]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/tcg/tlb_helper.c
aio: remove aio_disable_external() API
[mirror_qemu.git] / target / arm / tcg / tlb_helper.c
1 /*
2 * ARM TLB (Translation lookaside buffer) helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8 #include "qemu/osdep.h"
9 #include "cpu.h"
10 #include "internals.h"
11 #include "exec/exec-all.h"
12 #include "exec/helper-proto.h"
13
14
15 /*
16 * Returns true if the stage 1 translation regime is using LPAE format page
17 * tables. Used when raising alignment exceptions, whose FSR changes depending
18 * on whether the long or short descriptor format is in use.
19 */
20 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
21 {
22 mmu_idx = stage_1_mmu_idx(mmu_idx);
23 return regime_using_lpae_format(env, mmu_idx);
24 }
25
26 static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
27 ARMMMUFaultInfo *fi,
28 unsigned int target_el,
29 bool same_el, bool is_write,
30 int fsc)
31 {
32 uint32_t syn;
33
34 /*
35 * ISV is only set for stage-2 data aborts routed to EL2 and
36 * never for stage-1 page table walks faulting on stage 2
37 * or for stage-1 faults.
38 *
39 * Furthermore, ISV is only set for certain kinds of load/stores.
40 * If the template syndrome does not have ISV set, we should leave
41 * it cleared.
42 *
43 * See ARMv8 specs, D7-1974:
44 * ISS encoding for an exception from a Data Abort, the
45 * ISV field.
46 *
47 * TODO: FEAT_LS64/FEAT_LS64_V/FEAT_SL64_ACCDATA: Translation,
48 * Access Flag, and Permission faults caused by LD64B, ST64B,
49 * ST64BV, or ST64BV0 insns report syndrome info even for stage-1
50 * faults and regardless of the target EL.
51 */
52 if (!(template_syn & ARM_EL_ISV) || target_el != 2
53 || fi->s1ptw || !fi->stage2) {
54 syn = syn_data_abort_no_iss(same_el, 0,
55 fi->ea, 0, fi->s1ptw, is_write, fsc);
56 } else {
57 /*
58 * Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
59 * syndrome created at translation time.
60 * Now we create the runtime syndrome with the remaining fields.
61 */
62 syn = syn_data_abort_with_iss(same_el,
63 0, 0, 0, 0, 0,
64 fi->ea, 0, fi->s1ptw, is_write, fsc,
65 true);
66 /* Merge the runtime syndrome with the template syndrome. */
67 syn |= template_syn;
68 }
69 return syn;
70 }
71
72 static uint32_t compute_fsr_fsc(CPUARMState *env, ARMMMUFaultInfo *fi,
73 int target_el, int mmu_idx, uint32_t *ret_fsc)
74 {
75 ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
76 uint32_t fsr, fsc;
77
78 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
79 arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
80 /*
81 * LPAE format fault status register : bottom 6 bits are
82 * status code in the same form as needed for syndrome
83 */
84 fsr = arm_fi_to_lfsc(fi);
85 fsc = extract32(fsr, 0, 6);
86 } else {
87 fsr = arm_fi_to_sfsc(fi);
88 /*
89 * Short format FSR : this fault will never actually be reported
90 * to an EL that uses a syndrome register. Use a (currently)
91 * reserved FSR code in case the constructed syndrome does leak
92 * into the guest somehow.
93 */
94 fsc = 0x3f;
95 }
96
97 *ret_fsc = fsc;
98 return fsr;
99 }
100
101 static G_NORETURN
102 void arm_deliver_fault(ARMCPU *cpu, vaddr addr,
103 MMUAccessType access_type,
104 int mmu_idx, ARMMMUFaultInfo *fi)
105 {
106 CPUARMState *env = &cpu->env;
107 int target_el;
108 bool same_el;
109 uint32_t syn, exc, fsr, fsc;
110
111 target_el = exception_target_el(env);
112 if (fi->stage2) {
113 target_el = 2;
114 env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
115 if (arm_is_secure_below_el3(env) && fi->s1ns) {
116 env->cp15.hpfar_el2 |= HPFAR_NS;
117 }
118 }
119 same_el = (arm_current_el(env) == target_el);
120
121 fsr = compute_fsr_fsc(env, fi, target_el, mmu_idx, &fsc);
122
123 if (access_type == MMU_INST_FETCH) {
124 syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
125 exc = EXCP_PREFETCH_ABORT;
126 } else {
127 syn = merge_syn_data_abort(env->exception.syndrome, fi, target_el,
128 same_el, access_type == MMU_DATA_STORE,
129 fsc);
130 if (access_type == MMU_DATA_STORE
131 && arm_feature(env, ARM_FEATURE_V6)) {
132 fsr |= (1 << 11);
133 }
134 exc = EXCP_DATA_ABORT;
135 }
136
137 env->exception.vaddress = addr;
138 env->exception.fsr = fsr;
139 raise_exception(env, exc, syn, target_el);
140 }
141
142 /* Raise a data fault alignment exception for the specified virtual address */
143 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
144 MMUAccessType access_type,
145 int mmu_idx, uintptr_t retaddr)
146 {
147 ARMCPU *cpu = ARM_CPU(cs);
148 ARMMMUFaultInfo fi = {};
149
150 /* now we have a real cpu fault */
151 cpu_restore_state(cs, retaddr);
152
153 fi.type = ARMFault_Alignment;
154 arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
155 }
156
157 void helper_exception_pc_alignment(CPUARMState *env, target_ulong pc)
158 {
159 ARMMMUFaultInfo fi = { .type = ARMFault_Alignment };
160 int target_el = exception_target_el(env);
161 int mmu_idx = cpu_mmu_index(env, true);
162 uint32_t fsc;
163
164 env->exception.vaddress = pc;
165
166 /*
167 * Note that the fsc is not applicable to this exception,
168 * since any syndrome is pcalignment not insn_abort.
169 */
170 env->exception.fsr = compute_fsr_fsc(env, &fi, target_el, mmu_idx, &fsc);
171 raise_exception(env, EXCP_PREFETCH_ABORT, syn_pcalignment(), target_el);
172 }
173
174 #if !defined(CONFIG_USER_ONLY)
175
176 /*
177 * arm_cpu_do_transaction_failed: handle a memory system error response
178 * (eg "no device/memory present at address") by raising an external abort
179 * exception
180 */
181 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
182 vaddr addr, unsigned size,
183 MMUAccessType access_type,
184 int mmu_idx, MemTxAttrs attrs,
185 MemTxResult response, uintptr_t retaddr)
186 {
187 ARMCPU *cpu = ARM_CPU(cs);
188 ARMMMUFaultInfo fi = {};
189
190 /* now we have a real cpu fault */
191 cpu_restore_state(cs, retaddr);
192
193 fi.ea = arm_extabort_type(response);
194 fi.type = ARMFault_SyncExternal;
195 arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
196 }
197
198 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
199 MMUAccessType access_type, int mmu_idx,
200 bool probe, uintptr_t retaddr)
201 {
202 ARMCPU *cpu = ARM_CPU(cs);
203 GetPhysAddrResult res = {};
204 ARMMMUFaultInfo local_fi, *fi;
205 int ret;
206
207 /*
208 * Allow S1_ptw_translate to see any fault generated here.
209 * Since this may recurse, read and clear.
210 */
211 fi = cpu->env.tlb_fi;
212 if (fi) {
213 cpu->env.tlb_fi = NULL;
214 } else {
215 fi = memset(&local_fi, 0, sizeof(local_fi));
216 }
217
218 /*
219 * Walk the page table and (if the mapping exists) add the page
220 * to the TLB. On success, return true. Otherwise, if probing,
221 * return false. Otherwise populate fsr with ARM DFSR/IFSR fault
222 * register format, and signal the fault.
223 */
224 ret = get_phys_addr(&cpu->env, address, access_type,
225 core_to_arm_mmu_idx(&cpu->env, mmu_idx),
226 &res, fi);
227 if (likely(!ret)) {
228 /*
229 * Map a single [sub]page. Regions smaller than our declared
230 * target page size are handled specially, so for those we
231 * pass in the exact addresses.
232 */
233 if (res.f.lg_page_size >= TARGET_PAGE_BITS) {
234 res.f.phys_addr &= TARGET_PAGE_MASK;
235 address &= TARGET_PAGE_MASK;
236 }
237
238 res.f.pte_attrs = res.cacheattrs.attrs;
239 res.f.shareability = res.cacheattrs.shareability;
240
241 tlb_set_page_full(cs, mmu_idx, address, &res.f);
242 return true;
243 } else if (probe) {
244 return false;
245 } else {
246 /* now we have a real cpu fault */
247 cpu_restore_state(cs, retaddr);
248 arm_deliver_fault(cpu, address, access_type, mmu_idx, fi);
249 }
250 }
251 #else
252 void arm_cpu_record_sigsegv(CPUState *cs, vaddr addr,
253 MMUAccessType access_type,
254 bool maperr, uintptr_t ra)
255 {
256 ARMMMUFaultInfo fi = {
257 .type = maperr ? ARMFault_Translation : ARMFault_Permission,
258 .level = 3,
259 };
260 ARMCPU *cpu = ARM_CPU(cs);
261
262 /*
263 * We report both ESR and FAR to signal handlers.
264 * For now, it's easiest to deliver the fault normally.
265 */
266 cpu_restore_state(cs, ra);
267 arm_deliver_fault(cpu, addr, access_type, MMU_USER_IDX, &fi);
268 }
269
270 void arm_cpu_record_sigbus(CPUState *cs, vaddr addr,
271 MMUAccessType access_type, uintptr_t ra)
272 {
273 arm_cpu_do_unaligned_access(cs, addr, access_type, MMU_USER_IDX, ra);
274 }
275 #endif /* !defined(CONFIG_USER_ONLY) */