]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/tcg/tlb_helper.c
Merge tag 'pull-target-arm-20230530-1' of https://git.linaro.org/people/pmaydell...
[mirror_qemu.git] / target / arm / tcg / tlb_helper.c
1 /*
2 * ARM TLB (Translation lookaside buffer) helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8 #include "qemu/osdep.h"
9 #include "cpu.h"
10 #include "internals.h"
11 #include "exec/exec-all.h"
12 #include "exec/helper-proto.h"
13
14
15 /*
16 * Returns true if the stage 1 translation regime is using LPAE format page
17 * tables. Used when raising alignment exceptions, whose FSR changes depending
18 * on whether the long or short descriptor format is in use.
19 */
20 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
21 {
22 mmu_idx = stage_1_mmu_idx(mmu_idx);
23 return regime_using_lpae_format(env, mmu_idx);
24 }
25
26 static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
27 ARMMMUFaultInfo *fi,
28 unsigned int target_el,
29 bool same_el, bool is_write,
30 int fsc)
31 {
32 uint32_t syn;
33
34 /*
35 * ISV is only set for stage-2 data aborts routed to EL2 and
36 * never for stage-1 page table walks faulting on stage 2
37 * or for stage-1 faults.
38 *
39 * Furthermore, ISV is only set for certain kinds of load/stores.
40 * If the template syndrome does not have ISV set, we should leave
41 * it cleared.
42 *
43 * See ARMv8 specs, D7-1974:
44 * ISS encoding for an exception from a Data Abort, the
45 * ISV field.
46 *
47 * TODO: FEAT_LS64/FEAT_LS64_V/FEAT_SL64_ACCDATA: Translation,
48 * Access Flag, and Permission faults caused by LD64B, ST64B,
49 * ST64BV, or ST64BV0 insns report syndrome info even for stage-1
50 * faults and regardless of the target EL.
51 */
52 if (!(template_syn & ARM_EL_ISV) || target_el != 2
53 || fi->s1ptw || !fi->stage2) {
54 syn = syn_data_abort_no_iss(same_el, 0,
55 fi->ea, 0, fi->s1ptw, is_write, fsc);
56 } else {
57 /*
58 * Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
59 * syndrome created at translation time.
60 * Now we create the runtime syndrome with the remaining fields.
61 */
62 syn = syn_data_abort_with_iss(same_el,
63 0, 0, 0, 0, 0,
64 fi->ea, 0, fi->s1ptw, is_write, fsc,
65 true);
66 /* Merge the runtime syndrome with the template syndrome. */
67 syn |= template_syn;
68 }
69 return syn;
70 }
71
72 static uint32_t compute_fsr_fsc(CPUARMState *env, ARMMMUFaultInfo *fi,
73 int target_el, int mmu_idx, uint32_t *ret_fsc)
74 {
75 ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
76 uint32_t fsr, fsc;
77
78 /*
79 * For M-profile there is no guest-facing FSR. We compute a
80 * short-form value for env->exception.fsr which we will then
81 * examine in arm_v7m_cpu_do_interrupt(). In theory we could
82 * use the LPAE format instead as long as both bits of code agree
83 * (and arm_fi_to_lfsc() handled the M-profile specific
84 * ARMFault_QEMU_NSCExec and ARMFault_QEMU_SFault cases).
85 */
86 if (!arm_feature(env, ARM_FEATURE_M) &&
87 (target_el == 2 || arm_el_is_aa64(env, target_el) ||
88 arm_s1_regime_using_lpae_format(env, arm_mmu_idx))) {
89 /*
90 * LPAE format fault status register : bottom 6 bits are
91 * status code in the same form as needed for syndrome
92 */
93 fsr = arm_fi_to_lfsc(fi);
94 fsc = extract32(fsr, 0, 6);
95 } else {
96 fsr = arm_fi_to_sfsc(fi);
97 /*
98 * Short format FSR : this fault will never actually be reported
99 * to an EL that uses a syndrome register. Use a (currently)
100 * reserved FSR code in case the constructed syndrome does leak
101 * into the guest somehow.
102 */
103 fsc = 0x3f;
104 }
105
106 *ret_fsc = fsc;
107 return fsr;
108 }
109
110 static G_NORETURN
111 void arm_deliver_fault(ARMCPU *cpu, vaddr addr,
112 MMUAccessType access_type,
113 int mmu_idx, ARMMMUFaultInfo *fi)
114 {
115 CPUARMState *env = &cpu->env;
116 int target_el;
117 bool same_el;
118 uint32_t syn, exc, fsr, fsc;
119
120 target_el = exception_target_el(env);
121 if (fi->stage2) {
122 target_el = 2;
123 env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
124 if (arm_is_secure_below_el3(env) && fi->s1ns) {
125 env->cp15.hpfar_el2 |= HPFAR_NS;
126 }
127 }
128 same_el = (arm_current_el(env) == target_el);
129
130 fsr = compute_fsr_fsc(env, fi, target_el, mmu_idx, &fsc);
131
132 if (access_type == MMU_INST_FETCH) {
133 syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
134 exc = EXCP_PREFETCH_ABORT;
135 } else {
136 syn = merge_syn_data_abort(env->exception.syndrome, fi, target_el,
137 same_el, access_type == MMU_DATA_STORE,
138 fsc);
139 if (access_type == MMU_DATA_STORE
140 && arm_feature(env, ARM_FEATURE_V6)) {
141 fsr |= (1 << 11);
142 }
143 exc = EXCP_DATA_ABORT;
144 }
145
146 env->exception.vaddress = addr;
147 env->exception.fsr = fsr;
148 raise_exception(env, exc, syn, target_el);
149 }
150
151 /* Raise a data fault alignment exception for the specified virtual address */
152 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
153 MMUAccessType access_type,
154 int mmu_idx, uintptr_t retaddr)
155 {
156 ARMCPU *cpu = ARM_CPU(cs);
157 ARMMMUFaultInfo fi = {};
158
159 /* now we have a real cpu fault */
160 cpu_restore_state(cs, retaddr);
161
162 fi.type = ARMFault_Alignment;
163 arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
164 }
165
166 void helper_exception_pc_alignment(CPUARMState *env, target_ulong pc)
167 {
168 ARMMMUFaultInfo fi = { .type = ARMFault_Alignment };
169 int target_el = exception_target_el(env);
170 int mmu_idx = cpu_mmu_index(env, true);
171 uint32_t fsc;
172
173 env->exception.vaddress = pc;
174
175 /*
176 * Note that the fsc is not applicable to this exception,
177 * since any syndrome is pcalignment not insn_abort.
178 */
179 env->exception.fsr = compute_fsr_fsc(env, &fi, target_el, mmu_idx, &fsc);
180 raise_exception(env, EXCP_PREFETCH_ABORT, syn_pcalignment(), target_el);
181 }
182
183 #if !defined(CONFIG_USER_ONLY)
184
185 /*
186 * arm_cpu_do_transaction_failed: handle a memory system error response
187 * (eg "no device/memory present at address") by raising an external abort
188 * exception
189 */
190 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
191 vaddr addr, unsigned size,
192 MMUAccessType access_type,
193 int mmu_idx, MemTxAttrs attrs,
194 MemTxResult response, uintptr_t retaddr)
195 {
196 ARMCPU *cpu = ARM_CPU(cs);
197 ARMMMUFaultInfo fi = {};
198
199 /* now we have a real cpu fault */
200 cpu_restore_state(cs, retaddr);
201
202 fi.ea = arm_extabort_type(response);
203 fi.type = ARMFault_SyncExternal;
204 arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
205 }
206
207 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
208 MMUAccessType access_type, int mmu_idx,
209 bool probe, uintptr_t retaddr)
210 {
211 ARMCPU *cpu = ARM_CPU(cs);
212 GetPhysAddrResult res = {};
213 ARMMMUFaultInfo local_fi, *fi;
214 int ret;
215
216 /*
217 * Allow S1_ptw_translate to see any fault generated here.
218 * Since this may recurse, read and clear.
219 */
220 fi = cpu->env.tlb_fi;
221 if (fi) {
222 cpu->env.tlb_fi = NULL;
223 } else {
224 fi = memset(&local_fi, 0, sizeof(local_fi));
225 }
226
227 /*
228 * Walk the page table and (if the mapping exists) add the page
229 * to the TLB. On success, return true. Otherwise, if probing,
230 * return false. Otherwise populate fsr with ARM DFSR/IFSR fault
231 * register format, and signal the fault.
232 */
233 ret = get_phys_addr(&cpu->env, address, access_type,
234 core_to_arm_mmu_idx(&cpu->env, mmu_idx),
235 &res, fi);
236 if (likely(!ret)) {
237 /*
238 * Map a single [sub]page. Regions smaller than our declared
239 * target page size are handled specially, so for those we
240 * pass in the exact addresses.
241 */
242 if (res.f.lg_page_size >= TARGET_PAGE_BITS) {
243 res.f.phys_addr &= TARGET_PAGE_MASK;
244 address &= TARGET_PAGE_MASK;
245 }
246
247 res.f.pte_attrs = res.cacheattrs.attrs;
248 res.f.shareability = res.cacheattrs.shareability;
249
250 tlb_set_page_full(cs, mmu_idx, address, &res.f);
251 return true;
252 } else if (probe) {
253 return false;
254 } else {
255 /* now we have a real cpu fault */
256 cpu_restore_state(cs, retaddr);
257 arm_deliver_fault(cpu, address, access_type, mmu_idx, fi);
258 }
259 }
260 #else
261 void arm_cpu_record_sigsegv(CPUState *cs, vaddr addr,
262 MMUAccessType access_type,
263 bool maperr, uintptr_t ra)
264 {
265 ARMMMUFaultInfo fi = {
266 .type = maperr ? ARMFault_Translation : ARMFault_Permission,
267 .level = 3,
268 };
269 ARMCPU *cpu = ARM_CPU(cs);
270
271 /*
272 * We report both ESR and FAR to signal handlers.
273 * For now, it's easiest to deliver the fault normally.
274 */
275 cpu_restore_state(cs, ra);
276 arm_deliver_fault(cpu, addr, access_type, MMU_USER_IDX, &fi);
277 }
278
279 void arm_cpu_record_sigbus(CPUState *cs, vaddr addr,
280 MMUAccessType access_type, uintptr_t ra)
281 {
282 arm_cpu_do_unaligned_access(cs, addr, access_type, MMU_USER_IDX, ra);
283 }
284 #endif /* !defined(CONFIG_USER_ONLY) */