]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/tcg/mte_helper.c
target/arm: Correct MTE tag checking for reverse-copy MOPS
[mirror_qemu.git] / target / arm / tcg / mte_helper.c
1 /*
2 * ARM v8.5-MemTag Operations
3 *
4 * Copyright (c) 2020 Linaro, Ltd.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "internals.h"
24 #include "exec/exec-all.h"
25 #include "exec/ram_addr.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/helper-proto.h"
28 #include "hw/core/tcg-cpu-ops.h"
29 #include "qapi/error.h"
30 #include "qemu/guest-random.h"
31
32
33 static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
34 {
35 if (exclude == 0xffff) {
36 return 0;
37 }
38 if (offset == 0) {
39 while (exclude & (1 << tag)) {
40 tag = (tag + 1) & 15;
41 }
42 } else {
43 do {
44 do {
45 tag = (tag + 1) & 15;
46 } while (exclude & (1 << tag));
47 } while (--offset > 0);
48 }
49 return tag;
50 }
51
52 /**
53 * allocation_tag_mem_probe:
54 * @env: the cpu environment
55 * @ptr_mmu_idx: the addressing regime to use for the virtual address
56 * @ptr: the virtual address for which to look up tag memory
57 * @ptr_access: the access to use for the virtual address
58 * @ptr_size: the number of bytes in the normal memory access
59 * @tag_access: the access to use for the tag memory
60 * @probe: true to merely probe, never taking an exception
61 * @ra: the return address for exception handling
62 *
63 * Our tag memory is formatted as a sequence of little-endian nibbles.
64 * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
65 * tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
66 * for the higher addr.
67 *
68 * Here, resolve the physical address from the virtual address, and return
69 * a pointer to the corresponding tag byte.
70 *
71 * If there is no tag storage corresponding to @ptr, return NULL.
72 *
73 * If the page is inaccessible for @ptr_access, or has a watchpoint, there are
74 * three options:
75 * (1) probe = true, ra = 0 : pure probe -- we return NULL if the page is not
76 * accessible, and do not take watchpoint traps. The calling code must
77 * handle those cases in the right priority compared to MTE traps.
78 * (2) probe = false, ra = 0 : probe, no fault expected -- the caller guarantees
79 * that the page is going to be accessible. We will take watchpoint traps.
80 * (3) probe = false, ra != 0 : non-probe -- we will take both memory access
81 * traps and watchpoint traps.
82 * (probe = true, ra != 0 is invalid and will assert.)
83 */
84 static uint8_t *allocation_tag_mem_probe(CPUARMState *env, int ptr_mmu_idx,
85 uint64_t ptr, MMUAccessType ptr_access,
86 int ptr_size, MMUAccessType tag_access,
87 bool probe, uintptr_t ra)
88 {
89 #ifdef CONFIG_USER_ONLY
90 uint64_t clean_ptr = useronly_clean_ptr(ptr);
91 int flags = page_get_flags(clean_ptr);
92 uint8_t *tags;
93 uintptr_t index;
94
95 assert(!(probe && ra));
96
97 if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) {
98 cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access,
99 !(flags & PAGE_VALID), ra);
100 }
101
102 /* Require both MAP_ANON and PROT_MTE for the page. */
103 if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) {
104 return NULL;
105 }
106
107 tags = page_get_target_data(clean_ptr);
108
109 index = extract32(ptr, LOG2_TAG_GRANULE + 1,
110 TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1);
111 return tags + index;
112 #else
113 CPUTLBEntryFull *full;
114 MemTxAttrs attrs;
115 int in_page, flags;
116 hwaddr ptr_paddr, tag_paddr, xlat;
117 MemoryRegion *mr;
118 ARMASIdx tag_asi;
119 AddressSpace *tag_as;
120 void *host;
121
122 /*
123 * Probe the first byte of the virtual address. This raises an
124 * exception for inaccessible pages, and resolves the virtual address
125 * into the softmmu tlb.
126 *
127 * When RA == 0, this is either a pure probe or a no-fault-expected probe.
128 * Indicate to probe_access_flags no-fault, then either return NULL
129 * for the pure probe, or assert that we received a valid page for the
130 * no-fault-expected probe.
131 */
132 flags = probe_access_full(env, ptr, 0, ptr_access, ptr_mmu_idx,
133 ra == 0, &host, &full, ra);
134 if (probe && (flags & TLB_INVALID_MASK)) {
135 return NULL;
136 }
137 assert(!(flags & TLB_INVALID_MASK));
138
139 /* If the virtual page MemAttr != Tagged, access unchecked. */
140 if (full->extra.arm.pte_attrs != 0xf0) {
141 return NULL;
142 }
143
144 /*
145 * If not backed by host ram, there is no tag storage: access unchecked.
146 * This is probably a guest os bug though, so log it.
147 */
148 if (unlikely(flags & TLB_MMIO)) {
149 qemu_log_mask(LOG_GUEST_ERROR,
150 "Page @ 0x%" PRIx64 " indicates Tagged Normal memory "
151 "but is not backed by host ram\n", ptr);
152 return NULL;
153 }
154
155 /*
156 * Remember these values across the second lookup below,
157 * which may invalidate this pointer via tlb resize.
158 */
159 ptr_paddr = full->phys_addr | (ptr & ~TARGET_PAGE_MASK);
160 attrs = full->attrs;
161 full = NULL;
162
163 /*
164 * The Normal memory access can extend to the next page. E.g. a single
165 * 8-byte access to the last byte of a page will check only the last
166 * tag on the first page.
167 * Any page access exception has priority over tag check exception.
168 */
169 in_page = -(ptr | TARGET_PAGE_MASK);
170 if (unlikely(ptr_size > in_page)) {
171 flags |= probe_access_full(env, ptr + in_page, 0, ptr_access,
172 ptr_mmu_idx, ra == 0, &host, &full, ra);
173 assert(!(flags & TLB_INVALID_MASK));
174 }
175
176 /* Any debug exception has priority over a tag check exception. */
177 if (!probe && unlikely(flags & TLB_WATCHPOINT)) {
178 int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE;
179 assert(ra != 0);
180 cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra);
181 }
182
183 /* Convert to the physical address in tag space. */
184 tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1);
185
186 /* Look up the address in tag space. */
187 tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS;
188 tag_as = cpu_get_address_space(env_cpu(env), tag_asi);
189 mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL,
190 tag_access == MMU_DATA_STORE, attrs);
191
192 /*
193 * Note that @mr will never be NULL. If there is nothing in the address
194 * space at @tag_paddr, the translation will return the unallocated memory
195 * region. For our purposes, the result must be ram.
196 */
197 if (unlikely(!memory_region_is_ram(mr))) {
198 /* ??? Failure is a board configuration error. */
199 qemu_log_mask(LOG_UNIMP,
200 "Tag Memory @ 0x%" HWADDR_PRIx " not found for "
201 "Normal Memory @ 0x%" HWADDR_PRIx "\n",
202 tag_paddr, ptr_paddr);
203 return NULL;
204 }
205
206 /*
207 * Ensure the tag memory is dirty on write, for migration.
208 * Tag memory can never contain code or display memory (vga).
209 */
210 if (tag_access == MMU_DATA_STORE) {
211 ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat;
212 cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION);
213 }
214
215 return memory_region_get_ram_ptr(mr) + xlat;
216 #endif
217 }
218
219 static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
220 uint64_t ptr, MMUAccessType ptr_access,
221 int ptr_size, MMUAccessType tag_access,
222 uintptr_t ra)
223 {
224 return allocation_tag_mem_probe(env, ptr_mmu_idx, ptr, ptr_access,
225 ptr_size, tag_access, false, ra);
226 }
227
228 uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
229 {
230 uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
231 int rrnd = extract32(env->cp15.gcr_el1, 16, 1);
232 int start = extract32(env->cp15.rgsr_el1, 0, 4);
233 int seed = extract32(env->cp15.rgsr_el1, 8, 16);
234 int offset, i, rtag;
235
236 /*
237 * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the
238 * deterministic algorithm. Except that with RRND==1 the kernel is
239 * not required to have set RGSR_EL1.SEED != 0, which is required for
240 * the deterministic algorithm to function. So we force a non-zero
241 * SEED for that case.
242 */
243 if (unlikely(seed == 0) && rrnd) {
244 do {
245 Error *err = NULL;
246 uint16_t two;
247
248 if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) {
249 /*
250 * Failed, for unknown reasons in the crypto subsystem.
251 * Best we can do is log the reason and use a constant seed.
252 */
253 qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n",
254 error_get_pretty(err));
255 error_free(err);
256 two = 1;
257 }
258 seed = two;
259 } while (seed == 0);
260 }
261
262 /* RandomTag */
263 for (i = offset = 0; i < 4; ++i) {
264 /* NextRandomTagBit */
265 int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
266 extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
267 seed = (top << 15) | (seed >> 1);
268 offset |= top << i;
269 }
270 rtag = choose_nonexcluded_tag(start, offset, exclude);
271 env->cp15.rgsr_el1 = rtag | (seed << 8);
272
273 return address_with_allocation_tag(rn, rtag);
274 }
275
276 uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
277 int32_t offset, uint32_t tag_offset)
278 {
279 int start_tag = allocation_tag_from_addr(ptr);
280 uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
281 int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
282
283 return address_with_allocation_tag(ptr + offset, rtag);
284 }
285
286 static int load_tag1(uint64_t ptr, uint8_t *mem)
287 {
288 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
289 return extract32(*mem, ofs, 4);
290 }
291
292 uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
293 {
294 int mmu_idx = cpu_mmu_index(env, false);
295 uint8_t *mem;
296 int rtag = 0;
297
298 /* Trap if accessing an invalid page. */
299 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
300 MMU_DATA_LOAD, GETPC());
301
302 /* Load if page supports tags. */
303 if (mem) {
304 rtag = load_tag1(ptr, mem);
305 }
306
307 return address_with_allocation_tag(xt, rtag);
308 }
309
310 static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
311 {
312 if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
313 arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
314 cpu_mmu_index(env, false), ra);
315 g_assert_not_reached();
316 }
317 }
318
319 /* For use in a non-parallel context, store to the given nibble. */
320 static void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
321 {
322 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
323 *mem = deposit32(*mem, ofs, 4, tag);
324 }
325
326 /* For use in a parallel context, atomically store to the given nibble. */
327 static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
328 {
329 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
330 uint8_t old = qatomic_read(mem);
331
332 while (1) {
333 uint8_t new = deposit32(old, ofs, 4, tag);
334 uint8_t cmp = qatomic_cmpxchg(mem, old, new);
335 if (likely(cmp == old)) {
336 return;
337 }
338 old = cmp;
339 }
340 }
341
342 typedef void stg_store1(uint64_t, uint8_t *, int);
343
344 static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
345 uintptr_t ra, stg_store1 store1)
346 {
347 int mmu_idx = cpu_mmu_index(env, false);
348 uint8_t *mem;
349
350 check_tag_aligned(env, ptr, ra);
351
352 /* Trap if accessing an invalid page. */
353 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
354 MMU_DATA_STORE, ra);
355
356 /* Store if page supports tags. */
357 if (mem) {
358 store1(ptr, mem, allocation_tag_from_addr(xt));
359 }
360 }
361
362 void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
363 {
364 do_stg(env, ptr, xt, GETPC(), store_tag1);
365 }
366
367 void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
368 {
369 do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
370 }
371
372 void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
373 {
374 int mmu_idx = cpu_mmu_index(env, false);
375 uintptr_t ra = GETPC();
376
377 check_tag_aligned(env, ptr, ra);
378 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
379 }
380
381 static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
382 uintptr_t ra, stg_store1 store1)
383 {
384 int mmu_idx = cpu_mmu_index(env, false);
385 int tag = allocation_tag_from_addr(xt);
386 uint8_t *mem1, *mem2;
387
388 check_tag_aligned(env, ptr, ra);
389
390 /*
391 * Trap if accessing an invalid page(s).
392 * This takes priority over !allocation_tag_access_enabled.
393 */
394 if (ptr & TAG_GRANULE) {
395 /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
396 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
397 TAG_GRANULE, MMU_DATA_STORE, ra);
398 mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
399 MMU_DATA_STORE, TAG_GRANULE,
400 MMU_DATA_STORE, ra);
401
402 /* Store if page(s) support tags. */
403 if (mem1) {
404 store1(TAG_GRANULE, mem1, tag);
405 }
406 if (mem2) {
407 store1(0, mem2, tag);
408 }
409 } else {
410 /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
411 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
412 2 * TAG_GRANULE, MMU_DATA_STORE, ra);
413 if (mem1) {
414 tag |= tag << 4;
415 qatomic_set(mem1, tag);
416 }
417 }
418 }
419
420 void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
421 {
422 do_st2g(env, ptr, xt, GETPC(), store_tag1);
423 }
424
425 void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
426 {
427 do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
428 }
429
430 void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
431 {
432 int mmu_idx = cpu_mmu_index(env, false);
433 uintptr_t ra = GETPC();
434 int in_page = -(ptr | TARGET_PAGE_MASK);
435
436 check_tag_aligned(env, ptr, ra);
437
438 if (likely(in_page >= 2 * TAG_GRANULE)) {
439 probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
440 } else {
441 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
442 probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
443 }
444 }
445
446 uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr)
447 {
448 int mmu_idx = cpu_mmu_index(env, false);
449 uintptr_t ra = GETPC();
450 int gm_bs = env_archcpu(env)->gm_blocksize;
451 int gm_bs_bytes = 4 << gm_bs;
452 void *tag_mem;
453 uint64_t ret;
454 int shift;
455
456 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes);
457
458 /* Trap if accessing an invalid page. */
459 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD,
460 gm_bs_bytes, MMU_DATA_LOAD, ra);
461
462 /* The tag is squashed to zero if the page does not support tags. */
463 if (!tag_mem) {
464 return 0;
465 }
466
467 /*
468 * The ordering of elements within the word corresponds to
469 * a little-endian operation. Computation of shift comes from
470 *
471 * index = address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE>
472 * data<index*4+3:index*4> = tag
473 *
474 * Because of the alignment of ptr above, BS=6 has shift=0.
475 * All memory operations are aligned. Defer support for BS=2,
476 * requiring insertion or extraction of a nibble, until we
477 * support a cpu that requires it.
478 */
479 switch (gm_bs) {
480 case 3:
481 /* 32 bytes -> 2 tags -> 8 result bits */
482 ret = *(uint8_t *)tag_mem;
483 break;
484 case 4:
485 /* 64 bytes -> 4 tags -> 16 result bits */
486 ret = cpu_to_le16(*(uint16_t *)tag_mem);
487 break;
488 case 5:
489 /* 128 bytes -> 8 tags -> 32 result bits */
490 ret = cpu_to_le32(*(uint32_t *)tag_mem);
491 break;
492 case 6:
493 /* 256 bytes -> 16 tags -> 64 result bits */
494 return cpu_to_le64(*(uint64_t *)tag_mem);
495 default:
496 /*
497 * CPU configured with unsupported/invalid gm blocksize.
498 * This is detected early in arm_cpu_realizefn.
499 */
500 g_assert_not_reached();
501 }
502 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4;
503 return ret << shift;
504 }
505
506 void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val)
507 {
508 int mmu_idx = cpu_mmu_index(env, false);
509 uintptr_t ra = GETPC();
510 int gm_bs = env_archcpu(env)->gm_blocksize;
511 int gm_bs_bytes = 4 << gm_bs;
512 void *tag_mem;
513 int shift;
514
515 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes);
516
517 /* Trap if accessing an invalid page. */
518 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
519 gm_bs_bytes, MMU_DATA_LOAD, ra);
520
521 /*
522 * Tag store only happens if the page support tags,
523 * and if the OS has enabled access to the tags.
524 */
525 if (!tag_mem) {
526 return;
527 }
528
529 /* See LDGM for comments on BS and on shift. */
530 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4;
531 val >>= shift;
532 switch (gm_bs) {
533 case 3:
534 /* 32 bytes -> 2 tags -> 8 result bits */
535 *(uint8_t *)tag_mem = val;
536 break;
537 case 4:
538 /* 64 bytes -> 4 tags -> 16 result bits */
539 *(uint16_t *)tag_mem = cpu_to_le16(val);
540 break;
541 case 5:
542 /* 128 bytes -> 8 tags -> 32 result bits */
543 *(uint32_t *)tag_mem = cpu_to_le32(val);
544 break;
545 case 6:
546 /* 256 bytes -> 16 tags -> 64 result bits */
547 *(uint64_t *)tag_mem = cpu_to_le64(val);
548 break;
549 default:
550 /* cpu configured with unsupported gm blocksize. */
551 g_assert_not_reached();
552 }
553 }
554
555 void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val)
556 {
557 uintptr_t ra = GETPC();
558 int mmu_idx = cpu_mmu_index(env, false);
559 int log2_dcz_bytes, log2_tag_bytes;
560 intptr_t dcz_bytes, tag_bytes;
561 uint8_t *mem;
562
563 /*
564 * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
565 * i.e. 32 bytes, which is an unreasonably small dcz anyway,
566 * to make sure that we can access one complete tag byte here.
567 */
568 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
569 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
570 dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
571 tag_bytes = (intptr_t)1 << log2_tag_bytes;
572 ptr &= -dcz_bytes;
573
574 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes,
575 MMU_DATA_STORE, ra);
576 if (mem) {
577 int tag_pair = (val & 0xf) * 0x11;
578 memset(mem, tag_pair, tag_bytes);
579 }
580 }
581
582 static void mte_sync_check_fail(CPUARMState *env, uint32_t desc,
583 uint64_t dirty_ptr, uintptr_t ra)
584 {
585 int is_write, syn;
586
587 env->exception.vaddress = dirty_ptr;
588
589 is_write = FIELD_EX32(desc, MTEDESC, WRITE);
590 syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write,
591 0x11);
592 raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra);
593 g_assert_not_reached();
594 }
595
596 static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr,
597 uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el)
598 {
599 int select;
600
601 if (regime_has_2_ranges(arm_mmu_idx)) {
602 select = extract64(dirty_ptr, 55, 1);
603 } else {
604 select = 0;
605 }
606 env->cp15.tfsr_el[el] |= 1 << select;
607 #ifdef CONFIG_USER_ONLY
608 /*
609 * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT,
610 * which then sends a SIGSEGV when the thread is next scheduled.
611 * This cpu will return to the main loop at the end of the TB,
612 * which is rather sooner than "normal". But the alternative
613 * is waiting until the next syscall.
614 */
615 qemu_cpu_kick(env_cpu(env));
616 #endif
617 }
618
619 /* Record a tag check failure. */
620 void mte_check_fail(CPUARMState *env, uint32_t desc,
621 uint64_t dirty_ptr, uintptr_t ra)
622 {
623 int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
624 ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx);
625 int el, reg_el, tcf;
626 uint64_t sctlr;
627
628 reg_el = regime_el(env, arm_mmu_idx);
629 sctlr = env->cp15.sctlr_el[reg_el];
630
631 switch (arm_mmu_idx) {
632 case ARMMMUIdx_E10_0:
633 case ARMMMUIdx_E20_0:
634 el = 0;
635 tcf = extract64(sctlr, 38, 2);
636 break;
637 default:
638 el = reg_el;
639 tcf = extract64(sctlr, 40, 2);
640 }
641
642 switch (tcf) {
643 case 1:
644 /* Tag check fail causes a synchronous exception. */
645 mte_sync_check_fail(env, desc, dirty_ptr, ra);
646 break;
647
648 case 0:
649 /*
650 * Tag check fail does not affect the PE.
651 * We eliminate this case by not setting MTE_ACTIVE
652 * in tb_flags, so that we never make this runtime call.
653 */
654 g_assert_not_reached();
655
656 case 2:
657 /* Tag check fail causes asynchronous flag set. */
658 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
659 break;
660
661 case 3:
662 /*
663 * Tag check fail causes asynchronous flag set for stores, or
664 * a synchronous exception for loads.
665 */
666 if (FIELD_EX32(desc, MTEDESC, WRITE)) {
667 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
668 } else {
669 mte_sync_check_fail(env, desc, dirty_ptr, ra);
670 }
671 break;
672 }
673 }
674
675 /**
676 * checkN:
677 * @tag: tag memory to test
678 * @odd: true to begin testing at tags at odd nibble
679 * @cmp: the tag to compare against
680 * @count: number of tags to test
681 *
682 * Return the number of successful tests.
683 * Thus a return value < @count indicates a failure.
684 *
685 * A note about sizes: count is expected to be small.
686 *
687 * The most common use will be LDP/STP of two integer registers,
688 * which means 16 bytes of memory touching at most 2 tags, but
689 * often the access is aligned and thus just 1 tag.
690 *
691 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
692 * touching at most 5 tags. SVE LDR/STR (vector) with the default
693 * vector length is also 64 bytes; the maximum architectural length
694 * is 256 bytes touching at most 9 tags.
695 *
696 * The loop below uses 7 logical operations and 1 memory operation
697 * per tag pair. An implementation that loads an aligned word and
698 * uses masking to ignore adjacent tags requires 18 logical operations
699 * and thus does not begin to pay off until 6 tags.
700 * Which, according to the survey above, is unlikely to be common.
701 */
702 static int checkN(uint8_t *mem, int odd, int cmp, int count)
703 {
704 int n = 0, diff;
705
706 /* Replicate the test tag and compare. */
707 cmp *= 0x11;
708 diff = *mem++ ^ cmp;
709
710 if (odd) {
711 goto start_odd;
712 }
713
714 while (1) {
715 /* Test even tag. */
716 if (unlikely((diff) & 0x0f)) {
717 break;
718 }
719 if (++n == count) {
720 break;
721 }
722
723 start_odd:
724 /* Test odd tag. */
725 if (unlikely((diff) & 0xf0)) {
726 break;
727 }
728 if (++n == count) {
729 break;
730 }
731
732 diff = *mem++ ^ cmp;
733 }
734 return n;
735 }
736
737 /**
738 * checkNrev:
739 * @tag: tag memory to test
740 * @odd: true to begin testing at tags at odd nibble
741 * @cmp: the tag to compare against
742 * @count: number of tags to test
743 *
744 * Return the number of successful tests.
745 * Thus a return value < @count indicates a failure.
746 *
747 * This is like checkN, but it runs backwards, checking the
748 * tags starting with @tag and then the tags preceding it.
749 * This is needed by the backwards-memory-copying operations.
750 */
751 static int checkNrev(uint8_t *mem, int odd, int cmp, int count)
752 {
753 int n = 0, diff;
754
755 /* Replicate the test tag and compare. */
756 cmp *= 0x11;
757 diff = *mem-- ^ cmp;
758
759 if (!odd) {
760 goto start_even;
761 }
762
763 while (1) {
764 /* Test odd tag. */
765 if (unlikely((diff) & 0xf0)) {
766 break;
767 }
768 if (++n == count) {
769 break;
770 }
771
772 start_even:
773 /* Test even tag. */
774 if (unlikely((diff) & 0x0f)) {
775 break;
776 }
777 if (++n == count) {
778 break;
779 }
780
781 diff = *mem-- ^ cmp;
782 }
783 return n;
784 }
785
786 /**
787 * mte_probe_int() - helper for mte_probe and mte_check
788 * @env: CPU environment
789 * @desc: MTEDESC descriptor
790 * @ptr: virtual address of the base of the access
791 * @fault: return virtual address of the first check failure
792 *
793 * Internal routine for both mte_probe and mte_check.
794 * Return zero on failure, filling in *fault.
795 * Return negative on trivial success for tbi disabled.
796 * Return positive on success with tbi enabled.
797 */
798 static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr,
799 uintptr_t ra, uint64_t *fault)
800 {
801 int mmu_idx, ptr_tag, bit55;
802 uint64_t ptr_last, prev_page, next_page;
803 uint64_t tag_first, tag_last;
804 uint32_t sizem1, tag_count, n, c;
805 uint8_t *mem1, *mem2;
806 MMUAccessType type;
807
808 bit55 = extract64(ptr, 55, 1);
809 *fault = ptr;
810
811 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
812 if (unlikely(!tbi_check(desc, bit55))) {
813 return -1;
814 }
815
816 ptr_tag = allocation_tag_from_addr(ptr);
817
818 if (tcma_check(desc, bit55, ptr_tag)) {
819 return 1;
820 }
821
822 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
823 type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
824 sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1);
825
826 /* Find the addr of the end of the access */
827 ptr_last = ptr + sizem1;
828
829 /* Round the bounds to the tag granule, and compute the number of tags. */
830 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
831 tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE);
832 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
833
834 /* Locate the page boundaries. */
835 prev_page = ptr & TARGET_PAGE_MASK;
836 next_page = prev_page + TARGET_PAGE_SIZE;
837
838 if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) {
839 /* Memory access stays on one page. */
840 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1,
841 MMU_DATA_LOAD, ra);
842 if (!mem1) {
843 return 1;
844 }
845 /* Perform all of the comparisons. */
846 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count);
847 } else {
848 /* Memory access crosses to next page. */
849 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr,
850 MMU_DATA_LOAD, ra);
851
852 mem2 = allocation_tag_mem(env, mmu_idx, next_page, type,
853 ptr_last - next_page + 1,
854 MMU_DATA_LOAD, ra);
855
856 /*
857 * Perform all of the comparisons.
858 * Note the possible but unlikely case of the operation spanning
859 * two pages that do not both have tagging enabled.
860 */
861 n = c = (next_page - tag_first) / TAG_GRANULE;
862 if (mem1) {
863 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c);
864 }
865 if (n == c) {
866 if (!mem2) {
867 return 1;
868 }
869 n += checkN(mem2, 0, ptr_tag, tag_count - c);
870 }
871 }
872
873 if (likely(n == tag_count)) {
874 return 1;
875 }
876
877 /*
878 * If we failed, we know which granule. For the first granule, the
879 * failure address is @ptr, the first byte accessed. Otherwise the
880 * failure address is the first byte of the nth granule.
881 */
882 if (n > 0) {
883 *fault = tag_first + n * TAG_GRANULE;
884 }
885 return 0;
886 }
887
888 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra)
889 {
890 uint64_t fault;
891 int ret = mte_probe_int(env, desc, ptr, ra, &fault);
892
893 if (unlikely(ret == 0)) {
894 mte_check_fail(env, desc, fault, ra);
895 } else if (ret < 0) {
896 return ptr;
897 }
898 return useronly_clean_ptr(ptr);
899 }
900
901 uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr)
902 {
903 /*
904 * R_XCHFJ: Alignment check not caused by memory type is priority 1,
905 * higher than any translation fault. When MTE is disabled, tcg
906 * performs the alignment check during the code generated for the
907 * memory access. With MTE enabled, we must check this here before
908 * raising any translation fault in allocation_tag_mem.
909 */
910 unsigned align = FIELD_EX32(desc, MTEDESC, ALIGN);
911 if (unlikely(align)) {
912 align = (1u << align) - 1;
913 if (unlikely(ptr & align)) {
914 int idx = FIELD_EX32(desc, MTEDESC, MIDX);
915 bool w = FIELD_EX32(desc, MTEDESC, WRITE);
916 MMUAccessType type = w ? MMU_DATA_STORE : MMU_DATA_LOAD;
917 arm_cpu_do_unaligned_access(env_cpu(env), ptr, type, idx, GETPC());
918 }
919 }
920
921 return mte_check(env, desc, ptr, GETPC());
922 }
923
924 /*
925 * No-fault version of mte_check, to be used by SVE for MemSingleNF.
926 * Returns false if the access is Checked and the check failed. This
927 * is only intended to probe the tag -- the validity of the page must
928 * be checked beforehand.
929 */
930 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr)
931 {
932 uint64_t fault;
933 int ret = mte_probe_int(env, desc, ptr, 0, &fault);
934
935 return ret != 0;
936 }
937
938 /*
939 * Perform an MTE checked access for DC_ZVA.
940 */
941 uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr)
942 {
943 uintptr_t ra = GETPC();
944 int log2_dcz_bytes, log2_tag_bytes;
945 int mmu_idx, bit55;
946 intptr_t dcz_bytes, tag_bytes, i;
947 void *mem;
948 uint64_t ptr_tag, mem_tag, align_ptr;
949
950 bit55 = extract64(ptr, 55, 1);
951
952 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
953 if (unlikely(!tbi_check(desc, bit55))) {
954 return ptr;
955 }
956
957 ptr_tag = allocation_tag_from_addr(ptr);
958
959 if (tcma_check(desc, bit55, ptr_tag)) {
960 goto done;
961 }
962
963 /*
964 * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
965 * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
966 * sure that we can access one complete tag byte here.
967 */
968 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
969 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
970 dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
971 tag_bytes = (intptr_t)1 << log2_tag_bytes;
972 align_ptr = ptr & -dcz_bytes;
973
974 /*
975 * Trap if accessing an invalid page. DC_ZVA requires that we supply
976 * the original pointer for an invalid page. But watchpoints require
977 * that we probe the actual space. So do both.
978 */
979 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
980 (void) probe_write(env, ptr, 1, mmu_idx, ra);
981 mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE,
982 dcz_bytes, MMU_DATA_LOAD, ra);
983 if (!mem) {
984 goto done;
985 }
986
987 /*
988 * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
989 * it is quite easy to perform all of the comparisons at once without
990 * any extra masking.
991 *
992 * The most common zva block size is 64; some of the thunderx cpus use
993 * a block size of 128. For user-only, aarch64_max_initfn will set the
994 * block size to 512. Fill out the other cases for future-proofing.
995 *
996 * In order to be able to find the first miscompare later, we want the
997 * tag bytes to be in little-endian order.
998 */
999 switch (log2_tag_bytes) {
1000 case 0: /* zva_blocksize 32 */
1001 mem_tag = *(uint8_t *)mem;
1002 ptr_tag *= 0x11u;
1003 break;
1004 case 1: /* zva_blocksize 64 */
1005 mem_tag = cpu_to_le16(*(uint16_t *)mem);
1006 ptr_tag *= 0x1111u;
1007 break;
1008 case 2: /* zva_blocksize 128 */
1009 mem_tag = cpu_to_le32(*(uint32_t *)mem);
1010 ptr_tag *= 0x11111111u;
1011 break;
1012 case 3: /* zva_blocksize 256 */
1013 mem_tag = cpu_to_le64(*(uint64_t *)mem);
1014 ptr_tag *= 0x1111111111111111ull;
1015 break;
1016
1017 default: /* zva_blocksize 512, 1024, 2048 */
1018 ptr_tag *= 0x1111111111111111ull;
1019 i = 0;
1020 do {
1021 mem_tag = cpu_to_le64(*(uint64_t *)(mem + i));
1022 if (unlikely(mem_tag != ptr_tag)) {
1023 goto fail;
1024 }
1025 i += 8;
1026 align_ptr += 16 * TAG_GRANULE;
1027 } while (i < tag_bytes);
1028 goto done;
1029 }
1030
1031 if (likely(mem_tag == ptr_tag)) {
1032 goto done;
1033 }
1034
1035 fail:
1036 /* Locate the first nibble that differs. */
1037 i = ctz64(mem_tag ^ ptr_tag) >> 4;
1038 mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra);
1039
1040 done:
1041 return useronly_clean_ptr(ptr);
1042 }
1043
1044 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
1045 uint32_t desc)
1046 {
1047 int mmu_idx, tag_count;
1048 uint64_t ptr_tag, tag_first, tag_last;
1049 void *mem;
1050 bool w = FIELD_EX32(desc, MTEDESC, WRITE);
1051 uint32_t n;
1052
1053 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
1054 /* True probe; this will never fault */
1055 mem = allocation_tag_mem_probe(env, mmu_idx, ptr,
1056 w ? MMU_DATA_STORE : MMU_DATA_LOAD,
1057 size, MMU_DATA_LOAD, true, 0);
1058 if (!mem) {
1059 return size;
1060 }
1061
1062 /*
1063 * TODO: checkN() is not designed for checks of the size we expect
1064 * for FEAT_MOPS operations, so we should implement this differently.
1065 * Maybe we should do something like
1066 * if (region start and size are aligned nicely) {
1067 * do direct loads of 64 tag bits at a time;
1068 * } else {
1069 * call checkN()
1070 * }
1071 */
1072 /* Round the bounds to the tag granule, and compute the number of tags. */
1073 ptr_tag = allocation_tag_from_addr(ptr);
1074 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
1075 tag_last = QEMU_ALIGN_DOWN(ptr + size - 1, TAG_GRANULE);
1076 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
1077 n = checkN(mem, ptr & TAG_GRANULE, ptr_tag, tag_count);
1078 if (likely(n == tag_count)) {
1079 return size;
1080 }
1081
1082 /*
1083 * Failure; for the first granule, it's at @ptr. Otherwise
1084 * it's at the first byte of the nth granule. Calculate how
1085 * many bytes we can access without hitting that failure.
1086 */
1087 if (n == 0) {
1088 return 0;
1089 } else {
1090 return n * TAG_GRANULE - (ptr - tag_first);
1091 }
1092 }
1093
1094 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
1095 uint32_t desc)
1096 {
1097 int mmu_idx, tag_count;
1098 uint64_t ptr_tag, tag_first, tag_last;
1099 void *mem;
1100 bool w = FIELD_EX32(desc, MTEDESC, WRITE);
1101 uint32_t n;
1102
1103 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
1104 /*
1105 * True probe; this will never fault. Note that our caller passes
1106 * us a pointer to the end of the region, but allocation_tag_mem_probe()
1107 * wants a pointer to the start. Because we know we don't span a page
1108 * boundary and that allocation_tag_mem_probe() doesn't otherwise care
1109 * about the size, pass in a size of 1 byte. This is simpler than
1110 * adjusting the ptr to point to the start of the region and then having
1111 * to adjust the returned 'mem' to get the end of the tag memory.
1112 */
1113 mem = allocation_tag_mem_probe(env, mmu_idx, ptr,
1114 w ? MMU_DATA_STORE : MMU_DATA_LOAD,
1115 1, MMU_DATA_LOAD, true, 0);
1116 if (!mem) {
1117 return size;
1118 }
1119
1120 /*
1121 * TODO: checkNrev() is not designed for checks of the size we expect
1122 * for FEAT_MOPS operations, so we should implement this differently.
1123 * Maybe we should do something like
1124 * if (region start and size are aligned nicely) {
1125 * do direct loads of 64 tag bits at a time;
1126 * } else {
1127 * call checkN()
1128 * }
1129 */
1130 /* Round the bounds to the tag granule, and compute the number of tags. */
1131 ptr_tag = allocation_tag_from_addr(ptr);
1132 tag_first = QEMU_ALIGN_DOWN(ptr - (size - 1), TAG_GRANULE);
1133 tag_last = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
1134 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
1135 n = checkNrev(mem, ptr & TAG_GRANULE, ptr_tag, tag_count);
1136 if (likely(n == tag_count)) {
1137 return size;
1138 }
1139
1140 /*
1141 * Failure; for the first granule, it's at @ptr. Otherwise
1142 * it's at the last byte of the nth granule. Calculate how
1143 * many bytes we can access without hitting that failure.
1144 */
1145 if (n == 0) {
1146 return 0;
1147 } else {
1148 return (n - 1) * TAG_GRANULE + ((ptr + 1) - tag_last);
1149 }
1150 }
1151
1152 void mte_mops_set_tags(CPUARMState *env, uint64_t ptr, uint64_t size,
1153 uint32_t desc)
1154 {
1155 int mmu_idx, tag_count;
1156 uint64_t ptr_tag;
1157 void *mem;
1158
1159 if (!desc) {
1160 /* Tags not actually enabled */
1161 return;
1162 }
1163
1164 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
1165 /* True probe: this will never fault */
1166 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, MMU_DATA_STORE, size,
1167 MMU_DATA_STORE, true, 0);
1168 if (!mem) {
1169 return;
1170 }
1171
1172 /*
1173 * We know that ptr and size are both TAG_GRANULE aligned; store
1174 * the tag from the pointer value into the tag memory.
1175 */
1176 ptr_tag = allocation_tag_from_addr(ptr);
1177 tag_count = size / TAG_GRANULE;
1178 if (ptr & TAG_GRANULE) {
1179 /* Not 2*TAG_GRANULE-aligned: store tag to first nibble */
1180 store_tag1_parallel(TAG_GRANULE, mem, ptr_tag);
1181 mem++;
1182 tag_count--;
1183 }
1184 memset(mem, ptr_tag | (ptr_tag << 4), tag_count / 2);
1185 if (tag_count & 1) {
1186 /* Final trailing unaligned nibble */
1187 mem += tag_count / 2;
1188 store_tag1_parallel(0, mem, ptr_tag);
1189 }
1190 }