]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/tcg/translate-a64.c
target/arm: Fix A64 scalar SQSHRN and SQRSHRN
[mirror_qemu.git] / target / arm / tcg / translate-a64.c
1 /*
2 * AArch64 translation
3 *
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "disas/disas.h"
26 #include "arm_ldst.h"
27 #include "semihosting/semihost.h"
28 #include "cpregs.h"
29
30 static TCGv_i64 cpu_X[32];
31 static TCGv_i64 cpu_pc;
32
33 /* Load/store exclusive handling */
34 static TCGv_i64 cpu_exclusive_high;
35
36 static const char *regnames[] = {
37 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
38 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
39 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
40 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
41 };
42
43 enum a64_shift_type {
44 A64_SHIFT_TYPE_LSL = 0,
45 A64_SHIFT_TYPE_LSR = 1,
46 A64_SHIFT_TYPE_ASR = 2,
47 A64_SHIFT_TYPE_ROR = 3
48 };
49
50 /*
51 * Helpers for extracting complex instruction fields
52 */
53
54 /*
55 * For load/store with an unsigned 12 bit immediate scaled by the element
56 * size. The input has the immediate field in bits [14:3] and the element
57 * size in [2:0].
58 */
59 static int uimm_scaled(DisasContext *s, int x)
60 {
61 unsigned imm = x >> 3;
62 unsigned scale = extract32(x, 0, 3);
63 return imm << scale;
64 }
65
66 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
67 static int scale_by_log2_tag_granule(DisasContext *s, int x)
68 {
69 return x << LOG2_TAG_GRANULE;
70 }
71
72 /*
73 * Include the generated decoders.
74 */
75
76 #include "decode-sme-fa64.c.inc"
77 #include "decode-a64.c.inc"
78
79 /* Table based decoder typedefs - used when the relevant bits for decode
80 * are too awkwardly scattered across the instruction (eg SIMD).
81 */
82 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
83
84 typedef struct AArch64DecodeTable {
85 uint32_t pattern;
86 uint32_t mask;
87 AArch64DecodeFn *disas_fn;
88 } AArch64DecodeTable;
89
90 /* initialize TCG globals. */
91 void a64_translate_init(void)
92 {
93 int i;
94
95 cpu_pc = tcg_global_mem_new_i64(tcg_env,
96 offsetof(CPUARMState, pc),
97 "pc");
98 for (i = 0; i < 32; i++) {
99 cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
100 offsetof(CPUARMState, xregs[i]),
101 regnames[i]);
102 }
103
104 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
105 offsetof(CPUARMState, exclusive_high), "exclusive_high");
106 }
107
108 /*
109 * Return the core mmu_idx to use for A64 load/store insns which
110 * have a "unprivileged load/store" variant. Those insns access
111 * EL0 if executed from an EL which has control over EL0 (usually
112 * EL1) but behave like normal loads and stores if executed from
113 * elsewhere (eg EL3).
114 *
115 * @unpriv : true for the unprivileged encoding; false for the
116 * normal encoding (in which case we will return the same
117 * thing as get_mem_index().
118 */
119 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
120 {
121 /*
122 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
123 * which is the usual mmu_idx for this cpu state.
124 */
125 ARMMMUIdx useridx = s->mmu_idx;
126
127 if (unpriv && s->unpriv) {
128 /*
129 * We have pre-computed the condition for AccType_UNPRIV.
130 * Therefore we should never get here with a mmu_idx for
131 * which we do not know the corresponding user mmu_idx.
132 */
133 switch (useridx) {
134 case ARMMMUIdx_E10_1:
135 case ARMMMUIdx_E10_1_PAN:
136 useridx = ARMMMUIdx_E10_0;
137 break;
138 case ARMMMUIdx_E20_2:
139 case ARMMMUIdx_E20_2_PAN:
140 useridx = ARMMMUIdx_E20_0;
141 break;
142 default:
143 g_assert_not_reached();
144 }
145 }
146 return arm_to_core_mmu_idx(useridx);
147 }
148
149 static void set_btype_raw(int val)
150 {
151 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
152 offsetof(CPUARMState, btype));
153 }
154
155 static void set_btype(DisasContext *s, int val)
156 {
157 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
158 tcg_debug_assert(val >= 1 && val <= 3);
159 set_btype_raw(val);
160 s->btype = -1;
161 }
162
163 static void reset_btype(DisasContext *s)
164 {
165 if (s->btype != 0) {
166 set_btype_raw(0);
167 s->btype = 0;
168 }
169 }
170
171 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
172 {
173 assert(s->pc_save != -1);
174 if (tb_cflags(s->base.tb) & CF_PCREL) {
175 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
176 } else {
177 tcg_gen_movi_i64(dest, s->pc_curr + diff);
178 }
179 }
180
181 void gen_a64_update_pc(DisasContext *s, target_long diff)
182 {
183 gen_pc_plus_diff(s, cpu_pc, diff);
184 s->pc_save = s->pc_curr + diff;
185 }
186
187 /*
188 * Handle Top Byte Ignore (TBI) bits.
189 *
190 * If address tagging is enabled via the TCR TBI bits:
191 * + for EL2 and EL3 there is only one TBI bit, and if it is set
192 * then the address is zero-extended, clearing bits [63:56]
193 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
194 * and TBI1 controls addresses with bit 55 == 1.
195 * If the appropriate TBI bit is set for the address then
196 * the address is sign-extended from bit 55 into bits [63:56]
197 *
198 * Here We have concatenated TBI{1,0} into tbi.
199 */
200 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
201 TCGv_i64 src, int tbi)
202 {
203 if (tbi == 0) {
204 /* Load unmodified address */
205 tcg_gen_mov_i64(dst, src);
206 } else if (!regime_has_2_ranges(s->mmu_idx)) {
207 /* Force tag byte to all zero */
208 tcg_gen_extract_i64(dst, src, 0, 56);
209 } else {
210 /* Sign-extend from bit 55. */
211 tcg_gen_sextract_i64(dst, src, 0, 56);
212
213 switch (tbi) {
214 case 1:
215 /* tbi0 but !tbi1: only use the extension if positive */
216 tcg_gen_and_i64(dst, dst, src);
217 break;
218 case 2:
219 /* !tbi0 but tbi1: only use the extension if negative */
220 tcg_gen_or_i64(dst, dst, src);
221 break;
222 case 3:
223 /* tbi0 and tbi1: always use the extension */
224 break;
225 default:
226 g_assert_not_reached();
227 }
228 }
229 }
230
231 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
232 {
233 /*
234 * If address tagging is enabled for instructions via the TCR TBI bits,
235 * then loading an address into the PC will clear out any tag.
236 */
237 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
238 s->pc_save = -1;
239 }
240
241 /*
242 * Handle MTE and/or TBI.
243 *
244 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
245 * for the tag to be present in the FAR_ELx register. But for user-only
246 * mode we do not have a TLB with which to implement this, so we must
247 * remove the top byte now.
248 *
249 * Always return a fresh temporary that we can increment independently
250 * of the write-back address.
251 */
252
253 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
254 {
255 TCGv_i64 clean = tcg_temp_new_i64();
256 #ifdef CONFIG_USER_ONLY
257 gen_top_byte_ignore(s, clean, addr, s->tbid);
258 #else
259 tcg_gen_mov_i64(clean, addr);
260 #endif
261 return clean;
262 }
263
264 /* Insert a zero tag into src, with the result at dst. */
265 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
266 {
267 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
268 }
269
270 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
271 MMUAccessType acc, int log2_size)
272 {
273 gen_helper_probe_access(tcg_env, ptr,
274 tcg_constant_i32(acc),
275 tcg_constant_i32(get_mem_index(s)),
276 tcg_constant_i32(1 << log2_size));
277 }
278
279 /*
280 * For MTE, check a single logical or atomic access. This probes a single
281 * address, the exact one specified. The size and alignment of the access
282 * is not relevant to MTE, per se, but watchpoints do require the size,
283 * and we want to recognize those before making any other changes to state.
284 */
285 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
286 bool is_write, bool tag_checked,
287 MemOp memop, bool is_unpriv,
288 int core_idx)
289 {
290 if (tag_checked && s->mte_active[is_unpriv]) {
291 TCGv_i64 ret;
292 int desc = 0;
293
294 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
295 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
296 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
297 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
298 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
299 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
300
301 ret = tcg_temp_new_i64();
302 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
303
304 return ret;
305 }
306 return clean_data_tbi(s, addr);
307 }
308
309 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
310 bool tag_checked, MemOp memop)
311 {
312 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
313 false, get_mem_index(s));
314 }
315
316 /*
317 * For MTE, check multiple logical sequential accesses.
318 */
319 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
320 bool tag_checked, int total_size, MemOp single_mop)
321 {
322 if (tag_checked && s->mte_active[0]) {
323 TCGv_i64 ret;
324 int desc = 0;
325
326 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
327 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
328 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
329 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
330 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
331 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
332
333 ret = tcg_temp_new_i64();
334 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
335
336 return ret;
337 }
338 return clean_data_tbi(s, addr);
339 }
340
341 /*
342 * Generate the special alignment check that applies to AccType_ATOMIC
343 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
344 * naturally aligned, but it must not cross a 16-byte boundary.
345 * See AArch64.CheckAlignment().
346 */
347 static void check_lse2_align(DisasContext *s, int rn, int imm,
348 bool is_write, MemOp mop)
349 {
350 TCGv_i32 tmp;
351 TCGv_i64 addr;
352 TCGLabel *over_label;
353 MMUAccessType type;
354 int mmu_idx;
355
356 tmp = tcg_temp_new_i32();
357 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
358 tcg_gen_addi_i32(tmp, tmp, imm & 15);
359 tcg_gen_andi_i32(tmp, tmp, 15);
360 tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
361
362 over_label = gen_new_label();
363 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
364
365 addr = tcg_temp_new_i64();
366 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
367
368 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
369 mmu_idx = get_mem_index(s);
370 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
371 tcg_constant_i32(mmu_idx));
372
373 gen_set_label(over_label);
374
375 }
376
377 /* Handle the alignment check for AccType_ATOMIC instructions. */
378 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
379 {
380 MemOp size = mop & MO_SIZE;
381
382 if (size == MO_8) {
383 return mop;
384 }
385
386 /*
387 * If size == MO_128, this is a LDXP, and the operation is single-copy
388 * atomic for each doubleword, not the entire quadword; it still must
389 * be quadword aligned.
390 */
391 if (size == MO_128) {
392 return finalize_memop_atom(s, MO_128 | MO_ALIGN,
393 MO_ATOM_IFALIGN_PAIR);
394 }
395 if (dc_isar_feature(aa64_lse2, s)) {
396 check_lse2_align(s, rn, 0, true, mop);
397 } else {
398 mop |= MO_ALIGN;
399 }
400 return finalize_memop(s, mop);
401 }
402
403 /* Handle the alignment check for AccType_ORDERED instructions. */
404 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
405 bool is_write, MemOp mop)
406 {
407 MemOp size = mop & MO_SIZE;
408
409 if (size == MO_8) {
410 return mop;
411 }
412 if (size == MO_128) {
413 return finalize_memop_atom(s, MO_128 | MO_ALIGN,
414 MO_ATOM_IFALIGN_PAIR);
415 }
416 if (!dc_isar_feature(aa64_lse2, s)) {
417 mop |= MO_ALIGN;
418 } else if (!s->naa) {
419 check_lse2_align(s, rn, imm, is_write, mop);
420 }
421 return finalize_memop(s, mop);
422 }
423
424 typedef struct DisasCompare64 {
425 TCGCond cond;
426 TCGv_i64 value;
427 } DisasCompare64;
428
429 static void a64_test_cc(DisasCompare64 *c64, int cc)
430 {
431 DisasCompare c32;
432
433 arm_test_cc(&c32, cc);
434
435 /*
436 * Sign-extend the 32-bit value so that the GE/LT comparisons work
437 * properly. The NE/EQ comparisons are also fine with this choice.
438 */
439 c64->cond = c32.cond;
440 c64->value = tcg_temp_new_i64();
441 tcg_gen_ext_i32_i64(c64->value, c32.value);
442 }
443
444 static void gen_rebuild_hflags(DisasContext *s)
445 {
446 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
447 }
448
449 static void gen_exception_internal(int excp)
450 {
451 assert(excp_is_internal(excp));
452 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
453 }
454
455 static void gen_exception_internal_insn(DisasContext *s, int excp)
456 {
457 gen_a64_update_pc(s, 0);
458 gen_exception_internal(excp);
459 s->base.is_jmp = DISAS_NORETURN;
460 }
461
462 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
463 {
464 gen_a64_update_pc(s, 0);
465 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
466 s->base.is_jmp = DISAS_NORETURN;
467 }
468
469 static void gen_step_complete_exception(DisasContext *s)
470 {
471 /* We just completed step of an insn. Move from Active-not-pending
472 * to Active-pending, and then also take the swstep exception.
473 * This corresponds to making the (IMPDEF) choice to prioritize
474 * swstep exceptions over asynchronous exceptions taken to an exception
475 * level where debug is disabled. This choice has the advantage that
476 * we do not need to maintain internal state corresponding to the
477 * ISV/EX syndrome bits between completion of the step and generation
478 * of the exception, and our syndrome information is always correct.
479 */
480 gen_ss_advance(s);
481 gen_swstep_exception(s, 1, s->is_ldex);
482 s->base.is_jmp = DISAS_NORETURN;
483 }
484
485 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
486 {
487 if (s->ss_active) {
488 return false;
489 }
490 return translator_use_goto_tb(&s->base, dest);
491 }
492
493 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
494 {
495 if (use_goto_tb(s, s->pc_curr + diff)) {
496 /*
497 * For pcrel, the pc must always be up-to-date on entry to
498 * the linked TB, so that it can use simple additions for all
499 * further adjustments. For !pcrel, the linked TB is compiled
500 * to know its full virtual address, so we can delay the
501 * update to pc to the unlinked path. A long chain of links
502 * can thus avoid many updates to the PC.
503 */
504 if (tb_cflags(s->base.tb) & CF_PCREL) {
505 gen_a64_update_pc(s, diff);
506 tcg_gen_goto_tb(n);
507 } else {
508 tcg_gen_goto_tb(n);
509 gen_a64_update_pc(s, diff);
510 }
511 tcg_gen_exit_tb(s->base.tb, n);
512 s->base.is_jmp = DISAS_NORETURN;
513 } else {
514 gen_a64_update_pc(s, diff);
515 if (s->ss_active) {
516 gen_step_complete_exception(s);
517 } else {
518 tcg_gen_lookup_and_goto_ptr();
519 s->base.is_jmp = DISAS_NORETURN;
520 }
521 }
522 }
523
524 /*
525 * Register access functions
526 *
527 * These functions are used for directly accessing a register in where
528 * changes to the final register value are likely to be made. If you
529 * need to use a register for temporary calculation (e.g. index type
530 * operations) use the read_* form.
531 *
532 * B1.2.1 Register mappings
533 *
534 * In instruction register encoding 31 can refer to ZR (zero register) or
535 * the SP (stack pointer) depending on context. In QEMU's case we map SP
536 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
537 * This is the point of the _sp forms.
538 */
539 TCGv_i64 cpu_reg(DisasContext *s, int reg)
540 {
541 if (reg == 31) {
542 TCGv_i64 t = tcg_temp_new_i64();
543 tcg_gen_movi_i64(t, 0);
544 return t;
545 } else {
546 return cpu_X[reg];
547 }
548 }
549
550 /* register access for when 31 == SP */
551 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
552 {
553 return cpu_X[reg];
554 }
555
556 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
557 * representing the register contents. This TCGv is an auto-freed
558 * temporary so it need not be explicitly freed, and may be modified.
559 */
560 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
561 {
562 TCGv_i64 v = tcg_temp_new_i64();
563 if (reg != 31) {
564 if (sf) {
565 tcg_gen_mov_i64(v, cpu_X[reg]);
566 } else {
567 tcg_gen_ext32u_i64(v, cpu_X[reg]);
568 }
569 } else {
570 tcg_gen_movi_i64(v, 0);
571 }
572 return v;
573 }
574
575 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
576 {
577 TCGv_i64 v = tcg_temp_new_i64();
578 if (sf) {
579 tcg_gen_mov_i64(v, cpu_X[reg]);
580 } else {
581 tcg_gen_ext32u_i64(v, cpu_X[reg]);
582 }
583 return v;
584 }
585
586 /* Return the offset into CPUARMState of a slice (from
587 * the least significant end) of FP register Qn (ie
588 * Dn, Sn, Hn or Bn).
589 * (Note that this is not the same mapping as for A32; see cpu.h)
590 */
591 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
592 {
593 return vec_reg_offset(s, regno, 0, size);
594 }
595
596 /* Offset of the high half of the 128 bit vector Qn */
597 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
598 {
599 return vec_reg_offset(s, regno, 1, MO_64);
600 }
601
602 /* Convenience accessors for reading and writing single and double
603 * FP registers. Writing clears the upper parts of the associated
604 * 128 bit vector register, as required by the architecture.
605 * Note that unlike the GP register accessors, the values returned
606 * by the read functions must be manually freed.
607 */
608 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
609 {
610 TCGv_i64 v = tcg_temp_new_i64();
611
612 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
613 return v;
614 }
615
616 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
617 {
618 TCGv_i32 v = tcg_temp_new_i32();
619
620 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
621 return v;
622 }
623
624 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
625 {
626 TCGv_i32 v = tcg_temp_new_i32();
627
628 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
629 return v;
630 }
631
632 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
633 * If SVE is not enabled, then there are only 128 bits in the vector.
634 */
635 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
636 {
637 unsigned ofs = fp_reg_offset(s, rd, MO_64);
638 unsigned vsz = vec_full_reg_size(s);
639
640 /* Nop move, with side effect of clearing the tail. */
641 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
642 }
643
644 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
645 {
646 unsigned ofs = fp_reg_offset(s, reg, MO_64);
647
648 tcg_gen_st_i64(v, tcg_env, ofs);
649 clear_vec_high(s, false, reg);
650 }
651
652 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
653 {
654 TCGv_i64 tmp = tcg_temp_new_i64();
655
656 tcg_gen_extu_i32_i64(tmp, v);
657 write_fp_dreg(s, reg, tmp);
658 }
659
660 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
661 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
662 GVecGen2Fn *gvec_fn, int vece)
663 {
664 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
665 is_q ? 16 : 8, vec_full_reg_size(s));
666 }
667
668 /* Expand a 2-operand + immediate AdvSIMD vector operation using
669 * an expander function.
670 */
671 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
672 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
673 {
674 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
675 imm, is_q ? 16 : 8, vec_full_reg_size(s));
676 }
677
678 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
679 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
680 GVecGen3Fn *gvec_fn, int vece)
681 {
682 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
683 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
684 }
685
686 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
687 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
688 int rx, GVecGen4Fn *gvec_fn, int vece)
689 {
690 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
691 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
692 is_q ? 16 : 8, vec_full_reg_size(s));
693 }
694
695 /* Expand a 2-operand operation using an out-of-line helper. */
696 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
697 int rn, int data, gen_helper_gvec_2 *fn)
698 {
699 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
700 vec_full_reg_offset(s, rn),
701 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
702 }
703
704 /* Expand a 3-operand operation using an out-of-line helper. */
705 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
706 int rn, int rm, int data, gen_helper_gvec_3 *fn)
707 {
708 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
709 vec_full_reg_offset(s, rn),
710 vec_full_reg_offset(s, rm),
711 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
712 }
713
714 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
715 * an out-of-line helper.
716 */
717 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
718 int rm, bool is_fp16, int data,
719 gen_helper_gvec_3_ptr *fn)
720 {
721 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
722 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
723 vec_full_reg_offset(s, rn),
724 vec_full_reg_offset(s, rm), fpst,
725 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
726 }
727
728 /* Expand a 3-operand + qc + operation using an out-of-line helper. */
729 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
730 int rm, gen_helper_gvec_3_ptr *fn)
731 {
732 TCGv_ptr qc_ptr = tcg_temp_new_ptr();
733
734 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc));
735 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
736 vec_full_reg_offset(s, rn),
737 vec_full_reg_offset(s, rm), qc_ptr,
738 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
739 }
740
741 /* Expand a 4-operand operation using an out-of-line helper. */
742 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
743 int rm, int ra, int data, gen_helper_gvec_4 *fn)
744 {
745 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
746 vec_full_reg_offset(s, rn),
747 vec_full_reg_offset(s, rm),
748 vec_full_reg_offset(s, ra),
749 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
750 }
751
752 /*
753 * Expand a 4-operand + fpstatus pointer + simd data value operation using
754 * an out-of-line helper.
755 */
756 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
757 int rm, int ra, bool is_fp16, int data,
758 gen_helper_gvec_4_ptr *fn)
759 {
760 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
761 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
762 vec_full_reg_offset(s, rn),
763 vec_full_reg_offset(s, rm),
764 vec_full_reg_offset(s, ra), fpst,
765 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
766 }
767
768 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
769 * than the 32 bit equivalent.
770 */
771 static inline void gen_set_NZ64(TCGv_i64 result)
772 {
773 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
774 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
775 }
776
777 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
778 static inline void gen_logic_CC(int sf, TCGv_i64 result)
779 {
780 if (sf) {
781 gen_set_NZ64(result);
782 } else {
783 tcg_gen_extrl_i64_i32(cpu_ZF, result);
784 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
785 }
786 tcg_gen_movi_i32(cpu_CF, 0);
787 tcg_gen_movi_i32(cpu_VF, 0);
788 }
789
790 /* dest = T0 + T1; compute C, N, V and Z flags */
791 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
792 {
793 TCGv_i64 result, flag, tmp;
794 result = tcg_temp_new_i64();
795 flag = tcg_temp_new_i64();
796 tmp = tcg_temp_new_i64();
797
798 tcg_gen_movi_i64(tmp, 0);
799 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
800
801 tcg_gen_extrl_i64_i32(cpu_CF, flag);
802
803 gen_set_NZ64(result);
804
805 tcg_gen_xor_i64(flag, result, t0);
806 tcg_gen_xor_i64(tmp, t0, t1);
807 tcg_gen_andc_i64(flag, flag, tmp);
808 tcg_gen_extrh_i64_i32(cpu_VF, flag);
809
810 tcg_gen_mov_i64(dest, result);
811 }
812
813 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
814 {
815 TCGv_i32 t0_32 = tcg_temp_new_i32();
816 TCGv_i32 t1_32 = tcg_temp_new_i32();
817 TCGv_i32 tmp = tcg_temp_new_i32();
818
819 tcg_gen_movi_i32(tmp, 0);
820 tcg_gen_extrl_i64_i32(t0_32, t0);
821 tcg_gen_extrl_i64_i32(t1_32, t1);
822 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
823 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
824 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
825 tcg_gen_xor_i32(tmp, t0_32, t1_32);
826 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
827 tcg_gen_extu_i32_i64(dest, cpu_NF);
828 }
829
830 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
831 {
832 if (sf) {
833 gen_add64_CC(dest, t0, t1);
834 } else {
835 gen_add32_CC(dest, t0, t1);
836 }
837 }
838
839 /* dest = T0 - T1; compute C, N, V and Z flags */
840 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
841 {
842 /* 64 bit arithmetic */
843 TCGv_i64 result, flag, tmp;
844
845 result = tcg_temp_new_i64();
846 flag = tcg_temp_new_i64();
847 tcg_gen_sub_i64(result, t0, t1);
848
849 gen_set_NZ64(result);
850
851 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
852 tcg_gen_extrl_i64_i32(cpu_CF, flag);
853
854 tcg_gen_xor_i64(flag, result, t0);
855 tmp = tcg_temp_new_i64();
856 tcg_gen_xor_i64(tmp, t0, t1);
857 tcg_gen_and_i64(flag, flag, tmp);
858 tcg_gen_extrh_i64_i32(cpu_VF, flag);
859 tcg_gen_mov_i64(dest, result);
860 }
861
862 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
863 {
864 /* 32 bit arithmetic */
865 TCGv_i32 t0_32 = tcg_temp_new_i32();
866 TCGv_i32 t1_32 = tcg_temp_new_i32();
867 TCGv_i32 tmp;
868
869 tcg_gen_extrl_i64_i32(t0_32, t0);
870 tcg_gen_extrl_i64_i32(t1_32, t1);
871 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
872 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
873 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
874 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
875 tmp = tcg_temp_new_i32();
876 tcg_gen_xor_i32(tmp, t0_32, t1_32);
877 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
878 tcg_gen_extu_i32_i64(dest, cpu_NF);
879 }
880
881 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
882 {
883 if (sf) {
884 gen_sub64_CC(dest, t0, t1);
885 } else {
886 gen_sub32_CC(dest, t0, t1);
887 }
888 }
889
890 /* dest = T0 + T1 + CF; do not compute flags. */
891 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
892 {
893 TCGv_i64 flag = tcg_temp_new_i64();
894 tcg_gen_extu_i32_i64(flag, cpu_CF);
895 tcg_gen_add_i64(dest, t0, t1);
896 tcg_gen_add_i64(dest, dest, flag);
897
898 if (!sf) {
899 tcg_gen_ext32u_i64(dest, dest);
900 }
901 }
902
903 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
904 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
905 {
906 if (sf) {
907 TCGv_i64 result = tcg_temp_new_i64();
908 TCGv_i64 cf_64 = tcg_temp_new_i64();
909 TCGv_i64 vf_64 = tcg_temp_new_i64();
910 TCGv_i64 tmp = tcg_temp_new_i64();
911 TCGv_i64 zero = tcg_constant_i64(0);
912
913 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
914 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
915 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
916 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
917 gen_set_NZ64(result);
918
919 tcg_gen_xor_i64(vf_64, result, t0);
920 tcg_gen_xor_i64(tmp, t0, t1);
921 tcg_gen_andc_i64(vf_64, vf_64, tmp);
922 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
923
924 tcg_gen_mov_i64(dest, result);
925 } else {
926 TCGv_i32 t0_32 = tcg_temp_new_i32();
927 TCGv_i32 t1_32 = tcg_temp_new_i32();
928 TCGv_i32 tmp = tcg_temp_new_i32();
929 TCGv_i32 zero = tcg_constant_i32(0);
930
931 tcg_gen_extrl_i64_i32(t0_32, t0);
932 tcg_gen_extrl_i64_i32(t1_32, t1);
933 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
934 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
935
936 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
937 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
938 tcg_gen_xor_i32(tmp, t0_32, t1_32);
939 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
940 tcg_gen_extu_i32_i64(dest, cpu_NF);
941 }
942 }
943
944 /*
945 * Load/Store generators
946 */
947
948 /*
949 * Store from GPR register to memory.
950 */
951 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
952 TCGv_i64 tcg_addr, MemOp memop, int memidx,
953 bool iss_valid,
954 unsigned int iss_srt,
955 bool iss_sf, bool iss_ar)
956 {
957 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
958
959 if (iss_valid) {
960 uint32_t syn;
961
962 syn = syn_data_abort_with_iss(0,
963 (memop & MO_SIZE),
964 false,
965 iss_srt,
966 iss_sf,
967 iss_ar,
968 0, 0, 0, 0, 0, false);
969 disas_set_insn_syndrome(s, syn);
970 }
971 }
972
973 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
974 TCGv_i64 tcg_addr, MemOp memop,
975 bool iss_valid,
976 unsigned int iss_srt,
977 bool iss_sf, bool iss_ar)
978 {
979 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
980 iss_valid, iss_srt, iss_sf, iss_ar);
981 }
982
983 /*
984 * Load from memory to GPR register
985 */
986 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
987 MemOp memop, bool extend, int memidx,
988 bool iss_valid, unsigned int iss_srt,
989 bool iss_sf, bool iss_ar)
990 {
991 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
992
993 if (extend && (memop & MO_SIGN)) {
994 g_assert((memop & MO_SIZE) <= MO_32);
995 tcg_gen_ext32u_i64(dest, dest);
996 }
997
998 if (iss_valid) {
999 uint32_t syn;
1000
1001 syn = syn_data_abort_with_iss(0,
1002 (memop & MO_SIZE),
1003 (memop & MO_SIGN) != 0,
1004 iss_srt,
1005 iss_sf,
1006 iss_ar,
1007 0, 0, 0, 0, 0, false);
1008 disas_set_insn_syndrome(s, syn);
1009 }
1010 }
1011
1012 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1013 MemOp memop, bool extend,
1014 bool iss_valid, unsigned int iss_srt,
1015 bool iss_sf, bool iss_ar)
1016 {
1017 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1018 iss_valid, iss_srt, iss_sf, iss_ar);
1019 }
1020
1021 /*
1022 * Store from FP register to memory
1023 */
1024 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1025 {
1026 /* This writes the bottom N bits of a 128 bit wide vector to memory */
1027 TCGv_i64 tmplo = tcg_temp_new_i64();
1028
1029 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1030
1031 if ((mop & MO_SIZE) < MO_128) {
1032 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1033 } else {
1034 TCGv_i64 tmphi = tcg_temp_new_i64();
1035 TCGv_i128 t16 = tcg_temp_new_i128();
1036
1037 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1038 tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1039
1040 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1041 }
1042 }
1043
1044 /*
1045 * Load from memory to FP register
1046 */
1047 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1048 {
1049 /* This always zero-extends and writes to a full 128 bit wide vector */
1050 TCGv_i64 tmplo = tcg_temp_new_i64();
1051 TCGv_i64 tmphi = NULL;
1052
1053 if ((mop & MO_SIZE) < MO_128) {
1054 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1055 } else {
1056 TCGv_i128 t16 = tcg_temp_new_i128();
1057
1058 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1059
1060 tmphi = tcg_temp_new_i64();
1061 tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1062 }
1063
1064 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1065
1066 if (tmphi) {
1067 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1068 }
1069 clear_vec_high(s, tmphi != NULL, destidx);
1070 }
1071
1072 /*
1073 * Vector load/store helpers.
1074 *
1075 * The principal difference between this and a FP load is that we don't
1076 * zero extend as we are filling a partial chunk of the vector register.
1077 * These functions don't support 128 bit loads/stores, which would be
1078 * normal load/store operations.
1079 *
1080 * The _i32 versions are useful when operating on 32 bit quantities
1081 * (eg for floating point single or using Neon helper functions).
1082 */
1083
1084 /* Get value of an element within a vector register */
1085 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1086 int element, MemOp memop)
1087 {
1088 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1089 switch ((unsigned)memop) {
1090 case MO_8:
1091 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1092 break;
1093 case MO_16:
1094 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1095 break;
1096 case MO_32:
1097 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1098 break;
1099 case MO_8|MO_SIGN:
1100 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1101 break;
1102 case MO_16|MO_SIGN:
1103 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1104 break;
1105 case MO_32|MO_SIGN:
1106 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1107 break;
1108 case MO_64:
1109 case MO_64|MO_SIGN:
1110 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1111 break;
1112 default:
1113 g_assert_not_reached();
1114 }
1115 }
1116
1117 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1118 int element, MemOp memop)
1119 {
1120 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1121 switch (memop) {
1122 case MO_8:
1123 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1124 break;
1125 case MO_16:
1126 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1127 break;
1128 case MO_8|MO_SIGN:
1129 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1130 break;
1131 case MO_16|MO_SIGN:
1132 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1133 break;
1134 case MO_32:
1135 case MO_32|MO_SIGN:
1136 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1137 break;
1138 default:
1139 g_assert_not_reached();
1140 }
1141 }
1142
1143 /* Set value of an element within a vector register */
1144 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1145 int element, MemOp memop)
1146 {
1147 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1148 switch (memop) {
1149 case MO_8:
1150 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1151 break;
1152 case MO_16:
1153 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1154 break;
1155 case MO_32:
1156 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1157 break;
1158 case MO_64:
1159 tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1160 break;
1161 default:
1162 g_assert_not_reached();
1163 }
1164 }
1165
1166 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1167 int destidx, int element, MemOp memop)
1168 {
1169 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1170 switch (memop) {
1171 case MO_8:
1172 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1173 break;
1174 case MO_16:
1175 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1176 break;
1177 case MO_32:
1178 tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1179 break;
1180 default:
1181 g_assert_not_reached();
1182 }
1183 }
1184
1185 /* Store from vector register to memory */
1186 static void do_vec_st(DisasContext *s, int srcidx, int element,
1187 TCGv_i64 tcg_addr, MemOp mop)
1188 {
1189 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1190
1191 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1192 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1193 }
1194
1195 /* Load from memory to vector register */
1196 static void do_vec_ld(DisasContext *s, int destidx, int element,
1197 TCGv_i64 tcg_addr, MemOp mop)
1198 {
1199 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1200
1201 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1202 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1203 }
1204
1205 /* Check that FP/Neon access is enabled. If it is, return
1206 * true. If not, emit code to generate an appropriate exception,
1207 * and return false; the caller should not emit any code for
1208 * the instruction. Note that this check must happen after all
1209 * unallocated-encoding checks (otherwise the syndrome information
1210 * for the resulting exception will be incorrect).
1211 */
1212 static bool fp_access_check_only(DisasContext *s)
1213 {
1214 if (s->fp_excp_el) {
1215 assert(!s->fp_access_checked);
1216 s->fp_access_checked = true;
1217
1218 gen_exception_insn_el(s, 0, EXCP_UDEF,
1219 syn_fp_access_trap(1, 0xe, false, 0),
1220 s->fp_excp_el);
1221 return false;
1222 }
1223 s->fp_access_checked = true;
1224 return true;
1225 }
1226
1227 static bool fp_access_check(DisasContext *s)
1228 {
1229 if (!fp_access_check_only(s)) {
1230 return false;
1231 }
1232 if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1233 gen_exception_insn(s, 0, EXCP_UDEF,
1234 syn_smetrap(SME_ET_Streaming, false));
1235 return false;
1236 }
1237 return true;
1238 }
1239
1240 /*
1241 * Check that SVE access is enabled. If it is, return true.
1242 * If not, emit code to generate an appropriate exception and return false.
1243 * This function corresponds to CheckSVEEnabled().
1244 */
1245 bool sve_access_check(DisasContext *s)
1246 {
1247 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1248 assert(dc_isar_feature(aa64_sme, s));
1249 if (!sme_sm_enabled_check(s)) {
1250 goto fail_exit;
1251 }
1252 } else if (s->sve_excp_el) {
1253 gen_exception_insn_el(s, 0, EXCP_UDEF,
1254 syn_sve_access_trap(), s->sve_excp_el);
1255 goto fail_exit;
1256 }
1257 s->sve_access_checked = true;
1258 return fp_access_check(s);
1259
1260 fail_exit:
1261 /* Assert that we only raise one exception per instruction. */
1262 assert(!s->sve_access_checked);
1263 s->sve_access_checked = true;
1264 return false;
1265 }
1266
1267 /*
1268 * Check that SME access is enabled, raise an exception if not.
1269 * Note that this function corresponds to CheckSMEAccess and is
1270 * only used directly for cpregs.
1271 */
1272 static bool sme_access_check(DisasContext *s)
1273 {
1274 if (s->sme_excp_el) {
1275 gen_exception_insn_el(s, 0, EXCP_UDEF,
1276 syn_smetrap(SME_ET_AccessTrap, false),
1277 s->sme_excp_el);
1278 return false;
1279 }
1280 return true;
1281 }
1282
1283 /* This function corresponds to CheckSMEEnabled. */
1284 bool sme_enabled_check(DisasContext *s)
1285 {
1286 /*
1287 * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1288 * to be zero when fp_excp_el has priority. This is because we need
1289 * sme_excp_el by itself for cpregs access checks.
1290 */
1291 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1292 s->fp_access_checked = true;
1293 return sme_access_check(s);
1294 }
1295 return fp_access_check_only(s);
1296 }
1297
1298 /* Common subroutine for CheckSMEAnd*Enabled. */
1299 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1300 {
1301 if (!sme_enabled_check(s)) {
1302 return false;
1303 }
1304 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1305 gen_exception_insn(s, 0, EXCP_UDEF,
1306 syn_smetrap(SME_ET_NotStreaming, false));
1307 return false;
1308 }
1309 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1310 gen_exception_insn(s, 0, EXCP_UDEF,
1311 syn_smetrap(SME_ET_InactiveZA, false));
1312 return false;
1313 }
1314 return true;
1315 }
1316
1317 /*
1318 * This utility function is for doing register extension with an
1319 * optional shift. You will likely want to pass a temporary for the
1320 * destination register. See DecodeRegExtend() in the ARM ARM.
1321 */
1322 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1323 int option, unsigned int shift)
1324 {
1325 int extsize = extract32(option, 0, 2);
1326 bool is_signed = extract32(option, 2, 1);
1327
1328 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1329 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1330 }
1331
1332 static inline void gen_check_sp_alignment(DisasContext *s)
1333 {
1334 /* The AArch64 architecture mandates that (if enabled via PSTATE
1335 * or SCTLR bits) there is a check that SP is 16-aligned on every
1336 * SP-relative load or store (with an exception generated if it is not).
1337 * In line with general QEMU practice regarding misaligned accesses,
1338 * we omit these checks for the sake of guest program performance.
1339 * This function is provided as a hook so we can more easily add these
1340 * checks in future (possibly as a "favour catching guest program bugs
1341 * over speed" user selectable option).
1342 */
1343 }
1344
1345 /*
1346 * This provides a simple table based table lookup decoder. It is
1347 * intended to be used when the relevant bits for decode are too
1348 * awkwardly placed and switch/if based logic would be confusing and
1349 * deeply nested. Since it's a linear search through the table, tables
1350 * should be kept small.
1351 *
1352 * It returns the first handler where insn & mask == pattern, or
1353 * NULL if there is no match.
1354 * The table is terminated by an empty mask (i.e. 0)
1355 */
1356 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1357 uint32_t insn)
1358 {
1359 const AArch64DecodeTable *tptr = table;
1360
1361 while (tptr->mask) {
1362 if ((insn & tptr->mask) == tptr->pattern) {
1363 return tptr->disas_fn;
1364 }
1365 tptr++;
1366 }
1367 return NULL;
1368 }
1369
1370 /*
1371 * The instruction disassembly implemented here matches
1372 * the instruction encoding classifications in chapter C4
1373 * of the ARM Architecture Reference Manual (DDI0487B_a);
1374 * classification names and decode diagrams here should generally
1375 * match up with those in the manual.
1376 */
1377
1378 static bool trans_B(DisasContext *s, arg_i *a)
1379 {
1380 reset_btype(s);
1381 gen_goto_tb(s, 0, a->imm);
1382 return true;
1383 }
1384
1385 static bool trans_BL(DisasContext *s, arg_i *a)
1386 {
1387 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1388 reset_btype(s);
1389 gen_goto_tb(s, 0, a->imm);
1390 return true;
1391 }
1392
1393
1394 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1395 {
1396 DisasLabel match;
1397 TCGv_i64 tcg_cmp;
1398
1399 tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1400 reset_btype(s);
1401
1402 match = gen_disas_label(s);
1403 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1404 tcg_cmp, 0, match.label);
1405 gen_goto_tb(s, 0, 4);
1406 set_disas_label(s, match);
1407 gen_goto_tb(s, 1, a->imm);
1408 return true;
1409 }
1410
1411 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1412 {
1413 DisasLabel match;
1414 TCGv_i64 tcg_cmp;
1415
1416 tcg_cmp = tcg_temp_new_i64();
1417 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1418
1419 reset_btype(s);
1420
1421 match = gen_disas_label(s);
1422 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1423 tcg_cmp, 0, match.label);
1424 gen_goto_tb(s, 0, 4);
1425 set_disas_label(s, match);
1426 gen_goto_tb(s, 1, a->imm);
1427 return true;
1428 }
1429
1430 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1431 {
1432 /* BC.cond is only present with FEAT_HBC */
1433 if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1434 return false;
1435 }
1436 reset_btype(s);
1437 if (a->cond < 0x0e) {
1438 /* genuinely conditional branches */
1439 DisasLabel match = gen_disas_label(s);
1440 arm_gen_test_cc(a->cond, match.label);
1441 gen_goto_tb(s, 0, 4);
1442 set_disas_label(s, match);
1443 gen_goto_tb(s, 1, a->imm);
1444 } else {
1445 /* 0xe and 0xf are both "always" conditions */
1446 gen_goto_tb(s, 0, a->imm);
1447 }
1448 return true;
1449 }
1450
1451 static void set_btype_for_br(DisasContext *s, int rn)
1452 {
1453 if (dc_isar_feature(aa64_bti, s)) {
1454 /* BR to {x16,x17} or !guard -> 1, else 3. */
1455 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1456 }
1457 }
1458
1459 static void set_btype_for_blr(DisasContext *s)
1460 {
1461 if (dc_isar_feature(aa64_bti, s)) {
1462 /* BLR sets BTYPE to 2, regardless of source guarded page. */
1463 set_btype(s, 2);
1464 }
1465 }
1466
1467 static bool trans_BR(DisasContext *s, arg_r *a)
1468 {
1469 gen_a64_set_pc(s, cpu_reg(s, a->rn));
1470 set_btype_for_br(s, a->rn);
1471 s->base.is_jmp = DISAS_JUMP;
1472 return true;
1473 }
1474
1475 static bool trans_BLR(DisasContext *s, arg_r *a)
1476 {
1477 TCGv_i64 dst = cpu_reg(s, a->rn);
1478 TCGv_i64 lr = cpu_reg(s, 30);
1479 if (dst == lr) {
1480 TCGv_i64 tmp = tcg_temp_new_i64();
1481 tcg_gen_mov_i64(tmp, dst);
1482 dst = tmp;
1483 }
1484 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1485 gen_a64_set_pc(s, dst);
1486 set_btype_for_blr(s);
1487 s->base.is_jmp = DISAS_JUMP;
1488 return true;
1489 }
1490
1491 static bool trans_RET(DisasContext *s, arg_r *a)
1492 {
1493 gen_a64_set_pc(s, cpu_reg(s, a->rn));
1494 s->base.is_jmp = DISAS_JUMP;
1495 return true;
1496 }
1497
1498 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1499 TCGv_i64 modifier, bool use_key_a)
1500 {
1501 TCGv_i64 truedst;
1502 /*
1503 * Return the branch target for a BRAA/RETA/etc, which is either
1504 * just the destination dst, or that value with the pauth check
1505 * done and the code removed from the high bits.
1506 */
1507 if (!s->pauth_active) {
1508 return dst;
1509 }
1510
1511 truedst = tcg_temp_new_i64();
1512 if (use_key_a) {
1513 gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1514 } else {
1515 gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1516 }
1517 return truedst;
1518 }
1519
1520 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1521 {
1522 TCGv_i64 dst;
1523
1524 if (!dc_isar_feature(aa64_pauth, s)) {
1525 return false;
1526 }
1527
1528 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1529 gen_a64_set_pc(s, dst);
1530 set_btype_for_br(s, a->rn);
1531 s->base.is_jmp = DISAS_JUMP;
1532 return true;
1533 }
1534
1535 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1536 {
1537 TCGv_i64 dst, lr;
1538
1539 if (!dc_isar_feature(aa64_pauth, s)) {
1540 return false;
1541 }
1542
1543 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1544 lr = cpu_reg(s, 30);
1545 if (dst == lr) {
1546 TCGv_i64 tmp = tcg_temp_new_i64();
1547 tcg_gen_mov_i64(tmp, dst);
1548 dst = tmp;
1549 }
1550 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1551 gen_a64_set_pc(s, dst);
1552 set_btype_for_blr(s);
1553 s->base.is_jmp = DISAS_JUMP;
1554 return true;
1555 }
1556
1557 static bool trans_RETA(DisasContext *s, arg_reta *a)
1558 {
1559 TCGv_i64 dst;
1560
1561 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1562 gen_a64_set_pc(s, dst);
1563 s->base.is_jmp = DISAS_JUMP;
1564 return true;
1565 }
1566
1567 static bool trans_BRA(DisasContext *s, arg_bra *a)
1568 {
1569 TCGv_i64 dst;
1570
1571 if (!dc_isar_feature(aa64_pauth, s)) {
1572 return false;
1573 }
1574 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1575 gen_a64_set_pc(s, dst);
1576 set_btype_for_br(s, a->rn);
1577 s->base.is_jmp = DISAS_JUMP;
1578 return true;
1579 }
1580
1581 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1582 {
1583 TCGv_i64 dst, lr;
1584
1585 if (!dc_isar_feature(aa64_pauth, s)) {
1586 return false;
1587 }
1588 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1589 lr = cpu_reg(s, 30);
1590 if (dst == lr) {
1591 TCGv_i64 tmp = tcg_temp_new_i64();
1592 tcg_gen_mov_i64(tmp, dst);
1593 dst = tmp;
1594 }
1595 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1596 gen_a64_set_pc(s, dst);
1597 set_btype_for_blr(s);
1598 s->base.is_jmp = DISAS_JUMP;
1599 return true;
1600 }
1601
1602 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1603 {
1604 TCGv_i64 dst;
1605
1606 if (s->current_el == 0) {
1607 return false;
1608 }
1609 if (s->trap_eret) {
1610 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1611 return true;
1612 }
1613 dst = tcg_temp_new_i64();
1614 tcg_gen_ld_i64(dst, tcg_env,
1615 offsetof(CPUARMState, elr_el[s->current_el]));
1616
1617 translator_io_start(&s->base);
1618
1619 gen_helper_exception_return(tcg_env, dst);
1620 /* Must exit loop to check un-masked IRQs */
1621 s->base.is_jmp = DISAS_EXIT;
1622 return true;
1623 }
1624
1625 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1626 {
1627 TCGv_i64 dst;
1628
1629 if (!dc_isar_feature(aa64_pauth, s)) {
1630 return false;
1631 }
1632 if (s->current_el == 0) {
1633 return false;
1634 }
1635 /* The FGT trap takes precedence over an auth trap. */
1636 if (s->trap_eret) {
1637 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1638 return true;
1639 }
1640 dst = tcg_temp_new_i64();
1641 tcg_gen_ld_i64(dst, tcg_env,
1642 offsetof(CPUARMState, elr_el[s->current_el]));
1643
1644 dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1645
1646 translator_io_start(&s->base);
1647
1648 gen_helper_exception_return(tcg_env, dst);
1649 /* Must exit loop to check un-masked IRQs */
1650 s->base.is_jmp = DISAS_EXIT;
1651 return true;
1652 }
1653
1654 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1655 {
1656 return true;
1657 }
1658
1659 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1660 {
1661 /*
1662 * When running in MTTCG we don't generate jumps to the yield and
1663 * WFE helpers as it won't affect the scheduling of other vCPUs.
1664 * If we wanted to more completely model WFE/SEV so we don't busy
1665 * spin unnecessarily we would need to do something more involved.
1666 */
1667 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1668 s->base.is_jmp = DISAS_YIELD;
1669 }
1670 return true;
1671 }
1672
1673 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1674 {
1675 s->base.is_jmp = DISAS_WFI;
1676 return true;
1677 }
1678
1679 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1680 {
1681 /*
1682 * When running in MTTCG we don't generate jumps to the yield and
1683 * WFE helpers as it won't affect the scheduling of other vCPUs.
1684 * If we wanted to more completely model WFE/SEV so we don't busy
1685 * spin unnecessarily we would need to do something more involved.
1686 */
1687 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1688 s->base.is_jmp = DISAS_WFE;
1689 }
1690 return true;
1691 }
1692
1693 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1694 {
1695 if (s->pauth_active) {
1696 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1697 }
1698 return true;
1699 }
1700
1701 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1702 {
1703 if (s->pauth_active) {
1704 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1705 }
1706 return true;
1707 }
1708
1709 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1710 {
1711 if (s->pauth_active) {
1712 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1713 }
1714 return true;
1715 }
1716
1717 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1718 {
1719 if (s->pauth_active) {
1720 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1721 }
1722 return true;
1723 }
1724
1725 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1726 {
1727 if (s->pauth_active) {
1728 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1729 }
1730 return true;
1731 }
1732
1733 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1734 {
1735 /* Without RAS, we must implement this as NOP. */
1736 if (dc_isar_feature(aa64_ras, s)) {
1737 /*
1738 * QEMU does not have a source of physical SErrors,
1739 * so we are only concerned with virtual SErrors.
1740 * The pseudocode in the ARM for this case is
1741 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1742 * AArch64.vESBOperation();
1743 * Most of the condition can be evaluated at translation time.
1744 * Test for EL2 present, and defer test for SEL2 to runtime.
1745 */
1746 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1747 gen_helper_vesb(tcg_env);
1748 }
1749 }
1750 return true;
1751 }
1752
1753 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1754 {
1755 if (s->pauth_active) {
1756 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1757 }
1758 return true;
1759 }
1760
1761 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1762 {
1763 if (s->pauth_active) {
1764 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1765 }
1766 return true;
1767 }
1768
1769 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1770 {
1771 if (s->pauth_active) {
1772 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1773 }
1774 return true;
1775 }
1776
1777 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1778 {
1779 if (s->pauth_active) {
1780 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1781 }
1782 return true;
1783 }
1784
1785 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1786 {
1787 if (s->pauth_active) {
1788 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1789 }
1790 return true;
1791 }
1792
1793 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1794 {
1795 if (s->pauth_active) {
1796 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1797 }
1798 return true;
1799 }
1800
1801 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1802 {
1803 if (s->pauth_active) {
1804 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1805 }
1806 return true;
1807 }
1808
1809 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1810 {
1811 if (s->pauth_active) {
1812 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1813 }
1814 return true;
1815 }
1816
1817 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1818 {
1819 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1820 return true;
1821 }
1822
1823 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1824 {
1825 /* We handle DSB and DMB the same way */
1826 TCGBar bar;
1827
1828 switch (a->types) {
1829 case 1: /* MBReqTypes_Reads */
1830 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1831 break;
1832 case 2: /* MBReqTypes_Writes */
1833 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1834 break;
1835 default: /* MBReqTypes_All */
1836 bar = TCG_BAR_SC | TCG_MO_ALL;
1837 break;
1838 }
1839 tcg_gen_mb(bar);
1840 return true;
1841 }
1842
1843 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1844 {
1845 /*
1846 * We need to break the TB after this insn to execute
1847 * self-modifying code correctly and also to take
1848 * any pending interrupts immediately.
1849 */
1850 reset_btype(s);
1851 gen_goto_tb(s, 0, 4);
1852 return true;
1853 }
1854
1855 static bool trans_SB(DisasContext *s, arg_SB *a)
1856 {
1857 if (!dc_isar_feature(aa64_sb, s)) {
1858 return false;
1859 }
1860 /*
1861 * TODO: There is no speculation barrier opcode for TCG;
1862 * MB and end the TB instead.
1863 */
1864 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1865 gen_goto_tb(s, 0, 4);
1866 return true;
1867 }
1868
1869 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1870 {
1871 if (!dc_isar_feature(aa64_condm_4, s)) {
1872 return false;
1873 }
1874 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1875 return true;
1876 }
1877
1878 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1879 {
1880 TCGv_i32 z;
1881
1882 if (!dc_isar_feature(aa64_condm_5, s)) {
1883 return false;
1884 }
1885
1886 z = tcg_temp_new_i32();
1887
1888 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1889
1890 /*
1891 * (!C & !Z) << 31
1892 * (!(C | Z)) << 31
1893 * ~((C | Z) << 31)
1894 * ~-(C | Z)
1895 * (C | Z) - 1
1896 */
1897 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1898 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1899
1900 /* !(Z & C) */
1901 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1902 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1903
1904 /* (!C & Z) << 31 -> -(Z & ~C) */
1905 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1906 tcg_gen_neg_i32(cpu_VF, cpu_VF);
1907
1908 /* C | Z */
1909 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1910
1911 return true;
1912 }
1913
1914 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
1915 {
1916 if (!dc_isar_feature(aa64_condm_5, s)) {
1917 return false;
1918 }
1919
1920 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
1921 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
1922
1923 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1924 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1925
1926 tcg_gen_movi_i32(cpu_NF, 0);
1927 tcg_gen_movi_i32(cpu_VF, 0);
1928
1929 return true;
1930 }
1931
1932 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
1933 {
1934 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1935 return false;
1936 }
1937 if (a->imm & 1) {
1938 set_pstate_bits(PSTATE_UAO);
1939 } else {
1940 clear_pstate_bits(PSTATE_UAO);
1941 }
1942 gen_rebuild_hflags(s);
1943 s->base.is_jmp = DISAS_TOO_MANY;
1944 return true;
1945 }
1946
1947 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
1948 {
1949 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1950 return false;
1951 }
1952 if (a->imm & 1) {
1953 set_pstate_bits(PSTATE_PAN);
1954 } else {
1955 clear_pstate_bits(PSTATE_PAN);
1956 }
1957 gen_rebuild_hflags(s);
1958 s->base.is_jmp = DISAS_TOO_MANY;
1959 return true;
1960 }
1961
1962 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
1963 {
1964 if (s->current_el == 0) {
1965 return false;
1966 }
1967 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
1968 s->base.is_jmp = DISAS_TOO_MANY;
1969 return true;
1970 }
1971
1972 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
1973 {
1974 if (!dc_isar_feature(aa64_ssbs, s)) {
1975 return false;
1976 }
1977 if (a->imm & 1) {
1978 set_pstate_bits(PSTATE_SSBS);
1979 } else {
1980 clear_pstate_bits(PSTATE_SSBS);
1981 }
1982 /* Don't need to rebuild hflags since SSBS is a nop */
1983 s->base.is_jmp = DISAS_TOO_MANY;
1984 return true;
1985 }
1986
1987 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
1988 {
1989 if (!dc_isar_feature(aa64_dit, s)) {
1990 return false;
1991 }
1992 if (a->imm & 1) {
1993 set_pstate_bits(PSTATE_DIT);
1994 } else {
1995 clear_pstate_bits(PSTATE_DIT);
1996 }
1997 /* There's no need to rebuild hflags because DIT is a nop */
1998 s->base.is_jmp = DISAS_TOO_MANY;
1999 return true;
2000 }
2001
2002 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2003 {
2004 if (dc_isar_feature(aa64_mte, s)) {
2005 /* Full MTE is enabled -- set the TCO bit as directed. */
2006 if (a->imm & 1) {
2007 set_pstate_bits(PSTATE_TCO);
2008 } else {
2009 clear_pstate_bits(PSTATE_TCO);
2010 }
2011 gen_rebuild_hflags(s);
2012 /* Many factors, including TCO, go into MTE_ACTIVE. */
2013 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2014 return true;
2015 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2016 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
2017 return true;
2018 } else {
2019 /* Insn not present */
2020 return false;
2021 }
2022 }
2023
2024 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2025 {
2026 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2027 s->base.is_jmp = DISAS_TOO_MANY;
2028 return true;
2029 }
2030
2031 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2032 {
2033 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2034 /* Exit the cpu loop to re-evaluate pending IRQs. */
2035 s->base.is_jmp = DISAS_UPDATE_EXIT;
2036 return true;
2037 }
2038
2039 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2040 {
2041 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2042 return false;
2043 }
2044 if (sme_access_check(s)) {
2045 int old = s->pstate_sm | (s->pstate_za << 1);
2046 int new = a->imm * 3;
2047
2048 if ((old ^ new) & a->mask) {
2049 /* At least one bit changes. */
2050 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2051 tcg_constant_i32(a->mask));
2052 s->base.is_jmp = DISAS_TOO_MANY;
2053 }
2054 }
2055 return true;
2056 }
2057
2058 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2059 {
2060 TCGv_i32 tmp = tcg_temp_new_i32();
2061 TCGv_i32 nzcv = tcg_temp_new_i32();
2062
2063 /* build bit 31, N */
2064 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2065 /* build bit 30, Z */
2066 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2067 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2068 /* build bit 29, C */
2069 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2070 /* build bit 28, V */
2071 tcg_gen_shri_i32(tmp, cpu_VF, 31);
2072 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2073 /* generate result */
2074 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2075 }
2076
2077 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2078 {
2079 TCGv_i32 nzcv = tcg_temp_new_i32();
2080
2081 /* take NZCV from R[t] */
2082 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2083
2084 /* bit 31, N */
2085 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2086 /* bit 30, Z */
2087 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2088 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2089 /* bit 29, C */
2090 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2091 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2092 /* bit 28, V */
2093 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2094 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2095 }
2096
2097 static void gen_sysreg_undef(DisasContext *s, bool isread,
2098 uint8_t op0, uint8_t op1, uint8_t op2,
2099 uint8_t crn, uint8_t crm, uint8_t rt)
2100 {
2101 /*
2102 * Generate code to emit an UNDEF with correct syndrome
2103 * information for a failed system register access.
2104 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2105 * but if FEAT_IDST is implemented then read accesses to registers
2106 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2107 * syndrome.
2108 */
2109 uint32_t syndrome;
2110
2111 if (isread && dc_isar_feature(aa64_ids, s) &&
2112 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2113 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2114 } else {
2115 syndrome = syn_uncategorized();
2116 }
2117 gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2118 }
2119
2120 /* MRS - move from system register
2121 * MSR (register) - move to system register
2122 * SYS
2123 * SYSL
2124 * These are all essentially the same insn in 'read' and 'write'
2125 * versions, with varying op0 fields.
2126 */
2127 static void handle_sys(DisasContext *s, bool isread,
2128 unsigned int op0, unsigned int op1, unsigned int op2,
2129 unsigned int crn, unsigned int crm, unsigned int rt)
2130 {
2131 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2132 crn, crm, op0, op1, op2);
2133 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2134 bool need_exit_tb = false;
2135 bool nv_trap_to_el2 = false;
2136 bool nv_redirect_reg = false;
2137 bool skip_fp_access_checks = false;
2138 bool nv2_mem_redirect = false;
2139 TCGv_ptr tcg_ri = NULL;
2140 TCGv_i64 tcg_rt;
2141 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2142
2143 if (crn == 11 || crn == 15) {
2144 /*
2145 * Check for TIDCP trap, which must take precedence over
2146 * the UNDEF for "no such register" etc.
2147 */
2148 switch (s->current_el) {
2149 case 0:
2150 if (dc_isar_feature(aa64_tidcp1, s)) {
2151 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2152 }
2153 break;
2154 case 1:
2155 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2156 break;
2157 }
2158 }
2159
2160 if (!ri) {
2161 /* Unknown register; this might be a guest error or a QEMU
2162 * unimplemented feature.
2163 */
2164 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2165 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2166 isread ? "read" : "write", op0, op1, crn, crm, op2);
2167 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2168 return;
2169 }
2170
2171 if (s->nv2 && ri->nv2_redirect_offset) {
2172 /*
2173 * Some registers always redirect to memory; some only do so if
2174 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2175 * pairs which share an offset; see the table in R_CSRPQ).
2176 */
2177 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2178 nv2_mem_redirect = s->nv1;
2179 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2180 nv2_mem_redirect = !s->nv1;
2181 } else {
2182 nv2_mem_redirect = true;
2183 }
2184 }
2185
2186 /* Check access permissions */
2187 if (!cp_access_ok(s->current_el, ri, isread)) {
2188 /*
2189 * FEAT_NV/NV2 handling does not do the usual FP access checks
2190 * for registers only accessible at EL2 (though it *does* do them
2191 * for registers accessible at EL1).
2192 */
2193 skip_fp_access_checks = true;
2194 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2195 /*
2196 * This is one of the few EL2 registers which should redirect
2197 * to the equivalent EL1 register. We do that after running
2198 * the EL2 register's accessfn.
2199 */
2200 nv_redirect_reg = true;
2201 assert(!nv2_mem_redirect);
2202 } else if (nv2_mem_redirect) {
2203 /*
2204 * NV2 redirect-to-memory takes precedence over trap to EL2 or
2205 * UNDEF to EL1.
2206 */
2207 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2208 /*
2209 * This register / instruction exists and is an EL2 register, so
2210 * we must trap to EL2 if accessed in nested virtualization EL1
2211 * instead of UNDEFing. We'll do that after the usual access checks.
2212 * (This makes a difference only for a couple of registers like
2213 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2214 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2215 * an accessfn which does nothing when called from EL1, because
2216 * the trap-to-EL3 controls which would apply to that register
2217 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2218 */
2219 nv_trap_to_el2 = true;
2220 } else {
2221 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2222 return;
2223 }
2224 }
2225
2226 if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2227 /* Emit code to perform further access permissions checks at
2228 * runtime; this may result in an exception.
2229 */
2230 gen_a64_update_pc(s, 0);
2231 tcg_ri = tcg_temp_new_ptr();
2232 gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2233 tcg_constant_i32(key),
2234 tcg_constant_i32(syndrome),
2235 tcg_constant_i32(isread));
2236 } else if (ri->type & ARM_CP_RAISES_EXC) {
2237 /*
2238 * The readfn or writefn might raise an exception;
2239 * synchronize the CPU state in case it does.
2240 */
2241 gen_a64_update_pc(s, 0);
2242 }
2243
2244 if (!skip_fp_access_checks) {
2245 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2246 return;
2247 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2248 return;
2249 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2250 return;
2251 }
2252 }
2253
2254 if (nv_trap_to_el2) {
2255 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2256 return;
2257 }
2258
2259 if (nv_redirect_reg) {
2260 /*
2261 * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2262 * Conveniently in all cases the encoding of the EL1 register is
2263 * identical to the EL2 register except that opc1 is 0.
2264 * Get the reginfo for the EL1 register to use for the actual access.
2265 * We don't use the EL1 register's access function, and
2266 * fine-grained-traps on EL1 also do not apply here.
2267 */
2268 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2269 crn, crm, op0, 0, op2);
2270 ri = get_arm_cp_reginfo(s->cp_regs, key);
2271 assert(ri);
2272 assert(cp_access_ok(s->current_el, ri, isread));
2273 /*
2274 * We might not have done an update_pc earlier, so check we don't
2275 * need it. We could support this in future if necessary.
2276 */
2277 assert(!(ri->type & ARM_CP_RAISES_EXC));
2278 }
2279
2280 if (nv2_mem_redirect) {
2281 /*
2282 * This system register is being redirected into an EL2 memory access.
2283 * This means it is not an IO operation, doesn't change hflags,
2284 * and need not end the TB, because it has no side effects.
2285 *
2286 * The access is 64-bit single copy atomic, guaranteed aligned because
2287 * of the definition of VCNR_EL2. Its endianness depends on
2288 * SCTLR_EL2.EE, not on the data endianness of EL1.
2289 * It is done under either the EL2 translation regime or the EL2&0
2290 * translation regime, depending on HCR_EL2.E2H. It behaves as if
2291 * PSTATE.PAN is 0.
2292 */
2293 TCGv_i64 ptr = tcg_temp_new_i64();
2294 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2295 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2296 int memidx = arm_to_core_mmu_idx(armmemidx);
2297 uint32_t syn;
2298
2299 mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2300
2301 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2302 tcg_gen_addi_i64(ptr, ptr,
2303 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2304 tcg_rt = cpu_reg(s, rt);
2305
2306 syn = syn_data_abort_vncr(0, !isread, 0);
2307 disas_set_insn_syndrome(s, syn);
2308 if (isread) {
2309 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2310 } else {
2311 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2312 }
2313 return;
2314 }
2315
2316 /* Handle special cases first */
2317 switch (ri->type & ARM_CP_SPECIAL_MASK) {
2318 case 0:
2319 break;
2320 case ARM_CP_NOP:
2321 return;
2322 case ARM_CP_NZCV:
2323 tcg_rt = cpu_reg(s, rt);
2324 if (isread) {
2325 gen_get_nzcv(tcg_rt);
2326 } else {
2327 gen_set_nzcv(tcg_rt);
2328 }
2329 return;
2330 case ARM_CP_CURRENTEL:
2331 {
2332 /*
2333 * Reads as current EL value from pstate, which is
2334 * guaranteed to be constant by the tb flags.
2335 * For nested virt we should report EL2.
2336 */
2337 int el = s->nv ? 2 : s->current_el;
2338 tcg_rt = cpu_reg(s, rt);
2339 tcg_gen_movi_i64(tcg_rt, el << 2);
2340 return;
2341 }
2342 case ARM_CP_DC_ZVA:
2343 /* Writes clear the aligned block of memory which rt points into. */
2344 if (s->mte_active[0]) {
2345 int desc = 0;
2346
2347 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2348 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2349 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2350
2351 tcg_rt = tcg_temp_new_i64();
2352 gen_helper_mte_check_zva(tcg_rt, tcg_env,
2353 tcg_constant_i32(desc), cpu_reg(s, rt));
2354 } else {
2355 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2356 }
2357 gen_helper_dc_zva(tcg_env, tcg_rt);
2358 return;
2359 case ARM_CP_DC_GVA:
2360 {
2361 TCGv_i64 clean_addr, tag;
2362
2363 /*
2364 * DC_GVA, like DC_ZVA, requires that we supply the original
2365 * pointer for an invalid page. Probe that address first.
2366 */
2367 tcg_rt = cpu_reg(s, rt);
2368 clean_addr = clean_data_tbi(s, tcg_rt);
2369 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2370
2371 if (s->ata[0]) {
2372 /* Extract the tag from the register to match STZGM. */
2373 tag = tcg_temp_new_i64();
2374 tcg_gen_shri_i64(tag, tcg_rt, 56);
2375 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2376 }
2377 }
2378 return;
2379 case ARM_CP_DC_GZVA:
2380 {
2381 TCGv_i64 clean_addr, tag;
2382
2383 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2384 tcg_rt = cpu_reg(s, rt);
2385 clean_addr = clean_data_tbi(s, tcg_rt);
2386 gen_helper_dc_zva(tcg_env, clean_addr);
2387
2388 if (s->ata[0]) {
2389 /* Extract the tag from the register to match STZGM. */
2390 tag = tcg_temp_new_i64();
2391 tcg_gen_shri_i64(tag, tcg_rt, 56);
2392 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2393 }
2394 }
2395 return;
2396 default:
2397 g_assert_not_reached();
2398 }
2399
2400 if (ri->type & ARM_CP_IO) {
2401 /* I/O operations must end the TB here (whether read or write) */
2402 need_exit_tb = translator_io_start(&s->base);
2403 }
2404
2405 tcg_rt = cpu_reg(s, rt);
2406
2407 if (isread) {
2408 if (ri->type & ARM_CP_CONST) {
2409 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2410 } else if (ri->readfn) {
2411 if (!tcg_ri) {
2412 tcg_ri = gen_lookup_cp_reg(key);
2413 }
2414 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2415 } else {
2416 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2417 }
2418 } else {
2419 if (ri->type & ARM_CP_CONST) {
2420 /* If not forbidden by access permissions, treat as WI */
2421 return;
2422 } else if (ri->writefn) {
2423 if (!tcg_ri) {
2424 tcg_ri = gen_lookup_cp_reg(key);
2425 }
2426 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2427 } else {
2428 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2429 }
2430 }
2431
2432 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2433 /*
2434 * A write to any coprocessor register that ends a TB
2435 * must rebuild the hflags for the next TB.
2436 */
2437 gen_rebuild_hflags(s);
2438 /*
2439 * We default to ending the TB on a coprocessor register write,
2440 * but allow this to be suppressed by the register definition
2441 * (usually only necessary to work around guest bugs).
2442 */
2443 need_exit_tb = true;
2444 }
2445 if (need_exit_tb) {
2446 s->base.is_jmp = DISAS_UPDATE_EXIT;
2447 }
2448 }
2449
2450 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2451 {
2452 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2453 return true;
2454 }
2455
2456 static bool trans_SVC(DisasContext *s, arg_i *a)
2457 {
2458 /*
2459 * For SVC, HVC and SMC we advance the single-step state
2460 * machine before taking the exception. This is architecturally
2461 * mandated, to ensure that single-stepping a system call
2462 * instruction works properly.
2463 */
2464 uint32_t syndrome = syn_aa64_svc(a->imm);
2465 if (s->fgt_svc) {
2466 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2467 return true;
2468 }
2469 gen_ss_advance(s);
2470 gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2471 return true;
2472 }
2473
2474 static bool trans_HVC(DisasContext *s, arg_i *a)
2475 {
2476 int target_el = s->current_el == 3 ? 3 : 2;
2477
2478 if (s->current_el == 0) {
2479 unallocated_encoding(s);
2480 return true;
2481 }
2482 /*
2483 * The pre HVC helper handles cases when HVC gets trapped
2484 * as an undefined insn by runtime configuration.
2485 */
2486 gen_a64_update_pc(s, 0);
2487 gen_helper_pre_hvc(tcg_env);
2488 /* Architecture requires ss advance before we do the actual work */
2489 gen_ss_advance(s);
2490 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2491 return true;
2492 }
2493
2494 static bool trans_SMC(DisasContext *s, arg_i *a)
2495 {
2496 if (s->current_el == 0) {
2497 unallocated_encoding(s);
2498 return true;
2499 }
2500 gen_a64_update_pc(s, 0);
2501 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2502 /* Architecture requires ss advance before we do the actual work */
2503 gen_ss_advance(s);
2504 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2505 return true;
2506 }
2507
2508 static bool trans_BRK(DisasContext *s, arg_i *a)
2509 {
2510 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2511 return true;
2512 }
2513
2514 static bool trans_HLT(DisasContext *s, arg_i *a)
2515 {
2516 /*
2517 * HLT. This has two purposes.
2518 * Architecturally, it is an external halting debug instruction.
2519 * Since QEMU doesn't implement external debug, we treat this as
2520 * it is required for halting debug disabled: it will UNDEF.
2521 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2522 */
2523 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2524 gen_exception_internal_insn(s, EXCP_SEMIHOST);
2525 } else {
2526 unallocated_encoding(s);
2527 }
2528 return true;
2529 }
2530
2531 /*
2532 * Load/Store exclusive instructions are implemented by remembering
2533 * the value/address loaded, and seeing if these are the same
2534 * when the store is performed. This is not actually the architecturally
2535 * mandated semantics, but it works for typical guest code sequences
2536 * and avoids having to monitor regular stores.
2537 *
2538 * The store exclusive uses the atomic cmpxchg primitives to avoid
2539 * races in multi-threaded linux-user and when MTTCG softmmu is
2540 * enabled.
2541 */
2542 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2543 int size, bool is_pair)
2544 {
2545 int idx = get_mem_index(s);
2546 TCGv_i64 dirty_addr, clean_addr;
2547 MemOp memop = check_atomic_align(s, rn, size + is_pair);
2548
2549 s->is_ldex = true;
2550 dirty_addr = cpu_reg_sp(s, rn);
2551 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2552
2553 g_assert(size <= 3);
2554 if (is_pair) {
2555 g_assert(size >= 2);
2556 if (size == 2) {
2557 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2558 if (s->be_data == MO_LE) {
2559 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2560 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2561 } else {
2562 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2563 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2564 }
2565 } else {
2566 TCGv_i128 t16 = tcg_temp_new_i128();
2567
2568 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2569
2570 if (s->be_data == MO_LE) {
2571 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2572 cpu_exclusive_high, t16);
2573 } else {
2574 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2575 cpu_exclusive_val, t16);
2576 }
2577 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2578 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2579 }
2580 } else {
2581 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2582 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2583 }
2584 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2585 }
2586
2587 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2588 int rn, int size, int is_pair)
2589 {
2590 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2591 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2592 * [addr] = {Rt};
2593 * if (is_pair) {
2594 * [addr + datasize] = {Rt2};
2595 * }
2596 * {Rd} = 0;
2597 * } else {
2598 * {Rd} = 1;
2599 * }
2600 * env->exclusive_addr = -1;
2601 */
2602 TCGLabel *fail_label = gen_new_label();
2603 TCGLabel *done_label = gen_new_label();
2604 TCGv_i64 tmp, clean_addr;
2605 MemOp memop;
2606
2607 /*
2608 * FIXME: We are out of spec here. We have recorded only the address
2609 * from load_exclusive, not the entire range, and we assume that the
2610 * size of the access on both sides match. The architecture allows the
2611 * store to be smaller than the load, so long as the stored bytes are
2612 * within the range recorded by the load.
2613 */
2614
2615 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2616 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2617 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2618
2619 /*
2620 * The write, and any associated faults, only happen if the virtual
2621 * and physical addresses pass the exclusive monitor check. These
2622 * faults are exceedingly unlikely, because normally the guest uses
2623 * the exact same address register for the load_exclusive, and we
2624 * would have recognized these faults there.
2625 *
2626 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2627 * unaligned 4-byte write within the range of an aligned 8-byte load.
2628 * With LSE2, the store would need to cross a 16-byte boundary when the
2629 * load did not, which would mean the store is outside the range
2630 * recorded for the monitor, which would have failed a corrected monitor
2631 * check above. For now, we assume no size change and retain the
2632 * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2633 *
2634 * It is possible to trigger an MTE fault, by performing the load with
2635 * a virtual address with a valid tag and performing the store with the
2636 * same virtual address and a different invalid tag.
2637 */
2638 memop = size + is_pair;
2639 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2640 memop |= MO_ALIGN;
2641 }
2642 memop = finalize_memop(s, memop);
2643 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2644
2645 tmp = tcg_temp_new_i64();
2646 if (is_pair) {
2647 if (size == 2) {
2648 if (s->be_data == MO_LE) {
2649 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2650 } else {
2651 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2652 }
2653 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2654 cpu_exclusive_val, tmp,
2655 get_mem_index(s), memop);
2656 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2657 } else {
2658 TCGv_i128 t16 = tcg_temp_new_i128();
2659 TCGv_i128 c16 = tcg_temp_new_i128();
2660 TCGv_i64 a, b;
2661
2662 if (s->be_data == MO_LE) {
2663 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2664 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2665 cpu_exclusive_high);
2666 } else {
2667 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2668 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2669 cpu_exclusive_val);
2670 }
2671
2672 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2673 get_mem_index(s), memop);
2674
2675 a = tcg_temp_new_i64();
2676 b = tcg_temp_new_i64();
2677 if (s->be_data == MO_LE) {
2678 tcg_gen_extr_i128_i64(a, b, t16);
2679 } else {
2680 tcg_gen_extr_i128_i64(b, a, t16);
2681 }
2682
2683 tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2684 tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2685 tcg_gen_or_i64(tmp, a, b);
2686
2687 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2688 }
2689 } else {
2690 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2691 cpu_reg(s, rt), get_mem_index(s), memop);
2692 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2693 }
2694 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2695 tcg_gen_br(done_label);
2696
2697 gen_set_label(fail_label);
2698 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2699 gen_set_label(done_label);
2700 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2701 }
2702
2703 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2704 int rn, int size)
2705 {
2706 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2707 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2708 int memidx = get_mem_index(s);
2709 TCGv_i64 clean_addr;
2710 MemOp memop;
2711
2712 if (rn == 31) {
2713 gen_check_sp_alignment(s);
2714 }
2715 memop = check_atomic_align(s, rn, size);
2716 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2717 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2718 memidx, memop);
2719 }
2720
2721 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2722 int rn, int size)
2723 {
2724 TCGv_i64 s1 = cpu_reg(s, rs);
2725 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2726 TCGv_i64 t1 = cpu_reg(s, rt);
2727 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2728 TCGv_i64 clean_addr;
2729 int memidx = get_mem_index(s);
2730 MemOp memop;
2731
2732 if (rn == 31) {
2733 gen_check_sp_alignment(s);
2734 }
2735
2736 /* This is a single atomic access, despite the "pair". */
2737 memop = check_atomic_align(s, rn, size + 1);
2738 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2739
2740 if (size == 2) {
2741 TCGv_i64 cmp = tcg_temp_new_i64();
2742 TCGv_i64 val = tcg_temp_new_i64();
2743
2744 if (s->be_data == MO_LE) {
2745 tcg_gen_concat32_i64(val, t1, t2);
2746 tcg_gen_concat32_i64(cmp, s1, s2);
2747 } else {
2748 tcg_gen_concat32_i64(val, t2, t1);
2749 tcg_gen_concat32_i64(cmp, s2, s1);
2750 }
2751
2752 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2753
2754 if (s->be_data == MO_LE) {
2755 tcg_gen_extr32_i64(s1, s2, cmp);
2756 } else {
2757 tcg_gen_extr32_i64(s2, s1, cmp);
2758 }
2759 } else {
2760 TCGv_i128 cmp = tcg_temp_new_i128();
2761 TCGv_i128 val = tcg_temp_new_i128();
2762
2763 if (s->be_data == MO_LE) {
2764 tcg_gen_concat_i64_i128(val, t1, t2);
2765 tcg_gen_concat_i64_i128(cmp, s1, s2);
2766 } else {
2767 tcg_gen_concat_i64_i128(val, t2, t1);
2768 tcg_gen_concat_i64_i128(cmp, s2, s1);
2769 }
2770
2771 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2772
2773 if (s->be_data == MO_LE) {
2774 tcg_gen_extr_i128_i64(s1, s2, cmp);
2775 } else {
2776 tcg_gen_extr_i128_i64(s2, s1, cmp);
2777 }
2778 }
2779 }
2780
2781 /*
2782 * Compute the ISS.SF bit for syndrome information if an exception
2783 * is taken on a load or store. This indicates whether the instruction
2784 * is accessing a 32-bit or 64-bit register. This logic is derived
2785 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2786 */
2787 static bool ldst_iss_sf(int size, bool sign, bool ext)
2788 {
2789
2790 if (sign) {
2791 /*
2792 * Signed loads are 64 bit results if we are not going to
2793 * do a zero-extend from 32 to 64 after the load.
2794 * (For a store, sign and ext are always false.)
2795 */
2796 return !ext;
2797 } else {
2798 /* Unsigned loads/stores work at the specified size */
2799 return size == MO_64;
2800 }
2801 }
2802
2803 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2804 {
2805 if (a->rn == 31) {
2806 gen_check_sp_alignment(s);
2807 }
2808 if (a->lasr) {
2809 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2810 }
2811 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2812 return true;
2813 }
2814
2815 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2816 {
2817 if (a->rn == 31) {
2818 gen_check_sp_alignment(s);
2819 }
2820 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2821 if (a->lasr) {
2822 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2823 }
2824 return true;
2825 }
2826
2827 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2828 {
2829 TCGv_i64 clean_addr;
2830 MemOp memop;
2831 bool iss_sf = ldst_iss_sf(a->sz, false, false);
2832
2833 /*
2834 * StoreLORelease is the same as Store-Release for QEMU, but
2835 * needs the feature-test.
2836 */
2837 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2838 return false;
2839 }
2840 /* Generate ISS for non-exclusive accesses including LASR. */
2841 if (a->rn == 31) {
2842 gen_check_sp_alignment(s);
2843 }
2844 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2845 memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2846 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2847 true, a->rn != 31, memop);
2848 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2849 iss_sf, a->lasr);
2850 return true;
2851 }
2852
2853 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2854 {
2855 TCGv_i64 clean_addr;
2856 MemOp memop;
2857 bool iss_sf = ldst_iss_sf(a->sz, false, false);
2858
2859 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2860 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2861 return false;
2862 }
2863 /* Generate ISS for non-exclusive accesses including LASR. */
2864 if (a->rn == 31) {
2865 gen_check_sp_alignment(s);
2866 }
2867 memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2868 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2869 false, a->rn != 31, memop);
2870 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2871 a->rt, iss_sf, a->lasr);
2872 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2873 return true;
2874 }
2875
2876 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2877 {
2878 if (a->rn == 31) {
2879 gen_check_sp_alignment(s);
2880 }
2881 if (a->lasr) {
2882 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2883 }
2884 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
2885 return true;
2886 }
2887
2888 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
2889 {
2890 if (a->rn == 31) {
2891 gen_check_sp_alignment(s);
2892 }
2893 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
2894 if (a->lasr) {
2895 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2896 }
2897 return true;
2898 }
2899
2900 static bool trans_CASP(DisasContext *s, arg_CASP *a)
2901 {
2902 if (!dc_isar_feature(aa64_atomics, s)) {
2903 return false;
2904 }
2905 if (((a->rt | a->rs) & 1) != 0) {
2906 return false;
2907 }
2908
2909 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
2910 return true;
2911 }
2912
2913 static bool trans_CAS(DisasContext *s, arg_CAS *a)
2914 {
2915 if (!dc_isar_feature(aa64_atomics, s)) {
2916 return false;
2917 }
2918 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
2919 return true;
2920 }
2921
2922 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
2923 {
2924 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
2925 TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
2926 TCGv_i64 clean_addr = tcg_temp_new_i64();
2927 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
2928
2929 gen_pc_plus_diff(s, clean_addr, a->imm);
2930 do_gpr_ld(s, tcg_rt, clean_addr, memop,
2931 false, true, a->rt, iss_sf, false);
2932 return true;
2933 }
2934
2935 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
2936 {
2937 /* Load register (literal), vector version */
2938 TCGv_i64 clean_addr;
2939 MemOp memop;
2940
2941 if (!fp_access_check(s)) {
2942 return true;
2943 }
2944 memop = finalize_memop_asimd(s, a->sz);
2945 clean_addr = tcg_temp_new_i64();
2946 gen_pc_plus_diff(s, clean_addr, a->imm);
2947 do_fp_ld(s, a->rt, clean_addr, memop);
2948 return true;
2949 }
2950
2951 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
2952 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
2953 uint64_t offset, bool is_store, MemOp mop)
2954 {
2955 if (a->rn == 31) {
2956 gen_check_sp_alignment(s);
2957 }
2958
2959 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
2960 if (!a->p) {
2961 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
2962 }
2963
2964 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
2965 (a->w || a->rn != 31), 2 << a->sz, mop);
2966 }
2967
2968 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
2969 TCGv_i64 dirty_addr, uint64_t offset)
2970 {
2971 if (a->w) {
2972 if (a->p) {
2973 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2974 }
2975 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
2976 }
2977 }
2978
2979 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
2980 {
2981 uint64_t offset = a->imm << a->sz;
2982 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
2983 MemOp mop = finalize_memop(s, a->sz);
2984
2985 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
2986 tcg_rt = cpu_reg(s, a->rt);
2987 tcg_rt2 = cpu_reg(s, a->rt2);
2988 /*
2989 * We built mop above for the single logical access -- rebuild it
2990 * now for the paired operation.
2991 *
2992 * With LSE2, non-sign-extending pairs are treated atomically if
2993 * aligned, and if unaligned one of the pair will be completely
2994 * within a 16-byte block and that element will be atomic.
2995 * Otherwise each element is separately atomic.
2996 * In all cases, issue one operation with the correct atomicity.
2997 */
2998 mop = a->sz + 1;
2999 if (s->align_mem) {
3000 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3001 }
3002 mop = finalize_memop_pair(s, mop);
3003 if (a->sz == 2) {
3004 TCGv_i64 tmp = tcg_temp_new_i64();
3005
3006 if (s->be_data == MO_LE) {
3007 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3008 } else {
3009 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3010 }
3011 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3012 } else {
3013 TCGv_i128 tmp = tcg_temp_new_i128();
3014
3015 if (s->be_data == MO_LE) {
3016 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3017 } else {
3018 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3019 }
3020 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3021 }
3022 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3023 return true;
3024 }
3025
3026 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3027 {
3028 uint64_t offset = a->imm << a->sz;
3029 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3030 MemOp mop = finalize_memop(s, a->sz);
3031
3032 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3033 tcg_rt = cpu_reg(s, a->rt);
3034 tcg_rt2 = cpu_reg(s, a->rt2);
3035
3036 /*
3037 * We built mop above for the single logical access -- rebuild it
3038 * now for the paired operation.
3039 *
3040 * With LSE2, non-sign-extending pairs are treated atomically if
3041 * aligned, and if unaligned one of the pair will be completely
3042 * within a 16-byte block and that element will be atomic.
3043 * Otherwise each element is separately atomic.
3044 * In all cases, issue one operation with the correct atomicity.
3045 *
3046 * This treats sign-extending loads like zero-extending loads,
3047 * since that reuses the most code below.
3048 */
3049 mop = a->sz + 1;
3050 if (s->align_mem) {
3051 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3052 }
3053 mop = finalize_memop_pair(s, mop);
3054 if (a->sz == 2) {
3055 int o2 = s->be_data == MO_LE ? 32 : 0;
3056 int o1 = o2 ^ 32;
3057
3058 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3059 if (a->sign) {
3060 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3061 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3062 } else {
3063 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3064 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3065 }
3066 } else {
3067 TCGv_i128 tmp = tcg_temp_new_i128();
3068
3069 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3070 if (s->be_data == MO_LE) {
3071 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3072 } else {
3073 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3074 }
3075 }
3076 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3077 return true;
3078 }
3079
3080 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3081 {
3082 uint64_t offset = a->imm << a->sz;
3083 TCGv_i64 clean_addr, dirty_addr;
3084 MemOp mop;
3085
3086 if (!fp_access_check(s)) {
3087 return true;
3088 }
3089
3090 /* LSE2 does not merge FP pairs; leave these as separate operations. */
3091 mop = finalize_memop_asimd(s, a->sz);
3092 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3093 do_fp_st(s, a->rt, clean_addr, mop);
3094 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3095 do_fp_st(s, a->rt2, clean_addr, mop);
3096 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3097 return true;
3098 }
3099
3100 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3101 {
3102 uint64_t offset = a->imm << a->sz;
3103 TCGv_i64 clean_addr, dirty_addr;
3104 MemOp mop;
3105
3106 if (!fp_access_check(s)) {
3107 return true;
3108 }
3109
3110 /* LSE2 does not merge FP pairs; leave these as separate operations. */
3111 mop = finalize_memop_asimd(s, a->sz);
3112 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3113 do_fp_ld(s, a->rt, clean_addr, mop);
3114 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3115 do_fp_ld(s, a->rt2, clean_addr, mop);
3116 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3117 return true;
3118 }
3119
3120 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3121 {
3122 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3123 uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3124 MemOp mop;
3125 TCGv_i128 tmp;
3126
3127 /* STGP only comes in one size. */
3128 tcg_debug_assert(a->sz == MO_64);
3129
3130 if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3131 return false;
3132 }
3133
3134 if (a->rn == 31) {
3135 gen_check_sp_alignment(s);
3136 }
3137
3138 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3139 if (!a->p) {
3140 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3141 }
3142
3143 clean_addr = clean_data_tbi(s, dirty_addr);
3144 tcg_rt = cpu_reg(s, a->rt);
3145 tcg_rt2 = cpu_reg(s, a->rt2);
3146
3147 /*
3148 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3149 * and one tag operation. We implement it as one single aligned 16-byte
3150 * memory operation for convenience. Note that the alignment ensures
3151 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3152 */
3153 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3154
3155 tmp = tcg_temp_new_i128();
3156 if (s->be_data == MO_LE) {
3157 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3158 } else {
3159 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3160 }
3161 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3162
3163 /* Perform the tag store, if tag access enabled. */
3164 if (s->ata[0]) {
3165 if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3166 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3167 } else {
3168 gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3169 }
3170 }
3171
3172 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3173 return true;
3174 }
3175
3176 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3177 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3178 uint64_t offset, bool is_store, MemOp mop)
3179 {
3180 int memidx;
3181
3182 if (a->rn == 31) {
3183 gen_check_sp_alignment(s);
3184 }
3185
3186 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3187 if (!a->p) {
3188 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3189 }
3190 memidx = get_a64_user_mem_index(s, a->unpriv);
3191 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3192 a->w || a->rn != 31,
3193 mop, a->unpriv, memidx);
3194 }
3195
3196 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3197 TCGv_i64 dirty_addr, uint64_t offset)
3198 {
3199 if (a->w) {
3200 if (a->p) {
3201 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3202 }
3203 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3204 }
3205 }
3206
3207 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3208 {
3209 bool iss_sf, iss_valid = !a->w;
3210 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3211 int memidx = get_a64_user_mem_index(s, a->unpriv);
3212 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3213
3214 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3215
3216 tcg_rt = cpu_reg(s, a->rt);
3217 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3218
3219 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3220 iss_valid, a->rt, iss_sf, false);
3221 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3222 return true;
3223 }
3224
3225 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3226 {
3227 bool iss_sf, iss_valid = !a->w;
3228 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3229 int memidx = get_a64_user_mem_index(s, a->unpriv);
3230 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3231
3232 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3233
3234 tcg_rt = cpu_reg(s, a->rt);
3235 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3236
3237 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3238 a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3239 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3240 return true;
3241 }
3242
3243 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3244 {
3245 TCGv_i64 clean_addr, dirty_addr;
3246 MemOp mop;
3247
3248 if (!fp_access_check(s)) {
3249 return true;
3250 }
3251 mop = finalize_memop_asimd(s, a->sz);
3252 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3253 do_fp_st(s, a->rt, clean_addr, mop);
3254 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3255 return true;
3256 }
3257
3258 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3259 {
3260 TCGv_i64 clean_addr, dirty_addr;
3261 MemOp mop;
3262
3263 if (!fp_access_check(s)) {
3264 return true;
3265 }
3266 mop = finalize_memop_asimd(s, a->sz);
3267 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3268 do_fp_ld(s, a->rt, clean_addr, mop);
3269 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3270 return true;
3271 }
3272
3273 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3274 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3275 bool is_store, MemOp memop)
3276 {
3277 TCGv_i64 tcg_rm;
3278
3279 if (a->rn == 31) {
3280 gen_check_sp_alignment(s);
3281 }
3282 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3283
3284 tcg_rm = read_cpu_reg(s, a->rm, 1);
3285 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3286
3287 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3288 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3289 }
3290
3291 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3292 {
3293 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3294 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3295 MemOp memop;
3296
3297 if (extract32(a->opt, 1, 1) == 0) {
3298 return false;
3299 }
3300
3301 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3302 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3303 tcg_rt = cpu_reg(s, a->rt);
3304 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3305 a->ext, true, a->rt, iss_sf, false);
3306 return true;
3307 }
3308
3309 static bool trans_STR(DisasContext *s, arg_ldst *a)
3310 {
3311 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3312 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3313 MemOp memop;
3314
3315 if (extract32(a->opt, 1, 1) == 0) {
3316 return false;
3317 }
3318
3319 memop = finalize_memop(s, a->sz);
3320 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3321 tcg_rt = cpu_reg(s, a->rt);
3322 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3323 return true;
3324 }
3325
3326 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3327 {
3328 TCGv_i64 clean_addr, dirty_addr;
3329 MemOp memop;
3330
3331 if (extract32(a->opt, 1, 1) == 0) {
3332 return false;
3333 }
3334
3335 if (!fp_access_check(s)) {
3336 return true;
3337 }
3338
3339 memop = finalize_memop_asimd(s, a->sz);
3340 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3341 do_fp_ld(s, a->rt, clean_addr, memop);
3342 return true;
3343 }
3344
3345 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3346 {
3347 TCGv_i64 clean_addr, dirty_addr;
3348 MemOp memop;
3349
3350 if (extract32(a->opt, 1, 1) == 0) {
3351 return false;
3352 }
3353
3354 if (!fp_access_check(s)) {
3355 return true;
3356 }
3357
3358 memop = finalize_memop_asimd(s, a->sz);
3359 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3360 do_fp_st(s, a->rt, clean_addr, memop);
3361 return true;
3362 }
3363
3364
3365 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3366 int sign, bool invert)
3367 {
3368 MemOp mop = a->sz | sign;
3369 TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3370
3371 if (a->rn == 31) {
3372 gen_check_sp_alignment(s);
3373 }
3374 mop = check_atomic_align(s, a->rn, mop);
3375 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3376 a->rn != 31, mop);
3377 tcg_rs = read_cpu_reg(s, a->rs, true);
3378 tcg_rt = cpu_reg(s, a->rt);
3379 if (invert) {
3380 tcg_gen_not_i64(tcg_rs, tcg_rs);
3381 }
3382 /*
3383 * The tcg atomic primitives are all full barriers. Therefore we
3384 * can ignore the Acquire and Release bits of this instruction.
3385 */
3386 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3387
3388 if (mop & MO_SIGN) {
3389 switch (a->sz) {
3390 case MO_8:
3391 tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3392 break;
3393 case MO_16:
3394 tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3395 break;
3396 case MO_32:
3397 tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3398 break;
3399 case MO_64:
3400 break;
3401 default:
3402 g_assert_not_reached();
3403 }
3404 }
3405 return true;
3406 }
3407
3408 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3409 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3410 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3411 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3412 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3413 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3414 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3415 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3416 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3417
3418 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3419 {
3420 bool iss_sf = ldst_iss_sf(a->sz, false, false);
3421 TCGv_i64 clean_addr;
3422 MemOp mop;
3423
3424 if (!dc_isar_feature(aa64_atomics, s) ||
3425 !dc_isar_feature(aa64_rcpc_8_3, s)) {
3426 return false;
3427 }
3428 if (a->rn == 31) {
3429 gen_check_sp_alignment(s);
3430 }
3431 mop = check_atomic_align(s, a->rn, a->sz);
3432 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3433 a->rn != 31, mop);
3434 /*
3435 * LDAPR* are a special case because they are a simple load, not a
3436 * fetch-and-do-something op.
3437 * The architectural consistency requirements here are weaker than
3438 * full load-acquire (we only need "load-acquire processor consistent"),
3439 * but we choose to implement them as full LDAQ.
3440 */
3441 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3442 true, a->rt, iss_sf, true);
3443 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3444 return true;
3445 }
3446
3447 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3448 {
3449 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3450 MemOp memop;
3451
3452 /* Load with pointer authentication */
3453 if (!dc_isar_feature(aa64_pauth, s)) {
3454 return false;
3455 }
3456
3457 if (a->rn == 31) {
3458 gen_check_sp_alignment(s);
3459 }
3460 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3461
3462 if (s->pauth_active) {
3463 if (!a->m) {
3464 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3465 tcg_constant_i64(0));
3466 } else {
3467 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3468 tcg_constant_i64(0));
3469 }
3470 }
3471
3472 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3473
3474 memop = finalize_memop(s, MO_64);
3475
3476 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3477 clean_addr = gen_mte_check1(s, dirty_addr, false,
3478 a->w || a->rn != 31, memop);
3479
3480 tcg_rt = cpu_reg(s, a->rt);
3481 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3482 /* extend */ false, /* iss_valid */ !a->w,
3483 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3484
3485 if (a->w) {
3486 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3487 }
3488 return true;
3489 }
3490
3491 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3492 {
3493 TCGv_i64 clean_addr, dirty_addr;
3494 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3495 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3496
3497 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3498 return false;
3499 }
3500
3501 if (a->rn == 31) {
3502 gen_check_sp_alignment(s);
3503 }
3504
3505 mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3506 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3507 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3508 clean_addr = clean_data_tbi(s, dirty_addr);
3509
3510 /*
3511 * Load-AcquirePC semantics; we implement as the slightly more
3512 * restrictive Load-Acquire.
3513 */
3514 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3515 a->rt, iss_sf, true);
3516 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3517 return true;
3518 }
3519
3520 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3521 {
3522 TCGv_i64 clean_addr, dirty_addr;
3523 MemOp mop = a->sz;
3524 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3525
3526 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3527 return false;
3528 }
3529
3530 /* TODO: ARMv8.4-LSE SCTLR.nAA */
3531
3532 if (a->rn == 31) {
3533 gen_check_sp_alignment(s);
3534 }
3535
3536 mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3537 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3538 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3539 clean_addr = clean_data_tbi(s, dirty_addr);
3540
3541 /* Store-Release semantics */
3542 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3543 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3544 return true;
3545 }
3546
3547 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3548 {
3549 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3550 MemOp endian, align, mop;
3551
3552 int total; /* total bytes */
3553 int elements; /* elements per vector */
3554 int r;
3555 int size = a->sz;
3556
3557 if (!a->p && a->rm != 0) {
3558 /* For non-postindexed accesses the Rm field must be 0 */
3559 return false;
3560 }
3561 if (size == 3 && !a->q && a->selem != 1) {
3562 return false;
3563 }
3564 if (!fp_access_check(s)) {
3565 return true;
3566 }
3567
3568 if (a->rn == 31) {
3569 gen_check_sp_alignment(s);
3570 }
3571
3572 /* For our purposes, bytes are always little-endian. */
3573 endian = s->be_data;
3574 if (size == 0) {
3575 endian = MO_LE;
3576 }
3577
3578 total = a->rpt * a->selem * (a->q ? 16 : 8);
3579 tcg_rn = cpu_reg_sp(s, a->rn);
3580
3581 /*
3582 * Issue the MTE check vs the logical repeat count, before we
3583 * promote consecutive little-endian elements below.
3584 */
3585 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3586 finalize_memop_asimd(s, size));
3587
3588 /*
3589 * Consecutive little-endian elements from a single register
3590 * can be promoted to a larger little-endian operation.
3591 */
3592 align = MO_ALIGN;
3593 if (a->selem == 1 && endian == MO_LE) {
3594 align = pow2_align(size);
3595 size = 3;
3596 }
3597 if (!s->align_mem) {
3598 align = 0;
3599 }
3600 mop = endian | size | align;
3601
3602 elements = (a->q ? 16 : 8) >> size;
3603 tcg_ebytes = tcg_constant_i64(1 << size);
3604 for (r = 0; r < a->rpt; r++) {
3605 int e;
3606 for (e = 0; e < elements; e++) {
3607 int xs;
3608 for (xs = 0; xs < a->selem; xs++) {
3609 int tt = (a->rt + r + xs) % 32;
3610 do_vec_ld(s, tt, e, clean_addr, mop);
3611 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3612 }
3613 }
3614 }
3615
3616 /*
3617 * For non-quad operations, setting a slice of the low 64 bits of
3618 * the register clears the high 64 bits (in the ARM ARM pseudocode
3619 * this is implicit in the fact that 'rval' is a 64 bit wide
3620 * variable). For quad operations, we might still need to zero
3621 * the high bits of SVE.
3622 */
3623 for (r = 0; r < a->rpt * a->selem; r++) {
3624 int tt = (a->rt + r) % 32;
3625 clear_vec_high(s, a->q, tt);
3626 }
3627
3628 if (a->p) {
3629 if (a->rm == 31) {
3630 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3631 } else {
3632 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3633 }
3634 }
3635 return true;
3636 }
3637
3638 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3639 {
3640 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3641 MemOp endian, align, mop;
3642
3643 int total; /* total bytes */
3644 int elements; /* elements per vector */
3645 int r;
3646 int size = a->sz;
3647
3648 if (!a->p && a->rm != 0) {
3649 /* For non-postindexed accesses the Rm field must be 0 */
3650 return false;
3651 }
3652 if (size == 3 && !a->q && a->selem != 1) {
3653 return false;
3654 }
3655 if (!fp_access_check(s)) {
3656 return true;
3657 }
3658
3659 if (a->rn == 31) {
3660 gen_check_sp_alignment(s);
3661 }
3662
3663 /* For our purposes, bytes are always little-endian. */
3664 endian = s->be_data;
3665 if (size == 0) {
3666 endian = MO_LE;
3667 }
3668
3669 total = a->rpt * a->selem * (a->q ? 16 : 8);
3670 tcg_rn = cpu_reg_sp(s, a->rn);
3671
3672 /*
3673 * Issue the MTE check vs the logical repeat count, before we
3674 * promote consecutive little-endian elements below.
3675 */
3676 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3677 finalize_memop_asimd(s, size));
3678
3679 /*
3680 * Consecutive little-endian elements from a single register
3681 * can be promoted to a larger little-endian operation.
3682 */
3683 align = MO_ALIGN;
3684 if (a->selem == 1 && endian == MO_LE) {
3685 align = pow2_align(size);
3686 size = 3;
3687 }
3688 if (!s->align_mem) {
3689 align = 0;
3690 }
3691 mop = endian | size | align;
3692
3693 elements = (a->q ? 16 : 8) >> size;
3694 tcg_ebytes = tcg_constant_i64(1 << size);
3695 for (r = 0; r < a->rpt; r++) {
3696 int e;
3697 for (e = 0; e < elements; e++) {
3698 int xs;
3699 for (xs = 0; xs < a->selem; xs++) {
3700 int tt = (a->rt + r + xs) % 32;
3701 do_vec_st(s, tt, e, clean_addr, mop);
3702 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3703 }
3704 }
3705 }
3706
3707 if (a->p) {
3708 if (a->rm == 31) {
3709 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3710 } else {
3711 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3712 }
3713 }
3714 return true;
3715 }
3716
3717 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3718 {
3719 int xs, total, rt;
3720 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3721 MemOp mop;
3722
3723 if (!a->p && a->rm != 0) {
3724 return false;
3725 }
3726 if (!fp_access_check(s)) {
3727 return true;
3728 }
3729
3730 if (a->rn == 31) {
3731 gen_check_sp_alignment(s);
3732 }
3733
3734 total = a->selem << a->scale;
3735 tcg_rn = cpu_reg_sp(s, a->rn);
3736
3737 mop = finalize_memop_asimd(s, a->scale);
3738 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3739 total, mop);
3740
3741 tcg_ebytes = tcg_constant_i64(1 << a->scale);
3742 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3743 do_vec_st(s, rt, a->index, clean_addr, mop);
3744 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3745 }
3746
3747 if (a->p) {
3748 if (a->rm == 31) {
3749 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3750 } else {
3751 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3752 }
3753 }
3754 return true;
3755 }
3756
3757 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3758 {
3759 int xs, total, rt;
3760 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3761 MemOp mop;
3762
3763 if (!a->p && a->rm != 0) {
3764 return false;
3765 }
3766 if (!fp_access_check(s)) {
3767 return true;
3768 }
3769
3770 if (a->rn == 31) {
3771 gen_check_sp_alignment(s);
3772 }
3773
3774 total = a->selem << a->scale;
3775 tcg_rn = cpu_reg_sp(s, a->rn);
3776
3777 mop = finalize_memop_asimd(s, a->scale);
3778 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3779 total, mop);
3780
3781 tcg_ebytes = tcg_constant_i64(1 << a->scale);
3782 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3783 do_vec_ld(s, rt, a->index, clean_addr, mop);
3784 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3785 }
3786
3787 if (a->p) {
3788 if (a->rm == 31) {
3789 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3790 } else {
3791 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3792 }
3793 }
3794 return true;
3795 }
3796
3797 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3798 {
3799 int xs, total, rt;
3800 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3801 MemOp mop;
3802
3803 if (!a->p && a->rm != 0) {
3804 return false;
3805 }
3806 if (!fp_access_check(s)) {
3807 return true;
3808 }
3809
3810 if (a->rn == 31) {
3811 gen_check_sp_alignment(s);
3812 }
3813
3814 total = a->selem << a->scale;
3815 tcg_rn = cpu_reg_sp(s, a->rn);
3816
3817 mop = finalize_memop_asimd(s, a->scale);
3818 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3819 total, mop);
3820
3821 tcg_ebytes = tcg_constant_i64(1 << a->scale);
3822 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3823 /* Load and replicate to all elements */
3824 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3825
3826 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3827 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3828 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3829 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3830 }
3831
3832 if (a->p) {
3833 if (a->rm == 31) {
3834 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3835 } else {
3836 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3837 }
3838 }
3839 return true;
3840 }
3841
3842 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3843 {
3844 TCGv_i64 addr, clean_addr, tcg_rt;
3845 int size = 4 << s->dcz_blocksize;
3846
3847 if (!dc_isar_feature(aa64_mte, s)) {
3848 return false;
3849 }
3850 if (s->current_el == 0) {
3851 return false;
3852 }
3853
3854 if (a->rn == 31) {
3855 gen_check_sp_alignment(s);
3856 }
3857
3858 addr = read_cpu_reg_sp(s, a->rn, true);
3859 tcg_gen_addi_i64(addr, addr, a->imm);
3860 tcg_rt = cpu_reg(s, a->rt);
3861
3862 if (s->ata[0]) {
3863 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3864 }
3865 /*
3866 * The non-tags portion of STZGM is mostly like DC_ZVA,
3867 * except the alignment happens before the access.
3868 */
3869 clean_addr = clean_data_tbi(s, addr);
3870 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3871 gen_helper_dc_zva(tcg_env, clean_addr);
3872 return true;
3873 }
3874
3875 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3876 {
3877 TCGv_i64 addr, clean_addr, tcg_rt;
3878
3879 if (!dc_isar_feature(aa64_mte, s)) {
3880 return false;
3881 }
3882 if (s->current_el == 0) {
3883 return false;
3884 }
3885
3886 if (a->rn == 31) {
3887 gen_check_sp_alignment(s);
3888 }
3889
3890 addr = read_cpu_reg_sp(s, a->rn, true);
3891 tcg_gen_addi_i64(addr, addr, a->imm);
3892 tcg_rt = cpu_reg(s, a->rt);
3893
3894 if (s->ata[0]) {
3895 gen_helper_stgm(tcg_env, addr, tcg_rt);
3896 } else {
3897 MMUAccessType acc = MMU_DATA_STORE;
3898 int size = 4 << s->gm_blocksize;
3899
3900 clean_addr = clean_data_tbi(s, addr);
3901 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3902 gen_probe_access(s, clean_addr, acc, size);
3903 }
3904 return true;
3905 }
3906
3907 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
3908 {
3909 TCGv_i64 addr, clean_addr, tcg_rt;
3910
3911 if (!dc_isar_feature(aa64_mte, s)) {
3912 return false;
3913 }
3914 if (s->current_el == 0) {
3915 return false;
3916 }
3917
3918 if (a->rn == 31) {
3919 gen_check_sp_alignment(s);
3920 }
3921
3922 addr = read_cpu_reg_sp(s, a->rn, true);
3923 tcg_gen_addi_i64(addr, addr, a->imm);
3924 tcg_rt = cpu_reg(s, a->rt);
3925
3926 if (s->ata[0]) {
3927 gen_helper_ldgm(tcg_rt, tcg_env, addr);
3928 } else {
3929 MMUAccessType acc = MMU_DATA_LOAD;
3930 int size = 4 << s->gm_blocksize;
3931
3932 clean_addr = clean_data_tbi(s, addr);
3933 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3934 gen_probe_access(s, clean_addr, acc, size);
3935 /* The result tags are zeros. */
3936 tcg_gen_movi_i64(tcg_rt, 0);
3937 }
3938 return true;
3939 }
3940
3941 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
3942 {
3943 TCGv_i64 addr, clean_addr, tcg_rt;
3944
3945 if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3946 return false;
3947 }
3948
3949 if (a->rn == 31) {
3950 gen_check_sp_alignment(s);
3951 }
3952
3953 addr = read_cpu_reg_sp(s, a->rn, true);
3954 if (!a->p) {
3955 /* pre-index or signed offset */
3956 tcg_gen_addi_i64(addr, addr, a->imm);
3957 }
3958
3959 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
3960 tcg_rt = cpu_reg(s, a->rt);
3961 if (s->ata[0]) {
3962 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
3963 } else {
3964 /*
3965 * Tag access disabled: we must check for aborts on the load
3966 * load from [rn+offset], and then insert a 0 tag into rt.
3967 */
3968 clean_addr = clean_data_tbi(s, addr);
3969 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
3970 gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
3971 }
3972
3973 if (a->w) {
3974 /* pre-index or post-index */
3975 if (a->p) {
3976 /* post-index */
3977 tcg_gen_addi_i64(addr, addr, a->imm);
3978 }
3979 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
3980 }
3981 return true;
3982 }
3983
3984 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
3985 {
3986 TCGv_i64 addr, tcg_rt;
3987
3988 if (a->rn == 31) {
3989 gen_check_sp_alignment(s);
3990 }
3991
3992 addr = read_cpu_reg_sp(s, a->rn, true);
3993 if (!a->p) {
3994 /* pre-index or signed offset */
3995 tcg_gen_addi_i64(addr, addr, a->imm);
3996 }
3997 tcg_rt = cpu_reg_sp(s, a->rt);
3998 if (!s->ata[0]) {
3999 /*
4000 * For STG and ST2G, we need to check alignment and probe memory.
4001 * TODO: For STZG and STZ2G, we could rely on the stores below,
4002 * at least for system mode; user-only won't enforce alignment.
4003 */
4004 if (is_pair) {
4005 gen_helper_st2g_stub(tcg_env, addr);
4006 } else {
4007 gen_helper_stg_stub(tcg_env, addr);
4008 }
4009 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4010 if (is_pair) {
4011 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4012 } else {
4013 gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4014 }
4015 } else {
4016 if (is_pair) {
4017 gen_helper_st2g(tcg_env, addr, tcg_rt);
4018 } else {
4019 gen_helper_stg(tcg_env, addr, tcg_rt);
4020 }
4021 }
4022
4023 if (is_zero) {
4024 TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4025 TCGv_i64 zero64 = tcg_constant_i64(0);
4026 TCGv_i128 zero128 = tcg_temp_new_i128();
4027 int mem_index = get_mem_index(s);
4028 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4029
4030 tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4031
4032 /* This is 1 or 2 atomic 16-byte operations. */
4033 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4034 if (is_pair) {
4035 tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4036 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4037 }
4038 }
4039
4040 if (a->w) {
4041 /* pre-index or post-index */
4042 if (a->p) {
4043 /* post-index */
4044 tcg_gen_addi_i64(addr, addr, a->imm);
4045 }
4046 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4047 }
4048 return true;
4049 }
4050
4051 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4052 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4053 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4054 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4055
4056 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4057
4058 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4059 bool is_setg, SetFn fn)
4060 {
4061 int memidx;
4062 uint32_t syndrome, desc = 0;
4063
4064 if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4065 return false;
4066 }
4067
4068 /*
4069 * UNPREDICTABLE cases: we choose to UNDEF, which allows
4070 * us to pull this check before the CheckMOPSEnabled() test
4071 * (which we do in the helper function)
4072 */
4073 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4074 a->rd == 31 || a->rn == 31) {
4075 return false;
4076 }
4077
4078 memidx = get_a64_user_mem_index(s, a->unpriv);
4079
4080 /*
4081 * We pass option_a == true, matching our implementation;
4082 * we pass wrong_option == false: helper function may set that bit.
4083 */
4084 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4085 is_epilogue, false, true, a->rd, a->rs, a->rn);
4086
4087 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4088 /* We may need to do MTE tag checking, so assemble the descriptor */
4089 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4090 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4091 desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4092 /* SIZEM1 and ALIGN we leave 0 (byte write) */
4093 }
4094 /* The helper function always needs the memidx even with MTE disabled */
4095 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4096
4097 /*
4098 * The helper needs the register numbers, but since they're in
4099 * the syndrome anyway, we let it extract them from there rather
4100 * than passing in an extra three integer arguments.
4101 */
4102 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4103 return true;
4104 }
4105
4106 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4107 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4108 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4109 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4110 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4111 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4112
4113 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4114
4115 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4116 {
4117 int rmemidx, wmemidx;
4118 uint32_t syndrome, rdesc = 0, wdesc = 0;
4119 bool wunpriv = extract32(a->options, 0, 1);
4120 bool runpriv = extract32(a->options, 1, 1);
4121
4122 /*
4123 * UNPREDICTABLE cases: we choose to UNDEF, which allows
4124 * us to pull this check before the CheckMOPSEnabled() test
4125 * (which we do in the helper function)
4126 */
4127 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4128 a->rd == 31 || a->rs == 31 || a->rn == 31) {
4129 return false;
4130 }
4131
4132 rmemidx = get_a64_user_mem_index(s, runpriv);
4133 wmemidx = get_a64_user_mem_index(s, wunpriv);
4134
4135 /*
4136 * We pass option_a == true, matching our implementation;
4137 * we pass wrong_option == false: helper function may set that bit.
4138 */
4139 syndrome = syn_mop(false, false, a->options, is_epilogue,
4140 false, true, a->rd, a->rs, a->rn);
4141
4142 /* If we need to do MTE tag checking, assemble the descriptors */
4143 if (s->mte_active[runpriv]) {
4144 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4145 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4146 }
4147 if (s->mte_active[wunpriv]) {
4148 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4149 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4150 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4151 }
4152 /* The helper function needs these parts of the descriptor regardless */
4153 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4154 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4155
4156 /*
4157 * The helper needs the register numbers, but since they're in
4158 * the syndrome anyway, we let it extract them from there rather
4159 * than passing in an extra three integer arguments.
4160 */
4161 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4162 tcg_constant_i32(rdesc));
4163 return true;
4164 }
4165
4166 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4167 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4168 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4169 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4170 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4171 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4172
4173 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4174
4175 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4176 bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4177 {
4178 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4179 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4180 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4181
4182 fn(tcg_rd, tcg_rn, tcg_imm);
4183 if (!a->sf) {
4184 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4185 }
4186 return true;
4187 }
4188
4189 /*
4190 * PC-rel. addressing
4191 */
4192
4193 static bool trans_ADR(DisasContext *s, arg_ri *a)
4194 {
4195 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4196 return true;
4197 }
4198
4199 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4200 {
4201 int64_t offset = (int64_t)a->imm << 12;
4202
4203 /* The page offset is ok for CF_PCREL. */
4204 offset -= s->pc_curr & 0xfff;
4205 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4206 return true;
4207 }
4208
4209 /*
4210 * Add/subtract (immediate)
4211 */
4212 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4213 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4214 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4215 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4216
4217 /*
4218 * Add/subtract (immediate, with tags)
4219 */
4220
4221 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4222 bool sub_op)
4223 {
4224 TCGv_i64 tcg_rn, tcg_rd;
4225 int imm;
4226
4227 imm = a->uimm6 << LOG2_TAG_GRANULE;
4228 if (sub_op) {
4229 imm = -imm;
4230 }
4231
4232 tcg_rn = cpu_reg_sp(s, a->rn);
4233 tcg_rd = cpu_reg_sp(s, a->rd);
4234
4235 if (s->ata[0]) {
4236 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4237 tcg_constant_i32(imm),
4238 tcg_constant_i32(a->uimm4));
4239 } else {
4240 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4241 gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4242 }
4243 return true;
4244 }
4245
4246 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4247 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4248
4249 /* The input should be a value in the bottom e bits (with higher
4250 * bits zero); returns that value replicated into every element
4251 * of size e in a 64 bit integer.
4252 */
4253 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4254 {
4255 assert(e != 0);
4256 while (e < 64) {
4257 mask |= mask << e;
4258 e *= 2;
4259 }
4260 return mask;
4261 }
4262
4263 /*
4264 * Logical (immediate)
4265 */
4266
4267 /*
4268 * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4269 * only require the wmask. Returns false if the imms/immr/immn are a reserved
4270 * value (ie should cause a guest UNDEF exception), and true if they are
4271 * valid, in which case the decoded bit pattern is written to result.
4272 */
4273 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4274 unsigned int imms, unsigned int immr)
4275 {
4276 uint64_t mask;
4277 unsigned e, levels, s, r;
4278 int len;
4279
4280 assert(immn < 2 && imms < 64 && immr < 64);
4281
4282 /* The bit patterns we create here are 64 bit patterns which
4283 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4284 * 64 bits each. Each element contains the same value: a run
4285 * of between 1 and e-1 non-zero bits, rotated within the
4286 * element by between 0 and e-1 bits.
4287 *
4288 * The element size and run length are encoded into immn (1 bit)
4289 * and imms (6 bits) as follows:
4290 * 64 bit elements: immn = 1, imms = <length of run - 1>
4291 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4292 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4293 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4294 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4295 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4296 * Notice that immn = 0, imms = 11111x is the only combination
4297 * not covered by one of the above options; this is reserved.
4298 * Further, <length of run - 1> all-ones is a reserved pattern.
4299 *
4300 * In all cases the rotation is by immr % e (and immr is 6 bits).
4301 */
4302
4303 /* First determine the element size */
4304 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4305 if (len < 1) {
4306 /* This is the immn == 0, imms == 0x11111x case */
4307 return false;
4308 }
4309 e = 1 << len;
4310
4311 levels = e - 1;
4312 s = imms & levels;
4313 r = immr & levels;
4314
4315 if (s == levels) {
4316 /* <length of run - 1> mustn't be all-ones. */
4317 return false;
4318 }
4319
4320 /* Create the value of one element: s+1 set bits rotated
4321 * by r within the element (which is e bits wide)...
4322 */
4323 mask = MAKE_64BIT_MASK(0, s + 1);
4324 if (r) {
4325 mask = (mask >> r) | (mask << (e - r));
4326 mask &= MAKE_64BIT_MASK(0, e);
4327 }
4328 /* ...then replicate the element over the whole 64 bit value */
4329 mask = bitfield_replicate(mask, e);
4330 *result = mask;
4331 return true;
4332 }
4333
4334 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4335 void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4336 {
4337 TCGv_i64 tcg_rd, tcg_rn;
4338 uint64_t imm;
4339
4340 /* Some immediate field values are reserved. */
4341 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4342 extract32(a->dbm, 0, 6),
4343 extract32(a->dbm, 6, 6))) {
4344 return false;
4345 }
4346 if (!a->sf) {
4347 imm &= 0xffffffffull;
4348 }
4349
4350 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4351 tcg_rn = cpu_reg(s, a->rn);
4352
4353 fn(tcg_rd, tcg_rn, imm);
4354 if (set_cc) {
4355 gen_logic_CC(a->sf, tcg_rd);
4356 }
4357 if (!a->sf) {
4358 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4359 }
4360 return true;
4361 }
4362
4363 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4364 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4365 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4366 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4367
4368 /*
4369 * Move wide (immediate)
4370 */
4371
4372 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4373 {
4374 int pos = a->hw << 4;
4375 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4376 return true;
4377 }
4378
4379 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4380 {
4381 int pos = a->hw << 4;
4382 uint64_t imm = a->imm;
4383
4384 imm = ~(imm << pos);
4385 if (!a->sf) {
4386 imm = (uint32_t)imm;
4387 }
4388 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4389 return true;
4390 }
4391
4392 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4393 {
4394 int pos = a->hw << 4;
4395 TCGv_i64 tcg_rd, tcg_im;
4396
4397 tcg_rd = cpu_reg(s, a->rd);
4398 tcg_im = tcg_constant_i64(a->imm);
4399 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4400 if (!a->sf) {
4401 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4402 }
4403 return true;
4404 }
4405
4406 /*
4407 * Bitfield
4408 */
4409
4410 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4411 {
4412 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4413 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4414 unsigned int bitsize = a->sf ? 64 : 32;
4415 unsigned int ri = a->immr;
4416 unsigned int si = a->imms;
4417 unsigned int pos, len;
4418
4419 if (si >= ri) {
4420 /* Wd<s-r:0> = Wn<s:r> */
4421 len = (si - ri) + 1;
4422 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4423 if (!a->sf) {
4424 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4425 }
4426 } else {
4427 /* Wd<32+s-r,32-r> = Wn<s:0> */
4428 len = si + 1;
4429 pos = (bitsize - ri) & (bitsize - 1);
4430
4431 if (len < ri) {
4432 /*
4433 * Sign extend the destination field from len to fill the
4434 * balance of the word. Let the deposit below insert all
4435 * of those sign bits.
4436 */
4437 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4438 len = ri;
4439 }
4440
4441 /*
4442 * We start with zero, and we haven't modified any bits outside
4443 * bitsize, therefore no final zero-extension is unneeded for !sf.
4444 */
4445 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4446 }
4447 return true;
4448 }
4449
4450 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4451 {
4452 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4453 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4454 unsigned int bitsize = a->sf ? 64 : 32;
4455 unsigned int ri = a->immr;
4456 unsigned int si = a->imms;
4457 unsigned int pos, len;
4458
4459 tcg_rd = cpu_reg(s, a->rd);
4460 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4461
4462 if (si >= ri) {
4463 /* Wd<s-r:0> = Wn<s:r> */
4464 len = (si - ri) + 1;
4465 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4466 } else {
4467 /* Wd<32+s-r,32-r> = Wn<s:0> */
4468 len = si + 1;
4469 pos = (bitsize - ri) & (bitsize - 1);
4470 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4471 }
4472 return true;
4473 }
4474
4475 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4476 {
4477 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4478 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4479 unsigned int bitsize = a->sf ? 64 : 32;
4480 unsigned int ri = a->immr;
4481 unsigned int si = a->imms;
4482 unsigned int pos, len;
4483
4484 tcg_rd = cpu_reg(s, a->rd);
4485 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4486
4487 if (si >= ri) {
4488 /* Wd<s-r:0> = Wn<s:r> */
4489 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4490 len = (si - ri) + 1;
4491 pos = 0;
4492 } else {
4493 /* Wd<32+s-r,32-r> = Wn<s:0> */
4494 len = si + 1;
4495 pos = (bitsize - ri) & (bitsize - 1);
4496 }
4497
4498 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4499 if (!a->sf) {
4500 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4501 }
4502 return true;
4503 }
4504
4505 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4506 {
4507 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4508
4509 tcg_rd = cpu_reg(s, a->rd);
4510
4511 if (unlikely(a->imm == 0)) {
4512 /*
4513 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4514 * so an extract from bit 0 is a special case.
4515 */
4516 if (a->sf) {
4517 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4518 } else {
4519 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4520 }
4521 } else {
4522 tcg_rm = cpu_reg(s, a->rm);
4523 tcg_rn = cpu_reg(s, a->rn);
4524
4525 if (a->sf) {
4526 /* Specialization to ROR happens in EXTRACT2. */
4527 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4528 } else {
4529 TCGv_i32 t0 = tcg_temp_new_i32();
4530
4531 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4532 if (a->rm == a->rn) {
4533 tcg_gen_rotri_i32(t0, t0, a->imm);
4534 } else {
4535 TCGv_i32 t1 = tcg_temp_new_i32();
4536 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4537 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4538 }
4539 tcg_gen_extu_i32_i64(tcg_rd, t0);
4540 }
4541 }
4542 return true;
4543 }
4544
4545 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4546 * Note that it is the caller's responsibility to ensure that the
4547 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4548 * mandated semantics for out of range shifts.
4549 */
4550 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4551 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4552 {
4553 switch (shift_type) {
4554 case A64_SHIFT_TYPE_LSL:
4555 tcg_gen_shl_i64(dst, src, shift_amount);
4556 break;
4557 case A64_SHIFT_TYPE_LSR:
4558 tcg_gen_shr_i64(dst, src, shift_amount);
4559 break;
4560 case A64_SHIFT_TYPE_ASR:
4561 if (!sf) {
4562 tcg_gen_ext32s_i64(dst, src);
4563 }
4564 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4565 break;
4566 case A64_SHIFT_TYPE_ROR:
4567 if (sf) {
4568 tcg_gen_rotr_i64(dst, src, shift_amount);
4569 } else {
4570 TCGv_i32 t0, t1;
4571 t0 = tcg_temp_new_i32();
4572 t1 = tcg_temp_new_i32();
4573 tcg_gen_extrl_i64_i32(t0, src);
4574 tcg_gen_extrl_i64_i32(t1, shift_amount);
4575 tcg_gen_rotr_i32(t0, t0, t1);
4576 tcg_gen_extu_i32_i64(dst, t0);
4577 }
4578 break;
4579 default:
4580 assert(FALSE); /* all shift types should be handled */
4581 break;
4582 }
4583
4584 if (!sf) { /* zero extend final result */
4585 tcg_gen_ext32u_i64(dst, dst);
4586 }
4587 }
4588
4589 /* Shift a TCGv src by immediate, put result in dst.
4590 * The shift amount must be in range (this should always be true as the
4591 * relevant instructions will UNDEF on bad shift immediates).
4592 */
4593 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4594 enum a64_shift_type shift_type, unsigned int shift_i)
4595 {
4596 assert(shift_i < (sf ? 64 : 32));
4597
4598 if (shift_i == 0) {
4599 tcg_gen_mov_i64(dst, src);
4600 } else {
4601 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
4602 }
4603 }
4604
4605 /* Logical (shifted register)
4606 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4607 * +----+-----+-----------+-------+---+------+--------+------+------+
4608 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4609 * +----+-----+-----------+-------+---+------+--------+------+------+
4610 */
4611 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4612 {
4613 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4614 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4615
4616 sf = extract32(insn, 31, 1);
4617 opc = extract32(insn, 29, 2);
4618 shift_type = extract32(insn, 22, 2);
4619 invert = extract32(insn, 21, 1);
4620 rm = extract32(insn, 16, 5);
4621 shift_amount = extract32(insn, 10, 6);
4622 rn = extract32(insn, 5, 5);
4623 rd = extract32(insn, 0, 5);
4624
4625 if (!sf && (shift_amount & (1 << 5))) {
4626 unallocated_encoding(s);
4627 return;
4628 }
4629
4630 tcg_rd = cpu_reg(s, rd);
4631
4632 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4633 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4634 * register-register MOV and MVN, so it is worth special casing.
4635 */
4636 tcg_rm = cpu_reg(s, rm);
4637 if (invert) {
4638 tcg_gen_not_i64(tcg_rd, tcg_rm);
4639 if (!sf) {
4640 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4641 }
4642 } else {
4643 if (sf) {
4644 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4645 } else {
4646 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4647 }
4648 }
4649 return;
4650 }
4651
4652 tcg_rm = read_cpu_reg(s, rm, sf);
4653
4654 if (shift_amount) {
4655 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4656 }
4657
4658 tcg_rn = cpu_reg(s, rn);
4659
4660 switch (opc | (invert << 2)) {
4661 case 0: /* AND */
4662 case 3: /* ANDS */
4663 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4664 break;
4665 case 1: /* ORR */
4666 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4667 break;
4668 case 2: /* EOR */
4669 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4670 break;
4671 case 4: /* BIC */
4672 case 7: /* BICS */
4673 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4674 break;
4675 case 5: /* ORN */
4676 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4677 break;
4678 case 6: /* EON */
4679 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4680 break;
4681 default:
4682 assert(FALSE);
4683 break;
4684 }
4685
4686 if (!sf) {
4687 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4688 }
4689
4690 if (opc == 3) {
4691 gen_logic_CC(sf, tcg_rd);
4692 }
4693 }
4694
4695 /*
4696 * Add/subtract (extended register)
4697 *
4698 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4699 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4700 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4701 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4702 *
4703 * sf: 0 -> 32bit, 1 -> 64bit
4704 * op: 0 -> add , 1 -> sub
4705 * S: 1 -> set flags
4706 * opt: 00
4707 * option: extension type (see DecodeRegExtend)
4708 * imm3: optional shift to Rm
4709 *
4710 * Rd = Rn + LSL(extend(Rm), amount)
4711 */
4712 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4713 {
4714 int rd = extract32(insn, 0, 5);
4715 int rn = extract32(insn, 5, 5);
4716 int imm3 = extract32(insn, 10, 3);
4717 int option = extract32(insn, 13, 3);
4718 int rm = extract32(insn, 16, 5);
4719 int opt = extract32(insn, 22, 2);
4720 bool setflags = extract32(insn, 29, 1);
4721 bool sub_op = extract32(insn, 30, 1);
4722 bool sf = extract32(insn, 31, 1);
4723
4724 TCGv_i64 tcg_rm, tcg_rn; /* temps */
4725 TCGv_i64 tcg_rd;
4726 TCGv_i64 tcg_result;
4727
4728 if (imm3 > 4 || opt != 0) {
4729 unallocated_encoding(s);
4730 return;
4731 }
4732
4733 /* non-flag setting ops may use SP */
4734 if (!setflags) {
4735 tcg_rd = cpu_reg_sp(s, rd);
4736 } else {
4737 tcg_rd = cpu_reg(s, rd);
4738 }
4739 tcg_rn = read_cpu_reg_sp(s, rn, sf);
4740
4741 tcg_rm = read_cpu_reg(s, rm, sf);
4742 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4743
4744 tcg_result = tcg_temp_new_i64();
4745
4746 if (!setflags) {
4747 if (sub_op) {
4748 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4749 } else {
4750 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4751 }
4752 } else {
4753 if (sub_op) {
4754 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4755 } else {
4756 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4757 }
4758 }
4759
4760 if (sf) {
4761 tcg_gen_mov_i64(tcg_rd, tcg_result);
4762 } else {
4763 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4764 }
4765 }
4766
4767 /*
4768 * Add/subtract (shifted register)
4769 *
4770 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4771 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4772 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4773 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4774 *
4775 * sf: 0 -> 32bit, 1 -> 64bit
4776 * op: 0 -> add , 1 -> sub
4777 * S: 1 -> set flags
4778 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4779 * imm6: Shift amount to apply to Rm before the add/sub
4780 */
4781 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4782 {
4783 int rd = extract32(insn, 0, 5);
4784 int rn = extract32(insn, 5, 5);
4785 int imm6 = extract32(insn, 10, 6);
4786 int rm = extract32(insn, 16, 5);
4787 int shift_type = extract32(insn, 22, 2);
4788 bool setflags = extract32(insn, 29, 1);
4789 bool sub_op = extract32(insn, 30, 1);
4790 bool sf = extract32(insn, 31, 1);
4791
4792 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4793 TCGv_i64 tcg_rn, tcg_rm;
4794 TCGv_i64 tcg_result;
4795
4796 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4797 unallocated_encoding(s);
4798 return;
4799 }
4800
4801 tcg_rn = read_cpu_reg(s, rn, sf);
4802 tcg_rm = read_cpu_reg(s, rm, sf);
4803
4804 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4805
4806 tcg_result = tcg_temp_new_i64();
4807
4808 if (!setflags) {
4809 if (sub_op) {
4810 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4811 } else {
4812 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4813 }
4814 } else {
4815 if (sub_op) {
4816 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4817 } else {
4818 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4819 }
4820 }
4821
4822 if (sf) {
4823 tcg_gen_mov_i64(tcg_rd, tcg_result);
4824 } else {
4825 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4826 }
4827 }
4828
4829 /* Data-processing (3 source)
4830 *
4831 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4832 * +--+------+-----------+------+------+----+------+------+------+
4833 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4834 * +--+------+-----------+------+------+----+------+------+------+
4835 */
4836 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4837 {
4838 int rd = extract32(insn, 0, 5);
4839 int rn = extract32(insn, 5, 5);
4840 int ra = extract32(insn, 10, 5);
4841 int rm = extract32(insn, 16, 5);
4842 int op_id = (extract32(insn, 29, 3) << 4) |
4843 (extract32(insn, 21, 3) << 1) |
4844 extract32(insn, 15, 1);
4845 bool sf = extract32(insn, 31, 1);
4846 bool is_sub = extract32(op_id, 0, 1);
4847 bool is_high = extract32(op_id, 2, 1);
4848 bool is_signed = false;
4849 TCGv_i64 tcg_op1;
4850 TCGv_i64 tcg_op2;
4851 TCGv_i64 tcg_tmp;
4852
4853 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4854 switch (op_id) {
4855 case 0x42: /* SMADDL */
4856 case 0x43: /* SMSUBL */
4857 case 0x44: /* SMULH */
4858 is_signed = true;
4859 break;
4860 case 0x0: /* MADD (32bit) */
4861 case 0x1: /* MSUB (32bit) */
4862 case 0x40: /* MADD (64bit) */
4863 case 0x41: /* MSUB (64bit) */
4864 case 0x4a: /* UMADDL */
4865 case 0x4b: /* UMSUBL */
4866 case 0x4c: /* UMULH */
4867 break;
4868 default:
4869 unallocated_encoding(s);
4870 return;
4871 }
4872
4873 if (is_high) {
4874 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4875 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4876 TCGv_i64 tcg_rn = cpu_reg(s, rn);
4877 TCGv_i64 tcg_rm = cpu_reg(s, rm);
4878
4879 if (is_signed) {
4880 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4881 } else {
4882 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4883 }
4884 return;
4885 }
4886
4887 tcg_op1 = tcg_temp_new_i64();
4888 tcg_op2 = tcg_temp_new_i64();
4889 tcg_tmp = tcg_temp_new_i64();
4890
4891 if (op_id < 0x42) {
4892 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4893 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4894 } else {
4895 if (is_signed) {
4896 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4897 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4898 } else {
4899 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4900 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4901 }
4902 }
4903
4904 if (ra == 31 && !is_sub) {
4905 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4906 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4907 } else {
4908 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4909 if (is_sub) {
4910 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4911 } else {
4912 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4913 }
4914 }
4915
4916 if (!sf) {
4917 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4918 }
4919 }
4920
4921 /* Add/subtract (with carry)
4922 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
4923 * +--+--+--+------------------------+------+-------------+------+-----+
4924 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
4925 * +--+--+--+------------------------+------+-------------+------+-----+
4926 */
4927
4928 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4929 {
4930 unsigned int sf, op, setflags, rm, rn, rd;
4931 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4932
4933 sf = extract32(insn, 31, 1);
4934 op = extract32(insn, 30, 1);
4935 setflags = extract32(insn, 29, 1);
4936 rm = extract32(insn, 16, 5);
4937 rn = extract32(insn, 5, 5);
4938 rd = extract32(insn, 0, 5);
4939
4940 tcg_rd = cpu_reg(s, rd);
4941 tcg_rn = cpu_reg(s, rn);
4942
4943 if (op) {
4944 tcg_y = tcg_temp_new_i64();
4945 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4946 } else {
4947 tcg_y = cpu_reg(s, rm);
4948 }
4949
4950 if (setflags) {
4951 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4952 } else {
4953 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4954 }
4955 }
4956
4957 /*
4958 * Rotate right into flags
4959 * 31 30 29 21 15 10 5 4 0
4960 * +--+--+--+-----------------+--------+-----------+------+--+------+
4961 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
4962 * +--+--+--+-----------------+--------+-----------+------+--+------+
4963 */
4964 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
4965 {
4966 int mask = extract32(insn, 0, 4);
4967 int o2 = extract32(insn, 4, 1);
4968 int rn = extract32(insn, 5, 5);
4969 int imm6 = extract32(insn, 15, 6);
4970 int sf_op_s = extract32(insn, 29, 3);
4971 TCGv_i64 tcg_rn;
4972 TCGv_i32 nzcv;
4973
4974 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
4975 unallocated_encoding(s);
4976 return;
4977 }
4978
4979 tcg_rn = read_cpu_reg(s, rn, 1);
4980 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
4981
4982 nzcv = tcg_temp_new_i32();
4983 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
4984
4985 if (mask & 8) { /* N */
4986 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
4987 }
4988 if (mask & 4) { /* Z */
4989 tcg_gen_not_i32(cpu_ZF, nzcv);
4990 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
4991 }
4992 if (mask & 2) { /* C */
4993 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
4994 }
4995 if (mask & 1) { /* V */
4996 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
4997 }
4998 }
4999
5000 /*
5001 * Evaluate into flags
5002 * 31 30 29 21 15 14 10 5 4 0
5003 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5004 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
5005 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5006 */
5007 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5008 {
5009 int o3_mask = extract32(insn, 0, 5);
5010 int rn = extract32(insn, 5, 5);
5011 int o2 = extract32(insn, 15, 6);
5012 int sz = extract32(insn, 14, 1);
5013 int sf_op_s = extract32(insn, 29, 3);
5014 TCGv_i32 tmp;
5015 int shift;
5016
5017 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5018 !dc_isar_feature(aa64_condm_4, s)) {
5019 unallocated_encoding(s);
5020 return;
5021 }
5022 shift = sz ? 16 : 24; /* SETF16 or SETF8 */
5023
5024 tmp = tcg_temp_new_i32();
5025 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5026 tcg_gen_shli_i32(cpu_NF, tmp, shift);
5027 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5028 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5029 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5030 }
5031
5032 /* Conditional compare (immediate / register)
5033 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5034 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5035 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
5036 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5037 * [1] y [0] [0]
5038 */
5039 static void disas_cc(DisasContext *s, uint32_t insn)
5040 {
5041 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5042 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5043 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5044 DisasCompare c;
5045
5046 if (!extract32(insn, 29, 1)) {
5047 unallocated_encoding(s);
5048 return;
5049 }
5050 if (insn & (1 << 10 | 1 << 4)) {
5051 unallocated_encoding(s);
5052 return;
5053 }
5054 sf = extract32(insn, 31, 1);
5055 op = extract32(insn, 30, 1);
5056 is_imm = extract32(insn, 11, 1);
5057 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5058 cond = extract32(insn, 12, 4);
5059 rn = extract32(insn, 5, 5);
5060 nzcv = extract32(insn, 0, 4);
5061
5062 /* Set T0 = !COND. */
5063 tcg_t0 = tcg_temp_new_i32();
5064 arm_test_cc(&c, cond);
5065 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5066
5067 /* Load the arguments for the new comparison. */
5068 if (is_imm) {
5069 tcg_y = tcg_temp_new_i64();
5070 tcg_gen_movi_i64(tcg_y, y);
5071 } else {
5072 tcg_y = cpu_reg(s, y);
5073 }
5074 tcg_rn = cpu_reg(s, rn);
5075
5076 /* Set the flags for the new comparison. */
5077 tcg_tmp = tcg_temp_new_i64();
5078 if (op) {
5079 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5080 } else {
5081 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5082 }
5083
5084 /* If COND was false, force the flags to #nzcv. Compute two masks
5085 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5086 * For tcg hosts that support ANDC, we can make do with just T1.
5087 * In either case, allow the tcg optimizer to delete any unused mask.
5088 */
5089 tcg_t1 = tcg_temp_new_i32();
5090 tcg_t2 = tcg_temp_new_i32();
5091 tcg_gen_neg_i32(tcg_t1, tcg_t0);
5092 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5093
5094 if (nzcv & 8) { /* N */
5095 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5096 } else {
5097 if (TCG_TARGET_HAS_andc_i32) {
5098 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5099 } else {
5100 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5101 }
5102 }
5103 if (nzcv & 4) { /* Z */
5104 if (TCG_TARGET_HAS_andc_i32) {
5105 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5106 } else {
5107 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5108 }
5109 } else {
5110 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5111 }
5112 if (nzcv & 2) { /* C */
5113 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5114 } else {
5115 if (TCG_TARGET_HAS_andc_i32) {
5116 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5117 } else {
5118 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5119 }
5120 }
5121 if (nzcv & 1) { /* V */
5122 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5123 } else {
5124 if (TCG_TARGET_HAS_andc_i32) {
5125 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5126 } else {
5127 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5128 }
5129 }
5130 }
5131
5132 /* Conditional select
5133 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
5134 * +----+----+---+-----------------+------+------+-----+------+------+
5135 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
5136 * +----+----+---+-----------------+------+------+-----+------+------+
5137 */
5138 static void disas_cond_select(DisasContext *s, uint32_t insn)
5139 {
5140 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5141 TCGv_i64 tcg_rd, zero;
5142 DisasCompare64 c;
5143
5144 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5145 /* S == 1 or op2<1> == 1 */
5146 unallocated_encoding(s);
5147 return;
5148 }
5149 sf = extract32(insn, 31, 1);
5150 else_inv = extract32(insn, 30, 1);
5151 rm = extract32(insn, 16, 5);
5152 cond = extract32(insn, 12, 4);
5153 else_inc = extract32(insn, 10, 1);
5154 rn = extract32(insn, 5, 5);
5155 rd = extract32(insn, 0, 5);
5156
5157 tcg_rd = cpu_reg(s, rd);
5158
5159 a64_test_cc(&c, cond);
5160 zero = tcg_constant_i64(0);
5161
5162 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5163 /* CSET & CSETM. */
5164 if (else_inv) {
5165 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
5166 tcg_rd, c.value, zero);
5167 } else {
5168 tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
5169 tcg_rd, c.value, zero);
5170 }
5171 } else {
5172 TCGv_i64 t_true = cpu_reg(s, rn);
5173 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5174 if (else_inv && else_inc) {
5175 tcg_gen_neg_i64(t_false, t_false);
5176 } else if (else_inv) {
5177 tcg_gen_not_i64(t_false, t_false);
5178 } else if (else_inc) {
5179 tcg_gen_addi_i64(t_false, t_false, 1);
5180 }
5181 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5182 }
5183
5184 if (!sf) {
5185 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5186 }
5187 }
5188
5189 static void handle_clz(DisasContext *s, unsigned int sf,
5190 unsigned int rn, unsigned int rd)
5191 {
5192 TCGv_i64 tcg_rd, tcg_rn;
5193 tcg_rd = cpu_reg(s, rd);
5194 tcg_rn = cpu_reg(s, rn);
5195
5196 if (sf) {
5197 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5198 } else {
5199 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5200 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5201 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5202 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5203 }
5204 }
5205
5206 static void handle_cls(DisasContext *s, unsigned int sf,
5207 unsigned int rn, unsigned int rd)
5208 {
5209 TCGv_i64 tcg_rd, tcg_rn;
5210 tcg_rd = cpu_reg(s, rd);
5211 tcg_rn = cpu_reg(s, rn);
5212
5213 if (sf) {
5214 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5215 } else {
5216 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5217 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5218 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5219 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5220 }
5221 }
5222
5223 static void handle_rbit(DisasContext *s, unsigned int sf,
5224 unsigned int rn, unsigned int rd)
5225 {
5226 TCGv_i64 tcg_rd, tcg_rn;
5227 tcg_rd = cpu_reg(s, rd);
5228 tcg_rn = cpu_reg(s, rn);
5229
5230 if (sf) {
5231 gen_helper_rbit64(tcg_rd, tcg_rn);
5232 } else {
5233 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5234 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5235 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5236 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5237 }
5238 }
5239
5240 /* REV with sf==1, opcode==3 ("REV64") */
5241 static void handle_rev64(DisasContext *s, unsigned int sf,
5242 unsigned int rn, unsigned int rd)
5243 {
5244 if (!sf) {
5245 unallocated_encoding(s);
5246 return;
5247 }
5248 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5249 }
5250
5251 /* REV with sf==0, opcode==2
5252 * REV32 (sf==1, opcode==2)
5253 */
5254 static void handle_rev32(DisasContext *s, unsigned int sf,
5255 unsigned int rn, unsigned int rd)
5256 {
5257 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5258 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5259
5260 if (sf) {
5261 tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5262 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5263 } else {
5264 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5265 }
5266 }
5267
5268 /* REV16 (opcode==1) */
5269 static void handle_rev16(DisasContext *s, unsigned int sf,
5270 unsigned int rn, unsigned int rd)
5271 {
5272 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5273 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5274 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5275 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5276
5277 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5278 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5279 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5280 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5281 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5282 }
5283
5284 /* Data-processing (1 source)
5285 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5286 * +----+---+---+-----------------+---------+--------+------+------+
5287 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
5288 * +----+---+---+-----------------+---------+--------+------+------+
5289 */
5290 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5291 {
5292 unsigned int sf, opcode, opcode2, rn, rd;
5293 TCGv_i64 tcg_rd;
5294
5295 if (extract32(insn, 29, 1)) {
5296 unallocated_encoding(s);
5297 return;
5298 }
5299
5300 sf = extract32(insn, 31, 1);
5301 opcode = extract32(insn, 10, 6);
5302 opcode2 = extract32(insn, 16, 5);
5303 rn = extract32(insn, 5, 5);
5304 rd = extract32(insn, 0, 5);
5305
5306 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5307
5308 switch (MAP(sf, opcode2, opcode)) {
5309 case MAP(0, 0x00, 0x00): /* RBIT */
5310 case MAP(1, 0x00, 0x00):
5311 handle_rbit(s, sf, rn, rd);
5312 break;
5313 case MAP(0, 0x00, 0x01): /* REV16 */
5314 case MAP(1, 0x00, 0x01):
5315 handle_rev16(s, sf, rn, rd);
5316 break;
5317 case MAP(0, 0x00, 0x02): /* REV/REV32 */
5318 case MAP(1, 0x00, 0x02):
5319 handle_rev32(s, sf, rn, rd);
5320 break;
5321 case MAP(1, 0x00, 0x03): /* REV64 */
5322 handle_rev64(s, sf, rn, rd);
5323 break;
5324 case MAP(0, 0x00, 0x04): /* CLZ */
5325 case MAP(1, 0x00, 0x04):
5326 handle_clz(s, sf, rn, rd);
5327 break;
5328 case MAP(0, 0x00, 0x05): /* CLS */
5329 case MAP(1, 0x00, 0x05):
5330 handle_cls(s, sf, rn, rd);
5331 break;
5332 case MAP(1, 0x01, 0x00): /* PACIA */
5333 if (s->pauth_active) {
5334 tcg_rd = cpu_reg(s, rd);
5335 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5336 } else if (!dc_isar_feature(aa64_pauth, s)) {
5337 goto do_unallocated;
5338 }
5339 break;
5340 case MAP(1, 0x01, 0x01): /* PACIB */
5341 if (s->pauth_active) {
5342 tcg_rd = cpu_reg(s, rd);
5343 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5344 } else if (!dc_isar_feature(aa64_pauth, s)) {
5345 goto do_unallocated;
5346 }
5347 break;
5348 case MAP(1, 0x01, 0x02): /* PACDA */
5349 if (s->pauth_active) {
5350 tcg_rd = cpu_reg(s, rd);
5351 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5352 } else if (!dc_isar_feature(aa64_pauth, s)) {
5353 goto do_unallocated;
5354 }
5355 break;
5356 case MAP(1, 0x01, 0x03): /* PACDB */
5357 if (s->pauth_active) {
5358 tcg_rd = cpu_reg(s, rd);
5359 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5360 } else if (!dc_isar_feature(aa64_pauth, s)) {
5361 goto do_unallocated;
5362 }
5363 break;
5364 case MAP(1, 0x01, 0x04): /* AUTIA */
5365 if (s->pauth_active) {
5366 tcg_rd = cpu_reg(s, rd);
5367 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5368 } else if (!dc_isar_feature(aa64_pauth, s)) {
5369 goto do_unallocated;
5370 }
5371 break;
5372 case MAP(1, 0x01, 0x05): /* AUTIB */
5373 if (s->pauth_active) {
5374 tcg_rd = cpu_reg(s, rd);
5375 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5376 } else if (!dc_isar_feature(aa64_pauth, s)) {
5377 goto do_unallocated;
5378 }
5379 break;
5380 case MAP(1, 0x01, 0x06): /* AUTDA */
5381 if (s->pauth_active) {
5382 tcg_rd = cpu_reg(s, rd);
5383 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5384 } else if (!dc_isar_feature(aa64_pauth, s)) {
5385 goto do_unallocated;
5386 }
5387 break;
5388 case MAP(1, 0x01, 0x07): /* AUTDB */
5389 if (s->pauth_active) {
5390 tcg_rd = cpu_reg(s, rd);
5391 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5392 } else if (!dc_isar_feature(aa64_pauth, s)) {
5393 goto do_unallocated;
5394 }
5395 break;
5396 case MAP(1, 0x01, 0x08): /* PACIZA */
5397 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5398 goto do_unallocated;
5399 } else if (s->pauth_active) {
5400 tcg_rd = cpu_reg(s, rd);
5401 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5402 }
5403 break;
5404 case MAP(1, 0x01, 0x09): /* PACIZB */
5405 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5406 goto do_unallocated;
5407 } else if (s->pauth_active) {
5408 tcg_rd = cpu_reg(s, rd);
5409 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5410 }
5411 break;
5412 case MAP(1, 0x01, 0x0a): /* PACDZA */
5413 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5414 goto do_unallocated;
5415 } else if (s->pauth_active) {
5416 tcg_rd = cpu_reg(s, rd);
5417 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5418 }
5419 break;
5420 case MAP(1, 0x01, 0x0b): /* PACDZB */
5421 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5422 goto do_unallocated;
5423 } else if (s->pauth_active) {
5424 tcg_rd = cpu_reg(s, rd);
5425 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5426 }
5427 break;
5428 case MAP(1, 0x01, 0x0c): /* AUTIZA */
5429 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5430 goto do_unallocated;
5431 } else if (s->pauth_active) {
5432 tcg_rd = cpu_reg(s, rd);
5433 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5434 }
5435 break;
5436 case MAP(1, 0x01, 0x0d): /* AUTIZB */
5437 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5438 goto do_unallocated;
5439 } else if (s->pauth_active) {
5440 tcg_rd = cpu_reg(s, rd);
5441 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5442 }
5443 break;
5444 case MAP(1, 0x01, 0x0e): /* AUTDZA */
5445 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5446 goto do_unallocated;
5447 } else if (s->pauth_active) {
5448 tcg_rd = cpu_reg(s, rd);
5449 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5450 }
5451 break;
5452 case MAP(1, 0x01, 0x0f): /* AUTDZB */
5453 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5454 goto do_unallocated;
5455 } else if (s->pauth_active) {
5456 tcg_rd = cpu_reg(s, rd);
5457 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5458 }
5459 break;
5460 case MAP(1, 0x01, 0x10): /* XPACI */
5461 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5462 goto do_unallocated;
5463 } else if (s->pauth_active) {
5464 tcg_rd = cpu_reg(s, rd);
5465 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
5466 }
5467 break;
5468 case MAP(1, 0x01, 0x11): /* XPACD */
5469 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5470 goto do_unallocated;
5471 } else if (s->pauth_active) {
5472 tcg_rd = cpu_reg(s, rd);
5473 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
5474 }
5475 break;
5476 default:
5477 do_unallocated:
5478 unallocated_encoding(s);
5479 break;
5480 }
5481
5482 #undef MAP
5483 }
5484
5485 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5486 unsigned int rm, unsigned int rn, unsigned int rd)
5487 {
5488 TCGv_i64 tcg_n, tcg_m, tcg_rd;
5489 tcg_rd = cpu_reg(s, rd);
5490
5491 if (!sf && is_signed) {
5492 tcg_n = tcg_temp_new_i64();
5493 tcg_m = tcg_temp_new_i64();
5494 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5495 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5496 } else {
5497 tcg_n = read_cpu_reg(s, rn, sf);
5498 tcg_m = read_cpu_reg(s, rm, sf);
5499 }
5500
5501 if (is_signed) {
5502 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5503 } else {
5504 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5505 }
5506
5507 if (!sf) { /* zero extend final result */
5508 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5509 }
5510 }
5511
5512 /* LSLV, LSRV, ASRV, RORV */
5513 static void handle_shift_reg(DisasContext *s,
5514 enum a64_shift_type shift_type, unsigned int sf,
5515 unsigned int rm, unsigned int rn, unsigned int rd)
5516 {
5517 TCGv_i64 tcg_shift = tcg_temp_new_i64();
5518 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5519 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5520
5521 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5522 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5523 }
5524
5525 /* CRC32[BHWX], CRC32C[BHWX] */
5526 static void handle_crc32(DisasContext *s,
5527 unsigned int sf, unsigned int sz, bool crc32c,
5528 unsigned int rm, unsigned int rn, unsigned int rd)
5529 {
5530 TCGv_i64 tcg_acc, tcg_val;
5531 TCGv_i32 tcg_bytes;
5532
5533 if (!dc_isar_feature(aa64_crc32, s)
5534 || (sf == 1 && sz != 3)
5535 || (sf == 0 && sz == 3)) {
5536 unallocated_encoding(s);
5537 return;
5538 }
5539
5540 if (sz == 3) {
5541 tcg_val = cpu_reg(s, rm);
5542 } else {
5543 uint64_t mask;
5544 switch (sz) {
5545 case 0:
5546 mask = 0xFF;
5547 break;
5548 case 1:
5549 mask = 0xFFFF;
5550 break;
5551 case 2:
5552 mask = 0xFFFFFFFF;
5553 break;
5554 default:
5555 g_assert_not_reached();
5556 }
5557 tcg_val = tcg_temp_new_i64();
5558 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5559 }
5560
5561 tcg_acc = cpu_reg(s, rn);
5562 tcg_bytes = tcg_constant_i32(1 << sz);
5563
5564 if (crc32c) {
5565 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5566 } else {
5567 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5568 }
5569 }
5570
5571 /* Data-processing (2 source)
5572 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5573 * +----+---+---+-----------------+------+--------+------+------+
5574 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5575 * +----+---+---+-----------------+------+--------+------+------+
5576 */
5577 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5578 {
5579 unsigned int sf, rm, opcode, rn, rd, setflag;
5580 sf = extract32(insn, 31, 1);
5581 setflag = extract32(insn, 29, 1);
5582 rm = extract32(insn, 16, 5);
5583 opcode = extract32(insn, 10, 6);
5584 rn = extract32(insn, 5, 5);
5585 rd = extract32(insn, 0, 5);
5586
5587 if (setflag && opcode != 0) {
5588 unallocated_encoding(s);
5589 return;
5590 }
5591
5592 switch (opcode) {
5593 case 0: /* SUBP(S) */
5594 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5595 goto do_unallocated;
5596 } else {
5597 TCGv_i64 tcg_n, tcg_m, tcg_d;
5598
5599 tcg_n = read_cpu_reg_sp(s, rn, true);
5600 tcg_m = read_cpu_reg_sp(s, rm, true);
5601 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5602 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5603 tcg_d = cpu_reg(s, rd);
5604
5605 if (setflag) {
5606 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5607 } else {
5608 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5609 }
5610 }
5611 break;
5612 case 2: /* UDIV */
5613 handle_div(s, false, sf, rm, rn, rd);
5614 break;
5615 case 3: /* SDIV */
5616 handle_div(s, true, sf, rm, rn, rd);
5617 break;
5618 case 4: /* IRG */
5619 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5620 goto do_unallocated;
5621 }
5622 if (s->ata[0]) {
5623 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
5624 cpu_reg_sp(s, rn), cpu_reg(s, rm));
5625 } else {
5626 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5627 cpu_reg_sp(s, rn));
5628 }
5629 break;
5630 case 5: /* GMI */
5631 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5632 goto do_unallocated;
5633 } else {
5634 TCGv_i64 t = tcg_temp_new_i64();
5635
5636 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
5637 tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
5638 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
5639 }
5640 break;
5641 case 8: /* LSLV */
5642 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5643 break;
5644 case 9: /* LSRV */
5645 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5646 break;
5647 case 10: /* ASRV */
5648 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5649 break;
5650 case 11: /* RORV */
5651 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5652 break;
5653 case 12: /* PACGA */
5654 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5655 goto do_unallocated;
5656 }
5657 gen_helper_pacga(cpu_reg(s, rd), tcg_env,
5658 cpu_reg(s, rn), cpu_reg_sp(s, rm));
5659 break;
5660 case 16:
5661 case 17:
5662 case 18:
5663 case 19:
5664 case 20:
5665 case 21:
5666 case 22:
5667 case 23: /* CRC32 */
5668 {
5669 int sz = extract32(opcode, 0, 2);
5670 bool crc32c = extract32(opcode, 2, 1);
5671 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5672 break;
5673 }
5674 default:
5675 do_unallocated:
5676 unallocated_encoding(s);
5677 break;
5678 }
5679 }
5680
5681 /*
5682 * Data processing - register
5683 * 31 30 29 28 25 21 20 16 10 0
5684 * +--+---+--+---+-------+-----+-------+-------+---------+
5685 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
5686 * +--+---+--+---+-------+-----+-------+-------+---------+
5687 */
5688 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5689 {
5690 int op0 = extract32(insn, 30, 1);
5691 int op1 = extract32(insn, 28, 1);
5692 int op2 = extract32(insn, 21, 4);
5693 int op3 = extract32(insn, 10, 6);
5694
5695 if (!op1) {
5696 if (op2 & 8) {
5697 if (op2 & 1) {
5698 /* Add/sub (extended register) */
5699 disas_add_sub_ext_reg(s, insn);
5700 } else {
5701 /* Add/sub (shifted register) */
5702 disas_add_sub_reg(s, insn);
5703 }
5704 } else {
5705 /* Logical (shifted register) */
5706 disas_logic_reg(s, insn);
5707 }
5708 return;
5709 }
5710
5711 switch (op2) {
5712 case 0x0:
5713 switch (op3) {
5714 case 0x00: /* Add/subtract (with carry) */
5715 disas_adc_sbc(s, insn);
5716 break;
5717
5718 case 0x01: /* Rotate right into flags */
5719 case 0x21:
5720 disas_rotate_right_into_flags(s, insn);
5721 break;
5722
5723 case 0x02: /* Evaluate into flags */
5724 case 0x12:
5725 case 0x22:
5726 case 0x32:
5727 disas_evaluate_into_flags(s, insn);
5728 break;
5729
5730 default:
5731 goto do_unallocated;
5732 }
5733 break;
5734
5735 case 0x2: /* Conditional compare */
5736 disas_cc(s, insn); /* both imm and reg forms */
5737 break;
5738
5739 case 0x4: /* Conditional select */
5740 disas_cond_select(s, insn);
5741 break;
5742
5743 case 0x6: /* Data-processing */
5744 if (op0) { /* (1 source) */
5745 disas_data_proc_1src(s, insn);
5746 } else { /* (2 source) */
5747 disas_data_proc_2src(s, insn);
5748 }
5749 break;
5750 case 0x8 ... 0xf: /* (3 source) */
5751 disas_data_proc_3src(s, insn);
5752 break;
5753
5754 default:
5755 do_unallocated:
5756 unallocated_encoding(s);
5757 break;
5758 }
5759 }
5760
5761 static void handle_fp_compare(DisasContext *s, int size,
5762 unsigned int rn, unsigned int rm,
5763 bool cmp_with_zero, bool signal_all_nans)
5764 {
5765 TCGv_i64 tcg_flags = tcg_temp_new_i64();
5766 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
5767
5768 if (size == MO_64) {
5769 TCGv_i64 tcg_vn, tcg_vm;
5770
5771 tcg_vn = read_fp_dreg(s, rn);
5772 if (cmp_with_zero) {
5773 tcg_vm = tcg_constant_i64(0);
5774 } else {
5775 tcg_vm = read_fp_dreg(s, rm);
5776 }
5777 if (signal_all_nans) {
5778 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5779 } else {
5780 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5781 }
5782 } else {
5783 TCGv_i32 tcg_vn = tcg_temp_new_i32();
5784 TCGv_i32 tcg_vm = tcg_temp_new_i32();
5785
5786 read_vec_element_i32(s, tcg_vn, rn, 0, size);
5787 if (cmp_with_zero) {
5788 tcg_gen_movi_i32(tcg_vm, 0);
5789 } else {
5790 read_vec_element_i32(s, tcg_vm, rm, 0, size);
5791 }
5792
5793 switch (size) {
5794 case MO_32:
5795 if (signal_all_nans) {
5796 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5797 } else {
5798 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5799 }
5800 break;
5801 case MO_16:
5802 if (signal_all_nans) {
5803 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5804 } else {
5805 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5806 }
5807 break;
5808 default:
5809 g_assert_not_reached();
5810 }
5811 }
5812
5813 gen_set_nzcv(tcg_flags);
5814 }
5815
5816 /* Floating point compare
5817 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
5818 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5819 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
5820 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5821 */
5822 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5823 {
5824 unsigned int mos, type, rm, op, rn, opc, op2r;
5825 int size;
5826
5827 mos = extract32(insn, 29, 3);
5828 type = extract32(insn, 22, 2);
5829 rm = extract32(insn, 16, 5);
5830 op = extract32(insn, 14, 2);
5831 rn = extract32(insn, 5, 5);
5832 opc = extract32(insn, 3, 2);
5833 op2r = extract32(insn, 0, 3);
5834
5835 if (mos || op || op2r) {
5836 unallocated_encoding(s);
5837 return;
5838 }
5839
5840 switch (type) {
5841 case 0:
5842 size = MO_32;
5843 break;
5844 case 1:
5845 size = MO_64;
5846 break;
5847 case 3:
5848 size = MO_16;
5849 if (dc_isar_feature(aa64_fp16, s)) {
5850 break;
5851 }
5852 /* fallthru */
5853 default:
5854 unallocated_encoding(s);
5855 return;
5856 }
5857
5858 if (!fp_access_check(s)) {
5859 return;
5860 }
5861
5862 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5863 }
5864
5865 /* Floating point conditional compare
5866 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5867 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5868 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
5869 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5870 */
5871 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5872 {
5873 unsigned int mos, type, rm, cond, rn, op, nzcv;
5874 TCGLabel *label_continue = NULL;
5875 int size;
5876
5877 mos = extract32(insn, 29, 3);
5878 type = extract32(insn, 22, 2);
5879 rm = extract32(insn, 16, 5);
5880 cond = extract32(insn, 12, 4);
5881 rn = extract32(insn, 5, 5);
5882 op = extract32(insn, 4, 1);
5883 nzcv = extract32(insn, 0, 4);
5884
5885 if (mos) {
5886 unallocated_encoding(s);
5887 return;
5888 }
5889
5890 switch (type) {
5891 case 0:
5892 size = MO_32;
5893 break;
5894 case 1:
5895 size = MO_64;
5896 break;
5897 case 3:
5898 size = MO_16;
5899 if (dc_isar_feature(aa64_fp16, s)) {
5900 break;
5901 }
5902 /* fallthru */
5903 default:
5904 unallocated_encoding(s);
5905 return;
5906 }
5907
5908 if (!fp_access_check(s)) {
5909 return;
5910 }
5911
5912 if (cond < 0x0e) { /* not always */
5913 TCGLabel *label_match = gen_new_label();
5914 label_continue = gen_new_label();
5915 arm_gen_test_cc(cond, label_match);
5916 /* nomatch: */
5917 gen_set_nzcv(tcg_constant_i64(nzcv << 28));
5918 tcg_gen_br(label_continue);
5919 gen_set_label(label_match);
5920 }
5921
5922 handle_fp_compare(s, size, rn, rm, false, op);
5923
5924 if (cond < 0x0e) {
5925 gen_set_label(label_continue);
5926 }
5927 }
5928
5929 /* Floating point conditional select
5930 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5931 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5932 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
5933 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5934 */
5935 static void disas_fp_csel(DisasContext *s, uint32_t insn)
5936 {
5937 unsigned int mos, type, rm, cond, rn, rd;
5938 TCGv_i64 t_true, t_false;
5939 DisasCompare64 c;
5940 MemOp sz;
5941
5942 mos = extract32(insn, 29, 3);
5943 type = extract32(insn, 22, 2);
5944 rm = extract32(insn, 16, 5);
5945 cond = extract32(insn, 12, 4);
5946 rn = extract32(insn, 5, 5);
5947 rd = extract32(insn, 0, 5);
5948
5949 if (mos) {
5950 unallocated_encoding(s);
5951 return;
5952 }
5953
5954 switch (type) {
5955 case 0:
5956 sz = MO_32;
5957 break;
5958 case 1:
5959 sz = MO_64;
5960 break;
5961 case 3:
5962 sz = MO_16;
5963 if (dc_isar_feature(aa64_fp16, s)) {
5964 break;
5965 }
5966 /* fallthru */
5967 default:
5968 unallocated_encoding(s);
5969 return;
5970 }
5971
5972 if (!fp_access_check(s)) {
5973 return;
5974 }
5975
5976 /* Zero extend sreg & hreg inputs to 64 bits now. */
5977 t_true = tcg_temp_new_i64();
5978 t_false = tcg_temp_new_i64();
5979 read_vec_element(s, t_true, rn, 0, sz);
5980 read_vec_element(s, t_false, rm, 0, sz);
5981
5982 a64_test_cc(&c, cond);
5983 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
5984 t_true, t_false);
5985
5986 /* Note that sregs & hregs write back zeros to the high bits,
5987 and we've already done the zero-extension. */
5988 write_fp_dreg(s, rd, t_true);
5989 }
5990
5991 /* Floating-point data-processing (1 source) - half precision */
5992 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
5993 {
5994 TCGv_ptr fpst = NULL;
5995 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
5996 TCGv_i32 tcg_res = tcg_temp_new_i32();
5997
5998 switch (opcode) {
5999 case 0x0: /* FMOV */
6000 tcg_gen_mov_i32(tcg_res, tcg_op);
6001 break;
6002 case 0x1: /* FABS */
6003 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
6004 break;
6005 case 0x2: /* FNEG */
6006 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
6007 break;
6008 case 0x3: /* FSQRT */
6009 fpst = fpstatus_ptr(FPST_FPCR_F16);
6010 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6011 break;
6012 case 0x8: /* FRINTN */
6013 case 0x9: /* FRINTP */
6014 case 0xa: /* FRINTM */
6015 case 0xb: /* FRINTZ */
6016 case 0xc: /* FRINTA */
6017 {
6018 TCGv_i32 tcg_rmode;
6019
6020 fpst = fpstatus_ptr(FPST_FPCR_F16);
6021 tcg_rmode = gen_set_rmode(opcode & 7, fpst);
6022 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6023 gen_restore_rmode(tcg_rmode, fpst);
6024 break;
6025 }
6026 case 0xe: /* FRINTX */
6027 fpst = fpstatus_ptr(FPST_FPCR_F16);
6028 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6029 break;
6030 case 0xf: /* FRINTI */
6031 fpst = fpstatus_ptr(FPST_FPCR_F16);
6032 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6033 break;
6034 default:
6035 g_assert_not_reached();
6036 }
6037
6038 write_fp_sreg(s, rd, tcg_res);
6039 }
6040
6041 /* Floating-point data-processing (1 source) - single precision */
6042 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6043 {
6044 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6045 TCGv_i32 tcg_op, tcg_res;
6046 TCGv_ptr fpst;
6047 int rmode = -1;
6048
6049 tcg_op = read_fp_sreg(s, rn);
6050 tcg_res = tcg_temp_new_i32();
6051
6052 switch (opcode) {
6053 case 0x0: /* FMOV */
6054 tcg_gen_mov_i32(tcg_res, tcg_op);
6055 goto done;
6056 case 0x1: /* FABS */
6057 gen_helper_vfp_abss(tcg_res, tcg_op);
6058 goto done;
6059 case 0x2: /* FNEG */
6060 gen_helper_vfp_negs(tcg_res, tcg_op);
6061 goto done;
6062 case 0x3: /* FSQRT */
6063 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
6064 goto done;
6065 case 0x6: /* BFCVT */
6066 gen_fpst = gen_helper_bfcvt;
6067 break;
6068 case 0x8: /* FRINTN */
6069 case 0x9: /* FRINTP */
6070 case 0xa: /* FRINTM */
6071 case 0xb: /* FRINTZ */
6072 case 0xc: /* FRINTA */
6073 rmode = opcode & 7;
6074 gen_fpst = gen_helper_rints;
6075 break;
6076 case 0xe: /* FRINTX */
6077 gen_fpst = gen_helper_rints_exact;
6078 break;
6079 case 0xf: /* FRINTI */
6080 gen_fpst = gen_helper_rints;
6081 break;
6082 case 0x10: /* FRINT32Z */
6083 rmode = FPROUNDING_ZERO;
6084 gen_fpst = gen_helper_frint32_s;
6085 break;
6086 case 0x11: /* FRINT32X */
6087 gen_fpst = gen_helper_frint32_s;
6088 break;
6089 case 0x12: /* FRINT64Z */
6090 rmode = FPROUNDING_ZERO;
6091 gen_fpst = gen_helper_frint64_s;
6092 break;
6093 case 0x13: /* FRINT64X */
6094 gen_fpst = gen_helper_frint64_s;
6095 break;
6096 default:
6097 g_assert_not_reached();
6098 }
6099
6100 fpst = fpstatus_ptr(FPST_FPCR);
6101 if (rmode >= 0) {
6102 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6103 gen_fpst(tcg_res, tcg_op, fpst);
6104 gen_restore_rmode(tcg_rmode, fpst);
6105 } else {
6106 gen_fpst(tcg_res, tcg_op, fpst);
6107 }
6108
6109 done:
6110 write_fp_sreg(s, rd, tcg_res);
6111 }
6112
6113 /* Floating-point data-processing (1 source) - double precision */
6114 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6115 {
6116 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6117 TCGv_i64 tcg_op, tcg_res;
6118 TCGv_ptr fpst;
6119 int rmode = -1;
6120
6121 switch (opcode) {
6122 case 0x0: /* FMOV */
6123 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6124 return;
6125 }
6126
6127 tcg_op = read_fp_dreg(s, rn);
6128 tcg_res = tcg_temp_new_i64();
6129
6130 switch (opcode) {
6131 case 0x1: /* FABS */
6132 gen_helper_vfp_absd(tcg_res, tcg_op);
6133 goto done;
6134 case 0x2: /* FNEG */
6135 gen_helper_vfp_negd(tcg_res, tcg_op);
6136 goto done;
6137 case 0x3: /* FSQRT */
6138 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
6139 goto done;
6140 case 0x8: /* FRINTN */
6141 case 0x9: /* FRINTP */
6142 case 0xa: /* FRINTM */
6143 case 0xb: /* FRINTZ */
6144 case 0xc: /* FRINTA */
6145 rmode = opcode & 7;
6146 gen_fpst = gen_helper_rintd;
6147 break;
6148 case 0xe: /* FRINTX */
6149 gen_fpst = gen_helper_rintd_exact;
6150 break;
6151 case 0xf: /* FRINTI */
6152 gen_fpst = gen_helper_rintd;
6153 break;
6154 case 0x10: /* FRINT32Z */
6155 rmode = FPROUNDING_ZERO;
6156 gen_fpst = gen_helper_frint32_d;
6157 break;
6158 case 0x11: /* FRINT32X */
6159 gen_fpst = gen_helper_frint32_d;
6160 break;
6161 case 0x12: /* FRINT64Z */
6162 rmode = FPROUNDING_ZERO;
6163 gen_fpst = gen_helper_frint64_d;
6164 break;
6165 case 0x13: /* FRINT64X */
6166 gen_fpst = gen_helper_frint64_d;
6167 break;
6168 default:
6169 g_assert_not_reached();
6170 }
6171
6172 fpst = fpstatus_ptr(FPST_FPCR);
6173 if (rmode >= 0) {
6174 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6175 gen_fpst(tcg_res, tcg_op, fpst);
6176 gen_restore_rmode(tcg_rmode, fpst);
6177 } else {
6178 gen_fpst(tcg_res, tcg_op, fpst);
6179 }
6180
6181 done:
6182 write_fp_dreg(s, rd, tcg_res);
6183 }
6184
6185 static void handle_fp_fcvt(DisasContext *s, int opcode,
6186 int rd, int rn, int dtype, int ntype)
6187 {
6188 switch (ntype) {
6189 case 0x0:
6190 {
6191 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6192 if (dtype == 1) {
6193 /* Single to double */
6194 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6195 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
6196 write_fp_dreg(s, rd, tcg_rd);
6197 } else {
6198 /* Single to half */
6199 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6200 TCGv_i32 ahp = get_ahp_flag();
6201 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6202
6203 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6204 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6205 write_fp_sreg(s, rd, tcg_rd);
6206 }
6207 break;
6208 }
6209 case 0x1:
6210 {
6211 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6212 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6213 if (dtype == 0) {
6214 /* Double to single */
6215 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
6216 } else {
6217 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6218 TCGv_i32 ahp = get_ahp_flag();
6219 /* Double to half */
6220 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6221 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6222 }
6223 write_fp_sreg(s, rd, tcg_rd);
6224 break;
6225 }
6226 case 0x3:
6227 {
6228 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6229 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6230 TCGv_i32 tcg_ahp = get_ahp_flag();
6231 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6232 if (dtype == 0) {
6233 /* Half to single */
6234 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6235 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6236 write_fp_sreg(s, rd, tcg_rd);
6237 } else {
6238 /* Half to double */
6239 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6240 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6241 write_fp_dreg(s, rd, tcg_rd);
6242 }
6243 break;
6244 }
6245 default:
6246 g_assert_not_reached();
6247 }
6248 }
6249
6250 /* Floating point data-processing (1 source)
6251 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
6252 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6253 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
6254 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6255 */
6256 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6257 {
6258 int mos = extract32(insn, 29, 3);
6259 int type = extract32(insn, 22, 2);
6260 int opcode = extract32(insn, 15, 6);
6261 int rn = extract32(insn, 5, 5);
6262 int rd = extract32(insn, 0, 5);
6263
6264 if (mos) {
6265 goto do_unallocated;
6266 }
6267
6268 switch (opcode) {
6269 case 0x4: case 0x5: case 0x7:
6270 {
6271 /* FCVT between half, single and double precision */
6272 int dtype = extract32(opcode, 0, 2);
6273 if (type == 2 || dtype == type) {
6274 goto do_unallocated;
6275 }
6276 if (!fp_access_check(s)) {
6277 return;
6278 }
6279
6280 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6281 break;
6282 }
6283
6284 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6285 if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6286 goto do_unallocated;
6287 }
6288 /* fall through */
6289 case 0x0 ... 0x3:
6290 case 0x8 ... 0xc:
6291 case 0xe ... 0xf:
6292 /* 32-to-32 and 64-to-64 ops */
6293 switch (type) {
6294 case 0:
6295 if (!fp_access_check(s)) {
6296 return;
6297 }
6298 handle_fp_1src_single(s, opcode, rd, rn);
6299 break;
6300 case 1:
6301 if (!fp_access_check(s)) {
6302 return;
6303 }
6304 handle_fp_1src_double(s, opcode, rd, rn);
6305 break;
6306 case 3:
6307 if (!dc_isar_feature(aa64_fp16, s)) {
6308 goto do_unallocated;
6309 }
6310
6311 if (!fp_access_check(s)) {
6312 return;
6313 }
6314 handle_fp_1src_half(s, opcode, rd, rn);
6315 break;
6316 default:
6317 goto do_unallocated;
6318 }
6319 break;
6320
6321 case 0x6:
6322 switch (type) {
6323 case 1: /* BFCVT */
6324 if (!dc_isar_feature(aa64_bf16, s)) {
6325 goto do_unallocated;
6326 }
6327 if (!fp_access_check(s)) {
6328 return;
6329 }
6330 handle_fp_1src_single(s, opcode, rd, rn);
6331 break;
6332 default:
6333 goto do_unallocated;
6334 }
6335 break;
6336
6337 default:
6338 do_unallocated:
6339 unallocated_encoding(s);
6340 break;
6341 }
6342 }
6343
6344 /* Floating-point data-processing (2 source) - single precision */
6345 static void handle_fp_2src_single(DisasContext *s, int opcode,
6346 int rd, int rn, int rm)
6347 {
6348 TCGv_i32 tcg_op1;
6349 TCGv_i32 tcg_op2;
6350 TCGv_i32 tcg_res;
6351 TCGv_ptr fpst;
6352
6353 tcg_res = tcg_temp_new_i32();
6354 fpst = fpstatus_ptr(FPST_FPCR);
6355 tcg_op1 = read_fp_sreg(s, rn);
6356 tcg_op2 = read_fp_sreg(s, rm);
6357
6358 switch (opcode) {
6359 case 0x0: /* FMUL */
6360 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6361 break;
6362 case 0x1: /* FDIV */
6363 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6364 break;
6365 case 0x2: /* FADD */
6366 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6367 break;
6368 case 0x3: /* FSUB */
6369 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6370 break;
6371 case 0x4: /* FMAX */
6372 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6373 break;
6374 case 0x5: /* FMIN */
6375 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6376 break;
6377 case 0x6: /* FMAXNM */
6378 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6379 break;
6380 case 0x7: /* FMINNM */
6381 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6382 break;
6383 case 0x8: /* FNMUL */
6384 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6385 gen_helper_vfp_negs(tcg_res, tcg_res);
6386 break;
6387 }
6388
6389 write_fp_sreg(s, rd, tcg_res);
6390 }
6391
6392 /* Floating-point data-processing (2 source) - double precision */
6393 static void handle_fp_2src_double(DisasContext *s, int opcode,
6394 int rd, int rn, int rm)
6395 {
6396 TCGv_i64 tcg_op1;
6397 TCGv_i64 tcg_op2;
6398 TCGv_i64 tcg_res;
6399 TCGv_ptr fpst;
6400
6401 tcg_res = tcg_temp_new_i64();
6402 fpst = fpstatus_ptr(FPST_FPCR);
6403 tcg_op1 = read_fp_dreg(s, rn);
6404 tcg_op2 = read_fp_dreg(s, rm);
6405
6406 switch (opcode) {
6407 case 0x0: /* FMUL */
6408 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6409 break;
6410 case 0x1: /* FDIV */
6411 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6412 break;
6413 case 0x2: /* FADD */
6414 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6415 break;
6416 case 0x3: /* FSUB */
6417 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6418 break;
6419 case 0x4: /* FMAX */
6420 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6421 break;
6422 case 0x5: /* FMIN */
6423 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6424 break;
6425 case 0x6: /* FMAXNM */
6426 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6427 break;
6428 case 0x7: /* FMINNM */
6429 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6430 break;
6431 case 0x8: /* FNMUL */
6432 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6433 gen_helper_vfp_negd(tcg_res, tcg_res);
6434 break;
6435 }
6436
6437 write_fp_dreg(s, rd, tcg_res);
6438 }
6439
6440 /* Floating-point data-processing (2 source) - half precision */
6441 static void handle_fp_2src_half(DisasContext *s, int opcode,
6442 int rd, int rn, int rm)
6443 {
6444 TCGv_i32 tcg_op1;
6445 TCGv_i32 tcg_op2;
6446 TCGv_i32 tcg_res;
6447 TCGv_ptr fpst;
6448
6449 tcg_res = tcg_temp_new_i32();
6450 fpst = fpstatus_ptr(FPST_FPCR_F16);
6451 tcg_op1 = read_fp_hreg(s, rn);
6452 tcg_op2 = read_fp_hreg(s, rm);
6453
6454 switch (opcode) {
6455 case 0x0: /* FMUL */
6456 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6457 break;
6458 case 0x1: /* FDIV */
6459 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6460 break;
6461 case 0x2: /* FADD */
6462 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6463 break;
6464 case 0x3: /* FSUB */
6465 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6466 break;
6467 case 0x4: /* FMAX */
6468 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6469 break;
6470 case 0x5: /* FMIN */
6471 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6472 break;
6473 case 0x6: /* FMAXNM */
6474 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6475 break;
6476 case 0x7: /* FMINNM */
6477 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6478 break;
6479 case 0x8: /* FNMUL */
6480 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6481 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6482 break;
6483 default:
6484 g_assert_not_reached();
6485 }
6486
6487 write_fp_sreg(s, rd, tcg_res);
6488 }
6489
6490 /* Floating point data-processing (2 source)
6491 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6492 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6493 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
6494 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6495 */
6496 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6497 {
6498 int mos = extract32(insn, 29, 3);
6499 int type = extract32(insn, 22, 2);
6500 int rd = extract32(insn, 0, 5);
6501 int rn = extract32(insn, 5, 5);
6502 int rm = extract32(insn, 16, 5);
6503 int opcode = extract32(insn, 12, 4);
6504
6505 if (opcode > 8 || mos) {
6506 unallocated_encoding(s);
6507 return;
6508 }
6509
6510 switch (type) {
6511 case 0:
6512 if (!fp_access_check(s)) {
6513 return;
6514 }
6515 handle_fp_2src_single(s, opcode, rd, rn, rm);
6516 break;
6517 case 1:
6518 if (!fp_access_check(s)) {
6519 return;
6520 }
6521 handle_fp_2src_double(s, opcode, rd, rn, rm);
6522 break;
6523 case 3:
6524 if (!dc_isar_feature(aa64_fp16, s)) {
6525 unallocated_encoding(s);
6526 return;
6527 }
6528 if (!fp_access_check(s)) {
6529 return;
6530 }
6531 handle_fp_2src_half(s, opcode, rd, rn, rm);
6532 break;
6533 default:
6534 unallocated_encoding(s);
6535 }
6536 }
6537
6538 /* Floating-point data-processing (3 source) - single precision */
6539 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6540 int rd, int rn, int rm, int ra)
6541 {
6542 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6543 TCGv_i32 tcg_res = tcg_temp_new_i32();
6544 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6545
6546 tcg_op1 = read_fp_sreg(s, rn);
6547 tcg_op2 = read_fp_sreg(s, rm);
6548 tcg_op3 = read_fp_sreg(s, ra);
6549
6550 /* These are fused multiply-add, and must be done as one
6551 * floating point operation with no rounding between the
6552 * multiplication and addition steps.
6553 * NB that doing the negations here as separate steps is
6554 * correct : an input NaN should come out with its sign bit
6555 * flipped if it is a negated-input.
6556 */
6557 if (o1 == true) {
6558 gen_helper_vfp_negs(tcg_op3, tcg_op3);
6559 }
6560
6561 if (o0 != o1) {
6562 gen_helper_vfp_negs(tcg_op1, tcg_op1);
6563 }
6564
6565 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6566
6567 write_fp_sreg(s, rd, tcg_res);
6568 }
6569
6570 /* Floating-point data-processing (3 source) - double precision */
6571 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6572 int rd, int rn, int rm, int ra)
6573 {
6574 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6575 TCGv_i64 tcg_res = tcg_temp_new_i64();
6576 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6577
6578 tcg_op1 = read_fp_dreg(s, rn);
6579 tcg_op2 = read_fp_dreg(s, rm);
6580 tcg_op3 = read_fp_dreg(s, ra);
6581
6582 /* These are fused multiply-add, and must be done as one
6583 * floating point operation with no rounding between the
6584 * multiplication and addition steps.
6585 * NB that doing the negations here as separate steps is
6586 * correct : an input NaN should come out with its sign bit
6587 * flipped if it is a negated-input.
6588 */
6589 if (o1 == true) {
6590 gen_helper_vfp_negd(tcg_op3, tcg_op3);
6591 }
6592
6593 if (o0 != o1) {
6594 gen_helper_vfp_negd(tcg_op1, tcg_op1);
6595 }
6596
6597 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6598
6599 write_fp_dreg(s, rd, tcg_res);
6600 }
6601
6602 /* Floating-point data-processing (3 source) - half precision */
6603 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6604 int rd, int rn, int rm, int ra)
6605 {
6606 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6607 TCGv_i32 tcg_res = tcg_temp_new_i32();
6608 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6609
6610 tcg_op1 = read_fp_hreg(s, rn);
6611 tcg_op2 = read_fp_hreg(s, rm);
6612 tcg_op3 = read_fp_hreg(s, ra);
6613
6614 /* These are fused multiply-add, and must be done as one
6615 * floating point operation with no rounding between the
6616 * multiplication and addition steps.
6617 * NB that doing the negations here as separate steps is
6618 * correct : an input NaN should come out with its sign bit
6619 * flipped if it is a negated-input.
6620 */
6621 if (o1 == true) {
6622 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6623 }
6624
6625 if (o0 != o1) {
6626 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6627 }
6628
6629 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6630
6631 write_fp_sreg(s, rd, tcg_res);
6632 }
6633
6634 /* Floating point data-processing (3 source)
6635 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6636 * +---+---+---+-----------+------+----+------+----+------+------+------+
6637 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6638 * +---+---+---+-----------+------+----+------+----+------+------+------+
6639 */
6640 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6641 {
6642 int mos = extract32(insn, 29, 3);
6643 int type = extract32(insn, 22, 2);
6644 int rd = extract32(insn, 0, 5);
6645 int rn = extract32(insn, 5, 5);
6646 int ra = extract32(insn, 10, 5);
6647 int rm = extract32(insn, 16, 5);
6648 bool o0 = extract32(insn, 15, 1);
6649 bool o1 = extract32(insn, 21, 1);
6650
6651 if (mos) {
6652 unallocated_encoding(s);
6653 return;
6654 }
6655
6656 switch (type) {
6657 case 0:
6658 if (!fp_access_check(s)) {
6659 return;
6660 }
6661 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6662 break;
6663 case 1:
6664 if (!fp_access_check(s)) {
6665 return;
6666 }
6667 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6668 break;
6669 case 3:
6670 if (!dc_isar_feature(aa64_fp16, s)) {
6671 unallocated_encoding(s);
6672 return;
6673 }
6674 if (!fp_access_check(s)) {
6675 return;
6676 }
6677 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6678 break;
6679 default:
6680 unallocated_encoding(s);
6681 }
6682 }
6683
6684 /* Floating point immediate
6685 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
6686 * +---+---+---+-----------+------+---+------------+-------+------+------+
6687 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
6688 * +---+---+---+-----------+------+---+------------+-------+------+------+
6689 */
6690 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6691 {
6692 int rd = extract32(insn, 0, 5);
6693 int imm5 = extract32(insn, 5, 5);
6694 int imm8 = extract32(insn, 13, 8);
6695 int type = extract32(insn, 22, 2);
6696 int mos = extract32(insn, 29, 3);
6697 uint64_t imm;
6698 MemOp sz;
6699
6700 if (mos || imm5) {
6701 unallocated_encoding(s);
6702 return;
6703 }
6704
6705 switch (type) {
6706 case 0:
6707 sz = MO_32;
6708 break;
6709 case 1:
6710 sz = MO_64;
6711 break;
6712 case 3:
6713 sz = MO_16;
6714 if (dc_isar_feature(aa64_fp16, s)) {
6715 break;
6716 }
6717 /* fallthru */
6718 default:
6719 unallocated_encoding(s);
6720 return;
6721 }
6722
6723 if (!fp_access_check(s)) {
6724 return;
6725 }
6726
6727 imm = vfp_expand_imm(sz, imm8);
6728 write_fp_dreg(s, rd, tcg_constant_i64(imm));
6729 }
6730
6731 /* Handle floating point <=> fixed point conversions. Note that we can
6732 * also deal with fp <=> integer conversions as a special case (scale == 64)
6733 * OPTME: consider handling that special case specially or at least skipping
6734 * the call to scalbn in the helpers for zero shifts.
6735 */
6736 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6737 bool itof, int rmode, int scale, int sf, int type)
6738 {
6739 bool is_signed = !(opcode & 1);
6740 TCGv_ptr tcg_fpstatus;
6741 TCGv_i32 tcg_shift, tcg_single;
6742 TCGv_i64 tcg_double;
6743
6744 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
6745
6746 tcg_shift = tcg_constant_i32(64 - scale);
6747
6748 if (itof) {
6749 TCGv_i64 tcg_int = cpu_reg(s, rn);
6750 if (!sf) {
6751 TCGv_i64 tcg_extend = tcg_temp_new_i64();
6752
6753 if (is_signed) {
6754 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6755 } else {
6756 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6757 }
6758
6759 tcg_int = tcg_extend;
6760 }
6761
6762 switch (type) {
6763 case 1: /* float64 */
6764 tcg_double = tcg_temp_new_i64();
6765 if (is_signed) {
6766 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6767 tcg_shift, tcg_fpstatus);
6768 } else {
6769 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6770 tcg_shift, tcg_fpstatus);
6771 }
6772 write_fp_dreg(s, rd, tcg_double);
6773 break;
6774
6775 case 0: /* float32 */
6776 tcg_single = tcg_temp_new_i32();
6777 if (is_signed) {
6778 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6779 tcg_shift, tcg_fpstatus);
6780 } else {
6781 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6782 tcg_shift, tcg_fpstatus);
6783 }
6784 write_fp_sreg(s, rd, tcg_single);
6785 break;
6786
6787 case 3: /* float16 */
6788 tcg_single = tcg_temp_new_i32();
6789 if (is_signed) {
6790 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6791 tcg_shift, tcg_fpstatus);
6792 } else {
6793 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6794 tcg_shift, tcg_fpstatus);
6795 }
6796 write_fp_sreg(s, rd, tcg_single);
6797 break;
6798
6799 default:
6800 g_assert_not_reached();
6801 }
6802 } else {
6803 TCGv_i64 tcg_int = cpu_reg(s, rd);
6804 TCGv_i32 tcg_rmode;
6805
6806 if (extract32(opcode, 2, 1)) {
6807 /* There are too many rounding modes to all fit into rmode,
6808 * so FCVTA[US] is a special case.
6809 */
6810 rmode = FPROUNDING_TIEAWAY;
6811 }
6812
6813 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
6814
6815 switch (type) {
6816 case 1: /* float64 */
6817 tcg_double = read_fp_dreg(s, rn);
6818 if (is_signed) {
6819 if (!sf) {
6820 gen_helper_vfp_tosld(tcg_int, tcg_double,
6821 tcg_shift, tcg_fpstatus);
6822 } else {
6823 gen_helper_vfp_tosqd(tcg_int, tcg_double,
6824 tcg_shift, tcg_fpstatus);
6825 }
6826 } else {
6827 if (!sf) {
6828 gen_helper_vfp_tould(tcg_int, tcg_double,
6829 tcg_shift, tcg_fpstatus);
6830 } else {
6831 gen_helper_vfp_touqd(tcg_int, tcg_double,
6832 tcg_shift, tcg_fpstatus);
6833 }
6834 }
6835 if (!sf) {
6836 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6837 }
6838 break;
6839
6840 case 0: /* float32 */
6841 tcg_single = read_fp_sreg(s, rn);
6842 if (sf) {
6843 if (is_signed) {
6844 gen_helper_vfp_tosqs(tcg_int, tcg_single,
6845 tcg_shift, tcg_fpstatus);
6846 } else {
6847 gen_helper_vfp_touqs(tcg_int, tcg_single,
6848 tcg_shift, tcg_fpstatus);
6849 }
6850 } else {
6851 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6852 if (is_signed) {
6853 gen_helper_vfp_tosls(tcg_dest, tcg_single,
6854 tcg_shift, tcg_fpstatus);
6855 } else {
6856 gen_helper_vfp_touls(tcg_dest, tcg_single,
6857 tcg_shift, tcg_fpstatus);
6858 }
6859 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6860 }
6861 break;
6862
6863 case 3: /* float16 */
6864 tcg_single = read_fp_sreg(s, rn);
6865 if (sf) {
6866 if (is_signed) {
6867 gen_helper_vfp_tosqh(tcg_int, tcg_single,
6868 tcg_shift, tcg_fpstatus);
6869 } else {
6870 gen_helper_vfp_touqh(tcg_int, tcg_single,
6871 tcg_shift, tcg_fpstatus);
6872 }
6873 } else {
6874 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6875 if (is_signed) {
6876 gen_helper_vfp_toslh(tcg_dest, tcg_single,
6877 tcg_shift, tcg_fpstatus);
6878 } else {
6879 gen_helper_vfp_toulh(tcg_dest, tcg_single,
6880 tcg_shift, tcg_fpstatus);
6881 }
6882 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6883 }
6884 break;
6885
6886 default:
6887 g_assert_not_reached();
6888 }
6889
6890 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
6891 }
6892 }
6893
6894 /* Floating point <-> fixed point conversions
6895 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6896 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6897 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
6898 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6899 */
6900 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6901 {
6902 int rd = extract32(insn, 0, 5);
6903 int rn = extract32(insn, 5, 5);
6904 int scale = extract32(insn, 10, 6);
6905 int opcode = extract32(insn, 16, 3);
6906 int rmode = extract32(insn, 19, 2);
6907 int type = extract32(insn, 22, 2);
6908 bool sbit = extract32(insn, 29, 1);
6909 bool sf = extract32(insn, 31, 1);
6910 bool itof;
6911
6912 if (sbit || (!sf && scale < 32)) {
6913 unallocated_encoding(s);
6914 return;
6915 }
6916
6917 switch (type) {
6918 case 0: /* float32 */
6919 case 1: /* float64 */
6920 break;
6921 case 3: /* float16 */
6922 if (dc_isar_feature(aa64_fp16, s)) {
6923 break;
6924 }
6925 /* fallthru */
6926 default:
6927 unallocated_encoding(s);
6928 return;
6929 }
6930
6931 switch ((rmode << 3) | opcode) {
6932 case 0x2: /* SCVTF */
6933 case 0x3: /* UCVTF */
6934 itof = true;
6935 break;
6936 case 0x18: /* FCVTZS */
6937 case 0x19: /* FCVTZU */
6938 itof = false;
6939 break;
6940 default:
6941 unallocated_encoding(s);
6942 return;
6943 }
6944
6945 if (!fp_access_check(s)) {
6946 return;
6947 }
6948
6949 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
6950 }
6951
6952 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
6953 {
6954 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
6955 * without conversion.
6956 */
6957
6958 if (itof) {
6959 TCGv_i64 tcg_rn = cpu_reg(s, rn);
6960 TCGv_i64 tmp;
6961
6962 switch (type) {
6963 case 0:
6964 /* 32 bit */
6965 tmp = tcg_temp_new_i64();
6966 tcg_gen_ext32u_i64(tmp, tcg_rn);
6967 write_fp_dreg(s, rd, tmp);
6968 break;
6969 case 1:
6970 /* 64 bit */
6971 write_fp_dreg(s, rd, tcg_rn);
6972 break;
6973 case 2:
6974 /* 64 bit to top half. */
6975 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
6976 clear_vec_high(s, true, rd);
6977 break;
6978 case 3:
6979 /* 16 bit */
6980 tmp = tcg_temp_new_i64();
6981 tcg_gen_ext16u_i64(tmp, tcg_rn);
6982 write_fp_dreg(s, rd, tmp);
6983 break;
6984 default:
6985 g_assert_not_reached();
6986 }
6987 } else {
6988 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6989
6990 switch (type) {
6991 case 0:
6992 /* 32 bit */
6993 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
6994 break;
6995 case 1:
6996 /* 64 bit */
6997 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
6998 break;
6999 case 2:
7000 /* 64 bits from top half */
7001 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
7002 break;
7003 case 3:
7004 /* 16 bit */
7005 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
7006 break;
7007 default:
7008 g_assert_not_reached();
7009 }
7010 }
7011 }
7012
7013 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7014 {
7015 TCGv_i64 t = read_fp_dreg(s, rn);
7016 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7017
7018 gen_helper_fjcvtzs(t, t, fpstatus);
7019
7020 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7021 tcg_gen_extrh_i64_i32(cpu_ZF, t);
7022 tcg_gen_movi_i32(cpu_CF, 0);
7023 tcg_gen_movi_i32(cpu_NF, 0);
7024 tcg_gen_movi_i32(cpu_VF, 0);
7025 }
7026
7027 /* Floating point <-> integer conversions
7028 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7029 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7030 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7031 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7032 */
7033 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7034 {
7035 int rd = extract32(insn, 0, 5);
7036 int rn = extract32(insn, 5, 5);
7037 int opcode = extract32(insn, 16, 3);
7038 int rmode = extract32(insn, 19, 2);
7039 int type = extract32(insn, 22, 2);
7040 bool sbit = extract32(insn, 29, 1);
7041 bool sf = extract32(insn, 31, 1);
7042 bool itof = false;
7043
7044 if (sbit) {
7045 goto do_unallocated;
7046 }
7047
7048 switch (opcode) {
7049 case 2: /* SCVTF */
7050 case 3: /* UCVTF */
7051 itof = true;
7052 /* fallthru */
7053 case 4: /* FCVTAS */
7054 case 5: /* FCVTAU */
7055 if (rmode != 0) {
7056 goto do_unallocated;
7057 }
7058 /* fallthru */
7059 case 0: /* FCVT[NPMZ]S */
7060 case 1: /* FCVT[NPMZ]U */
7061 switch (type) {
7062 case 0: /* float32 */
7063 case 1: /* float64 */
7064 break;
7065 case 3: /* float16 */
7066 if (!dc_isar_feature(aa64_fp16, s)) {
7067 goto do_unallocated;
7068 }
7069 break;
7070 default:
7071 goto do_unallocated;
7072 }
7073 if (!fp_access_check(s)) {
7074 return;
7075 }
7076 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7077 break;
7078
7079 default:
7080 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7081 case 0b01100110: /* FMOV half <-> 32-bit int */
7082 case 0b01100111:
7083 case 0b11100110: /* FMOV half <-> 64-bit int */
7084 case 0b11100111:
7085 if (!dc_isar_feature(aa64_fp16, s)) {
7086 goto do_unallocated;
7087 }
7088 /* fallthru */
7089 case 0b00000110: /* FMOV 32-bit */
7090 case 0b00000111:
7091 case 0b10100110: /* FMOV 64-bit */
7092 case 0b10100111:
7093 case 0b11001110: /* FMOV top half of 128-bit */
7094 case 0b11001111:
7095 if (!fp_access_check(s)) {
7096 return;
7097 }
7098 itof = opcode & 1;
7099 handle_fmov(s, rd, rn, type, itof);
7100 break;
7101
7102 case 0b00111110: /* FJCVTZS */
7103 if (!dc_isar_feature(aa64_jscvt, s)) {
7104 goto do_unallocated;
7105 } else if (fp_access_check(s)) {
7106 handle_fjcvtzs(s, rd, rn);
7107 }
7108 break;
7109
7110 default:
7111 do_unallocated:
7112 unallocated_encoding(s);
7113 return;
7114 }
7115 break;
7116 }
7117 }
7118
7119 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7120 * 31 30 29 28 25 24 0
7121 * +---+---+---+---------+-----------------------------+
7122 * | | 0 | | 1 1 1 1 | |
7123 * +---+---+---+---------+-----------------------------+
7124 */
7125 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7126 {
7127 if (extract32(insn, 24, 1)) {
7128 /* Floating point data-processing (3 source) */
7129 disas_fp_3src(s, insn);
7130 } else if (extract32(insn, 21, 1) == 0) {
7131 /* Floating point to fixed point conversions */
7132 disas_fp_fixed_conv(s, insn);
7133 } else {
7134 switch (extract32(insn, 10, 2)) {
7135 case 1:
7136 /* Floating point conditional compare */
7137 disas_fp_ccomp(s, insn);
7138 break;
7139 case 2:
7140 /* Floating point data-processing (2 source) */
7141 disas_fp_2src(s, insn);
7142 break;
7143 case 3:
7144 /* Floating point conditional select */
7145 disas_fp_csel(s, insn);
7146 break;
7147 case 0:
7148 switch (ctz32(extract32(insn, 12, 4))) {
7149 case 0: /* [15:12] == xxx1 */
7150 /* Floating point immediate */
7151 disas_fp_imm(s, insn);
7152 break;
7153 case 1: /* [15:12] == xx10 */
7154 /* Floating point compare */
7155 disas_fp_compare(s, insn);
7156 break;
7157 case 2: /* [15:12] == x100 */
7158 /* Floating point data-processing (1 source) */
7159 disas_fp_1src(s, insn);
7160 break;
7161 case 3: /* [15:12] == 1000 */
7162 unallocated_encoding(s);
7163 break;
7164 default: /* [15:12] == 0000 */
7165 /* Floating point <-> integer conversions */
7166 disas_fp_int_conv(s, insn);
7167 break;
7168 }
7169 break;
7170 }
7171 }
7172 }
7173
7174 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7175 int pos)
7176 {
7177 /* Extract 64 bits from the middle of two concatenated 64 bit
7178 * vector register slices left:right. The extracted bits start
7179 * at 'pos' bits into the right (least significant) side.
7180 * We return the result in tcg_right, and guarantee not to
7181 * trash tcg_left.
7182 */
7183 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7184 assert(pos > 0 && pos < 64);
7185
7186 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7187 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7188 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7189 }
7190
7191 /* EXT
7192 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
7193 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7194 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
7195 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7196 */
7197 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7198 {
7199 int is_q = extract32(insn, 30, 1);
7200 int op2 = extract32(insn, 22, 2);
7201 int imm4 = extract32(insn, 11, 4);
7202 int rm = extract32(insn, 16, 5);
7203 int rn = extract32(insn, 5, 5);
7204 int rd = extract32(insn, 0, 5);
7205 int pos = imm4 << 3;
7206 TCGv_i64 tcg_resl, tcg_resh;
7207
7208 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7209 unallocated_encoding(s);
7210 return;
7211 }
7212
7213 if (!fp_access_check(s)) {
7214 return;
7215 }
7216
7217 tcg_resh = tcg_temp_new_i64();
7218 tcg_resl = tcg_temp_new_i64();
7219
7220 /* Vd gets bits starting at pos bits into Vm:Vn. This is
7221 * either extracting 128 bits from a 128:128 concatenation, or
7222 * extracting 64 bits from a 64:64 concatenation.
7223 */
7224 if (!is_q) {
7225 read_vec_element(s, tcg_resl, rn, 0, MO_64);
7226 if (pos != 0) {
7227 read_vec_element(s, tcg_resh, rm, 0, MO_64);
7228 do_ext64(s, tcg_resh, tcg_resl, pos);
7229 }
7230 } else {
7231 TCGv_i64 tcg_hh;
7232 typedef struct {
7233 int reg;
7234 int elt;
7235 } EltPosns;
7236 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7237 EltPosns *elt = eltposns;
7238
7239 if (pos >= 64) {
7240 elt++;
7241 pos -= 64;
7242 }
7243
7244 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7245 elt++;
7246 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7247 elt++;
7248 if (pos != 0) {
7249 do_ext64(s, tcg_resh, tcg_resl, pos);
7250 tcg_hh = tcg_temp_new_i64();
7251 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7252 do_ext64(s, tcg_hh, tcg_resh, pos);
7253 }
7254 }
7255
7256 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7257 if (is_q) {
7258 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7259 }
7260 clear_vec_high(s, is_q, rd);
7261 }
7262
7263 /* TBL/TBX
7264 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
7265 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7266 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
7267 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7268 */
7269 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7270 {
7271 int op2 = extract32(insn, 22, 2);
7272 int is_q = extract32(insn, 30, 1);
7273 int rm = extract32(insn, 16, 5);
7274 int rn = extract32(insn, 5, 5);
7275 int rd = extract32(insn, 0, 5);
7276 int is_tbx = extract32(insn, 12, 1);
7277 int len = (extract32(insn, 13, 2) + 1) * 16;
7278
7279 if (op2 != 0) {
7280 unallocated_encoding(s);
7281 return;
7282 }
7283
7284 if (!fp_access_check(s)) {
7285 return;
7286 }
7287
7288 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7289 vec_full_reg_offset(s, rm), tcg_env,
7290 is_q ? 16 : 8, vec_full_reg_size(s),
7291 (len << 6) | (is_tbx << 5) | rn,
7292 gen_helper_simd_tblx);
7293 }
7294
7295 /* ZIP/UZP/TRN
7296 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
7297 * +---+---+-------------+------+---+------+---+------------------+------+
7298 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
7299 * +---+---+-------------+------+---+------+---+------------------+------+
7300 */
7301 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7302 {
7303 int rd = extract32(insn, 0, 5);
7304 int rn = extract32(insn, 5, 5);
7305 int rm = extract32(insn, 16, 5);
7306 int size = extract32(insn, 22, 2);
7307 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7308 * bit 2 indicates 1 vs 2 variant of the insn.
7309 */
7310 int opcode = extract32(insn, 12, 2);
7311 bool part = extract32(insn, 14, 1);
7312 bool is_q = extract32(insn, 30, 1);
7313 int esize = 8 << size;
7314 int i;
7315 int datasize = is_q ? 128 : 64;
7316 int elements = datasize / esize;
7317 TCGv_i64 tcg_res[2], tcg_ele;
7318
7319 if (opcode == 0 || (size == 3 && !is_q)) {
7320 unallocated_encoding(s);
7321 return;
7322 }
7323
7324 if (!fp_access_check(s)) {
7325 return;
7326 }
7327
7328 tcg_res[0] = tcg_temp_new_i64();
7329 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7330 tcg_ele = tcg_temp_new_i64();
7331
7332 for (i = 0; i < elements; i++) {
7333 int o, w;
7334
7335 switch (opcode) {
7336 case 1: /* UZP1/2 */
7337 {
7338 int midpoint = elements / 2;
7339 if (i < midpoint) {
7340 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
7341 } else {
7342 read_vec_element(s, tcg_ele, rm,
7343 2 * (i - midpoint) + part, size);
7344 }
7345 break;
7346 }
7347 case 2: /* TRN1/2 */
7348 if (i & 1) {
7349 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
7350 } else {
7351 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
7352 }
7353 break;
7354 case 3: /* ZIP1/2 */
7355 {
7356 int base = part * elements / 2;
7357 if (i & 1) {
7358 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
7359 } else {
7360 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
7361 }
7362 break;
7363 }
7364 default:
7365 g_assert_not_reached();
7366 }
7367
7368 w = (i * esize) / 64;
7369 o = (i * esize) % 64;
7370 if (o == 0) {
7371 tcg_gen_mov_i64(tcg_res[w], tcg_ele);
7372 } else {
7373 tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
7374 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
7375 }
7376 }
7377
7378 for (i = 0; i <= is_q; ++i) {
7379 write_vec_element(s, tcg_res[i], rd, i, MO_64);
7380 }
7381 clear_vec_high(s, is_q, rd);
7382 }
7383
7384 /*
7385 * do_reduction_op helper
7386 *
7387 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7388 * important for correct NaN propagation that we do these
7389 * operations in exactly the order specified by the pseudocode.
7390 *
7391 * This is a recursive function, TCG temps should be freed by the
7392 * calling function once it is done with the values.
7393 */
7394 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7395 int esize, int size, int vmap, TCGv_ptr fpst)
7396 {
7397 if (esize == size) {
7398 int element;
7399 MemOp msize = esize == 16 ? MO_16 : MO_32;
7400 TCGv_i32 tcg_elem;
7401
7402 /* We should have one register left here */
7403 assert(ctpop8(vmap) == 1);
7404 element = ctz32(vmap);
7405 assert(element < 8);
7406
7407 tcg_elem = tcg_temp_new_i32();
7408 read_vec_element_i32(s, tcg_elem, rn, element, msize);
7409 return tcg_elem;
7410 } else {
7411 int bits = size / 2;
7412 int shift = ctpop8(vmap) / 2;
7413 int vmap_lo = (vmap >> shift) & vmap;
7414 int vmap_hi = (vmap & ~vmap_lo);
7415 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7416
7417 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7418 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7419 tcg_res = tcg_temp_new_i32();
7420
7421 switch (fpopcode) {
7422 case 0x0c: /* fmaxnmv half-precision */
7423 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7424 break;
7425 case 0x0f: /* fmaxv half-precision */
7426 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7427 break;
7428 case 0x1c: /* fminnmv half-precision */
7429 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7430 break;
7431 case 0x1f: /* fminv half-precision */
7432 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7433 break;
7434 case 0x2c: /* fmaxnmv */
7435 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7436 break;
7437 case 0x2f: /* fmaxv */
7438 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7439 break;
7440 case 0x3c: /* fminnmv */
7441 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7442 break;
7443 case 0x3f: /* fminv */
7444 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7445 break;
7446 default:
7447 g_assert_not_reached();
7448 }
7449 return tcg_res;
7450 }
7451 }
7452
7453 /* AdvSIMD across lanes
7454 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7455 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7456 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7457 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7458 */
7459 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7460 {
7461 int rd = extract32(insn, 0, 5);
7462 int rn = extract32(insn, 5, 5);
7463 int size = extract32(insn, 22, 2);
7464 int opcode = extract32(insn, 12, 5);
7465 bool is_q = extract32(insn, 30, 1);
7466 bool is_u = extract32(insn, 29, 1);
7467 bool is_fp = false;
7468 bool is_min = false;
7469 int esize;
7470 int elements;
7471 int i;
7472 TCGv_i64 tcg_res, tcg_elt;
7473
7474 switch (opcode) {
7475 case 0x1b: /* ADDV */
7476 if (is_u) {
7477 unallocated_encoding(s);
7478 return;
7479 }
7480 /* fall through */
7481 case 0x3: /* SADDLV, UADDLV */
7482 case 0xa: /* SMAXV, UMAXV */
7483 case 0x1a: /* SMINV, UMINV */
7484 if (size == 3 || (size == 2 && !is_q)) {
7485 unallocated_encoding(s);
7486 return;
7487 }
7488 break;
7489 case 0xc: /* FMAXNMV, FMINNMV */
7490 case 0xf: /* FMAXV, FMINV */
7491 /* Bit 1 of size field encodes min vs max and the actual size
7492 * depends on the encoding of the U bit. If not set (and FP16
7493 * enabled) then we do half-precision float instead of single
7494 * precision.
7495 */
7496 is_min = extract32(size, 1, 1);
7497 is_fp = true;
7498 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7499 size = 1;
7500 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7501 unallocated_encoding(s);
7502 return;
7503 } else {
7504 size = 2;
7505 }
7506 break;
7507 default:
7508 unallocated_encoding(s);
7509 return;
7510 }
7511
7512 if (!fp_access_check(s)) {
7513 return;
7514 }
7515
7516 esize = 8 << size;
7517 elements = (is_q ? 128 : 64) / esize;
7518
7519 tcg_res = tcg_temp_new_i64();
7520 tcg_elt = tcg_temp_new_i64();
7521
7522 /* These instructions operate across all lanes of a vector
7523 * to produce a single result. We can guarantee that a 64
7524 * bit intermediate is sufficient:
7525 * + for [US]ADDLV the maximum element size is 32 bits, and
7526 * the result type is 64 bits
7527 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7528 * same as the element size, which is 32 bits at most
7529 * For the integer operations we can choose to work at 64
7530 * or 32 bits and truncate at the end; for simplicity
7531 * we use 64 bits always. The floating point
7532 * ops do require 32 bit intermediates, though.
7533 */
7534 if (!is_fp) {
7535 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7536
7537 for (i = 1; i < elements; i++) {
7538 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7539
7540 switch (opcode) {
7541 case 0x03: /* SADDLV / UADDLV */
7542 case 0x1b: /* ADDV */
7543 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7544 break;
7545 case 0x0a: /* SMAXV / UMAXV */
7546 if (is_u) {
7547 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7548 } else {
7549 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7550 }
7551 break;
7552 case 0x1a: /* SMINV / UMINV */
7553 if (is_u) {
7554 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7555 } else {
7556 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7557 }
7558 break;
7559 default:
7560 g_assert_not_reached();
7561 }
7562
7563 }
7564 } else {
7565 /* Floating point vector reduction ops which work across 32
7566 * bit (single) or 16 bit (half-precision) intermediates.
7567 * Note that correct NaN propagation requires that we do these
7568 * operations in exactly the order specified by the pseudocode.
7569 */
7570 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7571 int fpopcode = opcode | is_min << 4 | is_u << 5;
7572 int vmap = (1 << elements) - 1;
7573 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7574 (is_q ? 128 : 64), vmap, fpst);
7575 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7576 }
7577
7578 /* Now truncate the result to the width required for the final output */
7579 if (opcode == 0x03) {
7580 /* SADDLV, UADDLV: result is 2*esize */
7581 size++;
7582 }
7583
7584 switch (size) {
7585 case 0:
7586 tcg_gen_ext8u_i64(tcg_res, tcg_res);
7587 break;
7588 case 1:
7589 tcg_gen_ext16u_i64(tcg_res, tcg_res);
7590 break;
7591 case 2:
7592 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7593 break;
7594 case 3:
7595 break;
7596 default:
7597 g_assert_not_reached();
7598 }
7599
7600 write_fp_dreg(s, rd, tcg_res);
7601 }
7602
7603 /* DUP (Element, Vector)
7604 *
7605 * 31 30 29 21 20 16 15 10 9 5 4 0
7606 * +---+---+-------------------+--------+-------------+------+------+
7607 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7608 * +---+---+-------------------+--------+-------------+------+------+
7609 *
7610 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7611 */
7612 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7613 int imm5)
7614 {
7615 int size = ctz32(imm5);
7616 int index;
7617
7618 if (size > 3 || (size == 3 && !is_q)) {
7619 unallocated_encoding(s);
7620 return;
7621 }
7622
7623 if (!fp_access_check(s)) {
7624 return;
7625 }
7626
7627 index = imm5 >> (size + 1);
7628 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7629 vec_reg_offset(s, rn, index, size),
7630 is_q ? 16 : 8, vec_full_reg_size(s));
7631 }
7632
7633 /* DUP (element, scalar)
7634 * 31 21 20 16 15 10 9 5 4 0
7635 * +-----------------------+--------+-------------+------+------+
7636 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7637 * +-----------------------+--------+-------------+------+------+
7638 */
7639 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7640 int imm5)
7641 {
7642 int size = ctz32(imm5);
7643 int index;
7644 TCGv_i64 tmp;
7645
7646 if (size > 3) {
7647 unallocated_encoding(s);
7648 return;
7649 }
7650
7651 if (!fp_access_check(s)) {
7652 return;
7653 }
7654
7655 index = imm5 >> (size + 1);
7656
7657 /* This instruction just extracts the specified element and
7658 * zero-extends it into the bottom of the destination register.
7659 */
7660 tmp = tcg_temp_new_i64();
7661 read_vec_element(s, tmp, rn, index, size);
7662 write_fp_dreg(s, rd, tmp);
7663 }
7664
7665 /* DUP (General)
7666 *
7667 * 31 30 29 21 20 16 15 10 9 5 4 0
7668 * +---+---+-------------------+--------+-------------+------+------+
7669 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
7670 * +---+---+-------------------+--------+-------------+------+------+
7671 *
7672 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7673 */
7674 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7675 int imm5)
7676 {
7677 int size = ctz32(imm5);
7678 uint32_t dofs, oprsz, maxsz;
7679
7680 if (size > 3 || ((size == 3) && !is_q)) {
7681 unallocated_encoding(s);
7682 return;
7683 }
7684
7685 if (!fp_access_check(s)) {
7686 return;
7687 }
7688
7689 dofs = vec_full_reg_offset(s, rd);
7690 oprsz = is_q ? 16 : 8;
7691 maxsz = vec_full_reg_size(s);
7692
7693 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7694 }
7695
7696 /* INS (Element)
7697 *
7698 * 31 21 20 16 15 14 11 10 9 5 4 0
7699 * +-----------------------+--------+------------+---+------+------+
7700 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7701 * +-----------------------+--------+------------+---+------+------+
7702 *
7703 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7704 * index: encoded in imm5<4:size+1>
7705 */
7706 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7707 int imm4, int imm5)
7708 {
7709 int size = ctz32(imm5);
7710 int src_index, dst_index;
7711 TCGv_i64 tmp;
7712
7713 if (size > 3) {
7714 unallocated_encoding(s);
7715 return;
7716 }
7717
7718 if (!fp_access_check(s)) {
7719 return;
7720 }
7721
7722 dst_index = extract32(imm5, 1+size, 5);
7723 src_index = extract32(imm4, size, 4);
7724
7725 tmp = tcg_temp_new_i64();
7726
7727 read_vec_element(s, tmp, rn, src_index, size);
7728 write_vec_element(s, tmp, rd, dst_index, size);
7729
7730 /* INS is considered a 128-bit write for SVE. */
7731 clear_vec_high(s, true, rd);
7732 }
7733
7734
7735 /* INS (General)
7736 *
7737 * 31 21 20 16 15 10 9 5 4 0
7738 * +-----------------------+--------+-------------+------+------+
7739 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
7740 * +-----------------------+--------+-------------+------+------+
7741 *
7742 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7743 * index: encoded in imm5<4:size+1>
7744 */
7745 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7746 {
7747 int size = ctz32(imm5);
7748 int idx;
7749
7750 if (size > 3) {
7751 unallocated_encoding(s);
7752 return;
7753 }
7754
7755 if (!fp_access_check(s)) {
7756 return;
7757 }
7758
7759 idx = extract32(imm5, 1 + size, 4 - size);
7760 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7761
7762 /* INS is considered a 128-bit write for SVE. */
7763 clear_vec_high(s, true, rd);
7764 }
7765
7766 /*
7767 * UMOV (General)
7768 * SMOV (General)
7769 *
7770 * 31 30 29 21 20 16 15 12 10 9 5 4 0
7771 * +---+---+-------------------+--------+-------------+------+------+
7772 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
7773 * +---+---+-------------------+--------+-------------+------+------+
7774 *
7775 * U: unsigned when set
7776 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7777 */
7778 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7779 int rn, int rd, int imm5)
7780 {
7781 int size = ctz32(imm5);
7782 int element;
7783 TCGv_i64 tcg_rd;
7784
7785 /* Check for UnallocatedEncodings */
7786 if (is_signed) {
7787 if (size > 2 || (size == 2 && !is_q)) {
7788 unallocated_encoding(s);
7789 return;
7790 }
7791 } else {
7792 if (size > 3
7793 || (size < 3 && is_q)
7794 || (size == 3 && !is_q)) {
7795 unallocated_encoding(s);
7796 return;
7797 }
7798 }
7799
7800 if (!fp_access_check(s)) {
7801 return;
7802 }
7803
7804 element = extract32(imm5, 1+size, 4);
7805
7806 tcg_rd = cpu_reg(s, rd);
7807 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7808 if (is_signed && !is_q) {
7809 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7810 }
7811 }
7812
7813 /* AdvSIMD copy
7814 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7815 * +---+---+----+-----------------+------+---+------+---+------+------+
7816 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7817 * +---+---+----+-----------------+------+---+------+---+------+------+
7818 */
7819 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7820 {
7821 int rd = extract32(insn, 0, 5);
7822 int rn = extract32(insn, 5, 5);
7823 int imm4 = extract32(insn, 11, 4);
7824 int op = extract32(insn, 29, 1);
7825 int is_q = extract32(insn, 30, 1);
7826 int imm5 = extract32(insn, 16, 5);
7827
7828 if (op) {
7829 if (is_q) {
7830 /* INS (element) */
7831 handle_simd_inse(s, rd, rn, imm4, imm5);
7832 } else {
7833 unallocated_encoding(s);
7834 }
7835 } else {
7836 switch (imm4) {
7837 case 0:
7838 /* DUP (element - vector) */
7839 handle_simd_dupe(s, is_q, rd, rn, imm5);
7840 break;
7841 case 1:
7842 /* DUP (general) */
7843 handle_simd_dupg(s, is_q, rd, rn, imm5);
7844 break;
7845 case 3:
7846 if (is_q) {
7847 /* INS (general) */
7848 handle_simd_insg(s, rd, rn, imm5);
7849 } else {
7850 unallocated_encoding(s);
7851 }
7852 break;
7853 case 5:
7854 case 7:
7855 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7856 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7857 break;
7858 default:
7859 unallocated_encoding(s);
7860 break;
7861 }
7862 }
7863 }
7864
7865 /* AdvSIMD modified immediate
7866 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
7867 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7868 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
7869 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7870 *
7871 * There are a number of operations that can be carried out here:
7872 * MOVI - move (shifted) imm into register
7873 * MVNI - move inverted (shifted) imm into register
7874 * ORR - bitwise OR of (shifted) imm with register
7875 * BIC - bitwise clear of (shifted) imm with register
7876 * With ARMv8.2 we also have:
7877 * FMOV half-precision
7878 */
7879 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7880 {
7881 int rd = extract32(insn, 0, 5);
7882 int cmode = extract32(insn, 12, 4);
7883 int o2 = extract32(insn, 11, 1);
7884 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7885 bool is_neg = extract32(insn, 29, 1);
7886 bool is_q = extract32(insn, 30, 1);
7887 uint64_t imm = 0;
7888
7889 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7890 /* Check for FMOV (vector, immediate) - half-precision */
7891 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7892 unallocated_encoding(s);
7893 return;
7894 }
7895 }
7896
7897 if (!fp_access_check(s)) {
7898 return;
7899 }
7900
7901 if (cmode == 15 && o2 && !is_neg) {
7902 /* FMOV (vector, immediate) - half-precision */
7903 imm = vfp_expand_imm(MO_16, abcdefgh);
7904 /* now duplicate across the lanes */
7905 imm = dup_const(MO_16, imm);
7906 } else {
7907 imm = asimd_imm_const(abcdefgh, cmode, is_neg);
7908 }
7909
7910 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7911 /* MOVI or MVNI, with MVNI negation handled above. */
7912 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7913 vec_full_reg_size(s), imm);
7914 } else {
7915 /* ORR or BIC, with BIC negation to AND handled above. */
7916 if (is_neg) {
7917 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7918 } else {
7919 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7920 }
7921 }
7922 }
7923
7924 /* AdvSIMD scalar copy
7925 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7926 * +-----+----+-----------------+------+---+------+---+------+------+
7927 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7928 * +-----+----+-----------------+------+---+------+---+------+------+
7929 */
7930 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7931 {
7932 int rd = extract32(insn, 0, 5);
7933 int rn = extract32(insn, 5, 5);
7934 int imm4 = extract32(insn, 11, 4);
7935 int imm5 = extract32(insn, 16, 5);
7936 int op = extract32(insn, 29, 1);
7937
7938 if (op != 0 || imm4 != 0) {
7939 unallocated_encoding(s);
7940 return;
7941 }
7942
7943 /* DUP (element, scalar) */
7944 handle_simd_dupes(s, rd, rn, imm5);
7945 }
7946
7947 /* AdvSIMD scalar pairwise
7948 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7949 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7950 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7951 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7952 */
7953 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7954 {
7955 int u = extract32(insn, 29, 1);
7956 int size = extract32(insn, 22, 2);
7957 int opcode = extract32(insn, 12, 5);
7958 int rn = extract32(insn, 5, 5);
7959 int rd = extract32(insn, 0, 5);
7960 TCGv_ptr fpst;
7961
7962 /* For some ops (the FP ones), size[1] is part of the encoding.
7963 * For ADDP strictly it is not but size[1] is always 1 for valid
7964 * encodings.
7965 */
7966 opcode |= (extract32(size, 1, 1) << 5);
7967
7968 switch (opcode) {
7969 case 0x3b: /* ADDP */
7970 if (u || size != 3) {
7971 unallocated_encoding(s);
7972 return;
7973 }
7974 if (!fp_access_check(s)) {
7975 return;
7976 }
7977
7978 fpst = NULL;
7979 break;
7980 case 0xc: /* FMAXNMP */
7981 case 0xd: /* FADDP */
7982 case 0xf: /* FMAXP */
7983 case 0x2c: /* FMINNMP */
7984 case 0x2f: /* FMINP */
7985 /* FP op, size[0] is 32 or 64 bit*/
7986 if (!u) {
7987 if (!dc_isar_feature(aa64_fp16, s)) {
7988 unallocated_encoding(s);
7989 return;
7990 } else {
7991 size = MO_16;
7992 }
7993 } else {
7994 size = extract32(size, 0, 1) ? MO_64 : MO_32;
7995 }
7996
7997 if (!fp_access_check(s)) {
7998 return;
7999 }
8000
8001 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8002 break;
8003 default:
8004 unallocated_encoding(s);
8005 return;
8006 }
8007
8008 if (size == MO_64) {
8009 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8010 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8011 TCGv_i64 tcg_res = tcg_temp_new_i64();
8012
8013 read_vec_element(s, tcg_op1, rn, 0, MO_64);
8014 read_vec_element(s, tcg_op2, rn, 1, MO_64);
8015
8016 switch (opcode) {
8017 case 0x3b: /* ADDP */
8018 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8019 break;
8020 case 0xc: /* FMAXNMP */
8021 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8022 break;
8023 case 0xd: /* FADDP */
8024 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8025 break;
8026 case 0xf: /* FMAXP */
8027 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8028 break;
8029 case 0x2c: /* FMINNMP */
8030 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8031 break;
8032 case 0x2f: /* FMINP */
8033 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8034 break;
8035 default:
8036 g_assert_not_reached();
8037 }
8038
8039 write_fp_dreg(s, rd, tcg_res);
8040 } else {
8041 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8042 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8043 TCGv_i32 tcg_res = tcg_temp_new_i32();
8044
8045 read_vec_element_i32(s, tcg_op1, rn, 0, size);
8046 read_vec_element_i32(s, tcg_op2, rn, 1, size);
8047
8048 if (size == MO_16) {
8049 switch (opcode) {
8050 case 0xc: /* FMAXNMP */
8051 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8052 break;
8053 case 0xd: /* FADDP */
8054 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8055 break;
8056 case 0xf: /* FMAXP */
8057 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8058 break;
8059 case 0x2c: /* FMINNMP */
8060 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8061 break;
8062 case 0x2f: /* FMINP */
8063 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8064 break;
8065 default:
8066 g_assert_not_reached();
8067 }
8068 } else {
8069 switch (opcode) {
8070 case 0xc: /* FMAXNMP */
8071 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8072 break;
8073 case 0xd: /* FADDP */
8074 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8075 break;
8076 case 0xf: /* FMAXP */
8077 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8078 break;
8079 case 0x2c: /* FMINNMP */
8080 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8081 break;
8082 case 0x2f: /* FMINP */
8083 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8084 break;
8085 default:
8086 g_assert_not_reached();
8087 }
8088 }
8089
8090 write_fp_sreg(s, rd, tcg_res);
8091 }
8092 }
8093
8094 /*
8095 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8096 *
8097 * This code is handles the common shifting code and is used by both
8098 * the vector and scalar code.
8099 */
8100 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8101 TCGv_i64 tcg_rnd, bool accumulate,
8102 bool is_u, int size, int shift)
8103 {
8104 bool extended_result = false;
8105 bool round = tcg_rnd != NULL;
8106 int ext_lshift = 0;
8107 TCGv_i64 tcg_src_hi;
8108
8109 if (round && size == 3) {
8110 extended_result = true;
8111 ext_lshift = 64 - shift;
8112 tcg_src_hi = tcg_temp_new_i64();
8113 } else if (shift == 64) {
8114 if (!accumulate && is_u) {
8115 /* result is zero */
8116 tcg_gen_movi_i64(tcg_res, 0);
8117 return;
8118 }
8119 }
8120
8121 /* Deal with the rounding step */
8122 if (round) {
8123 if (extended_result) {
8124 TCGv_i64 tcg_zero = tcg_constant_i64(0);
8125 if (!is_u) {
8126 /* take care of sign extending tcg_res */
8127 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8128 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8129 tcg_src, tcg_src_hi,
8130 tcg_rnd, tcg_zero);
8131 } else {
8132 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8133 tcg_src, tcg_zero,
8134 tcg_rnd, tcg_zero);
8135 }
8136 } else {
8137 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8138 }
8139 }
8140
8141 /* Now do the shift right */
8142 if (round && extended_result) {
8143 /* extended case, >64 bit precision required */
8144 if (ext_lshift == 0) {
8145 /* special case, only high bits matter */
8146 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8147 } else {
8148 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8149 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8150 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8151 }
8152 } else {
8153 if (is_u) {
8154 if (shift == 64) {
8155 /* essentially shifting in 64 zeros */
8156 tcg_gen_movi_i64(tcg_src, 0);
8157 } else {
8158 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8159 }
8160 } else {
8161 if (shift == 64) {
8162 /* effectively extending the sign-bit */
8163 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8164 } else {
8165 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8166 }
8167 }
8168 }
8169
8170 if (accumulate) {
8171 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8172 } else {
8173 tcg_gen_mov_i64(tcg_res, tcg_src);
8174 }
8175 }
8176
8177 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8178 static void handle_scalar_simd_shri(DisasContext *s,
8179 bool is_u, int immh, int immb,
8180 int opcode, int rn, int rd)
8181 {
8182 const int size = 3;
8183 int immhb = immh << 3 | immb;
8184 int shift = 2 * (8 << size) - immhb;
8185 bool accumulate = false;
8186 bool round = false;
8187 bool insert = false;
8188 TCGv_i64 tcg_rn;
8189 TCGv_i64 tcg_rd;
8190 TCGv_i64 tcg_round;
8191
8192 if (!extract32(immh, 3, 1)) {
8193 unallocated_encoding(s);
8194 return;
8195 }
8196
8197 if (!fp_access_check(s)) {
8198 return;
8199 }
8200
8201 switch (opcode) {
8202 case 0x02: /* SSRA / USRA (accumulate) */
8203 accumulate = true;
8204 break;
8205 case 0x04: /* SRSHR / URSHR (rounding) */
8206 round = true;
8207 break;
8208 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8209 accumulate = round = true;
8210 break;
8211 case 0x08: /* SRI */
8212 insert = true;
8213 break;
8214 }
8215
8216 if (round) {
8217 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8218 } else {
8219 tcg_round = NULL;
8220 }
8221
8222 tcg_rn = read_fp_dreg(s, rn);
8223 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8224
8225 if (insert) {
8226 /* shift count same as element size is valid but does nothing;
8227 * special case to avoid potential shift by 64.
8228 */
8229 int esize = 8 << size;
8230 if (shift != esize) {
8231 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8232 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8233 }
8234 } else {
8235 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8236 accumulate, is_u, size, shift);
8237 }
8238
8239 write_fp_dreg(s, rd, tcg_rd);
8240 }
8241
8242 /* SHL/SLI - Scalar shift left */
8243 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8244 int immh, int immb, int opcode,
8245 int rn, int rd)
8246 {
8247 int size = 32 - clz32(immh) - 1;
8248 int immhb = immh << 3 | immb;
8249 int shift = immhb - (8 << size);
8250 TCGv_i64 tcg_rn;
8251 TCGv_i64 tcg_rd;
8252
8253 if (!extract32(immh, 3, 1)) {
8254 unallocated_encoding(s);
8255 return;
8256 }
8257
8258 if (!fp_access_check(s)) {
8259 return;
8260 }
8261
8262 tcg_rn = read_fp_dreg(s, rn);
8263 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8264
8265 if (insert) {
8266 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8267 } else {
8268 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8269 }
8270
8271 write_fp_dreg(s, rd, tcg_rd);
8272 }
8273
8274 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8275 * (signed/unsigned) narrowing */
8276 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8277 bool is_u_shift, bool is_u_narrow,
8278 int immh, int immb, int opcode,
8279 int rn, int rd)
8280 {
8281 int immhb = immh << 3 | immb;
8282 int size = 32 - clz32(immh) - 1;
8283 int esize = 8 << size;
8284 int shift = (2 * esize) - immhb;
8285 int elements = is_scalar ? 1 : (64 / esize);
8286 bool round = extract32(opcode, 0, 1);
8287 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8288 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8289 TCGv_i32 tcg_rd_narrowed;
8290 TCGv_i64 tcg_final;
8291
8292 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8293 { gen_helper_neon_narrow_sat_s8,
8294 gen_helper_neon_unarrow_sat8 },
8295 { gen_helper_neon_narrow_sat_s16,
8296 gen_helper_neon_unarrow_sat16 },
8297 { gen_helper_neon_narrow_sat_s32,
8298 gen_helper_neon_unarrow_sat32 },
8299 { NULL, NULL },
8300 };
8301 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8302 gen_helper_neon_narrow_sat_u8,
8303 gen_helper_neon_narrow_sat_u16,
8304 gen_helper_neon_narrow_sat_u32,
8305 NULL
8306 };
8307 NeonGenNarrowEnvFn *narrowfn;
8308
8309 int i;
8310
8311 assert(size < 4);
8312
8313 if (extract32(immh, 3, 1)) {
8314 unallocated_encoding(s);
8315 return;
8316 }
8317
8318 if (!fp_access_check(s)) {
8319 return;
8320 }
8321
8322 if (is_u_shift) {
8323 narrowfn = unsigned_narrow_fns[size];
8324 } else {
8325 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8326 }
8327
8328 tcg_rn = tcg_temp_new_i64();
8329 tcg_rd = tcg_temp_new_i64();
8330 tcg_rd_narrowed = tcg_temp_new_i32();
8331 tcg_final = tcg_temp_new_i64();
8332
8333 if (round) {
8334 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8335 } else {
8336 tcg_round = NULL;
8337 }
8338
8339 for (i = 0; i < elements; i++) {
8340 read_vec_element(s, tcg_rn, rn, i, ldop);
8341 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8342 false, is_u_shift, size+1, shift);
8343 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
8344 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8345 if (i == 0) {
8346 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
8347 } else {
8348 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8349 }
8350 }
8351
8352 if (!is_q) {
8353 write_vec_element(s, tcg_final, rd, 0, MO_64);
8354 } else {
8355 write_vec_element(s, tcg_final, rd, 1, MO_64);
8356 }
8357 clear_vec_high(s, is_q, rd);
8358 }
8359
8360 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8361 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8362 bool src_unsigned, bool dst_unsigned,
8363 int immh, int immb, int rn, int rd)
8364 {
8365 int immhb = immh << 3 | immb;
8366 int size = 32 - clz32(immh) - 1;
8367 int shift = immhb - (8 << size);
8368 int pass;
8369
8370 assert(immh != 0);
8371 assert(!(scalar && is_q));
8372
8373 if (!scalar) {
8374 if (!is_q && extract32(immh, 3, 1)) {
8375 unallocated_encoding(s);
8376 return;
8377 }
8378
8379 /* Since we use the variable-shift helpers we must
8380 * replicate the shift count into each element of
8381 * the tcg_shift value.
8382 */
8383 switch (size) {
8384 case 0:
8385 shift |= shift << 8;
8386 /* fall through */
8387 case 1:
8388 shift |= shift << 16;
8389 break;
8390 case 2:
8391 case 3:
8392 break;
8393 default:
8394 g_assert_not_reached();
8395 }
8396 }
8397
8398 if (!fp_access_check(s)) {
8399 return;
8400 }
8401
8402 if (size == 3) {
8403 TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8404 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8405 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8406 { NULL, gen_helper_neon_qshl_u64 },
8407 };
8408 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8409 int maxpass = is_q ? 2 : 1;
8410
8411 for (pass = 0; pass < maxpass; pass++) {
8412 TCGv_i64 tcg_op = tcg_temp_new_i64();
8413
8414 read_vec_element(s, tcg_op, rn, pass, MO_64);
8415 genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8416 write_vec_element(s, tcg_op, rd, pass, MO_64);
8417 }
8418 clear_vec_high(s, is_q, rd);
8419 } else {
8420 TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8421 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8422 {
8423 { gen_helper_neon_qshl_s8,
8424 gen_helper_neon_qshl_s16,
8425 gen_helper_neon_qshl_s32 },
8426 { gen_helper_neon_qshlu_s8,
8427 gen_helper_neon_qshlu_s16,
8428 gen_helper_neon_qshlu_s32 }
8429 }, {
8430 { NULL, NULL, NULL },
8431 { gen_helper_neon_qshl_u8,
8432 gen_helper_neon_qshl_u16,
8433 gen_helper_neon_qshl_u32 }
8434 }
8435 };
8436 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8437 MemOp memop = scalar ? size : MO_32;
8438 int maxpass = scalar ? 1 : is_q ? 4 : 2;
8439
8440 for (pass = 0; pass < maxpass; pass++) {
8441 TCGv_i32 tcg_op = tcg_temp_new_i32();
8442
8443 read_vec_element_i32(s, tcg_op, rn, pass, memop);
8444 genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8445 if (scalar) {
8446 switch (size) {
8447 case 0:
8448 tcg_gen_ext8u_i32(tcg_op, tcg_op);
8449 break;
8450 case 1:
8451 tcg_gen_ext16u_i32(tcg_op, tcg_op);
8452 break;
8453 case 2:
8454 break;
8455 default:
8456 g_assert_not_reached();
8457 }
8458 write_fp_sreg(s, rd, tcg_op);
8459 } else {
8460 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8461 }
8462 }
8463
8464 if (!scalar) {
8465 clear_vec_high(s, is_q, rd);
8466 }
8467 }
8468 }
8469
8470 /* Common vector code for handling integer to FP conversion */
8471 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8472 int elements, int is_signed,
8473 int fracbits, int size)
8474 {
8475 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8476 TCGv_i32 tcg_shift = NULL;
8477
8478 MemOp mop = size | (is_signed ? MO_SIGN : 0);
8479 int pass;
8480
8481 if (fracbits || size == MO_64) {
8482 tcg_shift = tcg_constant_i32(fracbits);
8483 }
8484
8485 if (size == MO_64) {
8486 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8487 TCGv_i64 tcg_double = tcg_temp_new_i64();
8488
8489 for (pass = 0; pass < elements; pass++) {
8490 read_vec_element(s, tcg_int64, rn, pass, mop);
8491
8492 if (is_signed) {
8493 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8494 tcg_shift, tcg_fpst);
8495 } else {
8496 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8497 tcg_shift, tcg_fpst);
8498 }
8499 if (elements == 1) {
8500 write_fp_dreg(s, rd, tcg_double);
8501 } else {
8502 write_vec_element(s, tcg_double, rd, pass, MO_64);
8503 }
8504 }
8505 } else {
8506 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8507 TCGv_i32 tcg_float = tcg_temp_new_i32();
8508
8509 for (pass = 0; pass < elements; pass++) {
8510 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8511
8512 switch (size) {
8513 case MO_32:
8514 if (fracbits) {
8515 if (is_signed) {
8516 gen_helper_vfp_sltos(tcg_float, tcg_int32,
8517 tcg_shift, tcg_fpst);
8518 } else {
8519 gen_helper_vfp_ultos(tcg_float, tcg_int32,
8520 tcg_shift, tcg_fpst);
8521 }
8522 } else {
8523 if (is_signed) {
8524 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8525 } else {
8526 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8527 }
8528 }
8529 break;
8530 case MO_16:
8531 if (fracbits) {
8532 if (is_signed) {
8533 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8534 tcg_shift, tcg_fpst);
8535 } else {
8536 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8537 tcg_shift, tcg_fpst);
8538 }
8539 } else {
8540 if (is_signed) {
8541 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8542 } else {
8543 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8544 }
8545 }
8546 break;
8547 default:
8548 g_assert_not_reached();
8549 }
8550
8551 if (elements == 1) {
8552 write_fp_sreg(s, rd, tcg_float);
8553 } else {
8554 write_vec_element_i32(s, tcg_float, rd, pass, size);
8555 }
8556 }
8557 }
8558
8559 clear_vec_high(s, elements << size == 16, rd);
8560 }
8561
8562 /* UCVTF/SCVTF - Integer to FP conversion */
8563 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8564 bool is_q, bool is_u,
8565 int immh, int immb, int opcode,
8566 int rn, int rd)
8567 {
8568 int size, elements, fracbits;
8569 int immhb = immh << 3 | immb;
8570
8571 if (immh & 8) {
8572 size = MO_64;
8573 if (!is_scalar && !is_q) {
8574 unallocated_encoding(s);
8575 return;
8576 }
8577 } else if (immh & 4) {
8578 size = MO_32;
8579 } else if (immh & 2) {
8580 size = MO_16;
8581 if (!dc_isar_feature(aa64_fp16, s)) {
8582 unallocated_encoding(s);
8583 return;
8584 }
8585 } else {
8586 /* immh == 0 would be a failure of the decode logic */
8587 g_assert(immh == 1);
8588 unallocated_encoding(s);
8589 return;
8590 }
8591
8592 if (is_scalar) {
8593 elements = 1;
8594 } else {
8595 elements = (8 << is_q) >> size;
8596 }
8597 fracbits = (16 << size) - immhb;
8598
8599 if (!fp_access_check(s)) {
8600 return;
8601 }
8602
8603 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8604 }
8605
8606 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8607 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8608 bool is_q, bool is_u,
8609 int immh, int immb, int rn, int rd)
8610 {
8611 int immhb = immh << 3 | immb;
8612 int pass, size, fracbits;
8613 TCGv_ptr tcg_fpstatus;
8614 TCGv_i32 tcg_rmode, tcg_shift;
8615
8616 if (immh & 0x8) {
8617 size = MO_64;
8618 if (!is_scalar && !is_q) {
8619 unallocated_encoding(s);
8620 return;
8621 }
8622 } else if (immh & 0x4) {
8623 size = MO_32;
8624 } else if (immh & 0x2) {
8625 size = MO_16;
8626 if (!dc_isar_feature(aa64_fp16, s)) {
8627 unallocated_encoding(s);
8628 return;
8629 }
8630 } else {
8631 /* Should have split out AdvSIMD modified immediate earlier. */
8632 assert(immh == 1);
8633 unallocated_encoding(s);
8634 return;
8635 }
8636
8637 if (!fp_access_check(s)) {
8638 return;
8639 }
8640
8641 assert(!(is_scalar && is_q));
8642
8643 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8644 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8645 fracbits = (16 << size) - immhb;
8646 tcg_shift = tcg_constant_i32(fracbits);
8647
8648 if (size == MO_64) {
8649 int maxpass = is_scalar ? 1 : 2;
8650
8651 for (pass = 0; pass < maxpass; pass++) {
8652 TCGv_i64 tcg_op = tcg_temp_new_i64();
8653
8654 read_vec_element(s, tcg_op, rn, pass, MO_64);
8655 if (is_u) {
8656 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8657 } else {
8658 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8659 }
8660 write_vec_element(s, tcg_op, rd, pass, MO_64);
8661 }
8662 clear_vec_high(s, is_q, rd);
8663 } else {
8664 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8665 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8666
8667 switch (size) {
8668 case MO_16:
8669 if (is_u) {
8670 fn = gen_helper_vfp_touhh;
8671 } else {
8672 fn = gen_helper_vfp_toshh;
8673 }
8674 break;
8675 case MO_32:
8676 if (is_u) {
8677 fn = gen_helper_vfp_touls;
8678 } else {
8679 fn = gen_helper_vfp_tosls;
8680 }
8681 break;
8682 default:
8683 g_assert_not_reached();
8684 }
8685
8686 for (pass = 0; pass < maxpass; pass++) {
8687 TCGv_i32 tcg_op = tcg_temp_new_i32();
8688
8689 read_vec_element_i32(s, tcg_op, rn, pass, size);
8690 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8691 if (is_scalar) {
8692 write_fp_sreg(s, rd, tcg_op);
8693 } else {
8694 write_vec_element_i32(s, tcg_op, rd, pass, size);
8695 }
8696 }
8697 if (!is_scalar) {
8698 clear_vec_high(s, is_q, rd);
8699 }
8700 }
8701
8702 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8703 }
8704
8705 /* AdvSIMD scalar shift by immediate
8706 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8707 * +-----+---+-------------+------+------+--------+---+------+------+
8708 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8709 * +-----+---+-------------+------+------+--------+---+------+------+
8710 *
8711 * This is the scalar version so it works on a fixed sized registers
8712 */
8713 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8714 {
8715 int rd = extract32(insn, 0, 5);
8716 int rn = extract32(insn, 5, 5);
8717 int opcode = extract32(insn, 11, 5);
8718 int immb = extract32(insn, 16, 3);
8719 int immh = extract32(insn, 19, 4);
8720 bool is_u = extract32(insn, 29, 1);
8721
8722 if (immh == 0) {
8723 unallocated_encoding(s);
8724 return;
8725 }
8726
8727 switch (opcode) {
8728 case 0x08: /* SRI */
8729 if (!is_u) {
8730 unallocated_encoding(s);
8731 return;
8732 }
8733 /* fall through */
8734 case 0x00: /* SSHR / USHR */
8735 case 0x02: /* SSRA / USRA */
8736 case 0x04: /* SRSHR / URSHR */
8737 case 0x06: /* SRSRA / URSRA */
8738 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8739 break;
8740 case 0x0a: /* SHL / SLI */
8741 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8742 break;
8743 case 0x1c: /* SCVTF, UCVTF */
8744 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8745 opcode, rn, rd);
8746 break;
8747 case 0x10: /* SQSHRUN, SQSHRUN2 */
8748 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8749 if (!is_u) {
8750 unallocated_encoding(s);
8751 return;
8752 }
8753 handle_vec_simd_sqshrn(s, true, false, false, true,
8754 immh, immb, opcode, rn, rd);
8755 break;
8756 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8757 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8758 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8759 immh, immb, opcode, rn, rd);
8760 break;
8761 case 0xc: /* SQSHLU */
8762 if (!is_u) {
8763 unallocated_encoding(s);
8764 return;
8765 }
8766 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8767 break;
8768 case 0xe: /* SQSHL, UQSHL */
8769 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8770 break;
8771 case 0x1f: /* FCVTZS, FCVTZU */
8772 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8773 break;
8774 default:
8775 unallocated_encoding(s);
8776 break;
8777 }
8778 }
8779
8780 /* AdvSIMD scalar three different
8781 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8782 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8783 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8784 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8785 */
8786 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8787 {
8788 bool is_u = extract32(insn, 29, 1);
8789 int size = extract32(insn, 22, 2);
8790 int opcode = extract32(insn, 12, 4);
8791 int rm = extract32(insn, 16, 5);
8792 int rn = extract32(insn, 5, 5);
8793 int rd = extract32(insn, 0, 5);
8794
8795 if (is_u) {
8796 unallocated_encoding(s);
8797 return;
8798 }
8799
8800 switch (opcode) {
8801 case 0x9: /* SQDMLAL, SQDMLAL2 */
8802 case 0xb: /* SQDMLSL, SQDMLSL2 */
8803 case 0xd: /* SQDMULL, SQDMULL2 */
8804 if (size == 0 || size == 3) {
8805 unallocated_encoding(s);
8806 return;
8807 }
8808 break;
8809 default:
8810 unallocated_encoding(s);
8811 return;
8812 }
8813
8814 if (!fp_access_check(s)) {
8815 return;
8816 }
8817
8818 if (size == 2) {
8819 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8820 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8821 TCGv_i64 tcg_res = tcg_temp_new_i64();
8822
8823 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8824 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8825
8826 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8827 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
8828
8829 switch (opcode) {
8830 case 0xd: /* SQDMULL, SQDMULL2 */
8831 break;
8832 case 0xb: /* SQDMLSL, SQDMLSL2 */
8833 tcg_gen_neg_i64(tcg_res, tcg_res);
8834 /* fall through */
8835 case 0x9: /* SQDMLAL, SQDMLAL2 */
8836 read_vec_element(s, tcg_op1, rd, 0, MO_64);
8837 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
8838 tcg_res, tcg_op1);
8839 break;
8840 default:
8841 g_assert_not_reached();
8842 }
8843
8844 write_fp_dreg(s, rd, tcg_res);
8845 } else {
8846 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8847 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8848 TCGv_i64 tcg_res = tcg_temp_new_i64();
8849
8850 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8851 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
8852
8853 switch (opcode) {
8854 case 0xd: /* SQDMULL, SQDMULL2 */
8855 break;
8856 case 0xb: /* SQDMLSL, SQDMLSL2 */
8857 gen_helper_neon_negl_u32(tcg_res, tcg_res);
8858 /* fall through */
8859 case 0x9: /* SQDMLAL, SQDMLAL2 */
8860 {
8861 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8862 read_vec_element(s, tcg_op3, rd, 0, MO_32);
8863 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
8864 tcg_res, tcg_op3);
8865 break;
8866 }
8867 default:
8868 g_assert_not_reached();
8869 }
8870
8871 tcg_gen_ext32u_i64(tcg_res, tcg_res);
8872 write_fp_dreg(s, rd, tcg_res);
8873 }
8874 }
8875
8876 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8877 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8878 {
8879 /* Handle 64x64->64 opcodes which are shared between the scalar
8880 * and vector 3-same groups. We cover every opcode where size == 3
8881 * is valid in either the three-reg-same (integer, not pairwise)
8882 * or scalar-three-reg-same groups.
8883 */
8884 TCGCond cond;
8885
8886 switch (opcode) {
8887 case 0x1: /* SQADD */
8888 if (u) {
8889 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8890 } else {
8891 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8892 }
8893 break;
8894 case 0x5: /* SQSUB */
8895 if (u) {
8896 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8897 } else {
8898 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8899 }
8900 break;
8901 case 0x6: /* CMGT, CMHI */
8902 cond = u ? TCG_COND_GTU : TCG_COND_GT;
8903 do_cmop:
8904 /* 64 bit integer comparison, result = test ? -1 : 0. */
8905 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8906 break;
8907 case 0x7: /* CMGE, CMHS */
8908 cond = u ? TCG_COND_GEU : TCG_COND_GE;
8909 goto do_cmop;
8910 case 0x11: /* CMTST, CMEQ */
8911 if (u) {
8912 cond = TCG_COND_EQ;
8913 goto do_cmop;
8914 }
8915 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8916 break;
8917 case 0x8: /* SSHL, USHL */
8918 if (u) {
8919 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
8920 } else {
8921 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
8922 }
8923 break;
8924 case 0x9: /* SQSHL, UQSHL */
8925 if (u) {
8926 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8927 } else {
8928 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8929 }
8930 break;
8931 case 0xa: /* SRSHL, URSHL */
8932 if (u) {
8933 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8934 } else {
8935 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8936 }
8937 break;
8938 case 0xb: /* SQRSHL, UQRSHL */
8939 if (u) {
8940 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8941 } else {
8942 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8943 }
8944 break;
8945 case 0x10: /* ADD, SUB */
8946 if (u) {
8947 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8948 } else {
8949 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8950 }
8951 break;
8952 default:
8953 g_assert_not_reached();
8954 }
8955 }
8956
8957 /* Handle the 3-same-operands float operations; shared by the scalar
8958 * and vector encodings. The caller must filter out any encodings
8959 * not allocated for the encoding it is dealing with.
8960 */
8961 static void handle_3same_float(DisasContext *s, int size, int elements,
8962 int fpopcode, int rd, int rn, int rm)
8963 {
8964 int pass;
8965 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
8966
8967 for (pass = 0; pass < elements; pass++) {
8968 if (size) {
8969 /* Double */
8970 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8971 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8972 TCGv_i64 tcg_res = tcg_temp_new_i64();
8973
8974 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8975 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8976
8977 switch (fpopcode) {
8978 case 0x39: /* FMLS */
8979 /* As usual for ARM, separate negation for fused multiply-add */
8980 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8981 /* fall through */
8982 case 0x19: /* FMLA */
8983 read_vec_element(s, tcg_res, rd, pass, MO_64);
8984 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8985 tcg_res, fpst);
8986 break;
8987 case 0x18: /* FMAXNM */
8988 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8989 break;
8990 case 0x1a: /* FADD */
8991 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8992 break;
8993 case 0x1b: /* FMULX */
8994 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8995 break;
8996 case 0x1c: /* FCMEQ */
8997 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8998 break;
8999 case 0x1e: /* FMAX */
9000 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
9001 break;
9002 case 0x1f: /* FRECPS */
9003 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9004 break;
9005 case 0x38: /* FMINNM */
9006 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9007 break;
9008 case 0x3a: /* FSUB */
9009 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9010 break;
9011 case 0x3e: /* FMIN */
9012 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
9013 break;
9014 case 0x3f: /* FRSQRTS */
9015 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9016 break;
9017 case 0x5b: /* FMUL */
9018 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
9019 break;
9020 case 0x5c: /* FCMGE */
9021 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9022 break;
9023 case 0x5d: /* FACGE */
9024 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9025 break;
9026 case 0x5f: /* FDIV */
9027 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
9028 break;
9029 case 0x7a: /* FABD */
9030 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9031 gen_helper_vfp_absd(tcg_res, tcg_res);
9032 break;
9033 case 0x7c: /* FCMGT */
9034 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9035 break;
9036 case 0x7d: /* FACGT */
9037 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9038 break;
9039 default:
9040 g_assert_not_reached();
9041 }
9042
9043 write_vec_element(s, tcg_res, rd, pass, MO_64);
9044 } else {
9045 /* Single */
9046 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9047 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9048 TCGv_i32 tcg_res = tcg_temp_new_i32();
9049
9050 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9051 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9052
9053 switch (fpopcode) {
9054 case 0x39: /* FMLS */
9055 /* As usual for ARM, separate negation for fused multiply-add */
9056 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9057 /* fall through */
9058 case 0x19: /* FMLA */
9059 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9060 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9061 tcg_res, fpst);
9062 break;
9063 case 0x1a: /* FADD */
9064 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9065 break;
9066 case 0x1b: /* FMULX */
9067 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9068 break;
9069 case 0x1c: /* FCMEQ */
9070 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9071 break;
9072 case 0x1e: /* FMAX */
9073 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9074 break;
9075 case 0x1f: /* FRECPS */
9076 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9077 break;
9078 case 0x18: /* FMAXNM */
9079 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9080 break;
9081 case 0x38: /* FMINNM */
9082 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9083 break;
9084 case 0x3a: /* FSUB */
9085 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9086 break;
9087 case 0x3e: /* FMIN */
9088 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9089 break;
9090 case 0x3f: /* FRSQRTS */
9091 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9092 break;
9093 case 0x5b: /* FMUL */
9094 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9095 break;
9096 case 0x5c: /* FCMGE */
9097 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9098 break;
9099 case 0x5d: /* FACGE */
9100 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9101 break;
9102 case 0x5f: /* FDIV */
9103 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9104 break;
9105 case 0x7a: /* FABD */
9106 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9107 gen_helper_vfp_abss(tcg_res, tcg_res);
9108 break;
9109 case 0x7c: /* FCMGT */
9110 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9111 break;
9112 case 0x7d: /* FACGT */
9113 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9114 break;
9115 default:
9116 g_assert_not_reached();
9117 }
9118
9119 if (elements == 1) {
9120 /* scalar single so clear high part */
9121 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9122
9123 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9124 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9125 } else {
9126 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9127 }
9128 }
9129 }
9130
9131 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9132 }
9133
9134 /* AdvSIMD scalar three same
9135 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9136 * +-----+---+-----------+------+---+------+--------+---+------+------+
9137 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9138 * +-----+---+-----------+------+---+------+--------+---+------+------+
9139 */
9140 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9141 {
9142 int rd = extract32(insn, 0, 5);
9143 int rn = extract32(insn, 5, 5);
9144 int opcode = extract32(insn, 11, 5);
9145 int rm = extract32(insn, 16, 5);
9146 int size = extract32(insn, 22, 2);
9147 bool u = extract32(insn, 29, 1);
9148 TCGv_i64 tcg_rd;
9149
9150 if (opcode >= 0x18) {
9151 /* Floating point: U, size[1] and opcode indicate operation */
9152 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9153 switch (fpopcode) {
9154 case 0x1b: /* FMULX */
9155 case 0x1f: /* FRECPS */
9156 case 0x3f: /* FRSQRTS */
9157 case 0x5d: /* FACGE */
9158 case 0x7d: /* FACGT */
9159 case 0x1c: /* FCMEQ */
9160 case 0x5c: /* FCMGE */
9161 case 0x7c: /* FCMGT */
9162 case 0x7a: /* FABD */
9163 break;
9164 default:
9165 unallocated_encoding(s);
9166 return;
9167 }
9168
9169 if (!fp_access_check(s)) {
9170 return;
9171 }
9172
9173 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9174 return;
9175 }
9176
9177 switch (opcode) {
9178 case 0x1: /* SQADD, UQADD */
9179 case 0x5: /* SQSUB, UQSUB */
9180 case 0x9: /* SQSHL, UQSHL */
9181 case 0xb: /* SQRSHL, UQRSHL */
9182 break;
9183 case 0x8: /* SSHL, USHL */
9184 case 0xa: /* SRSHL, URSHL */
9185 case 0x6: /* CMGT, CMHI */
9186 case 0x7: /* CMGE, CMHS */
9187 case 0x11: /* CMTST, CMEQ */
9188 case 0x10: /* ADD, SUB (vector) */
9189 if (size != 3) {
9190 unallocated_encoding(s);
9191 return;
9192 }
9193 break;
9194 case 0x16: /* SQDMULH, SQRDMULH (vector) */
9195 if (size != 1 && size != 2) {
9196 unallocated_encoding(s);
9197 return;
9198 }
9199 break;
9200 default:
9201 unallocated_encoding(s);
9202 return;
9203 }
9204
9205 if (!fp_access_check(s)) {
9206 return;
9207 }
9208
9209 tcg_rd = tcg_temp_new_i64();
9210
9211 if (size == 3) {
9212 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9213 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9214
9215 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9216 } else {
9217 /* Do a single operation on the lowest element in the vector.
9218 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9219 * no side effects for all these operations.
9220 * OPTME: special-purpose helpers would avoid doing some
9221 * unnecessary work in the helper for the 8 and 16 bit cases.
9222 */
9223 NeonGenTwoOpEnvFn *genenvfn;
9224 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9225 TCGv_i32 tcg_rm = tcg_temp_new_i32();
9226 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9227
9228 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9229 read_vec_element_i32(s, tcg_rm, rm, 0, size);
9230
9231 switch (opcode) {
9232 case 0x1: /* SQADD, UQADD */
9233 {
9234 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9235 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9236 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9237 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9238 };
9239 genenvfn = fns[size][u];
9240 break;
9241 }
9242 case 0x5: /* SQSUB, UQSUB */
9243 {
9244 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9245 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9246 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9247 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9248 };
9249 genenvfn = fns[size][u];
9250 break;
9251 }
9252 case 0x9: /* SQSHL, UQSHL */
9253 {
9254 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9255 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9256 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9257 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9258 };
9259 genenvfn = fns[size][u];
9260 break;
9261 }
9262 case 0xb: /* SQRSHL, UQRSHL */
9263 {
9264 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9265 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9266 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9267 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9268 };
9269 genenvfn = fns[size][u];
9270 break;
9271 }
9272 case 0x16: /* SQDMULH, SQRDMULH */
9273 {
9274 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9275 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9276 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9277 };
9278 assert(size == 1 || size == 2);
9279 genenvfn = fns[size - 1][u];
9280 break;
9281 }
9282 default:
9283 g_assert_not_reached();
9284 }
9285
9286 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm);
9287 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9288 }
9289
9290 write_fp_dreg(s, rd, tcg_rd);
9291 }
9292
9293 /* AdvSIMD scalar three same FP16
9294 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
9295 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9296 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
9297 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9298 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9299 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9300 */
9301 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9302 uint32_t insn)
9303 {
9304 int rd = extract32(insn, 0, 5);
9305 int rn = extract32(insn, 5, 5);
9306 int opcode = extract32(insn, 11, 3);
9307 int rm = extract32(insn, 16, 5);
9308 bool u = extract32(insn, 29, 1);
9309 bool a = extract32(insn, 23, 1);
9310 int fpopcode = opcode | (a << 3) | (u << 4);
9311 TCGv_ptr fpst;
9312 TCGv_i32 tcg_op1;
9313 TCGv_i32 tcg_op2;
9314 TCGv_i32 tcg_res;
9315
9316 switch (fpopcode) {
9317 case 0x03: /* FMULX */
9318 case 0x04: /* FCMEQ (reg) */
9319 case 0x07: /* FRECPS */
9320 case 0x0f: /* FRSQRTS */
9321 case 0x14: /* FCMGE (reg) */
9322 case 0x15: /* FACGE */
9323 case 0x1a: /* FABD */
9324 case 0x1c: /* FCMGT (reg) */
9325 case 0x1d: /* FACGT */
9326 break;
9327 default:
9328 unallocated_encoding(s);
9329 return;
9330 }
9331
9332 if (!dc_isar_feature(aa64_fp16, s)) {
9333 unallocated_encoding(s);
9334 }
9335
9336 if (!fp_access_check(s)) {
9337 return;
9338 }
9339
9340 fpst = fpstatus_ptr(FPST_FPCR_F16);
9341
9342 tcg_op1 = read_fp_hreg(s, rn);
9343 tcg_op2 = read_fp_hreg(s, rm);
9344 tcg_res = tcg_temp_new_i32();
9345
9346 switch (fpopcode) {
9347 case 0x03: /* FMULX */
9348 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9349 break;
9350 case 0x04: /* FCMEQ (reg) */
9351 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9352 break;
9353 case 0x07: /* FRECPS */
9354 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9355 break;
9356 case 0x0f: /* FRSQRTS */
9357 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9358 break;
9359 case 0x14: /* FCMGE (reg) */
9360 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9361 break;
9362 case 0x15: /* FACGE */
9363 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9364 break;
9365 case 0x1a: /* FABD */
9366 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9367 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9368 break;
9369 case 0x1c: /* FCMGT (reg) */
9370 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9371 break;
9372 case 0x1d: /* FACGT */
9373 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9374 break;
9375 default:
9376 g_assert_not_reached();
9377 }
9378
9379 write_fp_sreg(s, rd, tcg_res);
9380 }
9381
9382 /* AdvSIMD scalar three same extra
9383 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9384 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9385 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9386 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9387 */
9388 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9389 uint32_t insn)
9390 {
9391 int rd = extract32(insn, 0, 5);
9392 int rn = extract32(insn, 5, 5);
9393 int opcode = extract32(insn, 11, 4);
9394 int rm = extract32(insn, 16, 5);
9395 int size = extract32(insn, 22, 2);
9396 bool u = extract32(insn, 29, 1);
9397 TCGv_i32 ele1, ele2, ele3;
9398 TCGv_i64 res;
9399 bool feature;
9400
9401 switch (u * 16 + opcode) {
9402 case 0x10: /* SQRDMLAH (vector) */
9403 case 0x11: /* SQRDMLSH (vector) */
9404 if (size != 1 && size != 2) {
9405 unallocated_encoding(s);
9406 return;
9407 }
9408 feature = dc_isar_feature(aa64_rdm, s);
9409 break;
9410 default:
9411 unallocated_encoding(s);
9412 return;
9413 }
9414 if (!feature) {
9415 unallocated_encoding(s);
9416 return;
9417 }
9418 if (!fp_access_check(s)) {
9419 return;
9420 }
9421
9422 /* Do a single operation on the lowest element in the vector.
9423 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9424 * with no side effects for all these operations.
9425 * OPTME: special-purpose helpers would avoid doing some
9426 * unnecessary work in the helper for the 16 bit cases.
9427 */
9428 ele1 = tcg_temp_new_i32();
9429 ele2 = tcg_temp_new_i32();
9430 ele3 = tcg_temp_new_i32();
9431
9432 read_vec_element_i32(s, ele1, rn, 0, size);
9433 read_vec_element_i32(s, ele2, rm, 0, size);
9434 read_vec_element_i32(s, ele3, rd, 0, size);
9435
9436 switch (opcode) {
9437 case 0x0: /* SQRDMLAH */
9438 if (size == 1) {
9439 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3);
9440 } else {
9441 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3);
9442 }
9443 break;
9444 case 0x1: /* SQRDMLSH */
9445 if (size == 1) {
9446 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3);
9447 } else {
9448 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3);
9449 }
9450 break;
9451 default:
9452 g_assert_not_reached();
9453 }
9454
9455 res = tcg_temp_new_i64();
9456 tcg_gen_extu_i32_i64(res, ele3);
9457 write_fp_dreg(s, rd, res);
9458 }
9459
9460 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9461 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9462 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9463 {
9464 /* Handle 64->64 opcodes which are shared between the scalar and
9465 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9466 * is valid in either group and also the double-precision fp ops.
9467 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9468 * requires them.
9469 */
9470 TCGCond cond;
9471
9472 switch (opcode) {
9473 case 0x4: /* CLS, CLZ */
9474 if (u) {
9475 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9476 } else {
9477 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9478 }
9479 break;
9480 case 0x5: /* NOT */
9481 /* This opcode is shared with CNT and RBIT but we have earlier
9482 * enforced that size == 3 if and only if this is the NOT insn.
9483 */
9484 tcg_gen_not_i64(tcg_rd, tcg_rn);
9485 break;
9486 case 0x7: /* SQABS, SQNEG */
9487 if (u) {
9488 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9489 } else {
9490 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9491 }
9492 break;
9493 case 0xa: /* CMLT */
9494 cond = TCG_COND_LT;
9495 do_cmop:
9496 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9497 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9498 break;
9499 case 0x8: /* CMGT, CMGE */
9500 cond = u ? TCG_COND_GE : TCG_COND_GT;
9501 goto do_cmop;
9502 case 0x9: /* CMEQ, CMLE */
9503 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9504 goto do_cmop;
9505 case 0xb: /* ABS, NEG */
9506 if (u) {
9507 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9508 } else {
9509 tcg_gen_abs_i64(tcg_rd, tcg_rn);
9510 }
9511 break;
9512 case 0x2f: /* FABS */
9513 gen_helper_vfp_absd(tcg_rd, tcg_rn);
9514 break;
9515 case 0x6f: /* FNEG */
9516 gen_helper_vfp_negd(tcg_rd, tcg_rn);
9517 break;
9518 case 0x7f: /* FSQRT */
9519 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9520 break;
9521 case 0x1a: /* FCVTNS */
9522 case 0x1b: /* FCVTMS */
9523 case 0x1c: /* FCVTAS */
9524 case 0x3a: /* FCVTPS */
9525 case 0x3b: /* FCVTZS */
9526 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9527 break;
9528 case 0x5a: /* FCVTNU */
9529 case 0x5b: /* FCVTMU */
9530 case 0x5c: /* FCVTAU */
9531 case 0x7a: /* FCVTPU */
9532 case 0x7b: /* FCVTZU */
9533 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9534 break;
9535 case 0x18: /* FRINTN */
9536 case 0x19: /* FRINTM */
9537 case 0x38: /* FRINTP */
9538 case 0x39: /* FRINTZ */
9539 case 0x58: /* FRINTA */
9540 case 0x79: /* FRINTI */
9541 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9542 break;
9543 case 0x59: /* FRINTX */
9544 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9545 break;
9546 case 0x1e: /* FRINT32Z */
9547 case 0x5e: /* FRINT32X */
9548 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9549 break;
9550 case 0x1f: /* FRINT64Z */
9551 case 0x5f: /* FRINT64X */
9552 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9553 break;
9554 default:
9555 g_assert_not_reached();
9556 }
9557 }
9558
9559 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9560 bool is_scalar, bool is_u, bool is_q,
9561 int size, int rn, int rd)
9562 {
9563 bool is_double = (size == MO_64);
9564 TCGv_ptr fpst;
9565
9566 if (!fp_access_check(s)) {
9567 return;
9568 }
9569
9570 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9571
9572 if (is_double) {
9573 TCGv_i64 tcg_op = tcg_temp_new_i64();
9574 TCGv_i64 tcg_zero = tcg_constant_i64(0);
9575 TCGv_i64 tcg_res = tcg_temp_new_i64();
9576 NeonGenTwoDoubleOpFn *genfn;
9577 bool swap = false;
9578 int pass;
9579
9580 switch (opcode) {
9581 case 0x2e: /* FCMLT (zero) */
9582 swap = true;
9583 /* fallthrough */
9584 case 0x2c: /* FCMGT (zero) */
9585 genfn = gen_helper_neon_cgt_f64;
9586 break;
9587 case 0x2d: /* FCMEQ (zero) */
9588 genfn = gen_helper_neon_ceq_f64;
9589 break;
9590 case 0x6d: /* FCMLE (zero) */
9591 swap = true;
9592 /* fall through */
9593 case 0x6c: /* FCMGE (zero) */
9594 genfn = gen_helper_neon_cge_f64;
9595 break;
9596 default:
9597 g_assert_not_reached();
9598 }
9599
9600 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9601 read_vec_element(s, tcg_op, rn, pass, MO_64);
9602 if (swap) {
9603 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9604 } else {
9605 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9606 }
9607 write_vec_element(s, tcg_res, rd, pass, MO_64);
9608 }
9609
9610 clear_vec_high(s, !is_scalar, rd);
9611 } else {
9612 TCGv_i32 tcg_op = tcg_temp_new_i32();
9613 TCGv_i32 tcg_zero = tcg_constant_i32(0);
9614 TCGv_i32 tcg_res = tcg_temp_new_i32();
9615 NeonGenTwoSingleOpFn *genfn;
9616 bool swap = false;
9617 int pass, maxpasses;
9618
9619 if (size == MO_16) {
9620 switch (opcode) {
9621 case 0x2e: /* FCMLT (zero) */
9622 swap = true;
9623 /* fall through */
9624 case 0x2c: /* FCMGT (zero) */
9625 genfn = gen_helper_advsimd_cgt_f16;
9626 break;
9627 case 0x2d: /* FCMEQ (zero) */
9628 genfn = gen_helper_advsimd_ceq_f16;
9629 break;
9630 case 0x6d: /* FCMLE (zero) */
9631 swap = true;
9632 /* fall through */
9633 case 0x6c: /* FCMGE (zero) */
9634 genfn = gen_helper_advsimd_cge_f16;
9635 break;
9636 default:
9637 g_assert_not_reached();
9638 }
9639 } else {
9640 switch (opcode) {
9641 case 0x2e: /* FCMLT (zero) */
9642 swap = true;
9643 /* fall through */
9644 case 0x2c: /* FCMGT (zero) */
9645 genfn = gen_helper_neon_cgt_f32;
9646 break;
9647 case 0x2d: /* FCMEQ (zero) */
9648 genfn = gen_helper_neon_ceq_f32;
9649 break;
9650 case 0x6d: /* FCMLE (zero) */
9651 swap = true;
9652 /* fall through */
9653 case 0x6c: /* FCMGE (zero) */
9654 genfn = gen_helper_neon_cge_f32;
9655 break;
9656 default:
9657 g_assert_not_reached();
9658 }
9659 }
9660
9661 if (is_scalar) {
9662 maxpasses = 1;
9663 } else {
9664 int vector_size = 8 << is_q;
9665 maxpasses = vector_size >> size;
9666 }
9667
9668 for (pass = 0; pass < maxpasses; pass++) {
9669 read_vec_element_i32(s, tcg_op, rn, pass, size);
9670 if (swap) {
9671 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9672 } else {
9673 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9674 }
9675 if (is_scalar) {
9676 write_fp_sreg(s, rd, tcg_res);
9677 } else {
9678 write_vec_element_i32(s, tcg_res, rd, pass, size);
9679 }
9680 }
9681
9682 if (!is_scalar) {
9683 clear_vec_high(s, is_q, rd);
9684 }
9685 }
9686 }
9687
9688 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9689 bool is_scalar, bool is_u, bool is_q,
9690 int size, int rn, int rd)
9691 {
9692 bool is_double = (size == 3);
9693 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9694
9695 if (is_double) {
9696 TCGv_i64 tcg_op = tcg_temp_new_i64();
9697 TCGv_i64 tcg_res = tcg_temp_new_i64();
9698 int pass;
9699
9700 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9701 read_vec_element(s, tcg_op, rn, pass, MO_64);
9702 switch (opcode) {
9703 case 0x3d: /* FRECPE */
9704 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9705 break;
9706 case 0x3f: /* FRECPX */
9707 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9708 break;
9709 case 0x7d: /* FRSQRTE */
9710 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9711 break;
9712 default:
9713 g_assert_not_reached();
9714 }
9715 write_vec_element(s, tcg_res, rd, pass, MO_64);
9716 }
9717 clear_vec_high(s, !is_scalar, rd);
9718 } else {
9719 TCGv_i32 tcg_op = tcg_temp_new_i32();
9720 TCGv_i32 tcg_res = tcg_temp_new_i32();
9721 int pass, maxpasses;
9722
9723 if (is_scalar) {
9724 maxpasses = 1;
9725 } else {
9726 maxpasses = is_q ? 4 : 2;
9727 }
9728
9729 for (pass = 0; pass < maxpasses; pass++) {
9730 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9731
9732 switch (opcode) {
9733 case 0x3c: /* URECPE */
9734 gen_helper_recpe_u32(tcg_res, tcg_op);
9735 break;
9736 case 0x3d: /* FRECPE */
9737 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9738 break;
9739 case 0x3f: /* FRECPX */
9740 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9741 break;
9742 case 0x7d: /* FRSQRTE */
9743 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9744 break;
9745 default:
9746 g_assert_not_reached();
9747 }
9748
9749 if (is_scalar) {
9750 write_fp_sreg(s, rd, tcg_res);
9751 } else {
9752 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9753 }
9754 }
9755 if (!is_scalar) {
9756 clear_vec_high(s, is_q, rd);
9757 }
9758 }
9759 }
9760
9761 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9762 int opcode, bool u, bool is_q,
9763 int size, int rn, int rd)
9764 {
9765 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9766 * in the source becomes a size element in the destination).
9767 */
9768 int pass;
9769 TCGv_i32 tcg_res[2];
9770 int destelt = is_q ? 2 : 0;
9771 int passes = scalar ? 1 : 2;
9772
9773 if (scalar) {
9774 tcg_res[1] = tcg_constant_i32(0);
9775 }
9776
9777 for (pass = 0; pass < passes; pass++) {
9778 TCGv_i64 tcg_op = tcg_temp_new_i64();
9779 NeonGenNarrowFn *genfn = NULL;
9780 NeonGenNarrowEnvFn *genenvfn = NULL;
9781
9782 if (scalar) {
9783 read_vec_element(s, tcg_op, rn, pass, size + 1);
9784 } else {
9785 read_vec_element(s, tcg_op, rn, pass, MO_64);
9786 }
9787 tcg_res[pass] = tcg_temp_new_i32();
9788
9789 switch (opcode) {
9790 case 0x12: /* XTN, SQXTUN */
9791 {
9792 static NeonGenNarrowFn * const xtnfns[3] = {
9793 gen_helper_neon_narrow_u8,
9794 gen_helper_neon_narrow_u16,
9795 tcg_gen_extrl_i64_i32,
9796 };
9797 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9798 gen_helper_neon_unarrow_sat8,
9799 gen_helper_neon_unarrow_sat16,
9800 gen_helper_neon_unarrow_sat32,
9801 };
9802 if (u) {
9803 genenvfn = sqxtunfns[size];
9804 } else {
9805 genfn = xtnfns[size];
9806 }
9807 break;
9808 }
9809 case 0x14: /* SQXTN, UQXTN */
9810 {
9811 static NeonGenNarrowEnvFn * const fns[3][2] = {
9812 { gen_helper_neon_narrow_sat_s8,
9813 gen_helper_neon_narrow_sat_u8 },
9814 { gen_helper_neon_narrow_sat_s16,
9815 gen_helper_neon_narrow_sat_u16 },
9816 { gen_helper_neon_narrow_sat_s32,
9817 gen_helper_neon_narrow_sat_u32 },
9818 };
9819 genenvfn = fns[size][u];
9820 break;
9821 }
9822 case 0x16: /* FCVTN, FCVTN2 */
9823 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9824 if (size == 2) {
9825 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
9826 } else {
9827 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9828 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9829 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9830 TCGv_i32 ahp = get_ahp_flag();
9831
9832 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9833 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9834 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9835 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9836 }
9837 break;
9838 case 0x36: /* BFCVTN, BFCVTN2 */
9839 {
9840 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9841 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9842 }
9843 break;
9844 case 0x56: /* FCVTXN, FCVTXN2 */
9845 /* 64 bit to 32 bit float conversion
9846 * with von Neumann rounding (round to odd)
9847 */
9848 assert(size == 2);
9849 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
9850 break;
9851 default:
9852 g_assert_not_reached();
9853 }
9854
9855 if (genfn) {
9856 genfn(tcg_res[pass], tcg_op);
9857 } else if (genenvfn) {
9858 genenvfn(tcg_res[pass], tcg_env, tcg_op);
9859 }
9860 }
9861
9862 for (pass = 0; pass < 2; pass++) {
9863 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9864 }
9865 clear_vec_high(s, is_q, rd);
9866 }
9867
9868 /* Remaining saturating accumulating ops */
9869 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9870 bool is_q, int size, int rn, int rd)
9871 {
9872 bool is_double = (size == 3);
9873
9874 if (is_double) {
9875 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9876 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9877 int pass;
9878
9879 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9880 read_vec_element(s, tcg_rn, rn, pass, MO_64);
9881 read_vec_element(s, tcg_rd, rd, pass, MO_64);
9882
9883 if (is_u) { /* USQADD */
9884 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9885 } else { /* SUQADD */
9886 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9887 }
9888 write_vec_element(s, tcg_rd, rd, pass, MO_64);
9889 }
9890 clear_vec_high(s, !is_scalar, rd);
9891 } else {
9892 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9893 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9894 int pass, maxpasses;
9895
9896 if (is_scalar) {
9897 maxpasses = 1;
9898 } else {
9899 maxpasses = is_q ? 4 : 2;
9900 }
9901
9902 for (pass = 0; pass < maxpasses; pass++) {
9903 if (is_scalar) {
9904 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9905 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9906 } else {
9907 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9908 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9909 }
9910
9911 if (is_u) { /* USQADD */
9912 switch (size) {
9913 case 0:
9914 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9915 break;
9916 case 1:
9917 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9918 break;
9919 case 2:
9920 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9921 break;
9922 default:
9923 g_assert_not_reached();
9924 }
9925 } else { /* SUQADD */
9926 switch (size) {
9927 case 0:
9928 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9929 break;
9930 case 1:
9931 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9932 break;
9933 case 2:
9934 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9935 break;
9936 default:
9937 g_assert_not_reached();
9938 }
9939 }
9940
9941 if (is_scalar) {
9942 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
9943 }
9944 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9945 }
9946 clear_vec_high(s, is_q, rd);
9947 }
9948 }
9949
9950 /* AdvSIMD scalar two reg misc
9951 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9952 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9953 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9954 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9955 */
9956 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9957 {
9958 int rd = extract32(insn, 0, 5);
9959 int rn = extract32(insn, 5, 5);
9960 int opcode = extract32(insn, 12, 5);
9961 int size = extract32(insn, 22, 2);
9962 bool u = extract32(insn, 29, 1);
9963 bool is_fcvt = false;
9964 int rmode;
9965 TCGv_i32 tcg_rmode;
9966 TCGv_ptr tcg_fpstatus;
9967
9968 switch (opcode) {
9969 case 0x3: /* USQADD / SUQADD*/
9970 if (!fp_access_check(s)) {
9971 return;
9972 }
9973 handle_2misc_satacc(s, true, u, false, size, rn, rd);
9974 return;
9975 case 0x7: /* SQABS / SQNEG */
9976 break;
9977 case 0xa: /* CMLT */
9978 if (u) {
9979 unallocated_encoding(s);
9980 return;
9981 }
9982 /* fall through */
9983 case 0x8: /* CMGT, CMGE */
9984 case 0x9: /* CMEQ, CMLE */
9985 case 0xb: /* ABS, NEG */
9986 if (size != 3) {
9987 unallocated_encoding(s);
9988 return;
9989 }
9990 break;
9991 case 0x12: /* SQXTUN */
9992 if (!u) {
9993 unallocated_encoding(s);
9994 return;
9995 }
9996 /* fall through */
9997 case 0x14: /* SQXTN, UQXTN */
9998 if (size == 3) {
9999 unallocated_encoding(s);
10000 return;
10001 }
10002 if (!fp_access_check(s)) {
10003 return;
10004 }
10005 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10006 return;
10007 case 0xc ... 0xf:
10008 case 0x16 ... 0x1d:
10009 case 0x1f:
10010 /* Floating point: U, size[1] and opcode indicate operation;
10011 * size[0] indicates single or double precision.
10012 */
10013 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10014 size = extract32(size, 0, 1) ? 3 : 2;
10015 switch (opcode) {
10016 case 0x2c: /* FCMGT (zero) */
10017 case 0x2d: /* FCMEQ (zero) */
10018 case 0x2e: /* FCMLT (zero) */
10019 case 0x6c: /* FCMGE (zero) */
10020 case 0x6d: /* FCMLE (zero) */
10021 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10022 return;
10023 case 0x1d: /* SCVTF */
10024 case 0x5d: /* UCVTF */
10025 {
10026 bool is_signed = (opcode == 0x1d);
10027 if (!fp_access_check(s)) {
10028 return;
10029 }
10030 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10031 return;
10032 }
10033 case 0x3d: /* FRECPE */
10034 case 0x3f: /* FRECPX */
10035 case 0x7d: /* FRSQRTE */
10036 if (!fp_access_check(s)) {
10037 return;
10038 }
10039 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10040 return;
10041 case 0x1a: /* FCVTNS */
10042 case 0x1b: /* FCVTMS */
10043 case 0x3a: /* FCVTPS */
10044 case 0x3b: /* FCVTZS */
10045 case 0x5a: /* FCVTNU */
10046 case 0x5b: /* FCVTMU */
10047 case 0x7a: /* FCVTPU */
10048 case 0x7b: /* FCVTZU */
10049 is_fcvt = true;
10050 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10051 break;
10052 case 0x1c: /* FCVTAS */
10053 case 0x5c: /* FCVTAU */
10054 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10055 is_fcvt = true;
10056 rmode = FPROUNDING_TIEAWAY;
10057 break;
10058 case 0x56: /* FCVTXN, FCVTXN2 */
10059 if (size == 2) {
10060 unallocated_encoding(s);
10061 return;
10062 }
10063 if (!fp_access_check(s)) {
10064 return;
10065 }
10066 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10067 return;
10068 default:
10069 unallocated_encoding(s);
10070 return;
10071 }
10072 break;
10073 default:
10074 unallocated_encoding(s);
10075 return;
10076 }
10077
10078 if (!fp_access_check(s)) {
10079 return;
10080 }
10081
10082 if (is_fcvt) {
10083 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10084 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10085 } else {
10086 tcg_fpstatus = NULL;
10087 tcg_rmode = NULL;
10088 }
10089
10090 if (size == 3) {
10091 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10092 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10093
10094 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10095 write_fp_dreg(s, rd, tcg_rd);
10096 } else {
10097 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10098 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10099
10100 read_vec_element_i32(s, tcg_rn, rn, 0, size);
10101
10102 switch (opcode) {
10103 case 0x7: /* SQABS, SQNEG */
10104 {
10105 NeonGenOneOpEnvFn *genfn;
10106 static NeonGenOneOpEnvFn * const fns[3][2] = {
10107 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10108 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10109 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10110 };
10111 genfn = fns[size][u];
10112 genfn(tcg_rd, tcg_env, tcg_rn);
10113 break;
10114 }
10115 case 0x1a: /* FCVTNS */
10116 case 0x1b: /* FCVTMS */
10117 case 0x1c: /* FCVTAS */
10118 case 0x3a: /* FCVTPS */
10119 case 0x3b: /* FCVTZS */
10120 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10121 tcg_fpstatus);
10122 break;
10123 case 0x5a: /* FCVTNU */
10124 case 0x5b: /* FCVTMU */
10125 case 0x5c: /* FCVTAU */
10126 case 0x7a: /* FCVTPU */
10127 case 0x7b: /* FCVTZU */
10128 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10129 tcg_fpstatus);
10130 break;
10131 default:
10132 g_assert_not_reached();
10133 }
10134
10135 write_fp_sreg(s, rd, tcg_rd);
10136 }
10137
10138 if (is_fcvt) {
10139 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10140 }
10141 }
10142
10143 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10144 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10145 int immh, int immb, int opcode, int rn, int rd)
10146 {
10147 int size = 32 - clz32(immh) - 1;
10148 int immhb = immh << 3 | immb;
10149 int shift = 2 * (8 << size) - immhb;
10150 GVecGen2iFn *gvec_fn;
10151
10152 if (extract32(immh, 3, 1) && !is_q) {
10153 unallocated_encoding(s);
10154 return;
10155 }
10156 tcg_debug_assert(size <= 3);
10157
10158 if (!fp_access_check(s)) {
10159 return;
10160 }
10161
10162 switch (opcode) {
10163 case 0x02: /* SSRA / USRA (accumulate) */
10164 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10165 break;
10166
10167 case 0x08: /* SRI */
10168 gvec_fn = gen_gvec_sri;
10169 break;
10170
10171 case 0x00: /* SSHR / USHR */
10172 if (is_u) {
10173 if (shift == 8 << size) {
10174 /* Shift count the same size as element size produces zero. */
10175 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10176 is_q ? 16 : 8, vec_full_reg_size(s), 0);
10177 return;
10178 }
10179 gvec_fn = tcg_gen_gvec_shri;
10180 } else {
10181 /* Shift count the same size as element size produces all sign. */
10182 if (shift == 8 << size) {
10183 shift -= 1;
10184 }
10185 gvec_fn = tcg_gen_gvec_sari;
10186 }
10187 break;
10188
10189 case 0x04: /* SRSHR / URSHR (rounding) */
10190 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10191 break;
10192
10193 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10194 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10195 break;
10196
10197 default:
10198 g_assert_not_reached();
10199 }
10200
10201 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10202 }
10203
10204 /* SHL/SLI - Vector shift left */
10205 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10206 int immh, int immb, int opcode, int rn, int rd)
10207 {
10208 int size = 32 - clz32(immh) - 1;
10209 int immhb = immh << 3 | immb;
10210 int shift = immhb - (8 << size);
10211
10212 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10213 assert(size >= 0 && size <= 3);
10214
10215 if (extract32(immh, 3, 1) && !is_q) {
10216 unallocated_encoding(s);
10217 return;
10218 }
10219
10220 if (!fp_access_check(s)) {
10221 return;
10222 }
10223
10224 if (insert) {
10225 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10226 } else {
10227 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10228 }
10229 }
10230
10231 /* USHLL/SHLL - Vector shift left with widening */
10232 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10233 int immh, int immb, int opcode, int rn, int rd)
10234 {
10235 int size = 32 - clz32(immh) - 1;
10236 int immhb = immh << 3 | immb;
10237 int shift = immhb - (8 << size);
10238 int dsize = 64;
10239 int esize = 8 << size;
10240 int elements = dsize/esize;
10241 TCGv_i64 tcg_rn = tcg_temp_new_i64();
10242 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10243 int i;
10244
10245 if (size >= 3) {
10246 unallocated_encoding(s);
10247 return;
10248 }
10249
10250 if (!fp_access_check(s)) {
10251 return;
10252 }
10253
10254 /* For the LL variants the store is larger than the load,
10255 * so if rd == rn we would overwrite parts of our input.
10256 * So load everything right now and use shifts in the main loop.
10257 */
10258 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10259
10260 for (i = 0; i < elements; i++) {
10261 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10262 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10263 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10264 write_vec_element(s, tcg_rd, rd, i, size + 1);
10265 }
10266 }
10267
10268 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10269 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10270 int immh, int immb, int opcode, int rn, int rd)
10271 {
10272 int immhb = immh << 3 | immb;
10273 int size = 32 - clz32(immh) - 1;
10274 int dsize = 64;
10275 int esize = 8 << size;
10276 int elements = dsize/esize;
10277 int shift = (2 * esize) - immhb;
10278 bool round = extract32(opcode, 0, 1);
10279 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10280 TCGv_i64 tcg_round;
10281 int i;
10282
10283 if (extract32(immh, 3, 1)) {
10284 unallocated_encoding(s);
10285 return;
10286 }
10287
10288 if (!fp_access_check(s)) {
10289 return;
10290 }
10291
10292 tcg_rn = tcg_temp_new_i64();
10293 tcg_rd = tcg_temp_new_i64();
10294 tcg_final = tcg_temp_new_i64();
10295 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10296
10297 if (round) {
10298 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10299 } else {
10300 tcg_round = NULL;
10301 }
10302
10303 for (i = 0; i < elements; i++) {
10304 read_vec_element(s, tcg_rn, rn, i, size+1);
10305 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10306 false, true, size+1, shift);
10307
10308 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10309 }
10310
10311 if (!is_q) {
10312 write_vec_element(s, tcg_final, rd, 0, MO_64);
10313 } else {
10314 write_vec_element(s, tcg_final, rd, 1, MO_64);
10315 }
10316
10317 clear_vec_high(s, is_q, rd);
10318 }
10319
10320
10321 /* AdvSIMD shift by immediate
10322 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10323 * +---+---+---+-------------+------+------+--------+---+------+------+
10324 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10325 * +---+---+---+-------------+------+------+--------+---+------+------+
10326 */
10327 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10328 {
10329 int rd = extract32(insn, 0, 5);
10330 int rn = extract32(insn, 5, 5);
10331 int opcode = extract32(insn, 11, 5);
10332 int immb = extract32(insn, 16, 3);
10333 int immh = extract32(insn, 19, 4);
10334 bool is_u = extract32(insn, 29, 1);
10335 bool is_q = extract32(insn, 30, 1);
10336
10337 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10338 assert(immh != 0);
10339
10340 switch (opcode) {
10341 case 0x08: /* SRI */
10342 if (!is_u) {
10343 unallocated_encoding(s);
10344 return;
10345 }
10346 /* fall through */
10347 case 0x00: /* SSHR / USHR */
10348 case 0x02: /* SSRA / USRA (accumulate) */
10349 case 0x04: /* SRSHR / URSHR (rounding) */
10350 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10351 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10352 break;
10353 case 0x0a: /* SHL / SLI */
10354 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10355 break;
10356 case 0x10: /* SHRN */
10357 case 0x11: /* RSHRN / SQRSHRUN */
10358 if (is_u) {
10359 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10360 opcode, rn, rd);
10361 } else {
10362 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10363 }
10364 break;
10365 case 0x12: /* SQSHRN / UQSHRN */
10366 case 0x13: /* SQRSHRN / UQRSHRN */
10367 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10368 opcode, rn, rd);
10369 break;
10370 case 0x14: /* SSHLL / USHLL */
10371 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10372 break;
10373 case 0x1c: /* SCVTF / UCVTF */
10374 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10375 opcode, rn, rd);
10376 break;
10377 case 0xc: /* SQSHLU */
10378 if (!is_u) {
10379 unallocated_encoding(s);
10380 return;
10381 }
10382 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10383 break;
10384 case 0xe: /* SQSHL, UQSHL */
10385 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10386 break;
10387 case 0x1f: /* FCVTZS/ FCVTZU */
10388 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10389 return;
10390 default:
10391 unallocated_encoding(s);
10392 return;
10393 }
10394 }
10395
10396 /* Generate code to do a "long" addition or subtraction, ie one done in
10397 * TCGv_i64 on vector lanes twice the width specified by size.
10398 */
10399 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10400 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10401 {
10402 static NeonGenTwo64OpFn * const fns[3][2] = {
10403 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10404 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10405 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10406 };
10407 NeonGenTwo64OpFn *genfn;
10408 assert(size < 3);
10409
10410 genfn = fns[size][is_sub];
10411 genfn(tcg_res, tcg_op1, tcg_op2);
10412 }
10413
10414 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10415 int opcode, int rd, int rn, int rm)
10416 {
10417 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10418 TCGv_i64 tcg_res[2];
10419 int pass, accop;
10420
10421 tcg_res[0] = tcg_temp_new_i64();
10422 tcg_res[1] = tcg_temp_new_i64();
10423
10424 /* Does this op do an adding accumulate, a subtracting accumulate,
10425 * or no accumulate at all?
10426 */
10427 switch (opcode) {
10428 case 5:
10429 case 8:
10430 case 9:
10431 accop = 1;
10432 break;
10433 case 10:
10434 case 11:
10435 accop = -1;
10436 break;
10437 default:
10438 accop = 0;
10439 break;
10440 }
10441
10442 if (accop != 0) {
10443 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10444 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10445 }
10446
10447 /* size == 2 means two 32x32->64 operations; this is worth special
10448 * casing because we can generally handle it inline.
10449 */
10450 if (size == 2) {
10451 for (pass = 0; pass < 2; pass++) {
10452 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10453 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10454 TCGv_i64 tcg_passres;
10455 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10456
10457 int elt = pass + is_q * 2;
10458
10459 read_vec_element(s, tcg_op1, rn, elt, memop);
10460 read_vec_element(s, tcg_op2, rm, elt, memop);
10461
10462 if (accop == 0) {
10463 tcg_passres = tcg_res[pass];
10464 } else {
10465 tcg_passres = tcg_temp_new_i64();
10466 }
10467
10468 switch (opcode) {
10469 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10470 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10471 break;
10472 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10473 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10474 break;
10475 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10476 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10477 {
10478 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10479 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10480
10481 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10482 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10483 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10484 tcg_passres,
10485 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10486 break;
10487 }
10488 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10489 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10490 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10491 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10492 break;
10493 case 9: /* SQDMLAL, SQDMLAL2 */
10494 case 11: /* SQDMLSL, SQDMLSL2 */
10495 case 13: /* SQDMULL, SQDMULL2 */
10496 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10497 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10498 tcg_passres, tcg_passres);
10499 break;
10500 default:
10501 g_assert_not_reached();
10502 }
10503
10504 if (opcode == 9 || opcode == 11) {
10505 /* saturating accumulate ops */
10506 if (accop < 0) {
10507 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10508 }
10509 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10510 tcg_res[pass], tcg_passres);
10511 } else if (accop > 0) {
10512 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10513 } else if (accop < 0) {
10514 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10515 }
10516 }
10517 } else {
10518 /* size 0 or 1, generally helper functions */
10519 for (pass = 0; pass < 2; pass++) {
10520 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10521 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10522 TCGv_i64 tcg_passres;
10523 int elt = pass + is_q * 2;
10524
10525 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10526 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10527
10528 if (accop == 0) {
10529 tcg_passres = tcg_res[pass];
10530 } else {
10531 tcg_passres = tcg_temp_new_i64();
10532 }
10533
10534 switch (opcode) {
10535 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10536 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10537 {
10538 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10539 static NeonGenWidenFn * const widenfns[2][2] = {
10540 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10541 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10542 };
10543 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10544
10545 widenfn(tcg_op2_64, tcg_op2);
10546 widenfn(tcg_passres, tcg_op1);
10547 gen_neon_addl(size, (opcode == 2), tcg_passres,
10548 tcg_passres, tcg_op2_64);
10549 break;
10550 }
10551 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10552 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10553 if (size == 0) {
10554 if (is_u) {
10555 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10556 } else {
10557 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10558 }
10559 } else {
10560 if (is_u) {
10561 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10562 } else {
10563 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10564 }
10565 }
10566 break;
10567 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10568 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10569 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10570 if (size == 0) {
10571 if (is_u) {
10572 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10573 } else {
10574 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10575 }
10576 } else {
10577 if (is_u) {
10578 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10579 } else {
10580 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10581 }
10582 }
10583 break;
10584 case 9: /* SQDMLAL, SQDMLAL2 */
10585 case 11: /* SQDMLSL, SQDMLSL2 */
10586 case 13: /* SQDMULL, SQDMULL2 */
10587 assert(size == 1);
10588 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10589 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10590 tcg_passres, tcg_passres);
10591 break;
10592 default:
10593 g_assert_not_reached();
10594 }
10595
10596 if (accop != 0) {
10597 if (opcode == 9 || opcode == 11) {
10598 /* saturating accumulate ops */
10599 if (accop < 0) {
10600 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10601 }
10602 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10603 tcg_res[pass],
10604 tcg_passres);
10605 } else {
10606 gen_neon_addl(size, (accop < 0), tcg_res[pass],
10607 tcg_res[pass], tcg_passres);
10608 }
10609 }
10610 }
10611 }
10612
10613 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10614 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10615 }
10616
10617 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10618 int opcode, int rd, int rn, int rm)
10619 {
10620 TCGv_i64 tcg_res[2];
10621 int part = is_q ? 2 : 0;
10622 int pass;
10623
10624 for (pass = 0; pass < 2; pass++) {
10625 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10626 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10627 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10628 static NeonGenWidenFn * const widenfns[3][2] = {
10629 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10630 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10631 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10632 };
10633 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10634
10635 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10636 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10637 widenfn(tcg_op2_wide, tcg_op2);
10638 tcg_res[pass] = tcg_temp_new_i64();
10639 gen_neon_addl(size, (opcode == 3),
10640 tcg_res[pass], tcg_op1, tcg_op2_wide);
10641 }
10642
10643 for (pass = 0; pass < 2; pass++) {
10644 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10645 }
10646 }
10647
10648 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10649 {
10650 tcg_gen_addi_i64(in, in, 1U << 31);
10651 tcg_gen_extrh_i64_i32(res, in);
10652 }
10653
10654 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10655 int opcode, int rd, int rn, int rm)
10656 {
10657 TCGv_i32 tcg_res[2];
10658 int part = is_q ? 2 : 0;
10659 int pass;
10660
10661 for (pass = 0; pass < 2; pass++) {
10662 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10663 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10664 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10665 static NeonGenNarrowFn * const narrowfns[3][2] = {
10666 { gen_helper_neon_narrow_high_u8,
10667 gen_helper_neon_narrow_round_high_u8 },
10668 { gen_helper_neon_narrow_high_u16,
10669 gen_helper_neon_narrow_round_high_u16 },
10670 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10671 };
10672 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10673
10674 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10675 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10676
10677 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10678
10679 tcg_res[pass] = tcg_temp_new_i32();
10680 gennarrow(tcg_res[pass], tcg_wideres);
10681 }
10682
10683 for (pass = 0; pass < 2; pass++) {
10684 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10685 }
10686 clear_vec_high(s, is_q, rd);
10687 }
10688
10689 /* AdvSIMD three different
10690 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
10691 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10692 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
10693 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10694 */
10695 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10696 {
10697 /* Instructions in this group fall into three basic classes
10698 * (in each case with the operation working on each element in
10699 * the input vectors):
10700 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10701 * 128 bit input)
10702 * (2) wide 64 x 128 -> 128
10703 * (3) narrowing 128 x 128 -> 64
10704 * Here we do initial decode, catch unallocated cases and
10705 * dispatch to separate functions for each class.
10706 */
10707 int is_q = extract32(insn, 30, 1);
10708 int is_u = extract32(insn, 29, 1);
10709 int size = extract32(insn, 22, 2);
10710 int opcode = extract32(insn, 12, 4);
10711 int rm = extract32(insn, 16, 5);
10712 int rn = extract32(insn, 5, 5);
10713 int rd = extract32(insn, 0, 5);
10714
10715 switch (opcode) {
10716 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10717 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10718 /* 64 x 128 -> 128 */
10719 if (size == 3) {
10720 unallocated_encoding(s);
10721 return;
10722 }
10723 if (!fp_access_check(s)) {
10724 return;
10725 }
10726 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10727 break;
10728 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10729 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10730 /* 128 x 128 -> 64 */
10731 if (size == 3) {
10732 unallocated_encoding(s);
10733 return;
10734 }
10735 if (!fp_access_check(s)) {
10736 return;
10737 }
10738 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10739 break;
10740 case 14: /* PMULL, PMULL2 */
10741 if (is_u) {
10742 unallocated_encoding(s);
10743 return;
10744 }
10745 switch (size) {
10746 case 0: /* PMULL.P8 */
10747 if (!fp_access_check(s)) {
10748 return;
10749 }
10750 /* The Q field specifies lo/hi half input for this insn. */
10751 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10752 gen_helper_neon_pmull_h);
10753 break;
10754
10755 case 3: /* PMULL.P64 */
10756 if (!dc_isar_feature(aa64_pmull, s)) {
10757 unallocated_encoding(s);
10758 return;
10759 }
10760 if (!fp_access_check(s)) {
10761 return;
10762 }
10763 /* The Q field specifies lo/hi half input for this insn. */
10764 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10765 gen_helper_gvec_pmull_q);
10766 break;
10767
10768 default:
10769 unallocated_encoding(s);
10770 break;
10771 }
10772 return;
10773 case 9: /* SQDMLAL, SQDMLAL2 */
10774 case 11: /* SQDMLSL, SQDMLSL2 */
10775 case 13: /* SQDMULL, SQDMULL2 */
10776 if (is_u || size == 0) {
10777 unallocated_encoding(s);
10778 return;
10779 }
10780 /* fall through */
10781 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10782 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10783 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10784 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10785 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10786 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10787 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10788 /* 64 x 64 -> 128 */
10789 if (size == 3) {
10790 unallocated_encoding(s);
10791 return;
10792 }
10793 if (!fp_access_check(s)) {
10794 return;
10795 }
10796
10797 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10798 break;
10799 default:
10800 /* opcode 15 not allocated */
10801 unallocated_encoding(s);
10802 break;
10803 }
10804 }
10805
10806 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10807 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10808 {
10809 int rd = extract32(insn, 0, 5);
10810 int rn = extract32(insn, 5, 5);
10811 int rm = extract32(insn, 16, 5);
10812 int size = extract32(insn, 22, 2);
10813 bool is_u = extract32(insn, 29, 1);
10814 bool is_q = extract32(insn, 30, 1);
10815
10816 if (!fp_access_check(s)) {
10817 return;
10818 }
10819
10820 switch (size + 4 * is_u) {
10821 case 0: /* AND */
10822 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10823 return;
10824 case 1: /* BIC */
10825 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10826 return;
10827 case 2: /* ORR */
10828 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10829 return;
10830 case 3: /* ORN */
10831 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10832 return;
10833 case 4: /* EOR */
10834 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10835 return;
10836
10837 case 5: /* BSL bitwise select */
10838 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10839 return;
10840 case 6: /* BIT, bitwise insert if true */
10841 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10842 return;
10843 case 7: /* BIF, bitwise insert if false */
10844 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10845 return;
10846
10847 default:
10848 g_assert_not_reached();
10849 }
10850 }
10851
10852 /* Pairwise op subgroup of C3.6.16.
10853 *
10854 * This is called directly or via the handle_3same_float for float pairwise
10855 * operations where the opcode and size are calculated differently.
10856 */
10857 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10858 int size, int rn, int rm, int rd)
10859 {
10860 TCGv_ptr fpst;
10861 int pass;
10862
10863 /* Floating point operations need fpst */
10864 if (opcode >= 0x58) {
10865 fpst = fpstatus_ptr(FPST_FPCR);
10866 } else {
10867 fpst = NULL;
10868 }
10869
10870 if (!fp_access_check(s)) {
10871 return;
10872 }
10873
10874 /* These operations work on the concatenated rm:rn, with each pair of
10875 * adjacent elements being operated on to produce an element in the result.
10876 */
10877 if (size == 3) {
10878 TCGv_i64 tcg_res[2];
10879
10880 for (pass = 0; pass < 2; pass++) {
10881 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10882 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10883 int passreg = (pass == 0) ? rn : rm;
10884
10885 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10886 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10887 tcg_res[pass] = tcg_temp_new_i64();
10888
10889 switch (opcode) {
10890 case 0x17: /* ADDP */
10891 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10892 break;
10893 case 0x58: /* FMAXNMP */
10894 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10895 break;
10896 case 0x5a: /* FADDP */
10897 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10898 break;
10899 case 0x5e: /* FMAXP */
10900 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10901 break;
10902 case 0x78: /* FMINNMP */
10903 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10904 break;
10905 case 0x7e: /* FMINP */
10906 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10907 break;
10908 default:
10909 g_assert_not_reached();
10910 }
10911 }
10912
10913 for (pass = 0; pass < 2; pass++) {
10914 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10915 }
10916 } else {
10917 int maxpass = is_q ? 4 : 2;
10918 TCGv_i32 tcg_res[4];
10919
10920 for (pass = 0; pass < maxpass; pass++) {
10921 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10922 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10923 NeonGenTwoOpFn *genfn = NULL;
10924 int passreg = pass < (maxpass / 2) ? rn : rm;
10925 int passelt = (is_q && (pass & 1)) ? 2 : 0;
10926
10927 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10928 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10929 tcg_res[pass] = tcg_temp_new_i32();
10930
10931 switch (opcode) {
10932 case 0x17: /* ADDP */
10933 {
10934 static NeonGenTwoOpFn * const fns[3] = {
10935 gen_helper_neon_padd_u8,
10936 gen_helper_neon_padd_u16,
10937 tcg_gen_add_i32,
10938 };
10939 genfn = fns[size];
10940 break;
10941 }
10942 case 0x14: /* SMAXP, UMAXP */
10943 {
10944 static NeonGenTwoOpFn * const fns[3][2] = {
10945 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10946 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10947 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10948 };
10949 genfn = fns[size][u];
10950 break;
10951 }
10952 case 0x15: /* SMINP, UMINP */
10953 {
10954 static NeonGenTwoOpFn * const fns[3][2] = {
10955 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10956 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10957 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
10958 };
10959 genfn = fns[size][u];
10960 break;
10961 }
10962 /* The FP operations are all on single floats (32 bit) */
10963 case 0x58: /* FMAXNMP */
10964 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10965 break;
10966 case 0x5a: /* FADDP */
10967 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10968 break;
10969 case 0x5e: /* FMAXP */
10970 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10971 break;
10972 case 0x78: /* FMINNMP */
10973 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10974 break;
10975 case 0x7e: /* FMINP */
10976 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10977 break;
10978 default:
10979 g_assert_not_reached();
10980 }
10981
10982 /* FP ops called directly, otherwise call now */
10983 if (genfn) {
10984 genfn(tcg_res[pass], tcg_op1, tcg_op2);
10985 }
10986 }
10987
10988 for (pass = 0; pass < maxpass; pass++) {
10989 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10990 }
10991 clear_vec_high(s, is_q, rd);
10992 }
10993 }
10994
10995 /* Floating point op subgroup of C3.6.16. */
10996 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10997 {
10998 /* For floating point ops, the U, size[1] and opcode bits
10999 * together indicate the operation. size[0] indicates single
11000 * or double.
11001 */
11002 int fpopcode = extract32(insn, 11, 5)
11003 | (extract32(insn, 23, 1) << 5)
11004 | (extract32(insn, 29, 1) << 6);
11005 int is_q = extract32(insn, 30, 1);
11006 int size = extract32(insn, 22, 1);
11007 int rm = extract32(insn, 16, 5);
11008 int rn = extract32(insn, 5, 5);
11009 int rd = extract32(insn, 0, 5);
11010
11011 int datasize = is_q ? 128 : 64;
11012 int esize = 32 << size;
11013 int elements = datasize / esize;
11014
11015 if (size == 1 && !is_q) {
11016 unallocated_encoding(s);
11017 return;
11018 }
11019
11020 switch (fpopcode) {
11021 case 0x58: /* FMAXNMP */
11022 case 0x5a: /* FADDP */
11023 case 0x5e: /* FMAXP */
11024 case 0x78: /* FMINNMP */
11025 case 0x7e: /* FMINP */
11026 if (size && !is_q) {
11027 unallocated_encoding(s);
11028 return;
11029 }
11030 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11031 rn, rm, rd);
11032 return;
11033 case 0x1b: /* FMULX */
11034 case 0x1f: /* FRECPS */
11035 case 0x3f: /* FRSQRTS */
11036 case 0x5d: /* FACGE */
11037 case 0x7d: /* FACGT */
11038 case 0x19: /* FMLA */
11039 case 0x39: /* FMLS */
11040 case 0x18: /* FMAXNM */
11041 case 0x1a: /* FADD */
11042 case 0x1c: /* FCMEQ */
11043 case 0x1e: /* FMAX */
11044 case 0x38: /* FMINNM */
11045 case 0x3a: /* FSUB */
11046 case 0x3e: /* FMIN */
11047 case 0x5b: /* FMUL */
11048 case 0x5c: /* FCMGE */
11049 case 0x5f: /* FDIV */
11050 case 0x7a: /* FABD */
11051 case 0x7c: /* FCMGT */
11052 if (!fp_access_check(s)) {
11053 return;
11054 }
11055 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11056 return;
11057
11058 case 0x1d: /* FMLAL */
11059 case 0x3d: /* FMLSL */
11060 case 0x59: /* FMLAL2 */
11061 case 0x79: /* FMLSL2 */
11062 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11063 unallocated_encoding(s);
11064 return;
11065 }
11066 if (fp_access_check(s)) {
11067 int is_s = extract32(insn, 23, 1);
11068 int is_2 = extract32(insn, 29, 1);
11069 int data = (is_2 << 1) | is_s;
11070 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11071 vec_full_reg_offset(s, rn),
11072 vec_full_reg_offset(s, rm), tcg_env,
11073 is_q ? 16 : 8, vec_full_reg_size(s),
11074 data, gen_helper_gvec_fmlal_a64);
11075 }
11076 return;
11077
11078 default:
11079 unallocated_encoding(s);
11080 return;
11081 }
11082 }
11083
11084 /* Integer op subgroup of C3.6.16. */
11085 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11086 {
11087 int is_q = extract32(insn, 30, 1);
11088 int u = extract32(insn, 29, 1);
11089 int size = extract32(insn, 22, 2);
11090 int opcode = extract32(insn, 11, 5);
11091 int rm = extract32(insn, 16, 5);
11092 int rn = extract32(insn, 5, 5);
11093 int rd = extract32(insn, 0, 5);
11094 int pass;
11095 TCGCond cond;
11096
11097 switch (opcode) {
11098 case 0x13: /* MUL, PMUL */
11099 if (u && size != 0) {
11100 unallocated_encoding(s);
11101 return;
11102 }
11103 /* fall through */
11104 case 0x0: /* SHADD, UHADD */
11105 case 0x2: /* SRHADD, URHADD */
11106 case 0x4: /* SHSUB, UHSUB */
11107 case 0xc: /* SMAX, UMAX */
11108 case 0xd: /* SMIN, UMIN */
11109 case 0xe: /* SABD, UABD */
11110 case 0xf: /* SABA, UABA */
11111 case 0x12: /* MLA, MLS */
11112 if (size == 3) {
11113 unallocated_encoding(s);
11114 return;
11115 }
11116 break;
11117 case 0x16: /* SQDMULH, SQRDMULH */
11118 if (size == 0 || size == 3) {
11119 unallocated_encoding(s);
11120 return;
11121 }
11122 break;
11123 default:
11124 if (size == 3 && !is_q) {
11125 unallocated_encoding(s);
11126 return;
11127 }
11128 break;
11129 }
11130
11131 if (!fp_access_check(s)) {
11132 return;
11133 }
11134
11135 switch (opcode) {
11136 case 0x01: /* SQADD, UQADD */
11137 if (u) {
11138 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11139 } else {
11140 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11141 }
11142 return;
11143 case 0x05: /* SQSUB, UQSUB */
11144 if (u) {
11145 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11146 } else {
11147 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11148 }
11149 return;
11150 case 0x08: /* SSHL, USHL */
11151 if (u) {
11152 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11153 } else {
11154 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11155 }
11156 return;
11157 case 0x0c: /* SMAX, UMAX */
11158 if (u) {
11159 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11160 } else {
11161 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11162 }
11163 return;
11164 case 0x0d: /* SMIN, UMIN */
11165 if (u) {
11166 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11167 } else {
11168 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11169 }
11170 return;
11171 case 0xe: /* SABD, UABD */
11172 if (u) {
11173 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11174 } else {
11175 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11176 }
11177 return;
11178 case 0xf: /* SABA, UABA */
11179 if (u) {
11180 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11181 } else {
11182 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11183 }
11184 return;
11185 case 0x10: /* ADD, SUB */
11186 if (u) {
11187 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11188 } else {
11189 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11190 }
11191 return;
11192 case 0x13: /* MUL, PMUL */
11193 if (!u) { /* MUL */
11194 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11195 } else { /* PMUL */
11196 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11197 }
11198 return;
11199 case 0x12: /* MLA, MLS */
11200 if (u) {
11201 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11202 } else {
11203 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11204 }
11205 return;
11206 case 0x16: /* SQDMULH, SQRDMULH */
11207 {
11208 static gen_helper_gvec_3_ptr * const fns[2][2] = {
11209 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11210 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11211 };
11212 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11213 }
11214 return;
11215 case 0x11:
11216 if (!u) { /* CMTST */
11217 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11218 return;
11219 }
11220 /* else CMEQ */
11221 cond = TCG_COND_EQ;
11222 goto do_gvec_cmp;
11223 case 0x06: /* CMGT, CMHI */
11224 cond = u ? TCG_COND_GTU : TCG_COND_GT;
11225 goto do_gvec_cmp;
11226 case 0x07: /* CMGE, CMHS */
11227 cond = u ? TCG_COND_GEU : TCG_COND_GE;
11228 do_gvec_cmp:
11229 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11230 vec_full_reg_offset(s, rn),
11231 vec_full_reg_offset(s, rm),
11232 is_q ? 16 : 8, vec_full_reg_size(s));
11233 return;
11234 }
11235
11236 if (size == 3) {
11237 assert(is_q);
11238 for (pass = 0; pass < 2; pass++) {
11239 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11240 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11241 TCGv_i64 tcg_res = tcg_temp_new_i64();
11242
11243 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11244 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11245
11246 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11247
11248 write_vec_element(s, tcg_res, rd, pass, MO_64);
11249 }
11250 } else {
11251 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11252 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11253 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11254 TCGv_i32 tcg_res = tcg_temp_new_i32();
11255 NeonGenTwoOpFn *genfn = NULL;
11256 NeonGenTwoOpEnvFn *genenvfn = NULL;
11257
11258 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11259 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11260
11261 switch (opcode) {
11262 case 0x0: /* SHADD, UHADD */
11263 {
11264 static NeonGenTwoOpFn * const fns[3][2] = {
11265 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11266 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11267 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11268 };
11269 genfn = fns[size][u];
11270 break;
11271 }
11272 case 0x2: /* SRHADD, URHADD */
11273 {
11274 static NeonGenTwoOpFn * const fns[3][2] = {
11275 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11276 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11277 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11278 };
11279 genfn = fns[size][u];
11280 break;
11281 }
11282 case 0x4: /* SHSUB, UHSUB */
11283 {
11284 static NeonGenTwoOpFn * const fns[3][2] = {
11285 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11286 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11287 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11288 };
11289 genfn = fns[size][u];
11290 break;
11291 }
11292 case 0x9: /* SQSHL, UQSHL */
11293 {
11294 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11295 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11296 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11297 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11298 };
11299 genenvfn = fns[size][u];
11300 break;
11301 }
11302 case 0xa: /* SRSHL, URSHL */
11303 {
11304 static NeonGenTwoOpFn * const fns[3][2] = {
11305 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11306 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11307 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11308 };
11309 genfn = fns[size][u];
11310 break;
11311 }
11312 case 0xb: /* SQRSHL, UQRSHL */
11313 {
11314 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11315 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11316 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11317 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11318 };
11319 genenvfn = fns[size][u];
11320 break;
11321 }
11322 default:
11323 g_assert_not_reached();
11324 }
11325
11326 if (genenvfn) {
11327 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2);
11328 } else {
11329 genfn(tcg_res, tcg_op1, tcg_op2);
11330 }
11331
11332 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11333 }
11334 }
11335 clear_vec_high(s, is_q, rd);
11336 }
11337
11338 /* AdvSIMD three same
11339 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11340 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11341 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11342 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11343 */
11344 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11345 {
11346 int opcode = extract32(insn, 11, 5);
11347
11348 switch (opcode) {
11349 case 0x3: /* logic ops */
11350 disas_simd_3same_logic(s, insn);
11351 break;
11352 case 0x17: /* ADDP */
11353 case 0x14: /* SMAXP, UMAXP */
11354 case 0x15: /* SMINP, UMINP */
11355 {
11356 /* Pairwise operations */
11357 int is_q = extract32(insn, 30, 1);
11358 int u = extract32(insn, 29, 1);
11359 int size = extract32(insn, 22, 2);
11360 int rm = extract32(insn, 16, 5);
11361 int rn = extract32(insn, 5, 5);
11362 int rd = extract32(insn, 0, 5);
11363 if (opcode == 0x17) {
11364 if (u || (size == 3 && !is_q)) {
11365 unallocated_encoding(s);
11366 return;
11367 }
11368 } else {
11369 if (size == 3) {
11370 unallocated_encoding(s);
11371 return;
11372 }
11373 }
11374 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11375 break;
11376 }
11377 case 0x18 ... 0x31:
11378 /* floating point ops, sz[1] and U are part of opcode */
11379 disas_simd_3same_float(s, insn);
11380 break;
11381 default:
11382 disas_simd_3same_int(s, insn);
11383 break;
11384 }
11385 }
11386
11387 /*
11388 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11389 *
11390 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11391 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11392 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11393 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11394 *
11395 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11396 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11397 *
11398 */
11399 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11400 {
11401 int opcode = extract32(insn, 11, 3);
11402 int u = extract32(insn, 29, 1);
11403 int a = extract32(insn, 23, 1);
11404 int is_q = extract32(insn, 30, 1);
11405 int rm = extract32(insn, 16, 5);
11406 int rn = extract32(insn, 5, 5);
11407 int rd = extract32(insn, 0, 5);
11408 /*
11409 * For these floating point ops, the U, a and opcode bits
11410 * together indicate the operation.
11411 */
11412 int fpopcode = opcode | (a << 3) | (u << 4);
11413 int datasize = is_q ? 128 : 64;
11414 int elements = datasize / 16;
11415 bool pairwise;
11416 TCGv_ptr fpst;
11417 int pass;
11418
11419 switch (fpopcode) {
11420 case 0x0: /* FMAXNM */
11421 case 0x1: /* FMLA */
11422 case 0x2: /* FADD */
11423 case 0x3: /* FMULX */
11424 case 0x4: /* FCMEQ */
11425 case 0x6: /* FMAX */
11426 case 0x7: /* FRECPS */
11427 case 0x8: /* FMINNM */
11428 case 0x9: /* FMLS */
11429 case 0xa: /* FSUB */
11430 case 0xe: /* FMIN */
11431 case 0xf: /* FRSQRTS */
11432 case 0x13: /* FMUL */
11433 case 0x14: /* FCMGE */
11434 case 0x15: /* FACGE */
11435 case 0x17: /* FDIV */
11436 case 0x1a: /* FABD */
11437 case 0x1c: /* FCMGT */
11438 case 0x1d: /* FACGT */
11439 pairwise = false;
11440 break;
11441 case 0x10: /* FMAXNMP */
11442 case 0x12: /* FADDP */
11443 case 0x16: /* FMAXP */
11444 case 0x18: /* FMINNMP */
11445 case 0x1e: /* FMINP */
11446 pairwise = true;
11447 break;
11448 default:
11449 unallocated_encoding(s);
11450 return;
11451 }
11452
11453 if (!dc_isar_feature(aa64_fp16, s)) {
11454 unallocated_encoding(s);
11455 return;
11456 }
11457
11458 if (!fp_access_check(s)) {
11459 return;
11460 }
11461
11462 fpst = fpstatus_ptr(FPST_FPCR_F16);
11463
11464 if (pairwise) {
11465 int maxpass = is_q ? 8 : 4;
11466 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11467 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11468 TCGv_i32 tcg_res[8];
11469
11470 for (pass = 0; pass < maxpass; pass++) {
11471 int passreg = pass < (maxpass / 2) ? rn : rm;
11472 int passelt = (pass << 1) & (maxpass - 1);
11473
11474 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11475 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11476 tcg_res[pass] = tcg_temp_new_i32();
11477
11478 switch (fpopcode) {
11479 case 0x10: /* FMAXNMP */
11480 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11481 fpst);
11482 break;
11483 case 0x12: /* FADDP */
11484 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11485 break;
11486 case 0x16: /* FMAXP */
11487 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11488 break;
11489 case 0x18: /* FMINNMP */
11490 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11491 fpst);
11492 break;
11493 case 0x1e: /* FMINP */
11494 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11495 break;
11496 default:
11497 g_assert_not_reached();
11498 }
11499 }
11500
11501 for (pass = 0; pass < maxpass; pass++) {
11502 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11503 }
11504 } else {
11505 for (pass = 0; pass < elements; pass++) {
11506 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11507 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11508 TCGv_i32 tcg_res = tcg_temp_new_i32();
11509
11510 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11511 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11512
11513 switch (fpopcode) {
11514 case 0x0: /* FMAXNM */
11515 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11516 break;
11517 case 0x1: /* FMLA */
11518 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11519 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11520 fpst);
11521 break;
11522 case 0x2: /* FADD */
11523 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11524 break;
11525 case 0x3: /* FMULX */
11526 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11527 break;
11528 case 0x4: /* FCMEQ */
11529 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11530 break;
11531 case 0x6: /* FMAX */
11532 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11533 break;
11534 case 0x7: /* FRECPS */
11535 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11536 break;
11537 case 0x8: /* FMINNM */
11538 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11539 break;
11540 case 0x9: /* FMLS */
11541 /* As usual for ARM, separate negation for fused multiply-add */
11542 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11543 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11544 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11545 fpst);
11546 break;
11547 case 0xa: /* FSUB */
11548 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11549 break;
11550 case 0xe: /* FMIN */
11551 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11552 break;
11553 case 0xf: /* FRSQRTS */
11554 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11555 break;
11556 case 0x13: /* FMUL */
11557 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11558 break;
11559 case 0x14: /* FCMGE */
11560 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11561 break;
11562 case 0x15: /* FACGE */
11563 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11564 break;
11565 case 0x17: /* FDIV */
11566 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11567 break;
11568 case 0x1a: /* FABD */
11569 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11570 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11571 break;
11572 case 0x1c: /* FCMGT */
11573 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11574 break;
11575 case 0x1d: /* FACGT */
11576 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11577 break;
11578 default:
11579 g_assert_not_reached();
11580 }
11581
11582 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11583 }
11584 }
11585
11586 clear_vec_high(s, is_q, rd);
11587 }
11588
11589 /* AdvSIMD three same extra
11590 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
11591 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11592 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
11593 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11594 */
11595 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11596 {
11597 int rd = extract32(insn, 0, 5);
11598 int rn = extract32(insn, 5, 5);
11599 int opcode = extract32(insn, 11, 4);
11600 int rm = extract32(insn, 16, 5);
11601 int size = extract32(insn, 22, 2);
11602 bool u = extract32(insn, 29, 1);
11603 bool is_q = extract32(insn, 30, 1);
11604 bool feature;
11605 int rot;
11606
11607 switch (u * 16 + opcode) {
11608 case 0x10: /* SQRDMLAH (vector) */
11609 case 0x11: /* SQRDMLSH (vector) */
11610 if (size != 1 && size != 2) {
11611 unallocated_encoding(s);
11612 return;
11613 }
11614 feature = dc_isar_feature(aa64_rdm, s);
11615 break;
11616 case 0x02: /* SDOT (vector) */
11617 case 0x12: /* UDOT (vector) */
11618 if (size != MO_32) {
11619 unallocated_encoding(s);
11620 return;
11621 }
11622 feature = dc_isar_feature(aa64_dp, s);
11623 break;
11624 case 0x03: /* USDOT */
11625 if (size != MO_32) {
11626 unallocated_encoding(s);
11627 return;
11628 }
11629 feature = dc_isar_feature(aa64_i8mm, s);
11630 break;
11631 case 0x04: /* SMMLA */
11632 case 0x14: /* UMMLA */
11633 case 0x05: /* USMMLA */
11634 if (!is_q || size != MO_32) {
11635 unallocated_encoding(s);
11636 return;
11637 }
11638 feature = dc_isar_feature(aa64_i8mm, s);
11639 break;
11640 case 0x18: /* FCMLA, #0 */
11641 case 0x19: /* FCMLA, #90 */
11642 case 0x1a: /* FCMLA, #180 */
11643 case 0x1b: /* FCMLA, #270 */
11644 case 0x1c: /* FCADD, #90 */
11645 case 0x1e: /* FCADD, #270 */
11646 if (size == 0
11647 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11648 || (size == 3 && !is_q)) {
11649 unallocated_encoding(s);
11650 return;
11651 }
11652 feature = dc_isar_feature(aa64_fcma, s);
11653 break;
11654 case 0x1d: /* BFMMLA */
11655 if (size != MO_16 || !is_q) {
11656 unallocated_encoding(s);
11657 return;
11658 }
11659 feature = dc_isar_feature(aa64_bf16, s);
11660 break;
11661 case 0x1f:
11662 switch (size) {
11663 case 1: /* BFDOT */
11664 case 3: /* BFMLAL{B,T} */
11665 feature = dc_isar_feature(aa64_bf16, s);
11666 break;
11667 default:
11668 unallocated_encoding(s);
11669 return;
11670 }
11671 break;
11672 default:
11673 unallocated_encoding(s);
11674 return;
11675 }
11676 if (!feature) {
11677 unallocated_encoding(s);
11678 return;
11679 }
11680 if (!fp_access_check(s)) {
11681 return;
11682 }
11683
11684 switch (opcode) {
11685 case 0x0: /* SQRDMLAH (vector) */
11686 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11687 return;
11688
11689 case 0x1: /* SQRDMLSH (vector) */
11690 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11691 return;
11692
11693 case 0x2: /* SDOT / UDOT */
11694 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11695 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11696 return;
11697
11698 case 0x3: /* USDOT */
11699 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11700 return;
11701
11702 case 0x04: /* SMMLA, UMMLA */
11703 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11704 u ? gen_helper_gvec_ummla_b
11705 : gen_helper_gvec_smmla_b);
11706 return;
11707 case 0x05: /* USMMLA */
11708 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11709 return;
11710
11711 case 0x8: /* FCMLA, #0 */
11712 case 0x9: /* FCMLA, #90 */
11713 case 0xa: /* FCMLA, #180 */
11714 case 0xb: /* FCMLA, #270 */
11715 rot = extract32(opcode, 0, 2);
11716 switch (size) {
11717 case 1:
11718 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11719 gen_helper_gvec_fcmlah);
11720 break;
11721 case 2:
11722 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11723 gen_helper_gvec_fcmlas);
11724 break;
11725 case 3:
11726 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11727 gen_helper_gvec_fcmlad);
11728 break;
11729 default:
11730 g_assert_not_reached();
11731 }
11732 return;
11733
11734 case 0xc: /* FCADD, #90 */
11735 case 0xe: /* FCADD, #270 */
11736 rot = extract32(opcode, 1, 1);
11737 switch (size) {
11738 case 1:
11739 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11740 gen_helper_gvec_fcaddh);
11741 break;
11742 case 2:
11743 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11744 gen_helper_gvec_fcadds);
11745 break;
11746 case 3:
11747 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11748 gen_helper_gvec_fcaddd);
11749 break;
11750 default:
11751 g_assert_not_reached();
11752 }
11753 return;
11754
11755 case 0xd: /* BFMMLA */
11756 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11757 return;
11758 case 0xf:
11759 switch (size) {
11760 case 1: /* BFDOT */
11761 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11762 break;
11763 case 3: /* BFMLAL{B,T} */
11764 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11765 gen_helper_gvec_bfmlal);
11766 break;
11767 default:
11768 g_assert_not_reached();
11769 }
11770 return;
11771
11772 default:
11773 g_assert_not_reached();
11774 }
11775 }
11776
11777 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11778 int size, int rn, int rd)
11779 {
11780 /* Handle 2-reg-misc ops which are widening (so each size element
11781 * in the source becomes a 2*size element in the destination.
11782 * The only instruction like this is FCVTL.
11783 */
11784 int pass;
11785
11786 if (size == 3) {
11787 /* 32 -> 64 bit fp conversion */
11788 TCGv_i64 tcg_res[2];
11789 int srcelt = is_q ? 2 : 0;
11790
11791 for (pass = 0; pass < 2; pass++) {
11792 TCGv_i32 tcg_op = tcg_temp_new_i32();
11793 tcg_res[pass] = tcg_temp_new_i64();
11794
11795 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11796 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11797 }
11798 for (pass = 0; pass < 2; pass++) {
11799 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11800 }
11801 } else {
11802 /* 16 -> 32 bit fp conversion */
11803 int srcelt = is_q ? 4 : 0;
11804 TCGv_i32 tcg_res[4];
11805 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11806 TCGv_i32 ahp = get_ahp_flag();
11807
11808 for (pass = 0; pass < 4; pass++) {
11809 tcg_res[pass] = tcg_temp_new_i32();
11810
11811 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11812 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11813 fpst, ahp);
11814 }
11815 for (pass = 0; pass < 4; pass++) {
11816 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11817 }
11818 }
11819 }
11820
11821 static void handle_rev(DisasContext *s, int opcode, bool u,
11822 bool is_q, int size, int rn, int rd)
11823 {
11824 int op = (opcode << 1) | u;
11825 int opsz = op + size;
11826 int grp_size = 3 - opsz;
11827 int dsize = is_q ? 128 : 64;
11828 int i;
11829
11830 if (opsz >= 3) {
11831 unallocated_encoding(s);
11832 return;
11833 }
11834
11835 if (!fp_access_check(s)) {
11836 return;
11837 }
11838
11839 if (size == 0) {
11840 /* Special case bytes, use bswap op on each group of elements */
11841 int groups = dsize / (8 << grp_size);
11842
11843 for (i = 0; i < groups; i++) {
11844 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11845
11846 read_vec_element(s, tcg_tmp, rn, i, grp_size);
11847 switch (grp_size) {
11848 case MO_16:
11849 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11850 break;
11851 case MO_32:
11852 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11853 break;
11854 case MO_64:
11855 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11856 break;
11857 default:
11858 g_assert_not_reached();
11859 }
11860 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11861 }
11862 clear_vec_high(s, is_q, rd);
11863 } else {
11864 int revmask = (1 << grp_size) - 1;
11865 int esize = 8 << size;
11866 int elements = dsize / esize;
11867 TCGv_i64 tcg_rn = tcg_temp_new_i64();
11868 TCGv_i64 tcg_rd[2];
11869
11870 for (i = 0; i < 2; i++) {
11871 tcg_rd[i] = tcg_temp_new_i64();
11872 tcg_gen_movi_i64(tcg_rd[i], 0);
11873 }
11874
11875 for (i = 0; i < elements; i++) {
11876 int e_rev = (i & 0xf) ^ revmask;
11877 int w = (e_rev * esize) / 64;
11878 int o = (e_rev * esize) % 64;
11879
11880 read_vec_element(s, tcg_rn, rn, i, size);
11881 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11882 }
11883
11884 for (i = 0; i < 2; i++) {
11885 write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11886 }
11887 clear_vec_high(s, true, rd);
11888 }
11889 }
11890
11891 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11892 bool is_q, int size, int rn, int rd)
11893 {
11894 /* Implement the pairwise operations from 2-misc:
11895 * SADDLP, UADDLP, SADALP, UADALP.
11896 * These all add pairs of elements in the input to produce a
11897 * double-width result element in the output (possibly accumulating).
11898 */
11899 bool accum = (opcode == 0x6);
11900 int maxpass = is_q ? 2 : 1;
11901 int pass;
11902 TCGv_i64 tcg_res[2];
11903
11904 if (size == 2) {
11905 /* 32 + 32 -> 64 op */
11906 MemOp memop = size + (u ? 0 : MO_SIGN);
11907
11908 for (pass = 0; pass < maxpass; pass++) {
11909 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11910 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11911
11912 tcg_res[pass] = tcg_temp_new_i64();
11913
11914 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11915 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11916 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11917 if (accum) {
11918 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11919 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11920 }
11921 }
11922 } else {
11923 for (pass = 0; pass < maxpass; pass++) {
11924 TCGv_i64 tcg_op = tcg_temp_new_i64();
11925 NeonGenOne64OpFn *genfn;
11926 static NeonGenOne64OpFn * const fns[2][2] = {
11927 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
11928 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
11929 };
11930
11931 genfn = fns[size][u];
11932
11933 tcg_res[pass] = tcg_temp_new_i64();
11934
11935 read_vec_element(s, tcg_op, rn, pass, MO_64);
11936 genfn(tcg_res[pass], tcg_op);
11937
11938 if (accum) {
11939 read_vec_element(s, tcg_op, rd, pass, MO_64);
11940 if (size == 0) {
11941 gen_helper_neon_addl_u16(tcg_res[pass],
11942 tcg_res[pass], tcg_op);
11943 } else {
11944 gen_helper_neon_addl_u32(tcg_res[pass],
11945 tcg_res[pass], tcg_op);
11946 }
11947 }
11948 }
11949 }
11950 if (!is_q) {
11951 tcg_res[1] = tcg_constant_i64(0);
11952 }
11953 for (pass = 0; pass < 2; pass++) {
11954 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11955 }
11956 }
11957
11958 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11959 {
11960 /* Implement SHLL and SHLL2 */
11961 int pass;
11962 int part = is_q ? 2 : 0;
11963 TCGv_i64 tcg_res[2];
11964
11965 for (pass = 0; pass < 2; pass++) {
11966 static NeonGenWidenFn * const widenfns[3] = {
11967 gen_helper_neon_widen_u8,
11968 gen_helper_neon_widen_u16,
11969 tcg_gen_extu_i32_i64,
11970 };
11971 NeonGenWidenFn *widenfn = widenfns[size];
11972 TCGv_i32 tcg_op = tcg_temp_new_i32();
11973
11974 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11975 tcg_res[pass] = tcg_temp_new_i64();
11976 widenfn(tcg_res[pass], tcg_op);
11977 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11978 }
11979
11980 for (pass = 0; pass < 2; pass++) {
11981 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11982 }
11983 }
11984
11985 /* AdvSIMD two reg misc
11986 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
11987 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11988 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
11989 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11990 */
11991 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11992 {
11993 int size = extract32(insn, 22, 2);
11994 int opcode = extract32(insn, 12, 5);
11995 bool u = extract32(insn, 29, 1);
11996 bool is_q = extract32(insn, 30, 1);
11997 int rn = extract32(insn, 5, 5);
11998 int rd = extract32(insn, 0, 5);
11999 bool need_fpstatus = false;
12000 int rmode = -1;
12001 TCGv_i32 tcg_rmode;
12002 TCGv_ptr tcg_fpstatus;
12003
12004 switch (opcode) {
12005 case 0x0: /* REV64, REV32 */
12006 case 0x1: /* REV16 */
12007 handle_rev(s, opcode, u, is_q, size, rn, rd);
12008 return;
12009 case 0x5: /* CNT, NOT, RBIT */
12010 if (u && size == 0) {
12011 /* NOT */
12012 break;
12013 } else if (u && size == 1) {
12014 /* RBIT */
12015 break;
12016 } else if (!u && size == 0) {
12017 /* CNT */
12018 break;
12019 }
12020 unallocated_encoding(s);
12021 return;
12022 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12023 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12024 if (size == 3) {
12025 unallocated_encoding(s);
12026 return;
12027 }
12028 if (!fp_access_check(s)) {
12029 return;
12030 }
12031
12032 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12033 return;
12034 case 0x4: /* CLS, CLZ */
12035 if (size == 3) {
12036 unallocated_encoding(s);
12037 return;
12038 }
12039 break;
12040 case 0x2: /* SADDLP, UADDLP */
12041 case 0x6: /* SADALP, UADALP */
12042 if (size == 3) {
12043 unallocated_encoding(s);
12044 return;
12045 }
12046 if (!fp_access_check(s)) {
12047 return;
12048 }
12049 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12050 return;
12051 case 0x13: /* SHLL, SHLL2 */
12052 if (u == 0 || size == 3) {
12053 unallocated_encoding(s);
12054 return;
12055 }
12056 if (!fp_access_check(s)) {
12057 return;
12058 }
12059 handle_shll(s, is_q, size, rn, rd);
12060 return;
12061 case 0xa: /* CMLT */
12062 if (u == 1) {
12063 unallocated_encoding(s);
12064 return;
12065 }
12066 /* fall through */
12067 case 0x8: /* CMGT, CMGE */
12068 case 0x9: /* CMEQ, CMLE */
12069 case 0xb: /* ABS, NEG */
12070 if (size == 3 && !is_q) {
12071 unallocated_encoding(s);
12072 return;
12073 }
12074 break;
12075 case 0x3: /* SUQADD, USQADD */
12076 if (size == 3 && !is_q) {
12077 unallocated_encoding(s);
12078 return;
12079 }
12080 if (!fp_access_check(s)) {
12081 return;
12082 }
12083 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12084 return;
12085 case 0x7: /* SQABS, SQNEG */
12086 if (size == 3 && !is_q) {
12087 unallocated_encoding(s);
12088 return;
12089 }
12090 break;
12091 case 0xc ... 0xf:
12092 case 0x16 ... 0x1f:
12093 {
12094 /* Floating point: U, size[1] and opcode indicate operation;
12095 * size[0] indicates single or double precision.
12096 */
12097 int is_double = extract32(size, 0, 1);
12098 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12099 size = is_double ? 3 : 2;
12100 switch (opcode) {
12101 case 0x2f: /* FABS */
12102 case 0x6f: /* FNEG */
12103 if (size == 3 && !is_q) {
12104 unallocated_encoding(s);
12105 return;
12106 }
12107 break;
12108 case 0x1d: /* SCVTF */
12109 case 0x5d: /* UCVTF */
12110 {
12111 bool is_signed = (opcode == 0x1d) ? true : false;
12112 int elements = is_double ? 2 : is_q ? 4 : 2;
12113 if (is_double && !is_q) {
12114 unallocated_encoding(s);
12115 return;
12116 }
12117 if (!fp_access_check(s)) {
12118 return;
12119 }
12120 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12121 return;
12122 }
12123 case 0x2c: /* FCMGT (zero) */
12124 case 0x2d: /* FCMEQ (zero) */
12125 case 0x2e: /* FCMLT (zero) */
12126 case 0x6c: /* FCMGE (zero) */
12127 case 0x6d: /* FCMLE (zero) */
12128 if (size == 3 && !is_q) {
12129 unallocated_encoding(s);
12130 return;
12131 }
12132 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12133 return;
12134 case 0x7f: /* FSQRT */
12135 if (size == 3 && !is_q) {
12136 unallocated_encoding(s);
12137 return;
12138 }
12139 break;
12140 case 0x1a: /* FCVTNS */
12141 case 0x1b: /* FCVTMS */
12142 case 0x3a: /* FCVTPS */
12143 case 0x3b: /* FCVTZS */
12144 case 0x5a: /* FCVTNU */
12145 case 0x5b: /* FCVTMU */
12146 case 0x7a: /* FCVTPU */
12147 case 0x7b: /* FCVTZU */
12148 need_fpstatus = true;
12149 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12150 if (size == 3 && !is_q) {
12151 unallocated_encoding(s);
12152 return;
12153 }
12154 break;
12155 case 0x5c: /* FCVTAU */
12156 case 0x1c: /* FCVTAS */
12157 need_fpstatus = true;
12158 rmode = FPROUNDING_TIEAWAY;
12159 if (size == 3 && !is_q) {
12160 unallocated_encoding(s);
12161 return;
12162 }
12163 break;
12164 case 0x3c: /* URECPE */
12165 if (size == 3) {
12166 unallocated_encoding(s);
12167 return;
12168 }
12169 /* fall through */
12170 case 0x3d: /* FRECPE */
12171 case 0x7d: /* FRSQRTE */
12172 if (size == 3 && !is_q) {
12173 unallocated_encoding(s);
12174 return;
12175 }
12176 if (!fp_access_check(s)) {
12177 return;
12178 }
12179 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12180 return;
12181 case 0x56: /* FCVTXN, FCVTXN2 */
12182 if (size == 2) {
12183 unallocated_encoding(s);
12184 return;
12185 }
12186 /* fall through */
12187 case 0x16: /* FCVTN, FCVTN2 */
12188 /* handle_2misc_narrow does a 2*size -> size operation, but these
12189 * instructions encode the source size rather than dest size.
12190 */
12191 if (!fp_access_check(s)) {
12192 return;
12193 }
12194 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12195 return;
12196 case 0x36: /* BFCVTN, BFCVTN2 */
12197 if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12198 unallocated_encoding(s);
12199 return;
12200 }
12201 if (!fp_access_check(s)) {
12202 return;
12203 }
12204 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12205 return;
12206 case 0x17: /* FCVTL, FCVTL2 */
12207 if (!fp_access_check(s)) {
12208 return;
12209 }
12210 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12211 return;
12212 case 0x18: /* FRINTN */
12213 case 0x19: /* FRINTM */
12214 case 0x38: /* FRINTP */
12215 case 0x39: /* FRINTZ */
12216 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12217 /* fall through */
12218 case 0x59: /* FRINTX */
12219 case 0x79: /* FRINTI */
12220 need_fpstatus = true;
12221 if (size == 3 && !is_q) {
12222 unallocated_encoding(s);
12223 return;
12224 }
12225 break;
12226 case 0x58: /* FRINTA */
12227 rmode = FPROUNDING_TIEAWAY;
12228 need_fpstatus = true;
12229 if (size == 3 && !is_q) {
12230 unallocated_encoding(s);
12231 return;
12232 }
12233 break;
12234 case 0x7c: /* URSQRTE */
12235 if (size == 3) {
12236 unallocated_encoding(s);
12237 return;
12238 }
12239 break;
12240 case 0x1e: /* FRINT32Z */
12241 case 0x1f: /* FRINT64Z */
12242 rmode = FPROUNDING_ZERO;
12243 /* fall through */
12244 case 0x5e: /* FRINT32X */
12245 case 0x5f: /* FRINT64X */
12246 need_fpstatus = true;
12247 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12248 unallocated_encoding(s);
12249 return;
12250 }
12251 break;
12252 default:
12253 unallocated_encoding(s);
12254 return;
12255 }
12256 break;
12257 }
12258 default:
12259 unallocated_encoding(s);
12260 return;
12261 }
12262
12263 if (!fp_access_check(s)) {
12264 return;
12265 }
12266
12267 if (need_fpstatus || rmode >= 0) {
12268 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12269 } else {
12270 tcg_fpstatus = NULL;
12271 }
12272 if (rmode >= 0) {
12273 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12274 } else {
12275 tcg_rmode = NULL;
12276 }
12277
12278 switch (opcode) {
12279 case 0x5:
12280 if (u && size == 0) { /* NOT */
12281 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12282 return;
12283 }
12284 break;
12285 case 0x8: /* CMGT, CMGE */
12286 if (u) {
12287 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12288 } else {
12289 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12290 }
12291 return;
12292 case 0x9: /* CMEQ, CMLE */
12293 if (u) {
12294 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12295 } else {
12296 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12297 }
12298 return;
12299 case 0xa: /* CMLT */
12300 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12301 return;
12302 case 0xb:
12303 if (u) { /* ABS, NEG */
12304 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12305 } else {
12306 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12307 }
12308 return;
12309 }
12310
12311 if (size == 3) {
12312 /* All 64-bit element operations can be shared with scalar 2misc */
12313 int pass;
12314
12315 /* Coverity claims (size == 3 && !is_q) has been eliminated
12316 * from all paths leading to here.
12317 */
12318 tcg_debug_assert(is_q);
12319 for (pass = 0; pass < 2; pass++) {
12320 TCGv_i64 tcg_op = tcg_temp_new_i64();
12321 TCGv_i64 tcg_res = tcg_temp_new_i64();
12322
12323 read_vec_element(s, tcg_op, rn, pass, MO_64);
12324
12325 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12326 tcg_rmode, tcg_fpstatus);
12327
12328 write_vec_element(s, tcg_res, rd, pass, MO_64);
12329 }
12330 } else {
12331 int pass;
12332
12333 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12334 TCGv_i32 tcg_op = tcg_temp_new_i32();
12335 TCGv_i32 tcg_res = tcg_temp_new_i32();
12336
12337 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12338
12339 if (size == 2) {
12340 /* Special cases for 32 bit elements */
12341 switch (opcode) {
12342 case 0x4: /* CLS */
12343 if (u) {
12344 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12345 } else {
12346 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12347 }
12348 break;
12349 case 0x7: /* SQABS, SQNEG */
12350 if (u) {
12351 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
12352 } else {
12353 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
12354 }
12355 break;
12356 case 0x2f: /* FABS */
12357 gen_helper_vfp_abss(tcg_res, tcg_op);
12358 break;
12359 case 0x6f: /* FNEG */
12360 gen_helper_vfp_negs(tcg_res, tcg_op);
12361 break;
12362 case 0x7f: /* FSQRT */
12363 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
12364 break;
12365 case 0x1a: /* FCVTNS */
12366 case 0x1b: /* FCVTMS */
12367 case 0x1c: /* FCVTAS */
12368 case 0x3a: /* FCVTPS */
12369 case 0x3b: /* FCVTZS */
12370 gen_helper_vfp_tosls(tcg_res, tcg_op,
12371 tcg_constant_i32(0), tcg_fpstatus);
12372 break;
12373 case 0x5a: /* FCVTNU */
12374 case 0x5b: /* FCVTMU */
12375 case 0x5c: /* FCVTAU */
12376 case 0x7a: /* FCVTPU */
12377 case 0x7b: /* FCVTZU */
12378 gen_helper_vfp_touls(tcg_res, tcg_op,
12379 tcg_constant_i32(0), tcg_fpstatus);
12380 break;
12381 case 0x18: /* FRINTN */
12382 case 0x19: /* FRINTM */
12383 case 0x38: /* FRINTP */
12384 case 0x39: /* FRINTZ */
12385 case 0x58: /* FRINTA */
12386 case 0x79: /* FRINTI */
12387 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12388 break;
12389 case 0x59: /* FRINTX */
12390 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12391 break;
12392 case 0x7c: /* URSQRTE */
12393 gen_helper_rsqrte_u32(tcg_res, tcg_op);
12394 break;
12395 case 0x1e: /* FRINT32Z */
12396 case 0x5e: /* FRINT32X */
12397 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12398 break;
12399 case 0x1f: /* FRINT64Z */
12400 case 0x5f: /* FRINT64X */
12401 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12402 break;
12403 default:
12404 g_assert_not_reached();
12405 }
12406 } else {
12407 /* Use helpers for 8 and 16 bit elements */
12408 switch (opcode) {
12409 case 0x5: /* CNT, RBIT */
12410 /* For these two insns size is part of the opcode specifier
12411 * (handled earlier); they always operate on byte elements.
12412 */
12413 if (u) {
12414 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12415 } else {
12416 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12417 }
12418 break;
12419 case 0x7: /* SQABS, SQNEG */
12420 {
12421 NeonGenOneOpEnvFn *genfn;
12422 static NeonGenOneOpEnvFn * const fns[2][2] = {
12423 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12424 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12425 };
12426 genfn = fns[size][u];
12427 genfn(tcg_res, tcg_env, tcg_op);
12428 break;
12429 }
12430 case 0x4: /* CLS, CLZ */
12431 if (u) {
12432 if (size == 0) {
12433 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12434 } else {
12435 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12436 }
12437 } else {
12438 if (size == 0) {
12439 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12440 } else {
12441 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12442 }
12443 }
12444 break;
12445 default:
12446 g_assert_not_reached();
12447 }
12448 }
12449
12450 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12451 }
12452 }
12453 clear_vec_high(s, is_q, rd);
12454
12455 if (tcg_rmode) {
12456 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12457 }
12458 }
12459
12460 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12461 *
12462 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
12463 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12464 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
12465 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12466 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12467 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12468 *
12469 * This actually covers two groups where scalar access is governed by
12470 * bit 28. A bunch of the instructions (float to integral) only exist
12471 * in the vector form and are un-allocated for the scalar decode. Also
12472 * in the scalar decode Q is always 1.
12473 */
12474 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12475 {
12476 int fpop, opcode, a, u;
12477 int rn, rd;
12478 bool is_q;
12479 bool is_scalar;
12480 bool only_in_vector = false;
12481
12482 int pass;
12483 TCGv_i32 tcg_rmode = NULL;
12484 TCGv_ptr tcg_fpstatus = NULL;
12485 bool need_fpst = true;
12486 int rmode = -1;
12487
12488 if (!dc_isar_feature(aa64_fp16, s)) {
12489 unallocated_encoding(s);
12490 return;
12491 }
12492
12493 rd = extract32(insn, 0, 5);
12494 rn = extract32(insn, 5, 5);
12495
12496 a = extract32(insn, 23, 1);
12497 u = extract32(insn, 29, 1);
12498 is_scalar = extract32(insn, 28, 1);
12499 is_q = extract32(insn, 30, 1);
12500
12501 opcode = extract32(insn, 12, 5);
12502 fpop = deposit32(opcode, 5, 1, a);
12503 fpop = deposit32(fpop, 6, 1, u);
12504
12505 switch (fpop) {
12506 case 0x1d: /* SCVTF */
12507 case 0x5d: /* UCVTF */
12508 {
12509 int elements;
12510
12511 if (is_scalar) {
12512 elements = 1;
12513 } else {
12514 elements = (is_q ? 8 : 4);
12515 }
12516
12517 if (!fp_access_check(s)) {
12518 return;
12519 }
12520 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12521 return;
12522 }
12523 break;
12524 case 0x2c: /* FCMGT (zero) */
12525 case 0x2d: /* FCMEQ (zero) */
12526 case 0x2e: /* FCMLT (zero) */
12527 case 0x6c: /* FCMGE (zero) */
12528 case 0x6d: /* FCMLE (zero) */
12529 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12530 return;
12531 case 0x3d: /* FRECPE */
12532 case 0x3f: /* FRECPX */
12533 break;
12534 case 0x18: /* FRINTN */
12535 only_in_vector = true;
12536 rmode = FPROUNDING_TIEEVEN;
12537 break;
12538 case 0x19: /* FRINTM */
12539 only_in_vector = true;
12540 rmode = FPROUNDING_NEGINF;
12541 break;
12542 case 0x38: /* FRINTP */
12543 only_in_vector = true;
12544 rmode = FPROUNDING_POSINF;
12545 break;
12546 case 0x39: /* FRINTZ */
12547 only_in_vector = true;
12548 rmode = FPROUNDING_ZERO;
12549 break;
12550 case 0x58: /* FRINTA */
12551 only_in_vector = true;
12552 rmode = FPROUNDING_TIEAWAY;
12553 break;
12554 case 0x59: /* FRINTX */
12555 case 0x79: /* FRINTI */
12556 only_in_vector = true;
12557 /* current rounding mode */
12558 break;
12559 case 0x1a: /* FCVTNS */
12560 rmode = FPROUNDING_TIEEVEN;
12561 break;
12562 case 0x1b: /* FCVTMS */
12563 rmode = FPROUNDING_NEGINF;
12564 break;
12565 case 0x1c: /* FCVTAS */
12566 rmode = FPROUNDING_TIEAWAY;
12567 break;
12568 case 0x3a: /* FCVTPS */
12569 rmode = FPROUNDING_POSINF;
12570 break;
12571 case 0x3b: /* FCVTZS */
12572 rmode = FPROUNDING_ZERO;
12573 break;
12574 case 0x5a: /* FCVTNU */
12575 rmode = FPROUNDING_TIEEVEN;
12576 break;
12577 case 0x5b: /* FCVTMU */
12578 rmode = FPROUNDING_NEGINF;
12579 break;
12580 case 0x5c: /* FCVTAU */
12581 rmode = FPROUNDING_TIEAWAY;
12582 break;
12583 case 0x7a: /* FCVTPU */
12584 rmode = FPROUNDING_POSINF;
12585 break;
12586 case 0x7b: /* FCVTZU */
12587 rmode = FPROUNDING_ZERO;
12588 break;
12589 case 0x2f: /* FABS */
12590 case 0x6f: /* FNEG */
12591 need_fpst = false;
12592 break;
12593 case 0x7d: /* FRSQRTE */
12594 case 0x7f: /* FSQRT (vector) */
12595 break;
12596 default:
12597 unallocated_encoding(s);
12598 return;
12599 }
12600
12601
12602 /* Check additional constraints for the scalar encoding */
12603 if (is_scalar) {
12604 if (!is_q) {
12605 unallocated_encoding(s);
12606 return;
12607 }
12608 /* FRINTxx is only in the vector form */
12609 if (only_in_vector) {
12610 unallocated_encoding(s);
12611 return;
12612 }
12613 }
12614
12615 if (!fp_access_check(s)) {
12616 return;
12617 }
12618
12619 if (rmode >= 0 || need_fpst) {
12620 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12621 }
12622
12623 if (rmode >= 0) {
12624 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12625 }
12626
12627 if (is_scalar) {
12628 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12629 TCGv_i32 tcg_res = tcg_temp_new_i32();
12630
12631 switch (fpop) {
12632 case 0x1a: /* FCVTNS */
12633 case 0x1b: /* FCVTMS */
12634 case 0x1c: /* FCVTAS */
12635 case 0x3a: /* FCVTPS */
12636 case 0x3b: /* FCVTZS */
12637 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12638 break;
12639 case 0x3d: /* FRECPE */
12640 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12641 break;
12642 case 0x3f: /* FRECPX */
12643 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12644 break;
12645 case 0x5a: /* FCVTNU */
12646 case 0x5b: /* FCVTMU */
12647 case 0x5c: /* FCVTAU */
12648 case 0x7a: /* FCVTPU */
12649 case 0x7b: /* FCVTZU */
12650 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12651 break;
12652 case 0x6f: /* FNEG */
12653 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12654 break;
12655 case 0x7d: /* FRSQRTE */
12656 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12657 break;
12658 default:
12659 g_assert_not_reached();
12660 }
12661
12662 /* limit any sign extension going on */
12663 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12664 write_fp_sreg(s, rd, tcg_res);
12665 } else {
12666 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12667 TCGv_i32 tcg_op = tcg_temp_new_i32();
12668 TCGv_i32 tcg_res = tcg_temp_new_i32();
12669
12670 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12671
12672 switch (fpop) {
12673 case 0x1a: /* FCVTNS */
12674 case 0x1b: /* FCVTMS */
12675 case 0x1c: /* FCVTAS */
12676 case 0x3a: /* FCVTPS */
12677 case 0x3b: /* FCVTZS */
12678 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12679 break;
12680 case 0x3d: /* FRECPE */
12681 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12682 break;
12683 case 0x5a: /* FCVTNU */
12684 case 0x5b: /* FCVTMU */
12685 case 0x5c: /* FCVTAU */
12686 case 0x7a: /* FCVTPU */
12687 case 0x7b: /* FCVTZU */
12688 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12689 break;
12690 case 0x18: /* FRINTN */
12691 case 0x19: /* FRINTM */
12692 case 0x38: /* FRINTP */
12693 case 0x39: /* FRINTZ */
12694 case 0x58: /* FRINTA */
12695 case 0x79: /* FRINTI */
12696 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12697 break;
12698 case 0x59: /* FRINTX */
12699 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12700 break;
12701 case 0x2f: /* FABS */
12702 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12703 break;
12704 case 0x6f: /* FNEG */
12705 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12706 break;
12707 case 0x7d: /* FRSQRTE */
12708 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12709 break;
12710 case 0x7f: /* FSQRT */
12711 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12712 break;
12713 default:
12714 g_assert_not_reached();
12715 }
12716
12717 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12718 }
12719
12720 clear_vec_high(s, is_q, rd);
12721 }
12722
12723 if (tcg_rmode) {
12724 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12725 }
12726 }
12727
12728 /* AdvSIMD scalar x indexed element
12729 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12730 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12731 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12732 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12733 * AdvSIMD vector x indexed element
12734 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12735 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12736 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12737 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12738 */
12739 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12740 {
12741 /* This encoding has two kinds of instruction:
12742 * normal, where we perform elt x idxelt => elt for each
12743 * element in the vector
12744 * long, where we perform elt x idxelt and generate a result of
12745 * double the width of the input element
12746 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12747 */
12748 bool is_scalar = extract32(insn, 28, 1);
12749 bool is_q = extract32(insn, 30, 1);
12750 bool u = extract32(insn, 29, 1);
12751 int size = extract32(insn, 22, 2);
12752 int l = extract32(insn, 21, 1);
12753 int m = extract32(insn, 20, 1);
12754 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12755 int rm = extract32(insn, 16, 4);
12756 int opcode = extract32(insn, 12, 4);
12757 int h = extract32(insn, 11, 1);
12758 int rn = extract32(insn, 5, 5);
12759 int rd = extract32(insn, 0, 5);
12760 bool is_long = false;
12761 int is_fp = 0;
12762 bool is_fp16 = false;
12763 int index;
12764 TCGv_ptr fpst;
12765
12766 switch (16 * u + opcode) {
12767 case 0x08: /* MUL */
12768 case 0x10: /* MLA */
12769 case 0x14: /* MLS */
12770 if (is_scalar) {
12771 unallocated_encoding(s);
12772 return;
12773 }
12774 break;
12775 case 0x02: /* SMLAL, SMLAL2 */
12776 case 0x12: /* UMLAL, UMLAL2 */
12777 case 0x06: /* SMLSL, SMLSL2 */
12778 case 0x16: /* UMLSL, UMLSL2 */
12779 case 0x0a: /* SMULL, SMULL2 */
12780 case 0x1a: /* UMULL, UMULL2 */
12781 if (is_scalar) {
12782 unallocated_encoding(s);
12783 return;
12784 }
12785 is_long = true;
12786 break;
12787 case 0x03: /* SQDMLAL, SQDMLAL2 */
12788 case 0x07: /* SQDMLSL, SQDMLSL2 */
12789 case 0x0b: /* SQDMULL, SQDMULL2 */
12790 is_long = true;
12791 break;
12792 case 0x0c: /* SQDMULH */
12793 case 0x0d: /* SQRDMULH */
12794 break;
12795 case 0x01: /* FMLA */
12796 case 0x05: /* FMLS */
12797 case 0x09: /* FMUL */
12798 case 0x19: /* FMULX */
12799 is_fp = 1;
12800 break;
12801 case 0x1d: /* SQRDMLAH */
12802 case 0x1f: /* SQRDMLSH */
12803 if (!dc_isar_feature(aa64_rdm, s)) {
12804 unallocated_encoding(s);
12805 return;
12806 }
12807 break;
12808 case 0x0e: /* SDOT */
12809 case 0x1e: /* UDOT */
12810 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12811 unallocated_encoding(s);
12812 return;
12813 }
12814 break;
12815 case 0x0f:
12816 switch (size) {
12817 case 0: /* SUDOT */
12818 case 2: /* USDOT */
12819 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12820 unallocated_encoding(s);
12821 return;
12822 }
12823 size = MO_32;
12824 break;
12825 case 1: /* BFDOT */
12826 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12827 unallocated_encoding(s);
12828 return;
12829 }
12830 size = MO_32;
12831 break;
12832 case 3: /* BFMLAL{B,T} */
12833 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12834 unallocated_encoding(s);
12835 return;
12836 }
12837 /* can't set is_fp without other incorrect size checks */
12838 size = MO_16;
12839 break;
12840 default:
12841 unallocated_encoding(s);
12842 return;
12843 }
12844 break;
12845 case 0x11: /* FCMLA #0 */
12846 case 0x13: /* FCMLA #90 */
12847 case 0x15: /* FCMLA #180 */
12848 case 0x17: /* FCMLA #270 */
12849 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12850 unallocated_encoding(s);
12851 return;
12852 }
12853 is_fp = 2;
12854 break;
12855 case 0x00: /* FMLAL */
12856 case 0x04: /* FMLSL */
12857 case 0x18: /* FMLAL2 */
12858 case 0x1c: /* FMLSL2 */
12859 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12860 unallocated_encoding(s);
12861 return;
12862 }
12863 size = MO_16;
12864 /* is_fp, but we pass tcg_env not fp_status. */
12865 break;
12866 default:
12867 unallocated_encoding(s);
12868 return;
12869 }
12870
12871 switch (is_fp) {
12872 case 1: /* normal fp */
12873 /* convert insn encoded size to MemOp size */
12874 switch (size) {
12875 case 0: /* half-precision */
12876 size = MO_16;
12877 is_fp16 = true;
12878 break;
12879 case MO_32: /* single precision */
12880 case MO_64: /* double precision */
12881 break;
12882 default:
12883 unallocated_encoding(s);
12884 return;
12885 }
12886 break;
12887
12888 case 2: /* complex fp */
12889 /* Each indexable element is a complex pair. */
12890 size += 1;
12891 switch (size) {
12892 case MO_32:
12893 if (h && !is_q) {
12894 unallocated_encoding(s);
12895 return;
12896 }
12897 is_fp16 = true;
12898 break;
12899 case MO_64:
12900 break;
12901 default:
12902 unallocated_encoding(s);
12903 return;
12904 }
12905 break;
12906
12907 default: /* integer */
12908 switch (size) {
12909 case MO_8:
12910 case MO_64:
12911 unallocated_encoding(s);
12912 return;
12913 }
12914 break;
12915 }
12916 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12917 unallocated_encoding(s);
12918 return;
12919 }
12920
12921 /* Given MemOp size, adjust register and indexing. */
12922 switch (size) {
12923 case MO_16:
12924 index = h << 2 | l << 1 | m;
12925 break;
12926 case MO_32:
12927 index = h << 1 | l;
12928 rm |= m << 4;
12929 break;
12930 case MO_64:
12931 if (l || !is_q) {
12932 unallocated_encoding(s);
12933 return;
12934 }
12935 index = h;
12936 rm |= m << 4;
12937 break;
12938 default:
12939 g_assert_not_reached();
12940 }
12941
12942 if (!fp_access_check(s)) {
12943 return;
12944 }
12945
12946 if (is_fp) {
12947 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12948 } else {
12949 fpst = NULL;
12950 }
12951
12952 switch (16 * u + opcode) {
12953 case 0x0e: /* SDOT */
12954 case 0x1e: /* UDOT */
12955 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12956 u ? gen_helper_gvec_udot_idx_b
12957 : gen_helper_gvec_sdot_idx_b);
12958 return;
12959 case 0x0f:
12960 switch (extract32(insn, 22, 2)) {
12961 case 0: /* SUDOT */
12962 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12963 gen_helper_gvec_sudot_idx_b);
12964 return;
12965 case 1: /* BFDOT */
12966 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12967 gen_helper_gvec_bfdot_idx);
12968 return;
12969 case 2: /* USDOT */
12970 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12971 gen_helper_gvec_usdot_idx_b);
12972 return;
12973 case 3: /* BFMLAL{B,T} */
12974 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12975 gen_helper_gvec_bfmlal_idx);
12976 return;
12977 }
12978 g_assert_not_reached();
12979 case 0x11: /* FCMLA #0 */
12980 case 0x13: /* FCMLA #90 */
12981 case 0x15: /* FCMLA #180 */
12982 case 0x17: /* FCMLA #270 */
12983 {
12984 int rot = extract32(insn, 13, 2);
12985 int data = (index << 2) | rot;
12986 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12987 vec_full_reg_offset(s, rn),
12988 vec_full_reg_offset(s, rm),
12989 vec_full_reg_offset(s, rd), fpst,
12990 is_q ? 16 : 8, vec_full_reg_size(s), data,
12991 size == MO_64
12992 ? gen_helper_gvec_fcmlas_idx
12993 : gen_helper_gvec_fcmlah_idx);
12994 }
12995 return;
12996
12997 case 0x00: /* FMLAL */
12998 case 0x04: /* FMLSL */
12999 case 0x18: /* FMLAL2 */
13000 case 0x1c: /* FMLSL2 */
13001 {
13002 int is_s = extract32(opcode, 2, 1);
13003 int is_2 = u;
13004 int data = (index << 2) | (is_2 << 1) | is_s;
13005 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13006 vec_full_reg_offset(s, rn),
13007 vec_full_reg_offset(s, rm), tcg_env,
13008 is_q ? 16 : 8, vec_full_reg_size(s),
13009 data, gen_helper_gvec_fmlal_idx_a64);
13010 }
13011 return;
13012
13013 case 0x08: /* MUL */
13014 if (!is_long && !is_scalar) {
13015 static gen_helper_gvec_3 * const fns[3] = {
13016 gen_helper_gvec_mul_idx_h,
13017 gen_helper_gvec_mul_idx_s,
13018 gen_helper_gvec_mul_idx_d,
13019 };
13020 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13021 vec_full_reg_offset(s, rn),
13022 vec_full_reg_offset(s, rm),
13023 is_q ? 16 : 8, vec_full_reg_size(s),
13024 index, fns[size - 1]);
13025 return;
13026 }
13027 break;
13028
13029 case 0x10: /* MLA */
13030 if (!is_long && !is_scalar) {
13031 static gen_helper_gvec_4 * const fns[3] = {
13032 gen_helper_gvec_mla_idx_h,
13033 gen_helper_gvec_mla_idx_s,
13034 gen_helper_gvec_mla_idx_d,
13035 };
13036 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13037 vec_full_reg_offset(s, rn),
13038 vec_full_reg_offset(s, rm),
13039 vec_full_reg_offset(s, rd),
13040 is_q ? 16 : 8, vec_full_reg_size(s),
13041 index, fns[size - 1]);
13042 return;
13043 }
13044 break;
13045
13046 case 0x14: /* MLS */
13047 if (!is_long && !is_scalar) {
13048 static gen_helper_gvec_4 * const fns[3] = {
13049 gen_helper_gvec_mls_idx_h,
13050 gen_helper_gvec_mls_idx_s,
13051 gen_helper_gvec_mls_idx_d,
13052 };
13053 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13054 vec_full_reg_offset(s, rn),
13055 vec_full_reg_offset(s, rm),
13056 vec_full_reg_offset(s, rd),
13057 is_q ? 16 : 8, vec_full_reg_size(s),
13058 index, fns[size - 1]);
13059 return;
13060 }
13061 break;
13062 }
13063
13064 if (size == 3) {
13065 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13066 int pass;
13067
13068 assert(is_fp && is_q && !is_long);
13069
13070 read_vec_element(s, tcg_idx, rm, index, MO_64);
13071
13072 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13073 TCGv_i64 tcg_op = tcg_temp_new_i64();
13074 TCGv_i64 tcg_res = tcg_temp_new_i64();
13075
13076 read_vec_element(s, tcg_op, rn, pass, MO_64);
13077
13078 switch (16 * u + opcode) {
13079 case 0x05: /* FMLS */
13080 /* As usual for ARM, separate negation for fused multiply-add */
13081 gen_helper_vfp_negd(tcg_op, tcg_op);
13082 /* fall through */
13083 case 0x01: /* FMLA */
13084 read_vec_element(s, tcg_res, rd, pass, MO_64);
13085 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13086 break;
13087 case 0x09: /* FMUL */
13088 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13089 break;
13090 case 0x19: /* FMULX */
13091 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13092 break;
13093 default:
13094 g_assert_not_reached();
13095 }
13096
13097 write_vec_element(s, tcg_res, rd, pass, MO_64);
13098 }
13099
13100 clear_vec_high(s, !is_scalar, rd);
13101 } else if (!is_long) {
13102 /* 32 bit floating point, or 16 or 32 bit integer.
13103 * For the 16 bit scalar case we use the usual Neon helpers and
13104 * rely on the fact that 0 op 0 == 0 with no side effects.
13105 */
13106 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13107 int pass, maxpasses;
13108
13109 if (is_scalar) {
13110 maxpasses = 1;
13111 } else {
13112 maxpasses = is_q ? 4 : 2;
13113 }
13114
13115 read_vec_element_i32(s, tcg_idx, rm, index, size);
13116
13117 if (size == 1 && !is_scalar) {
13118 /* The simplest way to handle the 16x16 indexed ops is to duplicate
13119 * the index into both halves of the 32 bit tcg_idx and then use
13120 * the usual Neon helpers.
13121 */
13122 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13123 }
13124
13125 for (pass = 0; pass < maxpasses; pass++) {
13126 TCGv_i32 tcg_op = tcg_temp_new_i32();
13127 TCGv_i32 tcg_res = tcg_temp_new_i32();
13128
13129 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13130
13131 switch (16 * u + opcode) {
13132 case 0x08: /* MUL */
13133 case 0x10: /* MLA */
13134 case 0x14: /* MLS */
13135 {
13136 static NeonGenTwoOpFn * const fns[2][2] = {
13137 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13138 { tcg_gen_add_i32, tcg_gen_sub_i32 },
13139 };
13140 NeonGenTwoOpFn *genfn;
13141 bool is_sub = opcode == 0x4;
13142
13143 if (size == 1) {
13144 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13145 } else {
13146 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13147 }
13148 if (opcode == 0x8) {
13149 break;
13150 }
13151 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13152 genfn = fns[size - 1][is_sub];
13153 genfn(tcg_res, tcg_op, tcg_res);
13154 break;
13155 }
13156 case 0x05: /* FMLS */
13157 case 0x01: /* FMLA */
13158 read_vec_element_i32(s, tcg_res, rd, pass,
13159 is_scalar ? size : MO_32);
13160 switch (size) {
13161 case 1:
13162 if (opcode == 0x5) {
13163 /* As usual for ARM, separate negation for fused
13164 * multiply-add */
13165 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13166 }
13167 if (is_scalar) {
13168 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13169 tcg_res, fpst);
13170 } else {
13171 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13172 tcg_res, fpst);
13173 }
13174 break;
13175 case 2:
13176 if (opcode == 0x5) {
13177 /* As usual for ARM, separate negation for
13178 * fused multiply-add */
13179 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13180 }
13181 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13182 tcg_res, fpst);
13183 break;
13184 default:
13185 g_assert_not_reached();
13186 }
13187 break;
13188 case 0x09: /* FMUL */
13189 switch (size) {
13190 case 1:
13191 if (is_scalar) {
13192 gen_helper_advsimd_mulh(tcg_res, tcg_op,
13193 tcg_idx, fpst);
13194 } else {
13195 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13196 tcg_idx, fpst);
13197 }
13198 break;
13199 case 2:
13200 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13201 break;
13202 default:
13203 g_assert_not_reached();
13204 }
13205 break;
13206 case 0x19: /* FMULX */
13207 switch (size) {
13208 case 1:
13209 if (is_scalar) {
13210 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13211 tcg_idx, fpst);
13212 } else {
13213 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13214 tcg_idx, fpst);
13215 }
13216 break;
13217 case 2:
13218 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13219 break;
13220 default:
13221 g_assert_not_reached();
13222 }
13223 break;
13224 case 0x0c: /* SQDMULH */
13225 if (size == 1) {
13226 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
13227 tcg_op, tcg_idx);
13228 } else {
13229 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
13230 tcg_op, tcg_idx);
13231 }
13232 break;
13233 case 0x0d: /* SQRDMULH */
13234 if (size == 1) {
13235 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
13236 tcg_op, tcg_idx);
13237 } else {
13238 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
13239 tcg_op, tcg_idx);
13240 }
13241 break;
13242 case 0x1d: /* SQRDMLAH */
13243 read_vec_element_i32(s, tcg_res, rd, pass,
13244 is_scalar ? size : MO_32);
13245 if (size == 1) {
13246 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env,
13247 tcg_op, tcg_idx, tcg_res);
13248 } else {
13249 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env,
13250 tcg_op, tcg_idx, tcg_res);
13251 }
13252 break;
13253 case 0x1f: /* SQRDMLSH */
13254 read_vec_element_i32(s, tcg_res, rd, pass,
13255 is_scalar ? size : MO_32);
13256 if (size == 1) {
13257 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env,
13258 tcg_op, tcg_idx, tcg_res);
13259 } else {
13260 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env,
13261 tcg_op, tcg_idx, tcg_res);
13262 }
13263 break;
13264 default:
13265 g_assert_not_reached();
13266 }
13267
13268 if (is_scalar) {
13269 write_fp_sreg(s, rd, tcg_res);
13270 } else {
13271 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13272 }
13273 }
13274
13275 clear_vec_high(s, is_q, rd);
13276 } else {
13277 /* long ops: 16x16->32 or 32x32->64 */
13278 TCGv_i64 tcg_res[2];
13279 int pass;
13280 bool satop = extract32(opcode, 0, 1);
13281 MemOp memop = MO_32;
13282
13283 if (satop || !u) {
13284 memop |= MO_SIGN;
13285 }
13286
13287 if (size == 2) {
13288 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13289
13290 read_vec_element(s, tcg_idx, rm, index, memop);
13291
13292 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13293 TCGv_i64 tcg_op = tcg_temp_new_i64();
13294 TCGv_i64 tcg_passres;
13295 int passelt;
13296
13297 if (is_scalar) {
13298 passelt = 0;
13299 } else {
13300 passelt = pass + (is_q * 2);
13301 }
13302
13303 read_vec_element(s, tcg_op, rn, passelt, memop);
13304
13305 tcg_res[pass] = tcg_temp_new_i64();
13306
13307 if (opcode == 0xa || opcode == 0xb) {
13308 /* Non-accumulating ops */
13309 tcg_passres = tcg_res[pass];
13310 } else {
13311 tcg_passres = tcg_temp_new_i64();
13312 }
13313
13314 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13315
13316 if (satop) {
13317 /* saturating, doubling */
13318 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
13319 tcg_passres, tcg_passres);
13320 }
13321
13322 if (opcode == 0xa || opcode == 0xb) {
13323 continue;
13324 }
13325
13326 /* Accumulating op: handle accumulate step */
13327 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13328
13329 switch (opcode) {
13330 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13331 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13332 break;
13333 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13334 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13335 break;
13336 case 0x7: /* SQDMLSL, SQDMLSL2 */
13337 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13338 /* fall through */
13339 case 0x3: /* SQDMLAL, SQDMLAL2 */
13340 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
13341 tcg_res[pass],
13342 tcg_passres);
13343 break;
13344 default:
13345 g_assert_not_reached();
13346 }
13347 }
13348
13349 clear_vec_high(s, !is_scalar, rd);
13350 } else {
13351 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13352
13353 assert(size == 1);
13354 read_vec_element_i32(s, tcg_idx, rm, index, size);
13355
13356 if (!is_scalar) {
13357 /* The simplest way to handle the 16x16 indexed ops is to
13358 * duplicate the index into both halves of the 32 bit tcg_idx
13359 * and then use the usual Neon helpers.
13360 */
13361 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13362 }
13363
13364 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13365 TCGv_i32 tcg_op = tcg_temp_new_i32();
13366 TCGv_i64 tcg_passres;
13367
13368 if (is_scalar) {
13369 read_vec_element_i32(s, tcg_op, rn, pass, size);
13370 } else {
13371 read_vec_element_i32(s, tcg_op, rn,
13372 pass + (is_q * 2), MO_32);
13373 }
13374
13375 tcg_res[pass] = tcg_temp_new_i64();
13376
13377 if (opcode == 0xa || opcode == 0xb) {
13378 /* Non-accumulating ops */
13379 tcg_passres = tcg_res[pass];
13380 } else {
13381 tcg_passres = tcg_temp_new_i64();
13382 }
13383
13384 if (memop & MO_SIGN) {
13385 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13386 } else {
13387 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13388 }
13389 if (satop) {
13390 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
13391 tcg_passres, tcg_passres);
13392 }
13393
13394 if (opcode == 0xa || opcode == 0xb) {
13395 continue;
13396 }
13397
13398 /* Accumulating op: handle accumulate step */
13399 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13400
13401 switch (opcode) {
13402 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13403 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13404 tcg_passres);
13405 break;
13406 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13407 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13408 tcg_passres);
13409 break;
13410 case 0x7: /* SQDMLSL, SQDMLSL2 */
13411 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13412 /* fall through */
13413 case 0x3: /* SQDMLAL, SQDMLAL2 */
13414 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
13415 tcg_res[pass],
13416 tcg_passres);
13417 break;
13418 default:
13419 g_assert_not_reached();
13420 }
13421 }
13422
13423 if (is_scalar) {
13424 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13425 }
13426 }
13427
13428 if (is_scalar) {
13429 tcg_res[1] = tcg_constant_i64(0);
13430 }
13431
13432 for (pass = 0; pass < 2; pass++) {
13433 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13434 }
13435 }
13436 }
13437
13438 /* Crypto AES
13439 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13440 * +-----------------+------+-----------+--------+-----+------+------+
13441 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13442 * +-----------------+------+-----------+--------+-----+------+------+
13443 */
13444 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13445 {
13446 int size = extract32(insn, 22, 2);
13447 int opcode = extract32(insn, 12, 5);
13448 int rn = extract32(insn, 5, 5);
13449 int rd = extract32(insn, 0, 5);
13450 gen_helper_gvec_2 *genfn2 = NULL;
13451 gen_helper_gvec_3 *genfn3 = NULL;
13452
13453 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13454 unallocated_encoding(s);
13455 return;
13456 }
13457
13458 switch (opcode) {
13459 case 0x4: /* AESE */
13460 genfn3 = gen_helper_crypto_aese;
13461 break;
13462 case 0x6: /* AESMC */
13463 genfn2 = gen_helper_crypto_aesmc;
13464 break;
13465 case 0x5: /* AESD */
13466 genfn3 = gen_helper_crypto_aesd;
13467 break;
13468 case 0x7: /* AESIMC */
13469 genfn2 = gen_helper_crypto_aesimc;
13470 break;
13471 default:
13472 unallocated_encoding(s);
13473 return;
13474 }
13475
13476 if (!fp_access_check(s)) {
13477 return;
13478 }
13479 if (genfn2) {
13480 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2);
13481 } else {
13482 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3);
13483 }
13484 }
13485
13486 /* Crypto three-reg SHA
13487 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
13488 * +-----------------+------+---+------+---+--------+-----+------+------+
13489 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
13490 * +-----------------+------+---+------+---+--------+-----+------+------+
13491 */
13492 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13493 {
13494 int size = extract32(insn, 22, 2);
13495 int opcode = extract32(insn, 12, 3);
13496 int rm = extract32(insn, 16, 5);
13497 int rn = extract32(insn, 5, 5);
13498 int rd = extract32(insn, 0, 5);
13499 gen_helper_gvec_3 *genfn;
13500 bool feature;
13501
13502 if (size != 0) {
13503 unallocated_encoding(s);
13504 return;
13505 }
13506
13507 switch (opcode) {
13508 case 0: /* SHA1C */
13509 genfn = gen_helper_crypto_sha1c;
13510 feature = dc_isar_feature(aa64_sha1, s);
13511 break;
13512 case 1: /* SHA1P */
13513 genfn = gen_helper_crypto_sha1p;
13514 feature = dc_isar_feature(aa64_sha1, s);
13515 break;
13516 case 2: /* SHA1M */
13517 genfn = gen_helper_crypto_sha1m;
13518 feature = dc_isar_feature(aa64_sha1, s);
13519 break;
13520 case 3: /* SHA1SU0 */
13521 genfn = gen_helper_crypto_sha1su0;
13522 feature = dc_isar_feature(aa64_sha1, s);
13523 break;
13524 case 4: /* SHA256H */
13525 genfn = gen_helper_crypto_sha256h;
13526 feature = dc_isar_feature(aa64_sha256, s);
13527 break;
13528 case 5: /* SHA256H2 */
13529 genfn = gen_helper_crypto_sha256h2;
13530 feature = dc_isar_feature(aa64_sha256, s);
13531 break;
13532 case 6: /* SHA256SU1 */
13533 genfn = gen_helper_crypto_sha256su1;
13534 feature = dc_isar_feature(aa64_sha256, s);
13535 break;
13536 default:
13537 unallocated_encoding(s);
13538 return;
13539 }
13540
13541 if (!feature) {
13542 unallocated_encoding(s);
13543 return;
13544 }
13545
13546 if (!fp_access_check(s)) {
13547 return;
13548 }
13549 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
13550 }
13551
13552 /* Crypto two-reg SHA
13553 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13554 * +-----------------+------+-----------+--------+-----+------+------+
13555 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13556 * +-----------------+------+-----------+--------+-----+------+------+
13557 */
13558 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13559 {
13560 int size = extract32(insn, 22, 2);
13561 int opcode = extract32(insn, 12, 5);
13562 int rn = extract32(insn, 5, 5);
13563 int rd = extract32(insn, 0, 5);
13564 gen_helper_gvec_2 *genfn;
13565 bool feature;
13566
13567 if (size != 0) {
13568 unallocated_encoding(s);
13569 return;
13570 }
13571
13572 switch (opcode) {
13573 case 0: /* SHA1H */
13574 feature = dc_isar_feature(aa64_sha1, s);
13575 genfn = gen_helper_crypto_sha1h;
13576 break;
13577 case 1: /* SHA1SU1 */
13578 feature = dc_isar_feature(aa64_sha1, s);
13579 genfn = gen_helper_crypto_sha1su1;
13580 break;
13581 case 2: /* SHA256SU0 */
13582 feature = dc_isar_feature(aa64_sha256, s);
13583 genfn = gen_helper_crypto_sha256su0;
13584 break;
13585 default:
13586 unallocated_encoding(s);
13587 return;
13588 }
13589
13590 if (!feature) {
13591 unallocated_encoding(s);
13592 return;
13593 }
13594
13595 if (!fp_access_check(s)) {
13596 return;
13597 }
13598 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
13599 }
13600
13601 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
13602 {
13603 tcg_gen_rotli_i64(d, m, 1);
13604 tcg_gen_xor_i64(d, d, n);
13605 }
13606
13607 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
13608 {
13609 tcg_gen_rotli_vec(vece, d, m, 1);
13610 tcg_gen_xor_vec(vece, d, d, n);
13611 }
13612
13613 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
13614 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
13615 {
13616 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
13617 static const GVecGen3 op = {
13618 .fni8 = gen_rax1_i64,
13619 .fniv = gen_rax1_vec,
13620 .opt_opc = vecop_list,
13621 .fno = gen_helper_crypto_rax1,
13622 .vece = MO_64,
13623 };
13624 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
13625 }
13626
13627 /* Crypto three-reg SHA512
13628 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13629 * +-----------------------+------+---+---+-----+--------+------+------+
13630 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
13631 * +-----------------------+------+---+---+-----+--------+------+------+
13632 */
13633 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13634 {
13635 int opcode = extract32(insn, 10, 2);
13636 int o = extract32(insn, 14, 1);
13637 int rm = extract32(insn, 16, 5);
13638 int rn = extract32(insn, 5, 5);
13639 int rd = extract32(insn, 0, 5);
13640 bool feature;
13641 gen_helper_gvec_3 *oolfn = NULL;
13642 GVecGen3Fn *gvecfn = NULL;
13643
13644 if (o == 0) {
13645 switch (opcode) {
13646 case 0: /* SHA512H */
13647 feature = dc_isar_feature(aa64_sha512, s);
13648 oolfn = gen_helper_crypto_sha512h;
13649 break;
13650 case 1: /* SHA512H2 */
13651 feature = dc_isar_feature(aa64_sha512, s);
13652 oolfn = gen_helper_crypto_sha512h2;
13653 break;
13654 case 2: /* SHA512SU1 */
13655 feature = dc_isar_feature(aa64_sha512, s);
13656 oolfn = gen_helper_crypto_sha512su1;
13657 break;
13658 case 3: /* RAX1 */
13659 feature = dc_isar_feature(aa64_sha3, s);
13660 gvecfn = gen_gvec_rax1;
13661 break;
13662 default:
13663 g_assert_not_reached();
13664 }
13665 } else {
13666 switch (opcode) {
13667 case 0: /* SM3PARTW1 */
13668 feature = dc_isar_feature(aa64_sm3, s);
13669 oolfn = gen_helper_crypto_sm3partw1;
13670 break;
13671 case 1: /* SM3PARTW2 */
13672 feature = dc_isar_feature(aa64_sm3, s);
13673 oolfn = gen_helper_crypto_sm3partw2;
13674 break;
13675 case 2: /* SM4EKEY */
13676 feature = dc_isar_feature(aa64_sm4, s);
13677 oolfn = gen_helper_crypto_sm4ekey;
13678 break;
13679 default:
13680 unallocated_encoding(s);
13681 return;
13682 }
13683 }
13684
13685 if (!feature) {
13686 unallocated_encoding(s);
13687 return;
13688 }
13689
13690 if (!fp_access_check(s)) {
13691 return;
13692 }
13693
13694 if (oolfn) {
13695 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
13696 } else {
13697 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
13698 }
13699 }
13700
13701 /* Crypto two-reg SHA512
13702 * 31 12 11 10 9 5 4 0
13703 * +-----------------------------------------+--------+------+------+
13704 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
13705 * +-----------------------------------------+--------+------+------+
13706 */
13707 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13708 {
13709 int opcode = extract32(insn, 10, 2);
13710 int rn = extract32(insn, 5, 5);
13711 int rd = extract32(insn, 0, 5);
13712 bool feature;
13713
13714 switch (opcode) {
13715 case 0: /* SHA512SU0 */
13716 feature = dc_isar_feature(aa64_sha512, s);
13717 break;
13718 case 1: /* SM4E */
13719 feature = dc_isar_feature(aa64_sm4, s);
13720 break;
13721 default:
13722 unallocated_encoding(s);
13723 return;
13724 }
13725
13726 if (!feature) {
13727 unallocated_encoding(s);
13728 return;
13729 }
13730
13731 if (!fp_access_check(s)) {
13732 return;
13733 }
13734
13735 switch (opcode) {
13736 case 0: /* SHA512SU0 */
13737 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
13738 break;
13739 case 1: /* SM4E */
13740 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
13741 break;
13742 default:
13743 g_assert_not_reached();
13744 }
13745 }
13746
13747 /* Crypto four-register
13748 * 31 23 22 21 20 16 15 14 10 9 5 4 0
13749 * +-------------------+-----+------+---+------+------+------+
13750 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
13751 * +-------------------+-----+------+---+------+------+------+
13752 */
13753 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13754 {
13755 int op0 = extract32(insn, 21, 2);
13756 int rm = extract32(insn, 16, 5);
13757 int ra = extract32(insn, 10, 5);
13758 int rn = extract32(insn, 5, 5);
13759 int rd = extract32(insn, 0, 5);
13760 bool feature;
13761
13762 switch (op0) {
13763 case 0: /* EOR3 */
13764 case 1: /* BCAX */
13765 feature = dc_isar_feature(aa64_sha3, s);
13766 break;
13767 case 2: /* SM3SS1 */
13768 feature = dc_isar_feature(aa64_sm3, s);
13769 break;
13770 default:
13771 unallocated_encoding(s);
13772 return;
13773 }
13774
13775 if (!feature) {
13776 unallocated_encoding(s);
13777 return;
13778 }
13779
13780 if (!fp_access_check(s)) {
13781 return;
13782 }
13783
13784 if (op0 < 2) {
13785 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13786 int pass;
13787
13788 tcg_op1 = tcg_temp_new_i64();
13789 tcg_op2 = tcg_temp_new_i64();
13790 tcg_op3 = tcg_temp_new_i64();
13791 tcg_res[0] = tcg_temp_new_i64();
13792 tcg_res[1] = tcg_temp_new_i64();
13793
13794 for (pass = 0; pass < 2; pass++) {
13795 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13796 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13797 read_vec_element(s, tcg_op3, ra, pass, MO_64);
13798
13799 if (op0 == 0) {
13800 /* EOR3 */
13801 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13802 } else {
13803 /* BCAX */
13804 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13805 }
13806 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13807 }
13808 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13809 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13810 } else {
13811 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13812
13813 tcg_op1 = tcg_temp_new_i32();
13814 tcg_op2 = tcg_temp_new_i32();
13815 tcg_op3 = tcg_temp_new_i32();
13816 tcg_res = tcg_temp_new_i32();
13817 tcg_zero = tcg_constant_i32(0);
13818
13819 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13820 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13821 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13822
13823 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13824 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13825 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13826 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13827
13828 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13829 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13830 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13831 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13832 }
13833 }
13834
13835 /* Crypto XAR
13836 * 31 21 20 16 15 10 9 5 4 0
13837 * +-----------------------+------+--------+------+------+
13838 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
13839 * +-----------------------+------+--------+------+------+
13840 */
13841 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13842 {
13843 int rm = extract32(insn, 16, 5);
13844 int imm6 = extract32(insn, 10, 6);
13845 int rn = extract32(insn, 5, 5);
13846 int rd = extract32(insn, 0, 5);
13847
13848 if (!dc_isar_feature(aa64_sha3, s)) {
13849 unallocated_encoding(s);
13850 return;
13851 }
13852
13853 if (!fp_access_check(s)) {
13854 return;
13855 }
13856
13857 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
13858 vec_full_reg_offset(s, rn),
13859 vec_full_reg_offset(s, rm), imm6, 16,
13860 vec_full_reg_size(s));
13861 }
13862
13863 /* Crypto three-reg imm2
13864 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13865 * +-----------------------+------+-----+------+--------+------+------+
13866 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
13867 * +-----------------------+------+-----+------+--------+------+------+
13868 */
13869 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13870 {
13871 static gen_helper_gvec_3 * const fns[4] = {
13872 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
13873 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
13874 };
13875 int opcode = extract32(insn, 10, 2);
13876 int imm2 = extract32(insn, 12, 2);
13877 int rm = extract32(insn, 16, 5);
13878 int rn = extract32(insn, 5, 5);
13879 int rd = extract32(insn, 0, 5);
13880
13881 if (!dc_isar_feature(aa64_sm3, s)) {
13882 unallocated_encoding(s);
13883 return;
13884 }
13885
13886 if (!fp_access_check(s)) {
13887 return;
13888 }
13889
13890 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
13891 }
13892
13893 /* C3.6 Data processing - SIMD, inc Crypto
13894 *
13895 * As the decode gets a little complex we are using a table based
13896 * approach for this part of the decode.
13897 */
13898 static const AArch64DecodeTable data_proc_simd[] = {
13899 /* pattern , mask , fn */
13900 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13901 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13902 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13903 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13904 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13905 { 0x0e000400, 0x9fe08400, disas_simd_copy },
13906 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13907 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13908 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13909 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13910 { 0x0e000000, 0xbf208c00, disas_simd_tb },
13911 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13912 { 0x2e000000, 0xbf208400, disas_simd_ext },
13913 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13914 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13915 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13916 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13917 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13918 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13919 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13920 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13921 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13922 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13923 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13924 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13925 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13926 { 0xce000000, 0xff808000, disas_crypto_four_reg },
13927 { 0xce800000, 0xffe00000, disas_crypto_xar },
13928 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13929 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13930 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13931 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13932 { 0x00000000, 0x00000000, NULL }
13933 };
13934
13935 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13936 {
13937 /* Note that this is called with all non-FP cases from
13938 * table C3-6 so it must UNDEF for entries not specifically
13939 * allocated to instructions in that table.
13940 */
13941 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13942 if (fn) {
13943 fn(s, insn);
13944 } else {
13945 unallocated_encoding(s);
13946 }
13947 }
13948
13949 /* C3.6 Data processing - SIMD and floating point */
13950 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13951 {
13952 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13953 disas_data_proc_fp(s, insn);
13954 } else {
13955 /* SIMD, including crypto */
13956 disas_data_proc_simd(s, insn);
13957 }
13958 }
13959
13960 static bool trans_OK(DisasContext *s, arg_OK *a)
13961 {
13962 return true;
13963 }
13964
13965 static bool trans_FAIL(DisasContext *s, arg_OK *a)
13966 {
13967 s->is_nonstreaming = true;
13968 return true;
13969 }
13970
13971 /**
13972 * is_guarded_page:
13973 * @env: The cpu environment
13974 * @s: The DisasContext
13975 *
13976 * Return true if the page is guarded.
13977 */
13978 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13979 {
13980 uint64_t addr = s->base.pc_first;
13981 #ifdef CONFIG_USER_ONLY
13982 return page_get_flags(addr) & PAGE_BTI;
13983 #else
13984 CPUTLBEntryFull *full;
13985 void *host;
13986 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13987 int flags;
13988
13989 /*
13990 * We test this immediately after reading an insn, which means
13991 * that the TLB entry must be present and valid, and thus this
13992 * access will never raise an exception.
13993 */
13994 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
13995 false, &host, &full, 0);
13996 assert(!(flags & TLB_INVALID_MASK));
13997
13998 return full->extra.arm.guarded;
13999 #endif
14000 }
14001
14002 /**
14003 * btype_destination_ok:
14004 * @insn: The instruction at the branch destination
14005 * @bt: SCTLR_ELx.BT
14006 * @btype: PSTATE.BTYPE, and is non-zero
14007 *
14008 * On a guarded page, there are a limited number of insns
14009 * that may be present at the branch target:
14010 * - branch target identifiers,
14011 * - paciasp, pacibsp,
14012 * - BRK insn
14013 * - HLT insn
14014 * Anything else causes a Branch Target Exception.
14015 *
14016 * Return true if the branch is compatible, false to raise BTITRAP.
14017 */
14018 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14019 {
14020 if ((insn & 0xfffff01fu) == 0xd503201fu) {
14021 /* HINT space */
14022 switch (extract32(insn, 5, 7)) {
14023 case 0b011001: /* PACIASP */
14024 case 0b011011: /* PACIBSP */
14025 /*
14026 * If SCTLR_ELx.BT, then PACI*SP are not compatible
14027 * with btype == 3. Otherwise all btype are ok.
14028 */
14029 return !bt || btype != 3;
14030 case 0b100000: /* BTI */
14031 /* Not compatible with any btype. */
14032 return false;
14033 case 0b100010: /* BTI c */
14034 /* Not compatible with btype == 3 */
14035 return btype != 3;
14036 case 0b100100: /* BTI j */
14037 /* Not compatible with btype == 2 */
14038 return btype != 2;
14039 case 0b100110: /* BTI jc */
14040 /* Compatible with any btype. */
14041 return true;
14042 }
14043 } else {
14044 switch (insn & 0xffe0001fu) {
14045 case 0xd4200000u: /* BRK */
14046 case 0xd4400000u: /* HLT */
14047 /* Give priority to the breakpoint exception. */
14048 return true;
14049 }
14050 }
14051 return false;
14052 }
14053
14054 /* C3.1 A64 instruction index by encoding */
14055 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
14056 {
14057 switch (extract32(insn, 25, 4)) {
14058 case 0x5:
14059 case 0xd: /* Data processing - register */
14060 disas_data_proc_reg(s, insn);
14061 break;
14062 case 0x7:
14063 case 0xf: /* Data processing - SIMD and floating point */
14064 disas_data_proc_simd_fp(s, insn);
14065 break;
14066 default:
14067 unallocated_encoding(s);
14068 break;
14069 }
14070 }
14071
14072 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14073 CPUState *cpu)
14074 {
14075 DisasContext *dc = container_of(dcbase, DisasContext, base);
14076 CPUARMState *env = cpu_env(cpu);
14077 ARMCPU *arm_cpu = env_archcpu(env);
14078 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
14079 int bound, core_mmu_idx;
14080
14081 dc->isar = &arm_cpu->isar;
14082 dc->condjmp = 0;
14083 dc->pc_save = dc->base.pc_first;
14084 dc->aarch64 = true;
14085 dc->thumb = false;
14086 dc->sctlr_b = 0;
14087 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
14088 dc->condexec_mask = 0;
14089 dc->condexec_cond = 0;
14090 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
14091 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14092 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
14093 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
14094 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
14095 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14096 #if !defined(CONFIG_USER_ONLY)
14097 dc->user = (dc->current_el == 0);
14098 #endif
14099 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
14100 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
14101 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
14102 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
14103 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
14104 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
14105 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
14106 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
14107 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
14108 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
14109 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
14110 dc->bt = EX_TBFLAG_A64(tb_flags, BT);
14111 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
14112 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
14113 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
14114 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
14115 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
14116 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
14117 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
14118 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
14119 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
14120 dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
14121 dc->nv = EX_TBFLAG_A64(tb_flags, NV);
14122 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
14123 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
14124 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
14125 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
14126 dc->vec_len = 0;
14127 dc->vec_stride = 0;
14128 dc->cp_regs = arm_cpu->cp_regs;
14129 dc->features = env->features;
14130 dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14131 dc->gm_blocksize = arm_cpu->gm_blocksize;
14132
14133 #ifdef CONFIG_USER_ONLY
14134 /* In sve_probe_page, we assume TBI is enabled. */
14135 tcg_debug_assert(dc->tbid & 1);
14136 #endif
14137
14138 dc->lse2 = dc_isar_feature(aa64_lse2, dc);
14139
14140 /* Single step state. The code-generation logic here is:
14141 * SS_ACTIVE == 0:
14142 * generate code with no special handling for single-stepping (except
14143 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14144 * this happens anyway because those changes are all system register or
14145 * PSTATE writes).
14146 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14147 * emit code for one insn
14148 * emit code to clear PSTATE.SS
14149 * emit code to generate software step exception for completed step
14150 * end TB (as usual for having generated an exception)
14151 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14152 * emit code to generate a software step exception
14153 * end the TB
14154 */
14155 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
14156 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
14157 dc->is_ldex = false;
14158
14159 /* Bound the number of insns to execute to those left on the page. */
14160 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14161
14162 /* If architectural single step active, limit to 1. */
14163 if (dc->ss_active) {
14164 bound = 1;
14165 }
14166 dc->base.max_insns = MIN(dc->base.max_insns, bound);
14167 }
14168
14169 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14170 {
14171 }
14172
14173 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14174 {
14175 DisasContext *dc = container_of(dcbase, DisasContext, base);
14176 target_ulong pc_arg = dc->base.pc_next;
14177
14178 if (tb_cflags(dcbase->tb) & CF_PCREL) {
14179 pc_arg &= ~TARGET_PAGE_MASK;
14180 }
14181 tcg_gen_insn_start(pc_arg, 0, 0);
14182 dc->insn_start = tcg_last_op();
14183 }
14184
14185 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14186 {
14187 DisasContext *s = container_of(dcbase, DisasContext, base);
14188 CPUARMState *env = cpu_env(cpu);
14189 uint64_t pc = s->base.pc_next;
14190 uint32_t insn;
14191
14192 /* Singlestep exceptions have the highest priority. */
14193 if (s->ss_active && !s->pstate_ss) {
14194 /* Singlestep state is Active-pending.
14195 * If we're in this state at the start of a TB then either
14196 * a) we just took an exception to an EL which is being debugged
14197 * and this is the first insn in the exception handler
14198 * b) debug exceptions were masked and we just unmasked them
14199 * without changing EL (eg by clearing PSTATE.D)
14200 * In either case we're going to take a swstep exception in the
14201 * "did not step an insn" case, and so the syndrome ISV and EX
14202 * bits should be zero.
14203 */
14204 assert(s->base.num_insns == 1);
14205 gen_swstep_exception(s, 0, 0);
14206 s->base.is_jmp = DISAS_NORETURN;
14207 s->base.pc_next = pc + 4;
14208 return;
14209 }
14210
14211 if (pc & 3) {
14212 /*
14213 * PC alignment fault. This has priority over the instruction abort
14214 * that we would receive from a translation fault via arm_ldl_code.
14215 * This should only be possible after an indirect branch, at the
14216 * start of the TB.
14217 */
14218 assert(s->base.num_insns == 1);
14219 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
14220 s->base.is_jmp = DISAS_NORETURN;
14221 s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
14222 return;
14223 }
14224
14225 s->pc_curr = pc;
14226 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
14227 s->insn = insn;
14228 s->base.pc_next = pc + 4;
14229
14230 s->fp_access_checked = false;
14231 s->sve_access_checked = false;
14232
14233 if (s->pstate_il) {
14234 /*
14235 * Illegal execution state. This has priority over BTI
14236 * exceptions, but comes after instruction abort exceptions.
14237 */
14238 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
14239 return;
14240 }
14241
14242 if (dc_isar_feature(aa64_bti, s)) {
14243 if (s->base.num_insns == 1) {
14244 /*
14245 * At the first insn of the TB, compute s->guarded_page.
14246 * We delayed computing this until successfully reading
14247 * the first insn of the TB, above. This (mostly) ensures
14248 * that the softmmu tlb entry has been populated, and the
14249 * page table GP bit is available.
14250 *
14251 * Note that we need to compute this even if btype == 0,
14252 * because this value is used for BR instructions later
14253 * where ENV is not available.
14254 */
14255 s->guarded_page = is_guarded_page(env, s);
14256
14257 /* First insn can have btype set to non-zero. */
14258 tcg_debug_assert(s->btype >= 0);
14259
14260 /*
14261 * Note that the Branch Target Exception has fairly high
14262 * priority -- below debugging exceptions but above most
14263 * everything else. This allows us to handle this now
14264 * instead of waiting until the insn is otherwise decoded.
14265 */
14266 if (s->btype != 0
14267 && s->guarded_page
14268 && !btype_destination_ok(insn, s->bt, s->btype)) {
14269 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
14270 return;
14271 }
14272 } else {
14273 /* Not the first insn: btype must be 0. */
14274 tcg_debug_assert(s->btype == 0);
14275 }
14276 }
14277
14278 s->is_nonstreaming = false;
14279 if (s->sme_trap_nonstreaming) {
14280 disas_sme_fa64(s, insn);
14281 }
14282
14283 if (!disas_a64(s, insn) &&
14284 !disas_sme(s, insn) &&
14285 !disas_sve(s, insn)) {
14286 disas_a64_legacy(s, insn);
14287 }
14288
14289 /*
14290 * After execution of most insns, btype is reset to 0.
14291 * Note that we set btype == -1 when the insn sets btype.
14292 */
14293 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14294 reset_btype(s);
14295 }
14296 }
14297
14298 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14299 {
14300 DisasContext *dc = container_of(dcbase, DisasContext, base);
14301
14302 if (unlikely(dc->ss_active)) {
14303 /* Note that this means single stepping WFI doesn't halt the CPU.
14304 * For conditional branch insns this is harmless unreachable code as
14305 * gen_goto_tb() has already handled emitting the debug exception
14306 * (and thus a tb-jump is not possible when singlestepping).
14307 */
14308 switch (dc->base.is_jmp) {
14309 default:
14310 gen_a64_update_pc(dc, 4);
14311 /* fall through */
14312 case DISAS_EXIT:
14313 case DISAS_JUMP:
14314 gen_step_complete_exception(dc);
14315 break;
14316 case DISAS_NORETURN:
14317 break;
14318 }
14319 } else {
14320 switch (dc->base.is_jmp) {
14321 case DISAS_NEXT:
14322 case DISAS_TOO_MANY:
14323 gen_goto_tb(dc, 1, 4);
14324 break;
14325 default:
14326 case DISAS_UPDATE_EXIT:
14327 gen_a64_update_pc(dc, 4);
14328 /* fall through */
14329 case DISAS_EXIT:
14330 tcg_gen_exit_tb(NULL, 0);
14331 break;
14332 case DISAS_UPDATE_NOCHAIN:
14333 gen_a64_update_pc(dc, 4);
14334 /* fall through */
14335 case DISAS_JUMP:
14336 tcg_gen_lookup_and_goto_ptr();
14337 break;
14338 case DISAS_NORETURN:
14339 case DISAS_SWI:
14340 break;
14341 case DISAS_WFE:
14342 gen_a64_update_pc(dc, 4);
14343 gen_helper_wfe(tcg_env);
14344 break;
14345 case DISAS_YIELD:
14346 gen_a64_update_pc(dc, 4);
14347 gen_helper_yield(tcg_env);
14348 break;
14349 case DISAS_WFI:
14350 /*
14351 * This is a special case because we don't want to just halt
14352 * the CPU if trying to debug across a WFI.
14353 */
14354 gen_a64_update_pc(dc, 4);
14355 gen_helper_wfi(tcg_env, tcg_constant_i32(4));
14356 /*
14357 * The helper doesn't necessarily throw an exception, but we
14358 * must go back to the main loop to check for interrupts anyway.
14359 */
14360 tcg_gen_exit_tb(NULL, 0);
14361 break;
14362 }
14363 }
14364 }
14365
14366 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14367 CPUState *cpu, FILE *logfile)
14368 {
14369 DisasContext *dc = container_of(dcbase, DisasContext, base);
14370
14371 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first));
14372 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size);
14373 }
14374
14375 const TranslatorOps aarch64_translator_ops = {
14376 .init_disas_context = aarch64_tr_init_disas_context,
14377 .tb_start = aarch64_tr_tb_start,
14378 .insn_start = aarch64_tr_insn_start,
14379 .translate_insn = aarch64_tr_translate_insn,
14380 .tb_stop = aarch64_tr_tb_stop,
14381 .disas_log = aarch64_tr_disas_log,
14382 };