 * At least one page includes MMIO.
4479 * Any bus operation can fail with cpu_transaction_failed,
4480 * which for ARM will raise SyncExternal. Perform the load
4481 * into scratch memory to preserve register state until the end.
4482 */
4483 ARMVectorReg scratch[4] = { };
4484
4485 mem_off = info.mem_off_first[0];
4486 reg_off = info.reg_off_first[0];
4487 reg_last = info.reg_off_last[1];
4488 if (reg_last < 0) {
4489 reg_last = info.reg_off_split;
4490 if (reg_last < 0) {
4491 reg_last = info.reg_off_last[0];
4492 }
4493 }
4494
4495 do {
4496 uint64_t pg = vg[reg_off >> 6];
4497 do {
4498 if ((pg >> (reg_off & 63)) & 1) {
4499 for (i = 0; i < N; ++i) {
4500 tlb_fn(env, &scratch[i], reg_off,
4501 addr + mem_off + (i << msz), retaddr);
4502 }
4503 }
4504 reg_off += 1 << esz;
4505 mem_off += N << msz;
4506 } while (reg_off & 63);
4507 } while (reg_off <= reg_last);
4508
4509 for (i = 0; i < N; ++i) {
4510 memcpy(&env->vfp.zregs[(rd + i) & 31], &scratch[i], reg_max);
4511 }
4512 return;
4513 #endif
4514 }
4515
4516 /* The entire operation is in RAM, on valid pages. */
4517
4518 for (i = 0; i < N; ++i) {
4519 memset(&env->vfp.zregs[(rd + i) & 31], 0, reg_max);
4520 }
4521
4522 mem_off = info.mem_off_first[0];
4523 reg_off = info.reg_off_first[0];
4524 reg_last = info.reg_off_last[0];
4525 host = info.page[0].host;
4526
4527 while (reg_off <= reg_last) {
4528 uint64_t pg = vg[reg_off >> 6];
4529 do {
4530 if ((pg >> (reg_off & 63)) & 1) {
4531 for (i = 0; i < N; ++i) {
4532 host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off,
4533 host + mem_off + (i << msz));
4534 }
4535 }
4536 reg_off += 1 << esz;
4537 mem_off += N << msz;
4538 } while (reg_off <= reg_last && (reg_off & 63));
4539 }
4540
4541 /*
4542 * Use the slow path to manage the cross-page misalignment.
4543 * But we know this is RAM and cannot trap.
4544 */
4545 mem_off = info.mem_off_split;
4546 if (unlikely(mem_off >= 0)) {
4547 reg_off = info.reg_off_split;
4548 for (i = 0; i < N; ++i) {
4549 tlb_fn(env, &env->vfp.zregs[(rd + i) & 31], reg_off,
4550 addr + mem_off + (i << msz), retaddr);
4551 }
4552 }
4553
4554 mem_off = info.mem_off_first[1];
4555 if (unlikely(mem_off >= 0)) {
4556 reg_off = info.reg_off_first[1];
4557 reg_last = info.reg_off_last[1];
4558 host = info.page[1].host;
4559
4560 do {
4561 uint64_t pg = vg[reg_off >> 6];
4562 do {
4563 if ((pg >> (reg_off & 63)) & 1) {
4564 for (i = 0; i < N; ++i) {
4565 host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off,
4566 host + mem_off + (i << msz));
4567 }
4568 }
4569 reg_off += 1 << esz;
4570 mem_off += N << msz;
4571 } while (reg_off & 63);
4572 } while (reg_off <= reg_last);
4573 }
4574 }
4575
4576 static inline QEMU_ALWAYS_INLINE
4577 void sve_ldN_r_mte(CPUARMState *env, uint64_t *vg, target_ulong addr,
4578 uint32_t desc, const uintptr_t ra,
4579 const int esz, const int msz, const int N,
4580 sve_ldst1_host_fn *host_fn,
4581 sve_ldst1_tlb_fn *tlb_fn)
4582 {
4583 uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
4584 int bit55 = extract64(addr, 55, 1);
4585
4586 /* Remove mtedesc from the normal sve descriptor. */
4587 desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
4588
4589 /* Perform gross MTE suppression early. */
4590 if (!tbi_check(desc, bit55) ||
4591 tcma_check(desc, bit55, allocation_tag_from_addr(addr))) {
4592 mtedesc = 0;
4593 }
4594
4595 sve_ldN_r(env, vg, addr, desc, ra, esz, msz, N, mtedesc, host_fn, tlb_fn);
4596 }
4597
4598 #define DO_LD1_1(NAME, ESZ) \
4599 void HELPER(sve_##NAME##_r)(CPUARMState *env, void *vg, \
4600 target_ulong addr, uint32_t desc) \
4601 { \
4602 sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, MO_8, 1, 0, \
4603 sve_##NAME##_host, sve_##NAME##_tlb); \
4604 } \
4605 void HELPER(sve_##NAME##_r_mte)(CPUARMState *env, void *vg, \
4606 target_ulong addr, uint32_t desc) \
4607 { \
4608 sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MO_8, 1, \
4609 sve_##NAME##_host, sve_##NAME##_tlb); \
4610 }
4611
4612 #define DO_LD1_2(NAME, ESZ, MSZ) \
4613 void HELPER(sve_##NAME##_le_r)(CPUARMState *env, void *vg, \
4614 target_ulong addr, uint32_t desc) \
4615 { \
4616 sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1, 0, \
4617 sve_##NAME##_le_host, sve_##NAME##_le_tlb); \
4618 } \
4619 void HELPER(sve_##NAME##_be_r)(CPUARMState *env, void *vg, \
4620 target_ulong addr, uint32_t desc) \
4621 { \
4622 sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1, 0, \
4623 sve_##NAME##_be_host, sve_##NAME##_be_tlb); \
4624 } \
4625 void HELPER(sve_##NAME##_le_r_mte)(CPUARMState *env, void *vg, \
4626 target_ulong addr, uint32_t desc) \
4627 { \
4628 sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1, \
4629 sve_##NAME##_le_host, sve_##NAME##_le_tlb); \
4630 } \
4631 void HELPER(sve_##NAME##_be_r_mte)(CPUARMState *env, void *vg, \
4632 target_ulong addr, uint32_t desc) \
4633 { \
4634 sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1, \
4635 sve_##NAME##_be_host, sve_##NAME##_be_tlb); \
4636 }
4637
4638 DO_LD1_1(ld1bb, MO_8)
4639 DO_LD1_1(ld1bhu, MO_16)
4640 DO_LD1_1(ld1bhs, MO_16)
4641 DO_LD1_1(ld1bsu, MO_32)
4642 DO_LD1_1(ld1bss, MO_32)
4643 DO_LD1_1(ld1bdu, MO_64)
4644 DO_LD1_1(ld1bds, MO_64)
4645
4646 DO_LD1_2(ld1hh, MO_16, MO_16)
4647 DO_LD1_2(ld1hsu, MO_32, MO_16)
4648 DO_LD1_2(ld1hss, MO_32, MO_16)
4649 DO_LD1_2(ld1hdu, MO_64, MO_16)
4650 DO_LD1_2(ld1hds, MO_64, MO_16)
4651
4652 DO_LD1_2(ld1ss, MO_32, MO_32)
4653 DO_LD1_2(ld1sdu, MO_64, MO_32)
4654 DO_LD1_2(ld1sds, MO_64, MO_32)
4655
4656 DO_LD1_2(ld1dd, MO_64, MO_64)
4657
4658 #undef DO_LD1_1
4659 #undef DO_LD1_2
4660
4661 #define DO_LDN_1(N) \
4662 void HELPER(sve_ld##N##bb_r)(CPUARMState *env, void *vg, \
4663 target_ulong addr, uint32_t desc) \
4664 { \
4665 sve_ldN_r(env, vg, addr, desc, GETPC(), MO_8, MO_8, N, 0, \
4666 sve_ld1bb_host, sve_ld1bb_tlb); \
4667 } \
4668 void HELPER(sve_ld##N##bb_r_mte)(CPUARMState *env, void *vg, \
4669 target_ulong addr, uint32_t desc) \
4670 { \
4671 sve_ldN_r_mte(env, vg, addr, desc, GETPC(), MO_8, MO_8, N, \
4672 sve_ld1bb_host, sve_ld1bb_tlb); \
4673 }
4674
4675 #define DO_LDN_2(N, SUFF, ESZ) \
4676 void HELPER(sve_ld##N##SUFF##_le_r)(CPUARMState *env, void *vg, \
4677 target_ulong addr, uint32_t desc) \
4678 { \
4679 sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, ESZ, N, 0, \
4680 sve_ld1##SUFF##_le_host, sve_ld1##SUFF##_le_tlb); \
4681 } \
4682 void HELPER(sve_ld##N##SUFF##_be_r)(CPUARMState *env, void *vg, \
4683 target_ulong addr, uint32_t desc) \
4684 { \
4685 sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, ESZ, N, 0, \
4686 sve_ld1##SUFF##_be_host, sve_ld1##SUFF##_be_tlb); \
4687 } \
4688 void HELPER(sve_ld##N##SUFF##_le_r_mte)(CPUARMState *env, void *vg, \
4689 target_ulong addr, uint32_t desc) \
4690 { \
4691 sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, ESZ, N, \
4692 sve_ld1##SUFF##_le_host, sve_ld1##SUFF##_le_tlb); \
4693 } \
4694 void HELPER(sve_ld##N##SUFF##_be_r_mte)(CPUARMState *env, void *vg, \
4695 target_ulong addr, uint32_t desc) \
4696 { \
4697 sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, ESZ, N, \
4698 sve_ld1##SUFF##_be_host, sve_ld1##SUFF##_be_tlb); \
4699 }
4700
4701 DO_LDN_1(2)
4702 DO_LDN_1(3)
4703 DO_LDN_1(4)
4704
4705 DO_LDN_2(2, hh, MO_16)
4706 DO_LDN_2(3, hh, MO_16)
4707 DO_LDN_2(4, hh, MO_16)
4708
4709 DO_LDN_2(2, ss, MO_32)
4710 DO_LDN_2(3, ss, MO_32)
4711 DO_LDN_2(4, ss, MO_32)
4712
4713 DO_LDN_2(2, dd, MO_64)
4714 DO_LDN_2(3, dd, MO_64)
4715 DO_LDN_2(4, dd, MO_64)
4716
4717 #undef DO_LDN_1
4718 #undef DO_LDN_2
4719
4720 /*
4721 * Load contiguous data, first-fault and no-fault.
4722 *
4723 * For user-only, one could argue that we should hold the mmap_lock during
4724 * the operation so that there is no race between page_check_range and the
4725 * load operation. However, unmapping pages out from under a running thread
4726 * is extraordinarily unlikely. This theoretical race condition also affects
4727 * linux-user/ in its get_user/put_user macros.
4728 *
4729 * TODO: Construct some helpers, written in assembly, that interact with
4730 * handle_cpu_signal to produce memory ops which can properly report errors
4731 * without racing.
4732 */
4733
4734 /* Fault on byte I. All bits in FFR from I are cleared. The vector
4735 * result from I is CONSTRAINED UNPREDICTABLE; we choose the MERGE
4736 * option, which leaves subsequent data unchanged.
4737 */
4738 static void record_fault(CPUARMState *env, uintptr_t i, uintptr_t oprsz)
4739 {
4740 uint64_t *ffr = env->vfp.pregs[FFR_PRED_NUM].p;
4741
4742 if (i & 63) {
4743 ffr[i / 64] &= MAKE_64BIT_MASK(0, i & 63);
4744 i = ROUND_UP(i, 64);
4745 }
4746 for (; i < oprsz; i += 64) {
4747 ffr[i / 64] = 0;
4748 }
4749 }
4750
4751 /*
4752 * Common helper for all contiguous no-fault and first-fault loads.
4753 */
4754 static inline QEMU_ALWAYS_INLINE
4755 void sve_ldnfff1_r(CPUARMState *env, void *vg, const target_ulong addr,
4756 uint32_t desc, const uintptr_t retaddr, uint32_t mtedesc,
4757 const int esz, const int msz, const SVEContFault fault,
4758 sve_ldst1_host_fn *host_fn,
4759 sve_ldst1_tlb_fn *tlb_fn)
4760 {
4761 const unsigned rd = simd_data(desc);
4762 void *vd = &env->vfp.zregs[rd];
4763 const intptr_t reg_max = simd_oprsz(desc);
4764 intptr_t reg_off, mem_off, reg_last;
4765 SVEContLdSt info;
4766 int flags;
4767 void *host;
4768
4769 /* Find the active elements. */
4770 if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, 1 << msz)) {
4771 /* The entire predicate was false; no load occurs. */
4772 memset(vd, 0, reg_max);
4773 return;
4774 }
4775 reg_off = info.reg_off_first[0];
4776
4777 /* Probe the page(s). */
4778 if (!sve_cont_ldst_pages(&info, fault, env, addr, MMU_DATA_LOAD, retaddr)) {
4779 /* Fault on first element. */
4780 tcg_debug_assert(fault == FAULT_NO);
4781 memset(vd, 0, reg_max);
4782 goto do_fault;
4783 }
4784
4785 mem_off = info.mem_off_first[0];
4786 flags = info.page[0].flags;
4787
4788 /*
4789 * Disable MTE checking if the Tagged bit is not set. Since TBI must
4790 * be set within MTEDESC for MTE, !mtedesc => !mte_active.
4791 */
4792 if (arm_tlb_mte_tagged(&info.page[0].attrs)) {
4793 mtedesc = 0;
4794 }
4795
4796 if (fault == FAULT_FIRST) {
4797 /* Trapping mte check for the first-fault element. */
4798 if (mtedesc) {
4799 mte_check(env, mtedesc, addr + mem_off, retaddr);
4800 }
4801
4802 /*
4803 * Special handling of the first active element,
4804 * if it crosses a page boundary or is MMIO.
4805 */
4806 bool is_split = mem_off == info.mem_off_split;
4807 if (unlikely(flags != 0) || unlikely(is_split)) {
4808 /*
4809 * Use the slow path for cross-page handling.
4810 * Might trap for MMIO or watchpoints.
4811 */
4812 tlb_fn(env, vd, reg_off, addr + mem_off, retaddr);
4813
4814 /* After any fault, zero the other elements. */
4815 swap_memzero(vd, reg_off);
4816 reg_off += 1 << esz;
4817 mem_off += 1 << msz;
4818 swap_memzero(vd + reg_off, reg_max - reg_off);
4819
4820 if (is_split) {
4821 goto second_page;
4822 }
4823 } else {
4824 memset(vd, 0, reg_max);
4825 }
4826 } else {
4827 memset(vd, 0, reg_max);
4828 if (unlikely(mem_off == info.mem_off_split)) {
4829 /* The first active element crosses a page boundary. */
4830 flags |= info.page[1].flags;
4831 if (unlikely(flags & TLB_MMIO)) {
4832 /* Some page is MMIO, see below. */
4833 goto do_fault;
4834 }
4835 if (unlikely(flags & TLB_WATCHPOINT) &&
4836 (cpu_watchpoint_address_matches
4837 (env_cpu(env), addr + mem_off, 1 << msz)
4838 & BP_MEM_READ)) {
4839 /* Watchpoint hit, see below. */
4840 goto do_fault;
4841 }
4842 if (mtedesc && !mte_probe(env, mtedesc, addr + mem_off)) {
4843 goto do_fault;
4844 }
4845 /*
4846 * Use the slow path for cross-page handling.
4847 * This is RAM, without a watchpoint, and will not trap.
4848 */
4849 tlb_fn(env, vd, reg_off, addr + mem_off, retaddr);
4850 goto second_page;
4851 }
4852 }
4853
4854 /*
4855 * From this point on, all memory operations are MemSingleNF.
4856 *
4857 * Per the MemSingleNF pseudocode, a no-fault load from Device memory
4858 * must not actually hit the bus -- it returns (UNKNOWN, FAULT) instead.
4859 *
4860 * Unfortuately we do not have access to the memory attributes from the
4861 * PTE to tell Device memory from Normal memory. So we make a mostly
4862 * correct check, and indicate (UNKNOWN, FAULT) for any MMIO.
4863 * This gives the right answer for the common cases of "Normal memory,
4864 * backed by host RAM" and "Device memory, backed by MMIO".
4865 * The architecture allows us to suppress an NF load and return
4866 * (UNKNOWN, FAULT) for any reason, so our behaviour for the corner
4867 * case of "Normal memory, backed by MMIO" is permitted. The case we
4868 * get wrong is "Device memory, backed by host RAM", for which we
4869 * should return (UNKNOWN, FAULT) for but do not.
4870 *
4871 * Similarly, CPU_BP breakpoints would raise exceptions, and so
4872 * return (UNKNOWN, FAULT). For simplicity, we consider gdb and
4873 * architectural breakpoints the same.
4874 */
4875 if (unlikely(flags & TLB_MMIO)) {
4876 goto do_fault;
4877 }
4878
4879 reg_last = info.reg_off_last[0];
4880 host = info.page[0].host;
4881
4882 do {
4883 uint64_t pg = *(uint64_t *)(vg + (reg_off >> 3));
4884 do {
4885 if ((pg >> (reg_off & 63)) & 1) {
4886 if (unlikely(flags & TLB_WATCHPOINT) &&
4887 (cpu_watchpoint_address_matches
4888 (env_cpu(env), addr + mem_off, 1 << msz)
4889 & BP_MEM_READ)) {
4890 goto do_fault;
4891 }
4892 if (mtedesc && !mte_probe(env, mtedesc, addr + mem_off)) {
4893 goto do_fault;
4894 }
4895 host_fn(vd, reg_off, host + mem_off);
4896 }
4897 reg_off += 1 << esz;
4898 mem_off += 1 << msz;
4899 } while (reg_off <= reg_last && (reg_off & 63));
4900 } while (reg_off <= reg_last);
4901
4902 /*
4903 * MemSingleNF is allowed to fail for any reason. We have special
4904 * code above to handle the first element crossing a page boundary.
4905 * As an implementation choice, decline to handle a cross-page element
4906 * in any other position.
4907 */
4908 reg_off = info.reg_off_split;
4909 if (reg_off >= 0) {
4910 goto do_fault;
4911 }
4912
4913 second_page:
4914 reg_off = info.reg_off_first[1];
4915 if (likely(reg_off < 0)) {
4916 /* No active elements on the second page. All done. */
4917 return;
4918 }
4919
4920 /*
4921 * MemSingleNF is allowed to fail for any reason. As an implementation
4922 * choice, decline to handle elements on the second page. This should
4923 * be low frequency as the guest walks through memory -- the next
4924 * iteration of the guest's loop should be aligned on the page boundary,
4925 * and then all following iterations will stay aligned.
4926 */
4927
4928 do_fault:
4929 record_fault(env, reg_off, reg_max);
4930 }
4931
4932 static inline QEMU_ALWAYS_INLINE
4933 void sve_ldnfff1_r_mte(CPUARMState *env, void *vg, target_ulong addr,
4934 uint32_t desc, const uintptr_t retaddr,
4935 const int esz, const int msz, const SVEContFault fault,
4936 sve_ldst1_host_fn *host_fn,
4937 sve_ldst1_tlb_fn *tlb_fn)
4938 {
4939 uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
4940 int bit55 = extract64(addr, 55, 1);
4941
4942 /* Remove mtedesc from the normal sve descriptor. */
4943 desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
4944
4945 /* Perform gross MTE suppression early. */
4946 if (!tbi_check(desc, bit55) ||
4947 tcma_check(desc, bit55, allocation_tag_from_addr(addr))) {
4948 mtedesc = 0;
4949 }
4950
4951 sve_ldnfff1_r(env, vg, addr, desc, retaddr, mtedesc,
4952 esz, msz, fault, host_fn, tlb_fn);
4953 }
4954
4955 #define DO_LDFF1_LDNF1_1(PART, ESZ) \
4956 void HELPER(sve_ldff1##PART##_r)(CPUARMState *env, void *vg, \
4957 target_ulong addr, uint32_t desc) \
4958 { \
4959 sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MO_8, FAULT_FIRST, \
4960 sve_ld1##PART##_host, sve_ld1##PART##_tlb); \
4961 } \
4962 void HELPER(sve_ldnf1##PART##_r)(CPUARMState *env, void *vg, \
4963 target_ulong addr, uint32_t desc) \
4964 { \
4965 sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MO_8, FAULT_NO, \
4966 sve_ld1##PART##_host, sve_ld1##PART##_tlb); \
4967 } \
4968 void HELPER(sve_ldff1##PART##_r_mte)(CPUARMState *env, void *vg, \
4969 target_ulong addr, uint32_t desc) \
4970 { \
4971 sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MO_8, FAULT_FIRST, \
4972 sve_ld1##PART##_host, sve_ld1##PART##_tlb); \
4973 } \
4974 void HELPER(sve_ldnf1##PART##_r_mte)(CPUARMState *env, void *vg, \
4975 target_ulong addr, uint32_t desc) \
4976 { \
4977 sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MO_8, FAULT_NO, \
4978 sve_ld1##PART##_host, sve_ld1##PART##_tlb); \
4979 }
4980
4981 #define DO_LDFF1_LDNF1_2(PART, ESZ, MSZ) \
4982 void HELPER(sve_ldff1##PART##_le_r)(CPUARMState *env, void *vg, \
4983 target_ulong addr, uint32_t desc) \
4984 { \
4985 sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MSZ, FAULT_FIRST, \
4986 sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \
4987 } \
4988 void HELPER(sve_ldnf1##PART##_le_r)(CPUARMState *env, void *vg, \
4989 target_ulong addr, uint32_t desc) \
4990 { \
4991 sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MSZ, FAULT_NO, \
4992 sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \
4993 } \
4994 void HELPER(sve_ldff1##PART##_be_r)(CPUARMState *env, void *vg, \
4995 target_ulong addr, uint32_t desc) \
4996 { \
4997 sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MSZ, FAULT_FIRST, \
4998 sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \
4999 } \
5000 void HELPER(sve_ldnf1##PART##_be_r)(CPUARMState *env, void *vg, \
5001 target_ulong addr, uint32_t desc) \
5002 { \
5003 sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MSZ, FAULT_NO, \
5004 sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \
5005 } \
5006 void HELPER(sve_ldff1##PART##_le_r_mte)(CPUARMState *env, void *vg, \
5007 target_ulong addr, uint32_t desc) \
5008 { \
5009 sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_FIRST, \
5010 sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \
5011 } \
5012 void HELPER(sve_ldnf1##PART##_le_r_mte)(CPUARMState *env, void *vg, \
5013 target_ulong addr, uint32_t desc) \
5014 { \
5015 sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_NO, \
5016 sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \
5017 } \
5018 void HELPER(sve_ldff1##PART##_be_r_mte)(CPUARMState *env, void *vg, \
5019 target_ulong addr, uint32_t desc) \
5020 { \
5021 sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_FIRST, \
5022 sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \
5023 } \
5024 void HELPER(sve_ldnf1##PART##_be_r_mte)(CPUARMState *env, void *vg, \
5025 target_ulong addr, uint32_t desc) \
5026 { \
5027 sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_NO, \
5028 sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \
5029 }
5030
5031 DO_LDFF1_LDNF1_1(bb, MO_8)
5032 DO_LDFF1_LDNF1_1(bhu, MO_16)
5033 DO_LDFF1_LDNF1_1(bhs, MO_16)
5034 DO_LDFF1_LDNF1_1(bsu, MO_32)
5035 DO_LDFF1_LDNF1_1(bss, MO_32)
5036 DO_LDFF1_LDNF1_1(bdu, MO_64)
5037 DO_LDFF1_LDNF1_1(bds, MO_64)
5038
5039 DO_LDFF1_LDNF1_2(hh, MO_16, MO_16)
5040 DO_LDFF1_LDNF1_2(hsu, MO_32, MO_16)
5041 DO_LDFF1_LDNF1_2(hss, MO_32, MO_16)
5042 DO_LDFF1_LDNF1_2(hdu, MO_64, MO_16)
5043 DO_LDFF1_LDNF1_2(hds, MO_64, MO_16)
5044
5045 DO_LDFF1_LDNF1_2(ss, MO_32, MO_32)
5046 DO_LDFF1_LDNF1_2(sdu, MO_64, MO_32)
5047 DO_LDFF1_LDNF1_2(sds, MO_64, MO_32)
5048
5049 DO_LDFF1_LDNF1_2(dd, MO_64, MO_64)
5050
5051 #undef DO_LDFF1_LDNF1_1
5052 #undef DO_LDFF1_LDNF1_2
5053
5054 /*
5055 * Common helper for all contiguous 1,2,3,4-register predicated stores.
5056 */
5057
5058 static inline QEMU_ALWAYS_INLINE
5059 void sve_stN_r(CPUARMState *env, uint64_t *vg, target_ulong addr,
5060 uint32_t desc, const uintptr_t retaddr,
5061 const int esz, const int msz, const int N, uint32_t mtedesc,
5062 sve_ldst1_host_fn *host_fn,
5063 sve_ldst1_tlb_fn *tlb_fn)
5064 {
5065 const unsigned rd = simd_data(desc);
5066 const intptr_t reg_max = simd_oprsz(desc);
5067 intptr_t reg_off, reg_last, mem_off;
5068 SVEContLdSt info;
5069 void *host;
5070 int i, flags;
5071
5072 /* Find the active elements. */
5073 if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, N << msz)) {
5074 /* The entire predicate was false; no store occurs. */
5075 return;
5076 }
5077
5078 /* Probe the page(s). Exit with exception for any invalid page. */
5079 sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_STORE, retaddr);
5080
5081 /* Handle watchpoints for all active elements. */
5082 sve_cont_ldst_watchpoints(&info, env, vg, addr, 1 << esz, N << msz,
5083 BP_MEM_WRITE, retaddr);
5084
5085 /*
5086 * Handle mte checks for all active elements.
5087 * Since TBI must be set for MTE, !mtedesc => !mte_active.
5088 */
5089 if (mtedesc) {
5090 sve_cont_ldst_mte_check(&info, env, vg, addr, 1 << esz, N << msz,
5091 mtedesc, retaddr);
5092 }
5093
5094 flags = info.page[0].flags | info.page[1].flags;
5095 if (unlikely(flags != 0)) {
5096 #ifdef CONFIG_USER_ONLY
5097 g_assert_not_reached();
5098 #else
5099 /*
5100 * At least one page includes MMIO.
5101 * Any bus operation can fail with cpu_transaction_failed,
5102 * which for ARM will raise SyncExternal. We cannot avoid
5103 * this fault and will leave with the store incomplete.
5104 */
5105 mem_off = info.mem_off_first[0];
5106 reg_off = info.reg_off_first[0];
5107 reg_last = info.reg_off_last[1];
5108 if (reg_last < 0) {
5109 reg_last = info.reg_off_split;
5110 if (reg_last < 0) {
5111 reg_last = info.reg_off_last[0];
5112 }
5113 }
5114
5115 do {
5116 uint64_t pg = vg[reg_off >> 6];
5117 do {
5118 if ((pg >> (reg_off & 63)) & 1) {
5119 for (i = 0; i < N; ++i) {
5120 tlb_fn(env, &env->vfp.zregs[(rd + i) & 31], reg_off,
5121 addr + mem_off + (i << msz), retaddr);
5122 }
5123 }
5124 reg_off += 1 << esz;
5125 mem_off += N << msz;
5126 } while (reg_off & 63);
5127 } while (reg_off <= reg_last);
5128 return;
5129 #endif
5130 }
5131
5132 mem_off = info.mem_off_first[0];
5133 reg_off = info.reg_off_first[0];
5134 reg_last = info.reg_off_last[0];
5135 host = info.page[0].host;
5136
5137 while (reg_off <= reg_last) {
5138 uint64_t pg = vg[reg_off >> 6];
5139 do {
5140 if ((pg >> (reg_off & 63)) & 1) {
5141 for (i = 0; i < N; ++i) {
5142 host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off,
5143 host + mem_off + (i << msz));
5144 }
5145 }
5146 reg_off += 1 << esz;
5147 mem_off += N << msz;
5148 } while (reg_off <= reg_last && (reg_off & 63));
5149 }
5150
5151 /*
5152 * Use the slow path to manage the cross-page misalignment.
5153 * But we know this is RAM and cannot trap.
5154 */
5155 mem_off = info.mem_off_split;
5156 if (unlikely(mem_off >= 0)) {
5157 reg_off = info.reg_off_split;
5158 for (i = 0; i < N; ++i) {
5159 tlb_fn(env, &env->vfp.zregs[(rd + i) & 31], reg_off,
5160 addr + mem_off + (i << msz), retaddr);
5161 }
5162 }
5163
5164 mem_off = info.mem_off_first[1];
5165 if (unlikely(mem_off >= 0)) {
5166 reg_off = info.reg_off_first[1];
5167 reg_last = info.reg_off_last[1];
5168 host = info.page[1].host;
5169
5170 do {
5171 uint64_t pg = vg[reg_off >> 6];
5172 do {
5173 if ((pg >> (reg_off & 63)) & 1) {
5174 for (i = 0; i < N; ++i) {
5175 host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off,
5176 host + mem_off + (i << msz));
5177 }
5178 }
5179 reg_off += 1 << esz;
5180 mem_off += N << msz;
5181 } while (reg_off & 63);
5182 } while (reg_off <= reg_last);
5183 }
5184 }
5185
5186 static inline QEMU_ALWAYS_INLINE
5187 void sve_stN_r_mte(CPUARMState *env, uint64_t *vg, target_ulong addr,
5188 uint32_t desc, const uintptr_t ra,
5189 const int esz, const int msz, const int N,
5190 sve_ldst1_host_fn *host_fn,
5191 sve_ldst1_tlb_fn *tlb_fn)
5192 {
5193 uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
5194 int bit55 = extract64(addr, 55, 1);
5195
5196 /* Remove mtedesc from the normal sve descriptor. */
5197 desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
5198
5199 /* Perform gross MTE suppression early. */
5200 if (!tbi_check(desc, bit55) ||
5201 tcma_check(desc, bit55, allocation_tag_from_addr(addr))) {
5202 mtedesc = 0;
5203 }
5204
5205 sve_stN_r(env, vg, addr, desc, ra, esz, msz, N, mtedesc, host_fn, tlb_fn);
5206 }
5207
5208 #define DO_STN_1(N, NAME, ESZ) \
5209 void HELPER(sve_st##N##NAME##_r)(CPUARMState *env, void *vg, \
5210 target_ulong addr, uint32_t desc) \
5211 { \
5212 sve_stN_r(env, vg, addr, desc, GETPC(), ESZ, MO_8, N, 0, \
5213 sve_st1##NAME##_host, sve_st1##NAME##_tlb); \
5214 } \
5215 void HELPER(sve_st##N##NAME##_r_mte)(CPUARMState *env, void *vg, \
5216 target_ulong addr, uint32_t desc) \
5217 { \
5218 sve_stN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MO_8, N, \
5219 sve_st1##NAME##_host, sve_st1##NAME##_tlb); \
5220 }
5221
5222 #define DO_STN_2(N, NAME, ESZ, MSZ) \
5223 void HELPER(sve_st##N##NAME##_le_r)(CPUARMState *env, void *vg, \
5224 target_ulong addr, uint32_t desc) \
5225 { \
5226 sve_stN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, N, 0, \
5227 sve_st1##NAME##_le_host, sve_st1##NAME##_le_tlb); \
5228 } \
5229 void HELPER(sve_st##N##NAME##_be_r)(CPUARMState *env, void *vg, \
5230 target_ulong addr, uint32_t desc) \
5231 { \
5232 sve_stN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, N, 0, \
5233 sve_st1##NAME##_be_host, sve_st1##NAME##_be_tlb); \
5234 } \
5235 void HELPER(sve_st##N##NAME##_le_r_mte)(CPUARMState *env, void *vg, \
5236 target_ulong addr, uint32_t desc) \
5237 { \
5238 sve_stN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, N, \
5239 sve_st1##NAME##_le_host, sve_st1##NAME##_le_tlb); \
5240 } \
5241 void HELPER(sve_st##N##NAME##_be_r_mte)(CPUARMState *env, void *vg, \
5242 target_ulong addr, uint32_t desc) \
5243 { \
5244 sve_stN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, N, \
5245 sve_st1##NAME##_be_host, sve_st1##NAME##_be_tlb); \
5246 }
5247
5248 DO_STN_1(1, bb, MO_8)
5249 DO_STN_1(1, bh, MO_16)
5250 DO_STN_1(1, bs, MO_32)
5251 DO_STN_1(1, bd, MO_64)
5252 DO_STN_1(2, bb, MO_8)
5253 DO_STN_1(3, bb, MO_8)
5254 DO_STN_1(4, bb, MO_8)
5255
5256 DO_STN_2(1, hh, MO_16, MO_16)
5257 DO_STN_2(1, hs, MO_32, MO_16)
5258 DO_STN_2(1, hd, MO_64, MO_16)
5259 DO_STN_2(2, hh, MO_16, MO_16)
5260 DO_STN_2(3, hh, MO_16, MO_16)
5261 DO_STN_2(4, hh, MO_16, MO_16)
5262
5263 DO_STN_2(1, ss, MO_32, MO_32)
5264 DO_STN_2(1, sd, MO_64, MO_32)
5265 DO_STN_2(2, ss, MO_32, MO_32)
5266 DO_STN_2(3, ss, MO_32, MO_32)
5267 DO_STN_2(4, ss, MO_32, MO_32)
5268
5269 DO_STN_2(1, dd, MO_64, MO_64)
5270 DO_STN_2(2, dd, MO_64, MO_64)
5271 DO_STN_2(3, dd, MO_64, MO_64)
5272 DO_STN_2(4, dd, MO_64, MO_64)
5273
5274 #undef DO_STN_1
5275 #undef DO_STN_2
5276
5277 /*
5278 * Loads with a vector index.
5279 */
5280
5281 /*
5282 * Load the element at @reg + @reg_ofs, sign or zero-extend as needed.
5283 */
5284 typedef target_ulong zreg_off_fn(void *reg, intptr_t reg_ofs);
5285
5286 static target_ulong off_zsu_s(void *reg, intptr_t reg_ofs)
5287 {
5288 return *(uint32_t *)(reg + H1_4(reg_ofs));
5289 }
5290
5291 static target_ulong off_zss_s(void *reg, intptr_t reg_ofs)
5292 {
5293 return *(int32_t *)(reg + H1_4(reg_ofs));
5294 }
5295
5296 static target_ulong off_zsu_d(void *reg, intptr_t reg_ofs)
5297 {
5298 return (uint32_t)*(uint64_t *)(reg + reg_ofs);
5299 }
5300
5301 static target_ulong off_zss_d(void *reg, intptr_t reg_ofs)
5302 {
5303 return (int32_t)*(uint64_t *)(reg + reg_ofs);
5304 }
5305
5306 static target_ulong off_zd_d(void *reg, intptr_t reg_ofs)
5307 {
5308 return *(uint64_t *)(reg + reg_ofs);
5309 }
5310
5311 static inline QEMU_ALWAYS_INLINE
5312 void sve_ld1_z(CPUARMState *env, void *vd, uint64_t *vg, void *vm,
5313 target_ulong base, uint32_t desc, uintptr_t retaddr,
5314 uint32_t mtedesc, int esize, int msize,
5315 zreg_off_fn *off_fn,
5316 sve_ldst1_host_fn *host_fn,
5317 sve_ldst1_tlb_fn *tlb_fn)
5318 {
5319 const int mmu_idx = cpu_mmu_index(env, false);
5320 const intptr_t reg_max = simd_oprsz(desc);
5321 const int scale = simd_data(desc);
5322 ARMVectorReg scratch;
5323 intptr_t reg_off;
5324 SVEHostPage info, info2;
5325
5326 memset(&scratch, 0, reg_max);
5327 reg_off = 0;
5328 do {
5329 uint64_t pg = vg[reg_off >> 6];
5330 do {
5331 if (likely(pg & 1)) {
5332 target_ulong addr = base + (off_fn(vm, reg_off) << scale);
5333 target_ulong in_page = -(addr | TARGET_PAGE_MASK);
5334
5335 sve_probe_page(&info, false, env, addr, 0, MMU_DATA_LOAD,
5336 mmu_idx, retaddr);
5337
5338 if (likely(in_page >= msize)) {
5339 if (unlikely(info.flags & TLB_WATCHPOINT)) {
5340 cpu_check_watchpoint(env_cpu(env), addr, msize,
5341 info.attrs, BP_MEM_READ, retaddr);
5342 }
5343 if (mtedesc && arm_tlb_mte_tagged(&info.attrs)) {
5344 mte_check(env, mtedesc, addr, retaddr);
5345 }
5346 host_fn(&scratch, reg_off, info.host);
5347 } else {
5348 /* Element crosses the page boundary. */
5349 sve_probe_page(&info2, false, env, addr + in_page, 0,
5350 MMU_DATA_LOAD, mmu_idx, retaddr);
5351 if (unlikely((info.flags | info2.flags) & TLB_WATCHPOINT)) {
5352 cpu_check_watchpoint(env_cpu(env), addr,
5353 msize, info.attrs,
5354 BP_MEM_READ, retaddr);
5355 }
5356 if (mtedesc && arm_tlb_mte_tagged(&info.attrs)) {
5357 mte_check(env, mtedesc, addr, retaddr);
5358 }
5359 tlb_fn(env, &scratch, reg_off, addr, retaddr);
5360 }
5361 }
5362 reg_off += esize;
5363 pg >>= esize;
5364 } while (reg_off & 63);
5365 } while (reg_off < reg_max);
5366
5367 /* Wait until all exceptions have been raised to write back. */
5368 memcpy(vd, &scratch, reg_max);
5369 }
5370
5371 static inline QEMU_ALWAYS_INLINE
5372 void sve_ld1_z_mte(CPUARMState *env, void *vd, uint64_t *vg, void *vm,
5373 target_ulong base, uint32_t desc, uintptr_t retaddr,
5374 int esize, int msize, zreg_off_fn *off_fn,
5375 sve_ldst1_host_fn *host_fn,
5376 sve_ldst1_tlb_fn *tlb_fn)
5377 {
5378 uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
5379 /* Remove mtedesc from the normal sve descriptor. */
5380 desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
5381
5382 /*
5383 * ??? TODO: For the 32-bit offset extractions, base + ofs cannot
5384 * offset base entirely over the address space hole to change the
5385 * pointer tag, or change the bit55 selector. So we could here
5386 * examine TBI + TCMA like we do for sve_ldN_r_mte().
5387 */
5388 sve_ld1_z(env, vd, vg, vm, base, desc, retaddr, mtedesc,
5389 esize, msize, off_fn, host_fn, tlb_fn);
5390 }
5391
5392 #define DO_LD1_ZPZ_S(MEM, OFS, MSZ) \
5393 void HELPER(sve_ld##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \
5394 void *vm, target_ulong base, uint32_t desc) \
5395 { \
5396 sve_ld1_z(env, vd, vg, vm, base, desc, GETPC(), 0, 4, 1 << MSZ, \
5397 off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
5398 } \
5399 void HELPER(sve_ld##MEM##_##OFS##_mte)(CPUARMState *env, void *vd, void *vg, \
5400 void *vm, target_ulong base, uint32_t desc) \
5401 { \
5402 sve_ld1_z_mte(env, vd, vg, vm, base, desc, GETPC(), 4, 1 << MSZ, \
5403 off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
5404 }
5405
5406 #define DO_LD1_ZPZ_D(MEM, OFS, MSZ) \
5407 void HELPER(sve_ld##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \
5408 void *vm, target_ulong base, uint32_t desc) \
5409 { \
5410 sve_ld1_z(env, vd, vg, vm, base, desc, GETPC(), 0, 8, 1 << MSZ, \
5411 off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
5412 } \
5413 void HELPER(sve_ld##MEM##_##OFS##_mte)(CPUARMState *env, void *vd, void *vg, \
5414 void *vm, target_ulong base, uint32_t desc) \
5415 { \
5416 sve_ld1_z_mte(env, vd, vg, vm, base, desc, GETPC(), 8, 1 << MSZ, \
5417 off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
5418 }
5419
5420 DO_LD1_ZPZ_S(bsu, zsu, MO_8)
5421 DO_LD1_ZPZ_S(bsu, zss, MO_8)
5422 DO_LD1_ZPZ_D(bdu, zsu, MO_8)
5423 DO_LD1_ZPZ_D(bdu, zss, MO_8)
5424 DO_LD1_ZPZ_D(bdu, zd, MO_8)
5425
5426 DO_LD1_ZPZ_S(bss, zsu, MO_8)
5427 DO_LD1_ZPZ_S(bss, zss, MO_8)
5428 DO_LD1_ZPZ_D(bds, zsu, MO_8)
5429 DO_LD1_ZPZ_D(bds, zss, MO_8)
5430 DO_LD1_ZPZ_D(bds, zd, MO_8)
5431
5432 DO_LD1_ZPZ_S(hsu_le, zsu, MO_16)
5433 DO_LD1_ZPZ_S(hsu_le, zss, MO_16)
5434 DO_LD1_ZPZ_D(hdu_le, zsu, MO_16)
5435 DO_LD1_ZPZ_D(hdu_le, zss, MO_16)
5436 DO_LD1_ZPZ_D(hdu_le, zd, MO_16)
5437
5438 DO_LD1_ZPZ_S(hsu_be, zsu, MO_16)
5439 DO_LD1_ZPZ_S(hsu_be, zss, MO_16)
5440 DO_LD1_ZPZ_D(hdu_be, zsu, MO_16)
5441 DO_LD1_ZPZ_D(hdu_be, zss, MO_16)
5442 DO_LD1_ZPZ_D(hdu_be, zd, MO_16)
5443
5444 DO_LD1_ZPZ_S(hss_le, zsu, MO_16)
5445 DO_LD1_ZPZ_S(hss_le, zss, MO_16)
5446 DO_LD1_ZPZ_D(hds_le, zsu, MO_16)
5447 DO_LD1_ZPZ_D(hds_le, zss, MO_16)
5448 DO_LD1_ZPZ_D(hds_le, zd, MO_16)
5449
5450 DO_LD1_ZPZ_S(hss_be, zsu, MO_16)
5451 DO_LD1_ZPZ_S(hss_be, zss, MO_16)
5452 DO_LD1_ZPZ_D(hds_be, zsu, MO_16)
5453 DO_LD1_ZPZ_D(hds_be, zss, MO_16)
5454 DO_LD1_ZPZ_D(hds_be, zd, MO_16)
5455
5456 DO_LD1_ZPZ_S(ss_le, zsu, MO_32)
5457 DO_LD1_ZPZ_S(ss_le, zss, MO_32)
5458 DO_LD1_ZPZ_D(sdu_le, zsu, MO_32)
5459 DO_LD1_ZPZ_D(sdu_le, zss, MO_32)
5460 DO_LD1_ZPZ_D(sdu_le, zd, MO_32)
5461
5462 DO_LD1_ZPZ_S(ss_be, zsu, MO_32)
5463 DO_LD1_ZPZ_S(ss_be, zss, MO_32)
5464 DO_LD1_ZPZ_D(sdu_be, zsu, MO_32)
5465 DO_LD1_ZPZ_D(sdu_be, zss, MO_32)
5466 DO_LD1_ZPZ_D(sdu_be, zd, MO_32)
5467
5468 DO_LD1_ZPZ_D(sds_le, zsu, MO_32)
5469 DO_LD1_ZPZ_D(sds_le, zss, MO_32)
5470 DO_LD1_ZPZ_D(sds_le, zd, MO_32)
5471
5472 DO_LD1_ZPZ_D(sds_be, zsu, MO_32)
5473 DO_LD1_ZPZ_D(sds_be, zss, MO_32)
5474 DO_LD1_ZPZ_D(sds_be, zd, MO_32)
5475
5476 DO_LD1_ZPZ_D(dd_le, zsu, MO_64)
5477 DO_LD1_ZPZ_D(dd_le, zss, MO_64)
5478 DO_LD1_ZPZ_D(dd_le, zd, MO_64)
5479
5480 DO_LD1_ZPZ_D(dd_be, zsu, MO_64)
5481 DO_LD1_ZPZ_D(dd_be, zss, MO_64)
5482 DO_LD1_ZPZ_D(dd_be, zd, MO_64)
5483
5484 #undef DO_LD1_ZPZ_S
5485 #undef DO_LD1_ZPZ_D
5486
5487 /* First fault loads with a vector index. */
5488
5489 /*
5490 * Common helpers for all gather first-faulting loads.
5491 */
5492
5493 static inline QEMU_ALWAYS_INLINE
5494 void sve_ldff1_z(CPUARMState *env, void *vd, uint64_t *vg, void *vm,
5495 target_ulong base, uint32_t desc, uintptr_t retaddr,
5496 uint32_t mtedesc, const int esz, const int msz,
5497 zreg_off_fn *off_fn,
5498 sve_ldst1_host_fn *host_fn,
5499 sve_ldst1_tlb_fn *tlb_fn)
5500 {
5501 const int mmu_idx = cpu_mmu_index(env, false);
5502 const intptr_t reg_max = simd_oprsz(desc);
5503 const int scale = simd_data(desc);
5504 const int esize = 1 << esz;
5505 const int msize = 1 << msz;
5506 intptr_t reg_off;
5507 SVEHostPage info;
5508 target_ulong addr, in_page;
5509
5510 /* Skip to the first true predicate. */
5511 reg_off = find_next_active(vg, 0, reg_max, esz);
5512 if (unlikely(reg_off >= reg_max)) {
5513 /* The entire predicate was false; no load occurs. */
5514 memset(vd, 0, reg_max);
5515 return;
5516 }
5517
5518 /*
5519 * Probe the first element, allowing faults.
5520 */
5521 addr = base + (off_fn(vm, reg_off) << scale);
5522 if (mtedesc) {
5523 mte_check(env, mtedesc, addr, retaddr);
5524 }
5525 tlb_fn(env, vd, reg_off, addr, retaddr);
5526
5527 /* After any fault, zero the other elements. */
5528 swap_memzero(vd, reg_off);
5529 reg_off += esize;
5530 swap_memzero(vd + reg_off, reg_max - reg_off);
5531
5532 /*
5533 * Probe the remaining elements, not allowing faults.
5534 */
5535 while (reg_off < reg_max) {
5536 uint64_t pg = vg[reg_off >> 6];
5537 do {
5538 if (likely((pg >> (reg_off & 63)) & 1)) {
5539 addr = base + (off_fn(vm, reg_off) << scale);
5540 in_page = -(addr | TARGET_PAGE_MASK);
5541
5542 if (unlikely(in_page < msize)) {
5543 /* Stop if the element crosses a page boundary. */
5544 goto fault;
5545 }
5546
5547 sve_probe_page(&info, true, env, addr, 0, MMU_DATA_LOAD,
5548 mmu_idx, retaddr);
5549 if (unlikely(info.flags & (TLB_INVALID_MASK | TLB_MMIO))) {
5550 goto fault;
5551 }
5552 if (unlikely(info.flags & TLB_WATCHPOINT) &&
5553 (cpu_watchpoint_address_matches
5554 (env_cpu(env), addr, msize) & BP_MEM_READ)) {
5555 goto fault;
5556 }
5557 if (mtedesc &&
5558 arm_tlb_mte_tagged(&info.attrs) &&
5559 !mte_probe(env, mtedesc, addr)) {
5560 goto fault;
5561 }
5562
5563 host_fn(vd, reg_off, info.host);
5564 }
5565 reg_off += esize;
5566 } while (reg_off & 63);
5567 }
5568 return;
5569
5570 fault:
5571 record_fault(env, reg_off, reg_max);
5572 }
5573
5574 static inline QEMU_ALWAYS_INLINE
5575 void sve_ldff1_z_mte(CPUARMState *env, void *vd, uint64_t *vg, void *vm,
5576 target_ulong base, uint32_t desc, uintptr_t retaddr,
5577 const int esz, const int msz,
5578 zreg_off_fn *off_fn,
5579 sve_ldst1_host_fn *host_fn,
5580 sve_ldst1_tlb_fn *tlb_fn)
5581 {
5582 uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
5583 /* Remove mtedesc from the normal sve descriptor. */
5584 desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
5585
5586 /*
5587 * ??? TODO: For the 32-bit offset extractions, base + ofs cannot
5588 * offset base entirely over the address space hole to change the
5589 * pointer tag, or change the bit55 selector. So we could here
5590 * examine TBI + TCMA like we do for sve_ldN_r_mte().
5591 */
5592 sve_ldff1_z(env, vd, vg, vm, base, desc, retaddr, mtedesc,
5593 esz, msz, off_fn, host_fn, tlb_fn);
5594 }
5595
5596 #define DO_LDFF1_ZPZ_S(MEM, OFS, MSZ) \
5597 void HELPER(sve_ldff##MEM##_##OFS) \
5598 (CPUARMState *env, void *vd, void *vg, \
5599 void *vm, target_ulong base, uint32_t desc) \
5600 { \
5601 sve_ldff1_z(env, vd, vg, vm, base, desc, GETPC(), 0, MO_32, MSZ, \
5602 off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
5603 } \
5604 void HELPER(sve_ldff##MEM##_##OFS##_mte) \
5605 (CPUARMState *env, void *vd, void *vg, \
5606 void *vm, target_ulong base, uint32_t desc) \
5607 { \
5608 sve_ldff1_z_mte(env, vd, vg, vm, base, desc, GETPC(), MO_32, MSZ, \
5609 off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
5610 }
5611
5612 #define DO_LDFF1_ZPZ_D(MEM, OFS, MSZ) \
5613 void HELPER(sve_ldff##MEM##_##OFS) \
5614 (CPUARMState *env, void *vd, void *vg, \
5615 void *vm, target_ulong base, uint32_t desc) \
5616 { \
5617 sve_ldff1_z(env, vd, vg, vm, base, desc, GETPC(), 0, MO_64, MSZ, \
5618 off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
5619 } \
5620 void HELPER(sve_ldff##MEM##_##OFS##_mte) \
5621 (CPUARMState *env, void *vd, void *vg, \
5622 void *vm, target_ulong base, uint32_t desc) \
5623 { \
5624 sve_ldff1_z_mte(env, vd, vg, vm, base, desc, GETPC(), MO_64, MSZ, \
5625 off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
5626 }
5627
5628 DO_LDFF1_ZPZ_S(bsu, zsu, MO_8)
5629 DO_LDFF1_ZPZ_S(bsu, zss, MO_8)
5630 DO_LDFF1_ZPZ_D(bdu, zsu, MO_8)
5631 DO_LDFF1_ZPZ_D(bdu, zss, MO_8)
5632 DO_LDFF1_ZPZ_D(bdu, zd, MO_8)
5633
5634 DO_LDFF1_ZPZ_S(bss, zsu, MO_8)
5635 DO_LDFF1_ZPZ_S(bss, zss, MO_8)
5636 DO_LDFF1_ZPZ_D(bds, zsu, MO_8)
5637 DO_LDFF1_ZPZ_D(bds, zss, MO_8)
5638 DO_LDFF1_ZPZ_D(bds, zd, MO_8)
5639
5640 DO_LDFF1_ZPZ_S(hsu_le, zsu, MO_16)
5641 DO_LDFF1_ZPZ_S(hsu_le, zss, MO_16)
5642 DO_LDFF1_ZPZ_D(hdu_le, zsu, MO_16)
5643 DO_LDFF1_ZPZ_D(hdu_le, zss, MO_16)
5644 DO_LDFF1_ZPZ_D(hdu_le, zd, MO_16)
5645
5646 DO_LDFF1_ZPZ_S(hsu_be, zsu, MO_16)
5647 DO_LDFF1_ZPZ_S(hsu_be, zss, MO_16)
5648 DO_LDFF1_ZPZ_D(hdu_be, zsu, MO_16)
5649 DO_LDFF1_ZPZ_D(hdu_be, zss, MO_16)
5650 DO_LDFF1_ZPZ_D(hdu_be, zd, MO_16)
5651
5652 DO_LDFF1_ZPZ_S(hss_le, zsu, MO_16)
5653 DO_LDFF1_ZPZ_S(hss_le, zss, MO_16)
5654 DO_LDFF1_ZPZ_D(hds_le, zsu, MO_16)
5655 DO_LDFF1_ZPZ_D(hds_le, zss, MO_16)
5656 DO_LDFF1_ZPZ_D(hds_le, zd, MO_16)
5657
5658 DO_LDFF1_ZPZ_S(hss_be, zsu, MO_16)
5659 DO_LDFF1_ZPZ_S(hss_be, zss, MO_16)
5660 DO_LDFF1_ZPZ_D(hds_be, zsu, MO_16)
5661 DO_LDFF1_ZPZ_D(hds_be, zss, MO_16)
5662 DO_LDFF1_ZPZ_D(hds_be, zd, MO_16)
5663
5664 DO_LDFF1_ZPZ_S(ss_le, zsu, MO_32)
5665 DO_LDFF1_ZPZ_S(ss_le, zss, MO_32)
5666 DO_LDFF1_ZPZ_D(sdu_le, zsu, MO_32)
5667 DO_LDFF1_ZPZ_D(sdu_le, zss, MO_32)
5668 DO_LDFF1_ZPZ_D(sdu_le, zd, MO_32)
5669
5670 DO_LDFF1_ZPZ_S(ss_be, zsu, MO_32)
5671 DO_LDFF1_ZPZ_S(ss_be, zss, MO_32)
5672 DO_LDFF1_ZPZ_D(sdu_be, zsu, MO_32)
5673 DO_LDFF1_ZPZ_D(sdu_be, zss, MO_32)
5674 DO_LDFF1_ZPZ_D(sdu_be, zd, MO_32)
5675
5676 DO_LDFF1_ZPZ_D(sds_le, zsu, MO_32)
5677 DO_LDFF1_ZPZ_D(sds_le, zss, MO_32)
5678 DO_LDFF1_ZPZ_D(sds_le, zd, MO_32)
5679
5680 DO_LDFF1_ZPZ_D(sds_be, zsu, MO_32)
5681 DO_LDFF1_ZPZ_D(sds_be, zss, MO_32)
5682 DO_LDFF1_ZPZ_D(sds_be, zd, MO_32)
5683
5684 DO_LDFF1_ZPZ_D(dd_le, zsu, MO_64)
5685 DO_LDFF1_ZPZ_D(dd_le, zss, MO_64)
5686 DO_LDFF1_ZPZ_D(dd_le, zd, MO_64)
5687
5688 DO_LDFF1_ZPZ_D(dd_be, zsu, MO_64)
5689 DO_LDFF1_ZPZ_D(dd_be, zss, MO_64)
5690 DO_LDFF1_ZPZ_D(dd_be, zd, MO_64)
5691
5692 /* Stores with a vector index. */
5693
5694 static inline QEMU_ALWAYS_INLINE
5695 void sve_st1_z(CPUARMState *env, void *vd, uint64_t *vg, void *vm,
5696 target_ulong base, uint32_t desc, uintptr_t retaddr,
5697 uint32_t mtedesc, int esize, int msize,
5698 zreg_off_fn *off_fn,
5699 sve_ldst1_host_fn *host_fn,
5700 sve_ldst1_tlb_fn *tlb_fn)
5701 {
5702 const int mmu_idx = cpu_mmu_index(env, false);
5703 const intptr_t reg_max = simd_oprsz(desc);
5704 const int scale = simd_data(desc);
5705 void *host[ARM_MAX_VQ * 4];
5706 intptr_t reg_off, i;
5707 SVEHostPage info, info2;
5708
5709 /*
5710 * Probe all of the elements for host addresses and flags.
5711 */
5712 i = reg_off = 0;
5713 do {
5714 uint64_t pg = vg[reg_off >> 6];
5715 do {
5716 target_ulong addr = base + (off_fn(vm, reg_off) << scale);
5717 target_ulong in_page = -(addr | TARGET_PAGE_MASK);
5718
5719 host[i] = NULL;
5720 if (likely((pg >> (reg_off & 63)) & 1)) {
5721 if (likely(in_page >= msize)) {
5722 sve_probe_page(&info, false, env, addr, 0, MMU_DATA_STORE,
5723 mmu_idx, retaddr);
5724 host[i] = info.host;
5725 } else {
5726 /*
5727 * Element crosses the page boundary.
5728 * Probe both pages, but do not record the host address,
5729 * so that we use the slow path.
5730 */
5731 sve_probe_page(&info, false, env, addr, 0,
5732 MMU_DATA_STORE, mmu_idx, retaddr);
5733 sve_probe_page(&info2, false, env, addr + in_page, 0,
5734 MMU_DATA_STORE, mmu_idx, retaddr);
5735 info.flags |= info2.flags;
5736 }
5737
5738 if (unlikely(info.flags & TLB_WATCHPOINT)) {
5739 cpu_check_watchpoint(env_cpu(env), addr, msize,
5740 info.attrs, BP_MEM_WRITE, retaddr);
5741 }
5742
5743 if (mtedesc && arm_tlb_mte_tagged(&info.attrs)) {
5744 mte_check(env, mtedesc, addr, retaddr);
5745 }
5746 }
5747 i += 1;
5748 reg_off += esize;
5749 } while (reg_off & 63);
5750 } while (reg_off < reg_max);
5751
5752 /*
5753 * Now that we have recognized all exceptions except SyncExternal
5754 * (from TLB_MMIO), which we cannot avoid, perform all of the stores.
5755 *
5756 * Note for the common case of an element in RAM, not crossing a page
5757 * boundary, we have stored the host address in host[]. This doubles
5758 * as a first-level check against the predicate, since only enabled
5759 * elements have non-null host addresses.
5760 */
5761 i = reg_off = 0;
5762 do {
5763 void *h = host[i];
5764 if (likely(h != NULL)) {
5765 host_fn(vd, reg_off, h);
5766 } else if ((vg[reg_off >> 6] >> (reg_off & 63)) & 1) {
5767 target_ulong addr = base + (off_fn(vm, reg_off) << scale);
5768 tlb_fn(env, vd, reg_off, addr, retaddr);
5769 }
5770 i += 1;
5771 reg_off += esize;
5772 } while (reg_off < reg_max);
5773 }
5774
5775 static inline QEMU_ALWAYS_INLINE
5776 void sve_st1_z_mte(CPUARMState *env, void *vd, uint64_t *vg, void *vm,
5777 target_ulong base, uint32_t desc, uintptr_t retaddr,
5778 int esize, int msize, zreg_off_fn *off_fn,
5779 sve_ldst1_host_fn *host_fn,
5780 sve_ldst1_tlb_fn *tlb_fn)
5781 {
5782 uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
5783 /* Remove mtedesc from the normal sve descriptor. */
5784 desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
5785
5786 /*
5787 * ??? TODO: For the 32-bit offset extractions, base + ofs cannot
5788 * offset base entirely over the address space hole to change the
5789 * pointer tag, or change the bit55 selector. So we could here
5790 * examine TBI + TCMA like we do for sve_ldN_r_mte().
5791 */
5792 sve_st1_z(env, vd, vg, vm, base, desc, retaddr, mtedesc,
5793 esize, msize, off_fn, host_fn, tlb_fn);
5794 }
5795
5796 #define DO_ST1_ZPZ_S(MEM, OFS, MSZ) \
5797 void HELPER(sve_st##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \
5798 void *vm, target_ulong base, uint32_t desc) \
5799 { \
5800 sve_st1_z(env, vd, vg, vm, base, desc, GETPC(), 0, 4, 1 << MSZ, \
5801 off_##OFS##_s, sve_st1##MEM##_host, sve_st1##MEM##_tlb); \
5802 } \
5803 void HELPER(sve_st##MEM##_##OFS##_mte)(CPUARMState *env, void *vd, void *vg, \
5804 void *vm, target_ulong base, uint32_t desc) \
5805 { \
5806 sve_st1_z_mte(env, vd, vg, vm, base, desc, GETPC(), 4, 1 << MSZ, \
5807 off_##OFS##_s, sve_st1##MEM##_host, sve_st1##MEM##_tlb); \
5808 }
5809
5810 #define DO_ST1_ZPZ_D(MEM, OFS, MSZ) \
5811 void HELPER(sve_st##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \
5812 void *vm, target_ulong base, uint32_t desc) \
5813 { \
5814 sve_st1_z(env, vd, vg, vm, base, desc, GETPC(), 0, 8, 1 << MSZ, \
5815 off_##OFS##_d, sve_st1##MEM##_host, sve_st1##MEM##_tlb); \
5816 } \
5817 void HELPER(sve_st##MEM##_##OFS##_mte)(CPUARMState *env, void *vd, void *vg, \
5818 void *vm, target_ulong base, uint32_t desc) \
5819 { \
5820 sve_st1_z_mte(env, vd, vg, vm, base, desc, GETPC(), 8, 1 << MSZ, \
5821 off_##OFS##_d, sve_st1##MEM##_host, sve_st1##MEM##_tlb); \
5822 }
5823
5824 DO_ST1_ZPZ_S(bs, zsu, MO_8)
5825 DO_ST1_ZPZ_S(hs_le, zsu, MO_16)
5826 DO_ST1_ZPZ_S(hs_be, zsu, MO_16)
5827 DO_ST1_ZPZ_S(ss_le, zsu, MO_32)
5828 DO_ST1_ZPZ_S(ss_be, zsu, MO_32)
5829
5830 DO_ST1_ZPZ_S(bs, zss, MO_8)
5831 DO_ST1_ZPZ_S(hs_le, zss, MO_16)
5832 DO_ST1_ZPZ_S(hs_be, zss, MO_16)
5833 DO_ST1_ZPZ_S(ss_le, zss, MO_32)
5834 DO_ST1_ZPZ_S(ss_be, zss, MO_32)
5835
5836 DO_ST1_ZPZ_D(bd, zsu, MO_8)
5837 DO_ST1_ZPZ_D(hd_le, zsu, MO_16)
5838 DO_ST1_ZPZ_D(hd_be, zsu, MO_16)
5839 DO_ST1_ZPZ_D(sd_le, zsu, MO_32)
5840 DO_ST1_ZPZ_D(sd_be, zsu, MO_32)
5841 DO_ST1_ZPZ_D(dd_le, zsu, MO_64)
5842 DO_ST1_ZPZ_D(dd_be, zsu, MO_64)
5843
5844 DO_ST1_ZPZ_D(bd, zss, MO_8)
5845 DO_ST1_ZPZ_D(hd_le, zss, MO_16)
5846 DO_ST1_ZPZ_D(hd_be, zss, MO_16)
5847 DO_ST1_ZPZ_D(sd_le, zss, MO_32)
5848 DO_ST1_ZPZ_D(sd_be, zss, MO_32)
5849 DO_ST1_ZPZ_D(dd_le, zss, MO_64)
5850 DO_ST1_ZPZ_D(dd_be, zss, MO_64)
5851
5852 DO_ST1_ZPZ_D(bd, zd, MO_8)
5853 DO_ST1_ZPZ_D(hd_le, zd, MO_16)
5854 DO_ST1_ZPZ_D(hd_be, zd, MO_16)
5855 DO_ST1_ZPZ_D(sd_le, zd, MO_32)
5856 DO_ST1_ZPZ_D(sd_be, zd, MO_32)
5857 DO_ST1_ZPZ_D(dd_le, zd, MO_64)
5858 DO_ST1_ZPZ_D(dd_be, zd, MO_64)
5859
5860 #undef DO_ST1_ZPZ_S
5861 #undef DO_ST1_ZPZ_D