]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/tcg/translate-a64.c
2938397d52c095cc442f8d285e40030fd3a94b1d
[mirror_qemu.git] / target / arm / tcg / translate-a64.c
1 /*
2 * AArch64 translation
3 *
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "disas/disas.h"
26 #include "arm_ldst.h"
27 #include "semihosting/semihost.h"
28 #include "cpregs.h"
29
30 static TCGv_i64 cpu_X[32];
31 static TCGv_i64 cpu_pc;
32
33 /* Load/store exclusive handling */
34 static TCGv_i64 cpu_exclusive_high;
35
36 static const char *regnames[] = {
37 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
38 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
39 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
40 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
41 };
42
43 enum a64_shift_type {
44 A64_SHIFT_TYPE_LSL = 0,
45 A64_SHIFT_TYPE_LSR = 1,
46 A64_SHIFT_TYPE_ASR = 2,
47 A64_SHIFT_TYPE_ROR = 3
48 };
49
50 /*
51 * Helpers for extracting complex instruction fields
52 */
53
54 /*
55 * For load/store with an unsigned 12 bit immediate scaled by the element
56 * size. The input has the immediate field in bits [14:3] and the element
57 * size in [2:0].
58 */
59 static int uimm_scaled(DisasContext *s, int x)
60 {
61 unsigned imm = x >> 3;
62 unsigned scale = extract32(x, 0, 3);
63 return imm << scale;
64 }
65
66 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
67 static int scale_by_log2_tag_granule(DisasContext *s, int x)
68 {
69 return x << LOG2_TAG_GRANULE;
70 }
71
72 /*
73 * Include the generated decoders.
74 */
75
76 #include "decode-sme-fa64.c.inc"
77 #include "decode-a64.c.inc"
78
79 /* Table based decoder typedefs - used when the relevant bits for decode
80 * are too awkwardly scattered across the instruction (eg SIMD).
81 */
82 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
83
84 typedef struct AArch64DecodeTable {
85 uint32_t pattern;
86 uint32_t mask;
87 AArch64DecodeFn *disas_fn;
88 } AArch64DecodeTable;
89
90 /* initialize TCG globals. */
91 void a64_translate_init(void)
92 {
93 int i;
94
95 cpu_pc = tcg_global_mem_new_i64(tcg_env,
96 offsetof(CPUARMState, pc),
97 "pc");
98 for (i = 0; i < 32; i++) {
99 cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
100 offsetof(CPUARMState, xregs[i]),
101 regnames[i]);
102 }
103
104 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
105 offsetof(CPUARMState, exclusive_high), "exclusive_high");
106 }
107
108 /*
109 * Return the core mmu_idx to use for A64 load/store insns which
110 * have a "unprivileged load/store" variant. Those insns access
111 * EL0 if executed from an EL which has control over EL0 (usually
112 * EL1) but behave like normal loads and stores if executed from
113 * elsewhere (eg EL3).
114 *
115 * @unpriv : true for the unprivileged encoding; false for the
116 * normal encoding (in which case we will return the same
117 * thing as get_mem_index().
118 */
119 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
120 {
121 /*
122 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
123 * which is the usual mmu_idx for this cpu state.
124 */
125 ARMMMUIdx useridx = s->mmu_idx;
126
127 if (unpriv && s->unpriv) {
128 /*
129 * We have pre-computed the condition for AccType_UNPRIV.
130 * Therefore we should never get here with a mmu_idx for
131 * which we do not know the corresponding user mmu_idx.
132 */
133 switch (useridx) {
134 case ARMMMUIdx_E10_1:
135 case ARMMMUIdx_E10_1_PAN:
136 useridx = ARMMMUIdx_E10_0;
137 break;
138 case ARMMMUIdx_E20_2:
139 case ARMMMUIdx_E20_2_PAN:
140 useridx = ARMMMUIdx_E20_0;
141 break;
142 default:
143 g_assert_not_reached();
144 }
145 }
146 return arm_to_core_mmu_idx(useridx);
147 }
148
149 static void set_btype_raw(int val)
150 {
151 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
152 offsetof(CPUARMState, btype));
153 }
154
155 static void set_btype(DisasContext *s, int val)
156 {
157 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
158 tcg_debug_assert(val >= 1 && val <= 3);
159 set_btype_raw(val);
160 s->btype = -1;
161 }
162
163 static void reset_btype(DisasContext *s)
164 {
165 if (s->btype != 0) {
166 set_btype_raw(0);
167 s->btype = 0;
168 }
169 }
170
171 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
172 {
173 assert(s->pc_save != -1);
174 if (tb_cflags(s->base.tb) & CF_PCREL) {
175 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
176 } else {
177 tcg_gen_movi_i64(dest, s->pc_curr + diff);
178 }
179 }
180
181 void gen_a64_update_pc(DisasContext *s, target_long diff)
182 {
183 gen_pc_plus_diff(s, cpu_pc, diff);
184 s->pc_save = s->pc_curr + diff;
185 }
186
187 /*
188 * Handle Top Byte Ignore (TBI) bits.
189 *
190 * If address tagging is enabled via the TCR TBI bits:
191 * + for EL2 and EL3 there is only one TBI bit, and if it is set
192 * then the address is zero-extended, clearing bits [63:56]
193 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
194 * and TBI1 controls addresses with bit 55 == 1.
195 * If the appropriate TBI bit is set for the address then
196 * the address is sign-extended from bit 55 into bits [63:56]
197 *
198 * Here We have concatenated TBI{1,0} into tbi.
199 */
200 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
201 TCGv_i64 src, int tbi)
202 {
203 if (tbi == 0) {
204 /* Load unmodified address */
205 tcg_gen_mov_i64(dst, src);
206 } else if (!regime_has_2_ranges(s->mmu_idx)) {
207 /* Force tag byte to all zero */
208 tcg_gen_extract_i64(dst, src, 0, 56);
209 } else {
210 /* Sign-extend from bit 55. */
211 tcg_gen_sextract_i64(dst, src, 0, 56);
212
213 switch (tbi) {
214 case 1:
215 /* tbi0 but !tbi1: only use the extension if positive */
216 tcg_gen_and_i64(dst, dst, src);
217 break;
218 case 2:
219 /* !tbi0 but tbi1: only use the extension if negative */
220 tcg_gen_or_i64(dst, dst, src);
221 break;
222 case 3:
223 /* tbi0 and tbi1: always use the extension */
224 break;
225 default:
226 g_assert_not_reached();
227 }
228 }
229 }
230
231 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
232 {
233 /*
234 * If address tagging is enabled for instructions via the TCR TBI bits,
235 * then loading an address into the PC will clear out any tag.
236 */
237 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
238 s->pc_save = -1;
239 }
240
241 /*
242 * Handle MTE and/or TBI.
243 *
244 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
245 * for the tag to be present in the FAR_ELx register. But for user-only
246 * mode we do not have a TLB with which to implement this, so we must
247 * remove the top byte now.
248 *
249 * Always return a fresh temporary that we can increment independently
250 * of the write-back address.
251 */
252
253 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
254 {
255 TCGv_i64 clean = tcg_temp_new_i64();
256 #ifdef CONFIG_USER_ONLY
257 gen_top_byte_ignore(s, clean, addr, s->tbid);
258 #else
259 tcg_gen_mov_i64(clean, addr);
260 #endif
261 return clean;
262 }
263
264 /* Insert a zero tag into src, with the result at dst. */
265 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
266 {
267 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
268 }
269
270 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
271 MMUAccessType acc, int log2_size)
272 {
273 gen_helper_probe_access(tcg_env, ptr,
274 tcg_constant_i32(acc),
275 tcg_constant_i32(get_mem_index(s)),
276 tcg_constant_i32(1 << log2_size));
277 }
278
279 /*
280 * For MTE, check a single logical or atomic access. This probes a single
281 * address, the exact one specified. The size and alignment of the access
282 * is not relevant to MTE, per se, but watchpoints do require the size,
283 * and we want to recognize those before making any other changes to state.
284 */
285 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
286 bool is_write, bool tag_checked,
287 MemOp memop, bool is_unpriv,
288 int core_idx)
289 {
290 if (tag_checked && s->mte_active[is_unpriv]) {
291 TCGv_i64 ret;
292 int desc = 0;
293
294 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
295 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
296 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
297 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
298 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
299 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
300
301 ret = tcg_temp_new_i64();
302 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
303
304 return ret;
305 }
306 return clean_data_tbi(s, addr);
307 }
308
309 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
310 bool tag_checked, MemOp memop)
311 {
312 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
313 false, get_mem_index(s));
314 }
315
316 /*
317 * For MTE, check multiple logical sequential accesses.
318 */
319 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
320 bool tag_checked, int total_size, MemOp single_mop)
321 {
322 if (tag_checked && s->mte_active[0]) {
323 TCGv_i64 ret;
324 int desc = 0;
325
326 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
327 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
328 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
329 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
330 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
331 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
332
333 ret = tcg_temp_new_i64();
334 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
335
336 return ret;
337 }
338 return clean_data_tbi(s, addr);
339 }
340
341 /*
342 * Generate the special alignment check that applies to AccType_ATOMIC
343 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
344 * naturally aligned, but it must not cross a 16-byte boundary.
345 * See AArch64.CheckAlignment().
346 */
347 static void check_lse2_align(DisasContext *s, int rn, int imm,
348 bool is_write, MemOp mop)
349 {
350 TCGv_i32 tmp;
351 TCGv_i64 addr;
352 TCGLabel *over_label;
353 MMUAccessType type;
354 int mmu_idx;
355
356 tmp = tcg_temp_new_i32();
357 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
358 tcg_gen_addi_i32(tmp, tmp, imm & 15);
359 tcg_gen_andi_i32(tmp, tmp, 15);
360 tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
361
362 over_label = gen_new_label();
363 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
364
365 addr = tcg_temp_new_i64();
366 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
367
368 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
369 mmu_idx = get_mem_index(s);
370 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
371 tcg_constant_i32(mmu_idx));
372
373 gen_set_label(over_label);
374
375 }
376
377 /* Handle the alignment check for AccType_ATOMIC instructions. */
378 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
379 {
380 MemOp size = mop & MO_SIZE;
381
382 if (size == MO_8) {
383 return mop;
384 }
385
386 /*
387 * If size == MO_128, this is a LDXP, and the operation is single-copy
388 * atomic for each doubleword, not the entire quadword; it still must
389 * be quadword aligned.
390 */
391 if (size == MO_128) {
392 return finalize_memop_atom(s, MO_128 | MO_ALIGN,
393 MO_ATOM_IFALIGN_PAIR);
394 }
395 if (dc_isar_feature(aa64_lse2, s)) {
396 check_lse2_align(s, rn, 0, true, mop);
397 } else {
398 mop |= MO_ALIGN;
399 }
400 return finalize_memop(s, mop);
401 }
402
403 /* Handle the alignment check for AccType_ORDERED instructions. */
404 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
405 bool is_write, MemOp mop)
406 {
407 MemOp size = mop & MO_SIZE;
408
409 if (size == MO_8) {
410 return mop;
411 }
412 if (size == MO_128) {
413 return finalize_memop_atom(s, MO_128 | MO_ALIGN,
414 MO_ATOM_IFALIGN_PAIR);
415 }
416 if (!dc_isar_feature(aa64_lse2, s)) {
417 mop |= MO_ALIGN;
418 } else if (!s->naa) {
419 check_lse2_align(s, rn, imm, is_write, mop);
420 }
421 return finalize_memop(s, mop);
422 }
423
424 typedef struct DisasCompare64 {
425 TCGCond cond;
426 TCGv_i64 value;
427 } DisasCompare64;
428
429 static void a64_test_cc(DisasCompare64 *c64, int cc)
430 {
431 DisasCompare c32;
432
433 arm_test_cc(&c32, cc);
434
435 /*
436 * Sign-extend the 32-bit value so that the GE/LT comparisons work
437 * properly. The NE/EQ comparisons are also fine with this choice.
438 */
439 c64->cond = c32.cond;
440 c64->value = tcg_temp_new_i64();
441 tcg_gen_ext_i32_i64(c64->value, c32.value);
442 }
443
444 static void gen_rebuild_hflags(DisasContext *s)
445 {
446 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
447 }
448
449 static void gen_exception_internal(int excp)
450 {
451 assert(excp_is_internal(excp));
452 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
453 }
454
455 static void gen_exception_internal_insn(DisasContext *s, int excp)
456 {
457 gen_a64_update_pc(s, 0);
458 gen_exception_internal(excp);
459 s->base.is_jmp = DISAS_NORETURN;
460 }
461
462 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
463 {
464 gen_a64_update_pc(s, 0);
465 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
466 s->base.is_jmp = DISAS_NORETURN;
467 }
468
469 static void gen_step_complete_exception(DisasContext *s)
470 {
471 /* We just completed step of an insn. Move from Active-not-pending
472 * to Active-pending, and then also take the swstep exception.
473 * This corresponds to making the (IMPDEF) choice to prioritize
474 * swstep exceptions over asynchronous exceptions taken to an exception
475 * level where debug is disabled. This choice has the advantage that
476 * we do not need to maintain internal state corresponding to the
477 * ISV/EX syndrome bits between completion of the step and generation
478 * of the exception, and our syndrome information is always correct.
479 */
480 gen_ss_advance(s);
481 gen_swstep_exception(s, 1, s->is_ldex);
482 s->base.is_jmp = DISAS_NORETURN;
483 }
484
485 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
486 {
487 if (s->ss_active) {
488 return false;
489 }
490 return translator_use_goto_tb(&s->base, dest);
491 }
492
493 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
494 {
495 if (use_goto_tb(s, s->pc_curr + diff)) {
496 /*
497 * For pcrel, the pc must always be up-to-date on entry to
498 * the linked TB, so that it can use simple additions for all
499 * further adjustments. For !pcrel, the linked TB is compiled
500 * to know its full virtual address, so we can delay the
501 * update to pc to the unlinked path. A long chain of links
502 * can thus avoid many updates to the PC.
503 */
504 if (tb_cflags(s->base.tb) & CF_PCREL) {
505 gen_a64_update_pc(s, diff);
506 tcg_gen_goto_tb(n);
507 } else {
508 tcg_gen_goto_tb(n);
509 gen_a64_update_pc(s, diff);
510 }
511 tcg_gen_exit_tb(s->base.tb, n);
512 s->base.is_jmp = DISAS_NORETURN;
513 } else {
514 gen_a64_update_pc(s, diff);
515 if (s->ss_active) {
516 gen_step_complete_exception(s);
517 } else {
518 tcg_gen_lookup_and_goto_ptr();
519 s->base.is_jmp = DISAS_NORETURN;
520 }
521 }
522 }
523
524 /*
525 * Register access functions
526 *
527 * These functions are used for directly accessing a register in where
528 * changes to the final register value are likely to be made. If you
529 * need to use a register for temporary calculation (e.g. index type
530 * operations) use the read_* form.
531 *
532 * B1.2.1 Register mappings
533 *
534 * In instruction register encoding 31 can refer to ZR (zero register) or
535 * the SP (stack pointer) depending on context. In QEMU's case we map SP
536 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
537 * This is the point of the _sp forms.
538 */
539 TCGv_i64 cpu_reg(DisasContext *s, int reg)
540 {
541 if (reg == 31) {
542 TCGv_i64 t = tcg_temp_new_i64();
543 tcg_gen_movi_i64(t, 0);
544 return t;
545 } else {
546 return cpu_X[reg];
547 }
548 }
549
550 /* register access for when 31 == SP */
551 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
552 {
553 return cpu_X[reg];
554 }
555
556 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
557 * representing the register contents. This TCGv is an auto-freed
558 * temporary so it need not be explicitly freed, and may be modified.
559 */
560 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
561 {
562 TCGv_i64 v = tcg_temp_new_i64();
563 if (reg != 31) {
564 if (sf) {
565 tcg_gen_mov_i64(v, cpu_X[reg]);
566 } else {
567 tcg_gen_ext32u_i64(v, cpu_X[reg]);
568 }
569 } else {
570 tcg_gen_movi_i64(v, 0);
571 }
572 return v;
573 }
574
575 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
576 {
577 TCGv_i64 v = tcg_temp_new_i64();
578 if (sf) {
579 tcg_gen_mov_i64(v, cpu_X[reg]);
580 } else {
581 tcg_gen_ext32u_i64(v, cpu_X[reg]);
582 }
583 return v;
584 }
585
586 /* Return the offset into CPUARMState of a slice (from
587 * the least significant end) of FP register Qn (ie
588 * Dn, Sn, Hn or Bn).
589 * (Note that this is not the same mapping as for A32; see cpu.h)
590 */
591 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
592 {
593 return vec_reg_offset(s, regno, 0, size);
594 }
595
596 /* Offset of the high half of the 128 bit vector Qn */
597 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
598 {
599 return vec_reg_offset(s, regno, 1, MO_64);
600 }
601
602 /* Convenience accessors for reading and writing single and double
603 * FP registers. Writing clears the upper parts of the associated
604 * 128 bit vector register, as required by the architecture.
605 * Note that unlike the GP register accessors, the values returned
606 * by the read functions must be manually freed.
607 */
608 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
609 {
610 TCGv_i64 v = tcg_temp_new_i64();
611
612 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
613 return v;
614 }
615
616 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
617 {
618 TCGv_i32 v = tcg_temp_new_i32();
619
620 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
621 return v;
622 }
623
624 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
625 {
626 TCGv_i32 v = tcg_temp_new_i32();
627
628 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
629 return v;
630 }
631
632 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
633 * If SVE is not enabled, then there are only 128 bits in the vector.
634 */
635 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
636 {
637 unsigned ofs = fp_reg_offset(s, rd, MO_64);
638 unsigned vsz = vec_full_reg_size(s);
639
640 /* Nop move, with side effect of clearing the tail. */
641 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
642 }
643
644 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
645 {
646 unsigned ofs = fp_reg_offset(s, reg, MO_64);
647
648 tcg_gen_st_i64(v, tcg_env, ofs);
649 clear_vec_high(s, false, reg);
650 }
651
652 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
653 {
654 TCGv_i64 tmp = tcg_temp_new_i64();
655
656 tcg_gen_extu_i32_i64(tmp, v);
657 write_fp_dreg(s, reg, tmp);
658 }
659
660 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
661 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
662 GVecGen2Fn *gvec_fn, int vece)
663 {
664 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
665 is_q ? 16 : 8, vec_full_reg_size(s));
666 }
667
668 /* Expand a 2-operand + immediate AdvSIMD vector operation using
669 * an expander function.
670 */
671 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
672 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
673 {
674 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
675 imm, is_q ? 16 : 8, vec_full_reg_size(s));
676 }
677
678 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
679 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
680 GVecGen3Fn *gvec_fn, int vece)
681 {
682 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
683 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
684 }
685
686 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
687 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
688 int rx, GVecGen4Fn *gvec_fn, int vece)
689 {
690 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
691 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
692 is_q ? 16 : 8, vec_full_reg_size(s));
693 }
694
695 /* Expand a 2-operand operation using an out-of-line helper. */
696 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
697 int rn, int data, gen_helper_gvec_2 *fn)
698 {
699 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
700 vec_full_reg_offset(s, rn),
701 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
702 }
703
704 /* Expand a 3-operand operation using an out-of-line helper. */
705 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
706 int rn, int rm, int data, gen_helper_gvec_3 *fn)
707 {
708 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
709 vec_full_reg_offset(s, rn),
710 vec_full_reg_offset(s, rm),
711 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
712 }
713
714 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
715 * an out-of-line helper.
716 */
717 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
718 int rm, bool is_fp16, int data,
719 gen_helper_gvec_3_ptr *fn)
720 {
721 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
722 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
723 vec_full_reg_offset(s, rn),
724 vec_full_reg_offset(s, rm), fpst,
725 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
726 }
727
728 /* Expand a 3-operand + qc + operation using an out-of-line helper. */
729 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
730 int rm, gen_helper_gvec_3_ptr *fn)
731 {
732 TCGv_ptr qc_ptr = tcg_temp_new_ptr();
733
734 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc));
735 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
736 vec_full_reg_offset(s, rn),
737 vec_full_reg_offset(s, rm), qc_ptr,
738 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
739 }
740
741 /* Expand a 4-operand operation using an out-of-line helper. */
742 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
743 int rm, int ra, int data, gen_helper_gvec_4 *fn)
744 {
745 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
746 vec_full_reg_offset(s, rn),
747 vec_full_reg_offset(s, rm),
748 vec_full_reg_offset(s, ra),
749 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
750 }
751
752 /*
753 * Expand a 4-operand + fpstatus pointer + simd data value operation using
754 * an out-of-line helper.
755 */
756 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
757 int rm, int ra, bool is_fp16, int data,
758 gen_helper_gvec_4_ptr *fn)
759 {
760 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
761 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
762 vec_full_reg_offset(s, rn),
763 vec_full_reg_offset(s, rm),
764 vec_full_reg_offset(s, ra), fpst,
765 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
766 }
767
768 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
769 * than the 32 bit equivalent.
770 */
771 static inline void gen_set_NZ64(TCGv_i64 result)
772 {
773 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
774 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
775 }
776
777 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
778 static inline void gen_logic_CC(int sf, TCGv_i64 result)
779 {
780 if (sf) {
781 gen_set_NZ64(result);
782 } else {
783 tcg_gen_extrl_i64_i32(cpu_ZF, result);
784 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
785 }
786 tcg_gen_movi_i32(cpu_CF, 0);
787 tcg_gen_movi_i32(cpu_VF, 0);
788 }
789
790 /* dest = T0 + T1; compute C, N, V and Z flags */
791 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
792 {
793 TCGv_i64 result, flag, tmp;
794 result = tcg_temp_new_i64();
795 flag = tcg_temp_new_i64();
796 tmp = tcg_temp_new_i64();
797
798 tcg_gen_movi_i64(tmp, 0);
799 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
800
801 tcg_gen_extrl_i64_i32(cpu_CF, flag);
802
803 gen_set_NZ64(result);
804
805 tcg_gen_xor_i64(flag, result, t0);
806 tcg_gen_xor_i64(tmp, t0, t1);
807 tcg_gen_andc_i64(flag, flag, tmp);
808 tcg_gen_extrh_i64_i32(cpu_VF, flag);
809
810 tcg_gen_mov_i64(dest, result);
811 }
812
813 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
814 {
815 TCGv_i32 t0_32 = tcg_temp_new_i32();
816 TCGv_i32 t1_32 = tcg_temp_new_i32();
817 TCGv_i32 tmp = tcg_temp_new_i32();
818
819 tcg_gen_movi_i32(tmp, 0);
820 tcg_gen_extrl_i64_i32(t0_32, t0);
821 tcg_gen_extrl_i64_i32(t1_32, t1);
822 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
823 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
824 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
825 tcg_gen_xor_i32(tmp, t0_32, t1_32);
826 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
827 tcg_gen_extu_i32_i64(dest, cpu_NF);
828 }
829
830 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
831 {
832 if (sf) {
833 gen_add64_CC(dest, t0, t1);
834 } else {
835 gen_add32_CC(dest, t0, t1);
836 }
837 }
838
839 /* dest = T0 - T1; compute C, N, V and Z flags */
840 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
841 {
842 /* 64 bit arithmetic */
843 TCGv_i64 result, flag, tmp;
844
845 result = tcg_temp_new_i64();
846 flag = tcg_temp_new_i64();
847 tcg_gen_sub_i64(result, t0, t1);
848
849 gen_set_NZ64(result);
850
851 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
852 tcg_gen_extrl_i64_i32(cpu_CF, flag);
853
854 tcg_gen_xor_i64(flag, result, t0);
855 tmp = tcg_temp_new_i64();
856 tcg_gen_xor_i64(tmp, t0, t1);
857 tcg_gen_and_i64(flag, flag, tmp);
858 tcg_gen_extrh_i64_i32(cpu_VF, flag);
859 tcg_gen_mov_i64(dest, result);
860 }
861
862 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
863 {
864 /* 32 bit arithmetic */
865 TCGv_i32 t0_32 = tcg_temp_new_i32();
866 TCGv_i32 t1_32 = tcg_temp_new_i32();
867 TCGv_i32 tmp;
868
869 tcg_gen_extrl_i64_i32(t0_32, t0);
870 tcg_gen_extrl_i64_i32(t1_32, t1);
871 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
872 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
873 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
874 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
875 tmp = tcg_temp_new_i32();
876 tcg_gen_xor_i32(tmp, t0_32, t1_32);
877 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
878 tcg_gen_extu_i32_i64(dest, cpu_NF);
879 }
880
881 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
882 {
883 if (sf) {
884 gen_sub64_CC(dest, t0, t1);
885 } else {
886 gen_sub32_CC(dest, t0, t1);
887 }
888 }
889
890 /* dest = T0 + T1 + CF; do not compute flags. */
891 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
892 {
893 TCGv_i64 flag = tcg_temp_new_i64();
894 tcg_gen_extu_i32_i64(flag, cpu_CF);
895 tcg_gen_add_i64(dest, t0, t1);
896 tcg_gen_add_i64(dest, dest, flag);
897
898 if (!sf) {
899 tcg_gen_ext32u_i64(dest, dest);
900 }
901 }
902
903 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
904 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
905 {
906 if (sf) {
907 TCGv_i64 result = tcg_temp_new_i64();
908 TCGv_i64 cf_64 = tcg_temp_new_i64();
909 TCGv_i64 vf_64 = tcg_temp_new_i64();
910 TCGv_i64 tmp = tcg_temp_new_i64();
911 TCGv_i64 zero = tcg_constant_i64(0);
912
913 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
914 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
915 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
916 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
917 gen_set_NZ64(result);
918
919 tcg_gen_xor_i64(vf_64, result, t0);
920 tcg_gen_xor_i64(tmp, t0, t1);
921 tcg_gen_andc_i64(vf_64, vf_64, tmp);
922 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
923
924 tcg_gen_mov_i64(dest, result);
925 } else {
926 TCGv_i32 t0_32 = tcg_temp_new_i32();
927 TCGv_i32 t1_32 = tcg_temp_new_i32();
928 TCGv_i32 tmp = tcg_temp_new_i32();
929 TCGv_i32 zero = tcg_constant_i32(0);
930
931 tcg_gen_extrl_i64_i32(t0_32, t0);
932 tcg_gen_extrl_i64_i32(t1_32, t1);
933 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
934 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
935
936 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
937 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
938 tcg_gen_xor_i32(tmp, t0_32, t1_32);
939 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
940 tcg_gen_extu_i32_i64(dest, cpu_NF);
941 }
942 }
943
944 /*
945 * Load/Store generators
946 */
947
948 /*
949 * Store from GPR register to memory.
950 */
951 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
952 TCGv_i64 tcg_addr, MemOp memop, int memidx,
953 bool iss_valid,
954 unsigned int iss_srt,
955 bool iss_sf, bool iss_ar)
956 {
957 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
958
959 if (iss_valid) {
960 uint32_t syn;
961
962 syn = syn_data_abort_with_iss(0,
963 (memop & MO_SIZE),
964 false,
965 iss_srt,
966 iss_sf,
967 iss_ar,
968 0, 0, 0, 0, 0, false);
969 disas_set_insn_syndrome(s, syn);
970 }
971 }
972
973 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
974 TCGv_i64 tcg_addr, MemOp memop,
975 bool iss_valid,
976 unsigned int iss_srt,
977 bool iss_sf, bool iss_ar)
978 {
979 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
980 iss_valid, iss_srt, iss_sf, iss_ar);
981 }
982
983 /*
984 * Load from memory to GPR register
985 */
986 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
987 MemOp memop, bool extend, int memidx,
988 bool iss_valid, unsigned int iss_srt,
989 bool iss_sf, bool iss_ar)
990 {
991 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
992
993 if (extend && (memop & MO_SIGN)) {
994 g_assert((memop & MO_SIZE) <= MO_32);
995 tcg_gen_ext32u_i64(dest, dest);
996 }
997
998 if (iss_valid) {
999 uint32_t syn;
1000
1001 syn = syn_data_abort_with_iss(0,
1002 (memop & MO_SIZE),
1003 (memop & MO_SIGN) != 0,
1004 iss_srt,
1005 iss_sf,
1006 iss_ar,
1007 0, 0, 0, 0, 0, false);
1008 disas_set_insn_syndrome(s, syn);
1009 }
1010 }
1011
1012 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1013 MemOp memop, bool extend,
1014 bool iss_valid, unsigned int iss_srt,
1015 bool iss_sf, bool iss_ar)
1016 {
1017 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1018 iss_valid, iss_srt, iss_sf, iss_ar);
1019 }
1020
1021 /*
1022 * Store from FP register to memory
1023 */
1024 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1025 {
1026 /* This writes the bottom N bits of a 128 bit wide vector to memory */
1027 TCGv_i64 tmplo = tcg_temp_new_i64();
1028
1029 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1030
1031 if ((mop & MO_SIZE) < MO_128) {
1032 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1033 } else {
1034 TCGv_i64 tmphi = tcg_temp_new_i64();
1035 TCGv_i128 t16 = tcg_temp_new_i128();
1036
1037 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1038 tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1039
1040 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1041 }
1042 }
1043
1044 /*
1045 * Load from memory to FP register
1046 */
1047 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1048 {
1049 /* This always zero-extends and writes to a full 128 bit wide vector */
1050 TCGv_i64 tmplo = tcg_temp_new_i64();
1051 TCGv_i64 tmphi = NULL;
1052
1053 if ((mop & MO_SIZE) < MO_128) {
1054 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1055 } else {
1056 TCGv_i128 t16 = tcg_temp_new_i128();
1057
1058 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1059
1060 tmphi = tcg_temp_new_i64();
1061 tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1062 }
1063
1064 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1065
1066 if (tmphi) {
1067 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1068 }
1069 clear_vec_high(s, tmphi != NULL, destidx);
1070 }
1071
1072 /*
1073 * Vector load/store helpers.
1074 *
1075 * The principal difference between this and a FP load is that we don't
1076 * zero extend as we are filling a partial chunk of the vector register.
1077 * These functions don't support 128 bit loads/stores, which would be
1078 * normal load/store operations.
1079 *
1080 * The _i32 versions are useful when operating on 32 bit quantities
1081 * (eg for floating point single or using Neon helper functions).
1082 */
1083
1084 /* Get value of an element within a vector register */
1085 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1086 int element, MemOp memop)
1087 {
1088 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1089 switch ((unsigned)memop) {
1090 case MO_8:
1091 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1092 break;
1093 case MO_16:
1094 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1095 break;
1096 case MO_32:
1097 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1098 break;
1099 case MO_8|MO_SIGN:
1100 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1101 break;
1102 case MO_16|MO_SIGN:
1103 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1104 break;
1105 case MO_32|MO_SIGN:
1106 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1107 break;
1108 case MO_64:
1109 case MO_64|MO_SIGN:
1110 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1111 break;
1112 default:
1113 g_assert_not_reached();
1114 }
1115 }
1116
1117 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1118 int element, MemOp memop)
1119 {
1120 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1121 switch (memop) {
1122 case MO_8:
1123 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1124 break;
1125 case MO_16:
1126 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1127 break;
1128 case MO_8|MO_SIGN:
1129 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1130 break;
1131 case MO_16|MO_SIGN:
1132 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1133 break;
1134 case MO_32:
1135 case MO_32|MO_SIGN:
1136 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1137 break;
1138 default:
1139 g_assert_not_reached();
1140 }
1141 }
1142
1143 /* Set value of an element within a vector register */
1144 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1145 int element, MemOp memop)
1146 {
1147 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1148 switch (memop) {
1149 case MO_8:
1150 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1151 break;
1152 case MO_16:
1153 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1154 break;
1155 case MO_32:
1156 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1157 break;
1158 case MO_64:
1159 tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1160 break;
1161 default:
1162 g_assert_not_reached();
1163 }
1164 }
1165
1166 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1167 int destidx, int element, MemOp memop)
1168 {
1169 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1170 switch (memop) {
1171 case MO_8:
1172 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1173 break;
1174 case MO_16:
1175 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1176 break;
1177 case MO_32:
1178 tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1179 break;
1180 default:
1181 g_assert_not_reached();
1182 }
1183 }
1184
1185 /* Store from vector register to memory */
1186 static void do_vec_st(DisasContext *s, int srcidx, int element,
1187 TCGv_i64 tcg_addr, MemOp mop)
1188 {
1189 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1190
1191 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1192 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1193 }
1194
1195 /* Load from memory to vector register */
1196 static void do_vec_ld(DisasContext *s, int destidx, int element,
1197 TCGv_i64 tcg_addr, MemOp mop)
1198 {
1199 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1200
1201 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1202 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1203 }
1204
1205 /* Check that FP/Neon access is enabled. If it is, return
1206 * true. If not, emit code to generate an appropriate exception,
1207 * and return false; the caller should not emit any code for
1208 * the instruction. Note that this check must happen after all
1209 * unallocated-encoding checks (otherwise the syndrome information
1210 * for the resulting exception will be incorrect).
1211 */
1212 static bool fp_access_check_only(DisasContext *s)
1213 {
1214 if (s->fp_excp_el) {
1215 assert(!s->fp_access_checked);
1216 s->fp_access_checked = true;
1217
1218 gen_exception_insn_el(s, 0, EXCP_UDEF,
1219 syn_fp_access_trap(1, 0xe, false, 0),
1220 s->fp_excp_el);
1221 return false;
1222 }
1223 s->fp_access_checked = true;
1224 return true;
1225 }
1226
1227 static bool fp_access_check(DisasContext *s)
1228 {
1229 if (!fp_access_check_only(s)) {
1230 return false;
1231 }
1232 if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1233 gen_exception_insn(s, 0, EXCP_UDEF,
1234 syn_smetrap(SME_ET_Streaming, false));
1235 return false;
1236 }
1237 return true;
1238 }
1239
1240 /*
1241 * Check that SVE access is enabled. If it is, return true.
1242 * If not, emit code to generate an appropriate exception and return false.
1243 * This function corresponds to CheckSVEEnabled().
1244 */
1245 bool sve_access_check(DisasContext *s)
1246 {
1247 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1248 assert(dc_isar_feature(aa64_sme, s));
1249 if (!sme_sm_enabled_check(s)) {
1250 goto fail_exit;
1251 }
1252 } else if (s->sve_excp_el) {
1253 gen_exception_insn_el(s, 0, EXCP_UDEF,
1254 syn_sve_access_trap(), s->sve_excp_el);
1255 goto fail_exit;
1256 }
1257 s->sve_access_checked = true;
1258 return fp_access_check(s);
1259
1260 fail_exit:
1261 /* Assert that we only raise one exception per instruction. */
1262 assert(!s->sve_access_checked);
1263 s->sve_access_checked = true;
1264 return false;
1265 }
1266
1267 /*
1268 * Check that SME access is enabled, raise an exception if not.
1269 * Note that this function corresponds to CheckSMEAccess and is
1270 * only used directly for cpregs.
1271 */
1272 static bool sme_access_check(DisasContext *s)
1273 {
1274 if (s->sme_excp_el) {
1275 gen_exception_insn_el(s, 0, EXCP_UDEF,
1276 syn_smetrap(SME_ET_AccessTrap, false),
1277 s->sme_excp_el);
1278 return false;
1279 }
1280 return true;
1281 }
1282
1283 /* This function corresponds to CheckSMEEnabled. */
1284 bool sme_enabled_check(DisasContext *s)
1285 {
1286 /*
1287 * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1288 * to be zero when fp_excp_el has priority. This is because we need
1289 * sme_excp_el by itself for cpregs access checks.
1290 */
1291 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1292 s->fp_access_checked = true;
1293 return sme_access_check(s);
1294 }
1295 return fp_access_check_only(s);
1296 }
1297
1298 /* Common subroutine for CheckSMEAnd*Enabled. */
1299 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1300 {
1301 if (!sme_enabled_check(s)) {
1302 return false;
1303 }
1304 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1305 gen_exception_insn(s, 0, EXCP_UDEF,
1306 syn_smetrap(SME_ET_NotStreaming, false));
1307 return false;
1308 }
1309 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1310 gen_exception_insn(s, 0, EXCP_UDEF,
1311 syn_smetrap(SME_ET_InactiveZA, false));
1312 return false;
1313 }
1314 return true;
1315 }
1316
1317 /*
1318 * This utility function is for doing register extension with an
1319 * optional shift. You will likely want to pass a temporary for the
1320 * destination register. See DecodeRegExtend() in the ARM ARM.
1321 */
1322 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1323 int option, unsigned int shift)
1324 {
1325 int extsize = extract32(option, 0, 2);
1326 bool is_signed = extract32(option, 2, 1);
1327
1328 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1329 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1330 }
1331
1332 static inline void gen_check_sp_alignment(DisasContext *s)
1333 {
1334 /* The AArch64 architecture mandates that (if enabled via PSTATE
1335 * or SCTLR bits) there is a check that SP is 16-aligned on every
1336 * SP-relative load or store (with an exception generated if it is not).
1337 * In line with general QEMU practice regarding misaligned accesses,
1338 * we omit these checks for the sake of guest program performance.
1339 * This function is provided as a hook so we can more easily add these
1340 * checks in future (possibly as a "favour catching guest program bugs
1341 * over speed" user selectable option).
1342 */
1343 }
1344
1345 /*
1346 * This provides a simple table based table lookup decoder. It is
1347 * intended to be used when the relevant bits for decode are too
1348 * awkwardly placed and switch/if based logic would be confusing and
1349 * deeply nested. Since it's a linear search through the table, tables
1350 * should be kept small.
1351 *
1352 * It returns the first handler where insn & mask == pattern, or
1353 * NULL if there is no match.
1354 * The table is terminated by an empty mask (i.e. 0)
1355 */
1356 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1357 uint32_t insn)
1358 {
1359 const AArch64DecodeTable *tptr = table;
1360
1361 while (tptr->mask) {
1362 if ((insn & tptr->mask) == tptr->pattern) {
1363 return tptr->disas_fn;
1364 }
1365 tptr++;
1366 }
1367 return NULL;
1368 }
1369
1370 /*
1371 * The instruction disassembly implemented here matches
1372 * the instruction encoding classifications in chapter C4
1373 * of the ARM Architecture Reference Manual (DDI0487B_a);
1374 * classification names and decode diagrams here should generally
1375 * match up with those in the manual.
1376 */
1377
1378 static bool trans_B(DisasContext *s, arg_i *a)
1379 {
1380 reset_btype(s);
1381 gen_goto_tb(s, 0, a->imm);
1382 return true;
1383 }
1384
1385 static bool trans_BL(DisasContext *s, arg_i *a)
1386 {
1387 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1388 reset_btype(s);
1389 gen_goto_tb(s, 0, a->imm);
1390 return true;
1391 }
1392
1393
1394 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1395 {
1396 DisasLabel match;
1397 TCGv_i64 tcg_cmp;
1398
1399 tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1400 reset_btype(s);
1401
1402 match = gen_disas_label(s);
1403 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1404 tcg_cmp, 0, match.label);
1405 gen_goto_tb(s, 0, 4);
1406 set_disas_label(s, match);
1407 gen_goto_tb(s, 1, a->imm);
1408 return true;
1409 }
1410
1411 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1412 {
1413 DisasLabel match;
1414 TCGv_i64 tcg_cmp;
1415
1416 tcg_cmp = tcg_temp_new_i64();
1417 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1418
1419 reset_btype(s);
1420
1421 match = gen_disas_label(s);
1422 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1423 tcg_cmp, 0, match.label);
1424 gen_goto_tb(s, 0, 4);
1425 set_disas_label(s, match);
1426 gen_goto_tb(s, 1, a->imm);
1427 return true;
1428 }
1429
1430 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1431 {
1432 /* BC.cond is only present with FEAT_HBC */
1433 if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1434 return false;
1435 }
1436 reset_btype(s);
1437 if (a->cond < 0x0e) {
1438 /* genuinely conditional branches */
1439 DisasLabel match = gen_disas_label(s);
1440 arm_gen_test_cc(a->cond, match.label);
1441 gen_goto_tb(s, 0, 4);
1442 set_disas_label(s, match);
1443 gen_goto_tb(s, 1, a->imm);
1444 } else {
1445 /* 0xe and 0xf are both "always" conditions */
1446 gen_goto_tb(s, 0, a->imm);
1447 }
1448 return true;
1449 }
1450
1451 static void set_btype_for_br(DisasContext *s, int rn)
1452 {
1453 if (dc_isar_feature(aa64_bti, s)) {
1454 /* BR to {x16,x17} or !guard -> 1, else 3. */
1455 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1456 }
1457 }
1458
1459 static void set_btype_for_blr(DisasContext *s)
1460 {
1461 if (dc_isar_feature(aa64_bti, s)) {
1462 /* BLR sets BTYPE to 2, regardless of source guarded page. */
1463 set_btype(s, 2);
1464 }
1465 }
1466
1467 static bool trans_BR(DisasContext *s, arg_r *a)
1468 {
1469 gen_a64_set_pc(s, cpu_reg(s, a->rn));
1470 set_btype_for_br(s, a->rn);
1471 s->base.is_jmp = DISAS_JUMP;
1472 return true;
1473 }
1474
1475 static bool trans_BLR(DisasContext *s, arg_r *a)
1476 {
1477 TCGv_i64 dst = cpu_reg(s, a->rn);
1478 TCGv_i64 lr = cpu_reg(s, 30);
1479 if (dst == lr) {
1480 TCGv_i64 tmp = tcg_temp_new_i64();
1481 tcg_gen_mov_i64(tmp, dst);
1482 dst = tmp;
1483 }
1484 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1485 gen_a64_set_pc(s, dst);
1486 set_btype_for_blr(s);
1487 s->base.is_jmp = DISAS_JUMP;
1488 return true;
1489 }
1490
1491 static bool trans_RET(DisasContext *s, arg_r *a)
1492 {
1493 gen_a64_set_pc(s, cpu_reg(s, a->rn));
1494 s->base.is_jmp = DISAS_JUMP;
1495 return true;
1496 }
1497
1498 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1499 TCGv_i64 modifier, bool use_key_a)
1500 {
1501 TCGv_i64 truedst;
1502 /*
1503 * Return the branch target for a BRAA/RETA/etc, which is either
1504 * just the destination dst, or that value with the pauth check
1505 * done and the code removed from the high bits.
1506 */
1507 if (!s->pauth_active) {
1508 return dst;
1509 }
1510
1511 truedst = tcg_temp_new_i64();
1512 if (use_key_a) {
1513 gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1514 } else {
1515 gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1516 }
1517 return truedst;
1518 }
1519
1520 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1521 {
1522 TCGv_i64 dst;
1523
1524 if (!dc_isar_feature(aa64_pauth, s)) {
1525 return false;
1526 }
1527
1528 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1529 gen_a64_set_pc(s, dst);
1530 set_btype_for_br(s, a->rn);
1531 s->base.is_jmp = DISAS_JUMP;
1532 return true;
1533 }
1534
1535 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1536 {
1537 TCGv_i64 dst, lr;
1538
1539 if (!dc_isar_feature(aa64_pauth, s)) {
1540 return false;
1541 }
1542
1543 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1544 lr = cpu_reg(s, 30);
1545 if (dst == lr) {
1546 TCGv_i64 tmp = tcg_temp_new_i64();
1547 tcg_gen_mov_i64(tmp, dst);
1548 dst = tmp;
1549 }
1550 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1551 gen_a64_set_pc(s, dst);
1552 set_btype_for_blr(s);
1553 s->base.is_jmp = DISAS_JUMP;
1554 return true;
1555 }
1556
1557 static bool trans_RETA(DisasContext *s, arg_reta *a)
1558 {
1559 TCGv_i64 dst;
1560
1561 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1562 gen_a64_set_pc(s, dst);
1563 s->base.is_jmp = DISAS_JUMP;
1564 return true;
1565 }
1566
1567 static bool trans_BRA(DisasContext *s, arg_bra *a)
1568 {
1569 TCGv_i64 dst;
1570
1571 if (!dc_isar_feature(aa64_pauth, s)) {
1572 return false;
1573 }
1574 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1575 gen_a64_set_pc(s, dst);
1576 set_btype_for_br(s, a->rn);
1577 s->base.is_jmp = DISAS_JUMP;
1578 return true;
1579 }
1580
1581 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1582 {
1583 TCGv_i64 dst, lr;
1584
1585 if (!dc_isar_feature(aa64_pauth, s)) {
1586 return false;
1587 }
1588 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1589 lr = cpu_reg(s, 30);
1590 if (dst == lr) {
1591 TCGv_i64 tmp = tcg_temp_new_i64();
1592 tcg_gen_mov_i64(tmp, dst);
1593 dst = tmp;
1594 }
1595 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1596 gen_a64_set_pc(s, dst);
1597 set_btype_for_blr(s);
1598 s->base.is_jmp = DISAS_JUMP;
1599 return true;
1600 }
1601
1602 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1603 {
1604 TCGv_i64 dst;
1605
1606 if (s->current_el == 0) {
1607 return false;
1608 }
1609 if (s->trap_eret) {
1610 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1611 return true;
1612 }
1613 dst = tcg_temp_new_i64();
1614 tcg_gen_ld_i64(dst, tcg_env,
1615 offsetof(CPUARMState, elr_el[s->current_el]));
1616
1617 translator_io_start(&s->base);
1618
1619 gen_helper_exception_return(tcg_env, dst);
1620 /* Must exit loop to check un-masked IRQs */
1621 s->base.is_jmp = DISAS_EXIT;
1622 return true;
1623 }
1624
1625 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1626 {
1627 TCGv_i64 dst;
1628
1629 if (!dc_isar_feature(aa64_pauth, s)) {
1630 return false;
1631 }
1632 if (s->current_el == 0) {
1633 return false;
1634 }
1635 /* The FGT trap takes precedence over an auth trap. */
1636 if (s->trap_eret) {
1637 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1638 return true;
1639 }
1640 dst = tcg_temp_new_i64();
1641 tcg_gen_ld_i64(dst, tcg_env,
1642 offsetof(CPUARMState, elr_el[s->current_el]));
1643
1644 dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1645
1646 translator_io_start(&s->base);
1647
1648 gen_helper_exception_return(tcg_env, dst);
1649 /* Must exit loop to check un-masked IRQs */
1650 s->base.is_jmp = DISAS_EXIT;
1651 return true;
1652 }
1653
1654 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1655 {
1656 return true;
1657 }
1658
1659 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1660 {
1661 /*
1662 * When running in MTTCG we don't generate jumps to the yield and
1663 * WFE helpers as it won't affect the scheduling of other vCPUs.
1664 * If we wanted to more completely model WFE/SEV so we don't busy
1665 * spin unnecessarily we would need to do something more involved.
1666 */
1667 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1668 s->base.is_jmp = DISAS_YIELD;
1669 }
1670 return true;
1671 }
1672
1673 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1674 {
1675 s->base.is_jmp = DISAS_WFI;
1676 return true;
1677 }
1678
1679 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1680 {
1681 /*
1682 * When running in MTTCG we don't generate jumps to the yield and
1683 * WFE helpers as it won't affect the scheduling of other vCPUs.
1684 * If we wanted to more completely model WFE/SEV so we don't busy
1685 * spin unnecessarily we would need to do something more involved.
1686 */
1687 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1688 s->base.is_jmp = DISAS_WFE;
1689 }
1690 return true;
1691 }
1692
1693 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1694 {
1695 if (s->pauth_active) {
1696 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1697 }
1698 return true;
1699 }
1700
1701 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1702 {
1703 if (s->pauth_active) {
1704 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1705 }
1706 return true;
1707 }
1708
1709 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1710 {
1711 if (s->pauth_active) {
1712 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1713 }
1714 return true;
1715 }
1716
1717 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1718 {
1719 if (s->pauth_active) {
1720 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1721 }
1722 return true;
1723 }
1724
1725 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1726 {
1727 if (s->pauth_active) {
1728 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1729 }
1730 return true;
1731 }
1732
1733 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1734 {
1735 /* Without RAS, we must implement this as NOP. */
1736 if (dc_isar_feature(aa64_ras, s)) {
1737 /*
1738 * QEMU does not have a source of physical SErrors,
1739 * so we are only concerned with virtual SErrors.
1740 * The pseudocode in the ARM for this case is
1741 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1742 * AArch64.vESBOperation();
1743 * Most of the condition can be evaluated at translation time.
1744 * Test for EL2 present, and defer test for SEL2 to runtime.
1745 */
1746 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1747 gen_helper_vesb(tcg_env);
1748 }
1749 }
1750 return true;
1751 }
1752
1753 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1754 {
1755 if (s->pauth_active) {
1756 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1757 }
1758 return true;
1759 }
1760
1761 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1762 {
1763 if (s->pauth_active) {
1764 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1765 }
1766 return true;
1767 }
1768
1769 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1770 {
1771 if (s->pauth_active) {
1772 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1773 }
1774 return true;
1775 }
1776
1777 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1778 {
1779 if (s->pauth_active) {
1780 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1781 }
1782 return true;
1783 }
1784
1785 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1786 {
1787 if (s->pauth_active) {
1788 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1789 }
1790 return true;
1791 }
1792
1793 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1794 {
1795 if (s->pauth_active) {
1796 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1797 }
1798 return true;
1799 }
1800
1801 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1802 {
1803 if (s->pauth_active) {
1804 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1805 }
1806 return true;
1807 }
1808
1809 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1810 {
1811 if (s->pauth_active) {
1812 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1813 }
1814 return true;
1815 }
1816
1817 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1818 {
1819 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1820 return true;
1821 }
1822
1823 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1824 {
1825 /* We handle DSB and DMB the same way */
1826 TCGBar bar;
1827
1828 switch (a->types) {
1829 case 1: /* MBReqTypes_Reads */
1830 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1831 break;
1832 case 2: /* MBReqTypes_Writes */
1833 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1834 break;
1835 default: /* MBReqTypes_All */
1836 bar = TCG_BAR_SC | TCG_MO_ALL;
1837 break;
1838 }
1839 tcg_gen_mb(bar);
1840 return true;
1841 }
1842
1843 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1844 {
1845 /*
1846 * We need to break the TB after this insn to execute
1847 * self-modifying code correctly and also to take
1848 * any pending interrupts immediately.
1849 */
1850 reset_btype(s);
1851 gen_goto_tb(s, 0, 4);
1852 return true;
1853 }
1854
1855 static bool trans_SB(DisasContext *s, arg_SB *a)
1856 {
1857 if (!dc_isar_feature(aa64_sb, s)) {
1858 return false;
1859 }
1860 /*
1861 * TODO: There is no speculation barrier opcode for TCG;
1862 * MB and end the TB instead.
1863 */
1864 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1865 gen_goto_tb(s, 0, 4);
1866 return true;
1867 }
1868
1869 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1870 {
1871 if (!dc_isar_feature(aa64_condm_4, s)) {
1872 return false;
1873 }
1874 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1875 return true;
1876 }
1877
1878 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1879 {
1880 TCGv_i32 z;
1881
1882 if (!dc_isar_feature(aa64_condm_5, s)) {
1883 return false;
1884 }
1885
1886 z = tcg_temp_new_i32();
1887
1888 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1889
1890 /*
1891 * (!C & !Z) << 31
1892 * (!(C | Z)) << 31
1893 * ~((C | Z) << 31)
1894 * ~-(C | Z)
1895 * (C | Z) - 1
1896 */
1897 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1898 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1899
1900 /* !(Z & C) */
1901 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1902 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1903
1904 /* (!C & Z) << 31 -> -(Z & ~C) */
1905 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1906 tcg_gen_neg_i32(cpu_VF, cpu_VF);
1907
1908 /* C | Z */
1909 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1910
1911 return true;
1912 }
1913
1914 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
1915 {
1916 if (!dc_isar_feature(aa64_condm_5, s)) {
1917 return false;
1918 }
1919
1920 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
1921 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
1922
1923 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1924 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1925
1926 tcg_gen_movi_i32(cpu_NF, 0);
1927 tcg_gen_movi_i32(cpu_VF, 0);
1928
1929 return true;
1930 }
1931
1932 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
1933 {
1934 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1935 return false;
1936 }
1937 if (a->imm & 1) {
1938 set_pstate_bits(PSTATE_UAO);
1939 } else {
1940 clear_pstate_bits(PSTATE_UAO);
1941 }
1942 gen_rebuild_hflags(s);
1943 s->base.is_jmp = DISAS_TOO_MANY;
1944 return true;
1945 }
1946
1947 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
1948 {
1949 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1950 return false;
1951 }
1952 if (a->imm & 1) {
1953 set_pstate_bits(PSTATE_PAN);
1954 } else {
1955 clear_pstate_bits(PSTATE_PAN);
1956 }
1957 gen_rebuild_hflags(s);
1958 s->base.is_jmp = DISAS_TOO_MANY;
1959 return true;
1960 }
1961
1962 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
1963 {
1964 if (s->current_el == 0) {
1965 return false;
1966 }
1967 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
1968 s->base.is_jmp = DISAS_TOO_MANY;
1969 return true;
1970 }
1971
1972 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
1973 {
1974 if (!dc_isar_feature(aa64_ssbs, s)) {
1975 return false;
1976 }
1977 if (a->imm & 1) {
1978 set_pstate_bits(PSTATE_SSBS);
1979 } else {
1980 clear_pstate_bits(PSTATE_SSBS);
1981 }
1982 /* Don't need to rebuild hflags since SSBS is a nop */
1983 s->base.is_jmp = DISAS_TOO_MANY;
1984 return true;
1985 }
1986
1987 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
1988 {
1989 if (!dc_isar_feature(aa64_dit, s)) {
1990 return false;
1991 }
1992 if (a->imm & 1) {
1993 set_pstate_bits(PSTATE_DIT);
1994 } else {
1995 clear_pstate_bits(PSTATE_DIT);
1996 }
1997 /* There's no need to rebuild hflags because DIT is a nop */
1998 s->base.is_jmp = DISAS_TOO_MANY;
1999 return true;
2000 }
2001
2002 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2003 {
2004 if (dc_isar_feature(aa64_mte, s)) {
2005 /* Full MTE is enabled -- set the TCO bit as directed. */
2006 if (a->imm & 1) {
2007 set_pstate_bits(PSTATE_TCO);
2008 } else {
2009 clear_pstate_bits(PSTATE_TCO);
2010 }
2011 gen_rebuild_hflags(s);
2012 /* Many factors, including TCO, go into MTE_ACTIVE. */
2013 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2014 return true;
2015 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2016 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
2017 return true;
2018 } else {
2019 /* Insn not present */
2020 return false;
2021 }
2022 }
2023
2024 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2025 {
2026 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2027 s->base.is_jmp = DISAS_TOO_MANY;
2028 return true;
2029 }
2030
2031 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2032 {
2033 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2034 /* Exit the cpu loop to re-evaluate pending IRQs. */
2035 s->base.is_jmp = DISAS_UPDATE_EXIT;
2036 return true;
2037 }
2038
2039 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2040 {
2041 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2042 return false;
2043 }
2044 if (sme_access_check(s)) {
2045 int old = s->pstate_sm | (s->pstate_za << 1);
2046 int new = a->imm * 3;
2047
2048 if ((old ^ new) & a->mask) {
2049 /* At least one bit changes. */
2050 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2051 tcg_constant_i32(a->mask));
2052 s->base.is_jmp = DISAS_TOO_MANY;
2053 }
2054 }
2055 return true;
2056 }
2057
2058 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2059 {
2060 TCGv_i32 tmp = tcg_temp_new_i32();
2061 TCGv_i32 nzcv = tcg_temp_new_i32();
2062
2063 /* build bit 31, N */
2064 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2065 /* build bit 30, Z */
2066 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2067 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2068 /* build bit 29, C */
2069 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2070 /* build bit 28, V */
2071 tcg_gen_shri_i32(tmp, cpu_VF, 31);
2072 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2073 /* generate result */
2074 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2075 }
2076
2077 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2078 {
2079 TCGv_i32 nzcv = tcg_temp_new_i32();
2080
2081 /* take NZCV from R[t] */
2082 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2083
2084 /* bit 31, N */
2085 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2086 /* bit 30, Z */
2087 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2088 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2089 /* bit 29, C */
2090 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2091 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2092 /* bit 28, V */
2093 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2094 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2095 }
2096
2097 static void gen_sysreg_undef(DisasContext *s, bool isread,
2098 uint8_t op0, uint8_t op1, uint8_t op2,
2099 uint8_t crn, uint8_t crm, uint8_t rt)
2100 {
2101 /*
2102 * Generate code to emit an UNDEF with correct syndrome
2103 * information for a failed system register access.
2104 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2105 * but if FEAT_IDST is implemented then read accesses to registers
2106 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2107 * syndrome.
2108 */
2109 uint32_t syndrome;
2110
2111 if (isread && dc_isar_feature(aa64_ids, s) &&
2112 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2113 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2114 } else {
2115 syndrome = syn_uncategorized();
2116 }
2117 gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2118 }
2119
2120 /* MRS - move from system register
2121 * MSR (register) - move to system register
2122 * SYS
2123 * SYSL
2124 * These are all essentially the same insn in 'read' and 'write'
2125 * versions, with varying op0 fields.
2126 */
2127 static void handle_sys(DisasContext *s, bool isread,
2128 unsigned int op0, unsigned int op1, unsigned int op2,
2129 unsigned int crn, unsigned int crm, unsigned int rt)
2130 {
2131 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2132 crn, crm, op0, op1, op2);
2133 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2134 bool need_exit_tb = false;
2135 bool nv_trap_to_el2 = false;
2136 bool nv_redirect_reg = false;
2137 bool skip_fp_access_checks = false;
2138 bool nv2_mem_redirect = false;
2139 TCGv_ptr tcg_ri = NULL;
2140 TCGv_i64 tcg_rt;
2141 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2142
2143 if (crn == 11 || crn == 15) {
2144 /*
2145 * Check for TIDCP trap, which must take precedence over
2146 * the UNDEF for "no such register" etc.
2147 */
2148 switch (s->current_el) {
2149 case 0:
2150 if (dc_isar_feature(aa64_tidcp1, s)) {
2151 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2152 }
2153 break;
2154 case 1:
2155 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2156 break;
2157 }
2158 }
2159
2160 if (!ri) {
2161 /* Unknown register; this might be a guest error or a QEMU
2162 * unimplemented feature.
2163 */
2164 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2165 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2166 isread ? "read" : "write", op0, op1, crn, crm, op2);
2167 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2168 return;
2169 }
2170
2171 if (s->nv2 && ri->nv2_redirect_offset) {
2172 /*
2173 * Some registers always redirect to memory; some only do so if
2174 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2175 * pairs which share an offset; see the table in R_CSRPQ).
2176 */
2177 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2178 nv2_mem_redirect = s->nv1;
2179 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2180 nv2_mem_redirect = !s->nv1;
2181 } else {
2182 nv2_mem_redirect = true;
2183 }
2184 }
2185
2186 /* Check access permissions */
2187 if (!cp_access_ok(s->current_el, ri, isread)) {
2188 /*
2189 * FEAT_NV/NV2 handling does not do the usual FP access checks
2190 * for registers only accessible at EL2 (though it *does* do them
2191 * for registers accessible at EL1).
2192 */
2193 skip_fp_access_checks = true;
2194 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2195 /*
2196 * This is one of the few EL2 registers which should redirect
2197 * to the equivalent EL1 register. We do that after running
2198 * the EL2 register's accessfn.
2199 */
2200 nv_redirect_reg = true;
2201 assert(!nv2_mem_redirect);
2202 } else if (nv2_mem_redirect) {
2203 /*
2204 * NV2 redirect-to-memory takes precedence over trap to EL2 or
2205 * UNDEF to EL1.
2206 */
2207 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2208 /*
2209 * This register / instruction exists and is an EL2 register, so
2210 * we must trap to EL2 if accessed in nested virtualization EL1
2211 * instead of UNDEFing. We'll do that after the usual access checks.
2212 * (This makes a difference only for a couple of registers like
2213 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2214 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2215 * an accessfn which does nothing when called from EL1, because
2216 * the trap-to-EL3 controls which would apply to that register
2217 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2218 */
2219 nv_trap_to_el2 = true;
2220 } else {
2221 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2222 return;
2223 }
2224 }
2225
2226 if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2227 /* Emit code to perform further access permissions checks at
2228 * runtime; this may result in an exception.
2229 */
2230 gen_a64_update_pc(s, 0);
2231 tcg_ri = tcg_temp_new_ptr();
2232 gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2233 tcg_constant_i32(key),
2234 tcg_constant_i32(syndrome),
2235 tcg_constant_i32(isread));
2236 } else if (ri->type & ARM_CP_RAISES_EXC) {
2237 /*
2238 * The readfn or writefn might raise an exception;
2239 * synchronize the CPU state in case it does.
2240 */
2241 gen_a64_update_pc(s, 0);
2242 }
2243
2244 if (!skip_fp_access_checks) {
2245 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2246 return;
2247 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2248 return;
2249 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2250 return;
2251 }
2252 }
2253
2254 if (nv_trap_to_el2) {
2255 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2256 return;
2257 }
2258
2259 if (nv_redirect_reg) {
2260 /*
2261 * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2262 * Conveniently in all cases the encoding of the EL1 register is
2263 * identical to the EL2 register except that opc1 is 0.
2264 * Get the reginfo for the EL1 register to use for the actual access.
2265 * We don't use the EL1 register's access function, and
2266 * fine-grained-traps on EL1 also do not apply here.
2267 */
2268 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2269 crn, crm, op0, 0, op2);
2270 ri = get_arm_cp_reginfo(s->cp_regs, key);
2271 assert(ri);
2272 assert(cp_access_ok(s->current_el, ri, isread));
2273 /*
2274 * We might not have done an update_pc earlier, so check we don't
2275 * need it. We could support this in future if necessary.
2276 */
2277 assert(!(ri->type & ARM_CP_RAISES_EXC));
2278 }
2279
2280 if (nv2_mem_redirect) {
2281 /*
2282 * This system register is being redirected into an EL2 memory access.
2283 * This means it is not an IO operation, doesn't change hflags,
2284 * and need not end the TB, because it has no side effects.
2285 *
2286 * The access is 64-bit single copy atomic, guaranteed aligned because
2287 * of the definition of VCNR_EL2. Its endianness depends on
2288 * SCTLR_EL2.EE, not on the data endianness of EL1.
2289 * It is done under either the EL2 translation regime or the EL2&0
2290 * translation regime, depending on HCR_EL2.E2H. It behaves as if
2291 * PSTATE.PAN is 0.
2292 */
2293 TCGv_i64 ptr = tcg_temp_new_i64();
2294 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2295 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2296 int memidx = arm_to_core_mmu_idx(armmemidx);
2297
2298 mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2299
2300 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2301 tcg_gen_addi_i64(ptr, ptr,
2302 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2303 tcg_rt = cpu_reg(s, rt);
2304 if (isread) {
2305 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2306 } else {
2307 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2308 }
2309 return;
2310 }
2311
2312 /* Handle special cases first */
2313 switch (ri->type & ARM_CP_SPECIAL_MASK) {
2314 case 0:
2315 break;
2316 case ARM_CP_NOP:
2317 return;
2318 case ARM_CP_NZCV:
2319 tcg_rt = cpu_reg(s, rt);
2320 if (isread) {
2321 gen_get_nzcv(tcg_rt);
2322 } else {
2323 gen_set_nzcv(tcg_rt);
2324 }
2325 return;
2326 case ARM_CP_CURRENTEL:
2327 {
2328 /*
2329 * Reads as current EL value from pstate, which is
2330 * guaranteed to be constant by the tb flags.
2331 * For nested virt we should report EL2.
2332 */
2333 int el = s->nv ? 2 : s->current_el;
2334 tcg_rt = cpu_reg(s, rt);
2335 tcg_gen_movi_i64(tcg_rt, el << 2);
2336 return;
2337 }
2338 case ARM_CP_DC_ZVA:
2339 /* Writes clear the aligned block of memory which rt points into. */
2340 if (s->mte_active[0]) {
2341 int desc = 0;
2342
2343 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2344 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2345 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2346
2347 tcg_rt = tcg_temp_new_i64();
2348 gen_helper_mte_check_zva(tcg_rt, tcg_env,
2349 tcg_constant_i32(desc), cpu_reg(s, rt));
2350 } else {
2351 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2352 }
2353 gen_helper_dc_zva(tcg_env, tcg_rt);
2354 return;
2355 case ARM_CP_DC_GVA:
2356 {
2357 TCGv_i64 clean_addr, tag;
2358
2359 /*
2360 * DC_GVA, like DC_ZVA, requires that we supply the original
2361 * pointer for an invalid page. Probe that address first.
2362 */
2363 tcg_rt = cpu_reg(s, rt);
2364 clean_addr = clean_data_tbi(s, tcg_rt);
2365 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2366
2367 if (s->ata[0]) {
2368 /* Extract the tag from the register to match STZGM. */
2369 tag = tcg_temp_new_i64();
2370 tcg_gen_shri_i64(tag, tcg_rt, 56);
2371 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2372 }
2373 }
2374 return;
2375 case ARM_CP_DC_GZVA:
2376 {
2377 TCGv_i64 clean_addr, tag;
2378
2379 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2380 tcg_rt = cpu_reg(s, rt);
2381 clean_addr = clean_data_tbi(s, tcg_rt);
2382 gen_helper_dc_zva(tcg_env, clean_addr);
2383
2384 if (s->ata[0]) {
2385 /* Extract the tag from the register to match STZGM. */
2386 tag = tcg_temp_new_i64();
2387 tcg_gen_shri_i64(tag, tcg_rt, 56);
2388 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2389 }
2390 }
2391 return;
2392 default:
2393 g_assert_not_reached();
2394 }
2395
2396 if (ri->type & ARM_CP_IO) {
2397 /* I/O operations must end the TB here (whether read or write) */
2398 need_exit_tb = translator_io_start(&s->base);
2399 }
2400
2401 tcg_rt = cpu_reg(s, rt);
2402
2403 if (isread) {
2404 if (ri->type & ARM_CP_CONST) {
2405 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2406 } else if (ri->readfn) {
2407 if (!tcg_ri) {
2408 tcg_ri = gen_lookup_cp_reg(key);
2409 }
2410 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2411 } else {
2412 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2413 }
2414 } else {
2415 if (ri->type & ARM_CP_CONST) {
2416 /* If not forbidden by access permissions, treat as WI */
2417 return;
2418 } else if (ri->writefn) {
2419 if (!tcg_ri) {
2420 tcg_ri = gen_lookup_cp_reg(key);
2421 }
2422 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2423 } else {
2424 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2425 }
2426 }
2427
2428 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2429 /*
2430 * A write to any coprocessor register that ends a TB
2431 * must rebuild the hflags for the next TB.
2432 */
2433 gen_rebuild_hflags(s);
2434 /*
2435 * We default to ending the TB on a coprocessor register write,
2436 * but allow this to be suppressed by the register definition
2437 * (usually only necessary to work around guest bugs).
2438 */
2439 need_exit_tb = true;
2440 }
2441 if (need_exit_tb) {
2442 s->base.is_jmp = DISAS_UPDATE_EXIT;
2443 }
2444 }
2445
2446 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2447 {
2448 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2449 return true;
2450 }
2451
2452 static bool trans_SVC(DisasContext *s, arg_i *a)
2453 {
2454 /*
2455 * For SVC, HVC and SMC we advance the single-step state
2456 * machine before taking the exception. This is architecturally
2457 * mandated, to ensure that single-stepping a system call
2458 * instruction works properly.
2459 */
2460 uint32_t syndrome = syn_aa64_svc(a->imm);
2461 if (s->fgt_svc) {
2462 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2463 return true;
2464 }
2465 gen_ss_advance(s);
2466 gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2467 return true;
2468 }
2469
2470 static bool trans_HVC(DisasContext *s, arg_i *a)
2471 {
2472 int target_el = s->current_el == 3 ? 3 : 2;
2473
2474 if (s->current_el == 0) {
2475 unallocated_encoding(s);
2476 return true;
2477 }
2478 /*
2479 * The pre HVC helper handles cases when HVC gets trapped
2480 * as an undefined insn by runtime configuration.
2481 */
2482 gen_a64_update_pc(s, 0);
2483 gen_helper_pre_hvc(tcg_env);
2484 /* Architecture requires ss advance before we do the actual work */
2485 gen_ss_advance(s);
2486 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2487 return true;
2488 }
2489
2490 static bool trans_SMC(DisasContext *s, arg_i *a)
2491 {
2492 if (s->current_el == 0) {
2493 unallocated_encoding(s);
2494 return true;
2495 }
2496 gen_a64_update_pc(s, 0);
2497 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2498 /* Architecture requires ss advance before we do the actual work */
2499 gen_ss_advance(s);
2500 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2501 return true;
2502 }
2503
2504 static bool trans_BRK(DisasContext *s, arg_i *a)
2505 {
2506 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2507 return true;
2508 }
2509
2510 static bool trans_HLT(DisasContext *s, arg_i *a)
2511 {
2512 /*
2513 * HLT. This has two purposes.
2514 * Architecturally, it is an external halting debug instruction.
2515 * Since QEMU doesn't implement external debug, we treat this as
2516 * it is required for halting debug disabled: it will UNDEF.
2517 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2518 */
2519 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2520 gen_exception_internal_insn(s, EXCP_SEMIHOST);
2521 } else {
2522 unallocated_encoding(s);
2523 }
2524 return true;
2525 }
2526
2527 /*
2528 * Load/Store exclusive instructions are implemented by remembering
2529 * the value/address loaded, and seeing if these are the same
2530 * when the store is performed. This is not actually the architecturally
2531 * mandated semantics, but it works for typical guest code sequences
2532 * and avoids having to monitor regular stores.
2533 *
2534 * The store exclusive uses the atomic cmpxchg primitives to avoid
2535 * races in multi-threaded linux-user and when MTTCG softmmu is
2536 * enabled.
2537 */
2538 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2539 int size, bool is_pair)
2540 {
2541 int idx = get_mem_index(s);
2542 TCGv_i64 dirty_addr, clean_addr;
2543 MemOp memop = check_atomic_align(s, rn, size + is_pair);
2544
2545 s->is_ldex = true;
2546 dirty_addr = cpu_reg_sp(s, rn);
2547 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2548
2549 g_assert(size <= 3);
2550 if (is_pair) {
2551 g_assert(size >= 2);
2552 if (size == 2) {
2553 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2554 if (s->be_data == MO_LE) {
2555 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2556 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2557 } else {
2558 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2559 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2560 }
2561 } else {
2562 TCGv_i128 t16 = tcg_temp_new_i128();
2563
2564 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2565
2566 if (s->be_data == MO_LE) {
2567 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2568 cpu_exclusive_high, t16);
2569 } else {
2570 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2571 cpu_exclusive_val, t16);
2572 }
2573 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2574 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2575 }
2576 } else {
2577 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2578 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2579 }
2580 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2581 }
2582
2583 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2584 int rn, int size, int is_pair)
2585 {
2586 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2587 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2588 * [addr] = {Rt};
2589 * if (is_pair) {
2590 * [addr + datasize] = {Rt2};
2591 * }
2592 * {Rd} = 0;
2593 * } else {
2594 * {Rd} = 1;
2595 * }
2596 * env->exclusive_addr = -1;
2597 */
2598 TCGLabel *fail_label = gen_new_label();
2599 TCGLabel *done_label = gen_new_label();
2600 TCGv_i64 tmp, clean_addr;
2601 MemOp memop;
2602
2603 /*
2604 * FIXME: We are out of spec here. We have recorded only the address
2605 * from load_exclusive, not the entire range, and we assume that the
2606 * size of the access on both sides match. The architecture allows the
2607 * store to be smaller than the load, so long as the stored bytes are
2608 * within the range recorded by the load.
2609 */
2610
2611 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2612 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2613 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2614
2615 /*
2616 * The write, and any associated faults, only happen if the virtual
2617 * and physical addresses pass the exclusive monitor check. These
2618 * faults are exceedingly unlikely, because normally the guest uses
2619 * the exact same address register for the load_exclusive, and we
2620 * would have recognized these faults there.
2621 *
2622 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2623 * unaligned 4-byte write within the range of an aligned 8-byte load.
2624 * With LSE2, the store would need to cross a 16-byte boundary when the
2625 * load did not, which would mean the store is outside the range
2626 * recorded for the monitor, which would have failed a corrected monitor
2627 * check above. For now, we assume no size change and retain the
2628 * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2629 *
2630 * It is possible to trigger an MTE fault, by performing the load with
2631 * a virtual address with a valid tag and performing the store with the
2632 * same virtual address and a different invalid tag.
2633 */
2634 memop = size + is_pair;
2635 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2636 memop |= MO_ALIGN;
2637 }
2638 memop = finalize_memop(s, memop);
2639 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2640
2641 tmp = tcg_temp_new_i64();
2642 if (is_pair) {
2643 if (size == 2) {
2644 if (s->be_data == MO_LE) {
2645 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2646 } else {
2647 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2648 }
2649 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2650 cpu_exclusive_val, tmp,
2651 get_mem_index(s), memop);
2652 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2653 } else {
2654 TCGv_i128 t16 = tcg_temp_new_i128();
2655 TCGv_i128 c16 = tcg_temp_new_i128();
2656 TCGv_i64 a, b;
2657
2658 if (s->be_data == MO_LE) {
2659 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2660 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2661 cpu_exclusive_high);
2662 } else {
2663 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2664 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2665 cpu_exclusive_val);
2666 }
2667
2668 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2669 get_mem_index(s), memop);
2670
2671 a = tcg_temp_new_i64();
2672 b = tcg_temp_new_i64();
2673 if (s->be_data == MO_LE) {
2674 tcg_gen_extr_i128_i64(a, b, t16);
2675 } else {
2676 tcg_gen_extr_i128_i64(b, a, t16);
2677 }
2678
2679 tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2680 tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2681 tcg_gen_or_i64(tmp, a, b);
2682
2683 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2684 }
2685 } else {
2686 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2687 cpu_reg(s, rt), get_mem_index(s), memop);
2688 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2689 }
2690 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2691 tcg_gen_br(done_label);
2692
2693 gen_set_label(fail_label);
2694 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2695 gen_set_label(done_label);
2696 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2697 }
2698
2699 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2700 int rn, int size)
2701 {
2702 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2703 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2704 int memidx = get_mem_index(s);
2705 TCGv_i64 clean_addr;
2706 MemOp memop;
2707
2708 if (rn == 31) {
2709 gen_check_sp_alignment(s);
2710 }
2711 memop = check_atomic_align(s, rn, size);
2712 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2713 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2714 memidx, memop);
2715 }
2716
2717 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2718 int rn, int size)
2719 {
2720 TCGv_i64 s1 = cpu_reg(s, rs);
2721 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2722 TCGv_i64 t1 = cpu_reg(s, rt);
2723 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2724 TCGv_i64 clean_addr;
2725 int memidx = get_mem_index(s);
2726 MemOp memop;
2727
2728 if (rn == 31) {
2729 gen_check_sp_alignment(s);
2730 }
2731
2732 /* This is a single atomic access, despite the "pair". */
2733 memop = check_atomic_align(s, rn, size + 1);
2734 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2735
2736 if (size == 2) {
2737 TCGv_i64 cmp = tcg_temp_new_i64();
2738 TCGv_i64 val = tcg_temp_new_i64();
2739
2740 if (s->be_data == MO_LE) {
2741 tcg_gen_concat32_i64(val, t1, t2);
2742 tcg_gen_concat32_i64(cmp, s1, s2);
2743 } else {
2744 tcg_gen_concat32_i64(val, t2, t1);
2745 tcg_gen_concat32_i64(cmp, s2, s1);
2746 }
2747
2748 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2749
2750 if (s->be_data == MO_LE) {
2751 tcg_gen_extr32_i64(s1, s2, cmp);
2752 } else {
2753 tcg_gen_extr32_i64(s2, s1, cmp);
2754 }
2755 } else {
2756 TCGv_i128 cmp = tcg_temp_new_i128();
2757 TCGv_i128 val = tcg_temp_new_i128();
2758
2759 if (s->be_data == MO_LE) {
2760 tcg_gen_concat_i64_i128(val, t1, t2);
2761 tcg_gen_concat_i64_i128(cmp, s1, s2);
2762 } else {
2763 tcg_gen_concat_i64_i128(val, t2, t1);
2764 tcg_gen_concat_i64_i128(cmp, s2, s1);
2765 }
2766
2767 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2768
2769 if (s->be_data == MO_LE) {
2770 tcg_gen_extr_i128_i64(s1, s2, cmp);
2771 } else {
2772 tcg_gen_extr_i128_i64(s2, s1, cmp);
2773 }
2774 }
2775 }
2776
2777 /*
2778 * Compute the ISS.SF bit for syndrome information if an exception
2779 * is taken on a load or store. This indicates whether the instruction
2780 * is accessing a 32-bit or 64-bit register. This logic is derived
2781 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2782 */
2783 static bool ldst_iss_sf(int size, bool sign, bool ext)
2784 {
2785
2786 if (sign) {
2787 /*
2788 * Signed loads are 64 bit results if we are not going to
2789 * do a zero-extend from 32 to 64 after the load.
2790 * (For a store, sign and ext are always false.)
2791 */
2792 return !ext;
2793 } else {
2794 /* Unsigned loads/stores work at the specified size */
2795 return size == MO_64;
2796 }
2797 }
2798
2799 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2800 {
2801 if (a->rn == 31) {
2802 gen_check_sp_alignment(s);
2803 }
2804 if (a->lasr) {
2805 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2806 }
2807 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2808 return true;
2809 }
2810
2811 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2812 {
2813 if (a->rn == 31) {
2814 gen_check_sp_alignment(s);
2815 }
2816 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2817 if (a->lasr) {
2818 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2819 }
2820 return true;
2821 }
2822
2823 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2824 {
2825 TCGv_i64 clean_addr;
2826 MemOp memop;
2827 bool iss_sf = ldst_iss_sf(a->sz, false, false);
2828
2829 /*
2830 * StoreLORelease is the same as Store-Release for QEMU, but
2831 * needs the feature-test.
2832 */
2833 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2834 return false;
2835 }
2836 /* Generate ISS for non-exclusive accesses including LASR. */
2837 if (a->rn == 31) {
2838 gen_check_sp_alignment(s);
2839 }
2840 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2841 memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2842 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2843 true, a->rn != 31, memop);
2844 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2845 iss_sf, a->lasr);
2846 return true;
2847 }
2848
2849 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2850 {
2851 TCGv_i64 clean_addr;
2852 MemOp memop;
2853 bool iss_sf = ldst_iss_sf(a->sz, false, false);
2854
2855 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2856 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2857 return false;
2858 }
2859 /* Generate ISS for non-exclusive accesses including LASR. */
2860 if (a->rn == 31) {
2861 gen_check_sp_alignment(s);
2862 }
2863 memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2864 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2865 false, a->rn != 31, memop);
2866 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2867 a->rt, iss_sf, a->lasr);
2868 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2869 return true;
2870 }
2871
2872 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2873 {
2874 if (a->rn == 31) {
2875 gen_check_sp_alignment(s);
2876 }
2877 if (a->lasr) {
2878 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2879 }
2880 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
2881 return true;
2882 }
2883
2884 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
2885 {
2886 if (a->rn == 31) {
2887 gen_check_sp_alignment(s);
2888 }
2889 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
2890 if (a->lasr) {
2891 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2892 }
2893 return true;
2894 }
2895
2896 static bool trans_CASP(DisasContext *s, arg_CASP *a)
2897 {
2898 if (!dc_isar_feature(aa64_atomics, s)) {
2899 return false;
2900 }
2901 if (((a->rt | a->rs) & 1) != 0) {
2902 return false;
2903 }
2904
2905 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
2906 return true;
2907 }
2908
2909 static bool trans_CAS(DisasContext *s, arg_CAS *a)
2910 {
2911 if (!dc_isar_feature(aa64_atomics, s)) {
2912 return false;
2913 }
2914 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
2915 return true;
2916 }
2917
2918 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
2919 {
2920 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
2921 TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
2922 TCGv_i64 clean_addr = tcg_temp_new_i64();
2923 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
2924
2925 gen_pc_plus_diff(s, clean_addr, a->imm);
2926 do_gpr_ld(s, tcg_rt, clean_addr, memop,
2927 false, true, a->rt, iss_sf, false);
2928 return true;
2929 }
2930
2931 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
2932 {
2933 /* Load register (literal), vector version */
2934 TCGv_i64 clean_addr;
2935 MemOp memop;
2936
2937 if (!fp_access_check(s)) {
2938 return true;
2939 }
2940 memop = finalize_memop_asimd(s, a->sz);
2941 clean_addr = tcg_temp_new_i64();
2942 gen_pc_plus_diff(s, clean_addr, a->imm);
2943 do_fp_ld(s, a->rt, clean_addr, memop);
2944 return true;
2945 }
2946
2947 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
2948 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
2949 uint64_t offset, bool is_store, MemOp mop)
2950 {
2951 if (a->rn == 31) {
2952 gen_check_sp_alignment(s);
2953 }
2954
2955 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
2956 if (!a->p) {
2957 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
2958 }
2959
2960 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
2961 (a->w || a->rn != 31), 2 << a->sz, mop);
2962 }
2963
2964 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
2965 TCGv_i64 dirty_addr, uint64_t offset)
2966 {
2967 if (a->w) {
2968 if (a->p) {
2969 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2970 }
2971 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
2972 }
2973 }
2974
2975 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
2976 {
2977 uint64_t offset = a->imm << a->sz;
2978 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
2979 MemOp mop = finalize_memop(s, a->sz);
2980
2981 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
2982 tcg_rt = cpu_reg(s, a->rt);
2983 tcg_rt2 = cpu_reg(s, a->rt2);
2984 /*
2985 * We built mop above for the single logical access -- rebuild it
2986 * now for the paired operation.
2987 *
2988 * With LSE2, non-sign-extending pairs are treated atomically if
2989 * aligned, and if unaligned one of the pair will be completely
2990 * within a 16-byte block and that element will be atomic.
2991 * Otherwise each element is separately atomic.
2992 * In all cases, issue one operation with the correct atomicity.
2993 */
2994 mop = a->sz + 1;
2995 if (s->align_mem) {
2996 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
2997 }
2998 mop = finalize_memop_pair(s, mop);
2999 if (a->sz == 2) {
3000 TCGv_i64 tmp = tcg_temp_new_i64();
3001
3002 if (s->be_data == MO_LE) {
3003 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3004 } else {
3005 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3006 }
3007 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3008 } else {
3009 TCGv_i128 tmp = tcg_temp_new_i128();
3010
3011 if (s->be_data == MO_LE) {
3012 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3013 } else {
3014 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3015 }
3016 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3017 }
3018 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3019 return true;
3020 }
3021
3022 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3023 {
3024 uint64_t offset = a->imm << a->sz;
3025 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3026 MemOp mop = finalize_memop(s, a->sz);
3027
3028 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3029 tcg_rt = cpu_reg(s, a->rt);
3030 tcg_rt2 = cpu_reg(s, a->rt2);
3031
3032 /*
3033 * We built mop above for the single logical access -- rebuild it
3034 * now for the paired operation.
3035 *
3036 * With LSE2, non-sign-extending pairs are treated atomically if
3037 * aligned, and if unaligned one of the pair will be completely
3038 * within a 16-byte block and that element will be atomic.
3039 * Otherwise each element is separately atomic.
3040 * In all cases, issue one operation with the correct atomicity.
3041 *
3042 * This treats sign-extending loads like zero-extending loads,
3043 * since that reuses the most code below.
3044 */
3045 mop = a->sz + 1;
3046 if (s->align_mem) {
3047 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3048 }
3049 mop = finalize_memop_pair(s, mop);
3050 if (a->sz == 2) {
3051 int o2 = s->be_data == MO_LE ? 32 : 0;
3052 int o1 = o2 ^ 32;
3053
3054 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3055 if (a->sign) {
3056 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3057 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3058 } else {
3059 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3060 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3061 }
3062 } else {
3063 TCGv_i128 tmp = tcg_temp_new_i128();
3064
3065 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3066 if (s->be_data == MO_LE) {
3067 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3068 } else {
3069 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3070 }
3071 }
3072 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3073 return true;
3074 }
3075
3076 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3077 {
3078 uint64_t offset = a->imm << a->sz;
3079 TCGv_i64 clean_addr, dirty_addr;
3080 MemOp mop;
3081
3082 if (!fp_access_check(s)) {
3083 return true;
3084 }
3085
3086 /* LSE2 does not merge FP pairs; leave these as separate operations. */
3087 mop = finalize_memop_asimd(s, a->sz);
3088 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3089 do_fp_st(s, a->rt, clean_addr, mop);
3090 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3091 do_fp_st(s, a->rt2, clean_addr, mop);
3092 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3093 return true;
3094 }
3095
3096 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3097 {
3098 uint64_t offset = a->imm << a->sz;
3099 TCGv_i64 clean_addr, dirty_addr;
3100 MemOp mop;
3101
3102 if (!fp_access_check(s)) {
3103 return true;
3104 }
3105
3106 /* LSE2 does not merge FP pairs; leave these as separate operations. */
3107 mop = finalize_memop_asimd(s, a->sz);
3108 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3109 do_fp_ld(s, a->rt, clean_addr, mop);
3110 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3111 do_fp_ld(s, a->rt2, clean_addr, mop);
3112 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3113 return true;
3114 }
3115
3116 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3117 {
3118 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3119 uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3120 MemOp mop;
3121 TCGv_i128 tmp;
3122
3123 /* STGP only comes in one size. */
3124 tcg_debug_assert(a->sz == MO_64);
3125
3126 if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3127 return false;
3128 }
3129
3130 if (a->rn == 31) {
3131 gen_check_sp_alignment(s);
3132 }
3133
3134 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3135 if (!a->p) {
3136 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3137 }
3138
3139 clean_addr = clean_data_tbi(s, dirty_addr);
3140 tcg_rt = cpu_reg(s, a->rt);
3141 tcg_rt2 = cpu_reg(s, a->rt2);
3142
3143 /*
3144 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3145 * and one tag operation. We implement it as one single aligned 16-byte
3146 * memory operation for convenience. Note that the alignment ensures
3147 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3148 */
3149 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3150
3151 tmp = tcg_temp_new_i128();
3152 if (s->be_data == MO_LE) {
3153 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3154 } else {
3155 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3156 }
3157 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3158
3159 /* Perform the tag store, if tag access enabled. */
3160 if (s->ata[0]) {
3161 if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3162 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3163 } else {
3164 gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3165 }
3166 }
3167
3168 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3169 return true;
3170 }
3171
3172 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3173 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3174 uint64_t offset, bool is_store, MemOp mop)
3175 {
3176 int memidx;
3177
3178 if (a->rn == 31) {
3179 gen_check_sp_alignment(s);
3180 }
3181
3182 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3183 if (!a->p) {
3184 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3185 }
3186 memidx = get_a64_user_mem_index(s, a->unpriv);
3187 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3188 a->w || a->rn != 31,
3189 mop, a->unpriv, memidx);
3190 }
3191
3192 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3193 TCGv_i64 dirty_addr, uint64_t offset)
3194 {
3195 if (a->w) {
3196 if (a->p) {
3197 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3198 }
3199 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3200 }
3201 }
3202
3203 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3204 {
3205 bool iss_sf, iss_valid = !a->w;
3206 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3207 int memidx = get_a64_user_mem_index(s, a->unpriv);
3208 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3209
3210 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3211
3212 tcg_rt = cpu_reg(s, a->rt);
3213 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3214
3215 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3216 iss_valid, a->rt, iss_sf, false);
3217 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3218 return true;
3219 }
3220
3221 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3222 {
3223 bool iss_sf, iss_valid = !a->w;
3224 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3225 int memidx = get_a64_user_mem_index(s, a->unpriv);
3226 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3227
3228 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3229
3230 tcg_rt = cpu_reg(s, a->rt);
3231 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3232
3233 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3234 a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3235 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3236 return true;
3237 }
3238
3239 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3240 {
3241 TCGv_i64 clean_addr, dirty_addr;
3242 MemOp mop;
3243
3244 if (!fp_access_check(s)) {
3245 return true;
3246 }
3247 mop = finalize_memop_asimd(s, a->sz);
3248 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3249 do_fp_st(s, a->rt, clean_addr, mop);
3250 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3251 return true;
3252 }
3253
3254 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3255 {
3256 TCGv_i64 clean_addr, dirty_addr;
3257 MemOp mop;
3258
3259 if (!fp_access_check(s)) {
3260 return true;
3261 }
3262 mop = finalize_memop_asimd(s, a->sz);
3263 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3264 do_fp_ld(s, a->rt, clean_addr, mop);
3265 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3266 return true;
3267 }
3268
3269 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3270 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3271 bool is_store, MemOp memop)
3272 {
3273 TCGv_i64 tcg_rm;
3274
3275 if (a->rn == 31) {
3276 gen_check_sp_alignment(s);
3277 }
3278 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3279
3280 tcg_rm = read_cpu_reg(s, a->rm, 1);
3281 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3282
3283 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3284 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3285 }
3286
3287 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3288 {
3289 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3290 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3291 MemOp memop;
3292
3293 if (extract32(a->opt, 1, 1) == 0) {
3294 return false;
3295 }
3296
3297 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3298 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3299 tcg_rt = cpu_reg(s, a->rt);
3300 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3301 a->ext, true, a->rt, iss_sf, false);
3302 return true;
3303 }
3304
3305 static bool trans_STR(DisasContext *s, arg_ldst *a)
3306 {
3307 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3308 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3309 MemOp memop;
3310
3311 if (extract32(a->opt, 1, 1) == 0) {
3312 return false;
3313 }
3314
3315 memop = finalize_memop(s, a->sz);
3316 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3317 tcg_rt = cpu_reg(s, a->rt);
3318 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3319 return true;
3320 }
3321
3322 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3323 {
3324 TCGv_i64 clean_addr, dirty_addr;
3325 MemOp memop;
3326
3327 if (extract32(a->opt, 1, 1) == 0) {
3328 return false;
3329 }
3330
3331 if (!fp_access_check(s)) {
3332 return true;
3333 }
3334
3335 memop = finalize_memop_asimd(s, a->sz);
3336 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3337 do_fp_ld(s, a->rt, clean_addr, memop);
3338 return true;
3339 }
3340
3341 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3342 {
3343 TCGv_i64 clean_addr, dirty_addr;
3344 MemOp memop;
3345
3346 if (extract32(a->opt, 1, 1) == 0) {
3347 return false;
3348 }
3349
3350 if (!fp_access_check(s)) {
3351 return true;
3352 }
3353
3354 memop = finalize_memop_asimd(s, a->sz);
3355 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3356 do_fp_st(s, a->rt, clean_addr, memop);
3357 return true;
3358 }
3359
3360
3361 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3362 int sign, bool invert)
3363 {
3364 MemOp mop = a->sz | sign;
3365 TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3366
3367 if (a->rn == 31) {
3368 gen_check_sp_alignment(s);
3369 }
3370 mop = check_atomic_align(s, a->rn, mop);
3371 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3372 a->rn != 31, mop);
3373 tcg_rs = read_cpu_reg(s, a->rs, true);
3374 tcg_rt = cpu_reg(s, a->rt);
3375 if (invert) {
3376 tcg_gen_not_i64(tcg_rs, tcg_rs);
3377 }
3378 /*
3379 * The tcg atomic primitives are all full barriers. Therefore we
3380 * can ignore the Acquire and Release bits of this instruction.
3381 */
3382 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3383
3384 if (mop & MO_SIGN) {
3385 switch (a->sz) {
3386 case MO_8:
3387 tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3388 break;
3389 case MO_16:
3390 tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3391 break;
3392 case MO_32:
3393 tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3394 break;
3395 case MO_64:
3396 break;
3397 default:
3398 g_assert_not_reached();
3399 }
3400 }
3401 return true;
3402 }
3403
3404 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3405 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3406 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3407 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3408 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3409 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3410 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3411 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3412 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3413
3414 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3415 {
3416 bool iss_sf = ldst_iss_sf(a->sz, false, false);
3417 TCGv_i64 clean_addr;
3418 MemOp mop;
3419
3420 if (!dc_isar_feature(aa64_atomics, s) ||
3421 !dc_isar_feature(aa64_rcpc_8_3, s)) {
3422 return false;
3423 }
3424 if (a->rn == 31) {
3425 gen_check_sp_alignment(s);
3426 }
3427 mop = check_atomic_align(s, a->rn, a->sz);
3428 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3429 a->rn != 31, mop);
3430 /*
3431 * LDAPR* are a special case because they are a simple load, not a
3432 * fetch-and-do-something op.
3433 * The architectural consistency requirements here are weaker than
3434 * full load-acquire (we only need "load-acquire processor consistent"),
3435 * but we choose to implement them as full LDAQ.
3436 */
3437 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3438 true, a->rt, iss_sf, true);
3439 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3440 return true;
3441 }
3442
3443 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3444 {
3445 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3446 MemOp memop;
3447
3448 /* Load with pointer authentication */
3449 if (!dc_isar_feature(aa64_pauth, s)) {
3450 return false;
3451 }
3452
3453 if (a->rn == 31) {
3454 gen_check_sp_alignment(s);
3455 }
3456 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3457
3458 if (s->pauth_active) {
3459 if (!a->m) {
3460 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3461 tcg_constant_i64(0));
3462 } else {
3463 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3464 tcg_constant_i64(0));
3465 }
3466 }
3467
3468 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3469
3470 memop = finalize_memop(s, MO_64);
3471
3472 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3473 clean_addr = gen_mte_check1(s, dirty_addr, false,
3474 a->w || a->rn != 31, memop);
3475
3476 tcg_rt = cpu_reg(s, a->rt);
3477 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3478 /* extend */ false, /* iss_valid */ !a->w,
3479 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3480
3481 if (a->w) {
3482 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3483 }
3484 return true;
3485 }
3486
3487 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3488 {
3489 TCGv_i64 clean_addr, dirty_addr;
3490 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3491 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3492
3493 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3494 return false;
3495 }
3496
3497 if (a->rn == 31) {
3498 gen_check_sp_alignment(s);
3499 }
3500
3501 mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3502 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3503 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3504 clean_addr = clean_data_tbi(s, dirty_addr);
3505
3506 /*
3507 * Load-AcquirePC semantics; we implement as the slightly more
3508 * restrictive Load-Acquire.
3509 */
3510 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3511 a->rt, iss_sf, true);
3512 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3513 return true;
3514 }
3515
3516 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3517 {
3518 TCGv_i64 clean_addr, dirty_addr;
3519 MemOp mop = a->sz;
3520 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3521
3522 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3523 return false;
3524 }
3525
3526 /* TODO: ARMv8.4-LSE SCTLR.nAA */
3527
3528 if (a->rn == 31) {
3529 gen_check_sp_alignment(s);
3530 }
3531
3532 mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3533 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3534 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3535 clean_addr = clean_data_tbi(s, dirty_addr);
3536
3537 /* Store-Release semantics */
3538 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3539 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3540 return true;
3541 }
3542
3543 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3544 {
3545 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3546 MemOp endian, align, mop;
3547
3548 int total; /* total bytes */
3549 int elements; /* elements per vector */
3550 int r;
3551 int size = a->sz;
3552
3553 if (!a->p && a->rm != 0) {
3554 /* For non-postindexed accesses the Rm field must be 0 */
3555 return false;
3556 }
3557 if (size == 3 && !a->q && a->selem != 1) {
3558 return false;
3559 }
3560 if (!fp_access_check(s)) {
3561 return true;
3562 }
3563
3564 if (a->rn == 31) {
3565 gen_check_sp_alignment(s);
3566 }
3567
3568 /* For our purposes, bytes are always little-endian. */
3569 endian = s->be_data;
3570 if (size == 0) {
3571 endian = MO_LE;
3572 }
3573
3574 total = a->rpt * a->selem * (a->q ? 16 : 8);
3575 tcg_rn = cpu_reg_sp(s, a->rn);
3576
3577 /*
3578 * Issue the MTE check vs the logical repeat count, before we
3579 * promote consecutive little-endian elements below.
3580 */
3581 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3582 finalize_memop_asimd(s, size));
3583
3584 /*
3585 * Consecutive little-endian elements from a single register
3586 * can be promoted to a larger little-endian operation.
3587 */
3588 align = MO_ALIGN;
3589 if (a->selem == 1 && endian == MO_LE) {
3590 align = pow2_align(size);
3591 size = 3;
3592 }
3593 if (!s->align_mem) {
3594 align = 0;
3595 }
3596 mop = endian | size | align;
3597
3598 elements = (a->q ? 16 : 8) >> size;
3599 tcg_ebytes = tcg_constant_i64(1 << size);
3600 for (r = 0; r < a->rpt; r++) {
3601 int e;
3602 for (e = 0; e < elements; e++) {
3603 int xs;
3604 for (xs = 0; xs < a->selem; xs++) {
3605 int tt = (a->rt + r + xs) % 32;
3606 do_vec_ld(s, tt, e, clean_addr, mop);
3607 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3608 }
3609 }
3610 }
3611
3612 /*
3613 * For non-quad operations, setting a slice of the low 64 bits of
3614 * the register clears the high 64 bits (in the ARM ARM pseudocode
3615 * this is implicit in the fact that 'rval' is a 64 bit wide
3616 * variable). For quad operations, we might still need to zero
3617 * the high bits of SVE.
3618 */
3619 for (r = 0; r < a->rpt * a->selem; r++) {
3620 int tt = (a->rt + r) % 32;
3621 clear_vec_high(s, a->q, tt);
3622 }
3623
3624 if (a->p) {
3625 if (a->rm == 31) {
3626 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3627 } else {
3628 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3629 }
3630 }
3631 return true;
3632 }
3633
3634 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3635 {
3636 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3637 MemOp endian, align, mop;
3638
3639 int total; /* total bytes */
3640 int elements; /* elements per vector */
3641 int r;
3642 int size = a->sz;
3643
3644 if (!a->p && a->rm != 0) {
3645 /* For non-postindexed accesses the Rm field must be 0 */
3646 return false;
3647 }
3648 if (size == 3 && !a->q && a->selem != 1) {
3649 return false;
3650 }
3651 if (!fp_access_check(s)) {
3652 return true;
3653 }
3654
3655 if (a->rn == 31) {
3656 gen_check_sp_alignment(s);
3657 }
3658
3659 /* For our purposes, bytes are always little-endian. */
3660 endian = s->be_data;
3661 if (size == 0) {
3662 endian = MO_LE;
3663 }
3664
3665 total = a->rpt * a->selem * (a->q ? 16 : 8);
3666 tcg_rn = cpu_reg_sp(s, a->rn);
3667
3668 /*
3669 * Issue the MTE check vs the logical repeat count, before we
3670 * promote consecutive little-endian elements below.
3671 */
3672 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3673 finalize_memop_asimd(s, size));
3674
3675 /*
3676 * Consecutive little-endian elements from a single register
3677 * can be promoted to a larger little-endian operation.
3678 */
3679 align = MO_ALIGN;
3680 if (a->selem == 1 && endian == MO_LE) {
3681 align = pow2_align(size);
3682 size = 3;
3683 }
3684 if (!s->align_mem) {
3685 align = 0;
3686 }
3687 mop = endian | size | align;
3688
3689 elements = (a->q ? 16 : 8) >> size;
3690 tcg_ebytes = tcg_constant_i64(1 << size);
3691 for (r = 0; r < a->rpt; r++) {
3692 int e;
3693 for (e = 0; e < elements; e++) {
3694 int xs;
3695 for (xs = 0; xs < a->selem; xs++) {
3696 int tt = (a->rt + r + xs) % 32;
3697 do_vec_st(s, tt, e, clean_addr, mop);
3698 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3699 }
3700 }
3701 }
3702
3703 if (a->p) {
3704 if (a->rm == 31) {
3705 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3706 } else {
3707 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3708 }
3709 }
3710 return true;
3711 }
3712
3713 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3714 {
3715 int xs, total, rt;
3716 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3717 MemOp mop;
3718
3719 if (!a->p && a->rm != 0) {
3720 return false;
3721 }
3722 if (!fp_access_check(s)) {
3723 return true;
3724 }
3725
3726 if (a->rn == 31) {
3727 gen_check_sp_alignment(s);
3728 }
3729
3730 total = a->selem << a->scale;
3731 tcg_rn = cpu_reg_sp(s, a->rn);
3732
3733 mop = finalize_memop_asimd(s, a->scale);
3734 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3735 total, mop);
3736
3737 tcg_ebytes = tcg_constant_i64(1 << a->scale);
3738 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3739 do_vec_st(s, rt, a->index, clean_addr, mop);
3740 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3741 }
3742
3743 if (a->p) {
3744 if (a->rm == 31) {
3745 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3746 } else {
3747 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3748 }
3749 }
3750 return true;
3751 }
3752
3753 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3754 {
3755 int xs, total, rt;
3756 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3757 MemOp mop;
3758
3759 if (!a->p && a->rm != 0) {
3760 return false;
3761 }
3762 if (!fp_access_check(s)) {
3763 return true;
3764 }
3765
3766 if (a->rn == 31) {
3767 gen_check_sp_alignment(s);
3768 }
3769
3770 total = a->selem << a->scale;
3771 tcg_rn = cpu_reg_sp(s, a->rn);
3772
3773 mop = finalize_memop_asimd(s, a->scale);
3774 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3775 total, mop);
3776
3777 tcg_ebytes = tcg_constant_i64(1 << a->scale);
3778 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3779 do_vec_ld(s, rt, a->index, clean_addr, mop);
3780 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3781 }
3782
3783 if (a->p) {
3784 if (a->rm == 31) {
3785 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3786 } else {
3787 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3788 }
3789 }
3790 return true;
3791 }
3792
3793 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3794 {
3795 int xs, total, rt;
3796 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3797 MemOp mop;
3798
3799 if (!a->p && a->rm != 0) {
3800 return false;
3801 }
3802 if (!fp_access_check(s)) {
3803 return true;
3804 }
3805
3806 if (a->rn == 31) {
3807 gen_check_sp_alignment(s);
3808 }
3809
3810 total = a->selem << a->scale;
3811 tcg_rn = cpu_reg_sp(s, a->rn);
3812
3813 mop = finalize_memop_asimd(s, a->scale);
3814 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3815 total, mop);
3816
3817 tcg_ebytes = tcg_constant_i64(1 << a->scale);
3818 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3819 /* Load and replicate to all elements */
3820 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3821
3822 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3823 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3824 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3825 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3826 }
3827
3828 if (a->p) {
3829 if (a->rm == 31) {
3830 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3831 } else {
3832 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3833 }
3834 }
3835 return true;
3836 }
3837
3838 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3839 {
3840 TCGv_i64 addr, clean_addr, tcg_rt;
3841 int size = 4 << s->dcz_blocksize;
3842
3843 if (!dc_isar_feature(aa64_mte, s)) {
3844 return false;
3845 }
3846 if (s->current_el == 0) {
3847 return false;
3848 }
3849
3850 if (a->rn == 31) {
3851 gen_check_sp_alignment(s);
3852 }
3853
3854 addr = read_cpu_reg_sp(s, a->rn, true);
3855 tcg_gen_addi_i64(addr, addr, a->imm);
3856 tcg_rt = cpu_reg(s, a->rt);
3857
3858 if (s->ata[0]) {
3859 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3860 }
3861 /*
3862 * The non-tags portion of STZGM is mostly like DC_ZVA,
3863 * except the alignment happens before the access.
3864 */
3865 clean_addr = clean_data_tbi(s, addr);
3866 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3867 gen_helper_dc_zva(tcg_env, clean_addr);
3868 return true;
3869 }
3870
3871 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3872 {
3873 TCGv_i64 addr, clean_addr, tcg_rt;
3874
3875 if (!dc_isar_feature(aa64_mte, s)) {
3876 return false;
3877 }
3878 if (s->current_el == 0) {
3879 return false;
3880 }
3881
3882 if (a->rn == 31) {
3883 gen_check_sp_alignment(s);
3884 }
3885
3886 addr = read_cpu_reg_sp(s, a->rn, true);
3887 tcg_gen_addi_i64(addr, addr, a->imm);
3888 tcg_rt = cpu_reg(s, a->rt);
3889
3890 if (s->ata[0]) {
3891 gen_helper_stgm(tcg_env, addr, tcg_rt);
3892 } else {
3893 MMUAccessType acc = MMU_DATA_STORE;
3894 int size = 4 << s->gm_blocksize;
3895
3896 clean_addr = clean_data_tbi(s, addr);
3897 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3898 gen_probe_access(s, clean_addr, acc, size);
3899 }
3900 return true;
3901 }
3902
3903 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
3904 {
3905 TCGv_i64 addr, clean_addr, tcg_rt;
3906
3907 if (!dc_isar_feature(aa64_mte, s)) {
3908 return false;
3909 }
3910 if (s->current_el == 0) {
3911 return false;
3912 }
3913
3914 if (a->rn == 31) {
3915 gen_check_sp_alignment(s);
3916 }
3917
3918 addr = read_cpu_reg_sp(s, a->rn, true);
3919 tcg_gen_addi_i64(addr, addr, a->imm);
3920 tcg_rt = cpu_reg(s, a->rt);
3921
3922 if (s->ata[0]) {
3923 gen_helper_ldgm(tcg_rt, tcg_env, addr);
3924 } else {
3925 MMUAccessType acc = MMU_DATA_LOAD;
3926 int size = 4 << s->gm_blocksize;
3927
3928 clean_addr = clean_data_tbi(s, addr);
3929 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3930 gen_probe_access(s, clean_addr, acc, size);
3931 /* The result tags are zeros. */
3932 tcg_gen_movi_i64(tcg_rt, 0);
3933 }
3934 return true;
3935 }
3936
3937 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
3938 {
3939 TCGv_i64 addr, clean_addr, tcg_rt;
3940
3941 if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3942 return false;
3943 }
3944
3945 if (a->rn == 31) {
3946 gen_check_sp_alignment(s);
3947 }
3948
3949 addr = read_cpu_reg_sp(s, a->rn, true);
3950 if (!a->p) {
3951 /* pre-index or signed offset */
3952 tcg_gen_addi_i64(addr, addr, a->imm);
3953 }
3954
3955 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
3956 tcg_rt = cpu_reg(s, a->rt);
3957 if (s->ata[0]) {
3958 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
3959 } else {
3960 /*
3961 * Tag access disabled: we must check for aborts on the load
3962 * load from [rn+offset], and then insert a 0 tag into rt.
3963 */
3964 clean_addr = clean_data_tbi(s, addr);
3965 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
3966 gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
3967 }
3968
3969 if (a->w) {
3970 /* pre-index or post-index */
3971 if (a->p) {
3972 /* post-index */
3973 tcg_gen_addi_i64(addr, addr, a->imm);
3974 }
3975 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
3976 }
3977 return true;
3978 }
3979
3980 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
3981 {
3982 TCGv_i64 addr, tcg_rt;
3983
3984 if (a->rn == 31) {
3985 gen_check_sp_alignment(s);
3986 }
3987
3988 addr = read_cpu_reg_sp(s, a->rn, true);
3989 if (!a->p) {
3990 /* pre-index or signed offset */
3991 tcg_gen_addi_i64(addr, addr, a->imm);
3992 }
3993 tcg_rt = cpu_reg_sp(s, a->rt);
3994 if (!s->ata[0]) {
3995 /*
3996 * For STG and ST2G, we need to check alignment and probe memory.
3997 * TODO: For STZG and STZ2G, we could rely on the stores below,
3998 * at least for system mode; user-only won't enforce alignment.
3999 */
4000 if (is_pair) {
4001 gen_helper_st2g_stub(tcg_env, addr);
4002 } else {
4003 gen_helper_stg_stub(tcg_env, addr);
4004 }
4005 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4006 if (is_pair) {
4007 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4008 } else {
4009 gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4010 }
4011 } else {
4012 if (is_pair) {
4013 gen_helper_st2g(tcg_env, addr, tcg_rt);
4014 } else {
4015 gen_helper_stg(tcg_env, addr, tcg_rt);
4016 }
4017 }
4018
4019 if (is_zero) {
4020 TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4021 TCGv_i64 zero64 = tcg_constant_i64(0);
4022 TCGv_i128 zero128 = tcg_temp_new_i128();
4023 int mem_index = get_mem_index(s);
4024 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4025
4026 tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4027
4028 /* This is 1 or 2 atomic 16-byte operations. */
4029 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4030 if (is_pair) {
4031 tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4032 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4033 }
4034 }
4035
4036 if (a->w) {
4037 /* pre-index or post-index */
4038 if (a->p) {
4039 /* post-index */
4040 tcg_gen_addi_i64(addr, addr, a->imm);
4041 }
4042 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4043 }
4044 return true;
4045 }
4046
4047 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4048 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4049 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4050 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4051
4052 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4053
4054 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4055 bool is_setg, SetFn fn)
4056 {
4057 int memidx;
4058 uint32_t syndrome, desc = 0;
4059
4060 if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4061 return false;
4062 }
4063
4064 /*
4065 * UNPREDICTABLE cases: we choose to UNDEF, which allows
4066 * us to pull this check before the CheckMOPSEnabled() test
4067 * (which we do in the helper function)
4068 */
4069 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4070 a->rd == 31 || a->rn == 31) {
4071 return false;
4072 }
4073
4074 memidx = get_a64_user_mem_index(s, a->unpriv);
4075
4076 /*
4077 * We pass option_a == true, matching our implementation;
4078 * we pass wrong_option == false: helper function may set that bit.
4079 */
4080 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4081 is_epilogue, false, true, a->rd, a->rs, a->rn);
4082
4083 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4084 /* We may need to do MTE tag checking, so assemble the descriptor */
4085 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4086 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4087 desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4088 /* SIZEM1 and ALIGN we leave 0 (byte write) */
4089 }
4090 /* The helper function always needs the memidx even with MTE disabled */
4091 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4092
4093 /*
4094 * The helper needs the register numbers, but since they're in
4095 * the syndrome anyway, we let it extract them from there rather
4096 * than passing in an extra three integer arguments.
4097 */
4098 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4099 return true;
4100 }
4101
4102 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4103 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4104 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4105 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4106 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4107 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4108
4109 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4110
4111 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4112 {
4113 int rmemidx, wmemidx;
4114 uint32_t syndrome, rdesc = 0, wdesc = 0;
4115 bool wunpriv = extract32(a->options, 0, 1);
4116 bool runpriv = extract32(a->options, 1, 1);
4117
4118 /*
4119 * UNPREDICTABLE cases: we choose to UNDEF, which allows
4120 * us to pull this check before the CheckMOPSEnabled() test
4121 * (which we do in the helper function)
4122 */
4123 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4124 a->rd == 31 || a->rs == 31 || a->rn == 31) {
4125 return false;
4126 }
4127
4128 rmemidx = get_a64_user_mem_index(s, runpriv);
4129 wmemidx = get_a64_user_mem_index(s, wunpriv);
4130
4131 /*
4132 * We pass option_a == true, matching our implementation;
4133 * we pass wrong_option == false: helper function may set that bit.
4134 */
4135 syndrome = syn_mop(false, false, a->options, is_epilogue,
4136 false, true, a->rd, a->rs, a->rn);
4137
4138 /* If we need to do MTE tag checking, assemble the descriptors */
4139 if (s->mte_active[runpriv]) {
4140 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4141 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4142 }
4143 if (s->mte_active[wunpriv]) {
4144 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4145 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4146 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4147 }
4148 /* The helper function needs these parts of the descriptor regardless */
4149 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4150 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4151
4152 /*
4153 * The helper needs the register numbers, but since they're in
4154 * the syndrome anyway, we let it extract them from there rather
4155 * than passing in an extra three integer arguments.
4156 */
4157 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4158 tcg_constant_i32(rdesc));
4159 return true;
4160 }
4161
4162 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4163 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4164 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4165 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4166 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4167 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4168
4169 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4170
4171 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4172 bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4173 {
4174 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4175 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4176 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4177
4178 fn(tcg_rd, tcg_rn, tcg_imm);
4179 if (!a->sf) {
4180 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4181 }
4182 return true;
4183 }
4184
4185 /*
4186 * PC-rel. addressing
4187 */
4188
4189 static bool trans_ADR(DisasContext *s, arg_ri *a)
4190 {
4191 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4192 return true;
4193 }
4194
4195 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4196 {
4197 int64_t offset = (int64_t)a->imm << 12;
4198
4199 /* The page offset is ok for CF_PCREL. */
4200 offset -= s->pc_curr & 0xfff;
4201 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4202 return true;
4203 }
4204
4205 /*
4206 * Add/subtract (immediate)
4207 */
4208 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4209 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4210 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4211 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4212
4213 /*
4214 * Add/subtract (immediate, with tags)
4215 */
4216
4217 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4218 bool sub_op)
4219 {
4220 TCGv_i64 tcg_rn, tcg_rd;
4221 int imm;
4222
4223 imm = a->uimm6 << LOG2_TAG_GRANULE;
4224 if (sub_op) {
4225 imm = -imm;
4226 }
4227
4228 tcg_rn = cpu_reg_sp(s, a->rn);
4229 tcg_rd = cpu_reg_sp(s, a->rd);
4230
4231 if (s->ata[0]) {
4232 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4233 tcg_constant_i32(imm),
4234 tcg_constant_i32(a->uimm4));
4235 } else {
4236 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4237 gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4238 }
4239 return true;
4240 }
4241
4242 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4243 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4244
4245 /* The input should be a value in the bottom e bits (with higher
4246 * bits zero); returns that value replicated into every element
4247 * of size e in a 64 bit integer.
4248 */
4249 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4250 {
4251 assert(e != 0);
4252 while (e < 64) {
4253 mask |= mask << e;
4254 e *= 2;
4255 }
4256 return mask;
4257 }
4258
4259 /*
4260 * Logical (immediate)
4261 */
4262
4263 /*
4264 * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4265 * only require the wmask. Returns false if the imms/immr/immn are a reserved
4266 * value (ie should cause a guest UNDEF exception), and true if they are
4267 * valid, in which case the decoded bit pattern is written to result.
4268 */
4269 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4270 unsigned int imms, unsigned int immr)
4271 {
4272 uint64_t mask;
4273 unsigned e, levels, s, r;
4274 int len;
4275
4276 assert(immn < 2 && imms < 64 && immr < 64);
4277
4278 /* The bit patterns we create here are 64 bit patterns which
4279 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4280 * 64 bits each. Each element contains the same value: a run
4281 * of between 1 and e-1 non-zero bits, rotated within the
4282 * element by between 0 and e-1 bits.
4283 *
4284 * The element size and run length are encoded into immn (1 bit)
4285 * and imms (6 bits) as follows:
4286 * 64 bit elements: immn = 1, imms = <length of run - 1>
4287 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4288 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4289 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4290 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4291 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4292 * Notice that immn = 0, imms = 11111x is the only combination
4293 * not covered by one of the above options; this is reserved.
4294 * Further, <length of run - 1> all-ones is a reserved pattern.
4295 *
4296 * In all cases the rotation is by immr % e (and immr is 6 bits).
4297 */
4298
4299 /* First determine the element size */
4300 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4301 if (len < 1) {
4302 /* This is the immn == 0, imms == 0x11111x case */
4303 return false;
4304 }
4305 e = 1 << len;
4306
4307 levels = e - 1;
4308 s = imms & levels;
4309 r = immr & levels;
4310
4311 if (s == levels) {
4312 /* <length of run - 1> mustn't be all-ones. */
4313 return false;
4314 }
4315
4316 /* Create the value of one element: s+1 set bits rotated
4317 * by r within the element (which is e bits wide)...
4318 */
4319 mask = MAKE_64BIT_MASK(0, s + 1);
4320 if (r) {
4321 mask = (mask >> r) | (mask << (e - r));
4322 mask &= MAKE_64BIT_MASK(0, e);
4323 }
4324 /* ...then replicate the element over the whole 64 bit value */
4325 mask = bitfield_replicate(mask, e);
4326 *result = mask;
4327 return true;
4328 }
4329
4330 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4331 void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4332 {
4333 TCGv_i64 tcg_rd, tcg_rn;
4334 uint64_t imm;
4335
4336 /* Some immediate field values are reserved. */
4337 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4338 extract32(a->dbm, 0, 6),
4339 extract32(a->dbm, 6, 6))) {
4340 return false;
4341 }
4342 if (!a->sf) {
4343 imm &= 0xffffffffull;
4344 }
4345
4346 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4347 tcg_rn = cpu_reg(s, a->rn);
4348
4349 fn(tcg_rd, tcg_rn, imm);
4350 if (set_cc) {
4351 gen_logic_CC(a->sf, tcg_rd);
4352 }
4353 if (!a->sf) {
4354 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4355 }
4356 return true;
4357 }
4358
4359 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4360 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4361 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4362 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4363
4364 /*
4365 * Move wide (immediate)
4366 */
4367
4368 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4369 {
4370 int pos = a->hw << 4;
4371 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4372 return true;
4373 }
4374
4375 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4376 {
4377 int pos = a->hw << 4;
4378 uint64_t imm = a->imm;
4379
4380 imm = ~(imm << pos);
4381 if (!a->sf) {
4382 imm = (uint32_t)imm;
4383 }
4384 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4385 return true;
4386 }
4387
4388 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4389 {
4390 int pos = a->hw << 4;
4391 TCGv_i64 tcg_rd, tcg_im;
4392
4393 tcg_rd = cpu_reg(s, a->rd);
4394 tcg_im = tcg_constant_i64(a->imm);
4395 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4396 if (!a->sf) {
4397 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4398 }
4399 return true;
4400 }
4401
4402 /*
4403 * Bitfield
4404 */
4405
4406 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4407 {
4408 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4409 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4410 unsigned int bitsize = a->sf ? 64 : 32;
4411 unsigned int ri = a->immr;
4412 unsigned int si = a->imms;
4413 unsigned int pos, len;
4414
4415 if (si >= ri) {
4416 /* Wd<s-r:0> = Wn<s:r> */
4417 len = (si - ri) + 1;
4418 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4419 if (!a->sf) {
4420 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4421 }
4422 } else {
4423 /* Wd<32+s-r,32-r> = Wn<s:0> */
4424 len = si + 1;
4425 pos = (bitsize - ri) & (bitsize - 1);
4426
4427 if (len < ri) {
4428 /*
4429 * Sign extend the destination field from len to fill the
4430 * balance of the word. Let the deposit below insert all
4431 * of those sign bits.
4432 */
4433 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4434 len = ri;
4435 }
4436
4437 /*
4438 * We start with zero, and we haven't modified any bits outside
4439 * bitsize, therefore no final zero-extension is unneeded for !sf.
4440 */
4441 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4442 }
4443 return true;
4444 }
4445
4446 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4447 {
4448 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4449 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4450 unsigned int bitsize = a->sf ? 64 : 32;
4451 unsigned int ri = a->immr;
4452 unsigned int si = a->imms;
4453 unsigned int pos, len;
4454
4455 tcg_rd = cpu_reg(s, a->rd);
4456 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4457
4458 if (si >= ri) {
4459 /* Wd<s-r:0> = Wn<s:r> */
4460 len = (si - ri) + 1;
4461 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4462 } else {
4463 /* Wd<32+s-r,32-r> = Wn<s:0> */
4464 len = si + 1;
4465 pos = (bitsize - ri) & (bitsize - 1);
4466 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4467 }
4468 return true;
4469 }
4470
4471 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4472 {
4473 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4474 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4475 unsigned int bitsize = a->sf ? 64 : 32;
4476 unsigned int ri = a->immr;
4477 unsigned int si = a->imms;
4478 unsigned int pos, len;
4479
4480 tcg_rd = cpu_reg(s, a->rd);
4481 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4482
4483 if (si >= ri) {
4484 /* Wd<s-r:0> = Wn<s:r> */
4485 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4486 len = (si - ri) + 1;
4487 pos = 0;
4488 } else {
4489 /* Wd<32+s-r,32-r> = Wn<s:0> */
4490 len = si + 1;
4491 pos = (bitsize - ri) & (bitsize - 1);
4492 }
4493
4494 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4495 if (!a->sf) {
4496 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4497 }
4498 return true;
4499 }
4500
4501 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4502 {
4503 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4504
4505 tcg_rd = cpu_reg(s, a->rd);
4506
4507 if (unlikely(a->imm == 0)) {
4508 /*
4509 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4510 * so an extract from bit 0 is a special case.
4511 */
4512 if (a->sf) {
4513 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4514 } else {
4515 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4516 }
4517 } else {
4518 tcg_rm = cpu_reg(s, a->rm);
4519 tcg_rn = cpu_reg(s, a->rn);
4520
4521 if (a->sf) {
4522 /* Specialization to ROR happens in EXTRACT2. */
4523 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4524 } else {
4525 TCGv_i32 t0 = tcg_temp_new_i32();
4526
4527 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4528 if (a->rm == a->rn) {
4529 tcg_gen_rotri_i32(t0, t0, a->imm);
4530 } else {
4531 TCGv_i32 t1 = tcg_temp_new_i32();
4532 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4533 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4534 }
4535 tcg_gen_extu_i32_i64(tcg_rd, t0);
4536 }
4537 }
4538 return true;
4539 }
4540
4541 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4542 * Note that it is the caller's responsibility to ensure that the
4543 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4544 * mandated semantics for out of range shifts.
4545 */
4546 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4547 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4548 {
4549 switch (shift_type) {
4550 case A64_SHIFT_TYPE_LSL:
4551 tcg_gen_shl_i64(dst, src, shift_amount);
4552 break;
4553 case A64_SHIFT_TYPE_LSR:
4554 tcg_gen_shr_i64(dst, src, shift_amount);
4555 break;
4556 case A64_SHIFT_TYPE_ASR:
4557 if (!sf) {
4558 tcg_gen_ext32s_i64(dst, src);
4559 }
4560 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4561 break;
4562 case A64_SHIFT_TYPE_ROR:
4563 if (sf) {
4564 tcg_gen_rotr_i64(dst, src, shift_amount);
4565 } else {
4566 TCGv_i32 t0, t1;
4567 t0 = tcg_temp_new_i32();
4568 t1 = tcg_temp_new_i32();
4569 tcg_gen_extrl_i64_i32(t0, src);
4570 tcg_gen_extrl_i64_i32(t1, shift_amount);
4571 tcg_gen_rotr_i32(t0, t0, t1);
4572 tcg_gen_extu_i32_i64(dst, t0);
4573 }
4574 break;
4575 default:
4576 assert(FALSE); /* all shift types should be handled */
4577 break;
4578 }
4579
4580 if (!sf) { /* zero extend final result */
4581 tcg_gen_ext32u_i64(dst, dst);
4582 }
4583 }
4584
4585 /* Shift a TCGv src by immediate, put result in dst.
4586 * The shift amount must be in range (this should always be true as the
4587 * relevant instructions will UNDEF on bad shift immediates).
4588 */
4589 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4590 enum a64_shift_type shift_type, unsigned int shift_i)
4591 {
4592 assert(shift_i < (sf ? 64 : 32));
4593
4594 if (shift_i == 0) {
4595 tcg_gen_mov_i64(dst, src);
4596 } else {
4597 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
4598 }
4599 }
4600
4601 /* Logical (shifted register)
4602 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4603 * +----+-----+-----------+-------+---+------+--------+------+------+
4604 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4605 * +----+-----+-----------+-------+---+------+--------+------+------+
4606 */
4607 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4608 {
4609 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4610 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4611
4612 sf = extract32(insn, 31, 1);
4613 opc = extract32(insn, 29, 2);
4614 shift_type = extract32(insn, 22, 2);
4615 invert = extract32(insn, 21, 1);
4616 rm = extract32(insn, 16, 5);
4617 shift_amount = extract32(insn, 10, 6);
4618 rn = extract32(insn, 5, 5);
4619 rd = extract32(insn, 0, 5);
4620
4621 if (!sf && (shift_amount & (1 << 5))) {
4622 unallocated_encoding(s);
4623 return;
4624 }
4625
4626 tcg_rd = cpu_reg(s, rd);
4627
4628 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4629 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4630 * register-register MOV and MVN, so it is worth special casing.
4631 */
4632 tcg_rm = cpu_reg(s, rm);
4633 if (invert) {
4634 tcg_gen_not_i64(tcg_rd, tcg_rm);
4635 if (!sf) {
4636 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4637 }
4638 } else {
4639 if (sf) {
4640 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4641 } else {
4642 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4643 }
4644 }
4645 return;
4646 }
4647
4648 tcg_rm = read_cpu_reg(s, rm, sf);
4649
4650 if (shift_amount) {
4651 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4652 }
4653
4654 tcg_rn = cpu_reg(s, rn);
4655
4656 switch (opc | (invert << 2)) {
4657 case 0: /* AND */
4658 case 3: /* ANDS */
4659 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4660 break;
4661 case 1: /* ORR */
4662 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4663 break;
4664 case 2: /* EOR */
4665 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4666 break;
4667 case 4: /* BIC */
4668 case 7: /* BICS */
4669 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4670 break;
4671 case 5: /* ORN */
4672 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4673 break;
4674 case 6: /* EON */
4675 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4676 break;
4677 default:
4678 assert(FALSE);
4679 break;
4680 }
4681
4682 if (!sf) {
4683 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4684 }
4685
4686 if (opc == 3) {
4687 gen_logic_CC(sf, tcg_rd);
4688 }
4689 }
4690
4691 /*
4692 * Add/subtract (extended register)
4693 *
4694 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4695 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4696 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4697 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4698 *
4699 * sf: 0 -> 32bit, 1 -> 64bit
4700 * op: 0 -> add , 1 -> sub
4701 * S: 1 -> set flags
4702 * opt: 00
4703 * option: extension type (see DecodeRegExtend)
4704 * imm3: optional shift to Rm
4705 *
4706 * Rd = Rn + LSL(extend(Rm), amount)
4707 */
4708 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4709 {
4710 int rd = extract32(insn, 0, 5);
4711 int rn = extract32(insn, 5, 5);
4712 int imm3 = extract32(insn, 10, 3);
4713 int option = extract32(insn, 13, 3);
4714 int rm = extract32(insn, 16, 5);
4715 int opt = extract32(insn, 22, 2);
4716 bool setflags = extract32(insn, 29, 1);
4717 bool sub_op = extract32(insn, 30, 1);
4718 bool sf = extract32(insn, 31, 1);
4719
4720 TCGv_i64 tcg_rm, tcg_rn; /* temps */
4721 TCGv_i64 tcg_rd;
4722 TCGv_i64 tcg_result;
4723
4724 if (imm3 > 4 || opt != 0) {
4725 unallocated_encoding(s);
4726 return;
4727 }
4728
4729 /* non-flag setting ops may use SP */
4730 if (!setflags) {
4731 tcg_rd = cpu_reg_sp(s, rd);
4732 } else {
4733 tcg_rd = cpu_reg(s, rd);
4734 }
4735 tcg_rn = read_cpu_reg_sp(s, rn, sf);
4736
4737 tcg_rm = read_cpu_reg(s, rm, sf);
4738 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4739
4740 tcg_result = tcg_temp_new_i64();
4741
4742 if (!setflags) {
4743 if (sub_op) {
4744 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4745 } else {
4746 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4747 }
4748 } else {
4749 if (sub_op) {
4750 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4751 } else {
4752 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4753 }
4754 }
4755
4756 if (sf) {
4757 tcg_gen_mov_i64(tcg_rd, tcg_result);
4758 } else {
4759 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4760 }
4761 }
4762
4763 /*
4764 * Add/subtract (shifted register)
4765 *
4766 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4767 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4768 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4769 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4770 *
4771 * sf: 0 -> 32bit, 1 -> 64bit
4772 * op: 0 -> add , 1 -> sub
4773 * S: 1 -> set flags
4774 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4775 * imm6: Shift amount to apply to Rm before the add/sub
4776 */
4777 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4778 {
4779 int rd = extract32(insn, 0, 5);
4780 int rn = extract32(insn, 5, 5);
4781 int imm6 = extract32(insn, 10, 6);
4782 int rm = extract32(insn, 16, 5);
4783 int shift_type = extract32(insn, 22, 2);
4784 bool setflags = extract32(insn, 29, 1);
4785 bool sub_op = extract32(insn, 30, 1);
4786 bool sf = extract32(insn, 31, 1);
4787
4788 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4789 TCGv_i64 tcg_rn, tcg_rm;
4790 TCGv_i64 tcg_result;
4791
4792 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4793 unallocated_encoding(s);
4794 return;
4795 }
4796
4797 tcg_rn = read_cpu_reg(s, rn, sf);
4798 tcg_rm = read_cpu_reg(s, rm, sf);
4799
4800 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4801
4802 tcg_result = tcg_temp_new_i64();
4803
4804 if (!setflags) {
4805 if (sub_op) {
4806 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4807 } else {
4808 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4809 }
4810 } else {
4811 if (sub_op) {
4812 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4813 } else {
4814 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4815 }
4816 }
4817
4818 if (sf) {
4819 tcg_gen_mov_i64(tcg_rd, tcg_result);
4820 } else {
4821 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4822 }
4823 }
4824
4825 /* Data-processing (3 source)
4826 *
4827 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4828 * +--+------+-----------+------+------+----+------+------+------+
4829 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4830 * +--+------+-----------+------+------+----+------+------+------+
4831 */
4832 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4833 {
4834 int rd = extract32(insn, 0, 5);
4835 int rn = extract32(insn, 5, 5);
4836 int ra = extract32(insn, 10, 5);
4837 int rm = extract32(insn, 16, 5);
4838 int op_id = (extract32(insn, 29, 3) << 4) |
4839 (extract32(insn, 21, 3) << 1) |
4840 extract32(insn, 15, 1);
4841 bool sf = extract32(insn, 31, 1);
4842 bool is_sub = extract32(op_id, 0, 1);
4843 bool is_high = extract32(op_id, 2, 1);
4844 bool is_signed = false;
4845 TCGv_i64 tcg_op1;
4846 TCGv_i64 tcg_op2;
4847 TCGv_i64 tcg_tmp;
4848
4849 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4850 switch (op_id) {
4851 case 0x42: /* SMADDL */
4852 case 0x43: /* SMSUBL */
4853 case 0x44: /* SMULH */
4854 is_signed = true;
4855 break;
4856 case 0x0: /* MADD (32bit) */
4857 case 0x1: /* MSUB (32bit) */
4858 case 0x40: /* MADD (64bit) */
4859 case 0x41: /* MSUB (64bit) */
4860 case 0x4a: /* UMADDL */
4861 case 0x4b: /* UMSUBL */
4862 case 0x4c: /* UMULH */
4863 break;
4864 default:
4865 unallocated_encoding(s);
4866 return;
4867 }
4868
4869 if (is_high) {
4870 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4871 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4872 TCGv_i64 tcg_rn = cpu_reg(s, rn);
4873 TCGv_i64 tcg_rm = cpu_reg(s, rm);
4874
4875 if (is_signed) {
4876 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4877 } else {
4878 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4879 }
4880 return;
4881 }
4882
4883 tcg_op1 = tcg_temp_new_i64();
4884 tcg_op2 = tcg_temp_new_i64();
4885 tcg_tmp = tcg_temp_new_i64();
4886
4887 if (op_id < 0x42) {
4888 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4889 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4890 } else {
4891 if (is_signed) {
4892 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4893 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4894 } else {
4895 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4896 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4897 }
4898 }
4899
4900 if (ra == 31 && !is_sub) {
4901 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4902 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4903 } else {
4904 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4905 if (is_sub) {
4906 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4907 } else {
4908 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4909 }
4910 }
4911
4912 if (!sf) {
4913 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4914 }
4915 }
4916
4917 /* Add/subtract (with carry)
4918 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
4919 * +--+--+--+------------------------+------+-------------+------+-----+
4920 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
4921 * +--+--+--+------------------------+------+-------------+------+-----+
4922 */
4923
4924 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4925 {
4926 unsigned int sf, op, setflags, rm, rn, rd;
4927 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4928
4929 sf = extract32(insn, 31, 1);
4930 op = extract32(insn, 30, 1);
4931 setflags = extract32(insn, 29, 1);
4932 rm = extract32(insn, 16, 5);
4933 rn = extract32(insn, 5, 5);
4934 rd = extract32(insn, 0, 5);
4935
4936 tcg_rd = cpu_reg(s, rd);
4937 tcg_rn = cpu_reg(s, rn);
4938
4939 if (op) {
4940 tcg_y = tcg_temp_new_i64();
4941 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4942 } else {
4943 tcg_y = cpu_reg(s, rm);
4944 }
4945
4946 if (setflags) {
4947 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4948 } else {
4949 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4950 }
4951 }
4952
4953 /*
4954 * Rotate right into flags
4955 * 31 30 29 21 15 10 5 4 0
4956 * +--+--+--+-----------------+--------+-----------+------+--+------+
4957 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
4958 * +--+--+--+-----------------+--------+-----------+------+--+------+
4959 */
4960 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
4961 {
4962 int mask = extract32(insn, 0, 4);
4963 int o2 = extract32(insn, 4, 1);
4964 int rn = extract32(insn, 5, 5);
4965 int imm6 = extract32(insn, 15, 6);
4966 int sf_op_s = extract32(insn, 29, 3);
4967 TCGv_i64 tcg_rn;
4968 TCGv_i32 nzcv;
4969
4970 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
4971 unallocated_encoding(s);
4972 return;
4973 }
4974
4975 tcg_rn = read_cpu_reg(s, rn, 1);
4976 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
4977
4978 nzcv = tcg_temp_new_i32();
4979 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
4980
4981 if (mask & 8) { /* N */
4982 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
4983 }
4984 if (mask & 4) { /* Z */
4985 tcg_gen_not_i32(cpu_ZF, nzcv);
4986 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
4987 }
4988 if (mask & 2) { /* C */
4989 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
4990 }
4991 if (mask & 1) { /* V */
4992 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
4993 }
4994 }
4995
4996 /*
4997 * Evaluate into flags
4998 * 31 30 29 21 15 14 10 5 4 0
4999 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5000 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
5001 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5002 */
5003 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5004 {
5005 int o3_mask = extract32(insn, 0, 5);
5006 int rn = extract32(insn, 5, 5);
5007 int o2 = extract32(insn, 15, 6);
5008 int sz = extract32(insn, 14, 1);
5009 int sf_op_s = extract32(insn, 29, 3);
5010 TCGv_i32 tmp;
5011 int shift;
5012
5013 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5014 !dc_isar_feature(aa64_condm_4, s)) {
5015 unallocated_encoding(s);
5016 return;
5017 }
5018 shift = sz ? 16 : 24; /* SETF16 or SETF8 */
5019
5020 tmp = tcg_temp_new_i32();
5021 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5022 tcg_gen_shli_i32(cpu_NF, tmp, shift);
5023 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5024 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5025 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5026 }
5027
5028 /* Conditional compare (immediate / register)
5029 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5030 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5031 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
5032 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5033 * [1] y [0] [0]
5034 */
5035 static void disas_cc(DisasContext *s, uint32_t insn)
5036 {
5037 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5038 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5039 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5040 DisasCompare c;
5041
5042 if (!extract32(insn, 29, 1)) {
5043 unallocated_encoding(s);
5044 return;
5045 }
5046 if (insn & (1 << 10 | 1 << 4)) {
5047 unallocated_encoding(s);
5048 return;
5049 }
5050 sf = extract32(insn, 31, 1);
5051 op = extract32(insn, 30, 1);
5052 is_imm = extract32(insn, 11, 1);
5053 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5054 cond = extract32(insn, 12, 4);
5055 rn = extract32(insn, 5, 5);
5056 nzcv = extract32(insn, 0, 4);
5057
5058 /* Set T0 = !COND. */
5059 tcg_t0 = tcg_temp_new_i32();
5060 arm_test_cc(&c, cond);
5061 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5062
5063 /* Load the arguments for the new comparison. */
5064 if (is_imm) {
5065 tcg_y = tcg_temp_new_i64();
5066 tcg_gen_movi_i64(tcg_y, y);
5067 } else {
5068 tcg_y = cpu_reg(s, y);
5069 }
5070 tcg_rn = cpu_reg(s, rn);
5071
5072 /* Set the flags for the new comparison. */
5073 tcg_tmp = tcg_temp_new_i64();
5074 if (op) {
5075 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5076 } else {
5077 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5078 }
5079
5080 /* If COND was false, force the flags to #nzcv. Compute two masks
5081 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5082 * For tcg hosts that support ANDC, we can make do with just T1.
5083 * In either case, allow the tcg optimizer to delete any unused mask.
5084 */
5085 tcg_t1 = tcg_temp_new_i32();
5086 tcg_t2 = tcg_temp_new_i32();
5087 tcg_gen_neg_i32(tcg_t1, tcg_t0);
5088 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5089
5090 if (nzcv & 8) { /* N */
5091 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5092 } else {
5093 if (TCG_TARGET_HAS_andc_i32) {
5094 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5095 } else {
5096 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5097 }
5098 }
5099 if (nzcv & 4) { /* Z */
5100 if (TCG_TARGET_HAS_andc_i32) {
5101 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5102 } else {
5103 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5104 }
5105 } else {
5106 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5107 }
5108 if (nzcv & 2) { /* C */
5109 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5110 } else {
5111 if (TCG_TARGET_HAS_andc_i32) {
5112 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5113 } else {
5114 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5115 }
5116 }
5117 if (nzcv & 1) { /* V */
5118 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5119 } else {
5120 if (TCG_TARGET_HAS_andc_i32) {
5121 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5122 } else {
5123 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5124 }
5125 }
5126 }
5127
5128 /* Conditional select
5129 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
5130 * +----+----+---+-----------------+------+------+-----+------+------+
5131 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
5132 * +----+----+---+-----------------+------+------+-----+------+------+
5133 */
5134 static void disas_cond_select(DisasContext *s, uint32_t insn)
5135 {
5136 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5137 TCGv_i64 tcg_rd, zero;
5138 DisasCompare64 c;
5139
5140 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5141 /* S == 1 or op2<1> == 1 */
5142 unallocated_encoding(s);
5143 return;
5144 }
5145 sf = extract32(insn, 31, 1);
5146 else_inv = extract32(insn, 30, 1);
5147 rm = extract32(insn, 16, 5);
5148 cond = extract32(insn, 12, 4);
5149 else_inc = extract32(insn, 10, 1);
5150 rn = extract32(insn, 5, 5);
5151 rd = extract32(insn, 0, 5);
5152
5153 tcg_rd = cpu_reg(s, rd);
5154
5155 a64_test_cc(&c, cond);
5156 zero = tcg_constant_i64(0);
5157
5158 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5159 /* CSET & CSETM. */
5160 if (else_inv) {
5161 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
5162 tcg_rd, c.value, zero);
5163 } else {
5164 tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
5165 tcg_rd, c.value, zero);
5166 }
5167 } else {
5168 TCGv_i64 t_true = cpu_reg(s, rn);
5169 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5170 if (else_inv && else_inc) {
5171 tcg_gen_neg_i64(t_false, t_false);
5172 } else if (else_inv) {
5173 tcg_gen_not_i64(t_false, t_false);
5174 } else if (else_inc) {
5175 tcg_gen_addi_i64(t_false, t_false, 1);
5176 }
5177 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5178 }
5179
5180 if (!sf) {
5181 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5182 }
5183 }
5184
5185 static void handle_clz(DisasContext *s, unsigned int sf,
5186 unsigned int rn, unsigned int rd)
5187 {
5188 TCGv_i64 tcg_rd, tcg_rn;
5189 tcg_rd = cpu_reg(s, rd);
5190 tcg_rn = cpu_reg(s, rn);
5191
5192 if (sf) {
5193 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5194 } else {
5195 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5196 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5197 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5198 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5199 }
5200 }
5201
5202 static void handle_cls(DisasContext *s, unsigned int sf,
5203 unsigned int rn, unsigned int rd)
5204 {
5205 TCGv_i64 tcg_rd, tcg_rn;
5206 tcg_rd = cpu_reg(s, rd);
5207 tcg_rn = cpu_reg(s, rn);
5208
5209 if (sf) {
5210 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5211 } else {
5212 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5213 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5214 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5215 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5216 }
5217 }
5218
5219 static void handle_rbit(DisasContext *s, unsigned int sf,
5220 unsigned int rn, unsigned int rd)
5221 {
5222 TCGv_i64 tcg_rd, tcg_rn;
5223 tcg_rd = cpu_reg(s, rd);
5224 tcg_rn = cpu_reg(s, rn);
5225
5226 if (sf) {
5227 gen_helper_rbit64(tcg_rd, tcg_rn);
5228 } else {
5229 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5230 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5231 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5232 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5233 }
5234 }
5235
5236 /* REV with sf==1, opcode==3 ("REV64") */
5237 static void handle_rev64(DisasContext *s, unsigned int sf,
5238 unsigned int rn, unsigned int rd)
5239 {
5240 if (!sf) {
5241 unallocated_encoding(s);
5242 return;
5243 }
5244 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5245 }
5246
5247 /* REV with sf==0, opcode==2
5248 * REV32 (sf==1, opcode==2)
5249 */
5250 static void handle_rev32(DisasContext *s, unsigned int sf,
5251 unsigned int rn, unsigned int rd)
5252 {
5253 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5254 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5255
5256 if (sf) {
5257 tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5258 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5259 } else {
5260 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5261 }
5262 }
5263
5264 /* REV16 (opcode==1) */
5265 static void handle_rev16(DisasContext *s, unsigned int sf,
5266 unsigned int rn, unsigned int rd)
5267 {
5268 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5269 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5270 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5271 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5272
5273 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5274 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5275 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5276 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5277 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5278 }
5279
5280 /* Data-processing (1 source)
5281 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5282 * +----+---+---+-----------------+---------+--------+------+------+
5283 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
5284 * +----+---+---+-----------------+---------+--------+------+------+
5285 */
5286 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5287 {
5288 unsigned int sf, opcode, opcode2, rn, rd;
5289 TCGv_i64 tcg_rd;
5290
5291 if (extract32(insn, 29, 1)) {
5292 unallocated_encoding(s);
5293 return;
5294 }
5295
5296 sf = extract32(insn, 31, 1);
5297 opcode = extract32(insn, 10, 6);
5298 opcode2 = extract32(insn, 16, 5);
5299 rn = extract32(insn, 5, 5);
5300 rd = extract32(insn, 0, 5);
5301
5302 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5303
5304 switch (MAP(sf, opcode2, opcode)) {
5305 case MAP(0, 0x00, 0x00): /* RBIT */
5306 case MAP(1, 0x00, 0x00):
5307 handle_rbit(s, sf, rn, rd);
5308 break;
5309 case MAP(0, 0x00, 0x01): /* REV16 */
5310 case MAP(1, 0x00, 0x01):
5311 handle_rev16(s, sf, rn, rd);
5312 break;
5313 case MAP(0, 0x00, 0x02): /* REV/REV32 */
5314 case MAP(1, 0x00, 0x02):
5315 handle_rev32(s, sf, rn, rd);
5316 break;
5317 case MAP(1, 0x00, 0x03): /* REV64 */
5318 handle_rev64(s, sf, rn, rd);
5319 break;
5320 case MAP(0, 0x00, 0x04): /* CLZ */
5321 case MAP(1, 0x00, 0x04):
5322 handle_clz(s, sf, rn, rd);
5323 break;
5324 case MAP(0, 0x00, 0x05): /* CLS */
5325 case MAP(1, 0x00, 0x05):
5326 handle_cls(s, sf, rn, rd);
5327 break;
5328 case MAP(1, 0x01, 0x00): /* PACIA */
5329 if (s->pauth_active) {
5330 tcg_rd = cpu_reg(s, rd);
5331 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5332 } else if (!dc_isar_feature(aa64_pauth, s)) {
5333 goto do_unallocated;
5334 }
5335 break;
5336 case MAP(1, 0x01, 0x01): /* PACIB */
5337 if (s->pauth_active) {
5338 tcg_rd = cpu_reg(s, rd);
5339 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5340 } else if (!dc_isar_feature(aa64_pauth, s)) {
5341 goto do_unallocated;
5342 }
5343 break;
5344 case MAP(1, 0x01, 0x02): /* PACDA */
5345 if (s->pauth_active) {
5346 tcg_rd = cpu_reg(s, rd);
5347 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5348 } else if (!dc_isar_feature(aa64_pauth, s)) {
5349 goto do_unallocated;
5350 }
5351 break;
5352 case MAP(1, 0x01, 0x03): /* PACDB */
5353 if (s->pauth_active) {
5354 tcg_rd = cpu_reg(s, rd);
5355 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5356 } else if (!dc_isar_feature(aa64_pauth, s)) {
5357 goto do_unallocated;
5358 }
5359 break;
5360 case MAP(1, 0x01, 0x04): /* AUTIA */
5361 if (s->pauth_active) {
5362 tcg_rd = cpu_reg(s, rd);
5363 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5364 } else if (!dc_isar_feature(aa64_pauth, s)) {
5365 goto do_unallocated;
5366 }
5367 break;
5368 case MAP(1, 0x01, 0x05): /* AUTIB */
5369 if (s->pauth_active) {
5370 tcg_rd = cpu_reg(s, rd);
5371 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5372 } else if (!dc_isar_feature(aa64_pauth, s)) {
5373 goto do_unallocated;
5374 }
5375 break;
5376 case MAP(1, 0x01, 0x06): /* AUTDA */
5377 if (s->pauth_active) {
5378 tcg_rd = cpu_reg(s, rd);
5379 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5380 } else if (!dc_isar_feature(aa64_pauth, s)) {
5381 goto do_unallocated;
5382 }
5383 break;
5384 case MAP(1, 0x01, 0x07): /* AUTDB */
5385 if (s->pauth_active) {
5386 tcg_rd = cpu_reg(s, rd);
5387 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5388 } else if (!dc_isar_feature(aa64_pauth, s)) {
5389 goto do_unallocated;
5390 }
5391 break;
5392 case MAP(1, 0x01, 0x08): /* PACIZA */
5393 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5394 goto do_unallocated;
5395 } else if (s->pauth_active) {
5396 tcg_rd = cpu_reg(s, rd);
5397 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5398 }
5399 break;
5400 case MAP(1, 0x01, 0x09): /* PACIZB */
5401 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5402 goto do_unallocated;
5403 } else if (s->pauth_active) {
5404 tcg_rd = cpu_reg(s, rd);
5405 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5406 }
5407 break;
5408 case MAP(1, 0x01, 0x0a): /* PACDZA */
5409 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5410 goto do_unallocated;
5411 } else if (s->pauth_active) {
5412 tcg_rd = cpu_reg(s, rd);
5413 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5414 }
5415 break;
5416 case MAP(1, 0x01, 0x0b): /* PACDZB */
5417 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5418 goto do_unallocated;
5419 } else if (s->pauth_active) {
5420 tcg_rd = cpu_reg(s, rd);
5421 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5422 }
5423 break;
5424 case MAP(1, 0x01, 0x0c): /* AUTIZA */
5425 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5426 goto do_unallocated;
5427 } else if (s->pauth_active) {
5428 tcg_rd = cpu_reg(s, rd);
5429 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5430 }
5431 break;
5432 case MAP(1, 0x01, 0x0d): /* AUTIZB */
5433 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5434 goto do_unallocated;
5435 } else if (s->pauth_active) {
5436 tcg_rd = cpu_reg(s, rd);
5437 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5438 }
5439 break;
5440 case MAP(1, 0x01, 0x0e): /* AUTDZA */
5441 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5442 goto do_unallocated;
5443 } else if (s->pauth_active) {
5444 tcg_rd = cpu_reg(s, rd);
5445 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5446 }
5447 break;
5448 case MAP(1, 0x01, 0x0f): /* AUTDZB */
5449 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5450 goto do_unallocated;
5451 } else if (s->pauth_active) {
5452 tcg_rd = cpu_reg(s, rd);
5453 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5454 }
5455 break;
5456 case MAP(1, 0x01, 0x10): /* XPACI */
5457 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5458 goto do_unallocated;
5459 } else if (s->pauth_active) {
5460 tcg_rd = cpu_reg(s, rd);
5461 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
5462 }
5463 break;
5464 case MAP(1, 0x01, 0x11): /* XPACD */
5465 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5466 goto do_unallocated;
5467 } else if (s->pauth_active) {
5468 tcg_rd = cpu_reg(s, rd);
5469 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
5470 }
5471 break;
5472 default:
5473 do_unallocated:
5474 unallocated_encoding(s);
5475 break;
5476 }
5477
5478 #undef MAP
5479 }
5480
5481 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5482 unsigned int rm, unsigned int rn, unsigned int rd)
5483 {
5484 TCGv_i64 tcg_n, tcg_m, tcg_rd;
5485 tcg_rd = cpu_reg(s, rd);
5486
5487 if (!sf && is_signed) {
5488 tcg_n = tcg_temp_new_i64();
5489 tcg_m = tcg_temp_new_i64();
5490 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5491 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5492 } else {
5493 tcg_n = read_cpu_reg(s, rn, sf);
5494 tcg_m = read_cpu_reg(s, rm, sf);
5495 }
5496
5497 if (is_signed) {
5498 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5499 } else {
5500 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5501 }
5502
5503 if (!sf) { /* zero extend final result */
5504 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5505 }
5506 }
5507
5508 /* LSLV, LSRV, ASRV, RORV */
5509 static void handle_shift_reg(DisasContext *s,
5510 enum a64_shift_type shift_type, unsigned int sf,
5511 unsigned int rm, unsigned int rn, unsigned int rd)
5512 {
5513 TCGv_i64 tcg_shift = tcg_temp_new_i64();
5514 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5515 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5516
5517 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5518 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5519 }
5520
5521 /* CRC32[BHWX], CRC32C[BHWX] */
5522 static void handle_crc32(DisasContext *s,
5523 unsigned int sf, unsigned int sz, bool crc32c,
5524 unsigned int rm, unsigned int rn, unsigned int rd)
5525 {
5526 TCGv_i64 tcg_acc, tcg_val;
5527 TCGv_i32 tcg_bytes;
5528
5529 if (!dc_isar_feature(aa64_crc32, s)
5530 || (sf == 1 && sz != 3)
5531 || (sf == 0 && sz == 3)) {
5532 unallocated_encoding(s);
5533 return;
5534 }
5535
5536 if (sz == 3) {
5537 tcg_val = cpu_reg(s, rm);
5538 } else {
5539 uint64_t mask;
5540 switch (sz) {
5541 case 0:
5542 mask = 0xFF;
5543 break;
5544 case 1:
5545 mask = 0xFFFF;
5546 break;
5547 case 2:
5548 mask = 0xFFFFFFFF;
5549 break;
5550 default:
5551 g_assert_not_reached();
5552 }
5553 tcg_val = tcg_temp_new_i64();
5554 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5555 }
5556
5557 tcg_acc = cpu_reg(s, rn);
5558 tcg_bytes = tcg_constant_i32(1 << sz);
5559
5560 if (crc32c) {
5561 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5562 } else {
5563 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5564 }
5565 }
5566
5567 /* Data-processing (2 source)
5568 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5569 * +----+---+---+-----------------+------+--------+------+------+
5570 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5571 * +----+---+---+-----------------+------+--------+------+------+
5572 */
5573 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5574 {
5575 unsigned int sf, rm, opcode, rn, rd, setflag;
5576 sf = extract32(insn, 31, 1);
5577 setflag = extract32(insn, 29, 1);
5578 rm = extract32(insn, 16, 5);
5579 opcode = extract32(insn, 10, 6);
5580 rn = extract32(insn, 5, 5);
5581 rd = extract32(insn, 0, 5);
5582
5583 if (setflag && opcode != 0) {
5584 unallocated_encoding(s);
5585 return;
5586 }
5587
5588 switch (opcode) {
5589 case 0: /* SUBP(S) */
5590 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5591 goto do_unallocated;
5592 } else {
5593 TCGv_i64 tcg_n, tcg_m, tcg_d;
5594
5595 tcg_n = read_cpu_reg_sp(s, rn, true);
5596 tcg_m = read_cpu_reg_sp(s, rm, true);
5597 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5598 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5599 tcg_d = cpu_reg(s, rd);
5600
5601 if (setflag) {
5602 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5603 } else {
5604 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5605 }
5606 }
5607 break;
5608 case 2: /* UDIV */
5609 handle_div(s, false, sf, rm, rn, rd);
5610 break;
5611 case 3: /* SDIV */
5612 handle_div(s, true, sf, rm, rn, rd);
5613 break;
5614 case 4: /* IRG */
5615 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5616 goto do_unallocated;
5617 }
5618 if (s->ata[0]) {
5619 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
5620 cpu_reg_sp(s, rn), cpu_reg(s, rm));
5621 } else {
5622 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5623 cpu_reg_sp(s, rn));
5624 }
5625 break;
5626 case 5: /* GMI */
5627 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5628 goto do_unallocated;
5629 } else {
5630 TCGv_i64 t = tcg_temp_new_i64();
5631
5632 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
5633 tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
5634 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
5635 }
5636 break;
5637 case 8: /* LSLV */
5638 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5639 break;
5640 case 9: /* LSRV */
5641 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5642 break;
5643 case 10: /* ASRV */
5644 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5645 break;
5646 case 11: /* RORV */
5647 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5648 break;
5649 case 12: /* PACGA */
5650 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5651 goto do_unallocated;
5652 }
5653 gen_helper_pacga(cpu_reg(s, rd), tcg_env,
5654 cpu_reg(s, rn), cpu_reg_sp(s, rm));
5655 break;
5656 case 16:
5657 case 17:
5658 case 18:
5659 case 19:
5660 case 20:
5661 case 21:
5662 case 22:
5663 case 23: /* CRC32 */
5664 {
5665 int sz = extract32(opcode, 0, 2);
5666 bool crc32c = extract32(opcode, 2, 1);
5667 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5668 break;
5669 }
5670 default:
5671 do_unallocated:
5672 unallocated_encoding(s);
5673 break;
5674 }
5675 }
5676
5677 /*
5678 * Data processing - register
5679 * 31 30 29 28 25 21 20 16 10 0
5680 * +--+---+--+---+-------+-----+-------+-------+---------+
5681 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
5682 * +--+---+--+---+-------+-----+-------+-------+---------+
5683 */
5684 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5685 {
5686 int op0 = extract32(insn, 30, 1);
5687 int op1 = extract32(insn, 28, 1);
5688 int op2 = extract32(insn, 21, 4);
5689 int op3 = extract32(insn, 10, 6);
5690
5691 if (!op1) {
5692 if (op2 & 8) {
5693 if (op2 & 1) {
5694 /* Add/sub (extended register) */
5695 disas_add_sub_ext_reg(s, insn);
5696 } else {
5697 /* Add/sub (shifted register) */
5698 disas_add_sub_reg(s, insn);
5699 }
5700 } else {
5701 /* Logical (shifted register) */
5702 disas_logic_reg(s, insn);
5703 }
5704 return;
5705 }
5706
5707 switch (op2) {
5708 case 0x0:
5709 switch (op3) {
5710 case 0x00: /* Add/subtract (with carry) */
5711 disas_adc_sbc(s, insn);
5712 break;
5713
5714 case 0x01: /* Rotate right into flags */
5715 case 0x21:
5716 disas_rotate_right_into_flags(s, insn);
5717 break;
5718
5719 case 0x02: /* Evaluate into flags */
5720 case 0x12:
5721 case 0x22:
5722 case 0x32:
5723 disas_evaluate_into_flags(s, insn);
5724 break;
5725
5726 default:
5727 goto do_unallocated;
5728 }
5729 break;
5730
5731 case 0x2: /* Conditional compare */
5732 disas_cc(s, insn); /* both imm and reg forms */
5733 break;
5734
5735 case 0x4: /* Conditional select */
5736 disas_cond_select(s, insn);
5737 break;
5738
5739 case 0x6: /* Data-processing */
5740 if (op0) { /* (1 source) */
5741 disas_data_proc_1src(s, insn);
5742 } else { /* (2 source) */
5743 disas_data_proc_2src(s, insn);
5744 }
5745 break;
5746 case 0x8 ... 0xf: /* (3 source) */
5747 disas_data_proc_3src(s, insn);
5748 break;
5749
5750 default:
5751 do_unallocated:
5752 unallocated_encoding(s);
5753 break;
5754 }
5755 }
5756
5757 static void handle_fp_compare(DisasContext *s, int size,
5758 unsigned int rn, unsigned int rm,
5759 bool cmp_with_zero, bool signal_all_nans)
5760 {
5761 TCGv_i64 tcg_flags = tcg_temp_new_i64();
5762 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
5763
5764 if (size == MO_64) {
5765 TCGv_i64 tcg_vn, tcg_vm;
5766
5767 tcg_vn = read_fp_dreg(s, rn);
5768 if (cmp_with_zero) {
5769 tcg_vm = tcg_constant_i64(0);
5770 } else {
5771 tcg_vm = read_fp_dreg(s, rm);
5772 }
5773 if (signal_all_nans) {
5774 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5775 } else {
5776 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5777 }
5778 } else {
5779 TCGv_i32 tcg_vn = tcg_temp_new_i32();
5780 TCGv_i32 tcg_vm = tcg_temp_new_i32();
5781
5782 read_vec_element_i32(s, tcg_vn, rn, 0, size);
5783 if (cmp_with_zero) {
5784 tcg_gen_movi_i32(tcg_vm, 0);
5785 } else {
5786 read_vec_element_i32(s, tcg_vm, rm, 0, size);
5787 }
5788
5789 switch (size) {
5790 case MO_32:
5791 if (signal_all_nans) {
5792 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5793 } else {
5794 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5795 }
5796 break;
5797 case MO_16:
5798 if (signal_all_nans) {
5799 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5800 } else {
5801 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5802 }
5803 break;
5804 default:
5805 g_assert_not_reached();
5806 }
5807 }
5808
5809 gen_set_nzcv(tcg_flags);
5810 }
5811
5812 /* Floating point compare
5813 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
5814 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5815 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
5816 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5817 */
5818 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5819 {
5820 unsigned int mos, type, rm, op, rn, opc, op2r;
5821 int size;
5822
5823 mos = extract32(insn, 29, 3);
5824 type = extract32(insn, 22, 2);
5825 rm = extract32(insn, 16, 5);
5826 op = extract32(insn, 14, 2);
5827 rn = extract32(insn, 5, 5);
5828 opc = extract32(insn, 3, 2);
5829 op2r = extract32(insn, 0, 3);
5830
5831 if (mos || op || op2r) {
5832 unallocated_encoding(s);
5833 return;
5834 }
5835
5836 switch (type) {
5837 case 0:
5838 size = MO_32;
5839 break;
5840 case 1:
5841 size = MO_64;
5842 break;
5843 case 3:
5844 size = MO_16;
5845 if (dc_isar_feature(aa64_fp16, s)) {
5846 break;
5847 }
5848 /* fallthru */
5849 default:
5850 unallocated_encoding(s);
5851 return;
5852 }
5853
5854 if (!fp_access_check(s)) {
5855 return;
5856 }
5857
5858 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5859 }
5860
5861 /* Floating point conditional compare
5862 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5863 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5864 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
5865 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5866 */
5867 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5868 {
5869 unsigned int mos, type, rm, cond, rn, op, nzcv;
5870 TCGLabel *label_continue = NULL;
5871 int size;
5872
5873 mos = extract32(insn, 29, 3);
5874 type = extract32(insn, 22, 2);
5875 rm = extract32(insn, 16, 5);
5876 cond = extract32(insn, 12, 4);
5877 rn = extract32(insn, 5, 5);
5878 op = extract32(insn, 4, 1);
5879 nzcv = extract32(insn, 0, 4);
5880
5881 if (mos) {
5882 unallocated_encoding(s);
5883 return;
5884 }
5885
5886 switch (type) {
5887 case 0:
5888 size = MO_32;
5889 break;
5890 case 1:
5891 size = MO_64;
5892 break;
5893 case 3:
5894 size = MO_16;
5895 if (dc_isar_feature(aa64_fp16, s)) {
5896 break;
5897 }
5898 /* fallthru */
5899 default:
5900 unallocated_encoding(s);
5901 return;
5902 }
5903
5904 if (!fp_access_check(s)) {
5905 return;
5906 }
5907
5908 if (cond < 0x0e) { /* not always */
5909 TCGLabel *label_match = gen_new_label();
5910 label_continue = gen_new_label();
5911 arm_gen_test_cc(cond, label_match);
5912 /* nomatch: */
5913 gen_set_nzcv(tcg_constant_i64(nzcv << 28));
5914 tcg_gen_br(label_continue);
5915 gen_set_label(label_match);
5916 }
5917
5918 handle_fp_compare(s, size, rn, rm, false, op);
5919
5920 if (cond < 0x0e) {
5921 gen_set_label(label_continue);
5922 }
5923 }
5924
5925 /* Floating point conditional select
5926 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5927 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5928 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
5929 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5930 */
5931 static void disas_fp_csel(DisasContext *s, uint32_t insn)
5932 {
5933 unsigned int mos, type, rm, cond, rn, rd;
5934 TCGv_i64 t_true, t_false;
5935 DisasCompare64 c;
5936 MemOp sz;
5937
5938 mos = extract32(insn, 29, 3);
5939 type = extract32(insn, 22, 2);
5940 rm = extract32(insn, 16, 5);
5941 cond = extract32(insn, 12, 4);
5942 rn = extract32(insn, 5, 5);
5943 rd = extract32(insn, 0, 5);
5944
5945 if (mos) {
5946 unallocated_encoding(s);
5947 return;
5948 }
5949
5950 switch (type) {
5951 case 0:
5952 sz = MO_32;
5953 break;
5954 case 1:
5955 sz = MO_64;
5956 break;
5957 case 3:
5958 sz = MO_16;
5959 if (dc_isar_feature(aa64_fp16, s)) {
5960 break;
5961 }
5962 /* fallthru */
5963 default:
5964 unallocated_encoding(s);
5965 return;
5966 }
5967
5968 if (!fp_access_check(s)) {
5969 return;
5970 }
5971
5972 /* Zero extend sreg & hreg inputs to 64 bits now. */
5973 t_true = tcg_temp_new_i64();
5974 t_false = tcg_temp_new_i64();
5975 read_vec_element(s, t_true, rn, 0, sz);
5976 read_vec_element(s, t_false, rm, 0, sz);
5977
5978 a64_test_cc(&c, cond);
5979 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
5980 t_true, t_false);
5981
5982 /* Note that sregs & hregs write back zeros to the high bits,
5983 and we've already done the zero-extension. */
5984 write_fp_dreg(s, rd, t_true);
5985 }
5986
5987 /* Floating-point data-processing (1 source) - half precision */
5988 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
5989 {
5990 TCGv_ptr fpst = NULL;
5991 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
5992 TCGv_i32 tcg_res = tcg_temp_new_i32();
5993
5994 switch (opcode) {
5995 case 0x0: /* FMOV */
5996 tcg_gen_mov_i32(tcg_res, tcg_op);
5997 break;
5998 case 0x1: /* FABS */
5999 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
6000 break;
6001 case 0x2: /* FNEG */
6002 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
6003 break;
6004 case 0x3: /* FSQRT */
6005 fpst = fpstatus_ptr(FPST_FPCR_F16);
6006 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6007 break;
6008 case 0x8: /* FRINTN */
6009 case 0x9: /* FRINTP */
6010 case 0xa: /* FRINTM */
6011 case 0xb: /* FRINTZ */
6012 case 0xc: /* FRINTA */
6013 {
6014 TCGv_i32 tcg_rmode;
6015
6016 fpst = fpstatus_ptr(FPST_FPCR_F16);
6017 tcg_rmode = gen_set_rmode(opcode & 7, fpst);
6018 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6019 gen_restore_rmode(tcg_rmode, fpst);
6020 break;
6021 }
6022 case 0xe: /* FRINTX */
6023 fpst = fpstatus_ptr(FPST_FPCR_F16);
6024 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6025 break;
6026 case 0xf: /* FRINTI */
6027 fpst = fpstatus_ptr(FPST_FPCR_F16);
6028 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6029 break;
6030 default:
6031 g_assert_not_reached();
6032 }
6033
6034 write_fp_sreg(s, rd, tcg_res);
6035 }
6036
6037 /* Floating-point data-processing (1 source) - single precision */
6038 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6039 {
6040 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6041 TCGv_i32 tcg_op, tcg_res;
6042 TCGv_ptr fpst;
6043 int rmode = -1;
6044
6045 tcg_op = read_fp_sreg(s, rn);
6046 tcg_res = tcg_temp_new_i32();
6047
6048 switch (opcode) {
6049 case 0x0: /* FMOV */
6050 tcg_gen_mov_i32(tcg_res, tcg_op);
6051 goto done;
6052 case 0x1: /* FABS */
6053 gen_helper_vfp_abss(tcg_res, tcg_op);
6054 goto done;
6055 case 0x2: /* FNEG */
6056 gen_helper_vfp_negs(tcg_res, tcg_op);
6057 goto done;
6058 case 0x3: /* FSQRT */
6059 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
6060 goto done;
6061 case 0x6: /* BFCVT */
6062 gen_fpst = gen_helper_bfcvt;
6063 break;
6064 case 0x8: /* FRINTN */
6065 case 0x9: /* FRINTP */
6066 case 0xa: /* FRINTM */
6067 case 0xb: /* FRINTZ */
6068 case 0xc: /* FRINTA */
6069 rmode = opcode & 7;
6070 gen_fpst = gen_helper_rints;
6071 break;
6072 case 0xe: /* FRINTX */
6073 gen_fpst = gen_helper_rints_exact;
6074 break;
6075 case 0xf: /* FRINTI */
6076 gen_fpst = gen_helper_rints;
6077 break;
6078 case 0x10: /* FRINT32Z */
6079 rmode = FPROUNDING_ZERO;
6080 gen_fpst = gen_helper_frint32_s;
6081 break;
6082 case 0x11: /* FRINT32X */
6083 gen_fpst = gen_helper_frint32_s;
6084 break;
6085 case 0x12: /* FRINT64Z */
6086 rmode = FPROUNDING_ZERO;
6087 gen_fpst = gen_helper_frint64_s;
6088 break;
6089 case 0x13: /* FRINT64X */
6090 gen_fpst = gen_helper_frint64_s;
6091 break;
6092 default:
6093 g_assert_not_reached();
6094 }
6095
6096 fpst = fpstatus_ptr(FPST_FPCR);
6097 if (rmode >= 0) {
6098 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6099 gen_fpst(tcg_res, tcg_op, fpst);
6100 gen_restore_rmode(tcg_rmode, fpst);
6101 } else {
6102 gen_fpst(tcg_res, tcg_op, fpst);
6103 }
6104
6105 done:
6106 write_fp_sreg(s, rd, tcg_res);
6107 }
6108
6109 /* Floating-point data-processing (1 source) - double precision */
6110 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6111 {
6112 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6113 TCGv_i64 tcg_op, tcg_res;
6114 TCGv_ptr fpst;
6115 int rmode = -1;
6116
6117 switch (opcode) {
6118 case 0x0: /* FMOV */
6119 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6120 return;
6121 }
6122
6123 tcg_op = read_fp_dreg(s, rn);
6124 tcg_res = tcg_temp_new_i64();
6125
6126 switch (opcode) {
6127 case 0x1: /* FABS */
6128 gen_helper_vfp_absd(tcg_res, tcg_op);
6129 goto done;
6130 case 0x2: /* FNEG */
6131 gen_helper_vfp_negd(tcg_res, tcg_op);
6132 goto done;
6133 case 0x3: /* FSQRT */
6134 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
6135 goto done;
6136 case 0x8: /* FRINTN */
6137 case 0x9: /* FRINTP */
6138 case 0xa: /* FRINTM */
6139 case 0xb: /* FRINTZ */
6140 case 0xc: /* FRINTA */
6141 rmode = opcode & 7;
6142 gen_fpst = gen_helper_rintd;
6143 break;
6144 case 0xe: /* FRINTX */
6145 gen_fpst = gen_helper_rintd_exact;
6146 break;
6147 case 0xf: /* FRINTI */
6148 gen_fpst = gen_helper_rintd;
6149 break;
6150 case 0x10: /* FRINT32Z */
6151 rmode = FPROUNDING_ZERO;
6152 gen_fpst = gen_helper_frint32_d;
6153 break;
6154 case 0x11: /* FRINT32X */
6155 gen_fpst = gen_helper_frint32_d;
6156 break;
6157 case 0x12: /* FRINT64Z */
6158 rmode = FPROUNDING_ZERO;
6159 gen_fpst = gen_helper_frint64_d;
6160 break;
6161 case 0x13: /* FRINT64X */
6162 gen_fpst = gen_helper_frint64_d;
6163 break;
6164 default:
6165 g_assert_not_reached();
6166 }
6167
6168 fpst = fpstatus_ptr(FPST_FPCR);
6169 if (rmode >= 0) {
6170 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6171 gen_fpst(tcg_res, tcg_op, fpst);
6172 gen_restore_rmode(tcg_rmode, fpst);
6173 } else {
6174 gen_fpst(tcg_res, tcg_op, fpst);
6175 }
6176
6177 done:
6178 write_fp_dreg(s, rd, tcg_res);
6179 }
6180
6181 static void handle_fp_fcvt(DisasContext *s, int opcode,
6182 int rd, int rn, int dtype, int ntype)
6183 {
6184 switch (ntype) {
6185 case 0x0:
6186 {
6187 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6188 if (dtype == 1) {
6189 /* Single to double */
6190 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6191 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
6192 write_fp_dreg(s, rd, tcg_rd);
6193 } else {
6194 /* Single to half */
6195 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6196 TCGv_i32 ahp = get_ahp_flag();
6197 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6198
6199 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6200 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6201 write_fp_sreg(s, rd, tcg_rd);
6202 }
6203 break;
6204 }
6205 case 0x1:
6206 {
6207 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6208 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6209 if (dtype == 0) {
6210 /* Double to single */
6211 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
6212 } else {
6213 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6214 TCGv_i32 ahp = get_ahp_flag();
6215 /* Double to half */
6216 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6217 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6218 }
6219 write_fp_sreg(s, rd, tcg_rd);
6220 break;
6221 }
6222 case 0x3:
6223 {
6224 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6225 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6226 TCGv_i32 tcg_ahp = get_ahp_flag();
6227 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6228 if (dtype == 0) {
6229 /* Half to single */
6230 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6231 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6232 write_fp_sreg(s, rd, tcg_rd);
6233 } else {
6234 /* Half to double */
6235 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6236 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6237 write_fp_dreg(s, rd, tcg_rd);
6238 }
6239 break;
6240 }
6241 default:
6242 g_assert_not_reached();
6243 }
6244 }
6245
6246 /* Floating point data-processing (1 source)
6247 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
6248 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6249 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
6250 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6251 */
6252 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6253 {
6254 int mos = extract32(insn, 29, 3);
6255 int type = extract32(insn, 22, 2);
6256 int opcode = extract32(insn, 15, 6);
6257 int rn = extract32(insn, 5, 5);
6258 int rd = extract32(insn, 0, 5);
6259
6260 if (mos) {
6261 goto do_unallocated;
6262 }
6263
6264 switch (opcode) {
6265 case 0x4: case 0x5: case 0x7:
6266 {
6267 /* FCVT between half, single and double precision */
6268 int dtype = extract32(opcode, 0, 2);
6269 if (type == 2 || dtype == type) {
6270 goto do_unallocated;
6271 }
6272 if (!fp_access_check(s)) {
6273 return;
6274 }
6275
6276 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6277 break;
6278 }
6279
6280 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6281 if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6282 goto do_unallocated;
6283 }
6284 /* fall through */
6285 case 0x0 ... 0x3:
6286 case 0x8 ... 0xc:
6287 case 0xe ... 0xf:
6288 /* 32-to-32 and 64-to-64 ops */
6289 switch (type) {
6290 case 0:
6291 if (!fp_access_check(s)) {
6292 return;
6293 }
6294 handle_fp_1src_single(s, opcode, rd, rn);
6295 break;
6296 case 1:
6297 if (!fp_access_check(s)) {
6298 return;
6299 }
6300 handle_fp_1src_double(s, opcode, rd, rn);
6301 break;
6302 case 3:
6303 if (!dc_isar_feature(aa64_fp16, s)) {
6304 goto do_unallocated;
6305 }
6306
6307 if (!fp_access_check(s)) {
6308 return;
6309 }
6310 handle_fp_1src_half(s, opcode, rd, rn);
6311 break;
6312 default:
6313 goto do_unallocated;
6314 }
6315 break;
6316
6317 case 0x6:
6318 switch (type) {
6319 case 1: /* BFCVT */
6320 if (!dc_isar_feature(aa64_bf16, s)) {
6321 goto do_unallocated;
6322 }
6323 if (!fp_access_check(s)) {
6324 return;
6325 }
6326 handle_fp_1src_single(s, opcode, rd, rn);
6327 break;
6328 default:
6329 goto do_unallocated;
6330 }
6331 break;
6332
6333 default:
6334 do_unallocated:
6335 unallocated_encoding(s);
6336 break;
6337 }
6338 }
6339
6340 /* Floating-point data-processing (2 source) - single precision */
6341 static void handle_fp_2src_single(DisasContext *s, int opcode,
6342 int rd, int rn, int rm)
6343 {
6344 TCGv_i32 tcg_op1;
6345 TCGv_i32 tcg_op2;
6346 TCGv_i32 tcg_res;
6347 TCGv_ptr fpst;
6348
6349 tcg_res = tcg_temp_new_i32();
6350 fpst = fpstatus_ptr(FPST_FPCR);
6351 tcg_op1 = read_fp_sreg(s, rn);
6352 tcg_op2 = read_fp_sreg(s, rm);
6353
6354 switch (opcode) {
6355 case 0x0: /* FMUL */
6356 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6357 break;
6358 case 0x1: /* FDIV */
6359 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6360 break;
6361 case 0x2: /* FADD */
6362 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6363 break;
6364 case 0x3: /* FSUB */
6365 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6366 break;
6367 case 0x4: /* FMAX */
6368 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6369 break;
6370 case 0x5: /* FMIN */
6371 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6372 break;
6373 case 0x6: /* FMAXNM */
6374 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6375 break;
6376 case 0x7: /* FMINNM */
6377 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6378 break;
6379 case 0x8: /* FNMUL */
6380 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6381 gen_helper_vfp_negs(tcg_res, tcg_res);
6382 break;
6383 }
6384
6385 write_fp_sreg(s, rd, tcg_res);
6386 }
6387
6388 /* Floating-point data-processing (2 source) - double precision */
6389 static void handle_fp_2src_double(DisasContext *s, int opcode,
6390 int rd, int rn, int rm)
6391 {
6392 TCGv_i64 tcg_op1;
6393 TCGv_i64 tcg_op2;
6394 TCGv_i64 tcg_res;
6395 TCGv_ptr fpst;
6396
6397 tcg_res = tcg_temp_new_i64();
6398 fpst = fpstatus_ptr(FPST_FPCR);
6399 tcg_op1 = read_fp_dreg(s, rn);
6400 tcg_op2 = read_fp_dreg(s, rm);
6401
6402 switch (opcode) {
6403 case 0x0: /* FMUL */
6404 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6405 break;
6406 case 0x1: /* FDIV */
6407 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6408 break;
6409 case 0x2: /* FADD */
6410 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6411 break;
6412 case 0x3: /* FSUB */
6413 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6414 break;
6415 case 0x4: /* FMAX */
6416 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6417 break;
6418 case 0x5: /* FMIN */
6419 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6420 break;
6421 case 0x6: /* FMAXNM */
6422 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6423 break;
6424 case 0x7: /* FMINNM */
6425 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6426 break;
6427 case 0x8: /* FNMUL */
6428 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6429 gen_helper_vfp_negd(tcg_res, tcg_res);
6430 break;
6431 }
6432
6433 write_fp_dreg(s, rd, tcg_res);
6434 }
6435
6436 /* Floating-point data-processing (2 source) - half precision */
6437 static void handle_fp_2src_half(DisasContext *s, int opcode,
6438 int rd, int rn, int rm)
6439 {
6440 TCGv_i32 tcg_op1;
6441 TCGv_i32 tcg_op2;
6442 TCGv_i32 tcg_res;
6443 TCGv_ptr fpst;
6444
6445 tcg_res = tcg_temp_new_i32();
6446 fpst = fpstatus_ptr(FPST_FPCR_F16);
6447 tcg_op1 = read_fp_hreg(s, rn);
6448 tcg_op2 = read_fp_hreg(s, rm);
6449
6450 switch (opcode) {
6451 case 0x0: /* FMUL */
6452 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6453 break;
6454 case 0x1: /* FDIV */
6455 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6456 break;
6457 case 0x2: /* FADD */
6458 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6459 break;
6460 case 0x3: /* FSUB */
6461 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6462 break;
6463 case 0x4: /* FMAX */
6464 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6465 break;
6466 case 0x5: /* FMIN */
6467 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6468 break;
6469 case 0x6: /* FMAXNM */
6470 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6471 break;
6472 case 0x7: /* FMINNM */
6473 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6474 break;
6475 case 0x8: /* FNMUL */
6476 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6477 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6478 break;
6479 default:
6480 g_assert_not_reached();
6481 }
6482
6483 write_fp_sreg(s, rd, tcg_res);
6484 }
6485
6486 /* Floating point data-processing (2 source)
6487 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6488 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6489 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
6490 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6491 */
6492 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6493 {
6494 int mos = extract32(insn, 29, 3);
6495 int type = extract32(insn, 22, 2);
6496 int rd = extract32(insn, 0, 5);
6497 int rn = extract32(insn, 5, 5);
6498 int rm = extract32(insn, 16, 5);
6499 int opcode = extract32(insn, 12, 4);
6500
6501 if (opcode > 8 || mos) {
6502 unallocated_encoding(s);
6503 return;
6504 }
6505
6506 switch (type) {
6507 case 0:
6508 if (!fp_access_check(s)) {
6509 return;
6510 }
6511 handle_fp_2src_single(s, opcode, rd, rn, rm);
6512 break;
6513 case 1:
6514 if (!fp_access_check(s)) {
6515 return;
6516 }
6517 handle_fp_2src_double(s, opcode, rd, rn, rm);
6518 break;
6519 case 3:
6520 if (!dc_isar_feature(aa64_fp16, s)) {
6521 unallocated_encoding(s);
6522 return;
6523 }
6524 if (!fp_access_check(s)) {
6525 return;
6526 }
6527 handle_fp_2src_half(s, opcode, rd, rn, rm);
6528 break;
6529 default:
6530 unallocated_encoding(s);
6531 }
6532 }
6533
6534 /* Floating-point data-processing (3 source) - single precision */
6535 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6536 int rd, int rn, int rm, int ra)
6537 {
6538 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6539 TCGv_i32 tcg_res = tcg_temp_new_i32();
6540 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6541
6542 tcg_op1 = read_fp_sreg(s, rn);
6543 tcg_op2 = read_fp_sreg(s, rm);
6544 tcg_op3 = read_fp_sreg(s, ra);
6545
6546 /* These are fused multiply-add, and must be done as one
6547 * floating point operation with no rounding between the
6548 * multiplication and addition steps.
6549 * NB that doing the negations here as separate steps is
6550 * correct : an input NaN should come out with its sign bit
6551 * flipped if it is a negated-input.
6552 */
6553 if (o1 == true) {
6554 gen_helper_vfp_negs(tcg_op3, tcg_op3);
6555 }
6556
6557 if (o0 != o1) {
6558 gen_helper_vfp_negs(tcg_op1, tcg_op1);
6559 }
6560
6561 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6562
6563 write_fp_sreg(s, rd, tcg_res);
6564 }
6565
6566 /* Floating-point data-processing (3 source) - double precision */
6567 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6568 int rd, int rn, int rm, int ra)
6569 {
6570 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6571 TCGv_i64 tcg_res = tcg_temp_new_i64();
6572 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6573
6574 tcg_op1 = read_fp_dreg(s, rn);
6575 tcg_op2 = read_fp_dreg(s, rm);
6576 tcg_op3 = read_fp_dreg(s, ra);
6577
6578 /* These are fused multiply-add, and must be done as one
6579 * floating point operation with no rounding between the
6580 * multiplication and addition steps.
6581 * NB that doing the negations here as separate steps is
6582 * correct : an input NaN should come out with its sign bit
6583 * flipped if it is a negated-input.
6584 */
6585 if (o1 == true) {
6586 gen_helper_vfp_negd(tcg_op3, tcg_op3);
6587 }
6588
6589 if (o0 != o1) {
6590 gen_helper_vfp_negd(tcg_op1, tcg_op1);
6591 }
6592
6593 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6594
6595 write_fp_dreg(s, rd, tcg_res);
6596 }
6597
6598 /* Floating-point data-processing (3 source) - half precision */
6599 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6600 int rd, int rn, int rm, int ra)
6601 {
6602 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6603 TCGv_i32 tcg_res = tcg_temp_new_i32();
6604 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6605
6606 tcg_op1 = read_fp_hreg(s, rn);
6607 tcg_op2 = read_fp_hreg(s, rm);
6608 tcg_op3 = read_fp_hreg(s, ra);
6609
6610 /* These are fused multiply-add, and must be done as one
6611 * floating point operation with no rounding between the
6612 * multiplication and addition steps.
6613 * NB that doing the negations here as separate steps is
6614 * correct : an input NaN should come out with its sign bit
6615 * flipped if it is a negated-input.
6616 */
6617 if (o1 == true) {
6618 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6619 }
6620
6621 if (o0 != o1) {
6622 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6623 }
6624
6625 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6626
6627 write_fp_sreg(s, rd, tcg_res);
6628 }
6629
6630 /* Floating point data-processing (3 source)
6631 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6632 * +---+---+---+-----------+------+----+------+----+------+------+------+
6633 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6634 * +---+---+---+-----------+------+----+------+----+------+------+------+
6635 */
6636 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6637 {
6638 int mos = extract32(insn, 29, 3);
6639 int type = extract32(insn, 22, 2);
6640 int rd = extract32(insn, 0, 5);
6641 int rn = extract32(insn, 5, 5);
6642 int ra = extract32(insn, 10, 5);
6643 int rm = extract32(insn, 16, 5);
6644 bool o0 = extract32(insn, 15, 1);
6645 bool o1 = extract32(insn, 21, 1);
6646
6647 if (mos) {
6648 unallocated_encoding(s);
6649 return;
6650 }
6651
6652 switch (type) {
6653 case 0:
6654 if (!fp_access_check(s)) {
6655 return;
6656 }
6657 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6658 break;
6659 case 1:
6660 if (!fp_access_check(s)) {
6661 return;
6662 }
6663 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6664 break;
6665 case 3:
6666 if (!dc_isar_feature(aa64_fp16, s)) {
6667 unallocated_encoding(s);
6668 return;
6669 }
6670 if (!fp_access_check(s)) {
6671 return;
6672 }
6673 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6674 break;
6675 default:
6676 unallocated_encoding(s);
6677 }
6678 }
6679
6680 /* Floating point immediate
6681 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
6682 * +---+---+---+-----------+------+---+------------+-------+------+------+
6683 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
6684 * +---+---+---+-----------+------+---+------------+-------+------+------+
6685 */
6686 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6687 {
6688 int rd = extract32(insn, 0, 5);
6689 int imm5 = extract32(insn, 5, 5);
6690 int imm8 = extract32(insn, 13, 8);
6691 int type = extract32(insn, 22, 2);
6692 int mos = extract32(insn, 29, 3);
6693 uint64_t imm;
6694 MemOp sz;
6695
6696 if (mos || imm5) {
6697 unallocated_encoding(s);
6698 return;
6699 }
6700
6701 switch (type) {
6702 case 0:
6703 sz = MO_32;
6704 break;
6705 case 1:
6706 sz = MO_64;
6707 break;
6708 case 3:
6709 sz = MO_16;
6710 if (dc_isar_feature(aa64_fp16, s)) {
6711 break;
6712 }
6713 /* fallthru */
6714 default:
6715 unallocated_encoding(s);
6716 return;
6717 }
6718
6719 if (!fp_access_check(s)) {
6720 return;
6721 }
6722
6723 imm = vfp_expand_imm(sz, imm8);
6724 write_fp_dreg(s, rd, tcg_constant_i64(imm));
6725 }
6726
6727 /* Handle floating point <=> fixed point conversions. Note that we can
6728 * also deal with fp <=> integer conversions as a special case (scale == 64)
6729 * OPTME: consider handling that special case specially or at least skipping
6730 * the call to scalbn in the helpers for zero shifts.
6731 */
6732 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6733 bool itof, int rmode, int scale, int sf, int type)
6734 {
6735 bool is_signed = !(opcode & 1);
6736 TCGv_ptr tcg_fpstatus;
6737 TCGv_i32 tcg_shift, tcg_single;
6738 TCGv_i64 tcg_double;
6739
6740 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
6741
6742 tcg_shift = tcg_constant_i32(64 - scale);
6743
6744 if (itof) {
6745 TCGv_i64 tcg_int = cpu_reg(s, rn);
6746 if (!sf) {
6747 TCGv_i64 tcg_extend = tcg_temp_new_i64();
6748
6749 if (is_signed) {
6750 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6751 } else {
6752 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6753 }
6754
6755 tcg_int = tcg_extend;
6756 }
6757
6758 switch (type) {
6759 case 1: /* float64 */
6760 tcg_double = tcg_temp_new_i64();
6761 if (is_signed) {
6762 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6763 tcg_shift, tcg_fpstatus);
6764 } else {
6765 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6766 tcg_shift, tcg_fpstatus);
6767 }
6768 write_fp_dreg(s, rd, tcg_double);
6769 break;
6770
6771 case 0: /* float32 */
6772 tcg_single = tcg_temp_new_i32();
6773 if (is_signed) {
6774 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6775 tcg_shift, tcg_fpstatus);
6776 } else {
6777 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6778 tcg_shift, tcg_fpstatus);
6779 }
6780 write_fp_sreg(s, rd, tcg_single);
6781 break;
6782
6783 case 3: /* float16 */
6784 tcg_single = tcg_temp_new_i32();
6785 if (is_signed) {
6786 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6787 tcg_shift, tcg_fpstatus);
6788 } else {
6789 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6790 tcg_shift, tcg_fpstatus);
6791 }
6792 write_fp_sreg(s, rd, tcg_single);
6793 break;
6794
6795 default:
6796 g_assert_not_reached();
6797 }
6798 } else {
6799 TCGv_i64 tcg_int = cpu_reg(s, rd);
6800 TCGv_i32 tcg_rmode;
6801
6802 if (extract32(opcode, 2, 1)) {
6803 /* There are too many rounding modes to all fit into rmode,
6804 * so FCVTA[US] is a special case.
6805 */
6806 rmode = FPROUNDING_TIEAWAY;
6807 }
6808
6809 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
6810
6811 switch (type) {
6812 case 1: /* float64 */
6813 tcg_double = read_fp_dreg(s, rn);
6814 if (is_signed) {
6815 if (!sf) {
6816 gen_helper_vfp_tosld(tcg_int, tcg_double,
6817 tcg_shift, tcg_fpstatus);
6818 } else {
6819 gen_helper_vfp_tosqd(tcg_int, tcg_double,
6820 tcg_shift, tcg_fpstatus);
6821 }
6822 } else {
6823 if (!sf) {
6824 gen_helper_vfp_tould(tcg_int, tcg_double,
6825 tcg_shift, tcg_fpstatus);
6826 } else {
6827 gen_helper_vfp_touqd(tcg_int, tcg_double,
6828 tcg_shift, tcg_fpstatus);
6829 }
6830 }
6831 if (!sf) {
6832 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6833 }
6834 break;
6835
6836 case 0: /* float32 */
6837 tcg_single = read_fp_sreg(s, rn);
6838 if (sf) {
6839 if (is_signed) {
6840 gen_helper_vfp_tosqs(tcg_int, tcg_single,
6841 tcg_shift, tcg_fpstatus);
6842 } else {
6843 gen_helper_vfp_touqs(tcg_int, tcg_single,
6844 tcg_shift, tcg_fpstatus);
6845 }
6846 } else {
6847 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6848 if (is_signed) {
6849 gen_helper_vfp_tosls(tcg_dest, tcg_single,
6850 tcg_shift, tcg_fpstatus);
6851 } else {
6852 gen_helper_vfp_touls(tcg_dest, tcg_single,
6853 tcg_shift, tcg_fpstatus);
6854 }
6855 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6856 }
6857 break;
6858
6859 case 3: /* float16 */
6860 tcg_single = read_fp_sreg(s, rn);
6861 if (sf) {
6862 if (is_signed) {
6863 gen_helper_vfp_tosqh(tcg_int, tcg_single,
6864 tcg_shift, tcg_fpstatus);
6865 } else {
6866 gen_helper_vfp_touqh(tcg_int, tcg_single,
6867 tcg_shift, tcg_fpstatus);
6868 }
6869 } else {
6870 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6871 if (is_signed) {
6872 gen_helper_vfp_toslh(tcg_dest, tcg_single,
6873 tcg_shift, tcg_fpstatus);
6874 } else {
6875 gen_helper_vfp_toulh(tcg_dest, tcg_single,
6876 tcg_shift, tcg_fpstatus);
6877 }
6878 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6879 }
6880 break;
6881
6882 default:
6883 g_assert_not_reached();
6884 }
6885
6886 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
6887 }
6888 }
6889
6890 /* Floating point <-> fixed point conversions
6891 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6892 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6893 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
6894 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6895 */
6896 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6897 {
6898 int rd = extract32(insn, 0, 5);
6899 int rn = extract32(insn, 5, 5);
6900 int scale = extract32(insn, 10, 6);
6901 int opcode = extract32(insn, 16, 3);
6902 int rmode = extract32(insn, 19, 2);
6903 int type = extract32(insn, 22, 2);
6904 bool sbit = extract32(insn, 29, 1);
6905 bool sf = extract32(insn, 31, 1);
6906 bool itof;
6907
6908 if (sbit || (!sf && scale < 32)) {
6909 unallocated_encoding(s);
6910 return;
6911 }
6912
6913 switch (type) {
6914 case 0: /* float32 */
6915 case 1: /* float64 */
6916 break;
6917 case 3: /* float16 */
6918 if (dc_isar_feature(aa64_fp16, s)) {
6919 break;
6920 }
6921 /* fallthru */
6922 default:
6923 unallocated_encoding(s);
6924 return;
6925 }
6926
6927 switch ((rmode << 3) | opcode) {
6928 case 0x2: /* SCVTF */
6929 case 0x3: /* UCVTF */
6930 itof = true;
6931 break;
6932 case 0x18: /* FCVTZS */
6933 case 0x19: /* FCVTZU */
6934 itof = false;
6935 break;
6936 default:
6937 unallocated_encoding(s);
6938 return;
6939 }
6940
6941 if (!fp_access_check(s)) {
6942 return;
6943 }
6944
6945 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
6946 }
6947
6948 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
6949 {
6950 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
6951 * without conversion.
6952 */
6953
6954 if (itof) {
6955 TCGv_i64 tcg_rn = cpu_reg(s, rn);
6956 TCGv_i64 tmp;
6957
6958 switch (type) {
6959 case 0:
6960 /* 32 bit */
6961 tmp = tcg_temp_new_i64();
6962 tcg_gen_ext32u_i64(tmp, tcg_rn);
6963 write_fp_dreg(s, rd, tmp);
6964 break;
6965 case 1:
6966 /* 64 bit */
6967 write_fp_dreg(s, rd, tcg_rn);
6968 break;
6969 case 2:
6970 /* 64 bit to top half. */
6971 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
6972 clear_vec_high(s, true, rd);
6973 break;
6974 case 3:
6975 /* 16 bit */
6976 tmp = tcg_temp_new_i64();
6977 tcg_gen_ext16u_i64(tmp, tcg_rn);
6978 write_fp_dreg(s, rd, tmp);
6979 break;
6980 default:
6981 g_assert_not_reached();
6982 }
6983 } else {
6984 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6985
6986 switch (type) {
6987 case 0:
6988 /* 32 bit */
6989 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
6990 break;
6991 case 1:
6992 /* 64 bit */
6993 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
6994 break;
6995 case 2:
6996 /* 64 bits from top half */
6997 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
6998 break;
6999 case 3:
7000 /* 16 bit */
7001 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
7002 break;
7003 default:
7004 g_assert_not_reached();
7005 }
7006 }
7007 }
7008
7009 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7010 {
7011 TCGv_i64 t = read_fp_dreg(s, rn);
7012 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7013
7014 gen_helper_fjcvtzs(t, t, fpstatus);
7015
7016 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7017 tcg_gen_extrh_i64_i32(cpu_ZF, t);
7018 tcg_gen_movi_i32(cpu_CF, 0);
7019 tcg_gen_movi_i32(cpu_NF, 0);
7020 tcg_gen_movi_i32(cpu_VF, 0);
7021 }
7022
7023 /* Floating point <-> integer conversions
7024 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7025 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7026 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7027 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7028 */
7029 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7030 {
7031 int rd = extract32(insn, 0, 5);
7032 int rn = extract32(insn, 5, 5);
7033 int opcode = extract32(insn, 16, 3);
7034 int rmode = extract32(insn, 19, 2);
7035 int type = extract32(insn, 22, 2);
7036 bool sbit = extract32(insn, 29, 1);
7037 bool sf = extract32(insn, 31, 1);
7038 bool itof = false;
7039
7040 if (sbit) {
7041 goto do_unallocated;
7042 }
7043
7044 switch (opcode) {
7045 case 2: /* SCVTF */
7046 case 3: /* UCVTF */
7047 itof = true;
7048 /* fallthru */
7049 case 4: /* FCVTAS */
7050 case 5: /* FCVTAU */
7051 if (rmode != 0) {
7052 goto do_unallocated;
7053 }
7054 /* fallthru */
7055 case 0: /* FCVT[NPMZ]S */
7056 case 1: /* FCVT[NPMZ]U */
7057 switch (type) {
7058 case 0: /* float32 */
7059 case 1: /* float64 */
7060 break;
7061 case 3: /* float16 */
7062 if (!dc_isar_feature(aa64_fp16, s)) {
7063 goto do_unallocated;
7064 }
7065 break;
7066 default:
7067 goto do_unallocated;
7068 }
7069 if (!fp_access_check(s)) {
7070 return;
7071 }
7072 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7073 break;
7074
7075 default:
7076 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7077 case 0b01100110: /* FMOV half <-> 32-bit int */
7078 case 0b01100111:
7079 case 0b11100110: /* FMOV half <-> 64-bit int */
7080 case 0b11100111:
7081 if (!dc_isar_feature(aa64_fp16, s)) {
7082 goto do_unallocated;
7083 }
7084 /* fallthru */
7085 case 0b00000110: /* FMOV 32-bit */
7086 case 0b00000111:
7087 case 0b10100110: /* FMOV 64-bit */
7088 case 0b10100111:
7089 case 0b11001110: /* FMOV top half of 128-bit */
7090 case 0b11001111:
7091 if (!fp_access_check(s)) {
7092 return;
7093 }
7094 itof = opcode & 1;
7095 handle_fmov(s, rd, rn, type, itof);
7096 break;
7097
7098 case 0b00111110: /* FJCVTZS */
7099 if (!dc_isar_feature(aa64_jscvt, s)) {
7100 goto do_unallocated;
7101 } else if (fp_access_check(s)) {
7102 handle_fjcvtzs(s, rd, rn);
7103 }
7104 break;
7105
7106 default:
7107 do_unallocated:
7108 unallocated_encoding(s);
7109 return;
7110 }
7111 break;
7112 }
7113 }
7114
7115 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7116 * 31 30 29 28 25 24 0
7117 * +---+---+---+---------+-----------------------------+
7118 * | | 0 | | 1 1 1 1 | |
7119 * +---+---+---+---------+-----------------------------+
7120 */
7121 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7122 {
7123 if (extract32(insn, 24, 1)) {
7124 /* Floating point data-processing (3 source) */
7125 disas_fp_3src(s, insn);
7126 } else if (extract32(insn, 21, 1) == 0) {
7127 /* Floating point to fixed point conversions */
7128 disas_fp_fixed_conv(s, insn);
7129 } else {
7130 switch (extract32(insn, 10, 2)) {
7131 case 1:
7132 /* Floating point conditional compare */
7133 disas_fp_ccomp(s, insn);
7134 break;
7135 case 2:
7136 /* Floating point data-processing (2 source) */
7137 disas_fp_2src(s, insn);
7138 break;
7139 case 3:
7140 /* Floating point conditional select */
7141 disas_fp_csel(s, insn);
7142 break;
7143 case 0:
7144 switch (ctz32(extract32(insn, 12, 4))) {
7145 case 0: /* [15:12] == xxx1 */
7146 /* Floating point immediate */
7147 disas_fp_imm(s, insn);
7148 break;
7149 case 1: /* [15:12] == xx10 */
7150 /* Floating point compare */
7151 disas_fp_compare(s, insn);
7152 break;
7153 case 2: /* [15:12] == x100 */
7154 /* Floating point data-processing (1 source) */
7155 disas_fp_1src(s, insn);
7156 break;
7157 case 3: /* [15:12] == 1000 */
7158 unallocated_encoding(s);
7159 break;
7160 default: /* [15:12] == 0000 */
7161 /* Floating point <-> integer conversions */
7162 disas_fp_int_conv(s, insn);
7163 break;
7164 }
7165 break;
7166 }
7167 }
7168 }
7169
7170 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7171 int pos)
7172 {
7173 /* Extract 64 bits from the middle of two concatenated 64 bit
7174 * vector register slices left:right. The extracted bits start
7175 * at 'pos' bits into the right (least significant) side.
7176 * We return the result in tcg_right, and guarantee not to
7177 * trash tcg_left.
7178 */
7179 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7180 assert(pos > 0 && pos < 64);
7181
7182 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7183 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7184 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7185 }
7186
7187 /* EXT
7188 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
7189 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7190 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
7191 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7192 */
7193 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7194 {
7195 int is_q = extract32(insn, 30, 1);
7196 int op2 = extract32(insn, 22, 2);
7197 int imm4 = extract32(insn, 11, 4);
7198 int rm = extract32(insn, 16, 5);
7199 int rn = extract32(insn, 5, 5);
7200 int rd = extract32(insn, 0, 5);
7201 int pos = imm4 << 3;
7202 TCGv_i64 tcg_resl, tcg_resh;
7203
7204 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7205 unallocated_encoding(s);
7206 return;
7207 }
7208
7209 if (!fp_access_check(s)) {
7210 return;
7211 }
7212
7213 tcg_resh = tcg_temp_new_i64();
7214 tcg_resl = tcg_temp_new_i64();
7215
7216 /* Vd gets bits starting at pos bits into Vm:Vn. This is
7217 * either extracting 128 bits from a 128:128 concatenation, or
7218 * extracting 64 bits from a 64:64 concatenation.
7219 */
7220 if (!is_q) {
7221 read_vec_element(s, tcg_resl, rn, 0, MO_64);
7222 if (pos != 0) {
7223 read_vec_element(s, tcg_resh, rm, 0, MO_64);
7224 do_ext64(s, tcg_resh, tcg_resl, pos);
7225 }
7226 } else {
7227 TCGv_i64 tcg_hh;
7228 typedef struct {
7229 int reg;
7230 int elt;
7231 } EltPosns;
7232 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7233 EltPosns *elt = eltposns;
7234
7235 if (pos >= 64) {
7236 elt++;
7237 pos -= 64;
7238 }
7239
7240 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7241 elt++;
7242 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7243 elt++;
7244 if (pos != 0) {
7245 do_ext64(s, tcg_resh, tcg_resl, pos);
7246 tcg_hh = tcg_temp_new_i64();
7247 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7248 do_ext64(s, tcg_hh, tcg_resh, pos);
7249 }
7250 }
7251
7252 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7253 if (is_q) {
7254 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7255 }
7256 clear_vec_high(s, is_q, rd);
7257 }
7258
7259 /* TBL/TBX
7260 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
7261 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7262 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
7263 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7264 */
7265 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7266 {
7267 int op2 = extract32(insn, 22, 2);
7268 int is_q = extract32(insn, 30, 1);
7269 int rm = extract32(insn, 16, 5);
7270 int rn = extract32(insn, 5, 5);
7271 int rd = extract32(insn, 0, 5);
7272 int is_tbx = extract32(insn, 12, 1);
7273 int len = (extract32(insn, 13, 2) + 1) * 16;
7274
7275 if (op2 != 0) {
7276 unallocated_encoding(s);
7277 return;
7278 }
7279
7280 if (!fp_access_check(s)) {
7281 return;
7282 }
7283
7284 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7285 vec_full_reg_offset(s, rm), tcg_env,
7286 is_q ? 16 : 8, vec_full_reg_size(s),
7287 (len << 6) | (is_tbx << 5) | rn,
7288 gen_helper_simd_tblx);
7289 }
7290
7291 /* ZIP/UZP/TRN
7292 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
7293 * +---+---+-------------+------+---+------+---+------------------+------+
7294 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
7295 * +---+---+-------------+------+---+------+---+------------------+------+
7296 */
7297 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7298 {
7299 int rd = extract32(insn, 0, 5);
7300 int rn = extract32(insn, 5, 5);
7301 int rm = extract32(insn, 16, 5);
7302 int size = extract32(insn, 22, 2);
7303 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7304 * bit 2 indicates 1 vs 2 variant of the insn.
7305 */
7306 int opcode = extract32(insn, 12, 2);
7307 bool part = extract32(insn, 14, 1);
7308 bool is_q = extract32(insn, 30, 1);
7309 int esize = 8 << size;
7310 int i;
7311 int datasize = is_q ? 128 : 64;
7312 int elements = datasize / esize;
7313 TCGv_i64 tcg_res[2], tcg_ele;
7314
7315 if (opcode == 0 || (size == 3 && !is_q)) {
7316 unallocated_encoding(s);
7317 return;
7318 }
7319
7320 if (!fp_access_check(s)) {
7321 return;
7322 }
7323
7324 tcg_res[0] = tcg_temp_new_i64();
7325 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7326 tcg_ele = tcg_temp_new_i64();
7327
7328 for (i = 0; i < elements; i++) {
7329 int o, w;
7330
7331 switch (opcode) {
7332 case 1: /* UZP1/2 */
7333 {
7334 int midpoint = elements / 2;
7335 if (i < midpoint) {
7336 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
7337 } else {
7338 read_vec_element(s, tcg_ele, rm,
7339 2 * (i - midpoint) + part, size);
7340 }
7341 break;
7342 }
7343 case 2: /* TRN1/2 */
7344 if (i & 1) {
7345 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
7346 } else {
7347 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
7348 }
7349 break;
7350 case 3: /* ZIP1/2 */
7351 {
7352 int base = part * elements / 2;
7353 if (i & 1) {
7354 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
7355 } else {
7356 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
7357 }
7358 break;
7359 }
7360 default:
7361 g_assert_not_reached();
7362 }
7363
7364 w = (i * esize) / 64;
7365 o = (i * esize) % 64;
7366 if (o == 0) {
7367 tcg_gen_mov_i64(tcg_res[w], tcg_ele);
7368 } else {
7369 tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
7370 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
7371 }
7372 }
7373
7374 for (i = 0; i <= is_q; ++i) {
7375 write_vec_element(s, tcg_res[i], rd, i, MO_64);
7376 }
7377 clear_vec_high(s, is_q, rd);
7378 }
7379
7380 /*
7381 * do_reduction_op helper
7382 *
7383 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7384 * important for correct NaN propagation that we do these
7385 * operations in exactly the order specified by the pseudocode.
7386 *
7387 * This is a recursive function, TCG temps should be freed by the
7388 * calling function once it is done with the values.
7389 */
7390 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7391 int esize, int size, int vmap, TCGv_ptr fpst)
7392 {
7393 if (esize == size) {
7394 int element;
7395 MemOp msize = esize == 16 ? MO_16 : MO_32;
7396 TCGv_i32 tcg_elem;
7397
7398 /* We should have one register left here */
7399 assert(ctpop8(vmap) == 1);
7400 element = ctz32(vmap);
7401 assert(element < 8);
7402
7403 tcg_elem = tcg_temp_new_i32();
7404 read_vec_element_i32(s, tcg_elem, rn, element, msize);
7405 return tcg_elem;
7406 } else {
7407 int bits = size / 2;
7408 int shift = ctpop8(vmap) / 2;
7409 int vmap_lo = (vmap >> shift) & vmap;
7410 int vmap_hi = (vmap & ~vmap_lo);
7411 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7412
7413 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7414 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7415 tcg_res = tcg_temp_new_i32();
7416
7417 switch (fpopcode) {
7418 case 0x0c: /* fmaxnmv half-precision */
7419 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7420 break;
7421 case 0x0f: /* fmaxv half-precision */
7422 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7423 break;
7424 case 0x1c: /* fminnmv half-precision */
7425 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7426 break;
7427 case 0x1f: /* fminv half-precision */
7428 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7429 break;
7430 case 0x2c: /* fmaxnmv */
7431 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7432 break;
7433 case 0x2f: /* fmaxv */
7434 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7435 break;
7436 case 0x3c: /* fminnmv */
7437 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7438 break;
7439 case 0x3f: /* fminv */
7440 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7441 break;
7442 default:
7443 g_assert_not_reached();
7444 }
7445 return tcg_res;
7446 }
7447 }
7448
7449 /* AdvSIMD across lanes
7450 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7451 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7452 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7453 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7454 */
7455 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7456 {
7457 int rd = extract32(insn, 0, 5);
7458 int rn = extract32(insn, 5, 5);
7459 int size = extract32(insn, 22, 2);
7460 int opcode = extract32(insn, 12, 5);
7461 bool is_q = extract32(insn, 30, 1);
7462 bool is_u = extract32(insn, 29, 1);
7463 bool is_fp = false;
7464 bool is_min = false;
7465 int esize;
7466 int elements;
7467 int i;
7468 TCGv_i64 tcg_res, tcg_elt;
7469
7470 switch (opcode) {
7471 case 0x1b: /* ADDV */
7472 if (is_u) {
7473 unallocated_encoding(s);
7474 return;
7475 }
7476 /* fall through */
7477 case 0x3: /* SADDLV, UADDLV */
7478 case 0xa: /* SMAXV, UMAXV */
7479 case 0x1a: /* SMINV, UMINV */
7480 if (size == 3 || (size == 2 && !is_q)) {
7481 unallocated_encoding(s);
7482 return;
7483 }
7484 break;
7485 case 0xc: /* FMAXNMV, FMINNMV */
7486 case 0xf: /* FMAXV, FMINV */
7487 /* Bit 1 of size field encodes min vs max and the actual size
7488 * depends on the encoding of the U bit. If not set (and FP16
7489 * enabled) then we do half-precision float instead of single
7490 * precision.
7491 */
7492 is_min = extract32(size, 1, 1);
7493 is_fp = true;
7494 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7495 size = 1;
7496 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7497 unallocated_encoding(s);
7498 return;
7499 } else {
7500 size = 2;
7501 }
7502 break;
7503 default:
7504 unallocated_encoding(s);
7505 return;
7506 }
7507
7508 if (!fp_access_check(s)) {
7509 return;
7510 }
7511
7512 esize = 8 << size;
7513 elements = (is_q ? 128 : 64) / esize;
7514
7515 tcg_res = tcg_temp_new_i64();
7516 tcg_elt = tcg_temp_new_i64();
7517
7518 /* These instructions operate across all lanes of a vector
7519 * to produce a single result. We can guarantee that a 64
7520 * bit intermediate is sufficient:
7521 * + for [US]ADDLV the maximum element size is 32 bits, and
7522 * the result type is 64 bits
7523 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7524 * same as the element size, which is 32 bits at most
7525 * For the integer operations we can choose to work at 64
7526 * or 32 bits and truncate at the end; for simplicity
7527 * we use 64 bits always. The floating point
7528 * ops do require 32 bit intermediates, though.
7529 */
7530 if (!is_fp) {
7531 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7532
7533 for (i = 1; i < elements; i++) {
7534 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7535
7536 switch (opcode) {
7537 case 0x03: /* SADDLV / UADDLV */
7538 case 0x1b: /* ADDV */
7539 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7540 break;
7541 case 0x0a: /* SMAXV / UMAXV */
7542 if (is_u) {
7543 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7544 } else {
7545 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7546 }
7547 break;
7548 case 0x1a: /* SMINV / UMINV */
7549 if (is_u) {
7550 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7551 } else {
7552 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7553 }
7554 break;
7555 default:
7556 g_assert_not_reached();
7557 }
7558
7559 }
7560 } else {
7561 /* Floating point vector reduction ops which work across 32
7562 * bit (single) or 16 bit (half-precision) intermediates.
7563 * Note that correct NaN propagation requires that we do these
7564 * operations in exactly the order specified by the pseudocode.
7565 */
7566 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7567 int fpopcode = opcode | is_min << 4 | is_u << 5;
7568 int vmap = (1 << elements) - 1;
7569 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7570 (is_q ? 128 : 64), vmap, fpst);
7571 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7572 }
7573
7574 /* Now truncate the result to the width required for the final output */
7575 if (opcode == 0x03) {
7576 /* SADDLV, UADDLV: result is 2*esize */
7577 size++;
7578 }
7579
7580 switch (size) {
7581 case 0:
7582 tcg_gen_ext8u_i64(tcg_res, tcg_res);
7583 break;
7584 case 1:
7585 tcg_gen_ext16u_i64(tcg_res, tcg_res);
7586 break;
7587 case 2:
7588 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7589 break;
7590 case 3:
7591 break;
7592 default:
7593 g_assert_not_reached();
7594 }
7595
7596 write_fp_dreg(s, rd, tcg_res);
7597 }
7598
7599 /* DUP (Element, Vector)
7600 *
7601 * 31 30 29 21 20 16 15 10 9 5 4 0
7602 * +---+---+-------------------+--------+-------------+------+------+
7603 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7604 * +---+---+-------------------+--------+-------------+------+------+
7605 *
7606 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7607 */
7608 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7609 int imm5)
7610 {
7611 int size = ctz32(imm5);
7612 int index;
7613
7614 if (size > 3 || (size == 3 && !is_q)) {
7615 unallocated_encoding(s);
7616 return;
7617 }
7618
7619 if (!fp_access_check(s)) {
7620 return;
7621 }
7622
7623 index = imm5 >> (size + 1);
7624 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7625 vec_reg_offset(s, rn, index, size),
7626 is_q ? 16 : 8, vec_full_reg_size(s));
7627 }
7628
7629 /* DUP (element, scalar)
7630 * 31 21 20 16 15 10 9 5 4 0
7631 * +-----------------------+--------+-------------+------+------+
7632 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7633 * +-----------------------+--------+-------------+------+------+
7634 */
7635 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7636 int imm5)
7637 {
7638 int size = ctz32(imm5);
7639 int index;
7640 TCGv_i64 tmp;
7641
7642 if (size > 3) {
7643 unallocated_encoding(s);
7644 return;
7645 }
7646
7647 if (!fp_access_check(s)) {
7648 return;
7649 }
7650
7651 index = imm5 >> (size + 1);
7652
7653 /* This instruction just extracts the specified element and
7654 * zero-extends it into the bottom of the destination register.
7655 */
7656 tmp = tcg_temp_new_i64();
7657 read_vec_element(s, tmp, rn, index, size);
7658 write_fp_dreg(s, rd, tmp);
7659 }
7660
7661 /* DUP (General)
7662 *
7663 * 31 30 29 21 20 16 15 10 9 5 4 0
7664 * +---+---+-------------------+--------+-------------+------+------+
7665 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
7666 * +---+---+-------------------+--------+-------------+------+------+
7667 *
7668 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7669 */
7670 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7671 int imm5)
7672 {
7673 int size = ctz32(imm5);
7674 uint32_t dofs, oprsz, maxsz;
7675
7676 if (size > 3 || ((size == 3) && !is_q)) {
7677 unallocated_encoding(s);
7678 return;
7679 }
7680
7681 if (!fp_access_check(s)) {
7682 return;
7683 }
7684
7685 dofs = vec_full_reg_offset(s, rd);
7686 oprsz = is_q ? 16 : 8;
7687 maxsz = vec_full_reg_size(s);
7688
7689 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7690 }
7691
7692 /* INS (Element)
7693 *
7694 * 31 21 20 16 15 14 11 10 9 5 4 0
7695 * +-----------------------+--------+------------+---+------+------+
7696 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7697 * +-----------------------+--------+------------+---+------+------+
7698 *
7699 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7700 * index: encoded in imm5<4:size+1>
7701 */
7702 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7703 int imm4, int imm5)
7704 {
7705 int size = ctz32(imm5);
7706 int src_index, dst_index;
7707 TCGv_i64 tmp;
7708
7709 if (size > 3) {
7710 unallocated_encoding(s);
7711 return;
7712 }
7713
7714 if (!fp_access_check(s)) {
7715 return;
7716 }
7717
7718 dst_index = extract32(imm5, 1+size, 5);
7719 src_index = extract32(imm4, size, 4);
7720
7721 tmp = tcg_temp_new_i64();
7722
7723 read_vec_element(s, tmp, rn, src_index, size);
7724 write_vec_element(s, tmp, rd, dst_index, size);
7725
7726 /* INS is considered a 128-bit write for SVE. */
7727 clear_vec_high(s, true, rd);
7728 }
7729
7730
7731 /* INS (General)
7732 *
7733 * 31 21 20 16 15 10 9 5 4 0
7734 * +-----------------------+--------+-------------+------+------+
7735 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
7736 * +-----------------------+--------+-------------+------+------+
7737 *
7738 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7739 * index: encoded in imm5<4:size+1>
7740 */
7741 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7742 {
7743 int size = ctz32(imm5);
7744 int idx;
7745
7746 if (size > 3) {
7747 unallocated_encoding(s);
7748 return;
7749 }
7750
7751 if (!fp_access_check(s)) {
7752 return;
7753 }
7754
7755 idx = extract32(imm5, 1 + size, 4 - size);
7756 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7757
7758 /* INS is considered a 128-bit write for SVE. */
7759 clear_vec_high(s, true, rd);
7760 }
7761
7762 /*
7763 * UMOV (General)
7764 * SMOV (General)
7765 *
7766 * 31 30 29 21 20 16 15 12 10 9 5 4 0
7767 * +---+---+-------------------+--------+-------------+------+------+
7768 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
7769 * +---+---+-------------------+--------+-------------+------+------+
7770 *
7771 * U: unsigned when set
7772 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7773 */
7774 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7775 int rn, int rd, int imm5)
7776 {
7777 int size = ctz32(imm5);
7778 int element;
7779 TCGv_i64 tcg_rd;
7780
7781 /* Check for UnallocatedEncodings */
7782 if (is_signed) {
7783 if (size > 2 || (size == 2 && !is_q)) {
7784 unallocated_encoding(s);
7785 return;
7786 }
7787 } else {
7788 if (size > 3
7789 || (size < 3 && is_q)
7790 || (size == 3 && !is_q)) {
7791 unallocated_encoding(s);
7792 return;
7793 }
7794 }
7795
7796 if (!fp_access_check(s)) {
7797 return;
7798 }
7799
7800 element = extract32(imm5, 1+size, 4);
7801
7802 tcg_rd = cpu_reg(s, rd);
7803 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7804 if (is_signed && !is_q) {
7805 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7806 }
7807 }
7808
7809 /* AdvSIMD copy
7810 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7811 * +---+---+----+-----------------+------+---+------+---+------+------+
7812 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7813 * +---+---+----+-----------------+------+---+------+---+------+------+
7814 */
7815 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7816 {
7817 int rd = extract32(insn, 0, 5);
7818 int rn = extract32(insn, 5, 5);
7819 int imm4 = extract32(insn, 11, 4);
7820 int op = extract32(insn, 29, 1);
7821 int is_q = extract32(insn, 30, 1);
7822 int imm5 = extract32(insn, 16, 5);
7823
7824 if (op) {
7825 if (is_q) {
7826 /* INS (element) */
7827 handle_simd_inse(s, rd, rn, imm4, imm5);
7828 } else {
7829 unallocated_encoding(s);
7830 }
7831 } else {
7832 switch (imm4) {
7833 case 0:
7834 /* DUP (element - vector) */
7835 handle_simd_dupe(s, is_q, rd, rn, imm5);
7836 break;
7837 case 1:
7838 /* DUP (general) */
7839 handle_simd_dupg(s, is_q, rd, rn, imm5);
7840 break;
7841 case 3:
7842 if (is_q) {
7843 /* INS (general) */
7844 handle_simd_insg(s, rd, rn, imm5);
7845 } else {
7846 unallocated_encoding(s);
7847 }
7848 break;
7849 case 5:
7850 case 7:
7851 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7852 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7853 break;
7854 default:
7855 unallocated_encoding(s);
7856 break;
7857 }
7858 }
7859 }
7860
7861 /* AdvSIMD modified immediate
7862 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
7863 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7864 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
7865 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7866 *
7867 * There are a number of operations that can be carried out here:
7868 * MOVI - move (shifted) imm into register
7869 * MVNI - move inverted (shifted) imm into register
7870 * ORR - bitwise OR of (shifted) imm with register
7871 * BIC - bitwise clear of (shifted) imm with register
7872 * With ARMv8.2 we also have:
7873 * FMOV half-precision
7874 */
7875 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7876 {
7877 int rd = extract32(insn, 0, 5);
7878 int cmode = extract32(insn, 12, 4);
7879 int o2 = extract32(insn, 11, 1);
7880 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7881 bool is_neg = extract32(insn, 29, 1);
7882 bool is_q = extract32(insn, 30, 1);
7883 uint64_t imm = 0;
7884
7885 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7886 /* Check for FMOV (vector, immediate) - half-precision */
7887 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7888 unallocated_encoding(s);
7889 return;
7890 }
7891 }
7892
7893 if (!fp_access_check(s)) {
7894 return;
7895 }
7896
7897 if (cmode == 15 && o2 && !is_neg) {
7898 /* FMOV (vector, immediate) - half-precision */
7899 imm = vfp_expand_imm(MO_16, abcdefgh);
7900 /* now duplicate across the lanes */
7901 imm = dup_const(MO_16, imm);
7902 } else {
7903 imm = asimd_imm_const(abcdefgh, cmode, is_neg);
7904 }
7905
7906 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7907 /* MOVI or MVNI, with MVNI negation handled above. */
7908 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7909 vec_full_reg_size(s), imm);
7910 } else {
7911 /* ORR or BIC, with BIC negation to AND handled above. */
7912 if (is_neg) {
7913 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7914 } else {
7915 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7916 }
7917 }
7918 }
7919
7920 /* AdvSIMD scalar copy
7921 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7922 * +-----+----+-----------------+------+---+------+---+------+------+
7923 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7924 * +-----+----+-----------------+------+---+------+---+------+------+
7925 */
7926 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7927 {
7928 int rd = extract32(insn, 0, 5);
7929 int rn = extract32(insn, 5, 5);
7930 int imm4 = extract32(insn, 11, 4);
7931 int imm5 = extract32(insn, 16, 5);
7932 int op = extract32(insn, 29, 1);
7933
7934 if (op != 0 || imm4 != 0) {
7935 unallocated_encoding(s);
7936 return;
7937 }
7938
7939 /* DUP (element, scalar) */
7940 handle_simd_dupes(s, rd, rn, imm5);
7941 }
7942
7943 /* AdvSIMD scalar pairwise
7944 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7945 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7946 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7947 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7948 */
7949 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7950 {
7951 int u = extract32(insn, 29, 1);
7952 int size = extract32(insn, 22, 2);
7953 int opcode = extract32(insn, 12, 5);
7954 int rn = extract32(insn, 5, 5);
7955 int rd = extract32(insn, 0, 5);
7956 TCGv_ptr fpst;
7957
7958 /* For some ops (the FP ones), size[1] is part of the encoding.
7959 * For ADDP strictly it is not but size[1] is always 1 for valid
7960 * encodings.
7961 */
7962 opcode |= (extract32(size, 1, 1) << 5);
7963
7964 switch (opcode) {
7965 case 0x3b: /* ADDP */
7966 if (u || size != 3) {
7967 unallocated_encoding(s);
7968 return;
7969 }
7970 if (!fp_access_check(s)) {
7971 return;
7972 }
7973
7974 fpst = NULL;
7975 break;
7976 case 0xc: /* FMAXNMP */
7977 case 0xd: /* FADDP */
7978 case 0xf: /* FMAXP */
7979 case 0x2c: /* FMINNMP */
7980 case 0x2f: /* FMINP */
7981 /* FP op, size[0] is 32 or 64 bit*/
7982 if (!u) {
7983 if (!dc_isar_feature(aa64_fp16, s)) {
7984 unallocated_encoding(s);
7985 return;
7986 } else {
7987 size = MO_16;
7988 }
7989 } else {
7990 size = extract32(size, 0, 1) ? MO_64 : MO_32;
7991 }
7992
7993 if (!fp_access_check(s)) {
7994 return;
7995 }
7996
7997 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7998 break;
7999 default:
8000 unallocated_encoding(s);
8001 return;
8002 }
8003
8004 if (size == MO_64) {
8005 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8006 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8007 TCGv_i64 tcg_res = tcg_temp_new_i64();
8008
8009 read_vec_element(s, tcg_op1, rn, 0, MO_64);
8010 read_vec_element(s, tcg_op2, rn, 1, MO_64);
8011
8012 switch (opcode) {
8013 case 0x3b: /* ADDP */
8014 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8015 break;
8016 case 0xc: /* FMAXNMP */
8017 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8018 break;
8019 case 0xd: /* FADDP */
8020 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8021 break;
8022 case 0xf: /* FMAXP */
8023 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8024 break;
8025 case 0x2c: /* FMINNMP */
8026 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8027 break;
8028 case 0x2f: /* FMINP */
8029 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8030 break;
8031 default:
8032 g_assert_not_reached();
8033 }
8034
8035 write_fp_dreg(s, rd, tcg_res);
8036 } else {
8037 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8038 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8039 TCGv_i32 tcg_res = tcg_temp_new_i32();
8040
8041 read_vec_element_i32(s, tcg_op1, rn, 0, size);
8042 read_vec_element_i32(s, tcg_op2, rn, 1, size);
8043
8044 if (size == MO_16) {
8045 switch (opcode) {
8046 case 0xc: /* FMAXNMP */
8047 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8048 break;
8049 case 0xd: /* FADDP */
8050 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8051 break;
8052 case 0xf: /* FMAXP */
8053 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8054 break;
8055 case 0x2c: /* FMINNMP */
8056 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8057 break;
8058 case 0x2f: /* FMINP */
8059 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8060 break;
8061 default:
8062 g_assert_not_reached();
8063 }
8064 } else {
8065 switch (opcode) {
8066 case 0xc: /* FMAXNMP */
8067 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8068 break;
8069 case 0xd: /* FADDP */
8070 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8071 break;
8072 case 0xf: /* FMAXP */
8073 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8074 break;
8075 case 0x2c: /* FMINNMP */
8076 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8077 break;
8078 case 0x2f: /* FMINP */
8079 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8080 break;
8081 default:
8082 g_assert_not_reached();
8083 }
8084 }
8085
8086 write_fp_sreg(s, rd, tcg_res);
8087 }
8088 }
8089
8090 /*
8091 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8092 *
8093 * This code is handles the common shifting code and is used by both
8094 * the vector and scalar code.
8095 */
8096 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8097 TCGv_i64 tcg_rnd, bool accumulate,
8098 bool is_u, int size, int shift)
8099 {
8100 bool extended_result = false;
8101 bool round = tcg_rnd != NULL;
8102 int ext_lshift = 0;
8103 TCGv_i64 tcg_src_hi;
8104
8105 if (round && size == 3) {
8106 extended_result = true;
8107 ext_lshift = 64 - shift;
8108 tcg_src_hi = tcg_temp_new_i64();
8109 } else if (shift == 64) {
8110 if (!accumulate && is_u) {
8111 /* result is zero */
8112 tcg_gen_movi_i64(tcg_res, 0);
8113 return;
8114 }
8115 }
8116
8117 /* Deal with the rounding step */
8118 if (round) {
8119 if (extended_result) {
8120 TCGv_i64 tcg_zero = tcg_constant_i64(0);
8121 if (!is_u) {
8122 /* take care of sign extending tcg_res */
8123 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8124 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8125 tcg_src, tcg_src_hi,
8126 tcg_rnd, tcg_zero);
8127 } else {
8128 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8129 tcg_src, tcg_zero,
8130 tcg_rnd, tcg_zero);
8131 }
8132 } else {
8133 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8134 }
8135 }
8136
8137 /* Now do the shift right */
8138 if (round && extended_result) {
8139 /* extended case, >64 bit precision required */
8140 if (ext_lshift == 0) {
8141 /* special case, only high bits matter */
8142 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8143 } else {
8144 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8145 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8146 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8147 }
8148 } else {
8149 if (is_u) {
8150 if (shift == 64) {
8151 /* essentially shifting in 64 zeros */
8152 tcg_gen_movi_i64(tcg_src, 0);
8153 } else {
8154 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8155 }
8156 } else {
8157 if (shift == 64) {
8158 /* effectively extending the sign-bit */
8159 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8160 } else {
8161 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8162 }
8163 }
8164 }
8165
8166 if (accumulate) {
8167 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8168 } else {
8169 tcg_gen_mov_i64(tcg_res, tcg_src);
8170 }
8171 }
8172
8173 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8174 static void handle_scalar_simd_shri(DisasContext *s,
8175 bool is_u, int immh, int immb,
8176 int opcode, int rn, int rd)
8177 {
8178 const int size = 3;
8179 int immhb = immh << 3 | immb;
8180 int shift = 2 * (8 << size) - immhb;
8181 bool accumulate = false;
8182 bool round = false;
8183 bool insert = false;
8184 TCGv_i64 tcg_rn;
8185 TCGv_i64 tcg_rd;
8186 TCGv_i64 tcg_round;
8187
8188 if (!extract32(immh, 3, 1)) {
8189 unallocated_encoding(s);
8190 return;
8191 }
8192
8193 if (!fp_access_check(s)) {
8194 return;
8195 }
8196
8197 switch (opcode) {
8198 case 0x02: /* SSRA / USRA (accumulate) */
8199 accumulate = true;
8200 break;
8201 case 0x04: /* SRSHR / URSHR (rounding) */
8202 round = true;
8203 break;
8204 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8205 accumulate = round = true;
8206 break;
8207 case 0x08: /* SRI */
8208 insert = true;
8209 break;
8210 }
8211
8212 if (round) {
8213 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8214 } else {
8215 tcg_round = NULL;
8216 }
8217
8218 tcg_rn = read_fp_dreg(s, rn);
8219 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8220
8221 if (insert) {
8222 /* shift count same as element size is valid but does nothing;
8223 * special case to avoid potential shift by 64.
8224 */
8225 int esize = 8 << size;
8226 if (shift != esize) {
8227 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8228 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8229 }
8230 } else {
8231 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8232 accumulate, is_u, size, shift);
8233 }
8234
8235 write_fp_dreg(s, rd, tcg_rd);
8236 }
8237
8238 /* SHL/SLI - Scalar shift left */
8239 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8240 int immh, int immb, int opcode,
8241 int rn, int rd)
8242 {
8243 int size = 32 - clz32(immh) - 1;
8244 int immhb = immh << 3 | immb;
8245 int shift = immhb - (8 << size);
8246 TCGv_i64 tcg_rn;
8247 TCGv_i64 tcg_rd;
8248
8249 if (!extract32(immh, 3, 1)) {
8250 unallocated_encoding(s);
8251 return;
8252 }
8253
8254 if (!fp_access_check(s)) {
8255 return;
8256 }
8257
8258 tcg_rn = read_fp_dreg(s, rn);
8259 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8260
8261 if (insert) {
8262 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8263 } else {
8264 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8265 }
8266
8267 write_fp_dreg(s, rd, tcg_rd);
8268 }
8269
8270 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8271 * (signed/unsigned) narrowing */
8272 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8273 bool is_u_shift, bool is_u_narrow,
8274 int immh, int immb, int opcode,
8275 int rn, int rd)
8276 {
8277 int immhb = immh << 3 | immb;
8278 int size = 32 - clz32(immh) - 1;
8279 int esize = 8 << size;
8280 int shift = (2 * esize) - immhb;
8281 int elements = is_scalar ? 1 : (64 / esize);
8282 bool round = extract32(opcode, 0, 1);
8283 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8284 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8285 TCGv_i32 tcg_rd_narrowed;
8286 TCGv_i64 tcg_final;
8287
8288 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8289 { gen_helper_neon_narrow_sat_s8,
8290 gen_helper_neon_unarrow_sat8 },
8291 { gen_helper_neon_narrow_sat_s16,
8292 gen_helper_neon_unarrow_sat16 },
8293 { gen_helper_neon_narrow_sat_s32,
8294 gen_helper_neon_unarrow_sat32 },
8295 { NULL, NULL },
8296 };
8297 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8298 gen_helper_neon_narrow_sat_u8,
8299 gen_helper_neon_narrow_sat_u16,
8300 gen_helper_neon_narrow_sat_u32,
8301 NULL
8302 };
8303 NeonGenNarrowEnvFn *narrowfn;
8304
8305 int i;
8306
8307 assert(size < 4);
8308
8309 if (extract32(immh, 3, 1)) {
8310 unallocated_encoding(s);
8311 return;
8312 }
8313
8314 if (!fp_access_check(s)) {
8315 return;
8316 }
8317
8318 if (is_u_shift) {
8319 narrowfn = unsigned_narrow_fns[size];
8320 } else {
8321 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8322 }
8323
8324 tcg_rn = tcg_temp_new_i64();
8325 tcg_rd = tcg_temp_new_i64();
8326 tcg_rd_narrowed = tcg_temp_new_i32();
8327 tcg_final = tcg_temp_new_i64();
8328
8329 if (round) {
8330 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8331 } else {
8332 tcg_round = NULL;
8333 }
8334
8335 for (i = 0; i < elements; i++) {
8336 read_vec_element(s, tcg_rn, rn, i, ldop);
8337 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8338 false, is_u_shift, size+1, shift);
8339 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
8340 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8341 if (i == 0) {
8342 tcg_gen_mov_i64(tcg_final, tcg_rd);
8343 } else {
8344 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8345 }
8346 }
8347
8348 if (!is_q) {
8349 write_vec_element(s, tcg_final, rd, 0, MO_64);
8350 } else {
8351 write_vec_element(s, tcg_final, rd, 1, MO_64);
8352 }
8353 clear_vec_high(s, is_q, rd);
8354 }
8355
8356 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8357 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8358 bool src_unsigned, bool dst_unsigned,
8359 int immh, int immb, int rn, int rd)
8360 {
8361 int immhb = immh << 3 | immb;
8362 int size = 32 - clz32(immh) - 1;
8363 int shift = immhb - (8 << size);
8364 int pass;
8365
8366 assert(immh != 0);
8367 assert(!(scalar && is_q));
8368
8369 if (!scalar) {
8370 if (!is_q && extract32(immh, 3, 1)) {
8371 unallocated_encoding(s);
8372 return;
8373 }
8374
8375 /* Since we use the variable-shift helpers we must
8376 * replicate the shift count into each element of
8377 * the tcg_shift value.
8378 */
8379 switch (size) {
8380 case 0:
8381 shift |= shift << 8;
8382 /* fall through */
8383 case 1:
8384 shift |= shift << 16;
8385 break;
8386 case 2:
8387 case 3:
8388 break;
8389 default:
8390 g_assert_not_reached();
8391 }
8392 }
8393
8394 if (!fp_access_check(s)) {
8395 return;
8396 }
8397
8398 if (size == 3) {
8399 TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8400 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8401 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8402 { NULL, gen_helper_neon_qshl_u64 },
8403 };
8404 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8405 int maxpass = is_q ? 2 : 1;
8406
8407 for (pass = 0; pass < maxpass; pass++) {
8408 TCGv_i64 tcg_op = tcg_temp_new_i64();
8409
8410 read_vec_element(s, tcg_op, rn, pass, MO_64);
8411 genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8412 write_vec_element(s, tcg_op, rd, pass, MO_64);
8413 }
8414 clear_vec_high(s, is_q, rd);
8415 } else {
8416 TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8417 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8418 {
8419 { gen_helper_neon_qshl_s8,
8420 gen_helper_neon_qshl_s16,
8421 gen_helper_neon_qshl_s32 },
8422 { gen_helper_neon_qshlu_s8,
8423 gen_helper_neon_qshlu_s16,
8424 gen_helper_neon_qshlu_s32 }
8425 }, {
8426 { NULL, NULL, NULL },
8427 { gen_helper_neon_qshl_u8,
8428 gen_helper_neon_qshl_u16,
8429 gen_helper_neon_qshl_u32 }
8430 }
8431 };
8432 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8433 MemOp memop = scalar ? size : MO_32;
8434 int maxpass = scalar ? 1 : is_q ? 4 : 2;
8435
8436 for (pass = 0; pass < maxpass; pass++) {
8437 TCGv_i32 tcg_op = tcg_temp_new_i32();
8438
8439 read_vec_element_i32(s, tcg_op, rn, pass, memop);
8440 genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8441 if (scalar) {
8442 switch (size) {
8443 case 0:
8444 tcg_gen_ext8u_i32(tcg_op, tcg_op);
8445 break;
8446 case 1:
8447 tcg_gen_ext16u_i32(tcg_op, tcg_op);
8448 break;
8449 case 2:
8450 break;
8451 default:
8452 g_assert_not_reached();
8453 }
8454 write_fp_sreg(s, rd, tcg_op);
8455 } else {
8456 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8457 }
8458 }
8459
8460 if (!scalar) {
8461 clear_vec_high(s, is_q, rd);
8462 }
8463 }
8464 }
8465
8466 /* Common vector code for handling integer to FP conversion */
8467 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8468 int elements, int is_signed,
8469 int fracbits, int size)
8470 {
8471 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8472 TCGv_i32 tcg_shift = NULL;
8473
8474 MemOp mop = size | (is_signed ? MO_SIGN : 0);
8475 int pass;
8476
8477 if (fracbits || size == MO_64) {
8478 tcg_shift = tcg_constant_i32(fracbits);
8479 }
8480
8481 if (size == MO_64) {
8482 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8483 TCGv_i64 tcg_double = tcg_temp_new_i64();
8484
8485 for (pass = 0; pass < elements; pass++) {
8486 read_vec_element(s, tcg_int64, rn, pass, mop);
8487
8488 if (is_signed) {
8489 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8490 tcg_shift, tcg_fpst);
8491 } else {
8492 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8493 tcg_shift, tcg_fpst);
8494 }
8495 if (elements == 1) {
8496 write_fp_dreg(s, rd, tcg_double);
8497 } else {
8498 write_vec_element(s, tcg_double, rd, pass, MO_64);
8499 }
8500 }
8501 } else {
8502 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8503 TCGv_i32 tcg_float = tcg_temp_new_i32();
8504
8505 for (pass = 0; pass < elements; pass++) {
8506 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8507
8508 switch (size) {
8509 case MO_32:
8510 if (fracbits) {
8511 if (is_signed) {
8512 gen_helper_vfp_sltos(tcg_float, tcg_int32,
8513 tcg_shift, tcg_fpst);
8514 } else {
8515 gen_helper_vfp_ultos(tcg_float, tcg_int32,
8516 tcg_shift, tcg_fpst);
8517 }
8518 } else {
8519 if (is_signed) {
8520 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8521 } else {
8522 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8523 }
8524 }
8525 break;
8526 case MO_16:
8527 if (fracbits) {
8528 if (is_signed) {
8529 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8530 tcg_shift, tcg_fpst);
8531 } else {
8532 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8533 tcg_shift, tcg_fpst);
8534 }
8535 } else {
8536 if (is_signed) {
8537 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8538 } else {
8539 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8540 }
8541 }
8542 break;
8543 default:
8544 g_assert_not_reached();
8545 }
8546
8547 if (elements == 1) {
8548 write_fp_sreg(s, rd, tcg_float);
8549 } else {
8550 write_vec_element_i32(s, tcg_float, rd, pass, size);
8551 }
8552 }
8553 }
8554
8555 clear_vec_high(s, elements << size == 16, rd);
8556 }
8557
8558 /* UCVTF/SCVTF - Integer to FP conversion */
8559 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8560 bool is_q, bool is_u,
8561 int immh, int immb, int opcode,
8562 int rn, int rd)
8563 {
8564 int size, elements, fracbits;
8565 int immhb = immh << 3 | immb;
8566
8567 if (immh & 8) {
8568 size = MO_64;
8569 if (!is_scalar && !is_q) {
8570 unallocated_encoding(s);
8571 return;
8572 }
8573 } else if (immh & 4) {
8574 size = MO_32;
8575 } else if (immh & 2) {
8576 size = MO_16;
8577 if (!dc_isar_feature(aa64_fp16, s)) {
8578 unallocated_encoding(s);
8579 return;
8580 }
8581 } else {
8582 /* immh == 0 would be a failure of the decode logic */
8583 g_assert(immh == 1);
8584 unallocated_encoding(s);
8585 return;
8586 }
8587
8588 if (is_scalar) {
8589 elements = 1;
8590 } else {
8591 elements = (8 << is_q) >> size;
8592 }
8593 fracbits = (16 << size) - immhb;
8594
8595 if (!fp_access_check(s)) {
8596 return;
8597 }
8598
8599 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8600 }
8601
8602 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8603 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8604 bool is_q, bool is_u,
8605 int immh, int immb, int rn, int rd)
8606 {
8607 int immhb = immh << 3 | immb;
8608 int pass, size, fracbits;
8609 TCGv_ptr tcg_fpstatus;
8610 TCGv_i32 tcg_rmode, tcg_shift;
8611
8612 if (immh & 0x8) {
8613 size = MO_64;
8614 if (!is_scalar && !is_q) {
8615 unallocated_encoding(s);
8616 return;
8617 }
8618 } else if (immh & 0x4) {
8619 size = MO_32;
8620 } else if (immh & 0x2) {
8621 size = MO_16;
8622 if (!dc_isar_feature(aa64_fp16, s)) {
8623 unallocated_encoding(s);
8624 return;
8625 }
8626 } else {
8627 /* Should have split out AdvSIMD modified immediate earlier. */
8628 assert(immh == 1);
8629 unallocated_encoding(s);
8630 return;
8631 }
8632
8633 if (!fp_access_check(s)) {
8634 return;
8635 }
8636
8637 assert(!(is_scalar && is_q));
8638
8639 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8640 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8641 fracbits = (16 << size) - immhb;
8642 tcg_shift = tcg_constant_i32(fracbits);
8643
8644 if (size == MO_64) {
8645 int maxpass = is_scalar ? 1 : 2;
8646
8647 for (pass = 0; pass < maxpass; pass++) {
8648 TCGv_i64 tcg_op = tcg_temp_new_i64();
8649
8650 read_vec_element(s, tcg_op, rn, pass, MO_64);
8651 if (is_u) {
8652 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8653 } else {
8654 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8655 }
8656 write_vec_element(s, tcg_op, rd, pass, MO_64);
8657 }
8658 clear_vec_high(s, is_q, rd);
8659 } else {
8660 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8661 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8662
8663 switch (size) {
8664 case MO_16:
8665 if (is_u) {
8666 fn = gen_helper_vfp_touhh;
8667 } else {
8668 fn = gen_helper_vfp_toshh;
8669 }
8670 break;
8671 case MO_32:
8672 if (is_u) {
8673 fn = gen_helper_vfp_touls;
8674 } else {
8675 fn = gen_helper_vfp_tosls;
8676 }
8677 break;
8678 default:
8679 g_assert_not_reached();
8680 }
8681
8682 for (pass = 0; pass < maxpass; pass++) {
8683 TCGv_i32 tcg_op = tcg_temp_new_i32();
8684
8685 read_vec_element_i32(s, tcg_op, rn, pass, size);
8686 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8687 if (is_scalar) {
8688 write_fp_sreg(s, rd, tcg_op);
8689 } else {
8690 write_vec_element_i32(s, tcg_op, rd, pass, size);
8691 }
8692 }
8693 if (!is_scalar) {
8694 clear_vec_high(s, is_q, rd);
8695 }
8696 }
8697
8698 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8699 }
8700
8701 /* AdvSIMD scalar shift by immediate
8702 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8703 * +-----+---+-------------+------+------+--------+---+------+------+
8704 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8705 * +-----+---+-------------+------+------+--------+---+------+------+
8706 *
8707 * This is the scalar version so it works on a fixed sized registers
8708 */
8709 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8710 {
8711 int rd = extract32(insn, 0, 5);
8712 int rn = extract32(insn, 5, 5);
8713 int opcode = extract32(insn, 11, 5);
8714 int immb = extract32(insn, 16, 3);
8715 int immh = extract32(insn, 19, 4);
8716 bool is_u = extract32(insn, 29, 1);
8717
8718 if (immh == 0) {
8719 unallocated_encoding(s);
8720 return;
8721 }
8722
8723 switch (opcode) {
8724 case 0x08: /* SRI */
8725 if (!is_u) {
8726 unallocated_encoding(s);
8727 return;
8728 }
8729 /* fall through */
8730 case 0x00: /* SSHR / USHR */
8731 case 0x02: /* SSRA / USRA */
8732 case 0x04: /* SRSHR / URSHR */
8733 case 0x06: /* SRSRA / URSRA */
8734 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8735 break;
8736 case 0x0a: /* SHL / SLI */
8737 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8738 break;
8739 case 0x1c: /* SCVTF, UCVTF */
8740 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8741 opcode, rn, rd);
8742 break;
8743 case 0x10: /* SQSHRUN, SQSHRUN2 */
8744 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8745 if (!is_u) {
8746 unallocated_encoding(s);
8747 return;
8748 }
8749 handle_vec_simd_sqshrn(s, true, false, false, true,
8750 immh, immb, opcode, rn, rd);
8751 break;
8752 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8753 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8754 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8755 immh, immb, opcode, rn, rd);
8756 break;
8757 case 0xc: /* SQSHLU */
8758 if (!is_u) {
8759 unallocated_encoding(s);
8760 return;
8761 }
8762 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8763 break;
8764 case 0xe: /* SQSHL, UQSHL */
8765 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8766 break;
8767 case 0x1f: /* FCVTZS, FCVTZU */
8768 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8769 break;
8770 default:
8771 unallocated_encoding(s);
8772 break;
8773 }
8774 }
8775
8776 /* AdvSIMD scalar three different
8777 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8778 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8779 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8780 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8781 */
8782 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8783 {
8784 bool is_u = extract32(insn, 29, 1);
8785 int size = extract32(insn, 22, 2);
8786 int opcode = extract32(insn, 12, 4);
8787 int rm = extract32(insn, 16, 5);
8788 int rn = extract32(insn, 5, 5);
8789 int rd = extract32(insn, 0, 5);
8790
8791 if (is_u) {
8792 unallocated_encoding(s);
8793 return;
8794 }
8795
8796 switch (opcode) {
8797 case 0x9: /* SQDMLAL, SQDMLAL2 */
8798 case 0xb: /* SQDMLSL, SQDMLSL2 */
8799 case 0xd: /* SQDMULL, SQDMULL2 */
8800 if (size == 0 || size == 3) {
8801 unallocated_encoding(s);
8802 return;
8803 }
8804 break;
8805 default:
8806 unallocated_encoding(s);
8807 return;
8808 }
8809
8810 if (!fp_access_check(s)) {
8811 return;
8812 }
8813
8814 if (size == 2) {
8815 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8816 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8817 TCGv_i64 tcg_res = tcg_temp_new_i64();
8818
8819 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8820 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8821
8822 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8823 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
8824
8825 switch (opcode) {
8826 case 0xd: /* SQDMULL, SQDMULL2 */
8827 break;
8828 case 0xb: /* SQDMLSL, SQDMLSL2 */
8829 tcg_gen_neg_i64(tcg_res, tcg_res);
8830 /* fall through */
8831 case 0x9: /* SQDMLAL, SQDMLAL2 */
8832 read_vec_element(s, tcg_op1, rd, 0, MO_64);
8833 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
8834 tcg_res, tcg_op1);
8835 break;
8836 default:
8837 g_assert_not_reached();
8838 }
8839
8840 write_fp_dreg(s, rd, tcg_res);
8841 } else {
8842 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8843 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8844 TCGv_i64 tcg_res = tcg_temp_new_i64();
8845
8846 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8847 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
8848
8849 switch (opcode) {
8850 case 0xd: /* SQDMULL, SQDMULL2 */
8851 break;
8852 case 0xb: /* SQDMLSL, SQDMLSL2 */
8853 gen_helper_neon_negl_u32(tcg_res, tcg_res);
8854 /* fall through */
8855 case 0x9: /* SQDMLAL, SQDMLAL2 */
8856 {
8857 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8858 read_vec_element(s, tcg_op3, rd, 0, MO_32);
8859 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
8860 tcg_res, tcg_op3);
8861 break;
8862 }
8863 default:
8864 g_assert_not_reached();
8865 }
8866
8867 tcg_gen_ext32u_i64(tcg_res, tcg_res);
8868 write_fp_dreg(s, rd, tcg_res);
8869 }
8870 }
8871
8872 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8873 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8874 {
8875 /* Handle 64x64->64 opcodes which are shared between the scalar
8876 * and vector 3-same groups. We cover every opcode where size == 3
8877 * is valid in either the three-reg-same (integer, not pairwise)
8878 * or scalar-three-reg-same groups.
8879 */
8880 TCGCond cond;
8881
8882 switch (opcode) {
8883 case 0x1: /* SQADD */
8884 if (u) {
8885 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8886 } else {
8887 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8888 }
8889 break;
8890 case 0x5: /* SQSUB */
8891 if (u) {
8892 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8893 } else {
8894 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8895 }
8896 break;
8897 case 0x6: /* CMGT, CMHI */
8898 cond = u ? TCG_COND_GTU : TCG_COND_GT;
8899 do_cmop:
8900 /* 64 bit integer comparison, result = test ? -1 : 0. */
8901 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8902 break;
8903 case 0x7: /* CMGE, CMHS */
8904 cond = u ? TCG_COND_GEU : TCG_COND_GE;
8905 goto do_cmop;
8906 case 0x11: /* CMTST, CMEQ */
8907 if (u) {
8908 cond = TCG_COND_EQ;
8909 goto do_cmop;
8910 }
8911 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8912 break;
8913 case 0x8: /* SSHL, USHL */
8914 if (u) {
8915 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
8916 } else {
8917 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
8918 }
8919 break;
8920 case 0x9: /* SQSHL, UQSHL */
8921 if (u) {
8922 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8923 } else {
8924 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8925 }
8926 break;
8927 case 0xa: /* SRSHL, URSHL */
8928 if (u) {
8929 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8930 } else {
8931 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8932 }
8933 break;
8934 case 0xb: /* SQRSHL, UQRSHL */
8935 if (u) {
8936 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8937 } else {
8938 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8939 }
8940 break;
8941 case 0x10: /* ADD, SUB */
8942 if (u) {
8943 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8944 } else {
8945 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8946 }
8947 break;
8948 default:
8949 g_assert_not_reached();
8950 }
8951 }
8952
8953 /* Handle the 3-same-operands float operations; shared by the scalar
8954 * and vector encodings. The caller must filter out any encodings
8955 * not allocated for the encoding it is dealing with.
8956 */
8957 static void handle_3same_float(DisasContext *s, int size, int elements,
8958 int fpopcode, int rd, int rn, int rm)
8959 {
8960 int pass;
8961 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
8962
8963 for (pass = 0; pass < elements; pass++) {
8964 if (size) {
8965 /* Double */
8966 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8967 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8968 TCGv_i64 tcg_res = tcg_temp_new_i64();
8969
8970 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8971 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8972
8973 switch (fpopcode) {
8974 case 0x39: /* FMLS */
8975 /* As usual for ARM, separate negation for fused multiply-add */
8976 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8977 /* fall through */
8978 case 0x19: /* FMLA */
8979 read_vec_element(s, tcg_res, rd, pass, MO_64);
8980 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8981 tcg_res, fpst);
8982 break;
8983 case 0x18: /* FMAXNM */
8984 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8985 break;
8986 case 0x1a: /* FADD */
8987 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8988 break;
8989 case 0x1b: /* FMULX */
8990 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8991 break;
8992 case 0x1c: /* FCMEQ */
8993 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8994 break;
8995 case 0x1e: /* FMAX */
8996 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8997 break;
8998 case 0x1f: /* FRECPS */
8999 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9000 break;
9001 case 0x38: /* FMINNM */
9002 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9003 break;
9004 case 0x3a: /* FSUB */
9005 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9006 break;
9007 case 0x3e: /* FMIN */
9008 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
9009 break;
9010 case 0x3f: /* FRSQRTS */
9011 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9012 break;
9013 case 0x5b: /* FMUL */
9014 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
9015 break;
9016 case 0x5c: /* FCMGE */
9017 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9018 break;
9019 case 0x5d: /* FACGE */
9020 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9021 break;
9022 case 0x5f: /* FDIV */
9023 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
9024 break;
9025 case 0x7a: /* FABD */
9026 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9027 gen_helper_vfp_absd(tcg_res, tcg_res);
9028 break;
9029 case 0x7c: /* FCMGT */
9030 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9031 break;
9032 case 0x7d: /* FACGT */
9033 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9034 break;
9035 default:
9036 g_assert_not_reached();
9037 }
9038
9039 write_vec_element(s, tcg_res, rd, pass, MO_64);
9040 } else {
9041 /* Single */
9042 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9043 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9044 TCGv_i32 tcg_res = tcg_temp_new_i32();
9045
9046 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9047 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9048
9049 switch (fpopcode) {
9050 case 0x39: /* FMLS */
9051 /* As usual for ARM, separate negation for fused multiply-add */
9052 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9053 /* fall through */
9054 case 0x19: /* FMLA */
9055 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9056 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9057 tcg_res, fpst);
9058 break;
9059 case 0x1a: /* FADD */
9060 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9061 break;
9062 case 0x1b: /* FMULX */
9063 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9064 break;
9065 case 0x1c: /* FCMEQ */
9066 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9067 break;
9068 case 0x1e: /* FMAX */
9069 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9070 break;
9071 case 0x1f: /* FRECPS */
9072 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9073 break;
9074 case 0x18: /* FMAXNM */
9075 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9076 break;
9077 case 0x38: /* FMINNM */
9078 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9079 break;
9080 case 0x3a: /* FSUB */
9081 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9082 break;
9083 case 0x3e: /* FMIN */
9084 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9085 break;
9086 case 0x3f: /* FRSQRTS */
9087 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9088 break;
9089 case 0x5b: /* FMUL */
9090 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9091 break;
9092 case 0x5c: /* FCMGE */
9093 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9094 break;
9095 case 0x5d: /* FACGE */
9096 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9097 break;
9098 case 0x5f: /* FDIV */
9099 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9100 break;
9101 case 0x7a: /* FABD */
9102 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9103 gen_helper_vfp_abss(tcg_res, tcg_res);
9104 break;
9105 case 0x7c: /* FCMGT */
9106 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9107 break;
9108 case 0x7d: /* FACGT */
9109 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9110 break;
9111 default:
9112 g_assert_not_reached();
9113 }
9114
9115 if (elements == 1) {
9116 /* scalar single so clear high part */
9117 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9118
9119 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9120 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9121 } else {
9122 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9123 }
9124 }
9125 }
9126
9127 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9128 }
9129
9130 /* AdvSIMD scalar three same
9131 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9132 * +-----+---+-----------+------+---+------+--------+---+------+------+
9133 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9134 * +-----+---+-----------+------+---+------+--------+---+------+------+
9135 */
9136 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9137 {
9138 int rd = extract32(insn, 0, 5);
9139 int rn = extract32(insn, 5, 5);
9140 int opcode = extract32(insn, 11, 5);
9141 int rm = extract32(insn, 16, 5);
9142 int size = extract32(insn, 22, 2);
9143 bool u = extract32(insn, 29, 1);
9144 TCGv_i64 tcg_rd;
9145
9146 if (opcode >= 0x18) {
9147 /* Floating point: U, size[1] and opcode indicate operation */
9148 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9149 switch (fpopcode) {
9150 case 0x1b: /* FMULX */
9151 case 0x1f: /* FRECPS */
9152 case 0x3f: /* FRSQRTS */
9153 case 0x5d: /* FACGE */
9154 case 0x7d: /* FACGT */
9155 case 0x1c: /* FCMEQ */
9156 case 0x5c: /* FCMGE */
9157 case 0x7c: /* FCMGT */
9158 case 0x7a: /* FABD */
9159 break;
9160 default:
9161 unallocated_encoding(s);
9162 return;
9163 }
9164
9165 if (!fp_access_check(s)) {
9166 return;
9167 }
9168
9169 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9170 return;
9171 }
9172
9173 switch (opcode) {
9174 case 0x1: /* SQADD, UQADD */
9175 case 0x5: /* SQSUB, UQSUB */
9176 case 0x9: /* SQSHL, UQSHL */
9177 case 0xb: /* SQRSHL, UQRSHL */
9178 break;
9179 case 0x8: /* SSHL, USHL */
9180 case 0xa: /* SRSHL, URSHL */
9181 case 0x6: /* CMGT, CMHI */
9182 case 0x7: /* CMGE, CMHS */
9183 case 0x11: /* CMTST, CMEQ */
9184 case 0x10: /* ADD, SUB (vector) */
9185 if (size != 3) {
9186 unallocated_encoding(s);
9187 return;
9188 }
9189 break;
9190 case 0x16: /* SQDMULH, SQRDMULH (vector) */
9191 if (size != 1 && size != 2) {
9192 unallocated_encoding(s);
9193 return;
9194 }
9195 break;
9196 default:
9197 unallocated_encoding(s);
9198 return;
9199 }
9200
9201 if (!fp_access_check(s)) {
9202 return;
9203 }
9204
9205 tcg_rd = tcg_temp_new_i64();
9206
9207 if (size == 3) {
9208 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9209 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9210
9211 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9212 } else {
9213 /* Do a single operation on the lowest element in the vector.
9214 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9215 * no side effects for all these operations.
9216 * OPTME: special-purpose helpers would avoid doing some
9217 * unnecessary work in the helper for the 8 and 16 bit cases.
9218 */
9219 NeonGenTwoOpEnvFn *genenvfn;
9220 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9221 TCGv_i32 tcg_rm = tcg_temp_new_i32();
9222 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9223
9224 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9225 read_vec_element_i32(s, tcg_rm, rm, 0, size);
9226
9227 switch (opcode) {
9228 case 0x1: /* SQADD, UQADD */
9229 {
9230 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9231 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9232 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9233 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9234 };
9235 genenvfn = fns[size][u];
9236 break;
9237 }
9238 case 0x5: /* SQSUB, UQSUB */
9239 {
9240 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9241 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9242 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9243 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9244 };
9245 genenvfn = fns[size][u];
9246 break;
9247 }
9248 case 0x9: /* SQSHL, UQSHL */
9249 {
9250 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9251 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9252 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9253 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9254 };
9255 genenvfn = fns[size][u];
9256 break;
9257 }
9258 case 0xb: /* SQRSHL, UQRSHL */
9259 {
9260 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9261 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9262 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9263 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9264 };
9265 genenvfn = fns[size][u];
9266 break;
9267 }
9268 case 0x16: /* SQDMULH, SQRDMULH */
9269 {
9270 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9271 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9272 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9273 };
9274 assert(size == 1 || size == 2);
9275 genenvfn = fns[size - 1][u];
9276 break;
9277 }
9278 default:
9279 g_assert_not_reached();
9280 }
9281
9282 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm);
9283 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9284 }
9285
9286 write_fp_dreg(s, rd, tcg_rd);
9287 }
9288
9289 /* AdvSIMD scalar three same FP16
9290 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
9291 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9292 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
9293 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9294 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9295 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9296 */
9297 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9298 uint32_t insn)
9299 {
9300 int rd = extract32(insn, 0, 5);
9301 int rn = extract32(insn, 5, 5);
9302 int opcode = extract32(insn, 11, 3);
9303 int rm = extract32(insn, 16, 5);
9304 bool u = extract32(insn, 29, 1);
9305 bool a = extract32(insn, 23, 1);
9306 int fpopcode = opcode | (a << 3) | (u << 4);
9307 TCGv_ptr fpst;
9308 TCGv_i32 tcg_op1;
9309 TCGv_i32 tcg_op2;
9310 TCGv_i32 tcg_res;
9311
9312 switch (fpopcode) {
9313 case 0x03: /* FMULX */
9314 case 0x04: /* FCMEQ (reg) */
9315 case 0x07: /* FRECPS */
9316 case 0x0f: /* FRSQRTS */
9317 case 0x14: /* FCMGE (reg) */
9318 case 0x15: /* FACGE */
9319 case 0x1a: /* FABD */
9320 case 0x1c: /* FCMGT (reg) */
9321 case 0x1d: /* FACGT */
9322 break;
9323 default:
9324 unallocated_encoding(s);
9325 return;
9326 }
9327
9328 if (!dc_isar_feature(aa64_fp16, s)) {
9329 unallocated_encoding(s);
9330 }
9331
9332 if (!fp_access_check(s)) {
9333 return;
9334 }
9335
9336 fpst = fpstatus_ptr(FPST_FPCR_F16);
9337
9338 tcg_op1 = read_fp_hreg(s, rn);
9339 tcg_op2 = read_fp_hreg(s, rm);
9340 tcg_res = tcg_temp_new_i32();
9341
9342 switch (fpopcode) {
9343 case 0x03: /* FMULX */
9344 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9345 break;
9346 case 0x04: /* FCMEQ (reg) */
9347 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9348 break;
9349 case 0x07: /* FRECPS */
9350 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9351 break;
9352 case 0x0f: /* FRSQRTS */
9353 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9354 break;
9355 case 0x14: /* FCMGE (reg) */
9356 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9357 break;
9358 case 0x15: /* FACGE */
9359 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9360 break;
9361 case 0x1a: /* FABD */
9362 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9363 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9364 break;
9365 case 0x1c: /* FCMGT (reg) */
9366 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9367 break;
9368 case 0x1d: /* FACGT */
9369 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9370 break;
9371 default:
9372 g_assert_not_reached();
9373 }
9374
9375 write_fp_sreg(s, rd, tcg_res);
9376 }
9377
9378 /* AdvSIMD scalar three same extra
9379 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9380 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9381 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9382 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9383 */
9384 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9385 uint32_t insn)
9386 {
9387 int rd = extract32(insn, 0, 5);
9388 int rn = extract32(insn, 5, 5);
9389 int opcode = extract32(insn, 11, 4);
9390 int rm = extract32(insn, 16, 5);
9391 int size = extract32(insn, 22, 2);
9392 bool u = extract32(insn, 29, 1);
9393 TCGv_i32 ele1, ele2, ele3;
9394 TCGv_i64 res;
9395 bool feature;
9396
9397 switch (u * 16 + opcode) {
9398 case 0x10: /* SQRDMLAH (vector) */
9399 case 0x11: /* SQRDMLSH (vector) */
9400 if (size != 1 && size != 2) {
9401 unallocated_encoding(s);
9402 return;
9403 }
9404 feature = dc_isar_feature(aa64_rdm, s);
9405 break;
9406 default:
9407 unallocated_encoding(s);
9408 return;
9409 }
9410 if (!feature) {
9411 unallocated_encoding(s);
9412 return;
9413 }
9414 if (!fp_access_check(s)) {
9415 return;
9416 }
9417
9418 /* Do a single operation on the lowest element in the vector.
9419 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9420 * with no side effects for all these operations.
9421 * OPTME: special-purpose helpers would avoid doing some
9422 * unnecessary work in the helper for the 16 bit cases.
9423 */
9424 ele1 = tcg_temp_new_i32();
9425 ele2 = tcg_temp_new_i32();
9426 ele3 = tcg_temp_new_i32();
9427
9428 read_vec_element_i32(s, ele1, rn, 0, size);
9429 read_vec_element_i32(s, ele2, rm, 0, size);
9430 read_vec_element_i32(s, ele3, rd, 0, size);
9431
9432 switch (opcode) {
9433 case 0x0: /* SQRDMLAH */
9434 if (size == 1) {
9435 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3);
9436 } else {
9437 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3);
9438 }
9439 break;
9440 case 0x1: /* SQRDMLSH */
9441 if (size == 1) {
9442 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3);
9443 } else {
9444 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3);
9445 }
9446 break;
9447 default:
9448 g_assert_not_reached();
9449 }
9450
9451 res = tcg_temp_new_i64();
9452 tcg_gen_extu_i32_i64(res, ele3);
9453 write_fp_dreg(s, rd, res);
9454 }
9455
9456 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9457 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9458 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9459 {
9460 /* Handle 64->64 opcodes which are shared between the scalar and
9461 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9462 * is valid in either group and also the double-precision fp ops.
9463 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9464 * requires them.
9465 */
9466 TCGCond cond;
9467
9468 switch (opcode) {
9469 case 0x4: /* CLS, CLZ */
9470 if (u) {
9471 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9472 } else {
9473 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9474 }
9475 break;
9476 case 0x5: /* NOT */
9477 /* This opcode is shared with CNT and RBIT but we have earlier
9478 * enforced that size == 3 if and only if this is the NOT insn.
9479 */
9480 tcg_gen_not_i64(tcg_rd, tcg_rn);
9481 break;
9482 case 0x7: /* SQABS, SQNEG */
9483 if (u) {
9484 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9485 } else {
9486 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9487 }
9488 break;
9489 case 0xa: /* CMLT */
9490 cond = TCG_COND_LT;
9491 do_cmop:
9492 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9493 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9494 break;
9495 case 0x8: /* CMGT, CMGE */
9496 cond = u ? TCG_COND_GE : TCG_COND_GT;
9497 goto do_cmop;
9498 case 0x9: /* CMEQ, CMLE */
9499 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9500 goto do_cmop;
9501 case 0xb: /* ABS, NEG */
9502 if (u) {
9503 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9504 } else {
9505 tcg_gen_abs_i64(tcg_rd, tcg_rn);
9506 }
9507 break;
9508 case 0x2f: /* FABS */
9509 gen_helper_vfp_absd(tcg_rd, tcg_rn);
9510 break;
9511 case 0x6f: /* FNEG */
9512 gen_helper_vfp_negd(tcg_rd, tcg_rn);
9513 break;
9514 case 0x7f: /* FSQRT */
9515 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9516 break;
9517 case 0x1a: /* FCVTNS */
9518 case 0x1b: /* FCVTMS */
9519 case 0x1c: /* FCVTAS */
9520 case 0x3a: /* FCVTPS */
9521 case 0x3b: /* FCVTZS */
9522 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9523 break;
9524 case 0x5a: /* FCVTNU */
9525 case 0x5b: /* FCVTMU */
9526 case 0x5c: /* FCVTAU */
9527 case 0x7a: /* FCVTPU */
9528 case 0x7b: /* FCVTZU */
9529 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9530 break;
9531 case 0x18: /* FRINTN */
9532 case 0x19: /* FRINTM */
9533 case 0x38: /* FRINTP */
9534 case 0x39: /* FRINTZ */
9535 case 0x58: /* FRINTA */
9536 case 0x79: /* FRINTI */
9537 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9538 break;
9539 case 0x59: /* FRINTX */
9540 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9541 break;
9542 case 0x1e: /* FRINT32Z */
9543 case 0x5e: /* FRINT32X */
9544 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9545 break;
9546 case 0x1f: /* FRINT64Z */
9547 case 0x5f: /* FRINT64X */
9548 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9549 break;
9550 default:
9551 g_assert_not_reached();
9552 }
9553 }
9554
9555 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9556 bool is_scalar, bool is_u, bool is_q,
9557 int size, int rn, int rd)
9558 {
9559 bool is_double = (size == MO_64);
9560 TCGv_ptr fpst;
9561
9562 if (!fp_access_check(s)) {
9563 return;
9564 }
9565
9566 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9567
9568 if (is_double) {
9569 TCGv_i64 tcg_op = tcg_temp_new_i64();
9570 TCGv_i64 tcg_zero = tcg_constant_i64(0);
9571 TCGv_i64 tcg_res = tcg_temp_new_i64();
9572 NeonGenTwoDoubleOpFn *genfn;
9573 bool swap = false;
9574 int pass;
9575
9576 switch (opcode) {
9577 case 0x2e: /* FCMLT (zero) */
9578 swap = true;
9579 /* fallthrough */
9580 case 0x2c: /* FCMGT (zero) */
9581 genfn = gen_helper_neon_cgt_f64;
9582 break;
9583 case 0x2d: /* FCMEQ (zero) */
9584 genfn = gen_helper_neon_ceq_f64;
9585 break;
9586 case 0x6d: /* FCMLE (zero) */
9587 swap = true;
9588 /* fall through */
9589 case 0x6c: /* FCMGE (zero) */
9590 genfn = gen_helper_neon_cge_f64;
9591 break;
9592 default:
9593 g_assert_not_reached();
9594 }
9595
9596 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9597 read_vec_element(s, tcg_op, rn, pass, MO_64);
9598 if (swap) {
9599 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9600 } else {
9601 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9602 }
9603 write_vec_element(s, tcg_res, rd, pass, MO_64);
9604 }
9605
9606 clear_vec_high(s, !is_scalar, rd);
9607 } else {
9608 TCGv_i32 tcg_op = tcg_temp_new_i32();
9609 TCGv_i32 tcg_zero = tcg_constant_i32(0);
9610 TCGv_i32 tcg_res = tcg_temp_new_i32();
9611 NeonGenTwoSingleOpFn *genfn;
9612 bool swap = false;
9613 int pass, maxpasses;
9614
9615 if (size == MO_16) {
9616 switch (opcode) {
9617 case 0x2e: /* FCMLT (zero) */
9618 swap = true;
9619 /* fall through */
9620 case 0x2c: /* FCMGT (zero) */
9621 genfn = gen_helper_advsimd_cgt_f16;
9622 break;
9623 case 0x2d: /* FCMEQ (zero) */
9624 genfn = gen_helper_advsimd_ceq_f16;
9625 break;
9626 case 0x6d: /* FCMLE (zero) */
9627 swap = true;
9628 /* fall through */
9629 case 0x6c: /* FCMGE (zero) */
9630 genfn = gen_helper_advsimd_cge_f16;
9631 break;
9632 default:
9633 g_assert_not_reached();
9634 }
9635 } else {
9636 switch (opcode) {
9637 case 0x2e: /* FCMLT (zero) */
9638 swap = true;
9639 /* fall through */
9640 case 0x2c: /* FCMGT (zero) */
9641 genfn = gen_helper_neon_cgt_f32;
9642 break;
9643 case 0x2d: /* FCMEQ (zero) */
9644 genfn = gen_helper_neon_ceq_f32;
9645 break;
9646 case 0x6d: /* FCMLE (zero) */
9647 swap = true;
9648 /* fall through */
9649 case 0x6c: /* FCMGE (zero) */
9650 genfn = gen_helper_neon_cge_f32;
9651 break;
9652 default:
9653 g_assert_not_reached();
9654 }
9655 }
9656
9657 if (is_scalar) {
9658 maxpasses = 1;
9659 } else {
9660 int vector_size = 8 << is_q;
9661 maxpasses = vector_size >> size;
9662 }
9663
9664 for (pass = 0; pass < maxpasses; pass++) {
9665 read_vec_element_i32(s, tcg_op, rn, pass, size);
9666 if (swap) {
9667 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9668 } else {
9669 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9670 }
9671 if (is_scalar) {
9672 write_fp_sreg(s, rd, tcg_res);
9673 } else {
9674 write_vec_element_i32(s, tcg_res, rd, pass, size);
9675 }
9676 }
9677
9678 if (!is_scalar) {
9679 clear_vec_high(s, is_q, rd);
9680 }
9681 }
9682 }
9683
9684 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9685 bool is_scalar, bool is_u, bool is_q,
9686 int size, int rn, int rd)
9687 {
9688 bool is_double = (size == 3);
9689 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9690
9691 if (is_double) {
9692 TCGv_i64 tcg_op = tcg_temp_new_i64();
9693 TCGv_i64 tcg_res = tcg_temp_new_i64();
9694 int pass;
9695
9696 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9697 read_vec_element(s, tcg_op, rn, pass, MO_64);
9698 switch (opcode) {
9699 case 0x3d: /* FRECPE */
9700 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9701 break;
9702 case 0x3f: /* FRECPX */
9703 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9704 break;
9705 case 0x7d: /* FRSQRTE */
9706 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9707 break;
9708 default:
9709 g_assert_not_reached();
9710 }
9711 write_vec_element(s, tcg_res, rd, pass, MO_64);
9712 }
9713 clear_vec_high(s, !is_scalar, rd);
9714 } else {
9715 TCGv_i32 tcg_op = tcg_temp_new_i32();
9716 TCGv_i32 tcg_res = tcg_temp_new_i32();
9717 int pass, maxpasses;
9718
9719 if (is_scalar) {
9720 maxpasses = 1;
9721 } else {
9722 maxpasses = is_q ? 4 : 2;
9723 }
9724
9725 for (pass = 0; pass < maxpasses; pass++) {
9726 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9727
9728 switch (opcode) {
9729 case 0x3c: /* URECPE */
9730 gen_helper_recpe_u32(tcg_res, tcg_op);
9731 break;
9732 case 0x3d: /* FRECPE */
9733 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9734 break;
9735 case 0x3f: /* FRECPX */
9736 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9737 break;
9738 case 0x7d: /* FRSQRTE */
9739 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9740 break;
9741 default:
9742 g_assert_not_reached();
9743 }
9744
9745 if (is_scalar) {
9746 write_fp_sreg(s, rd, tcg_res);
9747 } else {
9748 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9749 }
9750 }
9751 if (!is_scalar) {
9752 clear_vec_high(s, is_q, rd);
9753 }
9754 }
9755 }
9756
9757 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9758 int opcode, bool u, bool is_q,
9759 int size, int rn, int rd)
9760 {
9761 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9762 * in the source becomes a size element in the destination).
9763 */
9764 int pass;
9765 TCGv_i32 tcg_res[2];
9766 int destelt = is_q ? 2 : 0;
9767 int passes = scalar ? 1 : 2;
9768
9769 if (scalar) {
9770 tcg_res[1] = tcg_constant_i32(0);
9771 }
9772
9773 for (pass = 0; pass < passes; pass++) {
9774 TCGv_i64 tcg_op = tcg_temp_new_i64();
9775 NeonGenNarrowFn *genfn = NULL;
9776 NeonGenNarrowEnvFn *genenvfn = NULL;
9777
9778 if (scalar) {
9779 read_vec_element(s, tcg_op, rn, pass, size + 1);
9780 } else {
9781 read_vec_element(s, tcg_op, rn, pass, MO_64);
9782 }
9783 tcg_res[pass] = tcg_temp_new_i32();
9784
9785 switch (opcode) {
9786 case 0x12: /* XTN, SQXTUN */
9787 {
9788 static NeonGenNarrowFn * const xtnfns[3] = {
9789 gen_helper_neon_narrow_u8,
9790 gen_helper_neon_narrow_u16,
9791 tcg_gen_extrl_i64_i32,
9792 };
9793 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9794 gen_helper_neon_unarrow_sat8,
9795 gen_helper_neon_unarrow_sat16,
9796 gen_helper_neon_unarrow_sat32,
9797 };
9798 if (u) {
9799 genenvfn = sqxtunfns[size];
9800 } else {
9801 genfn = xtnfns[size];
9802 }
9803 break;
9804 }
9805 case 0x14: /* SQXTN, UQXTN */
9806 {
9807 static NeonGenNarrowEnvFn * const fns[3][2] = {
9808 { gen_helper_neon_narrow_sat_s8,
9809 gen_helper_neon_narrow_sat_u8 },
9810 { gen_helper_neon_narrow_sat_s16,
9811 gen_helper_neon_narrow_sat_u16 },
9812 { gen_helper_neon_narrow_sat_s32,
9813 gen_helper_neon_narrow_sat_u32 },
9814 };
9815 genenvfn = fns[size][u];
9816 break;
9817 }
9818 case 0x16: /* FCVTN, FCVTN2 */
9819 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9820 if (size == 2) {
9821 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
9822 } else {
9823 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9824 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9825 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9826 TCGv_i32 ahp = get_ahp_flag();
9827
9828 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9829 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9830 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9831 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9832 }
9833 break;
9834 case 0x36: /* BFCVTN, BFCVTN2 */
9835 {
9836 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9837 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9838 }
9839 break;
9840 case 0x56: /* FCVTXN, FCVTXN2 */
9841 /* 64 bit to 32 bit float conversion
9842 * with von Neumann rounding (round to odd)
9843 */
9844 assert(size == 2);
9845 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
9846 break;
9847 default:
9848 g_assert_not_reached();
9849 }
9850
9851 if (genfn) {
9852 genfn(tcg_res[pass], tcg_op);
9853 } else if (genenvfn) {
9854 genenvfn(tcg_res[pass], tcg_env, tcg_op);
9855 }
9856 }
9857
9858 for (pass = 0; pass < 2; pass++) {
9859 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9860 }
9861 clear_vec_high(s, is_q, rd);
9862 }
9863
9864 /* Remaining saturating accumulating ops */
9865 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9866 bool is_q, int size, int rn, int rd)
9867 {
9868 bool is_double = (size == 3);
9869
9870 if (is_double) {
9871 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9872 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9873 int pass;
9874
9875 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9876 read_vec_element(s, tcg_rn, rn, pass, MO_64);
9877 read_vec_element(s, tcg_rd, rd, pass, MO_64);
9878
9879 if (is_u) { /* USQADD */
9880 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9881 } else { /* SUQADD */
9882 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9883 }
9884 write_vec_element(s, tcg_rd, rd, pass, MO_64);
9885 }
9886 clear_vec_high(s, !is_scalar, rd);
9887 } else {
9888 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9889 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9890 int pass, maxpasses;
9891
9892 if (is_scalar) {
9893 maxpasses = 1;
9894 } else {
9895 maxpasses = is_q ? 4 : 2;
9896 }
9897
9898 for (pass = 0; pass < maxpasses; pass++) {
9899 if (is_scalar) {
9900 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9901 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9902 } else {
9903 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9904 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9905 }
9906
9907 if (is_u) { /* USQADD */
9908 switch (size) {
9909 case 0:
9910 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9911 break;
9912 case 1:
9913 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9914 break;
9915 case 2:
9916 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9917 break;
9918 default:
9919 g_assert_not_reached();
9920 }
9921 } else { /* SUQADD */
9922 switch (size) {
9923 case 0:
9924 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9925 break;
9926 case 1:
9927 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9928 break;
9929 case 2:
9930 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9931 break;
9932 default:
9933 g_assert_not_reached();
9934 }
9935 }
9936
9937 if (is_scalar) {
9938 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
9939 }
9940 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9941 }
9942 clear_vec_high(s, is_q, rd);
9943 }
9944 }
9945
9946 /* AdvSIMD scalar two reg misc
9947 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9948 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9949 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9950 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9951 */
9952 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9953 {
9954 int rd = extract32(insn, 0, 5);
9955 int rn = extract32(insn, 5, 5);
9956 int opcode = extract32(insn, 12, 5);
9957 int size = extract32(insn, 22, 2);
9958 bool u = extract32(insn, 29, 1);
9959 bool is_fcvt = false;
9960 int rmode;
9961 TCGv_i32 tcg_rmode;
9962 TCGv_ptr tcg_fpstatus;
9963
9964 switch (opcode) {
9965 case 0x3: /* USQADD / SUQADD*/
9966 if (!fp_access_check(s)) {
9967 return;
9968 }
9969 handle_2misc_satacc(s, true, u, false, size, rn, rd);
9970 return;
9971 case 0x7: /* SQABS / SQNEG */
9972 break;
9973 case 0xa: /* CMLT */
9974 if (u) {
9975 unallocated_encoding(s);
9976 return;
9977 }
9978 /* fall through */
9979 case 0x8: /* CMGT, CMGE */
9980 case 0x9: /* CMEQ, CMLE */
9981 case 0xb: /* ABS, NEG */
9982 if (size != 3) {
9983 unallocated_encoding(s);
9984 return;
9985 }
9986 break;
9987 case 0x12: /* SQXTUN */
9988 if (!u) {
9989 unallocated_encoding(s);
9990 return;
9991 }
9992 /* fall through */
9993 case 0x14: /* SQXTN, UQXTN */
9994 if (size == 3) {
9995 unallocated_encoding(s);
9996 return;
9997 }
9998 if (!fp_access_check(s)) {
9999 return;
10000 }
10001 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10002 return;
10003 case 0xc ... 0xf:
10004 case 0x16 ... 0x1d:
10005 case 0x1f:
10006 /* Floating point: U, size[1] and opcode indicate operation;
10007 * size[0] indicates single or double precision.
10008 */
10009 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10010 size = extract32(size, 0, 1) ? 3 : 2;
10011 switch (opcode) {
10012 case 0x2c: /* FCMGT (zero) */
10013 case 0x2d: /* FCMEQ (zero) */
10014 case 0x2e: /* FCMLT (zero) */
10015 case 0x6c: /* FCMGE (zero) */
10016 case 0x6d: /* FCMLE (zero) */
10017 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10018 return;
10019 case 0x1d: /* SCVTF */
10020 case 0x5d: /* UCVTF */
10021 {
10022 bool is_signed = (opcode == 0x1d);
10023 if (!fp_access_check(s)) {
10024 return;
10025 }
10026 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10027 return;
10028 }
10029 case 0x3d: /* FRECPE */
10030 case 0x3f: /* FRECPX */
10031 case 0x7d: /* FRSQRTE */
10032 if (!fp_access_check(s)) {
10033 return;
10034 }
10035 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10036 return;
10037 case 0x1a: /* FCVTNS */
10038 case 0x1b: /* FCVTMS */
10039 case 0x3a: /* FCVTPS */
10040 case 0x3b: /* FCVTZS */
10041 case 0x5a: /* FCVTNU */
10042 case 0x5b: /* FCVTMU */
10043 case 0x7a: /* FCVTPU */
10044 case 0x7b: /* FCVTZU */
10045 is_fcvt = true;
10046 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10047 break;
10048 case 0x1c: /* FCVTAS */
10049 case 0x5c: /* FCVTAU */
10050 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10051 is_fcvt = true;
10052 rmode = FPROUNDING_TIEAWAY;
10053 break;
10054 case 0x56: /* FCVTXN, FCVTXN2 */
10055 if (size == 2) {
10056 unallocated_encoding(s);
10057 return;
10058 }
10059 if (!fp_access_check(s)) {
10060 return;
10061 }
10062 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10063 return;
10064 default:
10065 unallocated_encoding(s);
10066 return;
10067 }
10068 break;
10069 default:
10070 unallocated_encoding(s);
10071 return;
10072 }
10073
10074 if (!fp_access_check(s)) {
10075 return;
10076 }
10077
10078 if (is_fcvt) {
10079 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10080 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10081 } else {
10082 tcg_fpstatus = NULL;
10083 tcg_rmode = NULL;
10084 }
10085
10086 if (size == 3) {
10087 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10088 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10089
10090 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10091 write_fp_dreg(s, rd, tcg_rd);
10092 } else {
10093 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10094 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10095
10096 read_vec_element_i32(s, tcg_rn, rn, 0, size);
10097
10098 switch (opcode) {
10099 case 0x7: /* SQABS, SQNEG */
10100 {
10101 NeonGenOneOpEnvFn *genfn;
10102 static NeonGenOneOpEnvFn * const fns[3][2] = {
10103 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10104 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10105 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10106 };
10107 genfn = fns[size][u];
10108 genfn(tcg_rd, tcg_env, tcg_rn);
10109 break;
10110 }
10111 case 0x1a: /* FCVTNS */
10112 case 0x1b: /* FCVTMS */
10113 case 0x1c: /* FCVTAS */
10114 case 0x3a: /* FCVTPS */
10115 case 0x3b: /* FCVTZS */
10116 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10117 tcg_fpstatus);
10118 break;
10119 case 0x5a: /* FCVTNU */
10120 case 0x5b: /* FCVTMU */
10121 case 0x5c: /* FCVTAU */
10122 case 0x7a: /* FCVTPU */
10123 case 0x7b: /* FCVTZU */
10124 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10125 tcg_fpstatus);
10126 break;
10127 default:
10128 g_assert_not_reached();
10129 }
10130
10131 write_fp_sreg(s, rd, tcg_rd);
10132 }
10133
10134 if (is_fcvt) {
10135 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10136 }
10137 }
10138
10139 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10140 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10141 int immh, int immb, int opcode, int rn, int rd)
10142 {
10143 int size = 32 - clz32(immh) - 1;
10144 int immhb = immh << 3 | immb;
10145 int shift = 2 * (8 << size) - immhb;
10146 GVecGen2iFn *gvec_fn;
10147
10148 if (extract32(immh, 3, 1) && !is_q) {
10149 unallocated_encoding(s);
10150 return;
10151 }
10152 tcg_debug_assert(size <= 3);
10153
10154 if (!fp_access_check(s)) {
10155 return;
10156 }
10157
10158 switch (opcode) {
10159 case 0x02: /* SSRA / USRA (accumulate) */
10160 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10161 break;
10162
10163 case 0x08: /* SRI */
10164 gvec_fn = gen_gvec_sri;
10165 break;
10166
10167 case 0x00: /* SSHR / USHR */
10168 if (is_u) {
10169 if (shift == 8 << size) {
10170 /* Shift count the same size as element size produces zero. */
10171 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10172 is_q ? 16 : 8, vec_full_reg_size(s), 0);
10173 return;
10174 }
10175 gvec_fn = tcg_gen_gvec_shri;
10176 } else {
10177 /* Shift count the same size as element size produces all sign. */
10178 if (shift == 8 << size) {
10179 shift -= 1;
10180 }
10181 gvec_fn = tcg_gen_gvec_sari;
10182 }
10183 break;
10184
10185 case 0x04: /* SRSHR / URSHR (rounding) */
10186 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10187 break;
10188
10189 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10190 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10191 break;
10192
10193 default:
10194 g_assert_not_reached();
10195 }
10196
10197 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10198 }
10199
10200 /* SHL/SLI - Vector shift left */
10201 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10202 int immh, int immb, int opcode, int rn, int rd)
10203 {
10204 int size = 32 - clz32(immh) - 1;
10205 int immhb = immh << 3 | immb;
10206 int shift = immhb - (8 << size);
10207
10208 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10209 assert(size >= 0 && size <= 3);
10210
10211 if (extract32(immh, 3, 1) && !is_q) {
10212 unallocated_encoding(s);
10213 return;
10214 }
10215
10216 if (!fp_access_check(s)) {
10217 return;
10218 }
10219
10220 if (insert) {
10221 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10222 } else {
10223 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10224 }
10225 }
10226
10227 /* USHLL/SHLL - Vector shift left with widening */
10228 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10229 int immh, int immb, int opcode, int rn, int rd)
10230 {
10231 int size = 32 - clz32(immh) - 1;
10232 int immhb = immh << 3 | immb;
10233 int shift = immhb - (8 << size);
10234 int dsize = 64;
10235 int esize = 8 << size;
10236 int elements = dsize/esize;
10237 TCGv_i64 tcg_rn = tcg_temp_new_i64();
10238 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10239 int i;
10240
10241 if (size >= 3) {
10242 unallocated_encoding(s);
10243 return;
10244 }
10245
10246 if (!fp_access_check(s)) {
10247 return;
10248 }
10249
10250 /* For the LL variants the store is larger than the load,
10251 * so if rd == rn we would overwrite parts of our input.
10252 * So load everything right now and use shifts in the main loop.
10253 */
10254 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10255
10256 for (i = 0; i < elements; i++) {
10257 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10258 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10259 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10260 write_vec_element(s, tcg_rd, rd, i, size + 1);
10261 }
10262 }
10263
10264 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10265 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10266 int immh, int immb, int opcode, int rn, int rd)
10267 {
10268 int immhb = immh << 3 | immb;
10269 int size = 32 - clz32(immh) - 1;
10270 int dsize = 64;
10271 int esize = 8 << size;
10272 int elements = dsize/esize;
10273 int shift = (2 * esize) - immhb;
10274 bool round = extract32(opcode, 0, 1);
10275 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10276 TCGv_i64 tcg_round;
10277 int i;
10278
10279 if (extract32(immh, 3, 1)) {
10280 unallocated_encoding(s);
10281 return;
10282 }
10283
10284 if (!fp_access_check(s)) {
10285 return;
10286 }
10287
10288 tcg_rn = tcg_temp_new_i64();
10289 tcg_rd = tcg_temp_new_i64();
10290 tcg_final = tcg_temp_new_i64();
10291 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10292
10293 if (round) {
10294 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10295 } else {
10296 tcg_round = NULL;
10297 }
10298
10299 for (i = 0; i < elements; i++) {
10300 read_vec_element(s, tcg_rn, rn, i, size+1);
10301 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10302 false, true, size+1, shift);
10303
10304 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10305 }
10306
10307 if (!is_q) {
10308 write_vec_element(s, tcg_final, rd, 0, MO_64);
10309 } else {
10310 write_vec_element(s, tcg_final, rd, 1, MO_64);
10311 }
10312
10313 clear_vec_high(s, is_q, rd);
10314 }
10315
10316
10317 /* AdvSIMD shift by immediate
10318 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10319 * +---+---+---+-------------+------+------+--------+---+------+------+
10320 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10321 * +---+---+---+-------------+------+------+--------+---+------+------+
10322 */
10323 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10324 {
10325 int rd = extract32(insn, 0, 5);
10326 int rn = extract32(insn, 5, 5);
10327 int opcode = extract32(insn, 11, 5);
10328 int immb = extract32(insn, 16, 3);
10329 int immh = extract32(insn, 19, 4);
10330 bool is_u = extract32(insn, 29, 1);
10331 bool is_q = extract32(insn, 30, 1);
10332
10333 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10334 assert(immh != 0);
10335
10336 switch (opcode) {
10337 case 0x08: /* SRI */
10338 if (!is_u) {
10339 unallocated_encoding(s);
10340 return;
10341 }
10342 /* fall through */
10343 case 0x00: /* SSHR / USHR */
10344 case 0x02: /* SSRA / USRA (accumulate) */
10345 case 0x04: /* SRSHR / URSHR (rounding) */
10346 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10347 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10348 break;
10349 case 0x0a: /* SHL / SLI */
10350 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10351 break;
10352 case 0x10: /* SHRN */
10353 case 0x11: /* RSHRN / SQRSHRUN */
10354 if (is_u) {
10355 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10356 opcode, rn, rd);
10357 } else {
10358 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10359 }
10360 break;
10361 case 0x12: /* SQSHRN / UQSHRN */
10362 case 0x13: /* SQRSHRN / UQRSHRN */
10363 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10364 opcode, rn, rd);
10365 break;
10366 case 0x14: /* SSHLL / USHLL */
10367 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10368 break;
10369 case 0x1c: /* SCVTF / UCVTF */
10370 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10371 opcode, rn, rd);
10372 break;
10373 case 0xc: /* SQSHLU */
10374 if (!is_u) {
10375 unallocated_encoding(s);
10376 return;
10377 }
10378 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10379 break;
10380 case 0xe: /* SQSHL, UQSHL */
10381 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10382 break;
10383 case 0x1f: /* FCVTZS/ FCVTZU */
10384 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10385 return;
10386 default:
10387 unallocated_encoding(s);
10388 return;
10389 }
10390 }
10391
10392 /* Generate code to do a "long" addition or subtraction, ie one done in
10393 * TCGv_i64 on vector lanes twice the width specified by size.
10394 */
10395 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10396 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10397 {
10398 static NeonGenTwo64OpFn * const fns[3][2] = {
10399 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10400 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10401 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10402 };
10403 NeonGenTwo64OpFn *genfn;
10404 assert(size < 3);
10405
10406 genfn = fns[size][is_sub];
10407 genfn(tcg_res, tcg_op1, tcg_op2);
10408 }
10409
10410 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10411 int opcode, int rd, int rn, int rm)
10412 {
10413 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10414 TCGv_i64 tcg_res[2];
10415 int pass, accop;
10416
10417 tcg_res[0] = tcg_temp_new_i64();
10418 tcg_res[1] = tcg_temp_new_i64();
10419
10420 /* Does this op do an adding accumulate, a subtracting accumulate,
10421 * or no accumulate at all?
10422 */
10423 switch (opcode) {
10424 case 5:
10425 case 8:
10426 case 9:
10427 accop = 1;
10428 break;
10429 case 10:
10430 case 11:
10431 accop = -1;
10432 break;
10433 default:
10434 accop = 0;
10435 break;
10436 }
10437
10438 if (accop != 0) {
10439 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10440 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10441 }
10442
10443 /* size == 2 means two 32x32->64 operations; this is worth special
10444 * casing because we can generally handle it inline.
10445 */
10446 if (size == 2) {
10447 for (pass = 0; pass < 2; pass++) {
10448 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10449 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10450 TCGv_i64 tcg_passres;
10451 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10452
10453 int elt = pass + is_q * 2;
10454
10455 read_vec_element(s, tcg_op1, rn, elt, memop);
10456 read_vec_element(s, tcg_op2, rm, elt, memop);
10457
10458 if (accop == 0) {
10459 tcg_passres = tcg_res[pass];
10460 } else {
10461 tcg_passres = tcg_temp_new_i64();
10462 }
10463
10464 switch (opcode) {
10465 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10466 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10467 break;
10468 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10469 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10470 break;
10471 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10472 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10473 {
10474 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10475 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10476
10477 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10478 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10479 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10480 tcg_passres,
10481 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10482 break;
10483 }
10484 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10485 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10486 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10487 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10488 break;
10489 case 9: /* SQDMLAL, SQDMLAL2 */
10490 case 11: /* SQDMLSL, SQDMLSL2 */
10491 case 13: /* SQDMULL, SQDMULL2 */
10492 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10493 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10494 tcg_passres, tcg_passres);
10495 break;
10496 default:
10497 g_assert_not_reached();
10498 }
10499
10500 if (opcode == 9 || opcode == 11) {
10501 /* saturating accumulate ops */
10502 if (accop < 0) {
10503 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10504 }
10505 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10506 tcg_res[pass], tcg_passres);
10507 } else if (accop > 0) {
10508 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10509 } else if (accop < 0) {
10510 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10511 }
10512 }
10513 } else {
10514 /* size 0 or 1, generally helper functions */
10515 for (pass = 0; pass < 2; pass++) {
10516 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10517 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10518 TCGv_i64 tcg_passres;
10519 int elt = pass + is_q * 2;
10520
10521 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10522 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10523
10524 if (accop == 0) {
10525 tcg_passres = tcg_res[pass];
10526 } else {
10527 tcg_passres = tcg_temp_new_i64();
10528 }
10529
10530 switch (opcode) {
10531 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10532 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10533 {
10534 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10535 static NeonGenWidenFn * const widenfns[2][2] = {
10536 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10537 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10538 };
10539 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10540
10541 widenfn(tcg_op2_64, tcg_op2);
10542 widenfn(tcg_passres, tcg_op1);
10543 gen_neon_addl(size, (opcode == 2), tcg_passres,
10544 tcg_passres, tcg_op2_64);
10545 break;
10546 }
10547 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10548 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10549 if (size == 0) {
10550 if (is_u) {
10551 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10552 } else {
10553 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10554 }
10555 } else {
10556 if (is_u) {
10557 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10558 } else {
10559 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10560 }
10561 }
10562 break;
10563 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10564 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10565 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10566 if (size == 0) {
10567 if (is_u) {
10568 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10569 } else {
10570 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10571 }
10572 } else {
10573 if (is_u) {
10574 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10575 } else {
10576 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10577 }
10578 }
10579 break;
10580 case 9: /* SQDMLAL, SQDMLAL2 */
10581 case 11: /* SQDMLSL, SQDMLSL2 */
10582 case 13: /* SQDMULL, SQDMULL2 */
10583 assert(size == 1);
10584 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10585 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10586 tcg_passres, tcg_passres);
10587 break;
10588 default:
10589 g_assert_not_reached();
10590 }
10591
10592 if (accop != 0) {
10593 if (opcode == 9 || opcode == 11) {
10594 /* saturating accumulate ops */
10595 if (accop < 0) {
10596 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10597 }
10598 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10599 tcg_res[pass],
10600 tcg_passres);
10601 } else {
10602 gen_neon_addl(size, (accop < 0), tcg_res[pass],
10603 tcg_res[pass], tcg_passres);
10604 }
10605 }
10606 }
10607 }
10608
10609 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10610 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10611 }
10612
10613 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10614 int opcode, int rd, int rn, int rm)
10615 {
10616 TCGv_i64 tcg_res[2];
10617 int part = is_q ? 2 : 0;
10618 int pass;
10619
10620 for (pass = 0; pass < 2; pass++) {
10621 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10622 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10623 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10624 static NeonGenWidenFn * const widenfns[3][2] = {
10625 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10626 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10627 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10628 };
10629 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10630
10631 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10632 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10633 widenfn(tcg_op2_wide, tcg_op2);
10634 tcg_res[pass] = tcg_temp_new_i64();
10635 gen_neon_addl(size, (opcode == 3),
10636 tcg_res[pass], tcg_op1, tcg_op2_wide);
10637 }
10638
10639 for (pass = 0; pass < 2; pass++) {
10640 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10641 }
10642 }
10643
10644 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10645 {
10646 tcg_gen_addi_i64(in, in, 1U << 31);
10647 tcg_gen_extrh_i64_i32(res, in);
10648 }
10649
10650 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10651 int opcode, int rd, int rn, int rm)
10652 {
10653 TCGv_i32 tcg_res[2];
10654 int part = is_q ? 2 : 0;
10655 int pass;
10656
10657 for (pass = 0; pass < 2; pass++) {
10658 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10659 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10660 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10661 static NeonGenNarrowFn * const narrowfns[3][2] = {
10662 { gen_helper_neon_narrow_high_u8,
10663 gen_helper_neon_narrow_round_high_u8 },
10664 { gen_helper_neon_narrow_high_u16,
10665 gen_helper_neon_narrow_round_high_u16 },
10666 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10667 };
10668 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10669
10670 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10671 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10672
10673 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10674
10675 tcg_res[pass] = tcg_temp_new_i32();
10676 gennarrow(tcg_res[pass], tcg_wideres);
10677 }
10678
10679 for (pass = 0; pass < 2; pass++) {
10680 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10681 }
10682 clear_vec_high(s, is_q, rd);
10683 }
10684
10685 /* AdvSIMD three different
10686 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
10687 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10688 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
10689 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10690 */
10691 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10692 {
10693 /* Instructions in this group fall into three basic classes
10694 * (in each case with the operation working on each element in
10695 * the input vectors):
10696 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10697 * 128 bit input)
10698 * (2) wide 64 x 128 -> 128
10699 * (3) narrowing 128 x 128 -> 64
10700 * Here we do initial decode, catch unallocated cases and
10701 * dispatch to separate functions for each class.
10702 */
10703 int is_q = extract32(insn, 30, 1);
10704 int is_u = extract32(insn, 29, 1);
10705 int size = extract32(insn, 22, 2);
10706 int opcode = extract32(insn, 12, 4);
10707 int rm = extract32(insn, 16, 5);
10708 int rn = extract32(insn, 5, 5);
10709 int rd = extract32(insn, 0, 5);
10710
10711 switch (opcode) {
10712 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10713 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10714 /* 64 x 128 -> 128 */
10715 if (size == 3) {
10716 unallocated_encoding(s);
10717 return;
10718 }
10719 if (!fp_access_check(s)) {
10720 return;
10721 }
10722 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10723 break;
10724 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10725 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10726 /* 128 x 128 -> 64 */
10727 if (size == 3) {
10728 unallocated_encoding(s);
10729 return;
10730 }
10731 if (!fp_access_check(s)) {
10732 return;
10733 }
10734 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10735 break;
10736 case 14: /* PMULL, PMULL2 */
10737 if (is_u) {
10738 unallocated_encoding(s);
10739 return;
10740 }
10741 switch (size) {
10742 case 0: /* PMULL.P8 */
10743 if (!fp_access_check(s)) {
10744 return;
10745 }
10746 /* The Q field specifies lo/hi half input for this insn. */
10747 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10748 gen_helper_neon_pmull_h);
10749 break;
10750
10751 case 3: /* PMULL.P64 */
10752 if (!dc_isar_feature(aa64_pmull, s)) {
10753 unallocated_encoding(s);
10754 return;
10755 }
10756 if (!fp_access_check(s)) {
10757 return;
10758 }
10759 /* The Q field specifies lo/hi half input for this insn. */
10760 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10761 gen_helper_gvec_pmull_q);
10762 break;
10763
10764 default:
10765 unallocated_encoding(s);
10766 break;
10767 }
10768 return;
10769 case 9: /* SQDMLAL, SQDMLAL2 */
10770 case 11: /* SQDMLSL, SQDMLSL2 */
10771 case 13: /* SQDMULL, SQDMULL2 */
10772 if (is_u || size == 0) {
10773 unallocated_encoding(s);
10774 return;
10775 }
10776 /* fall through */
10777 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10778 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10779 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10780 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10781 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10782 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10783 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10784 /* 64 x 64 -> 128 */
10785 if (size == 3) {
10786 unallocated_encoding(s);
10787 return;
10788 }
10789 if (!fp_access_check(s)) {
10790 return;
10791 }
10792
10793 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10794 break;
10795 default:
10796 /* opcode 15 not allocated */
10797 unallocated_encoding(s);
10798 break;
10799 }
10800 }
10801
10802 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10803 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10804 {
10805 int rd = extract32(insn, 0, 5);
10806 int rn = extract32(insn, 5, 5);
10807 int rm = extract32(insn, 16, 5);
10808 int size = extract32(insn, 22, 2);
10809 bool is_u = extract32(insn, 29, 1);
10810 bool is_q = extract32(insn, 30, 1);
10811
10812 if (!fp_access_check(s)) {
10813 return;
10814 }
10815
10816 switch (size + 4 * is_u) {
10817 case 0: /* AND */
10818 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10819 return;
10820 case 1: /* BIC */
10821 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10822 return;
10823 case 2: /* ORR */
10824 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10825 return;
10826 case 3: /* ORN */
10827 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10828 return;
10829 case 4: /* EOR */
10830 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10831 return;
10832
10833 case 5: /* BSL bitwise select */
10834 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10835 return;
10836 case 6: /* BIT, bitwise insert if true */
10837 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10838 return;
10839 case 7: /* BIF, bitwise insert if false */
10840 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10841 return;
10842
10843 default:
10844 g_assert_not_reached();
10845 }
10846 }
10847
10848 /* Pairwise op subgroup of C3.6.16.
10849 *
10850 * This is called directly or via the handle_3same_float for float pairwise
10851 * operations where the opcode and size are calculated differently.
10852 */
10853 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10854 int size, int rn, int rm, int rd)
10855 {
10856 TCGv_ptr fpst;
10857 int pass;
10858
10859 /* Floating point operations need fpst */
10860 if (opcode >= 0x58) {
10861 fpst = fpstatus_ptr(FPST_FPCR);
10862 } else {
10863 fpst = NULL;
10864 }
10865
10866 if (!fp_access_check(s)) {
10867 return;
10868 }
10869
10870 /* These operations work on the concatenated rm:rn, with each pair of
10871 * adjacent elements being operated on to produce an element in the result.
10872 */
10873 if (size == 3) {
10874 TCGv_i64 tcg_res[2];
10875
10876 for (pass = 0; pass < 2; pass++) {
10877 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10878 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10879 int passreg = (pass == 0) ? rn : rm;
10880
10881 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10882 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10883 tcg_res[pass] = tcg_temp_new_i64();
10884
10885 switch (opcode) {
10886 case 0x17: /* ADDP */
10887 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10888 break;
10889 case 0x58: /* FMAXNMP */
10890 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10891 break;
10892 case 0x5a: /* FADDP */
10893 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10894 break;
10895 case 0x5e: /* FMAXP */
10896 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10897 break;
10898 case 0x78: /* FMINNMP */
10899 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10900 break;
10901 case 0x7e: /* FMINP */
10902 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10903 break;
10904 default:
10905 g_assert_not_reached();
10906 }
10907 }
10908
10909 for (pass = 0; pass < 2; pass++) {
10910 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10911 }
10912 } else {
10913 int maxpass = is_q ? 4 : 2;
10914 TCGv_i32 tcg_res[4];
10915
10916 for (pass = 0; pass < maxpass; pass++) {
10917 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10918 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10919 NeonGenTwoOpFn *genfn = NULL;
10920 int passreg = pass < (maxpass / 2) ? rn : rm;
10921 int passelt = (is_q && (pass & 1)) ? 2 : 0;
10922
10923 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10924 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10925 tcg_res[pass] = tcg_temp_new_i32();
10926
10927 switch (opcode) {
10928 case 0x17: /* ADDP */
10929 {
10930 static NeonGenTwoOpFn * const fns[3] = {
10931 gen_helper_neon_padd_u8,
10932 gen_helper_neon_padd_u16,
10933 tcg_gen_add_i32,
10934 };
10935 genfn = fns[size];
10936 break;
10937 }
10938 case 0x14: /* SMAXP, UMAXP */
10939 {
10940 static NeonGenTwoOpFn * const fns[3][2] = {
10941 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10942 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10943 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10944 };
10945 genfn = fns[size][u];
10946 break;
10947 }
10948 case 0x15: /* SMINP, UMINP */
10949 {
10950 static NeonGenTwoOpFn * const fns[3][2] = {
10951 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10952 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10953 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
10954 };
10955 genfn = fns[size][u];
10956 break;
10957 }
10958 /* The FP operations are all on single floats (32 bit) */
10959 case 0x58: /* FMAXNMP */
10960 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10961 break;
10962 case 0x5a: /* FADDP */
10963 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10964 break;
10965 case 0x5e: /* FMAXP */
10966 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10967 break;
10968 case 0x78: /* FMINNMP */
10969 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10970 break;
10971 case 0x7e: /* FMINP */
10972 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10973 break;
10974 default:
10975 g_assert_not_reached();
10976 }
10977
10978 /* FP ops called directly, otherwise call now */
10979 if (genfn) {
10980 genfn(tcg_res[pass], tcg_op1, tcg_op2);
10981 }
10982 }
10983
10984 for (pass = 0; pass < maxpass; pass++) {
10985 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10986 }
10987 clear_vec_high(s, is_q, rd);
10988 }
10989 }
10990
10991 /* Floating point op subgroup of C3.6.16. */
10992 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10993 {
10994 /* For floating point ops, the U, size[1] and opcode bits
10995 * together indicate the operation. size[0] indicates single
10996 * or double.
10997 */
10998 int fpopcode = extract32(insn, 11, 5)
10999 | (extract32(insn, 23, 1) << 5)
11000 | (extract32(insn, 29, 1) << 6);
11001 int is_q = extract32(insn, 30, 1);
11002 int size = extract32(insn, 22, 1);
11003 int rm = extract32(insn, 16, 5);
11004 int rn = extract32(insn, 5, 5);
11005 int rd = extract32(insn, 0, 5);
11006
11007 int datasize = is_q ? 128 : 64;
11008 int esize = 32 << size;
11009 int elements = datasize / esize;
11010
11011 if (size == 1 && !is_q) {
11012 unallocated_encoding(s);
11013 return;
11014 }
11015
11016 switch (fpopcode) {
11017 case 0x58: /* FMAXNMP */
11018 case 0x5a: /* FADDP */
11019 case 0x5e: /* FMAXP */
11020 case 0x78: /* FMINNMP */
11021 case 0x7e: /* FMINP */
11022 if (size && !is_q) {
11023 unallocated_encoding(s);
11024 return;
11025 }
11026 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11027 rn, rm, rd);
11028 return;
11029 case 0x1b: /* FMULX */
11030 case 0x1f: /* FRECPS */
11031 case 0x3f: /* FRSQRTS */
11032 case 0x5d: /* FACGE */
11033 case 0x7d: /* FACGT */
11034 case 0x19: /* FMLA */
11035 case 0x39: /* FMLS */
11036 case 0x18: /* FMAXNM */
11037 case 0x1a: /* FADD */
11038 case 0x1c: /* FCMEQ */
11039 case 0x1e: /* FMAX */
11040 case 0x38: /* FMINNM */
11041 case 0x3a: /* FSUB */
11042 case 0x3e: /* FMIN */
11043 case 0x5b: /* FMUL */
11044 case 0x5c: /* FCMGE */
11045 case 0x5f: /* FDIV */
11046 case 0x7a: /* FABD */
11047 case 0x7c: /* FCMGT */
11048 if (!fp_access_check(s)) {
11049 return;
11050 }
11051 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11052 return;
11053
11054 case 0x1d: /* FMLAL */
11055 case 0x3d: /* FMLSL */
11056 case 0x59: /* FMLAL2 */
11057 case 0x79: /* FMLSL2 */
11058 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11059 unallocated_encoding(s);
11060 return;
11061 }
11062 if (fp_access_check(s)) {
11063 int is_s = extract32(insn, 23, 1);
11064 int is_2 = extract32(insn, 29, 1);
11065 int data = (is_2 << 1) | is_s;
11066 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11067 vec_full_reg_offset(s, rn),
11068 vec_full_reg_offset(s, rm), tcg_env,
11069 is_q ? 16 : 8, vec_full_reg_size(s),
11070 data, gen_helper_gvec_fmlal_a64);
11071 }
11072 return;
11073
11074 default:
11075 unallocated_encoding(s);
11076 return;
11077 }
11078 }
11079
11080 /* Integer op subgroup of C3.6.16. */
11081 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11082 {
11083 int is_q = extract32(insn, 30, 1);
11084 int u = extract32(insn, 29, 1);
11085 int size = extract32(insn, 22, 2);
11086 int opcode = extract32(insn, 11, 5);
11087 int rm = extract32(insn, 16, 5);
11088 int rn = extract32(insn, 5, 5);
11089 int rd = extract32(insn, 0, 5);
11090 int pass;
11091 TCGCond cond;
11092
11093 switch (opcode) {
11094 case 0x13: /* MUL, PMUL */
11095 if (u && size != 0) {
11096 unallocated_encoding(s);
11097 return;
11098 }
11099 /* fall through */
11100 case 0x0: /* SHADD, UHADD */
11101 case 0x2: /* SRHADD, URHADD */
11102 case 0x4: /* SHSUB, UHSUB */
11103 case 0xc: /* SMAX, UMAX */
11104 case 0xd: /* SMIN, UMIN */
11105 case 0xe: /* SABD, UABD */
11106 case 0xf: /* SABA, UABA */
11107 case 0x12: /* MLA, MLS */
11108 if (size == 3) {
11109 unallocated_encoding(s);
11110 return;
11111 }
11112 break;
11113 case 0x16: /* SQDMULH, SQRDMULH */
11114 if (size == 0 || size == 3) {
11115 unallocated_encoding(s);
11116 return;
11117 }
11118 break;
11119 default:
11120 if (size == 3 && !is_q) {
11121 unallocated_encoding(s);
11122 return;
11123 }
11124 break;
11125 }
11126
11127 if (!fp_access_check(s)) {
11128 return;
11129 }
11130
11131 switch (opcode) {
11132 case 0x01: /* SQADD, UQADD */
11133 if (u) {
11134 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11135 } else {
11136 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11137 }
11138 return;
11139 case 0x05: /* SQSUB, UQSUB */
11140 if (u) {
11141 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11142 } else {
11143 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11144 }
11145 return;
11146 case 0x08: /* SSHL, USHL */
11147 if (u) {
11148 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11149 } else {
11150 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11151 }
11152 return;
11153 case 0x0c: /* SMAX, UMAX */
11154 if (u) {
11155 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11156 } else {
11157 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11158 }
11159 return;
11160 case 0x0d: /* SMIN, UMIN */
11161 if (u) {
11162 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11163 } else {
11164 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11165 }
11166 return;
11167 case 0xe: /* SABD, UABD */
11168 if (u) {
11169 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11170 } else {
11171 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11172 }
11173 return;
11174 case 0xf: /* SABA, UABA */
11175 if (u) {
11176 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11177 } else {
11178 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11179 }
11180 return;
11181 case 0x10: /* ADD, SUB */
11182 if (u) {
11183 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11184 } else {
11185 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11186 }
11187 return;
11188 case 0x13: /* MUL, PMUL */
11189 if (!u) { /* MUL */
11190 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11191 } else { /* PMUL */
11192 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11193 }
11194 return;
11195 case 0x12: /* MLA, MLS */
11196 if (u) {
11197 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11198 } else {
11199 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11200 }
11201 return;
11202 case 0x16: /* SQDMULH, SQRDMULH */
11203 {
11204 static gen_helper_gvec_3_ptr * const fns[2][2] = {
11205 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11206 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11207 };
11208 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11209 }
11210 return;
11211 case 0x11:
11212 if (!u) { /* CMTST */
11213 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11214 return;
11215 }
11216 /* else CMEQ */
11217 cond = TCG_COND_EQ;
11218 goto do_gvec_cmp;
11219 case 0x06: /* CMGT, CMHI */
11220 cond = u ? TCG_COND_GTU : TCG_COND_GT;
11221 goto do_gvec_cmp;
11222 case 0x07: /* CMGE, CMHS */
11223 cond = u ? TCG_COND_GEU : TCG_COND_GE;
11224 do_gvec_cmp:
11225 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11226 vec_full_reg_offset(s, rn),
11227 vec_full_reg_offset(s, rm),
11228 is_q ? 16 : 8, vec_full_reg_size(s));
11229 return;
11230 }
11231
11232 if (size == 3) {
11233 assert(is_q);
11234 for (pass = 0; pass < 2; pass++) {
11235 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11236 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11237 TCGv_i64 tcg_res = tcg_temp_new_i64();
11238
11239 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11240 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11241
11242 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11243
11244 write_vec_element(s, tcg_res, rd, pass, MO_64);
11245 }
11246 } else {
11247 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11248 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11249 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11250 TCGv_i32 tcg_res = tcg_temp_new_i32();
11251 NeonGenTwoOpFn *genfn = NULL;
11252 NeonGenTwoOpEnvFn *genenvfn = NULL;
11253
11254 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11255 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11256
11257 switch (opcode) {
11258 case 0x0: /* SHADD, UHADD */
11259 {
11260 static NeonGenTwoOpFn * const fns[3][2] = {
11261 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11262 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11263 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11264 };
11265 genfn = fns[size][u];
11266 break;
11267 }
11268 case 0x2: /* SRHADD, URHADD */
11269 {
11270 static NeonGenTwoOpFn * const fns[3][2] = {
11271 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11272 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11273 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11274 };
11275 genfn = fns[size][u];
11276 break;
11277 }
11278 case 0x4: /* SHSUB, UHSUB */
11279 {
11280 static NeonGenTwoOpFn * const fns[3][2] = {
11281 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11282 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11283 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11284 };
11285 genfn = fns[size][u];
11286 break;
11287 }
11288 case 0x9: /* SQSHL, UQSHL */
11289 {
11290 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11291 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11292 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11293 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11294 };
11295 genenvfn = fns[size][u];
11296 break;
11297 }
11298 case 0xa: /* SRSHL, URSHL */
11299 {
11300 static NeonGenTwoOpFn * const fns[3][2] = {
11301 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11302 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11303 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11304 };
11305 genfn = fns[size][u];
11306 break;
11307 }
11308 case 0xb: /* SQRSHL, UQRSHL */
11309 {
11310 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11311 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11312 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11313 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11314 };
11315 genenvfn = fns[size][u];
11316 break;
11317 }
11318 default:
11319 g_assert_not_reached();
11320 }
11321
11322 if (genenvfn) {
11323 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2);
11324 } else {
11325 genfn(tcg_res, tcg_op1, tcg_op2);
11326 }
11327
11328 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11329 }
11330 }
11331 clear_vec_high(s, is_q, rd);
11332 }
11333
11334 /* AdvSIMD three same
11335 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11336 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11337 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11338 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11339 */
11340 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11341 {
11342 int opcode = extract32(insn, 11, 5);
11343
11344 switch (opcode) {
11345 case 0x3: /* logic ops */
11346 disas_simd_3same_logic(s, insn);
11347 break;
11348 case 0x17: /* ADDP */
11349 case 0x14: /* SMAXP, UMAXP */
11350 case 0x15: /* SMINP, UMINP */
11351 {
11352 /* Pairwise operations */
11353 int is_q = extract32(insn, 30, 1);
11354 int u = extract32(insn, 29, 1);
11355 int size = extract32(insn, 22, 2);
11356 int rm = extract32(insn, 16, 5);
11357 int rn = extract32(insn, 5, 5);
11358 int rd = extract32(insn, 0, 5);
11359 if (opcode == 0x17) {
11360 if (u || (size == 3 && !is_q)) {
11361 unallocated_encoding(s);
11362 return;
11363 }
11364 } else {
11365 if (size == 3) {
11366 unallocated_encoding(s);
11367 return;
11368 }
11369 }
11370 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11371 break;
11372 }
11373 case 0x18 ... 0x31:
11374 /* floating point ops, sz[1] and U are part of opcode */
11375 disas_simd_3same_float(s, insn);
11376 break;
11377 default:
11378 disas_simd_3same_int(s, insn);
11379 break;
11380 }
11381 }
11382
11383 /*
11384 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11385 *
11386 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11387 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11388 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11389 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11390 *
11391 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11392 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11393 *
11394 */
11395 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11396 {
11397 int opcode = extract32(insn, 11, 3);
11398 int u = extract32(insn, 29, 1);
11399 int a = extract32(insn, 23, 1);
11400 int is_q = extract32(insn, 30, 1);
11401 int rm = extract32(insn, 16, 5);
11402 int rn = extract32(insn, 5, 5);
11403 int rd = extract32(insn, 0, 5);
11404 /*
11405 * For these floating point ops, the U, a and opcode bits
11406 * together indicate the operation.
11407 */
11408 int fpopcode = opcode | (a << 3) | (u << 4);
11409 int datasize = is_q ? 128 : 64;
11410 int elements = datasize / 16;
11411 bool pairwise;
11412 TCGv_ptr fpst;
11413 int pass;
11414
11415 switch (fpopcode) {
11416 case 0x0: /* FMAXNM */
11417 case 0x1: /* FMLA */
11418 case 0x2: /* FADD */
11419 case 0x3: /* FMULX */
11420 case 0x4: /* FCMEQ */
11421 case 0x6: /* FMAX */
11422 case 0x7: /* FRECPS */
11423 case 0x8: /* FMINNM */
11424 case 0x9: /* FMLS */
11425 case 0xa: /* FSUB */
11426 case 0xe: /* FMIN */
11427 case 0xf: /* FRSQRTS */
11428 case 0x13: /* FMUL */
11429 case 0x14: /* FCMGE */
11430 case 0x15: /* FACGE */
11431 case 0x17: /* FDIV */
11432 case 0x1a: /* FABD */
11433 case 0x1c: /* FCMGT */
11434 case 0x1d: /* FACGT */
11435 pairwise = false;
11436 break;
11437 case 0x10: /* FMAXNMP */
11438 case 0x12: /* FADDP */
11439 case 0x16: /* FMAXP */
11440 case 0x18: /* FMINNMP */
11441 case 0x1e: /* FMINP */
11442 pairwise = true;
11443 break;
11444 default:
11445 unallocated_encoding(s);
11446 return;
11447 }
11448
11449 if (!dc_isar_feature(aa64_fp16, s)) {
11450 unallocated_encoding(s);
11451 return;
11452 }
11453
11454 if (!fp_access_check(s)) {
11455 return;
11456 }
11457
11458 fpst = fpstatus_ptr(FPST_FPCR_F16);
11459
11460 if (pairwise) {
11461 int maxpass = is_q ? 8 : 4;
11462 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11463 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11464 TCGv_i32 tcg_res[8];
11465
11466 for (pass = 0; pass < maxpass; pass++) {
11467 int passreg = pass < (maxpass / 2) ? rn : rm;
11468 int passelt = (pass << 1) & (maxpass - 1);
11469
11470 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11471 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11472 tcg_res[pass] = tcg_temp_new_i32();
11473
11474 switch (fpopcode) {
11475 case 0x10: /* FMAXNMP */
11476 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11477 fpst);
11478 break;
11479 case 0x12: /* FADDP */
11480 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11481 break;
11482 case 0x16: /* FMAXP */
11483 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11484 break;
11485 case 0x18: /* FMINNMP */
11486 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11487 fpst);
11488 break;
11489 case 0x1e: /* FMINP */
11490 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11491 break;
11492 default:
11493 g_assert_not_reached();
11494 }
11495 }
11496
11497 for (pass = 0; pass < maxpass; pass++) {
11498 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11499 }
11500 } else {
11501 for (pass = 0; pass < elements; pass++) {
11502 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11503 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11504 TCGv_i32 tcg_res = tcg_temp_new_i32();
11505
11506 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11507 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11508
11509 switch (fpopcode) {
11510 case 0x0: /* FMAXNM */
11511 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11512 break;
11513 case 0x1: /* FMLA */
11514 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11515 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11516 fpst);
11517 break;
11518 case 0x2: /* FADD */
11519 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11520 break;
11521 case 0x3: /* FMULX */
11522 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11523 break;
11524 case 0x4: /* FCMEQ */
11525 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11526 break;
11527 case 0x6: /* FMAX */
11528 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11529 break;
11530 case 0x7: /* FRECPS */
11531 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11532 break;
11533 case 0x8: /* FMINNM */
11534 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11535 break;
11536 case 0x9: /* FMLS */
11537 /* As usual for ARM, separate negation for fused multiply-add */
11538 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11539 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11540 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11541 fpst);
11542 break;
11543 case 0xa: /* FSUB */
11544 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11545 break;
11546 case 0xe: /* FMIN */
11547 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11548 break;
11549 case 0xf: /* FRSQRTS */
11550 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11551 break;
11552 case 0x13: /* FMUL */
11553 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11554 break;
11555 case 0x14: /* FCMGE */
11556 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11557 break;
11558 case 0x15: /* FACGE */
11559 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11560 break;
11561 case 0x17: /* FDIV */
11562 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11563 break;
11564 case 0x1a: /* FABD */
11565 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11566 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11567 break;
11568 case 0x1c: /* FCMGT */
11569 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11570 break;
11571 case 0x1d: /* FACGT */
11572 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11573 break;
11574 default:
11575 g_assert_not_reached();
11576 }
11577
11578 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11579 }
11580 }
11581
11582 clear_vec_high(s, is_q, rd);
11583 }
11584
11585 /* AdvSIMD three same extra
11586 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
11587 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11588 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
11589 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11590 */
11591 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11592 {
11593 int rd = extract32(insn, 0, 5);
11594 int rn = extract32(insn, 5, 5);
11595 int opcode = extract32(insn, 11, 4);
11596 int rm = extract32(insn, 16, 5);
11597 int size = extract32(insn, 22, 2);
11598 bool u = extract32(insn, 29, 1);
11599 bool is_q = extract32(insn, 30, 1);
11600 bool feature;
11601 int rot;
11602
11603 switch (u * 16 + opcode) {
11604 case 0x10: /* SQRDMLAH (vector) */
11605 case 0x11: /* SQRDMLSH (vector) */
11606 if (size != 1 && size != 2) {
11607 unallocated_encoding(s);
11608 return;
11609 }
11610 feature = dc_isar_feature(aa64_rdm, s);
11611 break;
11612 case 0x02: /* SDOT (vector) */
11613 case 0x12: /* UDOT (vector) */
11614 if (size != MO_32) {
11615 unallocated_encoding(s);
11616 return;
11617 }
11618 feature = dc_isar_feature(aa64_dp, s);
11619 break;
11620 case 0x03: /* USDOT */
11621 if (size != MO_32) {
11622 unallocated_encoding(s);
11623 return;
11624 }
11625 feature = dc_isar_feature(aa64_i8mm, s);
11626 break;
11627 case 0x04: /* SMMLA */
11628 case 0x14: /* UMMLA */
11629 case 0x05: /* USMMLA */
11630 if (!is_q || size != MO_32) {
11631 unallocated_encoding(s);
11632 return;
11633 }
11634 feature = dc_isar_feature(aa64_i8mm, s);
11635 break;
11636 case 0x18: /* FCMLA, #0 */
11637 case 0x19: /* FCMLA, #90 */
11638 case 0x1a: /* FCMLA, #180 */
11639 case 0x1b: /* FCMLA, #270 */
11640 case 0x1c: /* FCADD, #90 */
11641 case 0x1e: /* FCADD, #270 */
11642 if (size == 0
11643 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11644 || (size == 3 && !is_q)) {
11645 unallocated_encoding(s);
11646 return;
11647 }
11648 feature = dc_isar_feature(aa64_fcma, s);
11649 break;
11650 case 0x1d: /* BFMMLA */
11651 if (size != MO_16 || !is_q) {
11652 unallocated_encoding(s);
11653 return;
11654 }
11655 feature = dc_isar_feature(aa64_bf16, s);
11656 break;
11657 case 0x1f:
11658 switch (size) {
11659 case 1: /* BFDOT */
11660 case 3: /* BFMLAL{B,T} */
11661 feature = dc_isar_feature(aa64_bf16, s);
11662 break;
11663 default:
11664 unallocated_encoding(s);
11665 return;
11666 }
11667 break;
11668 default:
11669 unallocated_encoding(s);
11670 return;
11671 }
11672 if (!feature) {
11673 unallocated_encoding(s);
11674 return;
11675 }
11676 if (!fp_access_check(s)) {
11677 return;
11678 }
11679
11680 switch (opcode) {
11681 case 0x0: /* SQRDMLAH (vector) */
11682 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11683 return;
11684
11685 case 0x1: /* SQRDMLSH (vector) */
11686 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11687 return;
11688
11689 case 0x2: /* SDOT / UDOT */
11690 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11691 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11692 return;
11693
11694 case 0x3: /* USDOT */
11695 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11696 return;
11697
11698 case 0x04: /* SMMLA, UMMLA */
11699 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11700 u ? gen_helper_gvec_ummla_b
11701 : gen_helper_gvec_smmla_b);
11702 return;
11703 case 0x05: /* USMMLA */
11704 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11705 return;
11706
11707 case 0x8: /* FCMLA, #0 */
11708 case 0x9: /* FCMLA, #90 */
11709 case 0xa: /* FCMLA, #180 */
11710 case 0xb: /* FCMLA, #270 */
11711 rot = extract32(opcode, 0, 2);
11712 switch (size) {
11713 case 1:
11714 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11715 gen_helper_gvec_fcmlah);
11716 break;
11717 case 2:
11718 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11719 gen_helper_gvec_fcmlas);
11720 break;
11721 case 3:
11722 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11723 gen_helper_gvec_fcmlad);
11724 break;
11725 default:
11726 g_assert_not_reached();
11727 }
11728 return;
11729
11730 case 0xc: /* FCADD, #90 */
11731 case 0xe: /* FCADD, #270 */
11732 rot = extract32(opcode, 1, 1);
11733 switch (size) {
11734 case 1:
11735 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11736 gen_helper_gvec_fcaddh);
11737 break;
11738 case 2:
11739 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11740 gen_helper_gvec_fcadds);
11741 break;
11742 case 3:
11743 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11744 gen_helper_gvec_fcaddd);
11745 break;
11746 default:
11747 g_assert_not_reached();
11748 }
11749 return;
11750
11751 case 0xd: /* BFMMLA */
11752 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11753 return;
11754 case 0xf:
11755 switch (size) {
11756 case 1: /* BFDOT */
11757 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11758 break;
11759 case 3: /* BFMLAL{B,T} */
11760 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11761 gen_helper_gvec_bfmlal);
11762 break;
11763 default:
11764 g_assert_not_reached();
11765 }
11766 return;
11767
11768 default:
11769 g_assert_not_reached();
11770 }
11771 }
11772
11773 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11774 int size, int rn, int rd)
11775 {
11776 /* Handle 2-reg-misc ops which are widening (so each size element
11777 * in the source becomes a 2*size element in the destination.
11778 * The only instruction like this is FCVTL.
11779 */
11780 int pass;
11781
11782 if (size == 3) {
11783 /* 32 -> 64 bit fp conversion */
11784 TCGv_i64 tcg_res[2];
11785 int srcelt = is_q ? 2 : 0;
11786
11787 for (pass = 0; pass < 2; pass++) {
11788 TCGv_i32 tcg_op = tcg_temp_new_i32();
11789 tcg_res[pass] = tcg_temp_new_i64();
11790
11791 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11792 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11793 }
11794 for (pass = 0; pass < 2; pass++) {
11795 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11796 }
11797 } else {
11798 /* 16 -> 32 bit fp conversion */
11799 int srcelt = is_q ? 4 : 0;
11800 TCGv_i32 tcg_res[4];
11801 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11802 TCGv_i32 ahp = get_ahp_flag();
11803
11804 for (pass = 0; pass < 4; pass++) {
11805 tcg_res[pass] = tcg_temp_new_i32();
11806
11807 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11808 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11809 fpst, ahp);
11810 }
11811 for (pass = 0; pass < 4; pass++) {
11812 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11813 }
11814 }
11815 }
11816
11817 static void handle_rev(DisasContext *s, int opcode, bool u,
11818 bool is_q, int size, int rn, int rd)
11819 {
11820 int op = (opcode << 1) | u;
11821 int opsz = op + size;
11822 int grp_size = 3 - opsz;
11823 int dsize = is_q ? 128 : 64;
11824 int i;
11825
11826 if (opsz >= 3) {
11827 unallocated_encoding(s);
11828 return;
11829 }
11830
11831 if (!fp_access_check(s)) {
11832 return;
11833 }
11834
11835 if (size == 0) {
11836 /* Special case bytes, use bswap op on each group of elements */
11837 int groups = dsize / (8 << grp_size);
11838
11839 for (i = 0; i < groups; i++) {
11840 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11841
11842 read_vec_element(s, tcg_tmp, rn, i, grp_size);
11843 switch (grp_size) {
11844 case MO_16:
11845 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11846 break;
11847 case MO_32:
11848 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11849 break;
11850 case MO_64:
11851 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11852 break;
11853 default:
11854 g_assert_not_reached();
11855 }
11856 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11857 }
11858 clear_vec_high(s, is_q, rd);
11859 } else {
11860 int revmask = (1 << grp_size) - 1;
11861 int esize = 8 << size;
11862 int elements = dsize / esize;
11863 TCGv_i64 tcg_rn = tcg_temp_new_i64();
11864 TCGv_i64 tcg_rd[2];
11865
11866 for (i = 0; i < 2; i++) {
11867 tcg_rd[i] = tcg_temp_new_i64();
11868 tcg_gen_movi_i64(tcg_rd[i], 0);
11869 }
11870
11871 for (i = 0; i < elements; i++) {
11872 int e_rev = (i & 0xf) ^ revmask;
11873 int w = (e_rev * esize) / 64;
11874 int o = (e_rev * esize) % 64;
11875
11876 read_vec_element(s, tcg_rn, rn, i, size);
11877 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11878 }
11879
11880 for (i = 0; i < 2; i++) {
11881 write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11882 }
11883 clear_vec_high(s, true, rd);
11884 }
11885 }
11886
11887 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11888 bool is_q, int size, int rn, int rd)
11889 {
11890 /* Implement the pairwise operations from 2-misc:
11891 * SADDLP, UADDLP, SADALP, UADALP.
11892 * These all add pairs of elements in the input to produce a
11893 * double-width result element in the output (possibly accumulating).
11894 */
11895 bool accum = (opcode == 0x6);
11896 int maxpass = is_q ? 2 : 1;
11897 int pass;
11898 TCGv_i64 tcg_res[2];
11899
11900 if (size == 2) {
11901 /* 32 + 32 -> 64 op */
11902 MemOp memop = size + (u ? 0 : MO_SIGN);
11903
11904 for (pass = 0; pass < maxpass; pass++) {
11905 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11906 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11907
11908 tcg_res[pass] = tcg_temp_new_i64();
11909
11910 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11911 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11912 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11913 if (accum) {
11914 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11915 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11916 }
11917 }
11918 } else {
11919 for (pass = 0; pass < maxpass; pass++) {
11920 TCGv_i64 tcg_op = tcg_temp_new_i64();
11921 NeonGenOne64OpFn *genfn;
11922 static NeonGenOne64OpFn * const fns[2][2] = {
11923 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
11924 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
11925 };
11926
11927 genfn = fns[size][u];
11928
11929 tcg_res[pass] = tcg_temp_new_i64();
11930
11931 read_vec_element(s, tcg_op, rn, pass, MO_64);
11932 genfn(tcg_res[pass], tcg_op);
11933
11934 if (accum) {
11935 read_vec_element(s, tcg_op, rd, pass, MO_64);
11936 if (size == 0) {
11937 gen_helper_neon_addl_u16(tcg_res[pass],
11938 tcg_res[pass], tcg_op);
11939 } else {
11940 gen_helper_neon_addl_u32(tcg_res[pass],
11941 tcg_res[pass], tcg_op);
11942 }
11943 }
11944 }
11945 }
11946 if (!is_q) {
11947 tcg_res[1] = tcg_constant_i64(0);
11948 }
11949 for (pass = 0; pass < 2; pass++) {
11950 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11951 }
11952 }
11953
11954 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11955 {
11956 /* Implement SHLL and SHLL2 */
11957 int pass;
11958 int part = is_q ? 2 : 0;
11959 TCGv_i64 tcg_res[2];
11960
11961 for (pass = 0; pass < 2; pass++) {
11962 static NeonGenWidenFn * const widenfns[3] = {
11963 gen_helper_neon_widen_u8,
11964 gen_helper_neon_widen_u16,
11965 tcg_gen_extu_i32_i64,
11966 };
11967 NeonGenWidenFn *widenfn = widenfns[size];
11968 TCGv_i32 tcg_op = tcg_temp_new_i32();
11969
11970 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11971 tcg_res[pass] = tcg_temp_new_i64();
11972 widenfn(tcg_res[pass], tcg_op);
11973 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11974 }
11975
11976 for (pass = 0; pass < 2; pass++) {
11977 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11978 }
11979 }
11980
11981 /* AdvSIMD two reg misc
11982 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
11983 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11984 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
11985 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11986 */
11987 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11988 {
11989 int size = extract32(insn, 22, 2);
11990 int opcode = extract32(insn, 12, 5);
11991 bool u = extract32(insn, 29, 1);
11992 bool is_q = extract32(insn, 30, 1);
11993 int rn = extract32(insn, 5, 5);
11994 int rd = extract32(insn, 0, 5);
11995 bool need_fpstatus = false;
11996 int rmode = -1;
11997 TCGv_i32 tcg_rmode;
11998 TCGv_ptr tcg_fpstatus;
11999
12000 switch (opcode) {
12001 case 0x0: /* REV64, REV32 */
12002 case 0x1: /* REV16 */
12003 handle_rev(s, opcode, u, is_q, size, rn, rd);
12004 return;
12005 case 0x5: /* CNT, NOT, RBIT */
12006 if (u && size == 0) {
12007 /* NOT */
12008 break;
12009 } else if (u && size == 1) {
12010 /* RBIT */
12011 break;
12012 } else if (!u && size == 0) {
12013 /* CNT */
12014 break;
12015 }
12016 unallocated_encoding(s);
12017 return;
12018 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12019 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12020 if (size == 3) {
12021 unallocated_encoding(s);
12022 return;
12023 }
12024 if (!fp_access_check(s)) {
12025 return;
12026 }
12027
12028 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12029 return;
12030 case 0x4: /* CLS, CLZ */
12031 if (size == 3) {
12032 unallocated_encoding(s);
12033 return;
12034 }
12035 break;
12036 case 0x2: /* SADDLP, UADDLP */
12037 case 0x6: /* SADALP, UADALP */
12038 if (size == 3) {
12039 unallocated_encoding(s);
12040 return;
12041 }
12042 if (!fp_access_check(s)) {
12043 return;
12044 }
12045 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12046 return;
12047 case 0x13: /* SHLL, SHLL2 */
12048 if (u == 0 || size == 3) {
12049 unallocated_encoding(s);
12050 return;
12051 }
12052 if (!fp_access_check(s)) {
12053 return;
12054 }
12055 handle_shll(s, is_q, size, rn, rd);
12056 return;
12057 case 0xa: /* CMLT */
12058 if (u == 1) {
12059 unallocated_encoding(s);
12060 return;
12061 }
12062 /* fall through */
12063 case 0x8: /* CMGT, CMGE */
12064 case 0x9: /* CMEQ, CMLE */
12065 case 0xb: /* ABS, NEG */
12066 if (size == 3 && !is_q) {
12067 unallocated_encoding(s);
12068 return;
12069 }
12070 break;
12071 case 0x3: /* SUQADD, USQADD */
12072 if (size == 3 && !is_q) {
12073 unallocated_encoding(s);
12074 return;
12075 }
12076 if (!fp_access_check(s)) {
12077 return;
12078 }
12079 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12080 return;
12081 case 0x7: /* SQABS, SQNEG */
12082 if (size == 3 && !is_q) {
12083 unallocated_encoding(s);
12084 return;
12085 }
12086 break;
12087 case 0xc ... 0xf:
12088 case 0x16 ... 0x1f:
12089 {
12090 /* Floating point: U, size[1] and opcode indicate operation;
12091 * size[0] indicates single or double precision.
12092 */
12093 int is_double = extract32(size, 0, 1);
12094 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12095 size = is_double ? 3 : 2;
12096 switch (opcode) {
12097 case 0x2f: /* FABS */
12098 case 0x6f: /* FNEG */
12099 if (size == 3 && !is_q) {
12100 unallocated_encoding(s);
12101 return;
12102 }
12103 break;
12104 case 0x1d: /* SCVTF */
12105 case 0x5d: /* UCVTF */
12106 {
12107 bool is_signed = (opcode == 0x1d) ? true : false;
12108 int elements = is_double ? 2 : is_q ? 4 : 2;
12109 if (is_double && !is_q) {
12110 unallocated_encoding(s);
12111 return;
12112 }
12113 if (!fp_access_check(s)) {
12114 return;
12115 }
12116 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12117 return;
12118 }
12119 case 0x2c: /* FCMGT (zero) */
12120 case 0x2d: /* FCMEQ (zero) */
12121 case 0x2e: /* FCMLT (zero) */
12122 case 0x6c: /* FCMGE (zero) */
12123 case 0x6d: /* FCMLE (zero) */
12124 if (size == 3 && !is_q) {
12125 unallocated_encoding(s);
12126 return;
12127 }
12128 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12129 return;
12130 case 0x7f: /* FSQRT */
12131 if (size == 3 && !is_q) {
12132 unallocated_encoding(s);
12133 return;
12134 }
12135 break;
12136 case 0x1a: /* FCVTNS */
12137 case 0x1b: /* FCVTMS */
12138 case 0x3a: /* FCVTPS */
12139 case 0x3b: /* FCVTZS */
12140 case 0x5a: /* FCVTNU */
12141 case 0x5b: /* FCVTMU */
12142 case 0x7a: /* FCVTPU */
12143 case 0x7b: /* FCVTZU */
12144 need_fpstatus = true;
12145 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12146 if (size == 3 && !is_q) {
12147 unallocated_encoding(s);
12148 return;
12149 }
12150 break;
12151 case 0x5c: /* FCVTAU */
12152 case 0x1c: /* FCVTAS */
12153 need_fpstatus = true;
12154 rmode = FPROUNDING_TIEAWAY;
12155 if (size == 3 && !is_q) {
12156 unallocated_encoding(s);
12157 return;
12158 }
12159 break;
12160 case 0x3c: /* URECPE */
12161 if (size == 3) {
12162 unallocated_encoding(s);
12163 return;
12164 }
12165 /* fall through */
12166 case 0x3d: /* FRECPE */
12167 case 0x7d: /* FRSQRTE */
12168 if (size == 3 && !is_q) {
12169 unallocated_encoding(s);
12170 return;
12171 }
12172 if (!fp_access_check(s)) {
12173 return;
12174 }
12175 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12176 return;
12177 case 0x56: /* FCVTXN, FCVTXN2 */
12178 if (size == 2) {
12179 unallocated_encoding(s);
12180 return;
12181 }
12182 /* fall through */
12183 case 0x16: /* FCVTN, FCVTN2 */
12184 /* handle_2misc_narrow does a 2*size -> size operation, but these
12185 * instructions encode the source size rather than dest size.
12186 */
12187 if (!fp_access_check(s)) {
12188 return;
12189 }
12190 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12191 return;
12192 case 0x36: /* BFCVTN, BFCVTN2 */
12193 if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12194 unallocated_encoding(s);
12195 return;
12196 }
12197 if (!fp_access_check(s)) {
12198 return;
12199 }
12200 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12201 return;
12202 case 0x17: /* FCVTL, FCVTL2 */
12203 if (!fp_access_check(s)) {
12204 return;
12205 }
12206 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12207 return;
12208 case 0x18: /* FRINTN */
12209 case 0x19: /* FRINTM */
12210 case 0x38: /* FRINTP */
12211 case 0x39: /* FRINTZ */
12212 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12213 /* fall through */
12214 case 0x59: /* FRINTX */
12215 case 0x79: /* FRINTI */
12216 need_fpstatus = true;
12217 if (size == 3 && !is_q) {
12218 unallocated_encoding(s);
12219 return;
12220 }
12221 break;
12222 case 0x58: /* FRINTA */
12223 rmode = FPROUNDING_TIEAWAY;
12224 need_fpstatus = true;
12225 if (size == 3 && !is_q) {
12226 unallocated_encoding(s);
12227 return;
12228 }
12229 break;
12230 case 0x7c: /* URSQRTE */
12231 if (size == 3) {
12232 unallocated_encoding(s);
12233 return;
12234 }
12235 break;
12236 case 0x1e: /* FRINT32Z */
12237 case 0x1f: /* FRINT64Z */
12238 rmode = FPROUNDING_ZERO;
12239 /* fall through */
12240 case 0x5e: /* FRINT32X */
12241 case 0x5f: /* FRINT64X */
12242 need_fpstatus = true;
12243 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12244 unallocated_encoding(s);
12245 return;
12246 }
12247 break;
12248 default:
12249 unallocated_encoding(s);
12250 return;
12251 }
12252 break;
12253 }
12254 default:
12255 unallocated_encoding(s);
12256 return;
12257 }
12258
12259 if (!fp_access_check(s)) {
12260 return;
12261 }
12262
12263 if (need_fpstatus || rmode >= 0) {
12264 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12265 } else {
12266 tcg_fpstatus = NULL;
12267 }
12268 if (rmode >= 0) {
12269 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12270 } else {
12271 tcg_rmode = NULL;
12272 }
12273
12274 switch (opcode) {
12275 case 0x5:
12276 if (u && size == 0) { /* NOT */
12277 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12278 return;
12279 }
12280 break;
12281 case 0x8: /* CMGT, CMGE */
12282 if (u) {
12283 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12284 } else {
12285 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12286 }
12287 return;
12288 case 0x9: /* CMEQ, CMLE */
12289 if (u) {
12290 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12291 } else {
12292 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12293 }
12294 return;
12295 case 0xa: /* CMLT */
12296 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12297 return;
12298 case 0xb:
12299 if (u) { /* ABS, NEG */
12300 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12301 } else {
12302 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12303 }
12304 return;
12305 }
12306
12307 if (size == 3) {
12308 /* All 64-bit element operations can be shared with scalar 2misc */
12309 int pass;
12310
12311 /* Coverity claims (size == 3 && !is_q) has been eliminated
12312 * from all paths leading to here.
12313 */
12314 tcg_debug_assert(is_q);
12315 for (pass = 0; pass < 2; pass++) {
12316 TCGv_i64 tcg_op = tcg_temp_new_i64();
12317 TCGv_i64 tcg_res = tcg_temp_new_i64();
12318
12319 read_vec_element(s, tcg_op, rn, pass, MO_64);
12320
12321 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12322 tcg_rmode, tcg_fpstatus);
12323
12324 write_vec_element(s, tcg_res, rd, pass, MO_64);
12325 }
12326 } else {
12327 int pass;
12328
12329 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12330 TCGv_i32 tcg_op = tcg_temp_new_i32();
12331 TCGv_i32 tcg_res = tcg_temp_new_i32();
12332
12333 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12334
12335 if (size == 2) {
12336 /* Special cases for 32 bit elements */
12337 switch (opcode) {
12338 case 0x4: /* CLS */
12339 if (u) {
12340 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12341 } else {
12342 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12343 }
12344 break;
12345 case 0x7: /* SQABS, SQNEG */
12346 if (u) {
12347 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
12348 } else {
12349 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
12350 }
12351 break;
12352 case 0x2f: /* FABS */
12353 gen_helper_vfp_abss(tcg_res, tcg_op);
12354 break;
12355 case 0x6f: /* FNEG */
12356 gen_helper_vfp_negs(tcg_res, tcg_op);
12357 break;
12358 case 0x7f: /* FSQRT */
12359 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
12360 break;
12361 case 0x1a: /* FCVTNS */
12362 case 0x1b: /* FCVTMS */
12363 case 0x1c: /* FCVTAS */
12364 case 0x3a: /* FCVTPS */
12365 case 0x3b: /* FCVTZS */
12366 gen_helper_vfp_tosls(tcg_res, tcg_op,
12367 tcg_constant_i32(0), tcg_fpstatus);
12368 break;
12369 case 0x5a: /* FCVTNU */
12370 case 0x5b: /* FCVTMU */
12371 case 0x5c: /* FCVTAU */
12372 case 0x7a: /* FCVTPU */
12373 case 0x7b: /* FCVTZU */
12374 gen_helper_vfp_touls(tcg_res, tcg_op,
12375 tcg_constant_i32(0), tcg_fpstatus);
12376 break;
12377 case 0x18: /* FRINTN */
12378 case 0x19: /* FRINTM */
12379 case 0x38: /* FRINTP */
12380 case 0x39: /* FRINTZ */
12381 case 0x58: /* FRINTA */
12382 case 0x79: /* FRINTI */
12383 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12384 break;
12385 case 0x59: /* FRINTX */
12386 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12387 break;
12388 case 0x7c: /* URSQRTE */
12389 gen_helper_rsqrte_u32(tcg_res, tcg_op);
12390 break;
12391 case 0x1e: /* FRINT32Z */
12392 case 0x5e: /* FRINT32X */
12393 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12394 break;
12395 case 0x1f: /* FRINT64Z */
12396 case 0x5f: /* FRINT64X */
12397 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12398 break;
12399 default:
12400 g_assert_not_reached();
12401 }
12402 } else {
12403 /* Use helpers for 8 and 16 bit elements */
12404 switch (opcode) {
12405 case 0x5: /* CNT, RBIT */
12406 /* For these two insns size is part of the opcode specifier
12407 * (handled earlier); they always operate on byte elements.
12408 */
12409 if (u) {
12410 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12411 } else {
12412 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12413 }
12414 break;
12415 case 0x7: /* SQABS, SQNEG */
12416 {
12417 NeonGenOneOpEnvFn *genfn;
12418 static NeonGenOneOpEnvFn * const fns[2][2] = {
12419 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12420 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12421 };
12422 genfn = fns[size][u];
12423 genfn(tcg_res, tcg_env, tcg_op);
12424 break;
12425 }
12426 case 0x4: /* CLS, CLZ */
12427 if (u) {
12428 if (size == 0) {
12429 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12430 } else {
12431 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12432 }
12433 } else {
12434 if (size == 0) {
12435 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12436 } else {
12437 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12438 }
12439 }
12440 break;
12441 default:
12442 g_assert_not_reached();
12443 }
12444 }
12445
12446 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12447 }
12448 }
12449 clear_vec_high(s, is_q, rd);
12450
12451 if (tcg_rmode) {
12452 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12453 }
12454 }
12455
12456 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12457 *
12458 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
12459 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12460 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
12461 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12462 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12463 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12464 *
12465 * This actually covers two groups where scalar access is governed by
12466 * bit 28. A bunch of the instructions (float to integral) only exist
12467 * in the vector form and are un-allocated for the scalar decode. Also
12468 * in the scalar decode Q is always 1.
12469 */
12470 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12471 {
12472 int fpop, opcode, a, u;
12473 int rn, rd;
12474 bool is_q;
12475 bool is_scalar;
12476 bool only_in_vector = false;
12477
12478 int pass;
12479 TCGv_i32 tcg_rmode = NULL;
12480 TCGv_ptr tcg_fpstatus = NULL;
12481 bool need_fpst = true;
12482 int rmode = -1;
12483
12484 if (!dc_isar_feature(aa64_fp16, s)) {
12485 unallocated_encoding(s);
12486 return;
12487 }
12488
12489 rd = extract32(insn, 0, 5);
12490 rn = extract32(insn, 5, 5);
12491
12492 a = extract32(insn, 23, 1);
12493 u = extract32(insn, 29, 1);
12494 is_scalar = extract32(insn, 28, 1);
12495 is_q = extract32(insn, 30, 1);
12496
12497 opcode = extract32(insn, 12, 5);
12498 fpop = deposit32(opcode, 5, 1, a);
12499 fpop = deposit32(fpop, 6, 1, u);
12500
12501 switch (fpop) {
12502 case 0x1d: /* SCVTF */
12503 case 0x5d: /* UCVTF */
12504 {
12505 int elements;
12506
12507 if (is_scalar) {
12508 elements = 1;
12509 } else {
12510 elements = (is_q ? 8 : 4);
12511 }
12512
12513 if (!fp_access_check(s)) {
12514 return;
12515 }
12516 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12517 return;
12518 }
12519 break;
12520 case 0x2c: /* FCMGT (zero) */
12521 case 0x2d: /* FCMEQ (zero) */
12522 case 0x2e: /* FCMLT (zero) */
12523 case 0x6c: /* FCMGE (zero) */
12524 case 0x6d: /* FCMLE (zero) */
12525 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12526 return;
12527 case 0x3d: /* FRECPE */
12528 case 0x3f: /* FRECPX */
12529 break;
12530 case 0x18: /* FRINTN */
12531 only_in_vector = true;
12532 rmode = FPROUNDING_TIEEVEN;
12533 break;
12534 case 0x19: /* FRINTM */
12535 only_in_vector = true;
12536 rmode = FPROUNDING_NEGINF;
12537 break;
12538 case 0x38: /* FRINTP */
12539 only_in_vector = true;
12540 rmode = FPROUNDING_POSINF;
12541 break;
12542 case 0x39: /* FRINTZ */
12543 only_in_vector = true;
12544 rmode = FPROUNDING_ZERO;
12545 break;
12546 case 0x58: /* FRINTA */
12547 only_in_vector = true;
12548 rmode = FPROUNDING_TIEAWAY;
12549 break;
12550 case 0x59: /* FRINTX */
12551 case 0x79: /* FRINTI */
12552 only_in_vector = true;
12553 /* current rounding mode */
12554 break;
12555 case 0x1a: /* FCVTNS */
12556 rmode = FPROUNDING_TIEEVEN;
12557 break;
12558 case 0x1b: /* FCVTMS */
12559 rmode = FPROUNDING_NEGINF;
12560 break;
12561 case 0x1c: /* FCVTAS */
12562 rmode = FPROUNDING_TIEAWAY;
12563 break;
12564 case 0x3a: /* FCVTPS */
12565 rmode = FPROUNDING_POSINF;
12566 break;
12567 case 0x3b: /* FCVTZS */
12568 rmode = FPROUNDING_ZERO;
12569 break;
12570 case 0x5a: /* FCVTNU */
12571 rmode = FPROUNDING_TIEEVEN;
12572 break;
12573 case 0x5b: /* FCVTMU */
12574 rmode = FPROUNDING_NEGINF;
12575 break;
12576 case 0x5c: /* FCVTAU */
12577 rmode = FPROUNDING_TIEAWAY;
12578 break;
12579 case 0x7a: /* FCVTPU */
12580 rmode = FPROUNDING_POSINF;
12581 break;
12582 case 0x7b: /* FCVTZU */
12583 rmode = FPROUNDING_ZERO;
12584 break;
12585 case 0x2f: /* FABS */
12586 case 0x6f: /* FNEG */
12587 need_fpst = false;
12588 break;
12589 case 0x7d: /* FRSQRTE */
12590 case 0x7f: /* FSQRT (vector) */
12591 break;
12592 default:
12593 unallocated_encoding(s);
12594 return;
12595 }
12596
12597
12598 /* Check additional constraints for the scalar encoding */
12599 if (is_scalar) {
12600 if (!is_q) {
12601 unallocated_encoding(s);
12602 return;
12603 }
12604 /* FRINTxx is only in the vector form */
12605 if (only_in_vector) {
12606 unallocated_encoding(s);
12607 return;
12608 }
12609 }
12610
12611 if (!fp_access_check(s)) {
12612 return;
12613 }
12614
12615 if (rmode >= 0 || need_fpst) {
12616 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12617 }
12618
12619 if (rmode >= 0) {
12620 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12621 }
12622
12623 if (is_scalar) {
12624 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12625 TCGv_i32 tcg_res = tcg_temp_new_i32();
12626
12627 switch (fpop) {
12628 case 0x1a: /* FCVTNS */
12629 case 0x1b: /* FCVTMS */
12630 case 0x1c: /* FCVTAS */
12631 case 0x3a: /* FCVTPS */
12632 case 0x3b: /* FCVTZS */
12633 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12634 break;
12635 case 0x3d: /* FRECPE */
12636 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12637 break;
12638 case 0x3f: /* FRECPX */
12639 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12640 break;
12641 case 0x5a: /* FCVTNU */
12642 case 0x5b: /* FCVTMU */
12643 case 0x5c: /* FCVTAU */
12644 case 0x7a: /* FCVTPU */
12645 case 0x7b: /* FCVTZU */
12646 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12647 break;
12648 case 0x6f: /* FNEG */
12649 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12650 break;
12651 case 0x7d: /* FRSQRTE */
12652 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12653 break;
12654 default:
12655 g_assert_not_reached();
12656 }
12657
12658 /* limit any sign extension going on */
12659 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12660 write_fp_sreg(s, rd, tcg_res);
12661 } else {
12662 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12663 TCGv_i32 tcg_op = tcg_temp_new_i32();
12664 TCGv_i32 tcg_res = tcg_temp_new_i32();
12665
12666 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12667
12668 switch (fpop) {
12669 case 0x1a: /* FCVTNS */
12670 case 0x1b: /* FCVTMS */
12671 case 0x1c: /* FCVTAS */
12672 case 0x3a: /* FCVTPS */
12673 case 0x3b: /* FCVTZS */
12674 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12675 break;
12676 case 0x3d: /* FRECPE */
12677 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12678 break;
12679 case 0x5a: /* FCVTNU */
12680 case 0x5b: /* FCVTMU */
12681 case 0x5c: /* FCVTAU */
12682 case 0x7a: /* FCVTPU */
12683 case 0x7b: /* FCVTZU */
12684 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12685 break;
12686 case 0x18: /* FRINTN */
12687 case 0x19: /* FRINTM */
12688 case 0x38: /* FRINTP */
12689 case 0x39: /* FRINTZ */
12690 case 0x58: /* FRINTA */
12691 case 0x79: /* FRINTI */
12692 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12693 break;
12694 case 0x59: /* FRINTX */
12695 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12696 break;
12697 case 0x2f: /* FABS */
12698 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12699 break;
12700 case 0x6f: /* FNEG */
12701 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12702 break;
12703 case 0x7d: /* FRSQRTE */
12704 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12705 break;
12706 case 0x7f: /* FSQRT */
12707 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12708 break;
12709 default:
12710 g_assert_not_reached();
12711 }
12712
12713 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12714 }
12715
12716 clear_vec_high(s, is_q, rd);
12717 }
12718
12719 if (tcg_rmode) {
12720 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12721 }
12722 }
12723
12724 /* AdvSIMD scalar x indexed element
12725 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12726 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12727 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12728 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12729 * AdvSIMD vector x indexed element
12730 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12731 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12732 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12733 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12734 */
12735 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12736 {
12737 /* This encoding has two kinds of instruction:
12738 * normal, where we perform elt x idxelt => elt for each
12739 * element in the vector
12740 * long, where we perform elt x idxelt and generate a result of
12741 * double the width of the input element
12742 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12743 */
12744 bool is_scalar = extract32(insn, 28, 1);
12745 bool is_q = extract32(insn, 30, 1);
12746 bool u = extract32(insn, 29, 1);
12747 int size = extract32(insn, 22, 2);
12748 int l = extract32(insn, 21, 1);
12749 int m = extract32(insn, 20, 1);
12750 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12751 int rm = extract32(insn, 16, 4);
12752 int opcode = extract32(insn, 12, 4);
12753 int h = extract32(insn, 11, 1);
12754 int rn = extract32(insn, 5, 5);
12755 int rd = extract32(insn, 0, 5);
12756 bool is_long = false;
12757 int is_fp = 0;
12758 bool is_fp16 = false;
12759 int index;
12760 TCGv_ptr fpst;
12761
12762 switch (16 * u + opcode) {
12763 case 0x08: /* MUL */
12764 case 0x10: /* MLA */
12765 case 0x14: /* MLS */
12766 if (is_scalar) {
12767 unallocated_encoding(s);
12768 return;
12769 }
12770 break;
12771 case 0x02: /* SMLAL, SMLAL2 */
12772 case 0x12: /* UMLAL, UMLAL2 */
12773 case 0x06: /* SMLSL, SMLSL2 */
12774 case 0x16: /* UMLSL, UMLSL2 */
12775 case 0x0a: /* SMULL, SMULL2 */
12776 case 0x1a: /* UMULL, UMULL2 */
12777 if (is_scalar) {
12778 unallocated_encoding(s);
12779 return;
12780 }
12781 is_long = true;
12782 break;
12783 case 0x03: /* SQDMLAL, SQDMLAL2 */
12784 case 0x07: /* SQDMLSL, SQDMLSL2 */
12785 case 0x0b: /* SQDMULL, SQDMULL2 */
12786 is_long = true;
12787 break;
12788 case 0x0c: /* SQDMULH */
12789 case 0x0d: /* SQRDMULH */
12790 break;
12791 case 0x01: /* FMLA */
12792 case 0x05: /* FMLS */
12793 case 0x09: /* FMUL */
12794 case 0x19: /* FMULX */
12795 is_fp = 1;
12796 break;
12797 case 0x1d: /* SQRDMLAH */
12798 case 0x1f: /* SQRDMLSH */
12799 if (!dc_isar_feature(aa64_rdm, s)) {
12800 unallocated_encoding(s);
12801 return;
12802 }
12803 break;
12804 case 0x0e: /* SDOT */
12805 case 0x1e: /* UDOT */
12806 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12807 unallocated_encoding(s);
12808 return;
12809 }
12810 break;
12811 case 0x0f:
12812 switch (size) {
12813 case 0: /* SUDOT */
12814 case 2: /* USDOT */
12815 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12816 unallocated_encoding(s);
12817 return;
12818 }
12819 size = MO_32;
12820 break;
12821 case 1: /* BFDOT */
12822 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12823 unallocated_encoding(s);
12824 return;
12825 }
12826 size = MO_32;
12827 break;
12828 case 3: /* BFMLAL{B,T} */
12829 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12830 unallocated_encoding(s);
12831 return;
12832 }
12833 /* can't set is_fp without other incorrect size checks */
12834 size = MO_16;
12835 break;
12836 default:
12837 unallocated_encoding(s);
12838 return;
12839 }
12840 break;
12841 case 0x11: /* FCMLA #0 */
12842 case 0x13: /* FCMLA #90 */
12843 case 0x15: /* FCMLA #180 */
12844 case 0x17: /* FCMLA #270 */
12845 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12846 unallocated_encoding(s);
12847 return;
12848 }
12849 is_fp = 2;
12850 break;
12851 case 0x00: /* FMLAL */
12852 case 0x04: /* FMLSL */
12853 case 0x18: /* FMLAL2 */
12854 case 0x1c: /* FMLSL2 */
12855 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12856 unallocated_encoding(s);
12857 return;
12858 }
12859 size = MO_16;
12860 /* is_fp, but we pass tcg_env not fp_status. */
12861 break;
12862 default:
12863 unallocated_encoding(s);
12864 return;
12865 }
12866
12867 switch (is_fp) {
12868 case 1: /* normal fp */
12869 /* convert insn encoded size to MemOp size */
12870 switch (size) {
12871 case 0: /* half-precision */
12872 size = MO_16;
12873 is_fp16 = true;
12874 break;
12875 case MO_32: /* single precision */
12876 case MO_64: /* double precision */
12877 break;
12878 default:
12879 unallocated_encoding(s);
12880 return;
12881 }
12882 break;
12883
12884 case 2: /* complex fp */
12885 /* Each indexable element is a complex pair. */
12886 size += 1;
12887 switch (size) {
12888 case MO_32:
12889 if (h && !is_q) {
12890 unallocated_encoding(s);
12891 return;
12892 }
12893 is_fp16 = true;
12894 break;
12895 case MO_64:
12896 break;
12897 default:
12898 unallocated_encoding(s);
12899 return;
12900 }
12901 break;
12902
12903 default: /* integer */
12904 switch (size) {
12905 case MO_8:
12906 case MO_64:
12907 unallocated_encoding(s);
12908 return;
12909 }
12910 break;
12911 }
12912 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12913 unallocated_encoding(s);
12914 return;
12915 }
12916
12917 /* Given MemOp size, adjust register and indexing. */
12918 switch (size) {
12919 case MO_16:
12920 index = h << 2 | l << 1 | m;
12921 break;
12922 case MO_32:
12923 index = h << 1 | l;
12924 rm |= m << 4;
12925 break;
12926 case MO_64:
12927 if (l || !is_q) {
12928 unallocated_encoding(s);
12929 return;
12930 }
12931 index = h;
12932 rm |= m << 4;
12933 break;
12934 default:
12935 g_assert_not_reached();
12936 }
12937
12938 if (!fp_access_check(s)) {
12939 return;
12940 }
12941
12942 if (is_fp) {
12943 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12944 } else {
12945 fpst = NULL;
12946 }
12947
12948 switch (16 * u + opcode) {
12949 case 0x0e: /* SDOT */
12950 case 0x1e: /* UDOT */
12951 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12952 u ? gen_helper_gvec_udot_idx_b
12953 : gen_helper_gvec_sdot_idx_b);
12954 return;
12955 case 0x0f:
12956 switch (extract32(insn, 22, 2)) {
12957 case 0: /* SUDOT */
12958 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12959 gen_helper_gvec_sudot_idx_b);
12960 return;
12961 case 1: /* BFDOT */
12962 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12963 gen_helper_gvec_bfdot_idx);
12964 return;
12965 case 2: /* USDOT */
12966 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12967 gen_helper_gvec_usdot_idx_b);
12968 return;
12969 case 3: /* BFMLAL{B,T} */
12970 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12971 gen_helper_gvec_bfmlal_idx);
12972 return;
12973 }
12974 g_assert_not_reached();
12975 case 0x11: /* FCMLA #0 */
12976 case 0x13: /* FCMLA #90 */
12977 case 0x15: /* FCMLA #180 */
12978 case 0x17: /* FCMLA #270 */
12979 {
12980 int rot = extract32(insn, 13, 2);
12981 int data = (index << 2) | rot;
12982 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12983 vec_full_reg_offset(s, rn),
12984 vec_full_reg_offset(s, rm),
12985 vec_full_reg_offset(s, rd), fpst,
12986 is_q ? 16 : 8, vec_full_reg_size(s), data,
12987 size == MO_64
12988 ? gen_helper_gvec_fcmlas_idx
12989 : gen_helper_gvec_fcmlah_idx);
12990 }
12991 return;
12992
12993 case 0x00: /* FMLAL */
12994 case 0x04: /* FMLSL */
12995 case 0x18: /* FMLAL2 */
12996 case 0x1c: /* FMLSL2 */
12997 {
12998 int is_s = extract32(opcode, 2, 1);
12999 int is_2 = u;
13000 int data = (index << 2) | (is_2 << 1) | is_s;
13001 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13002 vec_full_reg_offset(s, rn),
13003 vec_full_reg_offset(s, rm), tcg_env,
13004 is_q ? 16 : 8, vec_full_reg_size(s),
13005 data, gen_helper_gvec_fmlal_idx_a64);
13006 }
13007 return;
13008
13009 case 0x08: /* MUL */
13010 if (!is_long && !is_scalar) {
13011 static gen_helper_gvec_3 * const fns[3] = {
13012 gen_helper_gvec_mul_idx_h,
13013 gen_helper_gvec_mul_idx_s,
13014 gen_helper_gvec_mul_idx_d,
13015 };
13016 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13017 vec_full_reg_offset(s, rn),
13018 vec_full_reg_offset(s, rm),
13019 is_q ? 16 : 8, vec_full_reg_size(s),
13020 index, fns[size - 1]);
13021 return;
13022 }
13023 break;
13024
13025 case 0x10: /* MLA */
13026 if (!is_long && !is_scalar) {
13027 static gen_helper_gvec_4 * const fns[3] = {
13028 gen_helper_gvec_mla_idx_h,
13029 gen_helper_gvec_mla_idx_s,
13030 gen_helper_gvec_mla_idx_d,
13031 };
13032 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13033 vec_full_reg_offset(s, rn),
13034 vec_full_reg_offset(s, rm),
13035 vec_full_reg_offset(s, rd),
13036 is_q ? 16 : 8, vec_full_reg_size(s),
13037 index, fns[size - 1]);
13038 return;
13039 }
13040 break;
13041
13042 case 0x14: /* MLS */
13043 if (!is_long && !is_scalar) {
13044 static gen_helper_gvec_4 * const fns[3] = {
13045 gen_helper_gvec_mls_idx_h,
13046 gen_helper_gvec_mls_idx_s,
13047 gen_helper_gvec_mls_idx_d,
13048 };
13049 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13050 vec_full_reg_offset(s, rn),
13051 vec_full_reg_offset(s, rm),
13052 vec_full_reg_offset(s, rd),
13053 is_q ? 16 : 8, vec_full_reg_size(s),
13054 index, fns[size - 1]);
13055 return;
13056 }
13057 break;
13058 }
13059
13060 if (size == 3) {
13061 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13062 int pass;
13063
13064 assert(is_fp && is_q && !is_long);
13065
13066 read_vec_element(s, tcg_idx, rm, index, MO_64);
13067
13068 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13069 TCGv_i64 tcg_op = tcg_temp_new_i64();
13070 TCGv_i64 tcg_res = tcg_temp_new_i64();
13071
13072 read_vec_element(s, tcg_op, rn, pass, MO_64);
13073
13074 switch (16 * u + opcode) {
13075 case 0x05: /* FMLS */
13076 /* As usual for ARM, separate negation for fused multiply-add */
13077 gen_helper_vfp_negd(tcg_op, tcg_op);
13078 /* fall through */
13079 case 0x01: /* FMLA */
13080 read_vec_element(s, tcg_res, rd, pass, MO_64);
13081 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13082 break;
13083 case 0x09: /* FMUL */
13084 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13085 break;
13086 case 0x19: /* FMULX */
13087 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13088 break;
13089 default:
13090 g_assert_not_reached();
13091 }
13092
13093 write_vec_element(s, tcg_res, rd, pass, MO_64);
13094 }
13095
13096 clear_vec_high(s, !is_scalar, rd);
13097 } else if (!is_long) {
13098 /* 32 bit floating point, or 16 or 32 bit integer.
13099 * For the 16 bit scalar case we use the usual Neon helpers and
13100 * rely on the fact that 0 op 0 == 0 with no side effects.
13101 */
13102 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13103 int pass, maxpasses;
13104
13105 if (is_scalar) {
13106 maxpasses = 1;
13107 } else {
13108 maxpasses = is_q ? 4 : 2;
13109 }
13110
13111 read_vec_element_i32(s, tcg_idx, rm, index, size);
13112
13113 if (size == 1 && !is_scalar) {
13114 /* The simplest way to handle the 16x16 indexed ops is to duplicate
13115 * the index into both halves of the 32 bit tcg_idx and then use
13116 * the usual Neon helpers.
13117 */
13118 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13119 }
13120
13121 for (pass = 0; pass < maxpasses; pass++) {
13122 TCGv_i32 tcg_op = tcg_temp_new_i32();
13123 TCGv_i32 tcg_res = tcg_temp_new_i32();
13124
13125 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13126
13127 switch (16 * u + opcode) {
13128 case 0x08: /* MUL */
13129 case 0x10: /* MLA */
13130 case 0x14: /* MLS */
13131 {
13132 static NeonGenTwoOpFn * const fns[2][2] = {
13133 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13134 { tcg_gen_add_i32, tcg_gen_sub_i32 },
13135 };
13136 NeonGenTwoOpFn *genfn;
13137 bool is_sub = opcode == 0x4;
13138
13139 if (size == 1) {
13140 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13141 } else {
13142 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13143 }
13144 if (opcode == 0x8) {
13145 break;
13146 }
13147 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13148 genfn = fns[size - 1][is_sub];
13149 genfn(tcg_res, tcg_op, tcg_res);
13150 break;
13151 }
13152 case 0x05: /* FMLS */
13153 case 0x01: /* FMLA */
13154 read_vec_element_i32(s, tcg_res, rd, pass,
13155 is_scalar ? size : MO_32);
13156 switch (size) {
13157 case 1:
13158 if (opcode == 0x5) {
13159 /* As usual for ARM, separate negation for fused
13160 * multiply-add */
13161 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13162 }
13163 if (is_scalar) {
13164 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13165 tcg_res, fpst);
13166 } else {
13167 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13168 tcg_res, fpst);
13169 }
13170 break;
13171 case 2:
13172 if (opcode == 0x5) {
13173 /* As usual for ARM, separate negation for
13174 * fused multiply-add */
13175 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13176 }
13177 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13178 tcg_res, fpst);
13179 break;
13180 default:
13181 g_assert_not_reached();
13182 }
13183 break;
13184 case 0x09: /* FMUL */
13185 switch (size) {
13186 case 1:
13187 if (is_scalar) {
13188 gen_helper_advsimd_mulh(tcg_res, tcg_op,
13189 tcg_idx, fpst);
13190 } else {
13191 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13192 tcg_idx, fpst);
13193 }
13194 break;
13195 case 2:
13196 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13197 break;
13198 default:
13199 g_assert_not_reached();
13200 }
13201 break;
13202 case 0x19: /* FMULX */
13203 switch (size) {
13204 case 1:
13205 if (is_scalar) {
13206 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13207 tcg_idx, fpst);
13208 } else {
13209 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13210 tcg_idx, fpst);
13211 }
13212 break;
13213 case 2:
13214 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13215 break;
13216 default:
13217 g_assert_not_reached();
13218 }
13219 break;
13220 case 0x0c: /* SQDMULH */
13221 if (size == 1) {
13222 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
13223 tcg_op, tcg_idx);
13224 } else {
13225 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
13226 tcg_op, tcg_idx);
13227 }
13228 break;
13229 case 0x0d: /* SQRDMULH */
13230 if (size == 1) {
13231 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
13232 tcg_op, tcg_idx);
13233 } else {
13234 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
13235 tcg_op, tcg_idx);
13236 }
13237 break;
13238 case 0x1d: /* SQRDMLAH */
13239 read_vec_element_i32(s, tcg_res, rd, pass,
13240 is_scalar ? size : MO_32);
13241 if (size == 1) {
13242 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env,
13243 tcg_op, tcg_idx, tcg_res);
13244 } else {
13245 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env,
13246 tcg_op, tcg_idx, tcg_res);
13247 }
13248 break;
13249 case 0x1f: /* SQRDMLSH */
13250 read_vec_element_i32(s, tcg_res, rd, pass,
13251 is_scalar ? size : MO_32);
13252 if (size == 1) {
13253 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env,
13254 tcg_op, tcg_idx, tcg_res);
13255 } else {
13256 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env,
13257 tcg_op, tcg_idx, tcg_res);
13258 }
13259 break;
13260 default:
13261 g_assert_not_reached();
13262 }
13263
13264 if (is_scalar) {
13265 write_fp_sreg(s, rd, tcg_res);
13266 } else {
13267 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13268 }
13269 }
13270
13271 clear_vec_high(s, is_q, rd);
13272 } else {
13273 /* long ops: 16x16->32 or 32x32->64 */
13274 TCGv_i64 tcg_res[2];
13275 int pass;
13276 bool satop = extract32(opcode, 0, 1);
13277 MemOp memop = MO_32;
13278
13279 if (satop || !u) {
13280 memop |= MO_SIGN;
13281 }
13282
13283 if (size == 2) {
13284 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13285
13286 read_vec_element(s, tcg_idx, rm, index, memop);
13287
13288 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13289 TCGv_i64 tcg_op = tcg_temp_new_i64();
13290 TCGv_i64 tcg_passres;
13291 int passelt;
13292
13293 if (is_scalar) {
13294 passelt = 0;
13295 } else {
13296 passelt = pass + (is_q * 2);
13297 }
13298
13299 read_vec_element(s, tcg_op, rn, passelt, memop);
13300
13301 tcg_res[pass] = tcg_temp_new_i64();
13302
13303 if (opcode == 0xa || opcode == 0xb) {
13304 /* Non-accumulating ops */
13305 tcg_passres = tcg_res[pass];
13306 } else {
13307 tcg_passres = tcg_temp_new_i64();
13308 }
13309
13310 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13311
13312 if (satop) {
13313 /* saturating, doubling */
13314 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
13315 tcg_passres, tcg_passres);
13316 }
13317
13318 if (opcode == 0xa || opcode == 0xb) {
13319 continue;
13320 }
13321
13322 /* Accumulating op: handle accumulate step */
13323 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13324
13325 switch (opcode) {
13326 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13327 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13328 break;
13329 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13330 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13331 break;
13332 case 0x7: /* SQDMLSL, SQDMLSL2 */
13333 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13334 /* fall through */
13335 case 0x3: /* SQDMLAL, SQDMLAL2 */
13336 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
13337 tcg_res[pass],
13338 tcg_passres);
13339 break;
13340 default:
13341 g_assert_not_reached();
13342 }
13343 }
13344
13345 clear_vec_high(s, !is_scalar, rd);
13346 } else {
13347 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13348
13349 assert(size == 1);
13350 read_vec_element_i32(s, tcg_idx, rm, index, size);
13351
13352 if (!is_scalar) {
13353 /* The simplest way to handle the 16x16 indexed ops is to
13354 * duplicate the index into both halves of the 32 bit tcg_idx
13355 * and then use the usual Neon helpers.
13356 */
13357 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13358 }
13359
13360 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13361 TCGv_i32 tcg_op = tcg_temp_new_i32();
13362 TCGv_i64 tcg_passres;
13363
13364 if (is_scalar) {
13365 read_vec_element_i32(s, tcg_op, rn, pass, size);
13366 } else {
13367 read_vec_element_i32(s, tcg_op, rn,
13368 pass + (is_q * 2), MO_32);
13369 }
13370
13371 tcg_res[pass] = tcg_temp_new_i64();
13372
13373 if (opcode == 0xa || opcode == 0xb) {
13374 /* Non-accumulating ops */
13375 tcg_passres = tcg_res[pass];
13376 } else {
13377 tcg_passres = tcg_temp_new_i64();
13378 }
13379
13380 if (memop & MO_SIGN) {
13381 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13382 } else {
13383 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13384 }
13385 if (satop) {
13386 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
13387 tcg_passres, tcg_passres);
13388 }
13389
13390 if (opcode == 0xa || opcode == 0xb) {
13391 continue;
13392 }
13393
13394 /* Accumulating op: handle accumulate step */
13395 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13396
13397 switch (opcode) {
13398 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13399 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13400 tcg_passres);
13401 break;
13402 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13403 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13404 tcg_passres);
13405 break;
13406 case 0x7: /* SQDMLSL, SQDMLSL2 */
13407 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13408 /* fall through */
13409 case 0x3: /* SQDMLAL, SQDMLAL2 */
13410 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
13411 tcg_res[pass],
13412 tcg_passres);
13413 break;
13414 default:
13415 g_assert_not_reached();
13416 }
13417 }
13418
13419 if (is_scalar) {
13420 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13421 }
13422 }
13423
13424 if (is_scalar) {
13425 tcg_res[1] = tcg_constant_i64(0);
13426 }
13427
13428 for (pass = 0; pass < 2; pass++) {
13429 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13430 }
13431 }
13432 }
13433
13434 /* Crypto AES
13435 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13436 * +-----------------+------+-----------+--------+-----+------+------+
13437 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13438 * +-----------------+------+-----------+--------+-----+------+------+
13439 */
13440 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13441 {
13442 int size = extract32(insn, 22, 2);
13443 int opcode = extract32(insn, 12, 5);
13444 int rn = extract32(insn, 5, 5);
13445 int rd = extract32(insn, 0, 5);
13446 gen_helper_gvec_2 *genfn2 = NULL;
13447 gen_helper_gvec_3 *genfn3 = NULL;
13448
13449 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13450 unallocated_encoding(s);
13451 return;
13452 }
13453
13454 switch (opcode) {
13455 case 0x4: /* AESE */
13456 genfn3 = gen_helper_crypto_aese;
13457 break;
13458 case 0x6: /* AESMC */
13459 genfn2 = gen_helper_crypto_aesmc;
13460 break;
13461 case 0x5: /* AESD */
13462 genfn3 = gen_helper_crypto_aesd;
13463 break;
13464 case 0x7: /* AESIMC */
13465 genfn2 = gen_helper_crypto_aesimc;
13466 break;
13467 default:
13468 unallocated_encoding(s);
13469 return;
13470 }
13471
13472 if (!fp_access_check(s)) {
13473 return;
13474 }
13475 if (genfn2) {
13476 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2);
13477 } else {
13478 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3);
13479 }
13480 }
13481
13482 /* Crypto three-reg SHA
13483 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
13484 * +-----------------+------+---+------+---+--------+-----+------+------+
13485 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
13486 * +-----------------+------+---+------+---+--------+-----+------+------+
13487 */
13488 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13489 {
13490 int size = extract32(insn, 22, 2);
13491 int opcode = extract32(insn, 12, 3);
13492 int rm = extract32(insn, 16, 5);
13493 int rn = extract32(insn, 5, 5);
13494 int rd = extract32(insn, 0, 5);
13495 gen_helper_gvec_3 *genfn;
13496 bool feature;
13497
13498 if (size != 0) {
13499 unallocated_encoding(s);
13500 return;
13501 }
13502
13503 switch (opcode) {
13504 case 0: /* SHA1C */
13505 genfn = gen_helper_crypto_sha1c;
13506 feature = dc_isar_feature(aa64_sha1, s);
13507 break;
13508 case 1: /* SHA1P */
13509 genfn = gen_helper_crypto_sha1p;
13510 feature = dc_isar_feature(aa64_sha1, s);
13511 break;
13512 case 2: /* SHA1M */
13513 genfn = gen_helper_crypto_sha1m;
13514 feature = dc_isar_feature(aa64_sha1, s);
13515 break;
13516 case 3: /* SHA1SU0 */
13517 genfn = gen_helper_crypto_sha1su0;
13518 feature = dc_isar_feature(aa64_sha1, s);
13519 break;
13520 case 4: /* SHA256H */
13521 genfn = gen_helper_crypto_sha256h;
13522 feature = dc_isar_feature(aa64_sha256, s);
13523 break;
13524 case 5: /* SHA256H2 */
13525 genfn = gen_helper_crypto_sha256h2;
13526 feature = dc_isar_feature(aa64_sha256, s);
13527 break;
13528 case 6: /* SHA256SU1 */
13529 genfn = gen_helper_crypto_sha256su1;
13530 feature = dc_isar_feature(aa64_sha256, s);
13531 break;
13532 default:
13533 unallocated_encoding(s);
13534 return;
13535 }
13536
13537 if (!feature) {
13538 unallocated_encoding(s);
13539 return;
13540 }
13541
13542 if (!fp_access_check(s)) {
13543 return;
13544 }
13545 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
13546 }
13547
13548 /* Crypto two-reg SHA
13549 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13550 * +-----------------+------+-----------+--------+-----+------+------+
13551 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13552 * +-----------------+------+-----------+--------+-----+------+------+
13553 */
13554 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13555 {
13556 int size = extract32(insn, 22, 2);
13557 int opcode = extract32(insn, 12, 5);
13558 int rn = extract32(insn, 5, 5);
13559 int rd = extract32(insn, 0, 5);
13560 gen_helper_gvec_2 *genfn;
13561 bool feature;
13562
13563 if (size != 0) {
13564 unallocated_encoding(s);
13565 return;
13566 }
13567
13568 switch (opcode) {
13569 case 0: /* SHA1H */
13570 feature = dc_isar_feature(aa64_sha1, s);
13571 genfn = gen_helper_crypto_sha1h;
13572 break;
13573 case 1: /* SHA1SU1 */
13574 feature = dc_isar_feature(aa64_sha1, s);
13575 genfn = gen_helper_crypto_sha1su1;
13576 break;
13577 case 2: /* SHA256SU0 */
13578 feature = dc_isar_feature(aa64_sha256, s);
13579 genfn = gen_helper_crypto_sha256su0;
13580 break;
13581 default:
13582 unallocated_encoding(s);
13583 return;
13584 }
13585
13586 if (!feature) {
13587 unallocated_encoding(s);
13588 return;
13589 }
13590
13591 if (!fp_access_check(s)) {
13592 return;
13593 }
13594 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
13595 }
13596
13597 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
13598 {
13599 tcg_gen_rotli_i64(d, m, 1);
13600 tcg_gen_xor_i64(d, d, n);
13601 }
13602
13603 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
13604 {
13605 tcg_gen_rotli_vec(vece, d, m, 1);
13606 tcg_gen_xor_vec(vece, d, d, n);
13607 }
13608
13609 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
13610 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
13611 {
13612 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
13613 static const GVecGen3 op = {
13614 .fni8 = gen_rax1_i64,
13615 .fniv = gen_rax1_vec,
13616 .opt_opc = vecop_list,
13617 .fno = gen_helper_crypto_rax1,
13618 .vece = MO_64,
13619 };
13620 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
13621 }
13622
13623 /* Crypto three-reg SHA512
13624 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13625 * +-----------------------+------+---+---+-----+--------+------+------+
13626 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
13627 * +-----------------------+------+---+---+-----+--------+------+------+
13628 */
13629 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13630 {
13631 int opcode = extract32(insn, 10, 2);
13632 int o = extract32(insn, 14, 1);
13633 int rm = extract32(insn, 16, 5);
13634 int rn = extract32(insn, 5, 5);
13635 int rd = extract32(insn, 0, 5);
13636 bool feature;
13637 gen_helper_gvec_3 *oolfn = NULL;
13638 GVecGen3Fn *gvecfn = NULL;
13639
13640 if (o == 0) {
13641 switch (opcode) {
13642 case 0: /* SHA512H */
13643 feature = dc_isar_feature(aa64_sha512, s);
13644 oolfn = gen_helper_crypto_sha512h;
13645 break;
13646 case 1: /* SHA512H2 */
13647 feature = dc_isar_feature(aa64_sha512, s);
13648 oolfn = gen_helper_crypto_sha512h2;
13649 break;
13650 case 2: /* SHA512SU1 */
13651 feature = dc_isar_feature(aa64_sha512, s);
13652 oolfn = gen_helper_crypto_sha512su1;
13653 break;
13654 case 3: /* RAX1 */
13655 feature = dc_isar_feature(aa64_sha3, s);
13656 gvecfn = gen_gvec_rax1;
13657 break;
13658 default:
13659 g_assert_not_reached();
13660 }
13661 } else {
13662 switch (opcode) {
13663 case 0: /* SM3PARTW1 */
13664 feature = dc_isar_feature(aa64_sm3, s);
13665 oolfn = gen_helper_crypto_sm3partw1;
13666 break;
13667 case 1: /* SM3PARTW2 */
13668 feature = dc_isar_feature(aa64_sm3, s);
13669 oolfn = gen_helper_crypto_sm3partw2;
13670 break;
13671 case 2: /* SM4EKEY */
13672 feature = dc_isar_feature(aa64_sm4, s);
13673 oolfn = gen_helper_crypto_sm4ekey;
13674 break;
13675 default:
13676 unallocated_encoding(s);
13677 return;
13678 }
13679 }
13680
13681 if (!feature) {
13682 unallocated_encoding(s);
13683 return;
13684 }
13685
13686 if (!fp_access_check(s)) {
13687 return;
13688 }
13689
13690 if (oolfn) {
13691 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
13692 } else {
13693 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
13694 }
13695 }
13696
13697 /* Crypto two-reg SHA512
13698 * 31 12 11 10 9 5 4 0
13699 * +-----------------------------------------+--------+------+------+
13700 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
13701 * +-----------------------------------------+--------+------+------+
13702 */
13703 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13704 {
13705 int opcode = extract32(insn, 10, 2);
13706 int rn = extract32(insn, 5, 5);
13707 int rd = extract32(insn, 0, 5);
13708 bool feature;
13709
13710 switch (opcode) {
13711 case 0: /* SHA512SU0 */
13712 feature = dc_isar_feature(aa64_sha512, s);
13713 break;
13714 case 1: /* SM4E */
13715 feature = dc_isar_feature(aa64_sm4, s);
13716 break;
13717 default:
13718 unallocated_encoding(s);
13719 return;
13720 }
13721
13722 if (!feature) {
13723 unallocated_encoding(s);
13724 return;
13725 }
13726
13727 if (!fp_access_check(s)) {
13728 return;
13729 }
13730
13731 switch (opcode) {
13732 case 0: /* SHA512SU0 */
13733 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
13734 break;
13735 case 1: /* SM4E */
13736 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
13737 break;
13738 default:
13739 g_assert_not_reached();
13740 }
13741 }
13742
13743 /* Crypto four-register
13744 * 31 23 22 21 20 16 15 14 10 9 5 4 0
13745 * +-------------------+-----+------+---+------+------+------+
13746 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
13747 * +-------------------+-----+------+---+------+------+------+
13748 */
13749 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13750 {
13751 int op0 = extract32(insn, 21, 2);
13752 int rm = extract32(insn, 16, 5);
13753 int ra = extract32(insn, 10, 5);
13754 int rn = extract32(insn, 5, 5);
13755 int rd = extract32(insn, 0, 5);
13756 bool feature;
13757
13758 switch (op0) {
13759 case 0: /* EOR3 */
13760 case 1: /* BCAX */
13761 feature = dc_isar_feature(aa64_sha3, s);
13762 break;
13763 case 2: /* SM3SS1 */
13764 feature = dc_isar_feature(aa64_sm3, s);
13765 break;
13766 default:
13767 unallocated_encoding(s);
13768 return;
13769 }
13770
13771 if (!feature) {
13772 unallocated_encoding(s);
13773 return;
13774 }
13775
13776 if (!fp_access_check(s)) {
13777 return;
13778 }
13779
13780 if (op0 < 2) {
13781 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13782 int pass;
13783
13784 tcg_op1 = tcg_temp_new_i64();
13785 tcg_op2 = tcg_temp_new_i64();
13786 tcg_op3 = tcg_temp_new_i64();
13787 tcg_res[0] = tcg_temp_new_i64();
13788 tcg_res[1] = tcg_temp_new_i64();
13789
13790 for (pass = 0; pass < 2; pass++) {
13791 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13792 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13793 read_vec_element(s, tcg_op3, ra, pass, MO_64);
13794
13795 if (op0 == 0) {
13796 /* EOR3 */
13797 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13798 } else {
13799 /* BCAX */
13800 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13801 }
13802 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13803 }
13804 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13805 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13806 } else {
13807 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13808
13809 tcg_op1 = tcg_temp_new_i32();
13810 tcg_op2 = tcg_temp_new_i32();
13811 tcg_op3 = tcg_temp_new_i32();
13812 tcg_res = tcg_temp_new_i32();
13813 tcg_zero = tcg_constant_i32(0);
13814
13815 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13816 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13817 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13818
13819 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13820 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13821 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13822 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13823
13824 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13825 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13826 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13827 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13828 }
13829 }
13830
13831 /* Crypto XAR
13832 * 31 21 20 16 15 10 9 5 4 0
13833 * +-----------------------+------+--------+------+------+
13834 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
13835 * +-----------------------+------+--------+------+------+
13836 */
13837 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13838 {
13839 int rm = extract32(insn, 16, 5);
13840 int imm6 = extract32(insn, 10, 6);
13841 int rn = extract32(insn, 5, 5);
13842 int rd = extract32(insn, 0, 5);
13843
13844 if (!dc_isar_feature(aa64_sha3, s)) {
13845 unallocated_encoding(s);
13846 return;
13847 }
13848
13849 if (!fp_access_check(s)) {
13850 return;
13851 }
13852
13853 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
13854 vec_full_reg_offset(s, rn),
13855 vec_full_reg_offset(s, rm), imm6, 16,
13856 vec_full_reg_size(s));
13857 }
13858
13859 /* Crypto three-reg imm2
13860 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13861 * +-----------------------+------+-----+------+--------+------+------+
13862 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
13863 * +-----------------------+------+-----+------+--------+------+------+
13864 */
13865 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13866 {
13867 static gen_helper_gvec_3 * const fns[4] = {
13868 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
13869 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
13870 };
13871 int opcode = extract32(insn, 10, 2);
13872 int imm2 = extract32(insn, 12, 2);
13873 int rm = extract32(insn, 16, 5);
13874 int rn = extract32(insn, 5, 5);
13875 int rd = extract32(insn, 0, 5);
13876
13877 if (!dc_isar_feature(aa64_sm3, s)) {
13878 unallocated_encoding(s);
13879 return;
13880 }
13881
13882 if (!fp_access_check(s)) {
13883 return;
13884 }
13885
13886 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
13887 }
13888
13889 /* C3.6 Data processing - SIMD, inc Crypto
13890 *
13891 * As the decode gets a little complex we are using a table based
13892 * approach for this part of the decode.
13893 */
13894 static const AArch64DecodeTable data_proc_simd[] = {
13895 /* pattern , mask , fn */
13896 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13897 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13898 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13899 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13900 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13901 { 0x0e000400, 0x9fe08400, disas_simd_copy },
13902 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13903 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13904 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13905 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13906 { 0x0e000000, 0xbf208c00, disas_simd_tb },
13907 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13908 { 0x2e000000, 0xbf208400, disas_simd_ext },
13909 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13910 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13911 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13912 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13913 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13914 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13915 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13916 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13917 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13918 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13919 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13920 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13921 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13922 { 0xce000000, 0xff808000, disas_crypto_four_reg },
13923 { 0xce800000, 0xffe00000, disas_crypto_xar },
13924 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13925 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13926 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13927 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13928 { 0x00000000, 0x00000000, NULL }
13929 };
13930
13931 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13932 {
13933 /* Note that this is called with all non-FP cases from
13934 * table C3-6 so it must UNDEF for entries not specifically
13935 * allocated to instructions in that table.
13936 */
13937 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13938 if (fn) {
13939 fn(s, insn);
13940 } else {
13941 unallocated_encoding(s);
13942 }
13943 }
13944
13945 /* C3.6 Data processing - SIMD and floating point */
13946 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13947 {
13948 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13949 disas_data_proc_fp(s, insn);
13950 } else {
13951 /* SIMD, including crypto */
13952 disas_data_proc_simd(s, insn);
13953 }
13954 }
13955
13956 static bool trans_OK(DisasContext *s, arg_OK *a)
13957 {
13958 return true;
13959 }
13960
13961 static bool trans_FAIL(DisasContext *s, arg_OK *a)
13962 {
13963 s->is_nonstreaming = true;
13964 return true;
13965 }
13966
13967 /**
13968 * is_guarded_page:
13969 * @env: The cpu environment
13970 * @s: The DisasContext
13971 *
13972 * Return true if the page is guarded.
13973 */
13974 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13975 {
13976 uint64_t addr = s->base.pc_first;
13977 #ifdef CONFIG_USER_ONLY
13978 return page_get_flags(addr) & PAGE_BTI;
13979 #else
13980 CPUTLBEntryFull *full;
13981 void *host;
13982 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13983 int flags;
13984
13985 /*
13986 * We test this immediately after reading an insn, which means
13987 * that the TLB entry must be present and valid, and thus this
13988 * access will never raise an exception.
13989 */
13990 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
13991 false, &host, &full, 0);
13992 assert(!(flags & TLB_INVALID_MASK));
13993
13994 return full->extra.arm.guarded;
13995 #endif
13996 }
13997
13998 /**
13999 * btype_destination_ok:
14000 * @insn: The instruction at the branch destination
14001 * @bt: SCTLR_ELx.BT
14002 * @btype: PSTATE.BTYPE, and is non-zero
14003 *
14004 * On a guarded page, there are a limited number of insns
14005 * that may be present at the branch target:
14006 * - branch target identifiers,
14007 * - paciasp, pacibsp,
14008 * - BRK insn
14009 * - HLT insn
14010 * Anything else causes a Branch Target Exception.
14011 *
14012 * Return true if the branch is compatible, false to raise BTITRAP.
14013 */
14014 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14015 {
14016 if ((insn & 0xfffff01fu) == 0xd503201fu) {
14017 /* HINT space */
14018 switch (extract32(insn, 5, 7)) {
14019 case 0b011001: /* PACIASP */
14020 case 0b011011: /* PACIBSP */
14021 /*
14022 * If SCTLR_ELx.BT, then PACI*SP are not compatible
14023 * with btype == 3. Otherwise all btype are ok.
14024 */
14025 return !bt || btype != 3;
14026 case 0b100000: /* BTI */
14027 /* Not compatible with any btype. */
14028 return false;
14029 case 0b100010: /* BTI c */
14030 /* Not compatible with btype == 3 */
14031 return btype != 3;
14032 case 0b100100: /* BTI j */
14033 /* Not compatible with btype == 2 */
14034 return btype != 2;
14035 case 0b100110: /* BTI jc */
14036 /* Compatible with any btype. */
14037 return true;
14038 }
14039 } else {
14040 switch (insn & 0xffe0001fu) {
14041 case 0xd4200000u: /* BRK */
14042 case 0xd4400000u: /* HLT */
14043 /* Give priority to the breakpoint exception. */
14044 return true;
14045 }
14046 }
14047 return false;
14048 }
14049
14050 /* C3.1 A64 instruction index by encoding */
14051 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
14052 {
14053 switch (extract32(insn, 25, 4)) {
14054 case 0x5:
14055 case 0xd: /* Data processing - register */
14056 disas_data_proc_reg(s, insn);
14057 break;
14058 case 0x7:
14059 case 0xf: /* Data processing - SIMD and floating point */
14060 disas_data_proc_simd_fp(s, insn);
14061 break;
14062 default:
14063 unallocated_encoding(s);
14064 break;
14065 }
14066 }
14067
14068 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14069 CPUState *cpu)
14070 {
14071 DisasContext *dc = container_of(dcbase, DisasContext, base);
14072 CPUARMState *env = cpu_env(cpu);
14073 ARMCPU *arm_cpu = env_archcpu(env);
14074 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
14075 int bound, core_mmu_idx;
14076
14077 dc->isar = &arm_cpu->isar;
14078 dc->condjmp = 0;
14079 dc->pc_save = dc->base.pc_first;
14080 dc->aarch64 = true;
14081 dc->thumb = false;
14082 dc->sctlr_b = 0;
14083 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
14084 dc->condexec_mask = 0;
14085 dc->condexec_cond = 0;
14086 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
14087 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14088 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
14089 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
14090 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
14091 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14092 #if !defined(CONFIG_USER_ONLY)
14093 dc->user = (dc->current_el == 0);
14094 #endif
14095 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
14096 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
14097 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
14098 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
14099 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
14100 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
14101 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
14102 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
14103 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
14104 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
14105 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
14106 dc->bt = EX_TBFLAG_A64(tb_flags, BT);
14107 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
14108 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
14109 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
14110 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
14111 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
14112 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
14113 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
14114 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
14115 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
14116 dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
14117 dc->nv = EX_TBFLAG_A64(tb_flags, NV);
14118 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
14119 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
14120 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
14121 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
14122 dc->vec_len = 0;
14123 dc->vec_stride = 0;
14124 dc->cp_regs = arm_cpu->cp_regs;
14125 dc->features = env->features;
14126 dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14127 dc->gm_blocksize = arm_cpu->gm_blocksize;
14128
14129 #ifdef CONFIG_USER_ONLY
14130 /* In sve_probe_page, we assume TBI is enabled. */
14131 tcg_debug_assert(dc->tbid & 1);
14132 #endif
14133
14134 dc->lse2 = dc_isar_feature(aa64_lse2, dc);
14135
14136 /* Single step state. The code-generation logic here is:
14137 * SS_ACTIVE == 0:
14138 * generate code with no special handling for single-stepping (except
14139 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14140 * this happens anyway because those changes are all system register or
14141 * PSTATE writes).
14142 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14143 * emit code for one insn
14144 * emit code to clear PSTATE.SS
14145 * emit code to generate software step exception for completed step
14146 * end TB (as usual for having generated an exception)
14147 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14148 * emit code to generate a software step exception
14149 * end the TB
14150 */
14151 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
14152 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
14153 dc->is_ldex = false;
14154
14155 /* Bound the number of insns to execute to those left on the page. */
14156 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14157
14158 /* If architectural single step active, limit to 1. */
14159 if (dc->ss_active) {
14160 bound = 1;
14161 }
14162 dc->base.max_insns = MIN(dc->base.max_insns, bound);
14163 }
14164
14165 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14166 {
14167 }
14168
14169 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14170 {
14171 DisasContext *dc = container_of(dcbase, DisasContext, base);
14172 target_ulong pc_arg = dc->base.pc_next;
14173
14174 if (tb_cflags(dcbase->tb) & CF_PCREL) {
14175 pc_arg &= ~TARGET_PAGE_MASK;
14176 }
14177 tcg_gen_insn_start(pc_arg, 0, 0);
14178 dc->insn_start = tcg_last_op();
14179 }
14180
14181 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14182 {
14183 DisasContext *s = container_of(dcbase, DisasContext, base);
14184 CPUARMState *env = cpu_env(cpu);
14185 uint64_t pc = s->base.pc_next;
14186 uint32_t insn;
14187
14188 /* Singlestep exceptions have the highest priority. */
14189 if (s->ss_active && !s->pstate_ss) {
14190 /* Singlestep state is Active-pending.
14191 * If we're in this state at the start of a TB then either
14192 * a) we just took an exception to an EL which is being debugged
14193 * and this is the first insn in the exception handler
14194 * b) debug exceptions were masked and we just unmasked them
14195 * without changing EL (eg by clearing PSTATE.D)
14196 * In either case we're going to take a swstep exception in the
14197 * "did not step an insn" case, and so the syndrome ISV and EX
14198 * bits should be zero.
14199 */
14200 assert(s->base.num_insns == 1);
14201 gen_swstep_exception(s, 0, 0);
14202 s->base.is_jmp = DISAS_NORETURN;
14203 s->base.pc_next = pc + 4;
14204 return;
14205 }
14206
14207 if (pc & 3) {
14208 /*
14209 * PC alignment fault. This has priority over the instruction abort
14210 * that we would receive from a translation fault via arm_ldl_code.
14211 * This should only be possible after an indirect branch, at the
14212 * start of the TB.
14213 */
14214 assert(s->base.num_insns == 1);
14215 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
14216 s->base.is_jmp = DISAS_NORETURN;
14217 s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
14218 return;
14219 }
14220
14221 s->pc_curr = pc;
14222 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
14223 s->insn = insn;
14224 s->base.pc_next = pc + 4;
14225
14226 s->fp_access_checked = false;
14227 s->sve_access_checked = false;
14228
14229 if (s->pstate_il) {
14230 /*
14231 * Illegal execution state. This has priority over BTI
14232 * exceptions, but comes after instruction abort exceptions.
14233 */
14234 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
14235 return;
14236 }
14237
14238 if (dc_isar_feature(aa64_bti, s)) {
14239 if (s->base.num_insns == 1) {
14240 /*
14241 * At the first insn of the TB, compute s->guarded_page.
14242 * We delayed computing this until successfully reading
14243 * the first insn of the TB, above. This (mostly) ensures
14244 * that the softmmu tlb entry has been populated, and the
14245 * page table GP bit is available.
14246 *
14247 * Note that we need to compute this even if btype == 0,
14248 * because this value is used for BR instructions later
14249 * where ENV is not available.
14250 */
14251 s->guarded_page = is_guarded_page(env, s);
14252
14253 /* First insn can have btype set to non-zero. */
14254 tcg_debug_assert(s->btype >= 0);
14255
14256 /*
14257 * Note that the Branch Target Exception has fairly high
14258 * priority -- below debugging exceptions but above most
14259 * everything else. This allows us to handle this now
14260 * instead of waiting until the insn is otherwise decoded.
14261 */
14262 if (s->btype != 0
14263 && s->guarded_page
14264 && !btype_destination_ok(insn, s->bt, s->btype)) {
14265 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
14266 return;
14267 }
14268 } else {
14269 /* Not the first insn: btype must be 0. */
14270 tcg_debug_assert(s->btype == 0);
14271 }
14272 }
14273
14274 s->is_nonstreaming = false;
14275 if (s->sme_trap_nonstreaming) {
14276 disas_sme_fa64(s, insn);
14277 }
14278
14279 if (!disas_a64(s, insn) &&
14280 !disas_sme(s, insn) &&
14281 !disas_sve(s, insn)) {
14282 disas_a64_legacy(s, insn);
14283 }
14284
14285 /*
14286 * After execution of most insns, btype is reset to 0.
14287 * Note that we set btype == -1 when the insn sets btype.
14288 */
14289 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14290 reset_btype(s);
14291 }
14292 }
14293
14294 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14295 {
14296 DisasContext *dc = container_of(dcbase, DisasContext, base);
14297
14298 if (unlikely(dc->ss_active)) {
14299 /* Note that this means single stepping WFI doesn't halt the CPU.
14300 * For conditional branch insns this is harmless unreachable code as
14301 * gen_goto_tb() has already handled emitting the debug exception
14302 * (and thus a tb-jump is not possible when singlestepping).
14303 */
14304 switch (dc->base.is_jmp) {
14305 default:
14306 gen_a64_update_pc(dc, 4);
14307 /* fall through */
14308 case DISAS_EXIT:
14309 case DISAS_JUMP:
14310 gen_step_complete_exception(dc);
14311 break;
14312 case DISAS_NORETURN:
14313 break;
14314 }
14315 } else {
14316 switch (dc->base.is_jmp) {
14317 case DISAS_NEXT:
14318 case DISAS_TOO_MANY:
14319 gen_goto_tb(dc, 1, 4);
14320 break;
14321 default:
14322 case DISAS_UPDATE_EXIT:
14323 gen_a64_update_pc(dc, 4);
14324 /* fall through */
14325 case DISAS_EXIT:
14326 tcg_gen_exit_tb(NULL, 0);
14327 break;
14328 case DISAS_UPDATE_NOCHAIN:
14329 gen_a64_update_pc(dc, 4);
14330 /* fall through */
14331 case DISAS_JUMP:
14332 tcg_gen_lookup_and_goto_ptr();
14333 break;
14334 case DISAS_NORETURN:
14335 case DISAS_SWI:
14336 break;
14337 case DISAS_WFE:
14338 gen_a64_update_pc(dc, 4);
14339 gen_helper_wfe(tcg_env);
14340 break;
14341 case DISAS_YIELD:
14342 gen_a64_update_pc(dc, 4);
14343 gen_helper_yield(tcg_env);
14344 break;
14345 case DISAS_WFI:
14346 /*
14347 * This is a special case because we don't want to just halt
14348 * the CPU if trying to debug across a WFI.
14349 */
14350 gen_a64_update_pc(dc, 4);
14351 gen_helper_wfi(tcg_env, tcg_constant_i32(4));
14352 /*
14353 * The helper doesn't necessarily throw an exception, but we
14354 * must go back to the main loop to check for interrupts anyway.
14355 */
14356 tcg_gen_exit_tb(NULL, 0);
14357 break;
14358 }
14359 }
14360 }
14361
14362 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14363 CPUState *cpu, FILE *logfile)
14364 {
14365 DisasContext *dc = container_of(dcbase, DisasContext, base);
14366
14367 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first));
14368 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size);
14369 }
14370
14371 const TranslatorOps aarch64_translator_ops = {
14372 .init_disas_context = aarch64_tr_init_disas_context,
14373 .tb_start = aarch64_tr_tb_start,
14374 .insn_start = aarch64_tr_insn_start,
14375 .translate_insn = aarch64_tr_translate_insn,
14376 .tb_stop = aarch64_tr_tb_stop,
14377 .disas_log = aarch64_tr_disas_log,
14378 };