]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/tcg/translate-a64.c
target/arm: Avoid tcg_const_ptr in handle_rev
[mirror_qemu.git] / target / arm / tcg / translate-a64.c
1 /*
2 * AArch64 translation
3 *
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg-op.h"
24 #include "tcg/tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
30 #include "semihosting/semihost.h"
31 #include "exec/gen-icount.h"
32 #include "exec/helper-proto.h"
33 #include "exec/helper-gen.h"
34 #include "exec/log.h"
35 #include "cpregs.h"
36 #include "translate-a64.h"
37 #include "qemu/atomic128.h"
38
39 static TCGv_i64 cpu_X[32];
40 static TCGv_i64 cpu_pc;
41
42 /* Load/store exclusive handling */
43 static TCGv_i64 cpu_exclusive_high;
44
45 static const char *regnames[] = {
46 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
47 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
48 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
49 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
50 };
51
52 enum a64_shift_type {
53 A64_SHIFT_TYPE_LSL = 0,
54 A64_SHIFT_TYPE_LSR = 1,
55 A64_SHIFT_TYPE_ASR = 2,
56 A64_SHIFT_TYPE_ROR = 3
57 };
58
59 /* Table based decoder typedefs - used when the relevant bits for decode
60 * are too awkwardly scattered across the instruction (eg SIMD).
61 */
62 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
63
64 typedef struct AArch64DecodeTable {
65 uint32_t pattern;
66 uint32_t mask;
67 AArch64DecodeFn *disas_fn;
68 } AArch64DecodeTable;
69
70 /* initialize TCG globals. */
71 void a64_translate_init(void)
72 {
73 int i;
74
75 cpu_pc = tcg_global_mem_new_i64(cpu_env,
76 offsetof(CPUARMState, pc),
77 "pc");
78 for (i = 0; i < 32; i++) {
79 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
80 offsetof(CPUARMState, xregs[i]),
81 regnames[i]);
82 }
83
84 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
85 offsetof(CPUARMState, exclusive_high), "exclusive_high");
86 }
87
88 /*
89 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
90 */
91 static int get_a64_user_mem_index(DisasContext *s)
92 {
93 /*
94 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
95 * which is the usual mmu_idx for this cpu state.
96 */
97 ARMMMUIdx useridx = s->mmu_idx;
98
99 if (s->unpriv) {
100 /*
101 * We have pre-computed the condition for AccType_UNPRIV.
102 * Therefore we should never get here with a mmu_idx for
103 * which we do not know the corresponding user mmu_idx.
104 */
105 switch (useridx) {
106 case ARMMMUIdx_E10_1:
107 case ARMMMUIdx_E10_1_PAN:
108 useridx = ARMMMUIdx_E10_0;
109 break;
110 case ARMMMUIdx_E20_2:
111 case ARMMMUIdx_E20_2_PAN:
112 useridx = ARMMMUIdx_E20_0;
113 break;
114 default:
115 g_assert_not_reached();
116 }
117 }
118 return arm_to_core_mmu_idx(useridx);
119 }
120
121 static void set_btype_raw(int val)
122 {
123 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env,
124 offsetof(CPUARMState, btype));
125 }
126
127 static void set_btype(DisasContext *s, int val)
128 {
129 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
130 tcg_debug_assert(val >= 1 && val <= 3);
131 set_btype_raw(val);
132 s->btype = -1;
133 }
134
135 static void reset_btype(DisasContext *s)
136 {
137 if (s->btype != 0) {
138 set_btype_raw(0);
139 s->btype = 0;
140 }
141 }
142
143 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
144 {
145 assert(s->pc_save != -1);
146 if (tb_cflags(s->base.tb) & CF_PCREL) {
147 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
148 } else {
149 tcg_gen_movi_i64(dest, s->pc_curr + diff);
150 }
151 }
152
153 void gen_a64_update_pc(DisasContext *s, target_long diff)
154 {
155 gen_pc_plus_diff(s, cpu_pc, diff);
156 s->pc_save = s->pc_curr + diff;
157 }
158
159 /*
160 * Handle Top Byte Ignore (TBI) bits.
161 *
162 * If address tagging is enabled via the TCR TBI bits:
163 * + for EL2 and EL3 there is only one TBI bit, and if it is set
164 * then the address is zero-extended, clearing bits [63:56]
165 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
166 * and TBI1 controls addressses with bit 55 == 1.
167 * If the appropriate TBI bit is set for the address then
168 * the address is sign-extended from bit 55 into bits [63:56]
169 *
170 * Here We have concatenated TBI{1,0} into tbi.
171 */
172 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
173 TCGv_i64 src, int tbi)
174 {
175 if (tbi == 0) {
176 /* Load unmodified address */
177 tcg_gen_mov_i64(dst, src);
178 } else if (!regime_has_2_ranges(s->mmu_idx)) {
179 /* Force tag byte to all zero */
180 tcg_gen_extract_i64(dst, src, 0, 56);
181 } else {
182 /* Sign-extend from bit 55. */
183 tcg_gen_sextract_i64(dst, src, 0, 56);
184
185 switch (tbi) {
186 case 1:
187 /* tbi0 but !tbi1: only use the extension if positive */
188 tcg_gen_and_i64(dst, dst, src);
189 break;
190 case 2:
191 /* !tbi0 but tbi1: only use the extension if negative */
192 tcg_gen_or_i64(dst, dst, src);
193 break;
194 case 3:
195 /* tbi0 and tbi1: always use the extension */
196 break;
197 default:
198 g_assert_not_reached();
199 }
200 }
201 }
202
203 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
204 {
205 /*
206 * If address tagging is enabled for instructions via the TCR TBI bits,
207 * then loading an address into the PC will clear out any tag.
208 */
209 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
210 s->pc_save = -1;
211 }
212
213 /*
214 * Handle MTE and/or TBI.
215 *
216 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
217 * for the tag to be present in the FAR_ELx register. But for user-only
218 * mode we do not have a TLB with which to implement this, so we must
219 * remove the top byte now.
220 *
221 * Always return a fresh temporary that we can increment independently
222 * of the write-back address.
223 */
224
225 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
226 {
227 TCGv_i64 clean = tcg_temp_new_i64();
228 #ifdef CONFIG_USER_ONLY
229 gen_top_byte_ignore(s, clean, addr, s->tbid);
230 #else
231 tcg_gen_mov_i64(clean, addr);
232 #endif
233 return clean;
234 }
235
236 /* Insert a zero tag into src, with the result at dst. */
237 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
238 {
239 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
240 }
241
242 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
243 MMUAccessType acc, int log2_size)
244 {
245 gen_helper_probe_access(cpu_env, ptr,
246 tcg_constant_i32(acc),
247 tcg_constant_i32(get_mem_index(s)),
248 tcg_constant_i32(1 << log2_size));
249 }
250
251 /*
252 * For MTE, check a single logical or atomic access. This probes a single
253 * address, the exact one specified. The size and alignment of the access
254 * is not relevant to MTE, per se, but watchpoints do require the size,
255 * and we want to recognize those before making any other changes to state.
256 */
257 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
258 bool is_write, bool tag_checked,
259 int log2_size, bool is_unpriv,
260 int core_idx)
261 {
262 if (tag_checked && s->mte_active[is_unpriv]) {
263 TCGv_i64 ret;
264 int desc = 0;
265
266 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
267 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
268 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
269 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
270 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1);
271
272 ret = tcg_temp_new_i64();
273 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
274
275 return ret;
276 }
277 return clean_data_tbi(s, addr);
278 }
279
280 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
281 bool tag_checked, int log2_size)
282 {
283 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size,
284 false, get_mem_index(s));
285 }
286
287 /*
288 * For MTE, check multiple logical sequential accesses.
289 */
290 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
291 bool tag_checked, int size)
292 {
293 if (tag_checked && s->mte_active[0]) {
294 TCGv_i64 ret;
295 int desc = 0;
296
297 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
298 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
299 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
300 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
301 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1);
302
303 ret = tcg_temp_new_i64();
304 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
305
306 return ret;
307 }
308 return clean_data_tbi(s, addr);
309 }
310
311 typedef struct DisasCompare64 {
312 TCGCond cond;
313 TCGv_i64 value;
314 } DisasCompare64;
315
316 static void a64_test_cc(DisasCompare64 *c64, int cc)
317 {
318 DisasCompare c32;
319
320 arm_test_cc(&c32, cc);
321
322 /*
323 * Sign-extend the 32-bit value so that the GE/LT comparisons work
324 * properly. The NE/EQ comparisons are also fine with this choice.
325 */
326 c64->cond = c32.cond;
327 c64->value = tcg_temp_new_i64();
328 tcg_gen_ext_i32_i64(c64->value, c32.value);
329 }
330
331 static void gen_rebuild_hflags(DisasContext *s)
332 {
333 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el));
334 }
335
336 static void gen_exception_internal(int excp)
337 {
338 assert(excp_is_internal(excp));
339 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp));
340 }
341
342 static void gen_exception_internal_insn(DisasContext *s, int excp)
343 {
344 gen_a64_update_pc(s, 0);
345 gen_exception_internal(excp);
346 s->base.is_jmp = DISAS_NORETURN;
347 }
348
349 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
350 {
351 gen_a64_update_pc(s, 0);
352 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome));
353 s->base.is_jmp = DISAS_NORETURN;
354 }
355
356 static void gen_step_complete_exception(DisasContext *s)
357 {
358 /* We just completed step of an insn. Move from Active-not-pending
359 * to Active-pending, and then also take the swstep exception.
360 * This corresponds to making the (IMPDEF) choice to prioritize
361 * swstep exceptions over asynchronous exceptions taken to an exception
362 * level where debug is disabled. This choice has the advantage that
363 * we do not need to maintain internal state corresponding to the
364 * ISV/EX syndrome bits between completion of the step and generation
365 * of the exception, and our syndrome information is always correct.
366 */
367 gen_ss_advance(s);
368 gen_swstep_exception(s, 1, s->is_ldex);
369 s->base.is_jmp = DISAS_NORETURN;
370 }
371
372 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
373 {
374 if (s->ss_active) {
375 return false;
376 }
377 return translator_use_goto_tb(&s->base, dest);
378 }
379
380 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
381 {
382 if (use_goto_tb(s, s->pc_curr + diff)) {
383 /*
384 * For pcrel, the pc must always be up-to-date on entry to
385 * the linked TB, so that it can use simple additions for all
386 * further adjustments. For !pcrel, the linked TB is compiled
387 * to know its full virtual address, so we can delay the
388 * update to pc to the unlinked path. A long chain of links
389 * can thus avoid many updates to the PC.
390 */
391 if (tb_cflags(s->base.tb) & CF_PCREL) {
392 gen_a64_update_pc(s, diff);
393 tcg_gen_goto_tb(n);
394 } else {
395 tcg_gen_goto_tb(n);
396 gen_a64_update_pc(s, diff);
397 }
398 tcg_gen_exit_tb(s->base.tb, n);
399 s->base.is_jmp = DISAS_NORETURN;
400 } else {
401 gen_a64_update_pc(s, diff);
402 if (s->ss_active) {
403 gen_step_complete_exception(s);
404 } else {
405 tcg_gen_lookup_and_goto_ptr();
406 s->base.is_jmp = DISAS_NORETURN;
407 }
408 }
409 }
410
411 /*
412 * Register access functions
413 *
414 * These functions are used for directly accessing a register in where
415 * changes to the final register value are likely to be made. If you
416 * need to use a register for temporary calculation (e.g. index type
417 * operations) use the read_* form.
418 *
419 * B1.2.1 Register mappings
420 *
421 * In instruction register encoding 31 can refer to ZR (zero register) or
422 * the SP (stack pointer) depending on context. In QEMU's case we map SP
423 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
424 * This is the point of the _sp forms.
425 */
426 TCGv_i64 cpu_reg(DisasContext *s, int reg)
427 {
428 if (reg == 31) {
429 TCGv_i64 t = tcg_temp_new_i64();
430 tcg_gen_movi_i64(t, 0);
431 return t;
432 } else {
433 return cpu_X[reg];
434 }
435 }
436
437 /* register access for when 31 == SP */
438 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
439 {
440 return cpu_X[reg];
441 }
442
443 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
444 * representing the register contents. This TCGv is an auto-freed
445 * temporary so it need not be explicitly freed, and may be modified.
446 */
447 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
448 {
449 TCGv_i64 v = tcg_temp_new_i64();
450 if (reg != 31) {
451 if (sf) {
452 tcg_gen_mov_i64(v, cpu_X[reg]);
453 } else {
454 tcg_gen_ext32u_i64(v, cpu_X[reg]);
455 }
456 } else {
457 tcg_gen_movi_i64(v, 0);
458 }
459 return v;
460 }
461
462 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
463 {
464 TCGv_i64 v = tcg_temp_new_i64();
465 if (sf) {
466 tcg_gen_mov_i64(v, cpu_X[reg]);
467 } else {
468 tcg_gen_ext32u_i64(v, cpu_X[reg]);
469 }
470 return v;
471 }
472
473 /* Return the offset into CPUARMState of a slice (from
474 * the least significant end) of FP register Qn (ie
475 * Dn, Sn, Hn or Bn).
476 * (Note that this is not the same mapping as for A32; see cpu.h)
477 */
478 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
479 {
480 return vec_reg_offset(s, regno, 0, size);
481 }
482
483 /* Offset of the high half of the 128 bit vector Qn */
484 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
485 {
486 return vec_reg_offset(s, regno, 1, MO_64);
487 }
488
489 /* Convenience accessors for reading and writing single and double
490 * FP registers. Writing clears the upper parts of the associated
491 * 128 bit vector register, as required by the architecture.
492 * Note that unlike the GP register accessors, the values returned
493 * by the read functions must be manually freed.
494 */
495 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
496 {
497 TCGv_i64 v = tcg_temp_new_i64();
498
499 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
500 return v;
501 }
502
503 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
504 {
505 TCGv_i32 v = tcg_temp_new_i32();
506
507 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
508 return v;
509 }
510
511 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
512 {
513 TCGv_i32 v = tcg_temp_new_i32();
514
515 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
516 return v;
517 }
518
519 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
520 * If SVE is not enabled, then there are only 128 bits in the vector.
521 */
522 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
523 {
524 unsigned ofs = fp_reg_offset(s, rd, MO_64);
525 unsigned vsz = vec_full_reg_size(s);
526
527 /* Nop move, with side effect of clearing the tail. */
528 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
529 }
530
531 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
532 {
533 unsigned ofs = fp_reg_offset(s, reg, MO_64);
534
535 tcg_gen_st_i64(v, cpu_env, ofs);
536 clear_vec_high(s, false, reg);
537 }
538
539 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
540 {
541 TCGv_i64 tmp = tcg_temp_new_i64();
542
543 tcg_gen_extu_i32_i64(tmp, v);
544 write_fp_dreg(s, reg, tmp);
545 }
546
547 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
548 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
549 GVecGen2Fn *gvec_fn, int vece)
550 {
551 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
552 is_q ? 16 : 8, vec_full_reg_size(s));
553 }
554
555 /* Expand a 2-operand + immediate AdvSIMD vector operation using
556 * an expander function.
557 */
558 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
559 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
560 {
561 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
562 imm, is_q ? 16 : 8, vec_full_reg_size(s));
563 }
564
565 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
566 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
567 GVecGen3Fn *gvec_fn, int vece)
568 {
569 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
570 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
571 }
572
573 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
574 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
575 int rx, GVecGen4Fn *gvec_fn, int vece)
576 {
577 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
578 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
579 is_q ? 16 : 8, vec_full_reg_size(s));
580 }
581
582 /* Expand a 2-operand operation using an out-of-line helper. */
583 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
584 int rn, int data, gen_helper_gvec_2 *fn)
585 {
586 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
587 vec_full_reg_offset(s, rn),
588 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
589 }
590
591 /* Expand a 3-operand operation using an out-of-line helper. */
592 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
593 int rn, int rm, int data, gen_helper_gvec_3 *fn)
594 {
595 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
596 vec_full_reg_offset(s, rn),
597 vec_full_reg_offset(s, rm),
598 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
599 }
600
601 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
602 * an out-of-line helper.
603 */
604 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
605 int rm, bool is_fp16, int data,
606 gen_helper_gvec_3_ptr *fn)
607 {
608 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
609 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
610 vec_full_reg_offset(s, rn),
611 vec_full_reg_offset(s, rm), fpst,
612 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
613 }
614
615 /* Expand a 3-operand + qc + operation using an out-of-line helper. */
616 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
617 int rm, gen_helper_gvec_3_ptr *fn)
618 {
619 TCGv_ptr qc_ptr = tcg_temp_new_ptr();
620
621 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc));
622 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
623 vec_full_reg_offset(s, rn),
624 vec_full_reg_offset(s, rm), qc_ptr,
625 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
626 }
627
628 /* Expand a 4-operand operation using an out-of-line helper. */
629 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
630 int rm, int ra, int data, gen_helper_gvec_4 *fn)
631 {
632 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
633 vec_full_reg_offset(s, rn),
634 vec_full_reg_offset(s, rm),
635 vec_full_reg_offset(s, ra),
636 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
637 }
638
639 /*
640 * Expand a 4-operand + fpstatus pointer + simd data value operation using
641 * an out-of-line helper.
642 */
643 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
644 int rm, int ra, bool is_fp16, int data,
645 gen_helper_gvec_4_ptr *fn)
646 {
647 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
648 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
649 vec_full_reg_offset(s, rn),
650 vec_full_reg_offset(s, rm),
651 vec_full_reg_offset(s, ra), fpst,
652 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
653 }
654
655 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
656 * than the 32 bit equivalent.
657 */
658 static inline void gen_set_NZ64(TCGv_i64 result)
659 {
660 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
661 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
662 }
663
664 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
665 static inline void gen_logic_CC(int sf, TCGv_i64 result)
666 {
667 if (sf) {
668 gen_set_NZ64(result);
669 } else {
670 tcg_gen_extrl_i64_i32(cpu_ZF, result);
671 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
672 }
673 tcg_gen_movi_i32(cpu_CF, 0);
674 tcg_gen_movi_i32(cpu_VF, 0);
675 }
676
677 /* dest = T0 + T1; compute C, N, V and Z flags */
678 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
679 {
680 if (sf) {
681 TCGv_i64 result, flag, tmp;
682 result = tcg_temp_new_i64();
683 flag = tcg_temp_new_i64();
684 tmp = tcg_temp_new_i64();
685
686 tcg_gen_movi_i64(tmp, 0);
687 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
688
689 tcg_gen_extrl_i64_i32(cpu_CF, flag);
690
691 gen_set_NZ64(result);
692
693 tcg_gen_xor_i64(flag, result, t0);
694 tcg_gen_xor_i64(tmp, t0, t1);
695 tcg_gen_andc_i64(flag, flag, tmp);
696 tcg_gen_extrh_i64_i32(cpu_VF, flag);
697
698 tcg_gen_mov_i64(dest, result);
699 } else {
700 /* 32 bit arithmetic */
701 TCGv_i32 t0_32 = tcg_temp_new_i32();
702 TCGv_i32 t1_32 = tcg_temp_new_i32();
703 TCGv_i32 tmp = tcg_temp_new_i32();
704
705 tcg_gen_movi_i32(tmp, 0);
706 tcg_gen_extrl_i64_i32(t0_32, t0);
707 tcg_gen_extrl_i64_i32(t1_32, t1);
708 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
709 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
710 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
711 tcg_gen_xor_i32(tmp, t0_32, t1_32);
712 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
713 tcg_gen_extu_i32_i64(dest, cpu_NF);
714 }
715 }
716
717 /* dest = T0 - T1; compute C, N, V and Z flags */
718 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
719 {
720 if (sf) {
721 /* 64 bit arithmetic */
722 TCGv_i64 result, flag, tmp;
723
724 result = tcg_temp_new_i64();
725 flag = tcg_temp_new_i64();
726 tcg_gen_sub_i64(result, t0, t1);
727
728 gen_set_NZ64(result);
729
730 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
731 tcg_gen_extrl_i64_i32(cpu_CF, flag);
732
733 tcg_gen_xor_i64(flag, result, t0);
734 tmp = tcg_temp_new_i64();
735 tcg_gen_xor_i64(tmp, t0, t1);
736 tcg_gen_and_i64(flag, flag, tmp);
737 tcg_gen_extrh_i64_i32(cpu_VF, flag);
738 tcg_gen_mov_i64(dest, result);
739 } else {
740 /* 32 bit arithmetic */
741 TCGv_i32 t0_32 = tcg_temp_new_i32();
742 TCGv_i32 t1_32 = tcg_temp_new_i32();
743 TCGv_i32 tmp;
744
745 tcg_gen_extrl_i64_i32(t0_32, t0);
746 tcg_gen_extrl_i64_i32(t1_32, t1);
747 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
748 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
749 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
750 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
751 tmp = tcg_temp_new_i32();
752 tcg_gen_xor_i32(tmp, t0_32, t1_32);
753 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
754 tcg_gen_extu_i32_i64(dest, cpu_NF);
755 }
756 }
757
758 /* dest = T0 + T1 + CF; do not compute flags. */
759 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
760 {
761 TCGv_i64 flag = tcg_temp_new_i64();
762 tcg_gen_extu_i32_i64(flag, cpu_CF);
763 tcg_gen_add_i64(dest, t0, t1);
764 tcg_gen_add_i64(dest, dest, flag);
765
766 if (!sf) {
767 tcg_gen_ext32u_i64(dest, dest);
768 }
769 }
770
771 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
772 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
773 {
774 if (sf) {
775 TCGv_i64 result = tcg_temp_new_i64();
776 TCGv_i64 cf_64 = tcg_temp_new_i64();
777 TCGv_i64 vf_64 = tcg_temp_new_i64();
778 TCGv_i64 tmp = tcg_temp_new_i64();
779 TCGv_i64 zero = tcg_constant_i64(0);
780
781 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
782 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
783 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
784 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
785 gen_set_NZ64(result);
786
787 tcg_gen_xor_i64(vf_64, result, t0);
788 tcg_gen_xor_i64(tmp, t0, t1);
789 tcg_gen_andc_i64(vf_64, vf_64, tmp);
790 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
791
792 tcg_gen_mov_i64(dest, result);
793 } else {
794 TCGv_i32 t0_32 = tcg_temp_new_i32();
795 TCGv_i32 t1_32 = tcg_temp_new_i32();
796 TCGv_i32 tmp = tcg_temp_new_i32();
797 TCGv_i32 zero = tcg_constant_i32(0);
798
799 tcg_gen_extrl_i64_i32(t0_32, t0);
800 tcg_gen_extrl_i64_i32(t1_32, t1);
801 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
802 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
803
804 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
805 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
806 tcg_gen_xor_i32(tmp, t0_32, t1_32);
807 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
808 tcg_gen_extu_i32_i64(dest, cpu_NF);
809 }
810 }
811
812 /*
813 * Load/Store generators
814 */
815
816 /*
817 * Store from GPR register to memory.
818 */
819 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
820 TCGv_i64 tcg_addr, MemOp memop, int memidx,
821 bool iss_valid,
822 unsigned int iss_srt,
823 bool iss_sf, bool iss_ar)
824 {
825 memop = finalize_memop(s, memop);
826 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
827
828 if (iss_valid) {
829 uint32_t syn;
830
831 syn = syn_data_abort_with_iss(0,
832 (memop & MO_SIZE),
833 false,
834 iss_srt,
835 iss_sf,
836 iss_ar,
837 0, 0, 0, 0, 0, false);
838 disas_set_insn_syndrome(s, syn);
839 }
840 }
841
842 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
843 TCGv_i64 tcg_addr, MemOp memop,
844 bool iss_valid,
845 unsigned int iss_srt,
846 bool iss_sf, bool iss_ar)
847 {
848 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
849 iss_valid, iss_srt, iss_sf, iss_ar);
850 }
851
852 /*
853 * Load from memory to GPR register
854 */
855 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
856 MemOp memop, bool extend, int memidx,
857 bool iss_valid, unsigned int iss_srt,
858 bool iss_sf, bool iss_ar)
859 {
860 memop = finalize_memop(s, memop);
861 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
862
863 if (extend && (memop & MO_SIGN)) {
864 g_assert((memop & MO_SIZE) <= MO_32);
865 tcg_gen_ext32u_i64(dest, dest);
866 }
867
868 if (iss_valid) {
869 uint32_t syn;
870
871 syn = syn_data_abort_with_iss(0,
872 (memop & MO_SIZE),
873 (memop & MO_SIGN) != 0,
874 iss_srt,
875 iss_sf,
876 iss_ar,
877 0, 0, 0, 0, 0, false);
878 disas_set_insn_syndrome(s, syn);
879 }
880 }
881
882 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
883 MemOp memop, bool extend,
884 bool iss_valid, unsigned int iss_srt,
885 bool iss_sf, bool iss_ar)
886 {
887 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
888 iss_valid, iss_srt, iss_sf, iss_ar);
889 }
890
891 /*
892 * Store from FP register to memory
893 */
894 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
895 {
896 /* This writes the bottom N bits of a 128 bit wide vector to memory */
897 TCGv_i64 tmplo = tcg_temp_new_i64();
898 MemOp mop;
899
900 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64));
901
902 if (size < 4) {
903 mop = finalize_memop(s, size);
904 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
905 } else {
906 bool be = s->be_data == MO_BE;
907 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
908 TCGv_i64 tmphi = tcg_temp_new_i64();
909
910 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx));
911
912 mop = s->be_data | MO_UQ;
913 tcg_gen_qemu_st_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s),
914 mop | (s->align_mem ? MO_ALIGN_16 : 0));
915 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
916 tcg_gen_qemu_st_i64(be ? tmplo : tmphi, tcg_hiaddr,
917 get_mem_index(s), mop);
918 }
919 }
920
921 /*
922 * Load from memory to FP register
923 */
924 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
925 {
926 /* This always zero-extends and writes to a full 128 bit wide vector */
927 TCGv_i64 tmplo = tcg_temp_new_i64();
928 TCGv_i64 tmphi = NULL;
929 MemOp mop;
930
931 if (size < 4) {
932 mop = finalize_memop(s, size);
933 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
934 } else {
935 bool be = s->be_data == MO_BE;
936 TCGv_i64 tcg_hiaddr;
937
938 tmphi = tcg_temp_new_i64();
939 tcg_hiaddr = tcg_temp_new_i64();
940
941 mop = s->be_data | MO_UQ;
942 tcg_gen_qemu_ld_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s),
943 mop | (s->align_mem ? MO_ALIGN_16 : 0));
944 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
945 tcg_gen_qemu_ld_i64(be ? tmplo : tmphi, tcg_hiaddr,
946 get_mem_index(s), mop);
947 }
948
949 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
950
951 if (tmphi) {
952 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
953 }
954 clear_vec_high(s, tmphi != NULL, destidx);
955 }
956
957 /*
958 * Vector load/store helpers.
959 *
960 * The principal difference between this and a FP load is that we don't
961 * zero extend as we are filling a partial chunk of the vector register.
962 * These functions don't support 128 bit loads/stores, which would be
963 * normal load/store operations.
964 *
965 * The _i32 versions are useful when operating on 32 bit quantities
966 * (eg for floating point single or using Neon helper functions).
967 */
968
969 /* Get value of an element within a vector register */
970 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
971 int element, MemOp memop)
972 {
973 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
974 switch ((unsigned)memop) {
975 case MO_8:
976 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
977 break;
978 case MO_16:
979 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
980 break;
981 case MO_32:
982 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
983 break;
984 case MO_8|MO_SIGN:
985 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
986 break;
987 case MO_16|MO_SIGN:
988 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
989 break;
990 case MO_32|MO_SIGN:
991 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
992 break;
993 case MO_64:
994 case MO_64|MO_SIGN:
995 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
996 break;
997 default:
998 g_assert_not_reached();
999 }
1000 }
1001
1002 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1003 int element, MemOp memop)
1004 {
1005 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1006 switch (memop) {
1007 case MO_8:
1008 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1009 break;
1010 case MO_16:
1011 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1012 break;
1013 case MO_8|MO_SIGN:
1014 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1015 break;
1016 case MO_16|MO_SIGN:
1017 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1018 break;
1019 case MO_32:
1020 case MO_32|MO_SIGN:
1021 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1022 break;
1023 default:
1024 g_assert_not_reached();
1025 }
1026 }
1027
1028 /* Set value of an element within a vector register */
1029 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1030 int element, MemOp memop)
1031 {
1032 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1033 switch (memop) {
1034 case MO_8:
1035 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1036 break;
1037 case MO_16:
1038 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1039 break;
1040 case MO_32:
1041 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1042 break;
1043 case MO_64:
1044 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1045 break;
1046 default:
1047 g_assert_not_reached();
1048 }
1049 }
1050
1051 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1052 int destidx, int element, MemOp memop)
1053 {
1054 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1055 switch (memop) {
1056 case MO_8:
1057 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1058 break;
1059 case MO_16:
1060 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1061 break;
1062 case MO_32:
1063 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1064 break;
1065 default:
1066 g_assert_not_reached();
1067 }
1068 }
1069
1070 /* Store from vector register to memory */
1071 static void do_vec_st(DisasContext *s, int srcidx, int element,
1072 TCGv_i64 tcg_addr, MemOp mop)
1073 {
1074 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1075
1076 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1077 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1078 }
1079
1080 /* Load from memory to vector register */
1081 static void do_vec_ld(DisasContext *s, int destidx, int element,
1082 TCGv_i64 tcg_addr, MemOp mop)
1083 {
1084 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1085
1086 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1087 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1088 }
1089
1090 /* Check that FP/Neon access is enabled. If it is, return
1091 * true. If not, emit code to generate an appropriate exception,
1092 * and return false; the caller should not emit any code for
1093 * the instruction. Note that this check must happen after all
1094 * unallocated-encoding checks (otherwise the syndrome information
1095 * for the resulting exception will be incorrect).
1096 */
1097 static bool fp_access_check_only(DisasContext *s)
1098 {
1099 if (s->fp_excp_el) {
1100 assert(!s->fp_access_checked);
1101 s->fp_access_checked = true;
1102
1103 gen_exception_insn_el(s, 0, EXCP_UDEF,
1104 syn_fp_access_trap(1, 0xe, false, 0),
1105 s->fp_excp_el);
1106 return false;
1107 }
1108 s->fp_access_checked = true;
1109 return true;
1110 }
1111
1112 static bool fp_access_check(DisasContext *s)
1113 {
1114 if (!fp_access_check_only(s)) {
1115 return false;
1116 }
1117 if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1118 gen_exception_insn(s, 0, EXCP_UDEF,
1119 syn_smetrap(SME_ET_Streaming, false));
1120 return false;
1121 }
1122 return true;
1123 }
1124
1125 /*
1126 * Check that SVE access is enabled. If it is, return true.
1127 * If not, emit code to generate an appropriate exception and return false.
1128 * This function corresponds to CheckSVEEnabled().
1129 */
1130 bool sve_access_check(DisasContext *s)
1131 {
1132 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1133 assert(dc_isar_feature(aa64_sme, s));
1134 if (!sme_sm_enabled_check(s)) {
1135 goto fail_exit;
1136 }
1137 } else if (s->sve_excp_el) {
1138 gen_exception_insn_el(s, 0, EXCP_UDEF,
1139 syn_sve_access_trap(), s->sve_excp_el);
1140 goto fail_exit;
1141 }
1142 s->sve_access_checked = true;
1143 return fp_access_check(s);
1144
1145 fail_exit:
1146 /* Assert that we only raise one exception per instruction. */
1147 assert(!s->sve_access_checked);
1148 s->sve_access_checked = true;
1149 return false;
1150 }
1151
1152 /*
1153 * Check that SME access is enabled, raise an exception if not.
1154 * Note that this function corresponds to CheckSMEAccess and is
1155 * only used directly for cpregs.
1156 */
1157 static bool sme_access_check(DisasContext *s)
1158 {
1159 if (s->sme_excp_el) {
1160 gen_exception_insn_el(s, 0, EXCP_UDEF,
1161 syn_smetrap(SME_ET_AccessTrap, false),
1162 s->sme_excp_el);
1163 return false;
1164 }
1165 return true;
1166 }
1167
1168 /* This function corresponds to CheckSMEEnabled. */
1169 bool sme_enabled_check(DisasContext *s)
1170 {
1171 /*
1172 * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1173 * to be zero when fp_excp_el has priority. This is because we need
1174 * sme_excp_el by itself for cpregs access checks.
1175 */
1176 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1177 s->fp_access_checked = true;
1178 return sme_access_check(s);
1179 }
1180 return fp_access_check_only(s);
1181 }
1182
1183 /* Common subroutine for CheckSMEAnd*Enabled. */
1184 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1185 {
1186 if (!sme_enabled_check(s)) {
1187 return false;
1188 }
1189 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1190 gen_exception_insn(s, 0, EXCP_UDEF,
1191 syn_smetrap(SME_ET_NotStreaming, false));
1192 return false;
1193 }
1194 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1195 gen_exception_insn(s, 0, EXCP_UDEF,
1196 syn_smetrap(SME_ET_InactiveZA, false));
1197 return false;
1198 }
1199 return true;
1200 }
1201
1202 /*
1203 * This utility function is for doing register extension with an
1204 * optional shift. You will likely want to pass a temporary for the
1205 * destination register. See DecodeRegExtend() in the ARM ARM.
1206 */
1207 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1208 int option, unsigned int shift)
1209 {
1210 int extsize = extract32(option, 0, 2);
1211 bool is_signed = extract32(option, 2, 1);
1212
1213 if (is_signed) {
1214 switch (extsize) {
1215 case 0:
1216 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1217 break;
1218 case 1:
1219 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1220 break;
1221 case 2:
1222 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1223 break;
1224 case 3:
1225 tcg_gen_mov_i64(tcg_out, tcg_in);
1226 break;
1227 }
1228 } else {
1229 switch (extsize) {
1230 case 0:
1231 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1232 break;
1233 case 1:
1234 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1235 break;
1236 case 2:
1237 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1238 break;
1239 case 3:
1240 tcg_gen_mov_i64(tcg_out, tcg_in);
1241 break;
1242 }
1243 }
1244
1245 if (shift) {
1246 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1247 }
1248 }
1249
1250 static inline void gen_check_sp_alignment(DisasContext *s)
1251 {
1252 /* The AArch64 architecture mandates that (if enabled via PSTATE
1253 * or SCTLR bits) there is a check that SP is 16-aligned on every
1254 * SP-relative load or store (with an exception generated if it is not).
1255 * In line with general QEMU practice regarding misaligned accesses,
1256 * we omit these checks for the sake of guest program performance.
1257 * This function is provided as a hook so we can more easily add these
1258 * checks in future (possibly as a "favour catching guest program bugs
1259 * over speed" user selectable option).
1260 */
1261 }
1262
1263 /*
1264 * This provides a simple table based table lookup decoder. It is
1265 * intended to be used when the relevant bits for decode are too
1266 * awkwardly placed and switch/if based logic would be confusing and
1267 * deeply nested. Since it's a linear search through the table, tables
1268 * should be kept small.
1269 *
1270 * It returns the first handler where insn & mask == pattern, or
1271 * NULL if there is no match.
1272 * The table is terminated by an empty mask (i.e. 0)
1273 */
1274 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1275 uint32_t insn)
1276 {
1277 const AArch64DecodeTable *tptr = table;
1278
1279 while (tptr->mask) {
1280 if ((insn & tptr->mask) == tptr->pattern) {
1281 return tptr->disas_fn;
1282 }
1283 tptr++;
1284 }
1285 return NULL;
1286 }
1287
1288 /*
1289 * The instruction disassembly implemented here matches
1290 * the instruction encoding classifications in chapter C4
1291 * of the ARM Architecture Reference Manual (DDI0487B_a);
1292 * classification names and decode diagrams here should generally
1293 * match up with those in the manual.
1294 */
1295
1296 /* Unconditional branch (immediate)
1297 * 31 30 26 25 0
1298 * +----+-----------+-------------------------------------+
1299 * | op | 0 0 1 0 1 | imm26 |
1300 * +----+-----------+-------------------------------------+
1301 */
1302 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1303 {
1304 int64_t diff = sextract32(insn, 0, 26) * 4;
1305
1306 if (insn & (1U << 31)) {
1307 /* BL Branch with link */
1308 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1309 }
1310
1311 /* B Branch / BL Branch with link */
1312 reset_btype(s);
1313 gen_goto_tb(s, 0, diff);
1314 }
1315
1316 /* Compare and branch (immediate)
1317 * 31 30 25 24 23 5 4 0
1318 * +----+-------------+----+---------------------+--------+
1319 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1320 * +----+-------------+----+---------------------+--------+
1321 */
1322 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1323 {
1324 unsigned int sf, op, rt;
1325 int64_t diff;
1326 DisasLabel match;
1327 TCGv_i64 tcg_cmp;
1328
1329 sf = extract32(insn, 31, 1);
1330 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1331 rt = extract32(insn, 0, 5);
1332 diff = sextract32(insn, 5, 19) * 4;
1333
1334 tcg_cmp = read_cpu_reg(s, rt, sf);
1335 reset_btype(s);
1336
1337 match = gen_disas_label(s);
1338 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1339 tcg_cmp, 0, match.label);
1340 gen_goto_tb(s, 0, 4);
1341 set_disas_label(s, match);
1342 gen_goto_tb(s, 1, diff);
1343 }
1344
1345 /* Test and branch (immediate)
1346 * 31 30 25 24 23 19 18 5 4 0
1347 * +----+-------------+----+-------+-------------+------+
1348 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1349 * +----+-------------+----+-------+-------------+------+
1350 */
1351 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1352 {
1353 unsigned int bit_pos, op, rt;
1354 int64_t diff;
1355 DisasLabel match;
1356 TCGv_i64 tcg_cmp;
1357
1358 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1359 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1360 diff = sextract32(insn, 5, 14) * 4;
1361 rt = extract32(insn, 0, 5);
1362
1363 tcg_cmp = tcg_temp_new_i64();
1364 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1365
1366 reset_btype(s);
1367
1368 match = gen_disas_label(s);
1369 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1370 tcg_cmp, 0, match.label);
1371 gen_goto_tb(s, 0, 4);
1372 set_disas_label(s, match);
1373 gen_goto_tb(s, 1, diff);
1374 }
1375
1376 /* Conditional branch (immediate)
1377 * 31 25 24 23 5 4 3 0
1378 * +---------------+----+---------------------+----+------+
1379 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1380 * +---------------+----+---------------------+----+------+
1381 */
1382 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1383 {
1384 unsigned int cond;
1385 int64_t diff;
1386
1387 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1388 unallocated_encoding(s);
1389 return;
1390 }
1391 diff = sextract32(insn, 5, 19) * 4;
1392 cond = extract32(insn, 0, 4);
1393
1394 reset_btype(s);
1395 if (cond < 0x0e) {
1396 /* genuinely conditional branches */
1397 DisasLabel match = gen_disas_label(s);
1398 arm_gen_test_cc(cond, match.label);
1399 gen_goto_tb(s, 0, 4);
1400 set_disas_label(s, match);
1401 gen_goto_tb(s, 1, diff);
1402 } else {
1403 /* 0xe and 0xf are both "always" conditions */
1404 gen_goto_tb(s, 0, diff);
1405 }
1406 }
1407
1408 /* HINT instruction group, including various allocated HINTs */
1409 static void handle_hint(DisasContext *s, uint32_t insn,
1410 unsigned int op1, unsigned int op2, unsigned int crm)
1411 {
1412 unsigned int selector = crm << 3 | op2;
1413
1414 if (op1 != 3) {
1415 unallocated_encoding(s);
1416 return;
1417 }
1418
1419 switch (selector) {
1420 case 0b00000: /* NOP */
1421 break;
1422 case 0b00011: /* WFI */
1423 s->base.is_jmp = DISAS_WFI;
1424 break;
1425 case 0b00001: /* YIELD */
1426 /* When running in MTTCG we don't generate jumps to the yield and
1427 * WFE helpers as it won't affect the scheduling of other vCPUs.
1428 * If we wanted to more completely model WFE/SEV so we don't busy
1429 * spin unnecessarily we would need to do something more involved.
1430 */
1431 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1432 s->base.is_jmp = DISAS_YIELD;
1433 }
1434 break;
1435 case 0b00010: /* WFE */
1436 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1437 s->base.is_jmp = DISAS_WFE;
1438 }
1439 break;
1440 case 0b00100: /* SEV */
1441 case 0b00101: /* SEVL */
1442 case 0b00110: /* DGH */
1443 /* we treat all as NOP at least for now */
1444 break;
1445 case 0b00111: /* XPACLRI */
1446 if (s->pauth_active) {
1447 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1448 }
1449 break;
1450 case 0b01000: /* PACIA1716 */
1451 if (s->pauth_active) {
1452 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1453 }
1454 break;
1455 case 0b01010: /* PACIB1716 */
1456 if (s->pauth_active) {
1457 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1458 }
1459 break;
1460 case 0b01100: /* AUTIA1716 */
1461 if (s->pauth_active) {
1462 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1463 }
1464 break;
1465 case 0b01110: /* AUTIB1716 */
1466 if (s->pauth_active) {
1467 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1468 }
1469 break;
1470 case 0b10000: /* ESB */
1471 /* Without RAS, we must implement this as NOP. */
1472 if (dc_isar_feature(aa64_ras, s)) {
1473 /*
1474 * QEMU does not have a source of physical SErrors,
1475 * so we are only concerned with virtual SErrors.
1476 * The pseudocode in the ARM for this case is
1477 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1478 * AArch64.vESBOperation();
1479 * Most of the condition can be evaluated at translation time.
1480 * Test for EL2 present, and defer test for SEL2 to runtime.
1481 */
1482 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1483 gen_helper_vesb(cpu_env);
1484 }
1485 }
1486 break;
1487 case 0b11000: /* PACIAZ */
1488 if (s->pauth_active) {
1489 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1490 tcg_constant_i64(0));
1491 }
1492 break;
1493 case 0b11001: /* PACIASP */
1494 if (s->pauth_active) {
1495 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1496 }
1497 break;
1498 case 0b11010: /* PACIBZ */
1499 if (s->pauth_active) {
1500 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1501 tcg_constant_i64(0));
1502 }
1503 break;
1504 case 0b11011: /* PACIBSP */
1505 if (s->pauth_active) {
1506 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1507 }
1508 break;
1509 case 0b11100: /* AUTIAZ */
1510 if (s->pauth_active) {
1511 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1512 tcg_constant_i64(0));
1513 }
1514 break;
1515 case 0b11101: /* AUTIASP */
1516 if (s->pauth_active) {
1517 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1518 }
1519 break;
1520 case 0b11110: /* AUTIBZ */
1521 if (s->pauth_active) {
1522 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1523 tcg_constant_i64(0));
1524 }
1525 break;
1526 case 0b11111: /* AUTIBSP */
1527 if (s->pauth_active) {
1528 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1529 }
1530 break;
1531 default:
1532 /* default specified as NOP equivalent */
1533 break;
1534 }
1535 }
1536
1537 static void gen_clrex(DisasContext *s, uint32_t insn)
1538 {
1539 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1540 }
1541
1542 /* CLREX, DSB, DMB, ISB */
1543 static void handle_sync(DisasContext *s, uint32_t insn,
1544 unsigned int op1, unsigned int op2, unsigned int crm)
1545 {
1546 TCGBar bar;
1547
1548 if (op1 != 3) {
1549 unallocated_encoding(s);
1550 return;
1551 }
1552
1553 switch (op2) {
1554 case 2: /* CLREX */
1555 gen_clrex(s, insn);
1556 return;
1557 case 4: /* DSB */
1558 case 5: /* DMB */
1559 switch (crm & 3) {
1560 case 1: /* MBReqTypes_Reads */
1561 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1562 break;
1563 case 2: /* MBReqTypes_Writes */
1564 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1565 break;
1566 default: /* MBReqTypes_All */
1567 bar = TCG_BAR_SC | TCG_MO_ALL;
1568 break;
1569 }
1570 tcg_gen_mb(bar);
1571 return;
1572 case 6: /* ISB */
1573 /* We need to break the TB after this insn to execute
1574 * a self-modified code correctly and also to take
1575 * any pending interrupts immediately.
1576 */
1577 reset_btype(s);
1578 gen_goto_tb(s, 0, 4);
1579 return;
1580
1581 case 7: /* SB */
1582 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1583 goto do_unallocated;
1584 }
1585 /*
1586 * TODO: There is no speculation barrier opcode for TCG;
1587 * MB and end the TB instead.
1588 */
1589 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1590 gen_goto_tb(s, 0, 4);
1591 return;
1592
1593 default:
1594 do_unallocated:
1595 unallocated_encoding(s);
1596 return;
1597 }
1598 }
1599
1600 static void gen_xaflag(void)
1601 {
1602 TCGv_i32 z = tcg_temp_new_i32();
1603
1604 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1605
1606 /*
1607 * (!C & !Z) << 31
1608 * (!(C | Z)) << 31
1609 * ~((C | Z) << 31)
1610 * ~-(C | Z)
1611 * (C | Z) - 1
1612 */
1613 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1614 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1615
1616 /* !(Z & C) */
1617 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1618 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1619
1620 /* (!C & Z) << 31 -> -(Z & ~C) */
1621 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1622 tcg_gen_neg_i32(cpu_VF, cpu_VF);
1623
1624 /* C | Z */
1625 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1626 }
1627
1628 static void gen_axflag(void)
1629 {
1630 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
1631 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
1632
1633 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1634 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1635
1636 tcg_gen_movi_i32(cpu_NF, 0);
1637 tcg_gen_movi_i32(cpu_VF, 0);
1638 }
1639
1640 /* MSR (immediate) - move immediate to processor state field */
1641 static void handle_msr_i(DisasContext *s, uint32_t insn,
1642 unsigned int op1, unsigned int op2, unsigned int crm)
1643 {
1644 int op = op1 << 3 | op2;
1645
1646 /* End the TB by default, chaining is ok. */
1647 s->base.is_jmp = DISAS_TOO_MANY;
1648
1649 switch (op) {
1650 case 0x00: /* CFINV */
1651 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) {
1652 goto do_unallocated;
1653 }
1654 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1655 s->base.is_jmp = DISAS_NEXT;
1656 break;
1657
1658 case 0x01: /* XAFlag */
1659 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1660 goto do_unallocated;
1661 }
1662 gen_xaflag();
1663 s->base.is_jmp = DISAS_NEXT;
1664 break;
1665
1666 case 0x02: /* AXFlag */
1667 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1668 goto do_unallocated;
1669 }
1670 gen_axflag();
1671 s->base.is_jmp = DISAS_NEXT;
1672 break;
1673
1674 case 0x03: /* UAO */
1675 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1676 goto do_unallocated;
1677 }
1678 if (crm & 1) {
1679 set_pstate_bits(PSTATE_UAO);
1680 } else {
1681 clear_pstate_bits(PSTATE_UAO);
1682 }
1683 gen_rebuild_hflags(s);
1684 break;
1685
1686 case 0x04: /* PAN */
1687 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1688 goto do_unallocated;
1689 }
1690 if (crm & 1) {
1691 set_pstate_bits(PSTATE_PAN);
1692 } else {
1693 clear_pstate_bits(PSTATE_PAN);
1694 }
1695 gen_rebuild_hflags(s);
1696 break;
1697
1698 case 0x05: /* SPSel */
1699 if (s->current_el == 0) {
1700 goto do_unallocated;
1701 }
1702 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP));
1703 break;
1704
1705 case 0x19: /* SSBS */
1706 if (!dc_isar_feature(aa64_ssbs, s)) {
1707 goto do_unallocated;
1708 }
1709 if (crm & 1) {
1710 set_pstate_bits(PSTATE_SSBS);
1711 } else {
1712 clear_pstate_bits(PSTATE_SSBS);
1713 }
1714 /* Don't need to rebuild hflags since SSBS is a nop */
1715 break;
1716
1717 case 0x1a: /* DIT */
1718 if (!dc_isar_feature(aa64_dit, s)) {
1719 goto do_unallocated;
1720 }
1721 if (crm & 1) {
1722 set_pstate_bits(PSTATE_DIT);
1723 } else {
1724 clear_pstate_bits(PSTATE_DIT);
1725 }
1726 /* There's no need to rebuild hflags because DIT is a nop */
1727 break;
1728
1729 case 0x1e: /* DAIFSet */
1730 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm));
1731 break;
1732
1733 case 0x1f: /* DAIFClear */
1734 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm));
1735 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1736 s->base.is_jmp = DISAS_UPDATE_EXIT;
1737 break;
1738
1739 case 0x1c: /* TCO */
1740 if (dc_isar_feature(aa64_mte, s)) {
1741 /* Full MTE is enabled -- set the TCO bit as directed. */
1742 if (crm & 1) {
1743 set_pstate_bits(PSTATE_TCO);
1744 } else {
1745 clear_pstate_bits(PSTATE_TCO);
1746 }
1747 gen_rebuild_hflags(s);
1748 /* Many factors, including TCO, go into MTE_ACTIVE. */
1749 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1750 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
1751 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
1752 s->base.is_jmp = DISAS_NEXT;
1753 } else {
1754 goto do_unallocated;
1755 }
1756 break;
1757
1758 case 0x1b: /* SVCR* */
1759 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) {
1760 goto do_unallocated;
1761 }
1762 if (sme_access_check(s)) {
1763 int old = s->pstate_sm | (s->pstate_za << 1);
1764 int new = (crm & 1) * 3;
1765 int msk = (crm >> 1) & 3;
1766
1767 if ((old ^ new) & msk) {
1768 /* At least one bit changes. */
1769 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new),
1770 tcg_constant_i32(msk));
1771 } else {
1772 s->base.is_jmp = DISAS_NEXT;
1773 }
1774 }
1775 break;
1776
1777 default:
1778 do_unallocated:
1779 unallocated_encoding(s);
1780 return;
1781 }
1782 }
1783
1784 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1785 {
1786 TCGv_i32 tmp = tcg_temp_new_i32();
1787 TCGv_i32 nzcv = tcg_temp_new_i32();
1788
1789 /* build bit 31, N */
1790 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1791 /* build bit 30, Z */
1792 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1793 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1794 /* build bit 29, C */
1795 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1796 /* build bit 28, V */
1797 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1798 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1799 /* generate result */
1800 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1801 }
1802
1803 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1804 {
1805 TCGv_i32 nzcv = tcg_temp_new_i32();
1806
1807 /* take NZCV from R[t] */
1808 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1809
1810 /* bit 31, N */
1811 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1812 /* bit 30, Z */
1813 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1814 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1815 /* bit 29, C */
1816 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1817 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1818 /* bit 28, V */
1819 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1820 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1821 }
1822
1823 static void gen_sysreg_undef(DisasContext *s, bool isread,
1824 uint8_t op0, uint8_t op1, uint8_t op2,
1825 uint8_t crn, uint8_t crm, uint8_t rt)
1826 {
1827 /*
1828 * Generate code to emit an UNDEF with correct syndrome
1829 * information for a failed system register access.
1830 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
1831 * but if FEAT_IDST is implemented then read accesses to registers
1832 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
1833 * syndrome.
1834 */
1835 uint32_t syndrome;
1836
1837 if (isread && dc_isar_feature(aa64_ids, s) &&
1838 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
1839 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1840 } else {
1841 syndrome = syn_uncategorized();
1842 }
1843 gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
1844 }
1845
1846 /* MRS - move from system register
1847 * MSR (register) - move to system register
1848 * SYS
1849 * SYSL
1850 * These are all essentially the same insn in 'read' and 'write'
1851 * versions, with varying op0 fields.
1852 */
1853 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1854 unsigned int op0, unsigned int op1, unsigned int op2,
1855 unsigned int crn, unsigned int crm, unsigned int rt)
1856 {
1857 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1858 crn, crm, op0, op1, op2);
1859 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
1860 TCGv_ptr tcg_ri = NULL;
1861 TCGv_i64 tcg_rt;
1862
1863 if (!ri) {
1864 /* Unknown register; this might be a guest error or a QEMU
1865 * unimplemented feature.
1866 */
1867 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1868 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1869 isread ? "read" : "write", op0, op1, crn, crm, op2);
1870 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
1871 return;
1872 }
1873
1874 /* Check access permissions */
1875 if (!cp_access_ok(s->current_el, ri, isread)) {
1876 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
1877 return;
1878 }
1879
1880 if (ri->accessfn || (ri->fgt && s->fgt_active)) {
1881 /* Emit code to perform further access permissions checks at
1882 * runtime; this may result in an exception.
1883 */
1884 uint32_t syndrome;
1885
1886 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1887 gen_a64_update_pc(s, 0);
1888 tcg_ri = tcg_temp_new_ptr();
1889 gen_helper_access_check_cp_reg(tcg_ri, cpu_env,
1890 tcg_constant_i32(key),
1891 tcg_constant_i32(syndrome),
1892 tcg_constant_i32(isread));
1893 } else if (ri->type & ARM_CP_RAISES_EXC) {
1894 /*
1895 * The readfn or writefn might raise an exception;
1896 * synchronize the CPU state in case it does.
1897 */
1898 gen_a64_update_pc(s, 0);
1899 }
1900
1901 /* Handle special cases first */
1902 switch (ri->type & ARM_CP_SPECIAL_MASK) {
1903 case 0:
1904 break;
1905 case ARM_CP_NOP:
1906 return;
1907 case ARM_CP_NZCV:
1908 tcg_rt = cpu_reg(s, rt);
1909 if (isread) {
1910 gen_get_nzcv(tcg_rt);
1911 } else {
1912 gen_set_nzcv(tcg_rt);
1913 }
1914 return;
1915 case ARM_CP_CURRENTEL:
1916 /* Reads as current EL value from pstate, which is
1917 * guaranteed to be constant by the tb flags.
1918 */
1919 tcg_rt = cpu_reg(s, rt);
1920 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1921 return;
1922 case ARM_CP_DC_ZVA:
1923 /* Writes clear the aligned block of memory which rt points into. */
1924 if (s->mte_active[0]) {
1925 int desc = 0;
1926
1927 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
1928 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
1929 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
1930
1931 tcg_rt = tcg_temp_new_i64();
1932 gen_helper_mte_check_zva(tcg_rt, cpu_env,
1933 tcg_constant_i32(desc), cpu_reg(s, rt));
1934 } else {
1935 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
1936 }
1937 gen_helper_dc_zva(cpu_env, tcg_rt);
1938 return;
1939 case ARM_CP_DC_GVA:
1940 {
1941 TCGv_i64 clean_addr, tag;
1942
1943 /*
1944 * DC_GVA, like DC_ZVA, requires that we supply the original
1945 * pointer for an invalid page. Probe that address first.
1946 */
1947 tcg_rt = cpu_reg(s, rt);
1948 clean_addr = clean_data_tbi(s, tcg_rt);
1949 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
1950
1951 if (s->ata) {
1952 /* Extract the tag from the register to match STZGM. */
1953 tag = tcg_temp_new_i64();
1954 tcg_gen_shri_i64(tag, tcg_rt, 56);
1955 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
1956 }
1957 }
1958 return;
1959 case ARM_CP_DC_GZVA:
1960 {
1961 TCGv_i64 clean_addr, tag;
1962
1963 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
1964 tcg_rt = cpu_reg(s, rt);
1965 clean_addr = clean_data_tbi(s, tcg_rt);
1966 gen_helper_dc_zva(cpu_env, clean_addr);
1967
1968 if (s->ata) {
1969 /* Extract the tag from the register to match STZGM. */
1970 tag = tcg_temp_new_i64();
1971 tcg_gen_shri_i64(tag, tcg_rt, 56);
1972 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
1973 }
1974 }
1975 return;
1976 default:
1977 g_assert_not_reached();
1978 }
1979 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
1980 return;
1981 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
1982 return;
1983 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
1984 return;
1985 }
1986
1987 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1988 gen_io_start();
1989 }
1990
1991 tcg_rt = cpu_reg(s, rt);
1992
1993 if (isread) {
1994 if (ri->type & ARM_CP_CONST) {
1995 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1996 } else if (ri->readfn) {
1997 if (!tcg_ri) {
1998 tcg_ri = gen_lookup_cp_reg(key);
1999 }
2000 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri);
2001 } else {
2002 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
2003 }
2004 } else {
2005 if (ri->type & ARM_CP_CONST) {
2006 /* If not forbidden by access permissions, treat as WI */
2007 return;
2008 } else if (ri->writefn) {
2009 if (!tcg_ri) {
2010 tcg_ri = gen_lookup_cp_reg(key);
2011 }
2012 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt);
2013 } else {
2014 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
2015 }
2016 }
2017
2018 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
2019 /* I/O operations must end the TB here (whether read or write) */
2020 s->base.is_jmp = DISAS_UPDATE_EXIT;
2021 }
2022 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2023 /*
2024 * A write to any coprocessor regiser that ends a TB
2025 * must rebuild the hflags for the next TB.
2026 */
2027 gen_rebuild_hflags(s);
2028 /*
2029 * We default to ending the TB on a coprocessor register write,
2030 * but allow this to be suppressed by the register definition
2031 * (usually only necessary to work around guest bugs).
2032 */
2033 s->base.is_jmp = DISAS_UPDATE_EXIT;
2034 }
2035 }
2036
2037 /* System
2038 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
2039 * +---------------------+---+-----+-----+-------+-------+-----+------+
2040 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
2041 * +---------------------+---+-----+-----+-------+-------+-----+------+
2042 */
2043 static void disas_system(DisasContext *s, uint32_t insn)
2044 {
2045 unsigned int l, op0, op1, crn, crm, op2, rt;
2046 l = extract32(insn, 21, 1);
2047 op0 = extract32(insn, 19, 2);
2048 op1 = extract32(insn, 16, 3);
2049 crn = extract32(insn, 12, 4);
2050 crm = extract32(insn, 8, 4);
2051 op2 = extract32(insn, 5, 3);
2052 rt = extract32(insn, 0, 5);
2053
2054 if (op0 == 0) {
2055 if (l || rt != 31) {
2056 unallocated_encoding(s);
2057 return;
2058 }
2059 switch (crn) {
2060 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
2061 handle_hint(s, insn, op1, op2, crm);
2062 break;
2063 case 3: /* CLREX, DSB, DMB, ISB */
2064 handle_sync(s, insn, op1, op2, crm);
2065 break;
2066 case 4: /* MSR (immediate) */
2067 handle_msr_i(s, insn, op1, op2, crm);
2068 break;
2069 default:
2070 unallocated_encoding(s);
2071 break;
2072 }
2073 return;
2074 }
2075 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
2076 }
2077
2078 /* Exception generation
2079 *
2080 * 31 24 23 21 20 5 4 2 1 0
2081 * +-----------------+-----+------------------------+-----+----+
2082 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
2083 * +-----------------------+------------------------+----------+
2084 */
2085 static void disas_exc(DisasContext *s, uint32_t insn)
2086 {
2087 int opc = extract32(insn, 21, 3);
2088 int op2_ll = extract32(insn, 0, 5);
2089 int imm16 = extract32(insn, 5, 16);
2090 uint32_t syndrome;
2091
2092 switch (opc) {
2093 case 0:
2094 /* For SVC, HVC and SMC we advance the single-step state
2095 * machine before taking the exception. This is architecturally
2096 * mandated, to ensure that single-stepping a system call
2097 * instruction works properly.
2098 */
2099 switch (op2_ll) {
2100 case 1: /* SVC */
2101 syndrome = syn_aa64_svc(imm16);
2102 if (s->fgt_svc) {
2103 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2104 break;
2105 }
2106 gen_ss_advance(s);
2107 gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2108 break;
2109 case 2: /* HVC */
2110 if (s->current_el == 0) {
2111 unallocated_encoding(s);
2112 break;
2113 }
2114 /* The pre HVC helper handles cases when HVC gets trapped
2115 * as an undefined insn by runtime configuration.
2116 */
2117 gen_a64_update_pc(s, 0);
2118 gen_helper_pre_hvc(cpu_env);
2119 gen_ss_advance(s);
2120 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2);
2121 break;
2122 case 3: /* SMC */
2123 if (s->current_el == 0) {
2124 unallocated_encoding(s);
2125 break;
2126 }
2127 gen_a64_update_pc(s, 0);
2128 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16)));
2129 gen_ss_advance(s);
2130 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3);
2131 break;
2132 default:
2133 unallocated_encoding(s);
2134 break;
2135 }
2136 break;
2137 case 1:
2138 if (op2_ll != 0) {
2139 unallocated_encoding(s);
2140 break;
2141 }
2142 /* BRK */
2143 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16));
2144 break;
2145 case 2:
2146 if (op2_ll != 0) {
2147 unallocated_encoding(s);
2148 break;
2149 }
2150 /* HLT. This has two purposes.
2151 * Architecturally, it is an external halting debug instruction.
2152 * Since QEMU doesn't implement external debug, we treat this as
2153 * it is required for halting debug disabled: it will UNDEF.
2154 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2155 */
2156 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) {
2157 gen_exception_internal_insn(s, EXCP_SEMIHOST);
2158 } else {
2159 unallocated_encoding(s);
2160 }
2161 break;
2162 case 5:
2163 if (op2_ll < 1 || op2_ll > 3) {
2164 unallocated_encoding(s);
2165 break;
2166 }
2167 /* DCPS1, DCPS2, DCPS3 */
2168 unallocated_encoding(s);
2169 break;
2170 default:
2171 unallocated_encoding(s);
2172 break;
2173 }
2174 }
2175
2176 /* Unconditional branch (register)
2177 * 31 25 24 21 20 16 15 10 9 5 4 0
2178 * +---------------+-------+-------+-------+------+-------+
2179 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
2180 * +---------------+-------+-------+-------+------+-------+
2181 */
2182 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
2183 {
2184 unsigned int opc, op2, op3, rn, op4;
2185 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */
2186 TCGv_i64 dst;
2187 TCGv_i64 modifier;
2188
2189 opc = extract32(insn, 21, 4);
2190 op2 = extract32(insn, 16, 5);
2191 op3 = extract32(insn, 10, 6);
2192 rn = extract32(insn, 5, 5);
2193 op4 = extract32(insn, 0, 5);
2194
2195 if (op2 != 0x1f) {
2196 goto do_unallocated;
2197 }
2198
2199 switch (opc) {
2200 case 0: /* BR */
2201 case 1: /* BLR */
2202 case 2: /* RET */
2203 btype_mod = opc;
2204 switch (op3) {
2205 case 0:
2206 /* BR, BLR, RET */
2207 if (op4 != 0) {
2208 goto do_unallocated;
2209 }
2210 dst = cpu_reg(s, rn);
2211 break;
2212
2213 case 2:
2214 case 3:
2215 if (!dc_isar_feature(aa64_pauth, s)) {
2216 goto do_unallocated;
2217 }
2218 if (opc == 2) {
2219 /* RETAA, RETAB */
2220 if (rn != 0x1f || op4 != 0x1f) {
2221 goto do_unallocated;
2222 }
2223 rn = 30;
2224 modifier = cpu_X[31];
2225 } else {
2226 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */
2227 if (op4 != 0x1f) {
2228 goto do_unallocated;
2229 }
2230 modifier = tcg_constant_i64(0);
2231 }
2232 if (s->pauth_active) {
2233 dst = tcg_temp_new_i64();
2234 if (op3 == 2) {
2235 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2236 } else {
2237 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2238 }
2239 } else {
2240 dst = cpu_reg(s, rn);
2241 }
2242 break;
2243
2244 default:
2245 goto do_unallocated;
2246 }
2247 /* BLR also needs to load return address */
2248 if (opc == 1) {
2249 TCGv_i64 lr = cpu_reg(s, 30);
2250 if (dst == lr) {
2251 TCGv_i64 tmp = tcg_temp_new_i64();
2252 tcg_gen_mov_i64(tmp, dst);
2253 dst = tmp;
2254 }
2255 gen_pc_plus_diff(s, lr, curr_insn_len(s));
2256 }
2257 gen_a64_set_pc(s, dst);
2258 break;
2259
2260 case 8: /* BRAA */
2261 case 9: /* BLRAA */
2262 if (!dc_isar_feature(aa64_pauth, s)) {
2263 goto do_unallocated;
2264 }
2265 if ((op3 & ~1) != 2) {
2266 goto do_unallocated;
2267 }
2268 btype_mod = opc & 1;
2269 if (s->pauth_active) {
2270 dst = tcg_temp_new_i64();
2271 modifier = cpu_reg_sp(s, op4);
2272 if (op3 == 2) {
2273 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2274 } else {
2275 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2276 }
2277 } else {
2278 dst = cpu_reg(s, rn);
2279 }
2280 /* BLRAA also needs to load return address */
2281 if (opc == 9) {
2282 TCGv_i64 lr = cpu_reg(s, 30);
2283 if (dst == lr) {
2284 TCGv_i64 tmp = tcg_temp_new_i64();
2285 tcg_gen_mov_i64(tmp, dst);
2286 dst = tmp;
2287 }
2288 gen_pc_plus_diff(s, lr, curr_insn_len(s));
2289 }
2290 gen_a64_set_pc(s, dst);
2291 break;
2292
2293 case 4: /* ERET */
2294 if (s->current_el == 0) {
2295 goto do_unallocated;
2296 }
2297 switch (op3) {
2298 case 0: /* ERET */
2299 if (op4 != 0) {
2300 goto do_unallocated;
2301 }
2302 if (s->fgt_eret) {
2303 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2);
2304 return;
2305 }
2306 dst = tcg_temp_new_i64();
2307 tcg_gen_ld_i64(dst, cpu_env,
2308 offsetof(CPUARMState, elr_el[s->current_el]));
2309 break;
2310
2311 case 2: /* ERETAA */
2312 case 3: /* ERETAB */
2313 if (!dc_isar_feature(aa64_pauth, s)) {
2314 goto do_unallocated;
2315 }
2316 if (rn != 0x1f || op4 != 0x1f) {
2317 goto do_unallocated;
2318 }
2319 /* The FGT trap takes precedence over an auth trap. */
2320 if (s->fgt_eret) {
2321 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2);
2322 return;
2323 }
2324 dst = tcg_temp_new_i64();
2325 tcg_gen_ld_i64(dst, cpu_env,
2326 offsetof(CPUARMState, elr_el[s->current_el]));
2327 if (s->pauth_active) {
2328 modifier = cpu_X[31];
2329 if (op3 == 2) {
2330 gen_helper_autia(dst, cpu_env, dst, modifier);
2331 } else {
2332 gen_helper_autib(dst, cpu_env, dst, modifier);
2333 }
2334 }
2335 break;
2336
2337 default:
2338 goto do_unallocated;
2339 }
2340 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2341 gen_io_start();
2342 }
2343
2344 gen_helper_exception_return(cpu_env, dst);
2345 /* Must exit loop to check un-masked IRQs */
2346 s->base.is_jmp = DISAS_EXIT;
2347 return;
2348
2349 case 5: /* DRPS */
2350 if (op3 != 0 || op4 != 0 || rn != 0x1f) {
2351 goto do_unallocated;
2352 } else {
2353 unallocated_encoding(s);
2354 }
2355 return;
2356
2357 default:
2358 do_unallocated:
2359 unallocated_encoding(s);
2360 return;
2361 }
2362
2363 switch (btype_mod) {
2364 case 0: /* BR */
2365 if (dc_isar_feature(aa64_bti, s)) {
2366 /* BR to {x16,x17} or !guard -> 1, else 3. */
2367 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
2368 }
2369 break;
2370
2371 case 1: /* BLR */
2372 if (dc_isar_feature(aa64_bti, s)) {
2373 /* BLR sets BTYPE to 2, regardless of source guarded page. */
2374 set_btype(s, 2);
2375 }
2376 break;
2377
2378 default: /* RET or none of the above. */
2379 /* BTYPE will be set to 0 by normal end-of-insn processing. */
2380 break;
2381 }
2382
2383 s->base.is_jmp = DISAS_JUMP;
2384 }
2385
2386 /* Branches, exception generating and system instructions */
2387 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2388 {
2389 switch (extract32(insn, 25, 7)) {
2390 case 0x0a: case 0x0b:
2391 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
2392 disas_uncond_b_imm(s, insn);
2393 break;
2394 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
2395 disas_comp_b_imm(s, insn);
2396 break;
2397 case 0x1b: case 0x5b: /* Test & branch (immediate) */
2398 disas_test_b_imm(s, insn);
2399 break;
2400 case 0x2a: /* Conditional branch (immediate) */
2401 disas_cond_b_imm(s, insn);
2402 break;
2403 case 0x6a: /* Exception generation / System */
2404 if (insn & (1 << 24)) {
2405 if (extract32(insn, 22, 2) == 0) {
2406 disas_system(s, insn);
2407 } else {
2408 unallocated_encoding(s);
2409 }
2410 } else {
2411 disas_exc(s, insn);
2412 }
2413 break;
2414 case 0x6b: /* Unconditional branch (register) */
2415 disas_uncond_b_reg(s, insn);
2416 break;
2417 default:
2418 unallocated_encoding(s);
2419 break;
2420 }
2421 }
2422
2423 /*
2424 * Load/Store exclusive instructions are implemented by remembering
2425 * the value/address loaded, and seeing if these are the same
2426 * when the store is performed. This is not actually the architecturally
2427 * mandated semantics, but it works for typical guest code sequences
2428 * and avoids having to monitor regular stores.
2429 *
2430 * The store exclusive uses the atomic cmpxchg primitives to avoid
2431 * races in multi-threaded linux-user and when MTTCG softmmu is
2432 * enabled.
2433 */
2434 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2435 TCGv_i64 addr, int size, bool is_pair)
2436 {
2437 int idx = get_mem_index(s);
2438 MemOp memop = s->be_data;
2439
2440 g_assert(size <= 3);
2441 if (is_pair) {
2442 g_assert(size >= 2);
2443 if (size == 2) {
2444 /* The pair must be single-copy atomic for the doubleword. */
2445 memop |= MO_64 | MO_ALIGN;
2446 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2447 if (s->be_data == MO_LE) {
2448 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2449 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2450 } else {
2451 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2452 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2453 }
2454 } else {
2455 /* The pair must be single-copy atomic for *each* doubleword, not
2456 the entire quadword, however it must be quadword aligned. */
2457 memop |= MO_64;
2458 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2459 memop | MO_ALIGN_16);
2460
2461 TCGv_i64 addr2 = tcg_temp_new_i64();
2462 tcg_gen_addi_i64(addr2, addr, 8);
2463 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2464
2465 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2466 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2467 }
2468 } else {
2469 memop |= size | MO_ALIGN;
2470 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2471 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2472 }
2473 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2474 }
2475
2476 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2477 TCGv_i64 addr, int size, int is_pair)
2478 {
2479 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2480 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2481 * [addr] = {Rt};
2482 * if (is_pair) {
2483 * [addr + datasize] = {Rt2};
2484 * }
2485 * {Rd} = 0;
2486 * } else {
2487 * {Rd} = 1;
2488 * }
2489 * env->exclusive_addr = -1;
2490 */
2491 TCGLabel *fail_label = gen_new_label();
2492 TCGLabel *done_label = gen_new_label();
2493 TCGv_i64 tmp;
2494
2495 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2496
2497 tmp = tcg_temp_new_i64();
2498 if (is_pair) {
2499 if (size == 2) {
2500 if (s->be_data == MO_LE) {
2501 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2502 } else {
2503 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2504 }
2505 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2506 cpu_exclusive_val, tmp,
2507 get_mem_index(s),
2508 MO_64 | MO_ALIGN | s->be_data);
2509 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2510 } else {
2511 TCGv_i128 t16 = tcg_temp_new_i128();
2512 TCGv_i128 c16 = tcg_temp_new_i128();
2513 TCGv_i64 a, b;
2514
2515 if (s->be_data == MO_LE) {
2516 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2517 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2518 cpu_exclusive_high);
2519 } else {
2520 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2521 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2522 cpu_exclusive_val);
2523 }
2524
2525 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2526 get_mem_index(s),
2527 MO_128 | MO_ALIGN | s->be_data);
2528
2529 a = tcg_temp_new_i64();
2530 b = tcg_temp_new_i64();
2531 if (s->be_data == MO_LE) {
2532 tcg_gen_extr_i128_i64(a, b, t16);
2533 } else {
2534 tcg_gen_extr_i128_i64(b, a, t16);
2535 }
2536
2537 tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2538 tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2539 tcg_gen_or_i64(tmp, a, b);
2540
2541 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2542 }
2543 } else {
2544 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2545 cpu_reg(s, rt), get_mem_index(s),
2546 size | MO_ALIGN | s->be_data);
2547 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2548 }
2549 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2550 tcg_gen_br(done_label);
2551
2552 gen_set_label(fail_label);
2553 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2554 gen_set_label(done_label);
2555 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2556 }
2557
2558 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2559 int rn, int size)
2560 {
2561 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2562 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2563 int memidx = get_mem_index(s);
2564 TCGv_i64 clean_addr;
2565
2566 if (rn == 31) {
2567 gen_check_sp_alignment(s);
2568 }
2569 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size);
2570 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx,
2571 size | MO_ALIGN | s->be_data);
2572 }
2573
2574 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2575 int rn, int size)
2576 {
2577 TCGv_i64 s1 = cpu_reg(s, rs);
2578 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2579 TCGv_i64 t1 = cpu_reg(s, rt);
2580 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2581 TCGv_i64 clean_addr;
2582 int memidx = get_mem_index(s);
2583
2584 if (rn == 31) {
2585 gen_check_sp_alignment(s);
2586 }
2587
2588 /* This is a single atomic access, despite the "pair". */
2589 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1);
2590
2591 if (size == 2) {
2592 TCGv_i64 cmp = tcg_temp_new_i64();
2593 TCGv_i64 val = tcg_temp_new_i64();
2594
2595 if (s->be_data == MO_LE) {
2596 tcg_gen_concat32_i64(val, t1, t2);
2597 tcg_gen_concat32_i64(cmp, s1, s2);
2598 } else {
2599 tcg_gen_concat32_i64(val, t2, t1);
2600 tcg_gen_concat32_i64(cmp, s2, s1);
2601 }
2602
2603 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx,
2604 MO_64 | MO_ALIGN | s->be_data);
2605
2606 if (s->be_data == MO_LE) {
2607 tcg_gen_extr32_i64(s1, s2, cmp);
2608 } else {
2609 tcg_gen_extr32_i64(s2, s1, cmp);
2610 }
2611 } else {
2612 TCGv_i128 cmp = tcg_temp_new_i128();
2613 TCGv_i128 val = tcg_temp_new_i128();
2614
2615 if (s->be_data == MO_LE) {
2616 tcg_gen_concat_i64_i128(val, t1, t2);
2617 tcg_gen_concat_i64_i128(cmp, s1, s2);
2618 } else {
2619 tcg_gen_concat_i64_i128(val, t2, t1);
2620 tcg_gen_concat_i64_i128(cmp, s2, s1);
2621 }
2622
2623 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx,
2624 MO_128 | MO_ALIGN | s->be_data);
2625
2626 if (s->be_data == MO_LE) {
2627 tcg_gen_extr_i128_i64(s1, s2, cmp);
2628 } else {
2629 tcg_gen_extr_i128_i64(s2, s1, cmp);
2630 }
2631 }
2632 }
2633
2634 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2635 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2636 */
2637 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2638 {
2639 int opc0 = extract32(opc, 0, 1);
2640 int regsize;
2641
2642 if (is_signed) {
2643 regsize = opc0 ? 32 : 64;
2644 } else {
2645 regsize = size == 3 ? 64 : 32;
2646 }
2647 return regsize == 64;
2648 }
2649
2650 /* Load/store exclusive
2651 *
2652 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2653 * +-----+-------------+----+---+----+------+----+-------+------+------+
2654 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2655 * +-----+-------------+----+---+----+------+----+-------+------+------+
2656 *
2657 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2658 * L: 0 -> store, 1 -> load
2659 * o2: 0 -> exclusive, 1 -> not
2660 * o1: 0 -> single register, 1 -> register pair
2661 * o0: 1 -> load-acquire/store-release, 0 -> not
2662 */
2663 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2664 {
2665 int rt = extract32(insn, 0, 5);
2666 int rn = extract32(insn, 5, 5);
2667 int rt2 = extract32(insn, 10, 5);
2668 int rs = extract32(insn, 16, 5);
2669 int is_lasr = extract32(insn, 15, 1);
2670 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2671 int size = extract32(insn, 30, 2);
2672 TCGv_i64 clean_addr;
2673
2674 switch (o2_L_o1_o0) {
2675 case 0x0: /* STXR */
2676 case 0x1: /* STLXR */
2677 if (rn == 31) {
2678 gen_check_sp_alignment(s);
2679 }
2680 if (is_lasr) {
2681 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2682 }
2683 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2684 true, rn != 31, size);
2685 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false);
2686 return;
2687
2688 case 0x4: /* LDXR */
2689 case 0x5: /* LDAXR */
2690 if (rn == 31) {
2691 gen_check_sp_alignment(s);
2692 }
2693 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2694 false, rn != 31, size);
2695 s->is_ldex = true;
2696 gen_load_exclusive(s, rt, rt2, clean_addr, size, false);
2697 if (is_lasr) {
2698 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2699 }
2700 return;
2701
2702 case 0x8: /* STLLR */
2703 if (!dc_isar_feature(aa64_lor, s)) {
2704 break;
2705 }
2706 /* StoreLORelease is the same as Store-Release for QEMU. */
2707 /* fall through */
2708 case 0x9: /* STLR */
2709 /* Generate ISS for non-exclusive accesses including LASR. */
2710 if (rn == 31) {
2711 gen_check_sp_alignment(s);
2712 }
2713 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2714 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2715 true, rn != 31, size);
2716 /* TODO: ARMv8.4-LSE SCTLR.nAA */
2717 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt,
2718 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2719 return;
2720
2721 case 0xc: /* LDLAR */
2722 if (!dc_isar_feature(aa64_lor, s)) {
2723 break;
2724 }
2725 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2726 /* fall through */
2727 case 0xd: /* LDAR */
2728 /* Generate ISS for non-exclusive accesses including LASR. */
2729 if (rn == 31) {
2730 gen_check_sp_alignment(s);
2731 }
2732 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2733 false, rn != 31, size);
2734 /* TODO: ARMv8.4-LSE SCTLR.nAA */
2735 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true,
2736 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2737 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2738 return;
2739
2740 case 0x2: case 0x3: /* CASP / STXP */
2741 if (size & 2) { /* STXP / STLXP */
2742 if (rn == 31) {
2743 gen_check_sp_alignment(s);
2744 }
2745 if (is_lasr) {
2746 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2747 }
2748 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2749 true, rn != 31, size);
2750 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true);
2751 return;
2752 }
2753 if (rt2 == 31
2754 && ((rt | rs) & 1) == 0
2755 && dc_isar_feature(aa64_atomics, s)) {
2756 /* CASP / CASPL */
2757 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2758 return;
2759 }
2760 break;
2761
2762 case 0x6: case 0x7: /* CASPA / LDXP */
2763 if (size & 2) { /* LDXP / LDAXP */
2764 if (rn == 31) {
2765 gen_check_sp_alignment(s);
2766 }
2767 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2768 false, rn != 31, size);
2769 s->is_ldex = true;
2770 gen_load_exclusive(s, rt, rt2, clean_addr, size, true);
2771 if (is_lasr) {
2772 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2773 }
2774 return;
2775 }
2776 if (rt2 == 31
2777 && ((rt | rs) & 1) == 0
2778 && dc_isar_feature(aa64_atomics, s)) {
2779 /* CASPA / CASPAL */
2780 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2781 return;
2782 }
2783 break;
2784
2785 case 0xa: /* CAS */
2786 case 0xb: /* CASL */
2787 case 0xe: /* CASA */
2788 case 0xf: /* CASAL */
2789 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2790 gen_compare_and_swap(s, rs, rt, rn, size);
2791 return;
2792 }
2793 break;
2794 }
2795 unallocated_encoding(s);
2796 }
2797
2798 /*
2799 * Load register (literal)
2800 *
2801 * 31 30 29 27 26 25 24 23 5 4 0
2802 * +-----+-------+---+-----+-------------------+-------+
2803 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2804 * +-----+-------+---+-----+-------------------+-------+
2805 *
2806 * V: 1 -> vector (simd/fp)
2807 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2808 * 10-> 32 bit signed, 11 -> prefetch
2809 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2810 */
2811 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2812 {
2813 int rt = extract32(insn, 0, 5);
2814 int64_t imm = sextract32(insn, 5, 19) << 2;
2815 bool is_vector = extract32(insn, 26, 1);
2816 int opc = extract32(insn, 30, 2);
2817 bool is_signed = false;
2818 int size = 2;
2819 TCGv_i64 tcg_rt, clean_addr;
2820
2821 if (is_vector) {
2822 if (opc == 3) {
2823 unallocated_encoding(s);
2824 return;
2825 }
2826 size = 2 + opc;
2827 if (!fp_access_check(s)) {
2828 return;
2829 }
2830 } else {
2831 if (opc == 3) {
2832 /* PRFM (literal) : prefetch */
2833 return;
2834 }
2835 size = 2 + extract32(opc, 0, 1);
2836 is_signed = extract32(opc, 1, 1);
2837 }
2838
2839 tcg_rt = cpu_reg(s, rt);
2840
2841 clean_addr = tcg_temp_new_i64();
2842 gen_pc_plus_diff(s, clean_addr, imm);
2843 if (is_vector) {
2844 do_fp_ld(s, rt, clean_addr, size);
2845 } else {
2846 /* Only unsigned 32bit loads target 32bit registers. */
2847 bool iss_sf = opc != 0;
2848
2849 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
2850 false, true, rt, iss_sf, false);
2851 }
2852 }
2853
2854 /*
2855 * LDNP (Load Pair - non-temporal hint)
2856 * LDP (Load Pair - non vector)
2857 * LDPSW (Load Pair Signed Word - non vector)
2858 * STNP (Store Pair - non-temporal hint)
2859 * STP (Store Pair - non vector)
2860 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2861 * LDP (Load Pair of SIMD&FP)
2862 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2863 * STP (Store Pair of SIMD&FP)
2864 *
2865 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2866 * +-----+-------+---+---+-------+---+-----------------------------+
2867 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2868 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2869 *
2870 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2871 * LDPSW/STGP 01
2872 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2873 * V: 0 -> GPR, 1 -> Vector
2874 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2875 * 10 -> signed offset, 11 -> pre-index
2876 * L: 0 -> Store 1 -> Load
2877 *
2878 * Rt, Rt2 = GPR or SIMD registers to be stored
2879 * Rn = general purpose register containing address
2880 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2881 */
2882 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2883 {
2884 int rt = extract32(insn, 0, 5);
2885 int rn = extract32(insn, 5, 5);
2886 int rt2 = extract32(insn, 10, 5);
2887 uint64_t offset = sextract64(insn, 15, 7);
2888 int index = extract32(insn, 23, 2);
2889 bool is_vector = extract32(insn, 26, 1);
2890 bool is_load = extract32(insn, 22, 1);
2891 int opc = extract32(insn, 30, 2);
2892
2893 bool is_signed = false;
2894 bool postindex = false;
2895 bool wback = false;
2896 bool set_tag = false;
2897
2898 TCGv_i64 clean_addr, dirty_addr;
2899
2900 int size;
2901
2902 if (opc == 3) {
2903 unallocated_encoding(s);
2904 return;
2905 }
2906
2907 if (is_vector) {
2908 size = 2 + opc;
2909 } else if (opc == 1 && !is_load) {
2910 /* STGP */
2911 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) {
2912 unallocated_encoding(s);
2913 return;
2914 }
2915 size = 3;
2916 set_tag = true;
2917 } else {
2918 size = 2 + extract32(opc, 1, 1);
2919 is_signed = extract32(opc, 0, 1);
2920 if (!is_load && is_signed) {
2921 unallocated_encoding(s);
2922 return;
2923 }
2924 }
2925
2926 switch (index) {
2927 case 1: /* post-index */
2928 postindex = true;
2929 wback = true;
2930 break;
2931 case 0:
2932 /* signed offset with "non-temporal" hint. Since we don't emulate
2933 * caches we don't care about hints to the cache system about
2934 * data access patterns, and handle this identically to plain
2935 * signed offset.
2936 */
2937 if (is_signed) {
2938 /* There is no non-temporal-hint version of LDPSW */
2939 unallocated_encoding(s);
2940 return;
2941 }
2942 postindex = false;
2943 break;
2944 case 2: /* signed offset, rn not updated */
2945 postindex = false;
2946 break;
2947 case 3: /* pre-index */
2948 postindex = false;
2949 wback = true;
2950 break;
2951 }
2952
2953 if (is_vector && !fp_access_check(s)) {
2954 return;
2955 }
2956
2957 offset <<= (set_tag ? LOG2_TAG_GRANULE : size);
2958
2959 if (rn == 31) {
2960 gen_check_sp_alignment(s);
2961 }
2962
2963 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2964 if (!postindex) {
2965 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2966 }
2967
2968 if (set_tag) {
2969 if (!s->ata) {
2970 /*
2971 * TODO: We could rely on the stores below, at least for
2972 * system mode, if we arrange to add MO_ALIGN_16.
2973 */
2974 gen_helper_stg_stub(cpu_env, dirty_addr);
2975 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2976 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr);
2977 } else {
2978 gen_helper_stg(cpu_env, dirty_addr, dirty_addr);
2979 }
2980 }
2981
2982 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load,
2983 (wback || rn != 31) && !set_tag, 2 << size);
2984
2985 if (is_vector) {
2986 if (is_load) {
2987 do_fp_ld(s, rt, clean_addr, size);
2988 } else {
2989 do_fp_st(s, rt, clean_addr, size);
2990 }
2991 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2992 if (is_load) {
2993 do_fp_ld(s, rt2, clean_addr, size);
2994 } else {
2995 do_fp_st(s, rt2, clean_addr, size);
2996 }
2997 } else {
2998 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2999 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
3000
3001 if (is_load) {
3002 TCGv_i64 tmp = tcg_temp_new_i64();
3003
3004 /* Do not modify tcg_rt before recognizing any exception
3005 * from the second load.
3006 */
3007 do_gpr_ld(s, tmp, clean_addr, size + is_signed * MO_SIGN,
3008 false, false, 0, false, false);
3009 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
3010 do_gpr_ld(s, tcg_rt2, clean_addr, size + is_signed * MO_SIGN,
3011 false, false, 0, false, false);
3012
3013 tcg_gen_mov_i64(tcg_rt, tmp);
3014 } else {
3015 do_gpr_st(s, tcg_rt, clean_addr, size,
3016 false, 0, false, false);
3017 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
3018 do_gpr_st(s, tcg_rt2, clean_addr, size,
3019 false, 0, false, false);
3020 }
3021 }
3022
3023 if (wback) {
3024 if (postindex) {
3025 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3026 }
3027 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3028 }
3029 }
3030
3031 /*
3032 * Load/store (immediate post-indexed)
3033 * Load/store (immediate pre-indexed)
3034 * Load/store (unscaled immediate)
3035 *
3036 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
3037 * +----+-------+---+-----+-----+---+--------+-----+------+------+
3038 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
3039 * +----+-------+---+-----+-----+---+--------+-----+------+------+
3040 *
3041 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
3042 10 -> unprivileged
3043 * V = 0 -> non-vector
3044 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
3045 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3046 */
3047 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
3048 int opc,
3049 int size,
3050 int rt,
3051 bool is_vector)
3052 {
3053 int rn = extract32(insn, 5, 5);
3054 int imm9 = sextract32(insn, 12, 9);
3055 int idx = extract32(insn, 10, 2);
3056 bool is_signed = false;
3057 bool is_store = false;
3058 bool is_extended = false;
3059 bool is_unpriv = (idx == 2);
3060 bool iss_valid;
3061 bool post_index;
3062 bool writeback;
3063 int memidx;
3064
3065 TCGv_i64 clean_addr, dirty_addr;
3066
3067 if (is_vector) {
3068 size |= (opc & 2) << 1;
3069 if (size > 4 || is_unpriv) {
3070 unallocated_encoding(s);
3071 return;
3072 }
3073 is_store = ((opc & 1) == 0);
3074 if (!fp_access_check(s)) {
3075 return;
3076 }
3077 } else {
3078 if (size == 3 && opc == 2) {
3079 /* PRFM - prefetch */
3080 if (idx != 0) {
3081 unallocated_encoding(s);
3082 return;
3083 }
3084 return;
3085 }
3086 if (opc == 3 && size > 1) {
3087 unallocated_encoding(s);
3088 return;
3089 }
3090 is_store = (opc == 0);
3091 is_signed = extract32(opc, 1, 1);
3092 is_extended = (size < 3) && extract32(opc, 0, 1);
3093 }
3094
3095 switch (idx) {
3096 case 0:
3097 case 2:
3098 post_index = false;
3099 writeback = false;
3100 break;
3101 case 1:
3102 post_index = true;
3103 writeback = true;
3104 break;
3105 case 3:
3106 post_index = false;
3107 writeback = true;
3108 break;
3109 default:
3110 g_assert_not_reached();
3111 }
3112
3113 iss_valid = !is_vector && !writeback;
3114
3115 if (rn == 31) {
3116 gen_check_sp_alignment(s);
3117 }
3118
3119 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3120 if (!post_index) {
3121 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3122 }
3123
3124 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3125 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store,
3126 writeback || rn != 31,
3127 size, is_unpriv, memidx);
3128
3129 if (is_vector) {
3130 if (is_store) {
3131 do_fp_st(s, rt, clean_addr, size);
3132 } else {
3133 do_fp_ld(s, rt, clean_addr, size);
3134 }
3135 } else {
3136 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3137 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3138
3139 if (is_store) {
3140 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx,
3141 iss_valid, rt, iss_sf, false);
3142 } else {
3143 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3144 is_extended, memidx,
3145 iss_valid, rt, iss_sf, false);
3146 }
3147 }
3148
3149 if (writeback) {
3150 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3151 if (post_index) {
3152 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3153 }
3154 tcg_gen_mov_i64(tcg_rn, dirty_addr);
3155 }
3156 }
3157
3158 /*
3159 * Load/store (register offset)
3160 *
3161 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3162 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3163 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
3164 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3165 *
3166 * For non-vector:
3167 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3168 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3169 * For vector:
3170 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3171 * opc<0>: 0 -> store, 1 -> load
3172 * V: 1 -> vector/simd
3173 * opt: extend encoding (see DecodeRegExtend)
3174 * S: if S=1 then scale (essentially index by sizeof(size))
3175 * Rt: register to transfer into/out of
3176 * Rn: address register or SP for base
3177 * Rm: offset register or ZR for offset
3178 */
3179 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
3180 int opc,
3181 int size,
3182 int rt,
3183 bool is_vector)
3184 {
3185 int rn = extract32(insn, 5, 5);
3186 int shift = extract32(insn, 12, 1);
3187 int rm = extract32(insn, 16, 5);
3188 int opt = extract32(insn, 13, 3);
3189 bool is_signed = false;
3190 bool is_store = false;
3191 bool is_extended = false;
3192
3193 TCGv_i64 tcg_rm, clean_addr, dirty_addr;
3194
3195 if (extract32(opt, 1, 1) == 0) {
3196 unallocated_encoding(s);
3197 return;
3198 }
3199
3200 if (is_vector) {
3201 size |= (opc & 2) << 1;
3202 if (size > 4) {
3203 unallocated_encoding(s);
3204 return;
3205 }
3206 is_store = !extract32(opc, 0, 1);
3207 if (!fp_access_check(s)) {
3208 return;
3209 }
3210 } else {
3211 if (size == 3 && opc == 2) {
3212 /* PRFM - prefetch */
3213 return;
3214 }
3215 if (opc == 3 && size > 1) {
3216 unallocated_encoding(s);
3217 return;
3218 }
3219 is_store = (opc == 0);
3220 is_signed = extract32(opc, 1, 1);
3221 is_extended = (size < 3) && extract32(opc, 0, 1);
3222 }
3223
3224 if (rn == 31) {
3225 gen_check_sp_alignment(s);
3226 }
3227 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3228
3229 tcg_rm = read_cpu_reg(s, rm, 1);
3230 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3231
3232 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3233 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size);
3234
3235 if (is_vector) {
3236 if (is_store) {
3237 do_fp_st(s, rt, clean_addr, size);
3238 } else {
3239 do_fp_ld(s, rt, clean_addr, size);
3240 }
3241 } else {
3242 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3243 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3244 if (is_store) {
3245 do_gpr_st(s, tcg_rt, clean_addr, size,
3246 true, rt, iss_sf, false);
3247 } else {
3248 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3249 is_extended, true, rt, iss_sf, false);
3250 }
3251 }
3252 }
3253
3254 /*
3255 * Load/store (unsigned immediate)
3256 *
3257 * 31 30 29 27 26 25 24 23 22 21 10 9 5
3258 * +----+-------+---+-----+-----+------------+-------+------+
3259 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
3260 * +----+-------+---+-----+-----+------------+-------+------+
3261 *
3262 * For non-vector:
3263 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3264 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3265 * For vector:
3266 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3267 * opc<0>: 0 -> store, 1 -> load
3268 * Rn: base address register (inc SP)
3269 * Rt: target register
3270 */
3271 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3272 int opc,
3273 int size,
3274 int rt,
3275 bool is_vector)
3276 {
3277 int rn = extract32(insn, 5, 5);
3278 unsigned int imm12 = extract32(insn, 10, 12);
3279 unsigned int offset;
3280
3281 TCGv_i64 clean_addr, dirty_addr;
3282
3283 bool is_store;
3284 bool is_signed = false;
3285 bool is_extended = false;
3286
3287 if (is_vector) {
3288 size |= (opc & 2) << 1;
3289 if (size > 4) {
3290 unallocated_encoding(s);
3291 return;
3292 }
3293 is_store = !extract32(opc, 0, 1);
3294 if (!fp_access_check(s)) {
3295 return;
3296 }
3297 } else {
3298 if (size == 3 && opc == 2) {
3299 /* PRFM - prefetch */
3300 return;
3301 }
3302 if (opc == 3 && size > 1) {
3303 unallocated_encoding(s);
3304 return;
3305 }
3306 is_store = (opc == 0);
3307 is_signed = extract32(opc, 1, 1);
3308 is_extended = (size < 3) && extract32(opc, 0, 1);
3309 }
3310
3311 if (rn == 31) {
3312 gen_check_sp_alignment(s);
3313 }
3314 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3315 offset = imm12 << size;
3316 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3317 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size);
3318
3319 if (is_vector) {
3320 if (is_store) {
3321 do_fp_st(s, rt, clean_addr, size);
3322 } else {
3323 do_fp_ld(s, rt, clean_addr, size);
3324 }
3325 } else {
3326 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3327 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3328 if (is_store) {
3329 do_gpr_st(s, tcg_rt, clean_addr, size,
3330 true, rt, iss_sf, false);
3331 } else {
3332 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3333 is_extended, true, rt, iss_sf, false);
3334 }
3335 }
3336 }
3337
3338 /* Atomic memory operations
3339 *
3340 * 31 30 27 26 24 22 21 16 15 12 10 5 0
3341 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3342 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
3343 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3344 *
3345 * Rt: the result register
3346 * Rn: base address or SP
3347 * Rs: the source register for the operation
3348 * V: vector flag (always 0 as of v8.3)
3349 * A: acquire flag
3350 * R: release flag
3351 */
3352 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3353 int size, int rt, bool is_vector)
3354 {
3355 int rs = extract32(insn, 16, 5);
3356 int rn = extract32(insn, 5, 5);
3357 int o3_opc = extract32(insn, 12, 4);
3358 bool r = extract32(insn, 22, 1);
3359 bool a = extract32(insn, 23, 1);
3360 TCGv_i64 tcg_rs, tcg_rt, clean_addr;
3361 AtomicThreeOpFn *fn = NULL;
3362 MemOp mop = s->be_data | size | MO_ALIGN;
3363
3364 if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3365 unallocated_encoding(s);
3366 return;
3367 }
3368 switch (o3_opc) {
3369 case 000: /* LDADD */
3370 fn = tcg_gen_atomic_fetch_add_i64;
3371 break;
3372 case 001: /* LDCLR */
3373 fn = tcg_gen_atomic_fetch_and_i64;
3374 break;
3375 case 002: /* LDEOR */
3376 fn = tcg_gen_atomic_fetch_xor_i64;
3377 break;
3378 case 003: /* LDSET */
3379 fn = tcg_gen_atomic_fetch_or_i64;
3380 break;
3381 case 004: /* LDSMAX */
3382 fn = tcg_gen_atomic_fetch_smax_i64;
3383 mop |= MO_SIGN;
3384 break;
3385 case 005: /* LDSMIN */
3386 fn = tcg_gen_atomic_fetch_smin_i64;
3387 mop |= MO_SIGN;
3388 break;
3389 case 006: /* LDUMAX */
3390 fn = tcg_gen_atomic_fetch_umax_i64;
3391 break;
3392 case 007: /* LDUMIN */
3393 fn = tcg_gen_atomic_fetch_umin_i64;
3394 break;
3395 case 010: /* SWP */
3396 fn = tcg_gen_atomic_xchg_i64;
3397 break;
3398 case 014: /* LDAPR, LDAPRH, LDAPRB */
3399 if (!dc_isar_feature(aa64_rcpc_8_3, s) ||
3400 rs != 31 || a != 1 || r != 0) {
3401 unallocated_encoding(s);
3402 return;
3403 }
3404 break;
3405 default:
3406 unallocated_encoding(s);
3407 return;
3408 }
3409
3410 if (rn == 31) {
3411 gen_check_sp_alignment(s);
3412 }
3413 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size);
3414
3415 if (o3_opc == 014) {
3416 /*
3417 * LDAPR* are a special case because they are a simple load, not a
3418 * fetch-and-do-something op.
3419 * The architectural consistency requirements here are weaker than
3420 * full load-acquire (we only need "load-acquire processor consistent"),
3421 * but we choose to implement them as full LDAQ.
3422 */
3423 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false,
3424 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true);
3425 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3426 return;
3427 }
3428
3429 tcg_rs = read_cpu_reg(s, rs, true);
3430 tcg_rt = cpu_reg(s, rt);
3431
3432 if (o3_opc == 1) { /* LDCLR */
3433 tcg_gen_not_i64(tcg_rs, tcg_rs);
3434 }
3435
3436 /* The tcg atomic primitives are all full barriers. Therefore we
3437 * can ignore the Acquire and Release bits of this instruction.
3438 */
3439 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3440
3441 if ((mop & MO_SIGN) && size != MO_64) {
3442 tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3443 }
3444 }
3445
3446 /*
3447 * PAC memory operations
3448 *
3449 * 31 30 27 26 24 22 21 12 11 10 5 0
3450 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3451 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt |
3452 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3453 *
3454 * Rt: the result register
3455 * Rn: base address or SP
3456 * V: vector flag (always 0 as of v8.3)
3457 * M: clear for key DA, set for key DB
3458 * W: pre-indexing flag
3459 * S: sign for imm9.
3460 */
3461 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3462 int size, int rt, bool is_vector)
3463 {
3464 int rn = extract32(insn, 5, 5);
3465 bool is_wback = extract32(insn, 11, 1);
3466 bool use_key_a = !extract32(insn, 23, 1);
3467 int offset;
3468 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3469
3470 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3471 unallocated_encoding(s);
3472 return;
3473 }
3474
3475 if (rn == 31) {
3476 gen_check_sp_alignment(s);
3477 }
3478 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3479
3480 if (s->pauth_active) {
3481 if (use_key_a) {
3482 gen_helper_autda(dirty_addr, cpu_env, dirty_addr,
3483 tcg_constant_i64(0));
3484 } else {
3485 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr,
3486 tcg_constant_i64(0));
3487 }
3488 }
3489
3490 /* Form the 10-bit signed, scaled offset. */
3491 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3492 offset = sextract32(offset << size, 0, 10 + size);
3493 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3494
3495 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3496 clean_addr = gen_mte_check1(s, dirty_addr, false,
3497 is_wback || rn != 31, size);
3498
3499 tcg_rt = cpu_reg(s, rt);
3500 do_gpr_ld(s, tcg_rt, clean_addr, size,
3501 /* extend */ false, /* iss_valid */ !is_wback,
3502 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3503
3504 if (is_wback) {
3505 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3506 }
3507 }
3508
3509 /*
3510 * LDAPR/STLR (unscaled immediate)
3511 *
3512 * 31 30 24 22 21 12 10 5 0
3513 * +------+-------------+-----+---+--------+-----+----+-----+
3514 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt |
3515 * +------+-------------+-----+---+--------+-----+----+-----+
3516 *
3517 * Rt: source or destination register
3518 * Rn: base register
3519 * imm9: unscaled immediate offset
3520 * opc: 00: STLUR*, 01/10/11: various LDAPUR*
3521 * size: size of load/store
3522 */
3523 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn)
3524 {
3525 int rt = extract32(insn, 0, 5);
3526 int rn = extract32(insn, 5, 5);
3527 int offset = sextract32(insn, 12, 9);
3528 int opc = extract32(insn, 22, 2);
3529 int size = extract32(insn, 30, 2);
3530 TCGv_i64 clean_addr, dirty_addr;
3531 bool is_store = false;
3532 bool extend = false;
3533 bool iss_sf;
3534 MemOp mop;
3535
3536 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3537 unallocated_encoding(s);
3538 return;
3539 }
3540
3541 /* TODO: ARMv8.4-LSE SCTLR.nAA */
3542 mop = size | MO_ALIGN;
3543
3544 switch (opc) {
3545 case 0: /* STLURB */
3546 is_store = true;
3547 break;
3548 case 1: /* LDAPUR* */
3549 break;
3550 case 2: /* LDAPURS* 64-bit variant */
3551 if (size == 3) {
3552 unallocated_encoding(s);
3553 return;
3554 }
3555 mop |= MO_SIGN;
3556 break;
3557 case 3: /* LDAPURS* 32-bit variant */
3558 if (size > 1) {
3559 unallocated_encoding(s);
3560 return;
3561 }
3562 mop |= MO_SIGN;
3563 extend = true; /* zero-extend 32->64 after signed load */
3564 break;
3565 default:
3566 g_assert_not_reached();
3567 }
3568
3569 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc);
3570
3571 if (rn == 31) {
3572 gen_check_sp_alignment(s);
3573 }
3574
3575 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3576 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3577 clean_addr = clean_data_tbi(s, dirty_addr);
3578
3579 if (is_store) {
3580 /* Store-Release semantics */
3581 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3582 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true);
3583 } else {
3584 /*
3585 * Load-AcquirePC semantics; we implement as the slightly more
3586 * restrictive Load-Acquire.
3587 */
3588 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop,
3589 extend, true, rt, iss_sf, true);
3590 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3591 }
3592 }
3593
3594 /* Load/store register (all forms) */
3595 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3596 {
3597 int rt = extract32(insn, 0, 5);
3598 int opc = extract32(insn, 22, 2);
3599 bool is_vector = extract32(insn, 26, 1);
3600 int size = extract32(insn, 30, 2);
3601
3602 switch (extract32(insn, 24, 2)) {
3603 case 0:
3604 if (extract32(insn, 21, 1) == 0) {
3605 /* Load/store register (unscaled immediate)
3606 * Load/store immediate pre/post-indexed
3607 * Load/store register unprivileged
3608 */
3609 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3610 return;
3611 }
3612 switch (extract32(insn, 10, 2)) {
3613 case 0:
3614 disas_ldst_atomic(s, insn, size, rt, is_vector);
3615 return;
3616 case 2:
3617 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3618 return;
3619 default:
3620 disas_ldst_pac(s, insn, size, rt, is_vector);
3621 return;
3622 }
3623 break;
3624 case 1:
3625 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3626 return;
3627 }
3628 unallocated_encoding(s);
3629 }
3630
3631 /* AdvSIMD load/store multiple structures
3632 *
3633 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
3634 * +---+---+---------------+---+-------------+--------+------+------+------+
3635 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
3636 * +---+---+---------------+---+-------------+--------+------+------+------+
3637 *
3638 * AdvSIMD load/store multiple structures (post-indexed)
3639 *
3640 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
3641 * +---+---+---------------+---+---+---------+--------+------+------+------+
3642 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
3643 * +---+---+---------------+---+---+---------+--------+------+------+------+
3644 *
3645 * Rt: first (or only) SIMD&FP register to be transferred
3646 * Rn: base address or SP
3647 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3648 */
3649 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3650 {
3651 int rt = extract32(insn, 0, 5);
3652 int rn = extract32(insn, 5, 5);
3653 int rm = extract32(insn, 16, 5);
3654 int size = extract32(insn, 10, 2);
3655 int opcode = extract32(insn, 12, 4);
3656 bool is_store = !extract32(insn, 22, 1);
3657 bool is_postidx = extract32(insn, 23, 1);
3658 bool is_q = extract32(insn, 30, 1);
3659 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3660 MemOp endian, align, mop;
3661
3662 int total; /* total bytes */
3663 int elements; /* elements per vector */
3664 int rpt; /* num iterations */
3665 int selem; /* structure elements */
3666 int r;
3667
3668 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3669 unallocated_encoding(s);
3670 return;
3671 }
3672
3673 if (!is_postidx && rm != 0) {
3674 unallocated_encoding(s);
3675 return;
3676 }
3677
3678 /* From the shared decode logic */
3679 switch (opcode) {
3680 case 0x0:
3681 rpt = 1;
3682 selem = 4;
3683 break;
3684 case 0x2:
3685 rpt = 4;
3686 selem = 1;
3687 break;
3688 case 0x4:
3689 rpt = 1;
3690 selem = 3;
3691 break;
3692 case 0x6:
3693 rpt = 3;
3694 selem = 1;
3695 break;
3696 case 0x7:
3697 rpt = 1;
3698 selem = 1;
3699 break;
3700 case 0x8:
3701 rpt = 1;
3702 selem = 2;
3703 break;
3704 case 0xa:
3705 rpt = 2;
3706 selem = 1;
3707 break;
3708 default:
3709 unallocated_encoding(s);
3710 return;
3711 }
3712
3713 if (size == 3 && !is_q && selem != 1) {
3714 /* reserved */
3715 unallocated_encoding(s);
3716 return;
3717 }
3718
3719 if (!fp_access_check(s)) {
3720 return;
3721 }
3722
3723 if (rn == 31) {
3724 gen_check_sp_alignment(s);
3725 }
3726
3727 /* For our purposes, bytes are always little-endian. */
3728 endian = s->be_data;
3729 if (size == 0) {
3730 endian = MO_LE;
3731 }
3732
3733 total = rpt * selem * (is_q ? 16 : 8);
3734 tcg_rn = cpu_reg_sp(s, rn);
3735
3736 /*
3737 * Issue the MTE check vs the logical repeat count, before we
3738 * promote consecutive little-endian elements below.
3739 */
3740 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31,
3741 total);
3742
3743 /*
3744 * Consecutive little-endian elements from a single register
3745 * can be promoted to a larger little-endian operation.
3746 */
3747 align = MO_ALIGN;
3748 if (selem == 1 && endian == MO_LE) {
3749 align = pow2_align(size);
3750 size = 3;
3751 }
3752 if (!s->align_mem) {
3753 align = 0;
3754 }
3755 mop = endian | size | align;
3756
3757 elements = (is_q ? 16 : 8) >> size;
3758 tcg_ebytes = tcg_constant_i64(1 << size);
3759 for (r = 0; r < rpt; r++) {
3760 int e;
3761 for (e = 0; e < elements; e++) {
3762 int xs;
3763 for (xs = 0; xs < selem; xs++) {
3764 int tt = (rt + r + xs) % 32;
3765 if (is_store) {
3766 do_vec_st(s, tt, e, clean_addr, mop);
3767 } else {
3768 do_vec_ld(s, tt, e, clean_addr, mop);
3769 }
3770 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3771 }
3772 }
3773 }
3774
3775 if (!is_store) {
3776 /* For non-quad operations, setting a slice of the low
3777 * 64 bits of the register clears the high 64 bits (in
3778 * the ARM ARM pseudocode this is implicit in the fact
3779 * that 'rval' is a 64 bit wide variable).
3780 * For quad operations, we might still need to zero the
3781 * high bits of SVE.
3782 */
3783 for (r = 0; r < rpt * selem; r++) {
3784 int tt = (rt + r) % 32;
3785 clear_vec_high(s, is_q, tt);
3786 }
3787 }
3788
3789 if (is_postidx) {
3790 if (rm == 31) {
3791 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3792 } else {
3793 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3794 }
3795 }
3796 }
3797
3798 /* AdvSIMD load/store single structure
3799 *
3800 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3801 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3802 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3803 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3804 *
3805 * AdvSIMD load/store single structure (post-indexed)
3806 *
3807 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3808 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3809 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3810 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3811 *
3812 * Rt: first (or only) SIMD&FP register to be transferred
3813 * Rn: base address or SP
3814 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3815 * index = encoded in Q:S:size dependent on size
3816 *
3817 * lane_size = encoded in R, opc
3818 * transfer width = encoded in opc, S, size
3819 */
3820 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3821 {
3822 int rt = extract32(insn, 0, 5);
3823 int rn = extract32(insn, 5, 5);
3824 int rm = extract32(insn, 16, 5);
3825 int size = extract32(insn, 10, 2);
3826 int S = extract32(insn, 12, 1);
3827 int opc = extract32(insn, 13, 3);
3828 int R = extract32(insn, 21, 1);
3829 int is_load = extract32(insn, 22, 1);
3830 int is_postidx = extract32(insn, 23, 1);
3831 int is_q = extract32(insn, 30, 1);
3832
3833 int scale = extract32(opc, 1, 2);
3834 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3835 bool replicate = false;
3836 int index = is_q << 3 | S << 2 | size;
3837 int xs, total;
3838 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3839 MemOp mop;
3840
3841 if (extract32(insn, 31, 1)) {
3842 unallocated_encoding(s);
3843 return;
3844 }
3845 if (!is_postidx && rm != 0) {
3846 unallocated_encoding(s);
3847 return;
3848 }
3849
3850 switch (scale) {
3851 case 3:
3852 if (!is_load || S) {
3853 unallocated_encoding(s);
3854 return;
3855 }
3856 scale = size;
3857 replicate = true;
3858 break;
3859 case 0:
3860 break;
3861 case 1:
3862 if (extract32(size, 0, 1)) {
3863 unallocated_encoding(s);
3864 return;
3865 }
3866 index >>= 1;
3867 break;
3868 case 2:
3869 if (extract32(size, 1, 1)) {
3870 unallocated_encoding(s);
3871 return;
3872 }
3873 if (!extract32(size, 0, 1)) {
3874 index >>= 2;
3875 } else {
3876 if (S) {
3877 unallocated_encoding(s);
3878 return;
3879 }
3880 index >>= 3;
3881 scale = 3;
3882 }
3883 break;
3884 default:
3885 g_assert_not_reached();
3886 }
3887
3888 if (!fp_access_check(s)) {
3889 return;
3890 }
3891
3892 if (rn == 31) {
3893 gen_check_sp_alignment(s);
3894 }
3895
3896 total = selem << scale;
3897 tcg_rn = cpu_reg_sp(s, rn);
3898
3899 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31,
3900 total);
3901 mop = finalize_memop(s, scale);
3902
3903 tcg_ebytes = tcg_constant_i64(1 << scale);
3904 for (xs = 0; xs < selem; xs++) {
3905 if (replicate) {
3906 /* Load and replicate to all elements */
3907 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3908
3909 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3910 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3911 (is_q + 1) * 8, vec_full_reg_size(s),
3912 tcg_tmp);
3913 } else {
3914 /* Load/store one element per register */
3915 if (is_load) {
3916 do_vec_ld(s, rt, index, clean_addr, mop);
3917 } else {
3918 do_vec_st(s, rt, index, clean_addr, mop);
3919 }
3920 }
3921 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3922 rt = (rt + 1) % 32;
3923 }
3924
3925 if (is_postidx) {
3926 if (rm == 31) {
3927 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3928 } else {
3929 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3930 }
3931 }
3932 }
3933
3934 /*
3935 * Load/Store memory tags
3936 *
3937 * 31 30 29 24 22 21 12 10 5 0
3938 * +-----+-------------+-----+---+------+-----+------+------+
3939 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt |
3940 * +-----+-------------+-----+---+------+-----+------+------+
3941 */
3942 static void disas_ldst_tag(DisasContext *s, uint32_t insn)
3943 {
3944 int rt = extract32(insn, 0, 5);
3945 int rn = extract32(insn, 5, 5);
3946 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE;
3947 int op2 = extract32(insn, 10, 2);
3948 int op1 = extract32(insn, 22, 2);
3949 bool is_load = false, is_pair = false, is_zero = false, is_mult = false;
3950 int index = 0;
3951 TCGv_i64 addr, clean_addr, tcg_rt;
3952
3953 /* We checked insn bits [29:24,21] in the caller. */
3954 if (extract32(insn, 30, 2) != 3) {
3955 goto do_unallocated;
3956 }
3957
3958 /*
3959 * @index is a tri-state variable which has 3 states:
3960 * < 0 : post-index, writeback
3961 * = 0 : signed offset
3962 * > 0 : pre-index, writeback
3963 */
3964 switch (op1) {
3965 case 0:
3966 if (op2 != 0) {
3967 /* STG */
3968 index = op2 - 2;
3969 } else {
3970 /* STZGM */
3971 if (s->current_el == 0 || offset != 0) {
3972 goto do_unallocated;
3973 }
3974 is_mult = is_zero = true;
3975 }
3976 break;
3977 case 1:
3978 if (op2 != 0) {
3979 /* STZG */
3980 is_zero = true;
3981 index = op2 - 2;
3982 } else {
3983 /* LDG */
3984 is_load = true;
3985 }
3986 break;
3987 case 2:
3988 if (op2 != 0) {
3989 /* ST2G */
3990 is_pair = true;
3991 index = op2 - 2;
3992 } else {
3993 /* STGM */
3994 if (s->current_el == 0 || offset != 0) {
3995 goto do_unallocated;
3996 }
3997 is_mult = true;
3998 }
3999 break;
4000 case 3:
4001 if (op2 != 0) {
4002 /* STZ2G */
4003 is_pair = is_zero = true;
4004 index = op2 - 2;
4005 } else {
4006 /* LDGM */
4007 if (s->current_el == 0 || offset != 0) {
4008 goto do_unallocated;
4009 }
4010 is_mult = is_load = true;
4011 }
4012 break;
4013
4014 default:
4015 do_unallocated:
4016 unallocated_encoding(s);
4017 return;
4018 }
4019
4020 if (is_mult
4021 ? !dc_isar_feature(aa64_mte, s)
4022 : !dc_isar_feature(aa64_mte_insn_reg, s)) {
4023 goto do_unallocated;
4024 }
4025
4026 if (rn == 31) {
4027 gen_check_sp_alignment(s);
4028 }
4029
4030 addr = read_cpu_reg_sp(s, rn, true);
4031 if (index >= 0) {
4032 /* pre-index or signed offset */
4033 tcg_gen_addi_i64(addr, addr, offset);
4034 }
4035
4036 if (is_mult) {
4037 tcg_rt = cpu_reg(s, rt);
4038
4039 if (is_zero) {
4040 int size = 4 << s->dcz_blocksize;
4041
4042 if (s->ata) {
4043 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt);
4044 }
4045 /*
4046 * The non-tags portion of STZGM is mostly like DC_ZVA,
4047 * except the alignment happens before the access.
4048 */
4049 clean_addr = clean_data_tbi(s, addr);
4050 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4051 gen_helper_dc_zva(cpu_env, clean_addr);
4052 } else if (s->ata) {
4053 if (is_load) {
4054 gen_helper_ldgm(tcg_rt, cpu_env, addr);
4055 } else {
4056 gen_helper_stgm(cpu_env, addr, tcg_rt);
4057 }
4058 } else {
4059 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE;
4060 int size = 4 << GMID_EL1_BS;
4061
4062 clean_addr = clean_data_tbi(s, addr);
4063 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4064 gen_probe_access(s, clean_addr, acc, size);
4065
4066 if (is_load) {
4067 /* The result tags are zeros. */
4068 tcg_gen_movi_i64(tcg_rt, 0);
4069 }
4070 }
4071 return;
4072 }
4073
4074 if (is_load) {
4075 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4076 tcg_rt = cpu_reg(s, rt);
4077 if (s->ata) {
4078 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt);
4079 } else {
4080 clean_addr = clean_data_tbi(s, addr);
4081 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4082 gen_address_with_allocation_tag0(tcg_rt, addr);
4083 }
4084 } else {
4085 tcg_rt = cpu_reg_sp(s, rt);
4086 if (!s->ata) {
4087 /*
4088 * For STG and ST2G, we need to check alignment and probe memory.
4089 * TODO: For STZG and STZ2G, we could rely on the stores below,
4090 * at least for system mode; user-only won't enforce alignment.
4091 */
4092 if (is_pair) {
4093 gen_helper_st2g_stub(cpu_env, addr);
4094 } else {
4095 gen_helper_stg_stub(cpu_env, addr);
4096 }
4097 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4098 if (is_pair) {
4099 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt);
4100 } else {
4101 gen_helper_stg_parallel(cpu_env, addr, tcg_rt);
4102 }
4103 } else {
4104 if (is_pair) {
4105 gen_helper_st2g(cpu_env, addr, tcg_rt);
4106 } else {
4107 gen_helper_stg(cpu_env, addr, tcg_rt);
4108 }
4109 }
4110 }
4111
4112 if (is_zero) {
4113 TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4114 TCGv_i64 tcg_zero = tcg_constant_i64(0);
4115 int mem_index = get_mem_index(s);
4116 int i, n = (1 + is_pair) << LOG2_TAG_GRANULE;
4117
4118 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index,
4119 MO_UQ | MO_ALIGN_16);
4120 for (i = 8; i < n; i += 8) {
4121 tcg_gen_addi_i64(clean_addr, clean_addr, 8);
4122 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_UQ);
4123 }
4124 }
4125
4126 if (index != 0) {
4127 /* pre-index or post-index */
4128 if (index < 0) {
4129 /* post-index */
4130 tcg_gen_addi_i64(addr, addr, offset);
4131 }
4132 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr);
4133 }
4134 }
4135
4136 /* Loads and stores */
4137 static void disas_ldst(DisasContext *s, uint32_t insn)
4138 {
4139 switch (extract32(insn, 24, 6)) {
4140 case 0x08: /* Load/store exclusive */
4141 disas_ldst_excl(s, insn);
4142 break;
4143 case 0x18: case 0x1c: /* Load register (literal) */
4144 disas_ld_lit(s, insn);
4145 break;
4146 case 0x28: case 0x29:
4147 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
4148 disas_ldst_pair(s, insn);
4149 break;
4150 case 0x38: case 0x39:
4151 case 0x3c: case 0x3d: /* Load/store register (all forms) */
4152 disas_ldst_reg(s, insn);
4153 break;
4154 case 0x0c: /* AdvSIMD load/store multiple structures */
4155 disas_ldst_multiple_struct(s, insn);
4156 break;
4157 case 0x0d: /* AdvSIMD load/store single structure */
4158 disas_ldst_single_struct(s, insn);
4159 break;
4160 case 0x19:
4161 if (extract32(insn, 21, 1) != 0) {
4162 disas_ldst_tag(s, insn);
4163 } else if (extract32(insn, 10, 2) == 0) {
4164 disas_ldst_ldapr_stlr(s, insn);
4165 } else {
4166 unallocated_encoding(s);
4167 }
4168 break;
4169 default:
4170 unallocated_encoding(s);
4171 break;
4172 }
4173 }
4174
4175 /* PC-rel. addressing
4176 * 31 30 29 28 24 23 5 4 0
4177 * +----+-------+-----------+-------------------+------+
4178 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
4179 * +----+-------+-----------+-------------------+------+
4180 */
4181 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
4182 {
4183 unsigned int page, rd;
4184 int64_t offset;
4185
4186 page = extract32(insn, 31, 1);
4187 /* SignExtend(immhi:immlo) -> offset */
4188 offset = sextract64(insn, 5, 19);
4189 offset = offset << 2 | extract32(insn, 29, 2);
4190 rd = extract32(insn, 0, 5);
4191
4192 if (page) {
4193 /* ADRP (page based) */
4194 offset <<= 12;
4195 /* The page offset is ok for CF_PCREL. */
4196 offset -= s->pc_curr & 0xfff;
4197 }
4198
4199 gen_pc_plus_diff(s, cpu_reg(s, rd), offset);
4200 }
4201
4202 /*
4203 * Add/subtract (immediate)
4204 *
4205 * 31 30 29 28 23 22 21 10 9 5 4 0
4206 * +--+--+--+-------------+--+-------------+-----+-----+
4207 * |sf|op| S| 1 0 0 0 1 0 |sh| imm12 | Rn | Rd |
4208 * +--+--+--+-------------+--+-------------+-----+-----+
4209 *
4210 * sf: 0 -> 32bit, 1 -> 64bit
4211 * op: 0 -> add , 1 -> sub
4212 * S: 1 -> set flags
4213 * sh: 1 -> LSL imm by 12
4214 */
4215 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
4216 {
4217 int rd = extract32(insn, 0, 5);
4218 int rn = extract32(insn, 5, 5);
4219 uint64_t imm = extract32(insn, 10, 12);
4220 bool shift = extract32(insn, 22, 1);
4221 bool setflags = extract32(insn, 29, 1);
4222 bool sub_op = extract32(insn, 30, 1);
4223 bool is_64bit = extract32(insn, 31, 1);
4224
4225 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
4226 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
4227 TCGv_i64 tcg_result;
4228
4229 if (shift) {
4230 imm <<= 12;
4231 }
4232
4233 tcg_result = tcg_temp_new_i64();
4234 if (!setflags) {
4235 if (sub_op) {
4236 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
4237 } else {
4238 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
4239 }
4240 } else {
4241 TCGv_i64 tcg_imm = tcg_constant_i64(imm);
4242 if (sub_op) {
4243 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4244 } else {
4245 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4246 }
4247 }
4248
4249 if (is_64bit) {
4250 tcg_gen_mov_i64(tcg_rd, tcg_result);
4251 } else {
4252 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4253 }
4254 }
4255
4256 /*
4257 * Add/subtract (immediate, with tags)
4258 *
4259 * 31 30 29 28 23 22 21 16 14 10 9 5 4 0
4260 * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4261 * |sf|op| S| 1 0 0 0 1 1 |o2| uimm6 |o3| uimm4 | Rn | Rd |
4262 * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4263 *
4264 * op: 0 -> add, 1 -> sub
4265 */
4266 static void disas_add_sub_imm_with_tags(DisasContext *s, uint32_t insn)
4267 {
4268 int rd = extract32(insn, 0, 5);
4269 int rn = extract32(insn, 5, 5);
4270 int uimm4 = extract32(insn, 10, 4);
4271 int uimm6 = extract32(insn, 16, 6);
4272 bool sub_op = extract32(insn, 30, 1);
4273 TCGv_i64 tcg_rn, tcg_rd;
4274 int imm;
4275
4276 /* Test all of sf=1, S=0, o2=0, o3=0. */
4277 if ((insn & 0xa040c000u) != 0x80000000u ||
4278 !dc_isar_feature(aa64_mte_insn_reg, s)) {
4279 unallocated_encoding(s);
4280 return;
4281 }
4282
4283 imm = uimm6 << LOG2_TAG_GRANULE;
4284 if (sub_op) {
4285 imm = -imm;
4286 }
4287
4288 tcg_rn = cpu_reg_sp(s, rn);
4289 tcg_rd = cpu_reg_sp(s, rd);
4290
4291 if (s->ata) {
4292 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn,
4293 tcg_constant_i32(imm),
4294 tcg_constant_i32(uimm4));
4295 } else {
4296 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4297 gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4298 }
4299 }
4300
4301 /* The input should be a value in the bottom e bits (with higher
4302 * bits zero); returns that value replicated into every element
4303 * of size e in a 64 bit integer.
4304 */
4305 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4306 {
4307 assert(e != 0);
4308 while (e < 64) {
4309 mask |= mask << e;
4310 e *= 2;
4311 }
4312 return mask;
4313 }
4314
4315 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
4316 static inline uint64_t bitmask64(unsigned int length)
4317 {
4318 assert(length > 0 && length <= 64);
4319 return ~0ULL >> (64 - length);
4320 }
4321
4322 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
4323 * only require the wmask. Returns false if the imms/immr/immn are a reserved
4324 * value (ie should cause a guest UNDEF exception), and true if they are
4325 * valid, in which case the decoded bit pattern is written to result.
4326 */
4327 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4328 unsigned int imms, unsigned int immr)
4329 {
4330 uint64_t mask;
4331 unsigned e, levels, s, r;
4332 int len;
4333
4334 assert(immn < 2 && imms < 64 && immr < 64);
4335
4336 /* The bit patterns we create here are 64 bit patterns which
4337 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4338 * 64 bits each. Each element contains the same value: a run
4339 * of between 1 and e-1 non-zero bits, rotated within the
4340 * element by between 0 and e-1 bits.
4341 *
4342 * The element size and run length are encoded into immn (1 bit)
4343 * and imms (6 bits) as follows:
4344 * 64 bit elements: immn = 1, imms = <length of run - 1>
4345 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4346 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4347 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4348 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4349 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4350 * Notice that immn = 0, imms = 11111x is the only combination
4351 * not covered by one of the above options; this is reserved.
4352 * Further, <length of run - 1> all-ones is a reserved pattern.
4353 *
4354 * In all cases the rotation is by immr % e (and immr is 6 bits).
4355 */
4356
4357 /* First determine the element size */
4358 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4359 if (len < 1) {
4360 /* This is the immn == 0, imms == 0x11111x case */
4361 return false;
4362 }
4363 e = 1 << len;
4364
4365 levels = e - 1;
4366 s = imms & levels;
4367 r = immr & levels;
4368
4369 if (s == levels) {
4370 /* <length of run - 1> mustn't be all-ones. */
4371 return false;
4372 }
4373
4374 /* Create the value of one element: s+1 set bits rotated
4375 * by r within the element (which is e bits wide)...
4376 */
4377 mask = bitmask64(s + 1);
4378 if (r) {
4379 mask = (mask >> r) | (mask << (e - r));
4380 mask &= bitmask64(e);
4381 }
4382 /* ...then replicate the element over the whole 64 bit value */
4383 mask = bitfield_replicate(mask, e);
4384 *result = mask;
4385 return true;
4386 }
4387
4388 /* Logical (immediate)
4389 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4390 * +----+-----+-------------+---+------+------+------+------+
4391 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
4392 * +----+-----+-------------+---+------+------+------+------+
4393 */
4394 static void disas_logic_imm(DisasContext *s, uint32_t insn)
4395 {
4396 unsigned int sf, opc, is_n, immr, imms, rn, rd;
4397 TCGv_i64 tcg_rd, tcg_rn;
4398 uint64_t wmask;
4399 bool is_and = false;
4400
4401 sf = extract32(insn, 31, 1);
4402 opc = extract32(insn, 29, 2);
4403 is_n = extract32(insn, 22, 1);
4404 immr = extract32(insn, 16, 6);
4405 imms = extract32(insn, 10, 6);
4406 rn = extract32(insn, 5, 5);
4407 rd = extract32(insn, 0, 5);
4408
4409 if (!sf && is_n) {
4410 unallocated_encoding(s);
4411 return;
4412 }
4413
4414 if (opc == 0x3) { /* ANDS */
4415 tcg_rd = cpu_reg(s, rd);
4416 } else {
4417 tcg_rd = cpu_reg_sp(s, rd);
4418 }
4419 tcg_rn = cpu_reg(s, rn);
4420
4421 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
4422 /* some immediate field values are reserved */
4423 unallocated_encoding(s);
4424 return;
4425 }
4426
4427 if (!sf) {
4428 wmask &= 0xffffffff;
4429 }
4430
4431 switch (opc) {
4432 case 0x3: /* ANDS */
4433 case 0x0: /* AND */
4434 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
4435 is_and = true;
4436 break;
4437 case 0x1: /* ORR */
4438 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
4439 break;
4440 case 0x2: /* EOR */
4441 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
4442 break;
4443 default:
4444 assert(FALSE); /* must handle all above */
4445 break;
4446 }
4447
4448 if (!sf && !is_and) {
4449 /* zero extend final result; we know we can skip this for AND
4450 * since the immediate had the high 32 bits clear.
4451 */
4452 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4453 }
4454
4455 if (opc == 3) { /* ANDS */
4456 gen_logic_CC(sf, tcg_rd);
4457 }
4458 }
4459
4460 /*
4461 * Move wide (immediate)
4462 *
4463 * 31 30 29 28 23 22 21 20 5 4 0
4464 * +--+-----+-------------+-----+----------------+------+
4465 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
4466 * +--+-----+-------------+-----+----------------+------+
4467 *
4468 * sf: 0 -> 32 bit, 1 -> 64 bit
4469 * opc: 00 -> N, 10 -> Z, 11 -> K
4470 * hw: shift/16 (0,16, and sf only 32, 48)
4471 */
4472 static void disas_movw_imm(DisasContext *s, uint32_t insn)
4473 {
4474 int rd = extract32(insn, 0, 5);
4475 uint64_t imm = extract32(insn, 5, 16);
4476 int sf = extract32(insn, 31, 1);
4477 int opc = extract32(insn, 29, 2);
4478 int pos = extract32(insn, 21, 2) << 4;
4479 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4480
4481 if (!sf && (pos >= 32)) {
4482 unallocated_encoding(s);
4483 return;
4484 }
4485
4486 switch (opc) {
4487 case 0: /* MOVN */
4488 case 2: /* MOVZ */
4489 imm <<= pos;
4490 if (opc == 0) {
4491 imm = ~imm;
4492 }
4493 if (!sf) {
4494 imm &= 0xffffffffu;
4495 }
4496 tcg_gen_movi_i64(tcg_rd, imm);
4497 break;
4498 case 3: /* MOVK */
4499 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_constant_i64(imm), pos, 16);
4500 if (!sf) {
4501 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4502 }
4503 break;
4504 default:
4505 unallocated_encoding(s);
4506 break;
4507 }
4508 }
4509
4510 /* Bitfield
4511 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4512 * +----+-----+-------------+---+------+------+------+------+
4513 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
4514 * +----+-----+-------------+---+------+------+------+------+
4515 */
4516 static void disas_bitfield(DisasContext *s, uint32_t insn)
4517 {
4518 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
4519 TCGv_i64 tcg_rd, tcg_tmp;
4520
4521 sf = extract32(insn, 31, 1);
4522 opc = extract32(insn, 29, 2);
4523 n = extract32(insn, 22, 1);
4524 ri = extract32(insn, 16, 6);
4525 si = extract32(insn, 10, 6);
4526 rn = extract32(insn, 5, 5);
4527 rd = extract32(insn, 0, 5);
4528 bitsize = sf ? 64 : 32;
4529
4530 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
4531 unallocated_encoding(s);
4532 return;
4533 }
4534
4535 tcg_rd = cpu_reg(s, rd);
4536
4537 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
4538 to be smaller than bitsize, we'll never reference data outside the
4539 low 32-bits anyway. */
4540 tcg_tmp = read_cpu_reg(s, rn, 1);
4541
4542 /* Recognize simple(r) extractions. */
4543 if (si >= ri) {
4544 /* Wd<s-r:0> = Wn<s:r> */
4545 len = (si - ri) + 1;
4546 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
4547 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4548 goto done;
4549 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
4550 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4551 return;
4552 }
4553 /* opc == 1, BFXIL fall through to deposit */
4554 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4555 pos = 0;
4556 } else {
4557 /* Handle the ri > si case with a deposit
4558 * Wd<32+s-r,32-r> = Wn<s:0>
4559 */
4560 len = si + 1;
4561 pos = (bitsize - ri) & (bitsize - 1);
4562 }
4563
4564 if (opc == 0 && len < ri) {
4565 /* SBFM: sign extend the destination field from len to fill
4566 the balance of the word. Let the deposit below insert all
4567 of those sign bits. */
4568 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4569 len = ri;
4570 }
4571
4572 if (opc == 1) { /* BFM, BFXIL */
4573 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4574 } else {
4575 /* SBFM or UBFM: We start with zero, and we haven't modified
4576 any bits outside bitsize, therefore the zero-extension
4577 below is unneeded. */
4578 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4579 return;
4580 }
4581
4582 done:
4583 if (!sf) { /* zero extend final result */
4584 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4585 }
4586 }
4587
4588 /* Extract
4589 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
4590 * +----+------+-------------+---+----+------+--------+------+------+
4591 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
4592 * +----+------+-------------+---+----+------+--------+------+------+
4593 */
4594 static void disas_extract(DisasContext *s, uint32_t insn)
4595 {
4596 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
4597
4598 sf = extract32(insn, 31, 1);
4599 n = extract32(insn, 22, 1);
4600 rm = extract32(insn, 16, 5);
4601 imm = extract32(insn, 10, 6);
4602 rn = extract32(insn, 5, 5);
4603 rd = extract32(insn, 0, 5);
4604 op21 = extract32(insn, 29, 2);
4605 op0 = extract32(insn, 21, 1);
4606 bitsize = sf ? 64 : 32;
4607
4608 if (sf != n || op21 || op0 || imm >= bitsize) {
4609 unallocated_encoding(s);
4610 } else {
4611 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4612
4613 tcg_rd = cpu_reg(s, rd);
4614
4615 if (unlikely(imm == 0)) {
4616 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4617 * so an extract from bit 0 is a special case.
4618 */
4619 if (sf) {
4620 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
4621 } else {
4622 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
4623 }
4624 } else {
4625 tcg_rm = cpu_reg(s, rm);
4626 tcg_rn = cpu_reg(s, rn);
4627
4628 if (sf) {
4629 /* Specialization to ROR happens in EXTRACT2. */
4630 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, imm);
4631 } else {
4632 TCGv_i32 t0 = tcg_temp_new_i32();
4633
4634 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4635 if (rm == rn) {
4636 tcg_gen_rotri_i32(t0, t0, imm);
4637 } else {
4638 TCGv_i32 t1 = tcg_temp_new_i32();
4639 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4640 tcg_gen_extract2_i32(t0, t0, t1, imm);
4641 }
4642 tcg_gen_extu_i32_i64(tcg_rd, t0);
4643 }
4644 }
4645 }
4646 }
4647
4648 /* Data processing - immediate */
4649 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
4650 {
4651 switch (extract32(insn, 23, 6)) {
4652 case 0x20: case 0x21: /* PC-rel. addressing */
4653 disas_pc_rel_adr(s, insn);
4654 break;
4655 case 0x22: /* Add/subtract (immediate) */
4656 disas_add_sub_imm(s, insn);
4657 break;
4658 case 0x23: /* Add/subtract (immediate, with tags) */
4659 disas_add_sub_imm_with_tags(s, insn);
4660 break;
4661 case 0x24: /* Logical (immediate) */
4662 disas_logic_imm(s, insn);
4663 break;
4664 case 0x25: /* Move wide (immediate) */
4665 disas_movw_imm(s, insn);
4666 break;
4667 case 0x26: /* Bitfield */
4668 disas_bitfield(s, insn);
4669 break;
4670 case 0x27: /* Extract */
4671 disas_extract(s, insn);
4672 break;
4673 default:
4674 unallocated_encoding(s);
4675 break;
4676 }
4677 }
4678
4679 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4680 * Note that it is the caller's responsibility to ensure that the
4681 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4682 * mandated semantics for out of range shifts.
4683 */
4684 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4685 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4686 {
4687 switch (shift_type) {
4688 case A64_SHIFT_TYPE_LSL:
4689 tcg_gen_shl_i64(dst, src, shift_amount);
4690 break;
4691 case A64_SHIFT_TYPE_LSR:
4692 tcg_gen_shr_i64(dst, src, shift_amount);
4693 break;
4694 case A64_SHIFT_TYPE_ASR:
4695 if (!sf) {
4696 tcg_gen_ext32s_i64(dst, src);
4697 }
4698 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4699 break;
4700 case A64_SHIFT_TYPE_ROR:
4701 if (sf) {
4702 tcg_gen_rotr_i64(dst, src, shift_amount);
4703 } else {
4704 TCGv_i32 t0, t1;
4705 t0 = tcg_temp_new_i32();
4706 t1 = tcg_temp_new_i32();
4707 tcg_gen_extrl_i64_i32(t0, src);
4708 tcg_gen_extrl_i64_i32(t1, shift_amount);
4709 tcg_gen_rotr_i32(t0, t0, t1);
4710 tcg_gen_extu_i32_i64(dst, t0);
4711 }
4712 break;
4713 default:
4714 assert(FALSE); /* all shift types should be handled */
4715 break;
4716 }
4717
4718 if (!sf) { /* zero extend final result */
4719 tcg_gen_ext32u_i64(dst, dst);
4720 }
4721 }
4722
4723 /* Shift a TCGv src by immediate, put result in dst.
4724 * The shift amount must be in range (this should always be true as the
4725 * relevant instructions will UNDEF on bad shift immediates).
4726 */
4727 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4728 enum a64_shift_type shift_type, unsigned int shift_i)
4729 {
4730 assert(shift_i < (sf ? 64 : 32));
4731
4732 if (shift_i == 0) {
4733 tcg_gen_mov_i64(dst, src);
4734 } else {
4735 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
4736 }
4737 }
4738
4739 /* Logical (shifted register)
4740 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4741 * +----+-----+-----------+-------+---+------+--------+------+------+
4742 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4743 * +----+-----+-----------+-------+---+------+--------+------+------+
4744 */
4745 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4746 {
4747 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4748 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4749
4750 sf = extract32(insn, 31, 1);
4751 opc = extract32(insn, 29, 2);
4752 shift_type = extract32(insn, 22, 2);
4753 invert = extract32(insn, 21, 1);
4754 rm = extract32(insn, 16, 5);
4755 shift_amount = extract32(insn, 10, 6);
4756 rn = extract32(insn, 5, 5);
4757 rd = extract32(insn, 0, 5);
4758
4759 if (!sf && (shift_amount & (1 << 5))) {
4760 unallocated_encoding(s);
4761 return;
4762 }
4763
4764 tcg_rd = cpu_reg(s, rd);
4765
4766 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4767 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4768 * register-register MOV and MVN, so it is worth special casing.
4769 */
4770 tcg_rm = cpu_reg(s, rm);
4771 if (invert) {
4772 tcg_gen_not_i64(tcg_rd, tcg_rm);
4773 if (!sf) {
4774 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4775 }
4776 } else {
4777 if (sf) {
4778 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4779 } else {
4780 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4781 }
4782 }
4783 return;
4784 }
4785
4786 tcg_rm = read_cpu_reg(s, rm, sf);
4787
4788 if (shift_amount) {
4789 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4790 }
4791
4792 tcg_rn = cpu_reg(s, rn);
4793
4794 switch (opc | (invert << 2)) {
4795 case 0: /* AND */
4796 case 3: /* ANDS */
4797 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4798 break;
4799 case 1: /* ORR */
4800 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4801 break;
4802 case 2: /* EOR */
4803 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4804 break;
4805 case 4: /* BIC */
4806 case 7: /* BICS */
4807 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4808 break;
4809 case 5: /* ORN */
4810 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4811 break;
4812 case 6: /* EON */
4813 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4814 break;
4815 default:
4816 assert(FALSE);
4817 break;
4818 }
4819
4820 if (!sf) {
4821 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4822 }
4823
4824 if (opc == 3) {
4825 gen_logic_CC(sf, tcg_rd);
4826 }
4827 }
4828
4829 /*
4830 * Add/subtract (extended register)
4831 *
4832 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4833 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4834 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4835 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4836 *
4837 * sf: 0 -> 32bit, 1 -> 64bit
4838 * op: 0 -> add , 1 -> sub
4839 * S: 1 -> set flags
4840 * opt: 00
4841 * option: extension type (see DecodeRegExtend)
4842 * imm3: optional shift to Rm
4843 *
4844 * Rd = Rn + LSL(extend(Rm), amount)
4845 */
4846 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4847 {
4848 int rd = extract32(insn, 0, 5);
4849 int rn = extract32(insn, 5, 5);
4850 int imm3 = extract32(insn, 10, 3);
4851 int option = extract32(insn, 13, 3);
4852 int rm = extract32(insn, 16, 5);
4853 int opt = extract32(insn, 22, 2);
4854 bool setflags = extract32(insn, 29, 1);
4855 bool sub_op = extract32(insn, 30, 1);
4856 bool sf = extract32(insn, 31, 1);
4857
4858 TCGv_i64 tcg_rm, tcg_rn; /* temps */
4859 TCGv_i64 tcg_rd;
4860 TCGv_i64 tcg_result;
4861
4862 if (imm3 > 4 || opt != 0) {
4863 unallocated_encoding(s);
4864 return;
4865 }
4866
4867 /* non-flag setting ops may use SP */
4868 if (!setflags) {
4869 tcg_rd = cpu_reg_sp(s, rd);
4870 } else {
4871 tcg_rd = cpu_reg(s, rd);
4872 }
4873 tcg_rn = read_cpu_reg_sp(s, rn, sf);
4874
4875 tcg_rm = read_cpu_reg(s, rm, sf);
4876 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4877
4878 tcg_result = tcg_temp_new_i64();
4879
4880 if (!setflags) {
4881 if (sub_op) {
4882 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4883 } else {
4884 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4885 }
4886 } else {
4887 if (sub_op) {
4888 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4889 } else {
4890 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4891 }
4892 }
4893
4894 if (sf) {
4895 tcg_gen_mov_i64(tcg_rd, tcg_result);
4896 } else {
4897 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4898 }
4899 }
4900
4901 /*
4902 * Add/subtract (shifted register)
4903 *
4904 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4905 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4906 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4907 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4908 *
4909 * sf: 0 -> 32bit, 1 -> 64bit
4910 * op: 0 -> add , 1 -> sub
4911 * S: 1 -> set flags
4912 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4913 * imm6: Shift amount to apply to Rm before the add/sub
4914 */
4915 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4916 {
4917 int rd = extract32(insn, 0, 5);
4918 int rn = extract32(insn, 5, 5);
4919 int imm6 = extract32(insn, 10, 6);
4920 int rm = extract32(insn, 16, 5);
4921 int shift_type = extract32(insn, 22, 2);
4922 bool setflags = extract32(insn, 29, 1);
4923 bool sub_op = extract32(insn, 30, 1);
4924 bool sf = extract32(insn, 31, 1);
4925
4926 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4927 TCGv_i64 tcg_rn, tcg_rm;
4928 TCGv_i64 tcg_result;
4929
4930 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4931 unallocated_encoding(s);
4932 return;
4933 }
4934
4935 tcg_rn = read_cpu_reg(s, rn, sf);
4936 tcg_rm = read_cpu_reg(s, rm, sf);
4937
4938 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4939
4940 tcg_result = tcg_temp_new_i64();
4941
4942 if (!setflags) {
4943 if (sub_op) {
4944 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4945 } else {
4946 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4947 }
4948 } else {
4949 if (sub_op) {
4950 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4951 } else {
4952 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4953 }
4954 }
4955
4956 if (sf) {
4957 tcg_gen_mov_i64(tcg_rd, tcg_result);
4958 } else {
4959 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4960 }
4961 }
4962
4963 /* Data-processing (3 source)
4964 *
4965 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4966 * +--+------+-----------+------+------+----+------+------+------+
4967 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4968 * +--+------+-----------+------+------+----+------+------+------+
4969 */
4970 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4971 {
4972 int rd = extract32(insn, 0, 5);
4973 int rn = extract32(insn, 5, 5);
4974 int ra = extract32(insn, 10, 5);
4975 int rm = extract32(insn, 16, 5);
4976 int op_id = (extract32(insn, 29, 3) << 4) |
4977 (extract32(insn, 21, 3) << 1) |
4978 extract32(insn, 15, 1);
4979 bool sf = extract32(insn, 31, 1);
4980 bool is_sub = extract32(op_id, 0, 1);
4981 bool is_high = extract32(op_id, 2, 1);
4982 bool is_signed = false;
4983 TCGv_i64 tcg_op1;
4984 TCGv_i64 tcg_op2;
4985 TCGv_i64 tcg_tmp;
4986
4987 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4988 switch (op_id) {
4989 case 0x42: /* SMADDL */
4990 case 0x43: /* SMSUBL */
4991 case 0x44: /* SMULH */
4992 is_signed = true;
4993 break;
4994 case 0x0: /* MADD (32bit) */
4995 case 0x1: /* MSUB (32bit) */
4996 case 0x40: /* MADD (64bit) */
4997 case 0x41: /* MSUB (64bit) */
4998 case 0x4a: /* UMADDL */
4999 case 0x4b: /* UMSUBL */
5000 case 0x4c: /* UMULH */
5001 break;
5002 default:
5003 unallocated_encoding(s);
5004 return;
5005 }
5006
5007 if (is_high) {
5008 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
5009 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5010 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5011 TCGv_i64 tcg_rm = cpu_reg(s, rm);
5012
5013 if (is_signed) {
5014 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5015 } else {
5016 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5017 }
5018 return;
5019 }
5020
5021 tcg_op1 = tcg_temp_new_i64();
5022 tcg_op2 = tcg_temp_new_i64();
5023 tcg_tmp = tcg_temp_new_i64();
5024
5025 if (op_id < 0x42) {
5026 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
5027 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
5028 } else {
5029 if (is_signed) {
5030 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
5031 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
5032 } else {
5033 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5034 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5035 }
5036 }
5037
5038 if (ra == 31 && !is_sub) {
5039 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5040 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5041 } else {
5042 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5043 if (is_sub) {
5044 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5045 } else {
5046 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5047 }
5048 }
5049
5050 if (!sf) {
5051 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5052 }
5053 }
5054
5055 /* Add/subtract (with carry)
5056 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
5057 * +--+--+--+------------------------+------+-------------+------+-----+
5058 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
5059 * +--+--+--+------------------------+------+-------------+------+-----+
5060 */
5061
5062 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5063 {
5064 unsigned int sf, op, setflags, rm, rn, rd;
5065 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5066
5067 sf = extract32(insn, 31, 1);
5068 op = extract32(insn, 30, 1);
5069 setflags = extract32(insn, 29, 1);
5070 rm = extract32(insn, 16, 5);
5071 rn = extract32(insn, 5, 5);
5072 rd = extract32(insn, 0, 5);
5073
5074 tcg_rd = cpu_reg(s, rd);
5075 tcg_rn = cpu_reg(s, rn);
5076
5077 if (op) {
5078 tcg_y = tcg_temp_new_i64();
5079 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5080 } else {
5081 tcg_y = cpu_reg(s, rm);
5082 }
5083
5084 if (setflags) {
5085 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5086 } else {
5087 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5088 }
5089 }
5090
5091 /*
5092 * Rotate right into flags
5093 * 31 30 29 21 15 10 5 4 0
5094 * +--+--+--+-----------------+--------+-----------+------+--+------+
5095 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
5096 * +--+--+--+-----------------+--------+-----------+------+--+------+
5097 */
5098 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5099 {
5100 int mask = extract32(insn, 0, 4);
5101 int o2 = extract32(insn, 4, 1);
5102 int rn = extract32(insn, 5, 5);
5103 int imm6 = extract32(insn, 15, 6);
5104 int sf_op_s = extract32(insn, 29, 3);
5105 TCGv_i64 tcg_rn;
5106 TCGv_i32 nzcv;
5107
5108 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5109 unallocated_encoding(s);
5110 return;
5111 }
5112
5113 tcg_rn = read_cpu_reg(s, rn, 1);
5114 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5115
5116 nzcv = tcg_temp_new_i32();
5117 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5118
5119 if (mask & 8) { /* N */
5120 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5121 }
5122 if (mask & 4) { /* Z */
5123 tcg_gen_not_i32(cpu_ZF, nzcv);
5124 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5125 }
5126 if (mask & 2) { /* C */
5127 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5128 }
5129 if (mask & 1) { /* V */
5130 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5131 }
5132 }
5133
5134 /*
5135 * Evaluate into flags
5136 * 31 30 29 21 15 14 10 5 4 0
5137 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5138 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
5139 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5140 */
5141 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5142 {
5143 int o3_mask = extract32(insn, 0, 5);
5144 int rn = extract32(insn, 5, 5);
5145 int o2 = extract32(insn, 15, 6);
5146 int sz = extract32(insn, 14, 1);
5147 int sf_op_s = extract32(insn, 29, 3);
5148 TCGv_i32 tmp;
5149 int shift;
5150
5151 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5152 !dc_isar_feature(aa64_condm_4, s)) {
5153 unallocated_encoding(s);
5154 return;
5155 }
5156 shift = sz ? 16 : 24; /* SETF16 or SETF8 */
5157
5158 tmp = tcg_temp_new_i32();
5159 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5160 tcg_gen_shli_i32(cpu_NF, tmp, shift);
5161 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5162 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5163 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5164 }
5165
5166 /* Conditional compare (immediate / register)
5167 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5168 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5169 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
5170 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5171 * [1] y [0] [0]
5172 */
5173 static void disas_cc(DisasContext *s, uint32_t insn)
5174 {
5175 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5176 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5177 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5178 DisasCompare c;
5179
5180 if (!extract32(insn, 29, 1)) {
5181 unallocated_encoding(s);
5182 return;
5183 }
5184 if (insn & (1 << 10 | 1 << 4)) {
5185 unallocated_encoding(s);
5186 return;
5187 }
5188 sf = extract32(insn, 31, 1);
5189 op = extract32(insn, 30, 1);
5190 is_imm = extract32(insn, 11, 1);
5191 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5192 cond = extract32(insn, 12, 4);
5193 rn = extract32(insn, 5, 5);
5194 nzcv = extract32(insn, 0, 4);
5195
5196 /* Set T0 = !COND. */
5197 tcg_t0 = tcg_temp_new_i32();
5198 arm_test_cc(&c, cond);
5199 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5200
5201 /* Load the arguments for the new comparison. */
5202 if (is_imm) {
5203 tcg_y = tcg_temp_new_i64();
5204 tcg_gen_movi_i64(tcg_y, y);
5205 } else {
5206 tcg_y = cpu_reg(s, y);
5207 }
5208 tcg_rn = cpu_reg(s, rn);
5209
5210 /* Set the flags for the new comparison. */
5211 tcg_tmp = tcg_temp_new_i64();
5212 if (op) {
5213 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5214 } else {
5215 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5216 }
5217
5218 /* If COND was false, force the flags to #nzcv. Compute two masks
5219 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5220 * For tcg hosts that support ANDC, we can make do with just T1.
5221 * In either case, allow the tcg optimizer to delete any unused mask.
5222 */
5223 tcg_t1 = tcg_temp_new_i32();
5224 tcg_t2 = tcg_temp_new_i32();
5225 tcg_gen_neg_i32(tcg_t1, tcg_t0);
5226 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5227
5228 if (nzcv & 8) { /* N */
5229 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5230 } else {
5231 if (TCG_TARGET_HAS_andc_i32) {
5232 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5233 } else {
5234 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5235 }
5236 }
5237 if (nzcv & 4) { /* Z */
5238 if (TCG_TARGET_HAS_andc_i32) {
5239 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5240 } else {
5241 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5242 }
5243 } else {
5244 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5245 }
5246 if (nzcv & 2) { /* C */
5247 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5248 } else {
5249 if (TCG_TARGET_HAS_andc_i32) {
5250 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5251 } else {
5252 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5253 }
5254 }
5255 if (nzcv & 1) { /* V */
5256 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5257 } else {
5258 if (TCG_TARGET_HAS_andc_i32) {
5259 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5260 } else {
5261 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5262 }
5263 }
5264 }
5265
5266 /* Conditional select
5267 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
5268 * +----+----+---+-----------------+------+------+-----+------+------+
5269 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
5270 * +----+----+---+-----------------+------+------+-----+------+------+
5271 */
5272 static void disas_cond_select(DisasContext *s, uint32_t insn)
5273 {
5274 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5275 TCGv_i64 tcg_rd, zero;
5276 DisasCompare64 c;
5277
5278 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5279 /* S == 1 or op2<1> == 1 */
5280 unallocated_encoding(s);
5281 return;
5282 }
5283 sf = extract32(insn, 31, 1);
5284 else_inv = extract32(insn, 30, 1);
5285 rm = extract32(insn, 16, 5);
5286 cond = extract32(insn, 12, 4);
5287 else_inc = extract32(insn, 10, 1);
5288 rn = extract32(insn, 5, 5);
5289 rd = extract32(insn, 0, 5);
5290
5291 tcg_rd = cpu_reg(s, rd);
5292
5293 a64_test_cc(&c, cond);
5294 zero = tcg_constant_i64(0);
5295
5296 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5297 /* CSET & CSETM. */
5298 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
5299 if (else_inv) {
5300 tcg_gen_neg_i64(tcg_rd, tcg_rd);
5301 }
5302 } else {
5303 TCGv_i64 t_true = cpu_reg(s, rn);
5304 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5305 if (else_inv && else_inc) {
5306 tcg_gen_neg_i64(t_false, t_false);
5307 } else if (else_inv) {
5308 tcg_gen_not_i64(t_false, t_false);
5309 } else if (else_inc) {
5310 tcg_gen_addi_i64(t_false, t_false, 1);
5311 }
5312 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5313 }
5314
5315 if (!sf) {
5316 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5317 }
5318 }
5319
5320 static void handle_clz(DisasContext *s, unsigned int sf,
5321 unsigned int rn, unsigned int rd)
5322 {
5323 TCGv_i64 tcg_rd, tcg_rn;
5324 tcg_rd = cpu_reg(s, rd);
5325 tcg_rn = cpu_reg(s, rn);
5326
5327 if (sf) {
5328 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5329 } else {
5330 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5331 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5332 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5333 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5334 }
5335 }
5336
5337 static void handle_cls(DisasContext *s, unsigned int sf,
5338 unsigned int rn, unsigned int rd)
5339 {
5340 TCGv_i64 tcg_rd, tcg_rn;
5341 tcg_rd = cpu_reg(s, rd);
5342 tcg_rn = cpu_reg(s, rn);
5343
5344 if (sf) {
5345 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5346 } else {
5347 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5348 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5349 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5350 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5351 }
5352 }
5353
5354 static void handle_rbit(DisasContext *s, unsigned int sf,
5355 unsigned int rn, unsigned int rd)
5356 {
5357 TCGv_i64 tcg_rd, tcg_rn;
5358 tcg_rd = cpu_reg(s, rd);
5359 tcg_rn = cpu_reg(s, rn);
5360
5361 if (sf) {
5362 gen_helper_rbit64(tcg_rd, tcg_rn);
5363 } else {
5364 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5365 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5366 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5367 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5368 }
5369 }
5370
5371 /* REV with sf==1, opcode==3 ("REV64") */
5372 static void handle_rev64(DisasContext *s, unsigned int sf,
5373 unsigned int rn, unsigned int rd)
5374 {
5375 if (!sf) {
5376 unallocated_encoding(s);
5377 return;
5378 }
5379 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5380 }
5381
5382 /* REV with sf==0, opcode==2
5383 * REV32 (sf==1, opcode==2)
5384 */
5385 static void handle_rev32(DisasContext *s, unsigned int sf,
5386 unsigned int rn, unsigned int rd)
5387 {
5388 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5389 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5390
5391 if (sf) {
5392 tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5393 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5394 } else {
5395 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5396 }
5397 }
5398
5399 /* REV16 (opcode==1) */
5400 static void handle_rev16(DisasContext *s, unsigned int sf,
5401 unsigned int rn, unsigned int rd)
5402 {
5403 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5404 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5405 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5406 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5407
5408 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5409 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5410 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5411 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5412 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5413 }
5414
5415 /* Data-processing (1 source)
5416 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5417 * +----+---+---+-----------------+---------+--------+------+------+
5418 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
5419 * +----+---+---+-----------------+---------+--------+------+------+
5420 */
5421 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5422 {
5423 unsigned int sf, opcode, opcode2, rn, rd;
5424 TCGv_i64 tcg_rd;
5425
5426 if (extract32(insn, 29, 1)) {
5427 unallocated_encoding(s);
5428 return;
5429 }
5430
5431 sf = extract32(insn, 31, 1);
5432 opcode = extract32(insn, 10, 6);
5433 opcode2 = extract32(insn, 16, 5);
5434 rn = extract32(insn, 5, 5);
5435 rd = extract32(insn, 0, 5);
5436
5437 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5438
5439 switch (MAP(sf, opcode2, opcode)) {
5440 case MAP(0, 0x00, 0x00): /* RBIT */
5441 case MAP(1, 0x00, 0x00):
5442 handle_rbit(s, sf, rn, rd);
5443 break;
5444 case MAP(0, 0x00, 0x01): /* REV16 */
5445 case MAP(1, 0x00, 0x01):
5446 handle_rev16(s, sf, rn, rd);
5447 break;
5448 case MAP(0, 0x00, 0x02): /* REV/REV32 */
5449 case MAP(1, 0x00, 0x02):
5450 handle_rev32(s, sf, rn, rd);
5451 break;
5452 case MAP(1, 0x00, 0x03): /* REV64 */
5453 handle_rev64(s, sf, rn, rd);
5454 break;
5455 case MAP(0, 0x00, 0x04): /* CLZ */
5456 case MAP(1, 0x00, 0x04):
5457 handle_clz(s, sf, rn, rd);
5458 break;
5459 case MAP(0, 0x00, 0x05): /* CLS */
5460 case MAP(1, 0x00, 0x05):
5461 handle_cls(s, sf, rn, rd);
5462 break;
5463 case MAP(1, 0x01, 0x00): /* PACIA */
5464 if (s->pauth_active) {
5465 tcg_rd = cpu_reg(s, rd);
5466 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5467 } else if (!dc_isar_feature(aa64_pauth, s)) {
5468 goto do_unallocated;
5469 }
5470 break;
5471 case MAP(1, 0x01, 0x01): /* PACIB */
5472 if (s->pauth_active) {
5473 tcg_rd = cpu_reg(s, rd);
5474 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5475 } else if (!dc_isar_feature(aa64_pauth, s)) {
5476 goto do_unallocated;
5477 }
5478 break;
5479 case MAP(1, 0x01, 0x02): /* PACDA */
5480 if (s->pauth_active) {
5481 tcg_rd = cpu_reg(s, rd);
5482 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5483 } else if (!dc_isar_feature(aa64_pauth, s)) {
5484 goto do_unallocated;
5485 }
5486 break;
5487 case MAP(1, 0x01, 0x03): /* PACDB */
5488 if (s->pauth_active) {
5489 tcg_rd = cpu_reg(s, rd);
5490 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5491 } else if (!dc_isar_feature(aa64_pauth, s)) {
5492 goto do_unallocated;
5493 }
5494 break;
5495 case MAP(1, 0x01, 0x04): /* AUTIA */
5496 if (s->pauth_active) {
5497 tcg_rd = cpu_reg(s, rd);
5498 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5499 } else if (!dc_isar_feature(aa64_pauth, s)) {
5500 goto do_unallocated;
5501 }
5502 break;
5503 case MAP(1, 0x01, 0x05): /* AUTIB */
5504 if (s->pauth_active) {
5505 tcg_rd = cpu_reg(s, rd);
5506 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5507 } else if (!dc_isar_feature(aa64_pauth, s)) {
5508 goto do_unallocated;
5509 }
5510 break;
5511 case MAP(1, 0x01, 0x06): /* AUTDA */
5512 if (s->pauth_active) {
5513 tcg_rd = cpu_reg(s, rd);
5514 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5515 } else if (!dc_isar_feature(aa64_pauth, s)) {
5516 goto do_unallocated;
5517 }
5518 break;
5519 case MAP(1, 0x01, 0x07): /* AUTDB */
5520 if (s->pauth_active) {
5521 tcg_rd = cpu_reg(s, rd);
5522 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5523 } else if (!dc_isar_feature(aa64_pauth, s)) {
5524 goto do_unallocated;
5525 }
5526 break;
5527 case MAP(1, 0x01, 0x08): /* PACIZA */
5528 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5529 goto do_unallocated;
5530 } else if (s->pauth_active) {
5531 tcg_rd = cpu_reg(s, rd);
5532 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5533 }
5534 break;
5535 case MAP(1, 0x01, 0x09): /* PACIZB */
5536 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5537 goto do_unallocated;
5538 } else if (s->pauth_active) {
5539 tcg_rd = cpu_reg(s, rd);
5540 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5541 }
5542 break;
5543 case MAP(1, 0x01, 0x0a): /* PACDZA */
5544 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5545 goto do_unallocated;
5546 } else if (s->pauth_active) {
5547 tcg_rd = cpu_reg(s, rd);
5548 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5549 }
5550 break;
5551 case MAP(1, 0x01, 0x0b): /* PACDZB */
5552 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5553 goto do_unallocated;
5554 } else if (s->pauth_active) {
5555 tcg_rd = cpu_reg(s, rd);
5556 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5557 }
5558 break;
5559 case MAP(1, 0x01, 0x0c): /* AUTIZA */
5560 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5561 goto do_unallocated;
5562 } else if (s->pauth_active) {
5563 tcg_rd = cpu_reg(s, rd);
5564 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5565 }
5566 break;
5567 case MAP(1, 0x01, 0x0d): /* AUTIZB */
5568 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5569 goto do_unallocated;
5570 } else if (s->pauth_active) {
5571 tcg_rd = cpu_reg(s, rd);
5572 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5573 }
5574 break;
5575 case MAP(1, 0x01, 0x0e): /* AUTDZA */
5576 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5577 goto do_unallocated;
5578 } else if (s->pauth_active) {
5579 tcg_rd = cpu_reg(s, rd);
5580 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5581 }
5582 break;
5583 case MAP(1, 0x01, 0x0f): /* AUTDZB */
5584 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5585 goto do_unallocated;
5586 } else if (s->pauth_active) {
5587 tcg_rd = cpu_reg(s, rd);
5588 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, tcg_constant_i64(0));
5589 }
5590 break;
5591 case MAP(1, 0x01, 0x10): /* XPACI */
5592 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5593 goto do_unallocated;
5594 } else if (s->pauth_active) {
5595 tcg_rd = cpu_reg(s, rd);
5596 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5597 }
5598 break;
5599 case MAP(1, 0x01, 0x11): /* XPACD */
5600 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5601 goto do_unallocated;
5602 } else if (s->pauth_active) {
5603 tcg_rd = cpu_reg(s, rd);
5604 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5605 }
5606 break;
5607 default:
5608 do_unallocated:
5609 unallocated_encoding(s);
5610 break;
5611 }
5612
5613 #undef MAP
5614 }
5615
5616 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5617 unsigned int rm, unsigned int rn, unsigned int rd)
5618 {
5619 TCGv_i64 tcg_n, tcg_m, tcg_rd;
5620 tcg_rd = cpu_reg(s, rd);
5621
5622 if (!sf && is_signed) {
5623 tcg_n = tcg_temp_new_i64();
5624 tcg_m = tcg_temp_new_i64();
5625 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5626 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5627 } else {
5628 tcg_n = read_cpu_reg(s, rn, sf);
5629 tcg_m = read_cpu_reg(s, rm, sf);
5630 }
5631
5632 if (is_signed) {
5633 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5634 } else {
5635 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5636 }
5637
5638 if (!sf) { /* zero extend final result */
5639 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5640 }
5641 }
5642
5643 /* LSLV, LSRV, ASRV, RORV */
5644 static void handle_shift_reg(DisasContext *s,
5645 enum a64_shift_type shift_type, unsigned int sf,
5646 unsigned int rm, unsigned int rn, unsigned int rd)
5647 {
5648 TCGv_i64 tcg_shift = tcg_temp_new_i64();
5649 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5650 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5651
5652 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5653 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5654 }
5655
5656 /* CRC32[BHWX], CRC32C[BHWX] */
5657 static void handle_crc32(DisasContext *s,
5658 unsigned int sf, unsigned int sz, bool crc32c,
5659 unsigned int rm, unsigned int rn, unsigned int rd)
5660 {
5661 TCGv_i64 tcg_acc, tcg_val;
5662 TCGv_i32 tcg_bytes;
5663
5664 if (!dc_isar_feature(aa64_crc32, s)
5665 || (sf == 1 && sz != 3)
5666 || (sf == 0 && sz == 3)) {
5667 unallocated_encoding(s);
5668 return;
5669 }
5670
5671 if (sz == 3) {
5672 tcg_val = cpu_reg(s, rm);
5673 } else {
5674 uint64_t mask;
5675 switch (sz) {
5676 case 0:
5677 mask = 0xFF;
5678 break;
5679 case 1:
5680 mask = 0xFFFF;
5681 break;
5682 case 2:
5683 mask = 0xFFFFFFFF;
5684 break;
5685 default:
5686 g_assert_not_reached();
5687 }
5688 tcg_val = tcg_temp_new_i64();
5689 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5690 }
5691
5692 tcg_acc = cpu_reg(s, rn);
5693 tcg_bytes = tcg_constant_i32(1 << sz);
5694
5695 if (crc32c) {
5696 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5697 } else {
5698 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5699 }
5700 }
5701
5702 /* Data-processing (2 source)
5703 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5704 * +----+---+---+-----------------+------+--------+------+------+
5705 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5706 * +----+---+---+-----------------+------+--------+------+------+
5707 */
5708 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5709 {
5710 unsigned int sf, rm, opcode, rn, rd, setflag;
5711 sf = extract32(insn, 31, 1);
5712 setflag = extract32(insn, 29, 1);
5713 rm = extract32(insn, 16, 5);
5714 opcode = extract32(insn, 10, 6);
5715 rn = extract32(insn, 5, 5);
5716 rd = extract32(insn, 0, 5);
5717
5718 if (setflag && opcode != 0) {
5719 unallocated_encoding(s);
5720 return;
5721 }
5722
5723 switch (opcode) {
5724 case 0: /* SUBP(S) */
5725 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5726 goto do_unallocated;
5727 } else {
5728 TCGv_i64 tcg_n, tcg_m, tcg_d;
5729
5730 tcg_n = read_cpu_reg_sp(s, rn, true);
5731 tcg_m = read_cpu_reg_sp(s, rm, true);
5732 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5733 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5734 tcg_d = cpu_reg(s, rd);
5735
5736 if (setflag) {
5737 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5738 } else {
5739 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5740 }
5741 }
5742 break;
5743 case 2: /* UDIV */
5744 handle_div(s, false, sf, rm, rn, rd);
5745 break;
5746 case 3: /* SDIV */
5747 handle_div(s, true, sf, rm, rn, rd);
5748 break;
5749 case 4: /* IRG */
5750 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5751 goto do_unallocated;
5752 }
5753 if (s->ata) {
5754 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env,
5755 cpu_reg_sp(s, rn), cpu_reg(s, rm));
5756 } else {
5757 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5758 cpu_reg_sp(s, rn));
5759 }
5760 break;
5761 case 5: /* GMI */
5762 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5763 goto do_unallocated;
5764 } else {
5765 TCGv_i64 t = tcg_temp_new_i64();
5766
5767 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
5768 tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
5769 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
5770 }
5771 break;
5772 case 8: /* LSLV */
5773 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5774 break;
5775 case 9: /* LSRV */
5776 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5777 break;
5778 case 10: /* ASRV */
5779 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5780 break;
5781 case 11: /* RORV */
5782 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5783 break;
5784 case 12: /* PACGA */
5785 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5786 goto do_unallocated;
5787 }
5788 gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5789 cpu_reg(s, rn), cpu_reg_sp(s, rm));
5790 break;
5791 case 16:
5792 case 17:
5793 case 18:
5794 case 19:
5795 case 20:
5796 case 21:
5797 case 22:
5798 case 23: /* CRC32 */
5799 {
5800 int sz = extract32(opcode, 0, 2);
5801 bool crc32c = extract32(opcode, 2, 1);
5802 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5803 break;
5804 }
5805 default:
5806 do_unallocated:
5807 unallocated_encoding(s);
5808 break;
5809 }
5810 }
5811
5812 /*
5813 * Data processing - register
5814 * 31 30 29 28 25 21 20 16 10 0
5815 * +--+---+--+---+-------+-----+-------+-------+---------+
5816 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
5817 * +--+---+--+---+-------+-----+-------+-------+---------+
5818 */
5819 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5820 {
5821 int op0 = extract32(insn, 30, 1);
5822 int op1 = extract32(insn, 28, 1);
5823 int op2 = extract32(insn, 21, 4);
5824 int op3 = extract32(insn, 10, 6);
5825
5826 if (!op1) {
5827 if (op2 & 8) {
5828 if (op2 & 1) {
5829 /* Add/sub (extended register) */
5830 disas_add_sub_ext_reg(s, insn);
5831 } else {
5832 /* Add/sub (shifted register) */
5833 disas_add_sub_reg(s, insn);
5834 }
5835 } else {
5836 /* Logical (shifted register) */
5837 disas_logic_reg(s, insn);
5838 }
5839 return;
5840 }
5841
5842 switch (op2) {
5843 case 0x0:
5844 switch (op3) {
5845 case 0x00: /* Add/subtract (with carry) */
5846 disas_adc_sbc(s, insn);
5847 break;
5848
5849 case 0x01: /* Rotate right into flags */
5850 case 0x21:
5851 disas_rotate_right_into_flags(s, insn);
5852 break;
5853
5854 case 0x02: /* Evaluate into flags */
5855 case 0x12:
5856 case 0x22:
5857 case 0x32:
5858 disas_evaluate_into_flags(s, insn);
5859 break;
5860
5861 default:
5862 goto do_unallocated;
5863 }
5864 break;
5865
5866 case 0x2: /* Conditional compare */
5867 disas_cc(s, insn); /* both imm and reg forms */
5868 break;
5869
5870 case 0x4: /* Conditional select */
5871 disas_cond_select(s, insn);
5872 break;
5873
5874 case 0x6: /* Data-processing */
5875 if (op0) { /* (1 source) */
5876 disas_data_proc_1src(s, insn);
5877 } else { /* (2 source) */
5878 disas_data_proc_2src(s, insn);
5879 }
5880 break;
5881 case 0x8 ... 0xf: /* (3 source) */
5882 disas_data_proc_3src(s, insn);
5883 break;
5884
5885 default:
5886 do_unallocated:
5887 unallocated_encoding(s);
5888 break;
5889 }
5890 }
5891
5892 static void handle_fp_compare(DisasContext *s, int size,
5893 unsigned int rn, unsigned int rm,
5894 bool cmp_with_zero, bool signal_all_nans)
5895 {
5896 TCGv_i64 tcg_flags = tcg_temp_new_i64();
5897 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
5898
5899 if (size == MO_64) {
5900 TCGv_i64 tcg_vn, tcg_vm;
5901
5902 tcg_vn = read_fp_dreg(s, rn);
5903 if (cmp_with_zero) {
5904 tcg_vm = tcg_constant_i64(0);
5905 } else {
5906 tcg_vm = read_fp_dreg(s, rm);
5907 }
5908 if (signal_all_nans) {
5909 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5910 } else {
5911 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5912 }
5913 } else {
5914 TCGv_i32 tcg_vn = tcg_temp_new_i32();
5915 TCGv_i32 tcg_vm = tcg_temp_new_i32();
5916
5917 read_vec_element_i32(s, tcg_vn, rn, 0, size);
5918 if (cmp_with_zero) {
5919 tcg_gen_movi_i32(tcg_vm, 0);
5920 } else {
5921 read_vec_element_i32(s, tcg_vm, rm, 0, size);
5922 }
5923
5924 switch (size) {
5925 case MO_32:
5926 if (signal_all_nans) {
5927 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5928 } else {
5929 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5930 }
5931 break;
5932 case MO_16:
5933 if (signal_all_nans) {
5934 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5935 } else {
5936 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5937 }
5938 break;
5939 default:
5940 g_assert_not_reached();
5941 }
5942 }
5943
5944 gen_set_nzcv(tcg_flags);
5945 }
5946
5947 /* Floating point compare
5948 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
5949 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5950 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
5951 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5952 */
5953 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5954 {
5955 unsigned int mos, type, rm, op, rn, opc, op2r;
5956 int size;
5957
5958 mos = extract32(insn, 29, 3);
5959 type = extract32(insn, 22, 2);
5960 rm = extract32(insn, 16, 5);
5961 op = extract32(insn, 14, 2);
5962 rn = extract32(insn, 5, 5);
5963 opc = extract32(insn, 3, 2);
5964 op2r = extract32(insn, 0, 3);
5965
5966 if (mos || op || op2r) {
5967 unallocated_encoding(s);
5968 return;
5969 }
5970
5971 switch (type) {
5972 case 0:
5973 size = MO_32;
5974 break;
5975 case 1:
5976 size = MO_64;
5977 break;
5978 case 3:
5979 size = MO_16;
5980 if (dc_isar_feature(aa64_fp16, s)) {
5981 break;
5982 }
5983 /* fallthru */
5984 default:
5985 unallocated_encoding(s);
5986 return;
5987 }
5988
5989 if (!fp_access_check(s)) {
5990 return;
5991 }
5992
5993 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5994 }
5995
5996 /* Floating point conditional compare
5997 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5998 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5999 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
6000 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6001 */
6002 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
6003 {
6004 unsigned int mos, type, rm, cond, rn, op, nzcv;
6005 TCGLabel *label_continue = NULL;
6006 int size;
6007
6008 mos = extract32(insn, 29, 3);
6009 type = extract32(insn, 22, 2);
6010 rm = extract32(insn, 16, 5);
6011 cond = extract32(insn, 12, 4);
6012 rn = extract32(insn, 5, 5);
6013 op = extract32(insn, 4, 1);
6014 nzcv = extract32(insn, 0, 4);
6015
6016 if (mos) {
6017 unallocated_encoding(s);
6018 return;
6019 }
6020
6021 switch (type) {
6022 case 0:
6023 size = MO_32;
6024 break;
6025 case 1:
6026 size = MO_64;
6027 break;
6028 case 3:
6029 size = MO_16;
6030 if (dc_isar_feature(aa64_fp16, s)) {
6031 break;
6032 }
6033 /* fallthru */
6034 default:
6035 unallocated_encoding(s);
6036 return;
6037 }
6038
6039 if (!fp_access_check(s)) {
6040 return;
6041 }
6042
6043 if (cond < 0x0e) { /* not always */
6044 TCGLabel *label_match = gen_new_label();
6045 label_continue = gen_new_label();
6046 arm_gen_test_cc(cond, label_match);
6047 /* nomatch: */
6048 gen_set_nzcv(tcg_constant_i64(nzcv << 28));
6049 tcg_gen_br(label_continue);
6050 gen_set_label(label_match);
6051 }
6052
6053 handle_fp_compare(s, size, rn, rm, false, op);
6054
6055 if (cond < 0x0e) {
6056 gen_set_label(label_continue);
6057 }
6058 }
6059
6060 /* Floating point conditional select
6061 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6062 * +---+---+---+-----------+------+---+------+------+-----+------+------+
6063 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
6064 * +---+---+---+-----------+------+---+------+------+-----+------+------+
6065 */
6066 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6067 {
6068 unsigned int mos, type, rm, cond, rn, rd;
6069 TCGv_i64 t_true, t_false;
6070 DisasCompare64 c;
6071 MemOp sz;
6072
6073 mos = extract32(insn, 29, 3);
6074 type = extract32(insn, 22, 2);
6075 rm = extract32(insn, 16, 5);
6076 cond = extract32(insn, 12, 4);
6077 rn = extract32(insn, 5, 5);
6078 rd = extract32(insn, 0, 5);
6079
6080 if (mos) {
6081 unallocated_encoding(s);
6082 return;
6083 }
6084
6085 switch (type) {
6086 case 0:
6087 sz = MO_32;
6088 break;
6089 case 1:
6090 sz = MO_64;
6091 break;
6092 case 3:
6093 sz = MO_16;
6094 if (dc_isar_feature(aa64_fp16, s)) {
6095 break;
6096 }
6097 /* fallthru */
6098 default:
6099 unallocated_encoding(s);
6100 return;
6101 }
6102
6103 if (!fp_access_check(s)) {
6104 return;
6105 }
6106
6107 /* Zero extend sreg & hreg inputs to 64 bits now. */
6108 t_true = tcg_temp_new_i64();
6109 t_false = tcg_temp_new_i64();
6110 read_vec_element(s, t_true, rn, 0, sz);
6111 read_vec_element(s, t_false, rm, 0, sz);
6112
6113 a64_test_cc(&c, cond);
6114 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6115 t_true, t_false);
6116
6117 /* Note that sregs & hregs write back zeros to the high bits,
6118 and we've already done the zero-extension. */
6119 write_fp_dreg(s, rd, t_true);
6120 }
6121
6122 /* Floating-point data-processing (1 source) - half precision */
6123 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6124 {
6125 TCGv_ptr fpst = NULL;
6126 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6127 TCGv_i32 tcg_res = tcg_temp_new_i32();
6128
6129 switch (opcode) {
6130 case 0x0: /* FMOV */
6131 tcg_gen_mov_i32(tcg_res, tcg_op);
6132 break;
6133 case 0x1: /* FABS */
6134 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
6135 break;
6136 case 0x2: /* FNEG */
6137 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
6138 break;
6139 case 0x3: /* FSQRT */
6140 fpst = fpstatus_ptr(FPST_FPCR_F16);
6141 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6142 break;
6143 case 0x8: /* FRINTN */
6144 case 0x9: /* FRINTP */
6145 case 0xa: /* FRINTM */
6146 case 0xb: /* FRINTZ */
6147 case 0xc: /* FRINTA */
6148 {
6149 TCGv_i32 tcg_rmode;
6150
6151 fpst = fpstatus_ptr(FPST_FPCR_F16);
6152 tcg_rmode = gen_set_rmode(opcode & 7, fpst);
6153 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6154 gen_restore_rmode(tcg_rmode, fpst);
6155 break;
6156 }
6157 case 0xe: /* FRINTX */
6158 fpst = fpstatus_ptr(FPST_FPCR_F16);
6159 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6160 break;
6161 case 0xf: /* FRINTI */
6162 fpst = fpstatus_ptr(FPST_FPCR_F16);
6163 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6164 break;
6165 default:
6166 g_assert_not_reached();
6167 }
6168
6169 write_fp_sreg(s, rd, tcg_res);
6170 }
6171
6172 /* Floating-point data-processing (1 source) - single precision */
6173 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6174 {
6175 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6176 TCGv_i32 tcg_op, tcg_res;
6177 TCGv_ptr fpst;
6178 int rmode = -1;
6179
6180 tcg_op = read_fp_sreg(s, rn);
6181 tcg_res = tcg_temp_new_i32();
6182
6183 switch (opcode) {
6184 case 0x0: /* FMOV */
6185 tcg_gen_mov_i32(tcg_res, tcg_op);
6186 goto done;
6187 case 0x1: /* FABS */
6188 gen_helper_vfp_abss(tcg_res, tcg_op);
6189 goto done;
6190 case 0x2: /* FNEG */
6191 gen_helper_vfp_negs(tcg_res, tcg_op);
6192 goto done;
6193 case 0x3: /* FSQRT */
6194 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
6195 goto done;
6196 case 0x6: /* BFCVT */
6197 gen_fpst = gen_helper_bfcvt;
6198 break;
6199 case 0x8: /* FRINTN */
6200 case 0x9: /* FRINTP */
6201 case 0xa: /* FRINTM */
6202 case 0xb: /* FRINTZ */
6203 case 0xc: /* FRINTA */
6204 rmode = opcode & 7;
6205 gen_fpst = gen_helper_rints;
6206 break;
6207 case 0xe: /* FRINTX */
6208 gen_fpst = gen_helper_rints_exact;
6209 break;
6210 case 0xf: /* FRINTI */
6211 gen_fpst = gen_helper_rints;
6212 break;
6213 case 0x10: /* FRINT32Z */
6214 rmode = FPROUNDING_ZERO;
6215 gen_fpst = gen_helper_frint32_s;
6216 break;
6217 case 0x11: /* FRINT32X */
6218 gen_fpst = gen_helper_frint32_s;
6219 break;
6220 case 0x12: /* FRINT64Z */
6221 rmode = FPROUNDING_ZERO;
6222 gen_fpst = gen_helper_frint64_s;
6223 break;
6224 case 0x13: /* FRINT64X */
6225 gen_fpst = gen_helper_frint64_s;
6226 break;
6227 default:
6228 g_assert_not_reached();
6229 }
6230
6231 fpst = fpstatus_ptr(FPST_FPCR);
6232 if (rmode >= 0) {
6233 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6234 gen_fpst(tcg_res, tcg_op, fpst);
6235 gen_restore_rmode(tcg_rmode, fpst);
6236 } else {
6237 gen_fpst(tcg_res, tcg_op, fpst);
6238 }
6239
6240 done:
6241 write_fp_sreg(s, rd, tcg_res);
6242 }
6243
6244 /* Floating-point data-processing (1 source) - double precision */
6245 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6246 {
6247 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6248 TCGv_i64 tcg_op, tcg_res;
6249 TCGv_ptr fpst;
6250 int rmode = -1;
6251
6252 switch (opcode) {
6253 case 0x0: /* FMOV */
6254 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6255 return;
6256 }
6257
6258 tcg_op = read_fp_dreg(s, rn);
6259 tcg_res = tcg_temp_new_i64();
6260
6261 switch (opcode) {
6262 case 0x1: /* FABS */
6263 gen_helper_vfp_absd(tcg_res, tcg_op);
6264 goto done;
6265 case 0x2: /* FNEG */
6266 gen_helper_vfp_negd(tcg_res, tcg_op);
6267 goto done;
6268 case 0x3: /* FSQRT */
6269 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
6270 goto done;
6271 case 0x8: /* FRINTN */
6272 case 0x9: /* FRINTP */
6273 case 0xa: /* FRINTM */
6274 case 0xb: /* FRINTZ */
6275 case 0xc: /* FRINTA */
6276 rmode = opcode & 7;
6277 gen_fpst = gen_helper_rintd;
6278 break;
6279 case 0xe: /* FRINTX */
6280 gen_fpst = gen_helper_rintd_exact;
6281 break;
6282 case 0xf: /* FRINTI */
6283 gen_fpst = gen_helper_rintd;
6284 break;
6285 case 0x10: /* FRINT32Z */
6286 rmode = FPROUNDING_ZERO;
6287 gen_fpst = gen_helper_frint32_d;
6288 break;
6289 case 0x11: /* FRINT32X */
6290 gen_fpst = gen_helper_frint32_d;
6291 break;
6292 case 0x12: /* FRINT64Z */
6293 rmode = FPROUNDING_ZERO;
6294 gen_fpst = gen_helper_frint64_d;
6295 break;
6296 case 0x13: /* FRINT64X */
6297 gen_fpst = gen_helper_frint64_d;
6298 break;
6299 default:
6300 g_assert_not_reached();
6301 }
6302
6303 fpst = fpstatus_ptr(FPST_FPCR);
6304 if (rmode >= 0) {
6305 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6306 gen_fpst(tcg_res, tcg_op, fpst);
6307 gen_restore_rmode(tcg_rmode, fpst);
6308 } else {
6309 gen_fpst(tcg_res, tcg_op, fpst);
6310 }
6311
6312 done:
6313 write_fp_dreg(s, rd, tcg_res);
6314 }
6315
6316 static void handle_fp_fcvt(DisasContext *s, int opcode,
6317 int rd, int rn, int dtype, int ntype)
6318 {
6319 switch (ntype) {
6320 case 0x0:
6321 {
6322 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6323 if (dtype == 1) {
6324 /* Single to double */
6325 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6326 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
6327 write_fp_dreg(s, rd, tcg_rd);
6328 } else {
6329 /* Single to half */
6330 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6331 TCGv_i32 ahp = get_ahp_flag();
6332 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6333
6334 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6335 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6336 write_fp_sreg(s, rd, tcg_rd);
6337 }
6338 break;
6339 }
6340 case 0x1:
6341 {
6342 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6343 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6344 if (dtype == 0) {
6345 /* Double to single */
6346 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
6347 } else {
6348 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6349 TCGv_i32 ahp = get_ahp_flag();
6350 /* Double to half */
6351 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6352 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6353 }
6354 write_fp_sreg(s, rd, tcg_rd);
6355 break;
6356 }
6357 case 0x3:
6358 {
6359 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6360 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6361 TCGv_i32 tcg_ahp = get_ahp_flag();
6362 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6363 if (dtype == 0) {
6364 /* Half to single */
6365 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6366 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6367 write_fp_sreg(s, rd, tcg_rd);
6368 } else {
6369 /* Half to double */
6370 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6371 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6372 write_fp_dreg(s, rd, tcg_rd);
6373 }
6374 break;
6375 }
6376 default:
6377 g_assert_not_reached();
6378 }
6379 }
6380
6381 /* Floating point data-processing (1 source)
6382 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
6383 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6384 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
6385 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6386 */
6387 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6388 {
6389 int mos = extract32(insn, 29, 3);
6390 int type = extract32(insn, 22, 2);
6391 int opcode = extract32(insn, 15, 6);
6392 int rn = extract32(insn, 5, 5);
6393 int rd = extract32(insn, 0, 5);
6394
6395 if (mos) {
6396 goto do_unallocated;
6397 }
6398
6399 switch (opcode) {
6400 case 0x4: case 0x5: case 0x7:
6401 {
6402 /* FCVT between half, single and double precision */
6403 int dtype = extract32(opcode, 0, 2);
6404 if (type == 2 || dtype == type) {
6405 goto do_unallocated;
6406 }
6407 if (!fp_access_check(s)) {
6408 return;
6409 }
6410
6411 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6412 break;
6413 }
6414
6415 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6416 if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6417 goto do_unallocated;
6418 }
6419 /* fall through */
6420 case 0x0 ... 0x3:
6421 case 0x8 ... 0xc:
6422 case 0xe ... 0xf:
6423 /* 32-to-32 and 64-to-64 ops */
6424 switch (type) {
6425 case 0:
6426 if (!fp_access_check(s)) {
6427 return;
6428 }
6429 handle_fp_1src_single(s, opcode, rd, rn);
6430 break;
6431 case 1:
6432 if (!fp_access_check(s)) {
6433 return;
6434 }
6435 handle_fp_1src_double(s, opcode, rd, rn);
6436 break;
6437 case 3:
6438 if (!dc_isar_feature(aa64_fp16, s)) {
6439 goto do_unallocated;
6440 }
6441
6442 if (!fp_access_check(s)) {
6443 return;
6444 }
6445 handle_fp_1src_half(s, opcode, rd, rn);
6446 break;
6447 default:
6448 goto do_unallocated;
6449 }
6450 break;
6451
6452 case 0x6:
6453 switch (type) {
6454 case 1: /* BFCVT */
6455 if (!dc_isar_feature(aa64_bf16, s)) {
6456 goto do_unallocated;
6457 }
6458 if (!fp_access_check(s)) {
6459 return;
6460 }
6461 handle_fp_1src_single(s, opcode, rd, rn);
6462 break;
6463 default:
6464 goto do_unallocated;
6465 }
6466 break;
6467
6468 default:
6469 do_unallocated:
6470 unallocated_encoding(s);
6471 break;
6472 }
6473 }
6474
6475 /* Floating-point data-processing (2 source) - single precision */
6476 static void handle_fp_2src_single(DisasContext *s, int opcode,
6477 int rd, int rn, int rm)
6478 {
6479 TCGv_i32 tcg_op1;
6480 TCGv_i32 tcg_op2;
6481 TCGv_i32 tcg_res;
6482 TCGv_ptr fpst;
6483
6484 tcg_res = tcg_temp_new_i32();
6485 fpst = fpstatus_ptr(FPST_FPCR);
6486 tcg_op1 = read_fp_sreg(s, rn);
6487 tcg_op2 = read_fp_sreg(s, rm);
6488
6489 switch (opcode) {
6490 case 0x0: /* FMUL */
6491 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6492 break;
6493 case 0x1: /* FDIV */
6494 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6495 break;
6496 case 0x2: /* FADD */
6497 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6498 break;
6499 case 0x3: /* FSUB */
6500 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6501 break;
6502 case 0x4: /* FMAX */
6503 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6504 break;
6505 case 0x5: /* FMIN */
6506 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6507 break;
6508 case 0x6: /* FMAXNM */
6509 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6510 break;
6511 case 0x7: /* FMINNM */
6512 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6513 break;
6514 case 0x8: /* FNMUL */
6515 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6516 gen_helper_vfp_negs(tcg_res, tcg_res);
6517 break;
6518 }
6519
6520 write_fp_sreg(s, rd, tcg_res);
6521 }
6522
6523 /* Floating-point data-processing (2 source) - double precision */
6524 static void handle_fp_2src_double(DisasContext *s, int opcode,
6525 int rd, int rn, int rm)
6526 {
6527 TCGv_i64 tcg_op1;
6528 TCGv_i64 tcg_op2;
6529 TCGv_i64 tcg_res;
6530 TCGv_ptr fpst;
6531
6532 tcg_res = tcg_temp_new_i64();
6533 fpst = fpstatus_ptr(FPST_FPCR);
6534 tcg_op1 = read_fp_dreg(s, rn);
6535 tcg_op2 = read_fp_dreg(s, rm);
6536
6537 switch (opcode) {
6538 case 0x0: /* FMUL */
6539 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6540 break;
6541 case 0x1: /* FDIV */
6542 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6543 break;
6544 case 0x2: /* FADD */
6545 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6546 break;
6547 case 0x3: /* FSUB */
6548 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6549 break;
6550 case 0x4: /* FMAX */
6551 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6552 break;
6553 case 0x5: /* FMIN */
6554 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6555 break;
6556 case 0x6: /* FMAXNM */
6557 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6558 break;
6559 case 0x7: /* FMINNM */
6560 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6561 break;
6562 case 0x8: /* FNMUL */
6563 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6564 gen_helper_vfp_negd(tcg_res, tcg_res);
6565 break;
6566 }
6567
6568 write_fp_dreg(s, rd, tcg_res);
6569 }
6570
6571 /* Floating-point data-processing (2 source) - half precision */
6572 static void handle_fp_2src_half(DisasContext *s, int opcode,
6573 int rd, int rn, int rm)
6574 {
6575 TCGv_i32 tcg_op1;
6576 TCGv_i32 tcg_op2;
6577 TCGv_i32 tcg_res;
6578 TCGv_ptr fpst;
6579
6580 tcg_res = tcg_temp_new_i32();
6581 fpst = fpstatus_ptr(FPST_FPCR_F16);
6582 tcg_op1 = read_fp_hreg(s, rn);
6583 tcg_op2 = read_fp_hreg(s, rm);
6584
6585 switch (opcode) {
6586 case 0x0: /* FMUL */
6587 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6588 break;
6589 case 0x1: /* FDIV */
6590 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6591 break;
6592 case 0x2: /* FADD */
6593 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6594 break;
6595 case 0x3: /* FSUB */
6596 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6597 break;
6598 case 0x4: /* FMAX */
6599 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6600 break;
6601 case 0x5: /* FMIN */
6602 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6603 break;
6604 case 0x6: /* FMAXNM */
6605 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6606 break;
6607 case 0x7: /* FMINNM */
6608 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6609 break;
6610 case 0x8: /* FNMUL */
6611 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6612 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6613 break;
6614 default:
6615 g_assert_not_reached();
6616 }
6617
6618 write_fp_sreg(s, rd, tcg_res);
6619 }
6620
6621 /* Floating point data-processing (2 source)
6622 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6623 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6624 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
6625 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6626 */
6627 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6628 {
6629 int mos = extract32(insn, 29, 3);
6630 int type = extract32(insn, 22, 2);
6631 int rd = extract32(insn, 0, 5);
6632 int rn = extract32(insn, 5, 5);
6633 int rm = extract32(insn, 16, 5);
6634 int opcode = extract32(insn, 12, 4);
6635
6636 if (opcode > 8 || mos) {
6637 unallocated_encoding(s);
6638 return;
6639 }
6640
6641 switch (type) {
6642 case 0:
6643 if (!fp_access_check(s)) {
6644 return;
6645 }
6646 handle_fp_2src_single(s, opcode, rd, rn, rm);
6647 break;
6648 case 1:
6649 if (!fp_access_check(s)) {
6650 return;
6651 }
6652 handle_fp_2src_double(s, opcode, rd, rn, rm);
6653 break;
6654 case 3:
6655 if (!dc_isar_feature(aa64_fp16, s)) {
6656 unallocated_encoding(s);
6657 return;
6658 }
6659 if (!fp_access_check(s)) {
6660 return;
6661 }
6662 handle_fp_2src_half(s, opcode, rd, rn, rm);
6663 break;
6664 default:
6665 unallocated_encoding(s);
6666 }
6667 }
6668
6669 /* Floating-point data-processing (3 source) - single precision */
6670 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6671 int rd, int rn, int rm, int ra)
6672 {
6673 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6674 TCGv_i32 tcg_res = tcg_temp_new_i32();
6675 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6676
6677 tcg_op1 = read_fp_sreg(s, rn);
6678 tcg_op2 = read_fp_sreg(s, rm);
6679 tcg_op3 = read_fp_sreg(s, ra);
6680
6681 /* These are fused multiply-add, and must be done as one
6682 * floating point operation with no rounding between the
6683 * multiplication and addition steps.
6684 * NB that doing the negations here as separate steps is
6685 * correct : an input NaN should come out with its sign bit
6686 * flipped if it is a negated-input.
6687 */
6688 if (o1 == true) {
6689 gen_helper_vfp_negs(tcg_op3, tcg_op3);
6690 }
6691
6692 if (o0 != o1) {
6693 gen_helper_vfp_negs(tcg_op1, tcg_op1);
6694 }
6695
6696 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6697
6698 write_fp_sreg(s, rd, tcg_res);
6699 }
6700
6701 /* Floating-point data-processing (3 source) - double precision */
6702 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6703 int rd, int rn, int rm, int ra)
6704 {
6705 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6706 TCGv_i64 tcg_res = tcg_temp_new_i64();
6707 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6708
6709 tcg_op1 = read_fp_dreg(s, rn);
6710 tcg_op2 = read_fp_dreg(s, rm);
6711 tcg_op3 = read_fp_dreg(s, ra);
6712
6713 /* These are fused multiply-add, and must be done as one
6714 * floating point operation with no rounding between the
6715 * multiplication and addition steps.
6716 * NB that doing the negations here as separate steps is
6717 * correct : an input NaN should come out with its sign bit
6718 * flipped if it is a negated-input.
6719 */
6720 if (o1 == true) {
6721 gen_helper_vfp_negd(tcg_op3, tcg_op3);
6722 }
6723
6724 if (o0 != o1) {
6725 gen_helper_vfp_negd(tcg_op1, tcg_op1);
6726 }
6727
6728 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6729
6730 write_fp_dreg(s, rd, tcg_res);
6731 }
6732
6733 /* Floating-point data-processing (3 source) - half precision */
6734 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6735 int rd, int rn, int rm, int ra)
6736 {
6737 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6738 TCGv_i32 tcg_res = tcg_temp_new_i32();
6739 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6740
6741 tcg_op1 = read_fp_hreg(s, rn);
6742 tcg_op2 = read_fp_hreg(s, rm);
6743 tcg_op3 = read_fp_hreg(s, ra);
6744
6745 /* These are fused multiply-add, and must be done as one
6746 * floating point operation with no rounding between the
6747 * multiplication and addition steps.
6748 * NB that doing the negations here as separate steps is
6749 * correct : an input NaN should come out with its sign bit
6750 * flipped if it is a negated-input.
6751 */
6752 if (o1 == true) {
6753 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6754 }
6755
6756 if (o0 != o1) {
6757 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6758 }
6759
6760 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6761
6762 write_fp_sreg(s, rd, tcg_res);
6763 }
6764
6765 /* Floating point data-processing (3 source)
6766 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6767 * +---+---+---+-----------+------+----+------+----+------+------+------+
6768 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6769 * +---+---+---+-----------+------+----+------+----+------+------+------+
6770 */
6771 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6772 {
6773 int mos = extract32(insn, 29, 3);
6774 int type = extract32(insn, 22, 2);
6775 int rd = extract32(insn, 0, 5);
6776 int rn = extract32(insn, 5, 5);
6777 int ra = extract32(insn, 10, 5);
6778 int rm = extract32(insn, 16, 5);
6779 bool o0 = extract32(insn, 15, 1);
6780 bool o1 = extract32(insn, 21, 1);
6781
6782 if (mos) {
6783 unallocated_encoding(s);
6784 return;
6785 }
6786
6787 switch (type) {
6788 case 0:
6789 if (!fp_access_check(s)) {
6790 return;
6791 }
6792 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6793 break;
6794 case 1:
6795 if (!fp_access_check(s)) {
6796 return;
6797 }
6798 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6799 break;
6800 case 3:
6801 if (!dc_isar_feature(aa64_fp16, s)) {
6802 unallocated_encoding(s);
6803 return;
6804 }
6805 if (!fp_access_check(s)) {
6806 return;
6807 }
6808 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6809 break;
6810 default:
6811 unallocated_encoding(s);
6812 }
6813 }
6814
6815 /* Floating point immediate
6816 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
6817 * +---+---+---+-----------+------+---+------------+-------+------+------+
6818 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
6819 * +---+---+---+-----------+------+---+------------+-------+------+------+
6820 */
6821 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6822 {
6823 int rd = extract32(insn, 0, 5);
6824 int imm5 = extract32(insn, 5, 5);
6825 int imm8 = extract32(insn, 13, 8);
6826 int type = extract32(insn, 22, 2);
6827 int mos = extract32(insn, 29, 3);
6828 uint64_t imm;
6829 MemOp sz;
6830
6831 if (mos || imm5) {
6832 unallocated_encoding(s);
6833 return;
6834 }
6835
6836 switch (type) {
6837 case 0:
6838 sz = MO_32;
6839 break;
6840 case 1:
6841 sz = MO_64;
6842 break;
6843 case 3:
6844 sz = MO_16;
6845 if (dc_isar_feature(aa64_fp16, s)) {
6846 break;
6847 }
6848 /* fallthru */
6849 default:
6850 unallocated_encoding(s);
6851 return;
6852 }
6853
6854 if (!fp_access_check(s)) {
6855 return;
6856 }
6857
6858 imm = vfp_expand_imm(sz, imm8);
6859 write_fp_dreg(s, rd, tcg_constant_i64(imm));
6860 }
6861
6862 /* Handle floating point <=> fixed point conversions. Note that we can
6863 * also deal with fp <=> integer conversions as a special case (scale == 64)
6864 * OPTME: consider handling that special case specially or at least skipping
6865 * the call to scalbn in the helpers for zero shifts.
6866 */
6867 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6868 bool itof, int rmode, int scale, int sf, int type)
6869 {
6870 bool is_signed = !(opcode & 1);
6871 TCGv_ptr tcg_fpstatus;
6872 TCGv_i32 tcg_shift, tcg_single;
6873 TCGv_i64 tcg_double;
6874
6875 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
6876
6877 tcg_shift = tcg_constant_i32(64 - scale);
6878
6879 if (itof) {
6880 TCGv_i64 tcg_int = cpu_reg(s, rn);
6881 if (!sf) {
6882 TCGv_i64 tcg_extend = tcg_temp_new_i64();
6883
6884 if (is_signed) {
6885 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6886 } else {
6887 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6888 }
6889
6890 tcg_int = tcg_extend;
6891 }
6892
6893 switch (type) {
6894 case 1: /* float64 */
6895 tcg_double = tcg_temp_new_i64();
6896 if (is_signed) {
6897 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6898 tcg_shift, tcg_fpstatus);
6899 } else {
6900 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6901 tcg_shift, tcg_fpstatus);
6902 }
6903 write_fp_dreg(s, rd, tcg_double);
6904 break;
6905
6906 case 0: /* float32 */
6907 tcg_single = tcg_temp_new_i32();
6908 if (is_signed) {
6909 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6910 tcg_shift, tcg_fpstatus);
6911 } else {
6912 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6913 tcg_shift, tcg_fpstatus);
6914 }
6915 write_fp_sreg(s, rd, tcg_single);
6916 break;
6917
6918 case 3: /* float16 */
6919 tcg_single = tcg_temp_new_i32();
6920 if (is_signed) {
6921 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6922 tcg_shift, tcg_fpstatus);
6923 } else {
6924 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6925 tcg_shift, tcg_fpstatus);
6926 }
6927 write_fp_sreg(s, rd, tcg_single);
6928 break;
6929
6930 default:
6931 g_assert_not_reached();
6932 }
6933 } else {
6934 TCGv_i64 tcg_int = cpu_reg(s, rd);
6935 TCGv_i32 tcg_rmode;
6936
6937 if (extract32(opcode, 2, 1)) {
6938 /* There are too many rounding modes to all fit into rmode,
6939 * so FCVTA[US] is a special case.
6940 */
6941 rmode = FPROUNDING_TIEAWAY;
6942 }
6943
6944 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
6945
6946 switch (type) {
6947 case 1: /* float64 */
6948 tcg_double = read_fp_dreg(s, rn);
6949 if (is_signed) {
6950 if (!sf) {
6951 gen_helper_vfp_tosld(tcg_int, tcg_double,
6952 tcg_shift, tcg_fpstatus);
6953 } else {
6954 gen_helper_vfp_tosqd(tcg_int, tcg_double,
6955 tcg_shift, tcg_fpstatus);
6956 }
6957 } else {
6958 if (!sf) {
6959 gen_helper_vfp_tould(tcg_int, tcg_double,
6960 tcg_shift, tcg_fpstatus);
6961 } else {
6962 gen_helper_vfp_touqd(tcg_int, tcg_double,
6963 tcg_shift, tcg_fpstatus);
6964 }
6965 }
6966 if (!sf) {
6967 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6968 }
6969 break;
6970
6971 case 0: /* float32 */
6972 tcg_single = read_fp_sreg(s, rn);
6973 if (sf) {
6974 if (is_signed) {
6975 gen_helper_vfp_tosqs(tcg_int, tcg_single,
6976 tcg_shift, tcg_fpstatus);
6977 } else {
6978 gen_helper_vfp_touqs(tcg_int, tcg_single,
6979 tcg_shift, tcg_fpstatus);
6980 }
6981 } else {
6982 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6983 if (is_signed) {
6984 gen_helper_vfp_tosls(tcg_dest, tcg_single,
6985 tcg_shift, tcg_fpstatus);
6986 } else {
6987 gen_helper_vfp_touls(tcg_dest, tcg_single,
6988 tcg_shift, tcg_fpstatus);
6989 }
6990 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6991 }
6992 break;
6993
6994 case 3: /* float16 */
6995 tcg_single = read_fp_sreg(s, rn);
6996 if (sf) {
6997 if (is_signed) {
6998 gen_helper_vfp_tosqh(tcg_int, tcg_single,
6999 tcg_shift, tcg_fpstatus);
7000 } else {
7001 gen_helper_vfp_touqh(tcg_int, tcg_single,
7002 tcg_shift, tcg_fpstatus);
7003 }
7004 } else {
7005 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7006 if (is_signed) {
7007 gen_helper_vfp_toslh(tcg_dest, tcg_single,
7008 tcg_shift, tcg_fpstatus);
7009 } else {
7010 gen_helper_vfp_toulh(tcg_dest, tcg_single,
7011 tcg_shift, tcg_fpstatus);
7012 }
7013 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7014 }
7015 break;
7016
7017 default:
7018 g_assert_not_reached();
7019 }
7020
7021 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
7022 }
7023 }
7024
7025 /* Floating point <-> fixed point conversions
7026 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7027 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7028 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
7029 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7030 */
7031 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7032 {
7033 int rd = extract32(insn, 0, 5);
7034 int rn = extract32(insn, 5, 5);
7035 int scale = extract32(insn, 10, 6);
7036 int opcode = extract32(insn, 16, 3);
7037 int rmode = extract32(insn, 19, 2);
7038 int type = extract32(insn, 22, 2);
7039 bool sbit = extract32(insn, 29, 1);
7040 bool sf = extract32(insn, 31, 1);
7041 bool itof;
7042
7043 if (sbit || (!sf && scale < 32)) {
7044 unallocated_encoding(s);
7045 return;
7046 }
7047
7048 switch (type) {
7049 case 0: /* float32 */
7050 case 1: /* float64 */
7051 break;
7052 case 3: /* float16 */
7053 if (dc_isar_feature(aa64_fp16, s)) {
7054 break;
7055 }
7056 /* fallthru */
7057 default:
7058 unallocated_encoding(s);
7059 return;
7060 }
7061
7062 switch ((rmode << 3) | opcode) {
7063 case 0x2: /* SCVTF */
7064 case 0x3: /* UCVTF */
7065 itof = true;
7066 break;
7067 case 0x18: /* FCVTZS */
7068 case 0x19: /* FCVTZU */
7069 itof = false;
7070 break;
7071 default:
7072 unallocated_encoding(s);
7073 return;
7074 }
7075
7076 if (!fp_access_check(s)) {
7077 return;
7078 }
7079
7080 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7081 }
7082
7083 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7084 {
7085 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7086 * without conversion.
7087 */
7088
7089 if (itof) {
7090 TCGv_i64 tcg_rn = cpu_reg(s, rn);
7091 TCGv_i64 tmp;
7092
7093 switch (type) {
7094 case 0:
7095 /* 32 bit */
7096 tmp = tcg_temp_new_i64();
7097 tcg_gen_ext32u_i64(tmp, tcg_rn);
7098 write_fp_dreg(s, rd, tmp);
7099 break;
7100 case 1:
7101 /* 64 bit */
7102 write_fp_dreg(s, rd, tcg_rn);
7103 break;
7104 case 2:
7105 /* 64 bit to top half. */
7106 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
7107 clear_vec_high(s, true, rd);
7108 break;
7109 case 3:
7110 /* 16 bit */
7111 tmp = tcg_temp_new_i64();
7112 tcg_gen_ext16u_i64(tmp, tcg_rn);
7113 write_fp_dreg(s, rd, tmp);
7114 break;
7115 default:
7116 g_assert_not_reached();
7117 }
7118 } else {
7119 TCGv_i64 tcg_rd = cpu_reg(s, rd);
7120
7121 switch (type) {
7122 case 0:
7123 /* 32 bit */
7124 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
7125 break;
7126 case 1:
7127 /* 64 bit */
7128 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
7129 break;
7130 case 2:
7131 /* 64 bits from top half */
7132 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
7133 break;
7134 case 3:
7135 /* 16 bit */
7136 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
7137 break;
7138 default:
7139 g_assert_not_reached();
7140 }
7141 }
7142 }
7143
7144 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7145 {
7146 TCGv_i64 t = read_fp_dreg(s, rn);
7147 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7148
7149 gen_helper_fjcvtzs(t, t, fpstatus);
7150
7151 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7152 tcg_gen_extrh_i64_i32(cpu_ZF, t);
7153 tcg_gen_movi_i32(cpu_CF, 0);
7154 tcg_gen_movi_i32(cpu_NF, 0);
7155 tcg_gen_movi_i32(cpu_VF, 0);
7156 }
7157
7158 /* Floating point <-> integer conversions
7159 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7160 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7161 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7162 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7163 */
7164 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7165 {
7166 int rd = extract32(insn, 0, 5);
7167 int rn = extract32(insn, 5, 5);
7168 int opcode = extract32(insn, 16, 3);
7169 int rmode = extract32(insn, 19, 2);
7170 int type = extract32(insn, 22, 2);
7171 bool sbit = extract32(insn, 29, 1);
7172 bool sf = extract32(insn, 31, 1);
7173 bool itof = false;
7174
7175 if (sbit) {
7176 goto do_unallocated;
7177 }
7178
7179 switch (opcode) {
7180 case 2: /* SCVTF */
7181 case 3: /* UCVTF */
7182 itof = true;
7183 /* fallthru */
7184 case 4: /* FCVTAS */
7185 case 5: /* FCVTAU */
7186 if (rmode != 0) {
7187 goto do_unallocated;
7188 }
7189 /* fallthru */
7190 case 0: /* FCVT[NPMZ]S */
7191 case 1: /* FCVT[NPMZ]U */
7192 switch (type) {
7193 case 0: /* float32 */
7194 case 1: /* float64 */
7195 break;
7196 case 3: /* float16 */
7197 if (!dc_isar_feature(aa64_fp16, s)) {
7198 goto do_unallocated;
7199 }
7200 break;
7201 default:
7202 goto do_unallocated;
7203 }
7204 if (!fp_access_check(s)) {
7205 return;
7206 }
7207 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7208 break;
7209
7210 default:
7211 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7212 case 0b01100110: /* FMOV half <-> 32-bit int */
7213 case 0b01100111:
7214 case 0b11100110: /* FMOV half <-> 64-bit int */
7215 case 0b11100111:
7216 if (!dc_isar_feature(aa64_fp16, s)) {
7217 goto do_unallocated;
7218 }
7219 /* fallthru */
7220 case 0b00000110: /* FMOV 32-bit */
7221 case 0b00000111:
7222 case 0b10100110: /* FMOV 64-bit */
7223 case 0b10100111:
7224 case 0b11001110: /* FMOV top half of 128-bit */
7225 case 0b11001111:
7226 if (!fp_access_check(s)) {
7227 return;
7228 }
7229 itof = opcode & 1;
7230 handle_fmov(s, rd, rn, type, itof);
7231 break;
7232
7233 case 0b00111110: /* FJCVTZS */
7234 if (!dc_isar_feature(aa64_jscvt, s)) {
7235 goto do_unallocated;
7236 } else if (fp_access_check(s)) {
7237 handle_fjcvtzs(s, rd, rn);
7238 }
7239 break;
7240
7241 default:
7242 do_unallocated:
7243 unallocated_encoding(s);
7244 return;
7245 }
7246 break;
7247 }
7248 }
7249
7250 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7251 * 31 30 29 28 25 24 0
7252 * +---+---+---+---------+-----------------------------+
7253 * | | 0 | | 1 1 1 1 | |
7254 * +---+---+---+---------+-----------------------------+
7255 */
7256 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7257 {
7258 if (extract32(insn, 24, 1)) {
7259 /* Floating point data-processing (3 source) */
7260 disas_fp_3src(s, insn);
7261 } else if (extract32(insn, 21, 1) == 0) {
7262 /* Floating point to fixed point conversions */
7263 disas_fp_fixed_conv(s, insn);
7264 } else {
7265 switch (extract32(insn, 10, 2)) {
7266 case 1:
7267 /* Floating point conditional compare */
7268 disas_fp_ccomp(s, insn);
7269 break;
7270 case 2:
7271 /* Floating point data-processing (2 source) */
7272 disas_fp_2src(s, insn);
7273 break;
7274 case 3:
7275 /* Floating point conditional select */
7276 disas_fp_csel(s, insn);
7277 break;
7278 case 0:
7279 switch (ctz32(extract32(insn, 12, 4))) {
7280 case 0: /* [15:12] == xxx1 */
7281 /* Floating point immediate */
7282 disas_fp_imm(s, insn);
7283 break;
7284 case 1: /* [15:12] == xx10 */
7285 /* Floating point compare */
7286 disas_fp_compare(s, insn);
7287 break;
7288 case 2: /* [15:12] == x100 */
7289 /* Floating point data-processing (1 source) */
7290 disas_fp_1src(s, insn);
7291 break;
7292 case 3: /* [15:12] == 1000 */
7293 unallocated_encoding(s);
7294 break;
7295 default: /* [15:12] == 0000 */
7296 /* Floating point <-> integer conversions */
7297 disas_fp_int_conv(s, insn);
7298 break;
7299 }
7300 break;
7301 }
7302 }
7303 }
7304
7305 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7306 int pos)
7307 {
7308 /* Extract 64 bits from the middle of two concatenated 64 bit
7309 * vector register slices left:right. The extracted bits start
7310 * at 'pos' bits into the right (least significant) side.
7311 * We return the result in tcg_right, and guarantee not to
7312 * trash tcg_left.
7313 */
7314 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7315 assert(pos > 0 && pos < 64);
7316
7317 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7318 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7319 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7320 }
7321
7322 /* EXT
7323 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
7324 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7325 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
7326 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7327 */
7328 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7329 {
7330 int is_q = extract32(insn, 30, 1);
7331 int op2 = extract32(insn, 22, 2);
7332 int imm4 = extract32(insn, 11, 4);
7333 int rm = extract32(insn, 16, 5);
7334 int rn = extract32(insn, 5, 5);
7335 int rd = extract32(insn, 0, 5);
7336 int pos = imm4 << 3;
7337 TCGv_i64 tcg_resl, tcg_resh;
7338
7339 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7340 unallocated_encoding(s);
7341 return;
7342 }
7343
7344 if (!fp_access_check(s)) {
7345 return;
7346 }
7347
7348 tcg_resh = tcg_temp_new_i64();
7349 tcg_resl = tcg_temp_new_i64();
7350
7351 /* Vd gets bits starting at pos bits into Vm:Vn. This is
7352 * either extracting 128 bits from a 128:128 concatenation, or
7353 * extracting 64 bits from a 64:64 concatenation.
7354 */
7355 if (!is_q) {
7356 read_vec_element(s, tcg_resl, rn, 0, MO_64);
7357 if (pos != 0) {
7358 read_vec_element(s, tcg_resh, rm, 0, MO_64);
7359 do_ext64(s, tcg_resh, tcg_resl, pos);
7360 }
7361 } else {
7362 TCGv_i64 tcg_hh;
7363 typedef struct {
7364 int reg;
7365 int elt;
7366 } EltPosns;
7367 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7368 EltPosns *elt = eltposns;
7369
7370 if (pos >= 64) {
7371 elt++;
7372 pos -= 64;
7373 }
7374
7375 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7376 elt++;
7377 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7378 elt++;
7379 if (pos != 0) {
7380 do_ext64(s, tcg_resh, tcg_resl, pos);
7381 tcg_hh = tcg_temp_new_i64();
7382 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7383 do_ext64(s, tcg_hh, tcg_resh, pos);
7384 }
7385 }
7386
7387 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7388 if (is_q) {
7389 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7390 }
7391 clear_vec_high(s, is_q, rd);
7392 }
7393
7394 /* TBL/TBX
7395 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
7396 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7397 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
7398 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7399 */
7400 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7401 {
7402 int op2 = extract32(insn, 22, 2);
7403 int is_q = extract32(insn, 30, 1);
7404 int rm = extract32(insn, 16, 5);
7405 int rn = extract32(insn, 5, 5);
7406 int rd = extract32(insn, 0, 5);
7407 int is_tbx = extract32(insn, 12, 1);
7408 int len = (extract32(insn, 13, 2) + 1) * 16;
7409
7410 if (op2 != 0) {
7411 unallocated_encoding(s);
7412 return;
7413 }
7414
7415 if (!fp_access_check(s)) {
7416 return;
7417 }
7418
7419 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7420 vec_full_reg_offset(s, rm), cpu_env,
7421 is_q ? 16 : 8, vec_full_reg_size(s),
7422 (len << 6) | (is_tbx << 5) | rn,
7423 gen_helper_simd_tblx);
7424 }
7425
7426 /* ZIP/UZP/TRN
7427 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
7428 * +---+---+-------------+------+---+------+---+------------------+------+
7429 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
7430 * +---+---+-------------+------+---+------+---+------------------+------+
7431 */
7432 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7433 {
7434 int rd = extract32(insn, 0, 5);
7435 int rn = extract32(insn, 5, 5);
7436 int rm = extract32(insn, 16, 5);
7437 int size = extract32(insn, 22, 2);
7438 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7439 * bit 2 indicates 1 vs 2 variant of the insn.
7440 */
7441 int opcode = extract32(insn, 12, 2);
7442 bool part = extract32(insn, 14, 1);
7443 bool is_q = extract32(insn, 30, 1);
7444 int esize = 8 << size;
7445 int i;
7446 int datasize = is_q ? 128 : 64;
7447 int elements = datasize / esize;
7448 TCGv_i64 tcg_res[2], tcg_ele;
7449
7450 if (opcode == 0 || (size == 3 && !is_q)) {
7451 unallocated_encoding(s);
7452 return;
7453 }
7454
7455 if (!fp_access_check(s)) {
7456 return;
7457 }
7458
7459 tcg_res[0] = tcg_temp_new_i64();
7460 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7461 tcg_ele = tcg_temp_new_i64();
7462
7463 for (i = 0; i < elements; i++) {
7464 int o, w;
7465
7466 switch (opcode) {
7467 case 1: /* UZP1/2 */
7468 {
7469 int midpoint = elements / 2;
7470 if (i < midpoint) {
7471 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
7472 } else {
7473 read_vec_element(s, tcg_ele, rm,
7474 2 * (i - midpoint) + part, size);
7475 }
7476 break;
7477 }
7478 case 2: /* TRN1/2 */
7479 if (i & 1) {
7480 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
7481 } else {
7482 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
7483 }
7484 break;
7485 case 3: /* ZIP1/2 */
7486 {
7487 int base = part * elements / 2;
7488 if (i & 1) {
7489 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
7490 } else {
7491 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
7492 }
7493 break;
7494 }
7495 default:
7496 g_assert_not_reached();
7497 }
7498
7499 w = (i * esize) / 64;
7500 o = (i * esize) % 64;
7501 if (o == 0) {
7502 tcg_gen_mov_i64(tcg_res[w], tcg_ele);
7503 } else {
7504 tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
7505 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
7506 }
7507 }
7508
7509 for (i = 0; i <= is_q; ++i) {
7510 write_vec_element(s, tcg_res[i], rd, i, MO_64);
7511 }
7512 clear_vec_high(s, is_q, rd);
7513 }
7514
7515 /*
7516 * do_reduction_op helper
7517 *
7518 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7519 * important for correct NaN propagation that we do these
7520 * operations in exactly the order specified by the pseudocode.
7521 *
7522 * This is a recursive function, TCG temps should be freed by the
7523 * calling function once it is done with the values.
7524 */
7525 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7526 int esize, int size, int vmap, TCGv_ptr fpst)
7527 {
7528 if (esize == size) {
7529 int element;
7530 MemOp msize = esize == 16 ? MO_16 : MO_32;
7531 TCGv_i32 tcg_elem;
7532
7533 /* We should have one register left here */
7534 assert(ctpop8(vmap) == 1);
7535 element = ctz32(vmap);
7536 assert(element < 8);
7537
7538 tcg_elem = tcg_temp_new_i32();
7539 read_vec_element_i32(s, tcg_elem, rn, element, msize);
7540 return tcg_elem;
7541 } else {
7542 int bits = size / 2;
7543 int shift = ctpop8(vmap) / 2;
7544 int vmap_lo = (vmap >> shift) & vmap;
7545 int vmap_hi = (vmap & ~vmap_lo);
7546 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7547
7548 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7549 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7550 tcg_res = tcg_temp_new_i32();
7551
7552 switch (fpopcode) {
7553 case 0x0c: /* fmaxnmv half-precision */
7554 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7555 break;
7556 case 0x0f: /* fmaxv half-precision */
7557 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7558 break;
7559 case 0x1c: /* fminnmv half-precision */
7560 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7561 break;
7562 case 0x1f: /* fminv half-precision */
7563 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7564 break;
7565 case 0x2c: /* fmaxnmv */
7566 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7567 break;
7568 case 0x2f: /* fmaxv */
7569 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7570 break;
7571 case 0x3c: /* fminnmv */
7572 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7573 break;
7574 case 0x3f: /* fminv */
7575 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7576 break;
7577 default:
7578 g_assert_not_reached();
7579 }
7580 return tcg_res;
7581 }
7582 }
7583
7584 /* AdvSIMD across lanes
7585 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7586 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7587 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7588 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7589 */
7590 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7591 {
7592 int rd = extract32(insn, 0, 5);
7593 int rn = extract32(insn, 5, 5);
7594 int size = extract32(insn, 22, 2);
7595 int opcode = extract32(insn, 12, 5);
7596 bool is_q = extract32(insn, 30, 1);
7597 bool is_u = extract32(insn, 29, 1);
7598 bool is_fp = false;
7599 bool is_min = false;
7600 int esize;
7601 int elements;
7602 int i;
7603 TCGv_i64 tcg_res, tcg_elt;
7604
7605 switch (opcode) {
7606 case 0x1b: /* ADDV */
7607 if (is_u) {
7608 unallocated_encoding(s);
7609 return;
7610 }
7611 /* fall through */
7612 case 0x3: /* SADDLV, UADDLV */
7613 case 0xa: /* SMAXV, UMAXV */
7614 case 0x1a: /* SMINV, UMINV */
7615 if (size == 3 || (size == 2 && !is_q)) {
7616 unallocated_encoding(s);
7617 return;
7618 }
7619 break;
7620 case 0xc: /* FMAXNMV, FMINNMV */
7621 case 0xf: /* FMAXV, FMINV */
7622 /* Bit 1 of size field encodes min vs max and the actual size
7623 * depends on the encoding of the U bit. If not set (and FP16
7624 * enabled) then we do half-precision float instead of single
7625 * precision.
7626 */
7627 is_min = extract32(size, 1, 1);
7628 is_fp = true;
7629 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7630 size = 1;
7631 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7632 unallocated_encoding(s);
7633 return;
7634 } else {
7635 size = 2;
7636 }
7637 break;
7638 default:
7639 unallocated_encoding(s);
7640 return;
7641 }
7642
7643 if (!fp_access_check(s)) {
7644 return;
7645 }
7646
7647 esize = 8 << size;
7648 elements = (is_q ? 128 : 64) / esize;
7649
7650 tcg_res = tcg_temp_new_i64();
7651 tcg_elt = tcg_temp_new_i64();
7652
7653 /* These instructions operate across all lanes of a vector
7654 * to produce a single result. We can guarantee that a 64
7655 * bit intermediate is sufficient:
7656 * + for [US]ADDLV the maximum element size is 32 bits, and
7657 * the result type is 64 bits
7658 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7659 * same as the element size, which is 32 bits at most
7660 * For the integer operations we can choose to work at 64
7661 * or 32 bits and truncate at the end; for simplicity
7662 * we use 64 bits always. The floating point
7663 * ops do require 32 bit intermediates, though.
7664 */
7665 if (!is_fp) {
7666 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7667
7668 for (i = 1; i < elements; i++) {
7669 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7670
7671 switch (opcode) {
7672 case 0x03: /* SADDLV / UADDLV */
7673 case 0x1b: /* ADDV */
7674 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7675 break;
7676 case 0x0a: /* SMAXV / UMAXV */
7677 if (is_u) {
7678 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7679 } else {
7680 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7681 }
7682 break;
7683 case 0x1a: /* SMINV / UMINV */
7684 if (is_u) {
7685 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7686 } else {
7687 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7688 }
7689 break;
7690 default:
7691 g_assert_not_reached();
7692 }
7693
7694 }
7695 } else {
7696 /* Floating point vector reduction ops which work across 32
7697 * bit (single) or 16 bit (half-precision) intermediates.
7698 * Note that correct NaN propagation requires that we do these
7699 * operations in exactly the order specified by the pseudocode.
7700 */
7701 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7702 int fpopcode = opcode | is_min << 4 | is_u << 5;
7703 int vmap = (1 << elements) - 1;
7704 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7705 (is_q ? 128 : 64), vmap, fpst);
7706 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7707 }
7708
7709 /* Now truncate the result to the width required for the final output */
7710 if (opcode == 0x03) {
7711 /* SADDLV, UADDLV: result is 2*esize */
7712 size++;
7713 }
7714
7715 switch (size) {
7716 case 0:
7717 tcg_gen_ext8u_i64(tcg_res, tcg_res);
7718 break;
7719 case 1:
7720 tcg_gen_ext16u_i64(tcg_res, tcg_res);
7721 break;
7722 case 2:
7723 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7724 break;
7725 case 3:
7726 break;
7727 default:
7728 g_assert_not_reached();
7729 }
7730
7731 write_fp_dreg(s, rd, tcg_res);
7732 }
7733
7734 /* DUP (Element, Vector)
7735 *
7736 * 31 30 29 21 20 16 15 10 9 5 4 0
7737 * +---+---+-------------------+--------+-------------+------+------+
7738 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7739 * +---+---+-------------------+--------+-------------+------+------+
7740 *
7741 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7742 */
7743 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7744 int imm5)
7745 {
7746 int size = ctz32(imm5);
7747 int index;
7748
7749 if (size > 3 || (size == 3 && !is_q)) {
7750 unallocated_encoding(s);
7751 return;
7752 }
7753
7754 if (!fp_access_check(s)) {
7755 return;
7756 }
7757
7758 index = imm5 >> (size + 1);
7759 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7760 vec_reg_offset(s, rn, index, size),
7761 is_q ? 16 : 8, vec_full_reg_size(s));
7762 }
7763
7764 /* DUP (element, scalar)
7765 * 31 21 20 16 15 10 9 5 4 0
7766 * +-----------------------+--------+-------------+------+------+
7767 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7768 * +-----------------------+--------+-------------+------+------+
7769 */
7770 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7771 int imm5)
7772 {
7773 int size = ctz32(imm5);
7774 int index;
7775 TCGv_i64 tmp;
7776
7777 if (size > 3) {
7778 unallocated_encoding(s);
7779 return;
7780 }
7781
7782 if (!fp_access_check(s)) {
7783 return;
7784 }
7785
7786 index = imm5 >> (size + 1);
7787
7788 /* This instruction just extracts the specified element and
7789 * zero-extends it into the bottom of the destination register.
7790 */
7791 tmp = tcg_temp_new_i64();
7792 read_vec_element(s, tmp, rn, index, size);
7793 write_fp_dreg(s, rd, tmp);
7794 }
7795
7796 /* DUP (General)
7797 *
7798 * 31 30 29 21 20 16 15 10 9 5 4 0
7799 * +---+---+-------------------+--------+-------------+------+------+
7800 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
7801 * +---+---+-------------------+--------+-------------+------+------+
7802 *
7803 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7804 */
7805 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7806 int imm5)
7807 {
7808 int size = ctz32(imm5);
7809 uint32_t dofs, oprsz, maxsz;
7810
7811 if (size > 3 || ((size == 3) && !is_q)) {
7812 unallocated_encoding(s);
7813 return;
7814 }
7815
7816 if (!fp_access_check(s)) {
7817 return;
7818 }
7819
7820 dofs = vec_full_reg_offset(s, rd);
7821 oprsz = is_q ? 16 : 8;
7822 maxsz = vec_full_reg_size(s);
7823
7824 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7825 }
7826
7827 /* INS (Element)
7828 *
7829 * 31 21 20 16 15 14 11 10 9 5 4 0
7830 * +-----------------------+--------+------------+---+------+------+
7831 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7832 * +-----------------------+--------+------------+---+------+------+
7833 *
7834 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7835 * index: encoded in imm5<4:size+1>
7836 */
7837 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7838 int imm4, int imm5)
7839 {
7840 int size = ctz32(imm5);
7841 int src_index, dst_index;
7842 TCGv_i64 tmp;
7843
7844 if (size > 3) {
7845 unallocated_encoding(s);
7846 return;
7847 }
7848
7849 if (!fp_access_check(s)) {
7850 return;
7851 }
7852
7853 dst_index = extract32(imm5, 1+size, 5);
7854 src_index = extract32(imm4, size, 4);
7855
7856 tmp = tcg_temp_new_i64();
7857
7858 read_vec_element(s, tmp, rn, src_index, size);
7859 write_vec_element(s, tmp, rd, dst_index, size);
7860
7861 /* INS is considered a 128-bit write for SVE. */
7862 clear_vec_high(s, true, rd);
7863 }
7864
7865
7866 /* INS (General)
7867 *
7868 * 31 21 20 16 15 10 9 5 4 0
7869 * +-----------------------+--------+-------------+------+------+
7870 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
7871 * +-----------------------+--------+-------------+------+------+
7872 *
7873 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7874 * index: encoded in imm5<4:size+1>
7875 */
7876 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7877 {
7878 int size = ctz32(imm5);
7879 int idx;
7880
7881 if (size > 3) {
7882 unallocated_encoding(s);
7883 return;
7884 }
7885
7886 if (!fp_access_check(s)) {
7887 return;
7888 }
7889
7890 idx = extract32(imm5, 1 + size, 4 - size);
7891 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7892
7893 /* INS is considered a 128-bit write for SVE. */
7894 clear_vec_high(s, true, rd);
7895 }
7896
7897 /*
7898 * UMOV (General)
7899 * SMOV (General)
7900 *
7901 * 31 30 29 21 20 16 15 12 10 9 5 4 0
7902 * +---+---+-------------------+--------+-------------+------+------+
7903 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
7904 * +---+---+-------------------+--------+-------------+------+------+
7905 *
7906 * U: unsigned when set
7907 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7908 */
7909 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7910 int rn, int rd, int imm5)
7911 {
7912 int size = ctz32(imm5);
7913 int element;
7914 TCGv_i64 tcg_rd;
7915
7916 /* Check for UnallocatedEncodings */
7917 if (is_signed) {
7918 if (size > 2 || (size == 2 && !is_q)) {
7919 unallocated_encoding(s);
7920 return;
7921 }
7922 } else {
7923 if (size > 3
7924 || (size < 3 && is_q)
7925 || (size == 3 && !is_q)) {
7926 unallocated_encoding(s);
7927 return;
7928 }
7929 }
7930
7931 if (!fp_access_check(s)) {
7932 return;
7933 }
7934
7935 element = extract32(imm5, 1+size, 4);
7936
7937 tcg_rd = cpu_reg(s, rd);
7938 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7939 if (is_signed && !is_q) {
7940 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7941 }
7942 }
7943
7944 /* AdvSIMD copy
7945 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7946 * +---+---+----+-----------------+------+---+------+---+------+------+
7947 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7948 * +---+---+----+-----------------+------+---+------+---+------+------+
7949 */
7950 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7951 {
7952 int rd = extract32(insn, 0, 5);
7953 int rn = extract32(insn, 5, 5);
7954 int imm4 = extract32(insn, 11, 4);
7955 int op = extract32(insn, 29, 1);
7956 int is_q = extract32(insn, 30, 1);
7957 int imm5 = extract32(insn, 16, 5);
7958
7959 if (op) {
7960 if (is_q) {
7961 /* INS (element) */
7962 handle_simd_inse(s, rd, rn, imm4, imm5);
7963 } else {
7964 unallocated_encoding(s);
7965 }
7966 } else {
7967 switch (imm4) {
7968 case 0:
7969 /* DUP (element - vector) */
7970 handle_simd_dupe(s, is_q, rd, rn, imm5);
7971 break;
7972 case 1:
7973 /* DUP (general) */
7974 handle_simd_dupg(s, is_q, rd, rn, imm5);
7975 break;
7976 case 3:
7977 if (is_q) {
7978 /* INS (general) */
7979 handle_simd_insg(s, rd, rn, imm5);
7980 } else {
7981 unallocated_encoding(s);
7982 }
7983 break;
7984 case 5:
7985 case 7:
7986 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7987 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7988 break;
7989 default:
7990 unallocated_encoding(s);
7991 break;
7992 }
7993 }
7994 }
7995
7996 /* AdvSIMD modified immediate
7997 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
7998 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7999 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
8000 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8001 *
8002 * There are a number of operations that can be carried out here:
8003 * MOVI - move (shifted) imm into register
8004 * MVNI - move inverted (shifted) imm into register
8005 * ORR - bitwise OR of (shifted) imm with register
8006 * BIC - bitwise clear of (shifted) imm with register
8007 * With ARMv8.2 we also have:
8008 * FMOV half-precision
8009 */
8010 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8011 {
8012 int rd = extract32(insn, 0, 5);
8013 int cmode = extract32(insn, 12, 4);
8014 int o2 = extract32(insn, 11, 1);
8015 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8016 bool is_neg = extract32(insn, 29, 1);
8017 bool is_q = extract32(insn, 30, 1);
8018 uint64_t imm = 0;
8019
8020 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
8021 /* Check for FMOV (vector, immediate) - half-precision */
8022 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
8023 unallocated_encoding(s);
8024 return;
8025 }
8026 }
8027
8028 if (!fp_access_check(s)) {
8029 return;
8030 }
8031
8032 if (cmode == 15 && o2 && !is_neg) {
8033 /* FMOV (vector, immediate) - half-precision */
8034 imm = vfp_expand_imm(MO_16, abcdefgh);
8035 /* now duplicate across the lanes */
8036 imm = dup_const(MO_16, imm);
8037 } else {
8038 imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8039 }
8040
8041 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8042 /* MOVI or MVNI, with MVNI negation handled above. */
8043 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8044 vec_full_reg_size(s), imm);
8045 } else {
8046 /* ORR or BIC, with BIC negation to AND handled above. */
8047 if (is_neg) {
8048 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8049 } else {
8050 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8051 }
8052 }
8053 }
8054
8055 /* AdvSIMD scalar copy
8056 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
8057 * +-----+----+-----------------+------+---+------+---+------+------+
8058 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
8059 * +-----+----+-----------------+------+---+------+---+------+------+
8060 */
8061 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
8062 {
8063 int rd = extract32(insn, 0, 5);
8064 int rn = extract32(insn, 5, 5);
8065 int imm4 = extract32(insn, 11, 4);
8066 int imm5 = extract32(insn, 16, 5);
8067 int op = extract32(insn, 29, 1);
8068
8069 if (op != 0 || imm4 != 0) {
8070 unallocated_encoding(s);
8071 return;
8072 }
8073
8074 /* DUP (element, scalar) */
8075 handle_simd_dupes(s, rd, rn, imm5);
8076 }
8077
8078 /* AdvSIMD scalar pairwise
8079 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
8080 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8081 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
8082 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8083 */
8084 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
8085 {
8086 int u = extract32(insn, 29, 1);
8087 int size = extract32(insn, 22, 2);
8088 int opcode = extract32(insn, 12, 5);
8089 int rn = extract32(insn, 5, 5);
8090 int rd = extract32(insn, 0, 5);
8091 TCGv_ptr fpst;
8092
8093 /* For some ops (the FP ones), size[1] is part of the encoding.
8094 * For ADDP strictly it is not but size[1] is always 1 for valid
8095 * encodings.
8096 */
8097 opcode |= (extract32(size, 1, 1) << 5);
8098
8099 switch (opcode) {
8100 case 0x3b: /* ADDP */
8101 if (u || size != 3) {
8102 unallocated_encoding(s);
8103 return;
8104 }
8105 if (!fp_access_check(s)) {
8106 return;
8107 }
8108
8109 fpst = NULL;
8110 break;
8111 case 0xc: /* FMAXNMP */
8112 case 0xd: /* FADDP */
8113 case 0xf: /* FMAXP */
8114 case 0x2c: /* FMINNMP */
8115 case 0x2f: /* FMINP */
8116 /* FP op, size[0] is 32 or 64 bit*/
8117 if (!u) {
8118 if (!dc_isar_feature(aa64_fp16, s)) {
8119 unallocated_encoding(s);
8120 return;
8121 } else {
8122 size = MO_16;
8123 }
8124 } else {
8125 size = extract32(size, 0, 1) ? MO_64 : MO_32;
8126 }
8127
8128 if (!fp_access_check(s)) {
8129 return;
8130 }
8131
8132 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8133 break;
8134 default:
8135 unallocated_encoding(s);
8136 return;
8137 }
8138
8139 if (size == MO_64) {
8140 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8141 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8142 TCGv_i64 tcg_res = tcg_temp_new_i64();
8143
8144 read_vec_element(s, tcg_op1, rn, 0, MO_64);
8145 read_vec_element(s, tcg_op2, rn, 1, MO_64);
8146
8147 switch (opcode) {
8148 case 0x3b: /* ADDP */
8149 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8150 break;
8151 case 0xc: /* FMAXNMP */
8152 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8153 break;
8154 case 0xd: /* FADDP */
8155 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8156 break;
8157 case 0xf: /* FMAXP */
8158 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8159 break;
8160 case 0x2c: /* FMINNMP */
8161 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8162 break;
8163 case 0x2f: /* FMINP */
8164 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8165 break;
8166 default:
8167 g_assert_not_reached();
8168 }
8169
8170 write_fp_dreg(s, rd, tcg_res);
8171 } else {
8172 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8173 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8174 TCGv_i32 tcg_res = tcg_temp_new_i32();
8175
8176 read_vec_element_i32(s, tcg_op1, rn, 0, size);
8177 read_vec_element_i32(s, tcg_op2, rn, 1, size);
8178
8179 if (size == MO_16) {
8180 switch (opcode) {
8181 case 0xc: /* FMAXNMP */
8182 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8183 break;
8184 case 0xd: /* FADDP */
8185 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8186 break;
8187 case 0xf: /* FMAXP */
8188 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8189 break;
8190 case 0x2c: /* FMINNMP */
8191 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8192 break;
8193 case 0x2f: /* FMINP */
8194 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8195 break;
8196 default:
8197 g_assert_not_reached();
8198 }
8199 } else {
8200 switch (opcode) {
8201 case 0xc: /* FMAXNMP */
8202 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8203 break;
8204 case 0xd: /* FADDP */
8205 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8206 break;
8207 case 0xf: /* FMAXP */
8208 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8209 break;
8210 case 0x2c: /* FMINNMP */
8211 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8212 break;
8213 case 0x2f: /* FMINP */
8214 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8215 break;
8216 default:
8217 g_assert_not_reached();
8218 }
8219 }
8220
8221 write_fp_sreg(s, rd, tcg_res);
8222 }
8223 }
8224
8225 /*
8226 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8227 *
8228 * This code is handles the common shifting code and is used by both
8229 * the vector and scalar code.
8230 */
8231 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8232 TCGv_i64 tcg_rnd, bool accumulate,
8233 bool is_u, int size, int shift)
8234 {
8235 bool extended_result = false;
8236 bool round = tcg_rnd != NULL;
8237 int ext_lshift = 0;
8238 TCGv_i64 tcg_src_hi;
8239
8240 if (round && size == 3) {
8241 extended_result = true;
8242 ext_lshift = 64 - shift;
8243 tcg_src_hi = tcg_temp_new_i64();
8244 } else if (shift == 64) {
8245 if (!accumulate && is_u) {
8246 /* result is zero */
8247 tcg_gen_movi_i64(tcg_res, 0);
8248 return;
8249 }
8250 }
8251
8252 /* Deal with the rounding step */
8253 if (round) {
8254 if (extended_result) {
8255 TCGv_i64 tcg_zero = tcg_constant_i64(0);
8256 if (!is_u) {
8257 /* take care of sign extending tcg_res */
8258 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8259 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8260 tcg_src, tcg_src_hi,
8261 tcg_rnd, tcg_zero);
8262 } else {
8263 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8264 tcg_src, tcg_zero,
8265 tcg_rnd, tcg_zero);
8266 }
8267 } else {
8268 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8269 }
8270 }
8271
8272 /* Now do the shift right */
8273 if (round && extended_result) {
8274 /* extended case, >64 bit precision required */
8275 if (ext_lshift == 0) {
8276 /* special case, only high bits matter */
8277 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8278 } else {
8279 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8280 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8281 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8282 }
8283 } else {
8284 if (is_u) {
8285 if (shift == 64) {
8286 /* essentially shifting in 64 zeros */
8287 tcg_gen_movi_i64(tcg_src, 0);
8288 } else {
8289 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8290 }
8291 } else {
8292 if (shift == 64) {
8293 /* effectively extending the sign-bit */
8294 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8295 } else {
8296 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8297 }
8298 }
8299 }
8300
8301 if (accumulate) {
8302 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8303 } else {
8304 tcg_gen_mov_i64(tcg_res, tcg_src);
8305 }
8306 }
8307
8308 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8309 static void handle_scalar_simd_shri(DisasContext *s,
8310 bool is_u, int immh, int immb,
8311 int opcode, int rn, int rd)
8312 {
8313 const int size = 3;
8314 int immhb = immh << 3 | immb;
8315 int shift = 2 * (8 << size) - immhb;
8316 bool accumulate = false;
8317 bool round = false;
8318 bool insert = false;
8319 TCGv_i64 tcg_rn;
8320 TCGv_i64 tcg_rd;
8321 TCGv_i64 tcg_round;
8322
8323 if (!extract32(immh, 3, 1)) {
8324 unallocated_encoding(s);
8325 return;
8326 }
8327
8328 if (!fp_access_check(s)) {
8329 return;
8330 }
8331
8332 switch (opcode) {
8333 case 0x02: /* SSRA / USRA (accumulate) */
8334 accumulate = true;
8335 break;
8336 case 0x04: /* SRSHR / URSHR (rounding) */
8337 round = true;
8338 break;
8339 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8340 accumulate = round = true;
8341 break;
8342 case 0x08: /* SRI */
8343 insert = true;
8344 break;
8345 }
8346
8347 if (round) {
8348 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8349 } else {
8350 tcg_round = NULL;
8351 }
8352
8353 tcg_rn = read_fp_dreg(s, rn);
8354 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8355
8356 if (insert) {
8357 /* shift count same as element size is valid but does nothing;
8358 * special case to avoid potential shift by 64.
8359 */
8360 int esize = 8 << size;
8361 if (shift != esize) {
8362 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8363 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8364 }
8365 } else {
8366 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8367 accumulate, is_u, size, shift);
8368 }
8369
8370 write_fp_dreg(s, rd, tcg_rd);
8371 }
8372
8373 /* SHL/SLI - Scalar shift left */
8374 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8375 int immh, int immb, int opcode,
8376 int rn, int rd)
8377 {
8378 int size = 32 - clz32(immh) - 1;
8379 int immhb = immh << 3 | immb;
8380 int shift = immhb - (8 << size);
8381 TCGv_i64 tcg_rn;
8382 TCGv_i64 tcg_rd;
8383
8384 if (!extract32(immh, 3, 1)) {
8385 unallocated_encoding(s);
8386 return;
8387 }
8388
8389 if (!fp_access_check(s)) {
8390 return;
8391 }
8392
8393 tcg_rn = read_fp_dreg(s, rn);
8394 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8395
8396 if (insert) {
8397 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8398 } else {
8399 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8400 }
8401
8402 write_fp_dreg(s, rd, tcg_rd);
8403 }
8404
8405 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8406 * (signed/unsigned) narrowing */
8407 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8408 bool is_u_shift, bool is_u_narrow,
8409 int immh, int immb, int opcode,
8410 int rn, int rd)
8411 {
8412 int immhb = immh << 3 | immb;
8413 int size = 32 - clz32(immh) - 1;
8414 int esize = 8 << size;
8415 int shift = (2 * esize) - immhb;
8416 int elements = is_scalar ? 1 : (64 / esize);
8417 bool round = extract32(opcode, 0, 1);
8418 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8419 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8420 TCGv_i32 tcg_rd_narrowed;
8421 TCGv_i64 tcg_final;
8422
8423 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8424 { gen_helper_neon_narrow_sat_s8,
8425 gen_helper_neon_unarrow_sat8 },
8426 { gen_helper_neon_narrow_sat_s16,
8427 gen_helper_neon_unarrow_sat16 },
8428 { gen_helper_neon_narrow_sat_s32,
8429 gen_helper_neon_unarrow_sat32 },
8430 { NULL, NULL },
8431 };
8432 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8433 gen_helper_neon_narrow_sat_u8,
8434 gen_helper_neon_narrow_sat_u16,
8435 gen_helper_neon_narrow_sat_u32,
8436 NULL
8437 };
8438 NeonGenNarrowEnvFn *narrowfn;
8439
8440 int i;
8441
8442 assert(size < 4);
8443
8444 if (extract32(immh, 3, 1)) {
8445 unallocated_encoding(s);
8446 return;
8447 }
8448
8449 if (!fp_access_check(s)) {
8450 return;
8451 }
8452
8453 if (is_u_shift) {
8454 narrowfn = unsigned_narrow_fns[size];
8455 } else {
8456 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8457 }
8458
8459 tcg_rn = tcg_temp_new_i64();
8460 tcg_rd = tcg_temp_new_i64();
8461 tcg_rd_narrowed = tcg_temp_new_i32();
8462 tcg_final = tcg_temp_new_i64();
8463
8464 if (round) {
8465 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8466 } else {
8467 tcg_round = NULL;
8468 }
8469
8470 for (i = 0; i < elements; i++) {
8471 read_vec_element(s, tcg_rn, rn, i, ldop);
8472 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8473 false, is_u_shift, size+1, shift);
8474 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8475 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8476 if (i == 0) {
8477 tcg_gen_mov_i64(tcg_final, tcg_rd);
8478 } else {
8479 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8480 }
8481 }
8482
8483 if (!is_q) {
8484 write_vec_element(s, tcg_final, rd, 0, MO_64);
8485 } else {
8486 write_vec_element(s, tcg_final, rd, 1, MO_64);
8487 }
8488 clear_vec_high(s, is_q, rd);
8489 }
8490
8491 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8492 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8493 bool src_unsigned, bool dst_unsigned,
8494 int immh, int immb, int rn, int rd)
8495 {
8496 int immhb = immh << 3 | immb;
8497 int size = 32 - clz32(immh) - 1;
8498 int shift = immhb - (8 << size);
8499 int pass;
8500
8501 assert(immh != 0);
8502 assert(!(scalar && is_q));
8503
8504 if (!scalar) {
8505 if (!is_q && extract32(immh, 3, 1)) {
8506 unallocated_encoding(s);
8507 return;
8508 }
8509
8510 /* Since we use the variable-shift helpers we must
8511 * replicate the shift count into each element of
8512 * the tcg_shift value.
8513 */
8514 switch (size) {
8515 case 0:
8516 shift |= shift << 8;
8517 /* fall through */
8518 case 1:
8519 shift |= shift << 16;
8520 break;
8521 case 2:
8522 case 3:
8523 break;
8524 default:
8525 g_assert_not_reached();
8526 }
8527 }
8528
8529 if (!fp_access_check(s)) {
8530 return;
8531 }
8532
8533 if (size == 3) {
8534 TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8535 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8536 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8537 { NULL, gen_helper_neon_qshl_u64 },
8538 };
8539 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8540 int maxpass = is_q ? 2 : 1;
8541
8542 for (pass = 0; pass < maxpass; pass++) {
8543 TCGv_i64 tcg_op = tcg_temp_new_i64();
8544
8545 read_vec_element(s, tcg_op, rn, pass, MO_64);
8546 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8547 write_vec_element(s, tcg_op, rd, pass, MO_64);
8548 }
8549 clear_vec_high(s, is_q, rd);
8550 } else {
8551 TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8552 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8553 {
8554 { gen_helper_neon_qshl_s8,
8555 gen_helper_neon_qshl_s16,
8556 gen_helper_neon_qshl_s32 },
8557 { gen_helper_neon_qshlu_s8,
8558 gen_helper_neon_qshlu_s16,
8559 gen_helper_neon_qshlu_s32 }
8560 }, {
8561 { NULL, NULL, NULL },
8562 { gen_helper_neon_qshl_u8,
8563 gen_helper_neon_qshl_u16,
8564 gen_helper_neon_qshl_u32 }
8565 }
8566 };
8567 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8568 MemOp memop = scalar ? size : MO_32;
8569 int maxpass = scalar ? 1 : is_q ? 4 : 2;
8570
8571 for (pass = 0; pass < maxpass; pass++) {
8572 TCGv_i32 tcg_op = tcg_temp_new_i32();
8573
8574 read_vec_element_i32(s, tcg_op, rn, pass, memop);
8575 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8576 if (scalar) {
8577 switch (size) {
8578 case 0:
8579 tcg_gen_ext8u_i32(tcg_op, tcg_op);
8580 break;
8581 case 1:
8582 tcg_gen_ext16u_i32(tcg_op, tcg_op);
8583 break;
8584 case 2:
8585 break;
8586 default:
8587 g_assert_not_reached();
8588 }
8589 write_fp_sreg(s, rd, tcg_op);
8590 } else {
8591 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8592 }
8593 }
8594
8595 if (!scalar) {
8596 clear_vec_high(s, is_q, rd);
8597 }
8598 }
8599 }
8600
8601 /* Common vector code for handling integer to FP conversion */
8602 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8603 int elements, int is_signed,
8604 int fracbits, int size)
8605 {
8606 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8607 TCGv_i32 tcg_shift = NULL;
8608
8609 MemOp mop = size | (is_signed ? MO_SIGN : 0);
8610 int pass;
8611
8612 if (fracbits || size == MO_64) {
8613 tcg_shift = tcg_constant_i32(fracbits);
8614 }
8615
8616 if (size == MO_64) {
8617 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8618 TCGv_i64 tcg_double = tcg_temp_new_i64();
8619
8620 for (pass = 0; pass < elements; pass++) {
8621 read_vec_element(s, tcg_int64, rn, pass, mop);
8622
8623 if (is_signed) {
8624 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8625 tcg_shift, tcg_fpst);
8626 } else {
8627 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8628 tcg_shift, tcg_fpst);
8629 }
8630 if (elements == 1) {
8631 write_fp_dreg(s, rd, tcg_double);
8632 } else {
8633 write_vec_element(s, tcg_double, rd, pass, MO_64);
8634 }
8635 }
8636 } else {
8637 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8638 TCGv_i32 tcg_float = tcg_temp_new_i32();
8639
8640 for (pass = 0; pass < elements; pass++) {
8641 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8642
8643 switch (size) {
8644 case MO_32:
8645 if (fracbits) {
8646 if (is_signed) {
8647 gen_helper_vfp_sltos(tcg_float, tcg_int32,
8648 tcg_shift, tcg_fpst);
8649 } else {
8650 gen_helper_vfp_ultos(tcg_float, tcg_int32,
8651 tcg_shift, tcg_fpst);
8652 }
8653 } else {
8654 if (is_signed) {
8655 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8656 } else {
8657 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8658 }
8659 }
8660 break;
8661 case MO_16:
8662 if (fracbits) {
8663 if (is_signed) {
8664 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8665 tcg_shift, tcg_fpst);
8666 } else {
8667 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8668 tcg_shift, tcg_fpst);
8669 }
8670 } else {
8671 if (is_signed) {
8672 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8673 } else {
8674 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8675 }
8676 }
8677 break;
8678 default:
8679 g_assert_not_reached();
8680 }
8681
8682 if (elements == 1) {
8683 write_fp_sreg(s, rd, tcg_float);
8684 } else {
8685 write_vec_element_i32(s, tcg_float, rd, pass, size);
8686 }
8687 }
8688 }
8689
8690 clear_vec_high(s, elements << size == 16, rd);
8691 }
8692
8693 /* UCVTF/SCVTF - Integer to FP conversion */
8694 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8695 bool is_q, bool is_u,
8696 int immh, int immb, int opcode,
8697 int rn, int rd)
8698 {
8699 int size, elements, fracbits;
8700 int immhb = immh << 3 | immb;
8701
8702 if (immh & 8) {
8703 size = MO_64;
8704 if (!is_scalar && !is_q) {
8705 unallocated_encoding(s);
8706 return;
8707 }
8708 } else if (immh & 4) {
8709 size = MO_32;
8710 } else if (immh & 2) {
8711 size = MO_16;
8712 if (!dc_isar_feature(aa64_fp16, s)) {
8713 unallocated_encoding(s);
8714 return;
8715 }
8716 } else {
8717 /* immh == 0 would be a failure of the decode logic */
8718 g_assert(immh == 1);
8719 unallocated_encoding(s);
8720 return;
8721 }
8722
8723 if (is_scalar) {
8724 elements = 1;
8725 } else {
8726 elements = (8 << is_q) >> size;
8727 }
8728 fracbits = (16 << size) - immhb;
8729
8730 if (!fp_access_check(s)) {
8731 return;
8732 }
8733
8734 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8735 }
8736
8737 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8738 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8739 bool is_q, bool is_u,
8740 int immh, int immb, int rn, int rd)
8741 {
8742 int immhb = immh << 3 | immb;
8743 int pass, size, fracbits;
8744 TCGv_ptr tcg_fpstatus;
8745 TCGv_i32 tcg_rmode, tcg_shift;
8746
8747 if (immh & 0x8) {
8748 size = MO_64;
8749 if (!is_scalar && !is_q) {
8750 unallocated_encoding(s);
8751 return;
8752 }
8753 } else if (immh & 0x4) {
8754 size = MO_32;
8755 } else if (immh & 0x2) {
8756 size = MO_16;
8757 if (!dc_isar_feature(aa64_fp16, s)) {
8758 unallocated_encoding(s);
8759 return;
8760 }
8761 } else {
8762 /* Should have split out AdvSIMD modified immediate earlier. */
8763 assert(immh == 1);
8764 unallocated_encoding(s);
8765 return;
8766 }
8767
8768 if (!fp_access_check(s)) {
8769 return;
8770 }
8771
8772 assert(!(is_scalar && is_q));
8773
8774 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8775 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8776 fracbits = (16 << size) - immhb;
8777 tcg_shift = tcg_constant_i32(fracbits);
8778
8779 if (size == MO_64) {
8780 int maxpass = is_scalar ? 1 : 2;
8781
8782 for (pass = 0; pass < maxpass; pass++) {
8783 TCGv_i64 tcg_op = tcg_temp_new_i64();
8784
8785 read_vec_element(s, tcg_op, rn, pass, MO_64);
8786 if (is_u) {
8787 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8788 } else {
8789 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8790 }
8791 write_vec_element(s, tcg_op, rd, pass, MO_64);
8792 }
8793 clear_vec_high(s, is_q, rd);
8794 } else {
8795 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8796 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8797
8798 switch (size) {
8799 case MO_16:
8800 if (is_u) {
8801 fn = gen_helper_vfp_touhh;
8802 } else {
8803 fn = gen_helper_vfp_toshh;
8804 }
8805 break;
8806 case MO_32:
8807 if (is_u) {
8808 fn = gen_helper_vfp_touls;
8809 } else {
8810 fn = gen_helper_vfp_tosls;
8811 }
8812 break;
8813 default:
8814 g_assert_not_reached();
8815 }
8816
8817 for (pass = 0; pass < maxpass; pass++) {
8818 TCGv_i32 tcg_op = tcg_temp_new_i32();
8819
8820 read_vec_element_i32(s, tcg_op, rn, pass, size);
8821 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8822 if (is_scalar) {
8823 write_fp_sreg(s, rd, tcg_op);
8824 } else {
8825 write_vec_element_i32(s, tcg_op, rd, pass, size);
8826 }
8827 }
8828 if (!is_scalar) {
8829 clear_vec_high(s, is_q, rd);
8830 }
8831 }
8832
8833 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8834 }
8835
8836 /* AdvSIMD scalar shift by immediate
8837 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8838 * +-----+---+-------------+------+------+--------+---+------+------+
8839 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8840 * +-----+---+-------------+------+------+--------+---+------+------+
8841 *
8842 * This is the scalar version so it works on a fixed sized registers
8843 */
8844 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8845 {
8846 int rd = extract32(insn, 0, 5);
8847 int rn = extract32(insn, 5, 5);
8848 int opcode = extract32(insn, 11, 5);
8849 int immb = extract32(insn, 16, 3);
8850 int immh = extract32(insn, 19, 4);
8851 bool is_u = extract32(insn, 29, 1);
8852
8853 if (immh == 0) {
8854 unallocated_encoding(s);
8855 return;
8856 }
8857
8858 switch (opcode) {
8859 case 0x08: /* SRI */
8860 if (!is_u) {
8861 unallocated_encoding(s);
8862 return;
8863 }
8864 /* fall through */
8865 case 0x00: /* SSHR / USHR */
8866 case 0x02: /* SSRA / USRA */
8867 case 0x04: /* SRSHR / URSHR */
8868 case 0x06: /* SRSRA / URSRA */
8869 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8870 break;
8871 case 0x0a: /* SHL / SLI */
8872 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8873 break;
8874 case 0x1c: /* SCVTF, UCVTF */
8875 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8876 opcode, rn, rd);
8877 break;
8878 case 0x10: /* SQSHRUN, SQSHRUN2 */
8879 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8880 if (!is_u) {
8881 unallocated_encoding(s);
8882 return;
8883 }
8884 handle_vec_simd_sqshrn(s, true, false, false, true,
8885 immh, immb, opcode, rn, rd);
8886 break;
8887 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8888 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8889 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8890 immh, immb, opcode, rn, rd);
8891 break;
8892 case 0xc: /* SQSHLU */
8893 if (!is_u) {
8894 unallocated_encoding(s);
8895 return;
8896 }
8897 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8898 break;
8899 case 0xe: /* SQSHL, UQSHL */
8900 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8901 break;
8902 case 0x1f: /* FCVTZS, FCVTZU */
8903 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8904 break;
8905 default:
8906 unallocated_encoding(s);
8907 break;
8908 }
8909 }
8910
8911 /* AdvSIMD scalar three different
8912 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8913 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8914 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8915 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8916 */
8917 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8918 {
8919 bool is_u = extract32(insn, 29, 1);
8920 int size = extract32(insn, 22, 2);
8921 int opcode = extract32(insn, 12, 4);
8922 int rm = extract32(insn, 16, 5);
8923 int rn = extract32(insn, 5, 5);
8924 int rd = extract32(insn, 0, 5);
8925
8926 if (is_u) {
8927 unallocated_encoding(s);
8928 return;
8929 }
8930
8931 switch (opcode) {
8932 case 0x9: /* SQDMLAL, SQDMLAL2 */
8933 case 0xb: /* SQDMLSL, SQDMLSL2 */
8934 case 0xd: /* SQDMULL, SQDMULL2 */
8935 if (size == 0 || size == 3) {
8936 unallocated_encoding(s);
8937 return;
8938 }
8939 break;
8940 default:
8941 unallocated_encoding(s);
8942 return;
8943 }
8944
8945 if (!fp_access_check(s)) {
8946 return;
8947 }
8948
8949 if (size == 2) {
8950 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8951 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8952 TCGv_i64 tcg_res = tcg_temp_new_i64();
8953
8954 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8955 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8956
8957 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8958 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
8959
8960 switch (opcode) {
8961 case 0xd: /* SQDMULL, SQDMULL2 */
8962 break;
8963 case 0xb: /* SQDMLSL, SQDMLSL2 */
8964 tcg_gen_neg_i64(tcg_res, tcg_res);
8965 /* fall through */
8966 case 0x9: /* SQDMLAL, SQDMLAL2 */
8967 read_vec_element(s, tcg_op1, rd, 0, MO_64);
8968 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
8969 tcg_res, tcg_op1);
8970 break;
8971 default:
8972 g_assert_not_reached();
8973 }
8974
8975 write_fp_dreg(s, rd, tcg_res);
8976 } else {
8977 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8978 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8979 TCGv_i64 tcg_res = tcg_temp_new_i64();
8980
8981 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8982 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
8983
8984 switch (opcode) {
8985 case 0xd: /* SQDMULL, SQDMULL2 */
8986 break;
8987 case 0xb: /* SQDMLSL, SQDMLSL2 */
8988 gen_helper_neon_negl_u32(tcg_res, tcg_res);
8989 /* fall through */
8990 case 0x9: /* SQDMLAL, SQDMLAL2 */
8991 {
8992 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8993 read_vec_element(s, tcg_op3, rd, 0, MO_32);
8994 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
8995 tcg_res, tcg_op3);
8996 break;
8997 }
8998 default:
8999 g_assert_not_reached();
9000 }
9001
9002 tcg_gen_ext32u_i64(tcg_res, tcg_res);
9003 write_fp_dreg(s, rd, tcg_res);
9004 }
9005 }
9006
9007 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9008 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9009 {
9010 /* Handle 64x64->64 opcodes which are shared between the scalar
9011 * and vector 3-same groups. We cover every opcode where size == 3
9012 * is valid in either the three-reg-same (integer, not pairwise)
9013 * or scalar-three-reg-same groups.
9014 */
9015 TCGCond cond;
9016
9017 switch (opcode) {
9018 case 0x1: /* SQADD */
9019 if (u) {
9020 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9021 } else {
9022 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9023 }
9024 break;
9025 case 0x5: /* SQSUB */
9026 if (u) {
9027 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9028 } else {
9029 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9030 }
9031 break;
9032 case 0x6: /* CMGT, CMHI */
9033 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
9034 * We implement this using setcond (test) and then negating.
9035 */
9036 cond = u ? TCG_COND_GTU : TCG_COND_GT;
9037 do_cmop:
9038 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9039 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9040 break;
9041 case 0x7: /* CMGE, CMHS */
9042 cond = u ? TCG_COND_GEU : TCG_COND_GE;
9043 goto do_cmop;
9044 case 0x11: /* CMTST, CMEQ */
9045 if (u) {
9046 cond = TCG_COND_EQ;
9047 goto do_cmop;
9048 }
9049 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9050 break;
9051 case 0x8: /* SSHL, USHL */
9052 if (u) {
9053 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9054 } else {
9055 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9056 }
9057 break;
9058 case 0x9: /* SQSHL, UQSHL */
9059 if (u) {
9060 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9061 } else {
9062 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9063 }
9064 break;
9065 case 0xa: /* SRSHL, URSHL */
9066 if (u) {
9067 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9068 } else {
9069 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9070 }
9071 break;
9072 case 0xb: /* SQRSHL, UQRSHL */
9073 if (u) {
9074 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9075 } else {
9076 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9077 }
9078 break;
9079 case 0x10: /* ADD, SUB */
9080 if (u) {
9081 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9082 } else {
9083 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9084 }
9085 break;
9086 default:
9087 g_assert_not_reached();
9088 }
9089 }
9090
9091 /* Handle the 3-same-operands float operations; shared by the scalar
9092 * and vector encodings. The caller must filter out any encodings
9093 * not allocated for the encoding it is dealing with.
9094 */
9095 static void handle_3same_float(DisasContext *s, int size, int elements,
9096 int fpopcode, int rd, int rn, int rm)
9097 {
9098 int pass;
9099 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9100
9101 for (pass = 0; pass < elements; pass++) {
9102 if (size) {
9103 /* Double */
9104 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9105 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9106 TCGv_i64 tcg_res = tcg_temp_new_i64();
9107
9108 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9109 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9110
9111 switch (fpopcode) {
9112 case 0x39: /* FMLS */
9113 /* As usual for ARM, separate negation for fused multiply-add */
9114 gen_helper_vfp_negd(tcg_op1, tcg_op1);
9115 /* fall through */
9116 case 0x19: /* FMLA */
9117 read_vec_element(s, tcg_res, rd, pass, MO_64);
9118 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
9119 tcg_res, fpst);
9120 break;
9121 case 0x18: /* FMAXNM */
9122 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9123 break;
9124 case 0x1a: /* FADD */
9125 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
9126 break;
9127 case 0x1b: /* FMULX */
9128 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
9129 break;
9130 case 0x1c: /* FCMEQ */
9131 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9132 break;
9133 case 0x1e: /* FMAX */
9134 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
9135 break;
9136 case 0x1f: /* FRECPS */
9137 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9138 break;
9139 case 0x38: /* FMINNM */
9140 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9141 break;
9142 case 0x3a: /* FSUB */
9143 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9144 break;
9145 case 0x3e: /* FMIN */
9146 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
9147 break;
9148 case 0x3f: /* FRSQRTS */
9149 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9150 break;
9151 case 0x5b: /* FMUL */
9152 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
9153 break;
9154 case 0x5c: /* FCMGE */
9155 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9156 break;
9157 case 0x5d: /* FACGE */
9158 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9159 break;
9160 case 0x5f: /* FDIV */
9161 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
9162 break;
9163 case 0x7a: /* FABD */
9164 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9165 gen_helper_vfp_absd(tcg_res, tcg_res);
9166 break;
9167 case 0x7c: /* FCMGT */
9168 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9169 break;
9170 case 0x7d: /* FACGT */
9171 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9172 break;
9173 default:
9174 g_assert_not_reached();
9175 }
9176
9177 write_vec_element(s, tcg_res, rd, pass, MO_64);
9178 } else {
9179 /* Single */
9180 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9181 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9182 TCGv_i32 tcg_res = tcg_temp_new_i32();
9183
9184 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9185 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9186
9187 switch (fpopcode) {
9188 case 0x39: /* FMLS */
9189 /* As usual for ARM, separate negation for fused multiply-add */
9190 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9191 /* fall through */
9192 case 0x19: /* FMLA */
9193 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9194 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9195 tcg_res, fpst);
9196 break;
9197 case 0x1a: /* FADD */
9198 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9199 break;
9200 case 0x1b: /* FMULX */
9201 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9202 break;
9203 case 0x1c: /* FCMEQ */
9204 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9205 break;
9206 case 0x1e: /* FMAX */
9207 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9208 break;
9209 case 0x1f: /* FRECPS */
9210 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9211 break;
9212 case 0x18: /* FMAXNM */
9213 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9214 break;
9215 case 0x38: /* FMINNM */
9216 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9217 break;
9218 case 0x3a: /* FSUB */
9219 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9220 break;
9221 case 0x3e: /* FMIN */
9222 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9223 break;
9224 case 0x3f: /* FRSQRTS */
9225 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9226 break;
9227 case 0x5b: /* FMUL */
9228 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9229 break;
9230 case 0x5c: /* FCMGE */
9231 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9232 break;
9233 case 0x5d: /* FACGE */
9234 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9235 break;
9236 case 0x5f: /* FDIV */
9237 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9238 break;
9239 case 0x7a: /* FABD */
9240 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9241 gen_helper_vfp_abss(tcg_res, tcg_res);
9242 break;
9243 case 0x7c: /* FCMGT */
9244 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9245 break;
9246 case 0x7d: /* FACGT */
9247 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9248 break;
9249 default:
9250 g_assert_not_reached();
9251 }
9252
9253 if (elements == 1) {
9254 /* scalar single so clear high part */
9255 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9256
9257 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9258 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9259 } else {
9260 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9261 }
9262 }
9263 }
9264
9265 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9266 }
9267
9268 /* AdvSIMD scalar three same
9269 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9270 * +-----+---+-----------+------+---+------+--------+---+------+------+
9271 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9272 * +-----+---+-----------+------+---+------+--------+---+------+------+
9273 */
9274 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9275 {
9276 int rd = extract32(insn, 0, 5);
9277 int rn = extract32(insn, 5, 5);
9278 int opcode = extract32(insn, 11, 5);
9279 int rm = extract32(insn, 16, 5);
9280 int size = extract32(insn, 22, 2);
9281 bool u = extract32(insn, 29, 1);
9282 TCGv_i64 tcg_rd;
9283
9284 if (opcode >= 0x18) {
9285 /* Floating point: U, size[1] and opcode indicate operation */
9286 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9287 switch (fpopcode) {
9288 case 0x1b: /* FMULX */
9289 case 0x1f: /* FRECPS */
9290 case 0x3f: /* FRSQRTS */
9291 case 0x5d: /* FACGE */
9292 case 0x7d: /* FACGT */
9293 case 0x1c: /* FCMEQ */
9294 case 0x5c: /* FCMGE */
9295 case 0x7c: /* FCMGT */
9296 case 0x7a: /* FABD */
9297 break;
9298 default:
9299 unallocated_encoding(s);
9300 return;
9301 }
9302
9303 if (!fp_access_check(s)) {
9304 return;
9305 }
9306
9307 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9308 return;
9309 }
9310
9311 switch (opcode) {
9312 case 0x1: /* SQADD, UQADD */
9313 case 0x5: /* SQSUB, UQSUB */
9314 case 0x9: /* SQSHL, UQSHL */
9315 case 0xb: /* SQRSHL, UQRSHL */
9316 break;
9317 case 0x8: /* SSHL, USHL */
9318 case 0xa: /* SRSHL, URSHL */
9319 case 0x6: /* CMGT, CMHI */
9320 case 0x7: /* CMGE, CMHS */
9321 case 0x11: /* CMTST, CMEQ */
9322 case 0x10: /* ADD, SUB (vector) */
9323 if (size != 3) {
9324 unallocated_encoding(s);
9325 return;
9326 }
9327 break;
9328 case 0x16: /* SQDMULH, SQRDMULH (vector) */
9329 if (size != 1 && size != 2) {
9330 unallocated_encoding(s);
9331 return;
9332 }
9333 break;
9334 default:
9335 unallocated_encoding(s);
9336 return;
9337 }
9338
9339 if (!fp_access_check(s)) {
9340 return;
9341 }
9342
9343 tcg_rd = tcg_temp_new_i64();
9344
9345 if (size == 3) {
9346 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9347 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9348
9349 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9350 } else {
9351 /* Do a single operation on the lowest element in the vector.
9352 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9353 * no side effects for all these operations.
9354 * OPTME: special-purpose helpers would avoid doing some
9355 * unnecessary work in the helper for the 8 and 16 bit cases.
9356 */
9357 NeonGenTwoOpEnvFn *genenvfn;
9358 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9359 TCGv_i32 tcg_rm = tcg_temp_new_i32();
9360 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9361
9362 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9363 read_vec_element_i32(s, tcg_rm, rm, 0, size);
9364
9365 switch (opcode) {
9366 case 0x1: /* SQADD, UQADD */
9367 {
9368 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9369 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9370 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9371 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9372 };
9373 genenvfn = fns[size][u];
9374 break;
9375 }
9376 case 0x5: /* SQSUB, UQSUB */
9377 {
9378 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9379 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9380 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9381 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9382 };
9383 genenvfn = fns[size][u];
9384 break;
9385 }
9386 case 0x9: /* SQSHL, UQSHL */
9387 {
9388 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9389 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9390 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9391 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9392 };
9393 genenvfn = fns[size][u];
9394 break;
9395 }
9396 case 0xb: /* SQRSHL, UQRSHL */
9397 {
9398 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9399 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9400 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9401 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9402 };
9403 genenvfn = fns[size][u];
9404 break;
9405 }
9406 case 0x16: /* SQDMULH, SQRDMULH */
9407 {
9408 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9409 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9410 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9411 };
9412 assert(size == 1 || size == 2);
9413 genenvfn = fns[size - 1][u];
9414 break;
9415 }
9416 default:
9417 g_assert_not_reached();
9418 }
9419
9420 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9421 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9422 }
9423
9424 write_fp_dreg(s, rd, tcg_rd);
9425 }
9426
9427 /* AdvSIMD scalar three same FP16
9428 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
9429 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9430 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
9431 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9432 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9433 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9434 */
9435 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9436 uint32_t insn)
9437 {
9438 int rd = extract32(insn, 0, 5);
9439 int rn = extract32(insn, 5, 5);
9440 int opcode = extract32(insn, 11, 3);
9441 int rm = extract32(insn, 16, 5);
9442 bool u = extract32(insn, 29, 1);
9443 bool a = extract32(insn, 23, 1);
9444 int fpopcode = opcode | (a << 3) | (u << 4);
9445 TCGv_ptr fpst;
9446 TCGv_i32 tcg_op1;
9447 TCGv_i32 tcg_op2;
9448 TCGv_i32 tcg_res;
9449
9450 switch (fpopcode) {
9451 case 0x03: /* FMULX */
9452 case 0x04: /* FCMEQ (reg) */
9453 case 0x07: /* FRECPS */
9454 case 0x0f: /* FRSQRTS */
9455 case 0x14: /* FCMGE (reg) */
9456 case 0x15: /* FACGE */
9457 case 0x1a: /* FABD */
9458 case 0x1c: /* FCMGT (reg) */
9459 case 0x1d: /* FACGT */
9460 break;
9461 default:
9462 unallocated_encoding(s);
9463 return;
9464 }
9465
9466 if (!dc_isar_feature(aa64_fp16, s)) {
9467 unallocated_encoding(s);
9468 }
9469
9470 if (!fp_access_check(s)) {
9471 return;
9472 }
9473
9474 fpst = fpstatus_ptr(FPST_FPCR_F16);
9475
9476 tcg_op1 = read_fp_hreg(s, rn);
9477 tcg_op2 = read_fp_hreg(s, rm);
9478 tcg_res = tcg_temp_new_i32();
9479
9480 switch (fpopcode) {
9481 case 0x03: /* FMULX */
9482 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9483 break;
9484 case 0x04: /* FCMEQ (reg) */
9485 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9486 break;
9487 case 0x07: /* FRECPS */
9488 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9489 break;
9490 case 0x0f: /* FRSQRTS */
9491 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9492 break;
9493 case 0x14: /* FCMGE (reg) */
9494 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9495 break;
9496 case 0x15: /* FACGE */
9497 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9498 break;
9499 case 0x1a: /* FABD */
9500 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9501 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9502 break;
9503 case 0x1c: /* FCMGT (reg) */
9504 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9505 break;
9506 case 0x1d: /* FACGT */
9507 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9508 break;
9509 default:
9510 g_assert_not_reached();
9511 }
9512
9513 write_fp_sreg(s, rd, tcg_res);
9514 }
9515
9516 /* AdvSIMD scalar three same extra
9517 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9518 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9519 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9520 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9521 */
9522 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9523 uint32_t insn)
9524 {
9525 int rd = extract32(insn, 0, 5);
9526 int rn = extract32(insn, 5, 5);
9527 int opcode = extract32(insn, 11, 4);
9528 int rm = extract32(insn, 16, 5);
9529 int size = extract32(insn, 22, 2);
9530 bool u = extract32(insn, 29, 1);
9531 TCGv_i32 ele1, ele2, ele3;
9532 TCGv_i64 res;
9533 bool feature;
9534
9535 switch (u * 16 + opcode) {
9536 case 0x10: /* SQRDMLAH (vector) */
9537 case 0x11: /* SQRDMLSH (vector) */
9538 if (size != 1 && size != 2) {
9539 unallocated_encoding(s);
9540 return;
9541 }
9542 feature = dc_isar_feature(aa64_rdm, s);
9543 break;
9544 default:
9545 unallocated_encoding(s);
9546 return;
9547 }
9548 if (!feature) {
9549 unallocated_encoding(s);
9550 return;
9551 }
9552 if (!fp_access_check(s)) {
9553 return;
9554 }
9555
9556 /* Do a single operation on the lowest element in the vector.
9557 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9558 * with no side effects for all these operations.
9559 * OPTME: special-purpose helpers would avoid doing some
9560 * unnecessary work in the helper for the 16 bit cases.
9561 */
9562 ele1 = tcg_temp_new_i32();
9563 ele2 = tcg_temp_new_i32();
9564 ele3 = tcg_temp_new_i32();
9565
9566 read_vec_element_i32(s, ele1, rn, 0, size);
9567 read_vec_element_i32(s, ele2, rm, 0, size);
9568 read_vec_element_i32(s, ele3, rd, 0, size);
9569
9570 switch (opcode) {
9571 case 0x0: /* SQRDMLAH */
9572 if (size == 1) {
9573 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9574 } else {
9575 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9576 }
9577 break;
9578 case 0x1: /* SQRDMLSH */
9579 if (size == 1) {
9580 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9581 } else {
9582 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9583 }
9584 break;
9585 default:
9586 g_assert_not_reached();
9587 }
9588
9589 res = tcg_temp_new_i64();
9590 tcg_gen_extu_i32_i64(res, ele3);
9591 write_fp_dreg(s, rd, res);
9592 }
9593
9594 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9595 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9596 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9597 {
9598 /* Handle 64->64 opcodes which are shared between the scalar and
9599 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9600 * is valid in either group and also the double-precision fp ops.
9601 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9602 * requires them.
9603 */
9604 TCGCond cond;
9605
9606 switch (opcode) {
9607 case 0x4: /* CLS, CLZ */
9608 if (u) {
9609 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9610 } else {
9611 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9612 }
9613 break;
9614 case 0x5: /* NOT */
9615 /* This opcode is shared with CNT and RBIT but we have earlier
9616 * enforced that size == 3 if and only if this is the NOT insn.
9617 */
9618 tcg_gen_not_i64(tcg_rd, tcg_rn);
9619 break;
9620 case 0x7: /* SQABS, SQNEG */
9621 if (u) {
9622 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9623 } else {
9624 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9625 }
9626 break;
9627 case 0xa: /* CMLT */
9628 /* 64 bit integer comparison against zero, result is
9629 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9630 * subtracting 1.
9631 */
9632 cond = TCG_COND_LT;
9633 do_cmop:
9634 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9635 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9636 break;
9637 case 0x8: /* CMGT, CMGE */
9638 cond = u ? TCG_COND_GE : TCG_COND_GT;
9639 goto do_cmop;
9640 case 0x9: /* CMEQ, CMLE */
9641 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9642 goto do_cmop;
9643 case 0xb: /* ABS, NEG */
9644 if (u) {
9645 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9646 } else {
9647 tcg_gen_abs_i64(tcg_rd, tcg_rn);
9648 }
9649 break;
9650 case 0x2f: /* FABS */
9651 gen_helper_vfp_absd(tcg_rd, tcg_rn);
9652 break;
9653 case 0x6f: /* FNEG */
9654 gen_helper_vfp_negd(tcg_rd, tcg_rn);
9655 break;
9656 case 0x7f: /* FSQRT */
9657 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9658 break;
9659 case 0x1a: /* FCVTNS */
9660 case 0x1b: /* FCVTMS */
9661 case 0x1c: /* FCVTAS */
9662 case 0x3a: /* FCVTPS */
9663 case 0x3b: /* FCVTZS */
9664 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9665 break;
9666 case 0x5a: /* FCVTNU */
9667 case 0x5b: /* FCVTMU */
9668 case 0x5c: /* FCVTAU */
9669 case 0x7a: /* FCVTPU */
9670 case 0x7b: /* FCVTZU */
9671 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9672 break;
9673 case 0x18: /* FRINTN */
9674 case 0x19: /* FRINTM */
9675 case 0x38: /* FRINTP */
9676 case 0x39: /* FRINTZ */
9677 case 0x58: /* FRINTA */
9678 case 0x79: /* FRINTI */
9679 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9680 break;
9681 case 0x59: /* FRINTX */
9682 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9683 break;
9684 case 0x1e: /* FRINT32Z */
9685 case 0x5e: /* FRINT32X */
9686 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9687 break;
9688 case 0x1f: /* FRINT64Z */
9689 case 0x5f: /* FRINT64X */
9690 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9691 break;
9692 default:
9693 g_assert_not_reached();
9694 }
9695 }
9696
9697 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9698 bool is_scalar, bool is_u, bool is_q,
9699 int size, int rn, int rd)
9700 {
9701 bool is_double = (size == MO_64);
9702 TCGv_ptr fpst;
9703
9704 if (!fp_access_check(s)) {
9705 return;
9706 }
9707
9708 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9709
9710 if (is_double) {
9711 TCGv_i64 tcg_op = tcg_temp_new_i64();
9712 TCGv_i64 tcg_zero = tcg_constant_i64(0);
9713 TCGv_i64 tcg_res = tcg_temp_new_i64();
9714 NeonGenTwoDoubleOpFn *genfn;
9715 bool swap = false;
9716 int pass;
9717
9718 switch (opcode) {
9719 case 0x2e: /* FCMLT (zero) */
9720 swap = true;
9721 /* fallthrough */
9722 case 0x2c: /* FCMGT (zero) */
9723 genfn = gen_helper_neon_cgt_f64;
9724 break;
9725 case 0x2d: /* FCMEQ (zero) */
9726 genfn = gen_helper_neon_ceq_f64;
9727 break;
9728 case 0x6d: /* FCMLE (zero) */
9729 swap = true;
9730 /* fall through */
9731 case 0x6c: /* FCMGE (zero) */
9732 genfn = gen_helper_neon_cge_f64;
9733 break;
9734 default:
9735 g_assert_not_reached();
9736 }
9737
9738 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9739 read_vec_element(s, tcg_op, rn, pass, MO_64);
9740 if (swap) {
9741 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9742 } else {
9743 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9744 }
9745 write_vec_element(s, tcg_res, rd, pass, MO_64);
9746 }
9747
9748 clear_vec_high(s, !is_scalar, rd);
9749 } else {
9750 TCGv_i32 tcg_op = tcg_temp_new_i32();
9751 TCGv_i32 tcg_zero = tcg_constant_i32(0);
9752 TCGv_i32 tcg_res = tcg_temp_new_i32();
9753 NeonGenTwoSingleOpFn *genfn;
9754 bool swap = false;
9755 int pass, maxpasses;
9756
9757 if (size == MO_16) {
9758 switch (opcode) {
9759 case 0x2e: /* FCMLT (zero) */
9760 swap = true;
9761 /* fall through */
9762 case 0x2c: /* FCMGT (zero) */
9763 genfn = gen_helper_advsimd_cgt_f16;
9764 break;
9765 case 0x2d: /* FCMEQ (zero) */
9766 genfn = gen_helper_advsimd_ceq_f16;
9767 break;
9768 case 0x6d: /* FCMLE (zero) */
9769 swap = true;
9770 /* fall through */
9771 case 0x6c: /* FCMGE (zero) */
9772 genfn = gen_helper_advsimd_cge_f16;
9773 break;
9774 default:
9775 g_assert_not_reached();
9776 }
9777 } else {
9778 switch (opcode) {
9779 case 0x2e: /* FCMLT (zero) */
9780 swap = true;
9781 /* fall through */
9782 case 0x2c: /* FCMGT (zero) */
9783 genfn = gen_helper_neon_cgt_f32;
9784 break;
9785 case 0x2d: /* FCMEQ (zero) */
9786 genfn = gen_helper_neon_ceq_f32;
9787 break;
9788 case 0x6d: /* FCMLE (zero) */
9789 swap = true;
9790 /* fall through */
9791 case 0x6c: /* FCMGE (zero) */
9792 genfn = gen_helper_neon_cge_f32;
9793 break;
9794 default:
9795 g_assert_not_reached();
9796 }
9797 }
9798
9799 if (is_scalar) {
9800 maxpasses = 1;
9801 } else {
9802 int vector_size = 8 << is_q;
9803 maxpasses = vector_size >> size;
9804 }
9805
9806 for (pass = 0; pass < maxpasses; pass++) {
9807 read_vec_element_i32(s, tcg_op, rn, pass, size);
9808 if (swap) {
9809 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9810 } else {
9811 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9812 }
9813 if (is_scalar) {
9814 write_fp_sreg(s, rd, tcg_res);
9815 } else {
9816 write_vec_element_i32(s, tcg_res, rd, pass, size);
9817 }
9818 }
9819
9820 if (!is_scalar) {
9821 clear_vec_high(s, is_q, rd);
9822 }
9823 }
9824 }
9825
9826 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9827 bool is_scalar, bool is_u, bool is_q,
9828 int size, int rn, int rd)
9829 {
9830 bool is_double = (size == 3);
9831 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9832
9833 if (is_double) {
9834 TCGv_i64 tcg_op = tcg_temp_new_i64();
9835 TCGv_i64 tcg_res = tcg_temp_new_i64();
9836 int pass;
9837
9838 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9839 read_vec_element(s, tcg_op, rn, pass, MO_64);
9840 switch (opcode) {
9841 case 0x3d: /* FRECPE */
9842 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9843 break;
9844 case 0x3f: /* FRECPX */
9845 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9846 break;
9847 case 0x7d: /* FRSQRTE */
9848 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9849 break;
9850 default:
9851 g_assert_not_reached();
9852 }
9853 write_vec_element(s, tcg_res, rd, pass, MO_64);
9854 }
9855 clear_vec_high(s, !is_scalar, rd);
9856 } else {
9857 TCGv_i32 tcg_op = tcg_temp_new_i32();
9858 TCGv_i32 tcg_res = tcg_temp_new_i32();
9859 int pass, maxpasses;
9860
9861 if (is_scalar) {
9862 maxpasses = 1;
9863 } else {
9864 maxpasses = is_q ? 4 : 2;
9865 }
9866
9867 for (pass = 0; pass < maxpasses; pass++) {
9868 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9869
9870 switch (opcode) {
9871 case 0x3c: /* URECPE */
9872 gen_helper_recpe_u32(tcg_res, tcg_op);
9873 break;
9874 case 0x3d: /* FRECPE */
9875 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9876 break;
9877 case 0x3f: /* FRECPX */
9878 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9879 break;
9880 case 0x7d: /* FRSQRTE */
9881 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9882 break;
9883 default:
9884 g_assert_not_reached();
9885 }
9886
9887 if (is_scalar) {
9888 write_fp_sreg(s, rd, tcg_res);
9889 } else {
9890 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9891 }
9892 }
9893 if (!is_scalar) {
9894 clear_vec_high(s, is_q, rd);
9895 }
9896 }
9897 }
9898
9899 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9900 int opcode, bool u, bool is_q,
9901 int size, int rn, int rd)
9902 {
9903 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9904 * in the source becomes a size element in the destination).
9905 */
9906 int pass;
9907 TCGv_i32 tcg_res[2];
9908 int destelt = is_q ? 2 : 0;
9909 int passes = scalar ? 1 : 2;
9910
9911 if (scalar) {
9912 tcg_res[1] = tcg_constant_i32(0);
9913 }
9914
9915 for (pass = 0; pass < passes; pass++) {
9916 TCGv_i64 tcg_op = tcg_temp_new_i64();
9917 NeonGenNarrowFn *genfn = NULL;
9918 NeonGenNarrowEnvFn *genenvfn = NULL;
9919
9920 if (scalar) {
9921 read_vec_element(s, tcg_op, rn, pass, size + 1);
9922 } else {
9923 read_vec_element(s, tcg_op, rn, pass, MO_64);
9924 }
9925 tcg_res[pass] = tcg_temp_new_i32();
9926
9927 switch (opcode) {
9928 case 0x12: /* XTN, SQXTUN */
9929 {
9930 static NeonGenNarrowFn * const xtnfns[3] = {
9931 gen_helper_neon_narrow_u8,
9932 gen_helper_neon_narrow_u16,
9933 tcg_gen_extrl_i64_i32,
9934 };
9935 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9936 gen_helper_neon_unarrow_sat8,
9937 gen_helper_neon_unarrow_sat16,
9938 gen_helper_neon_unarrow_sat32,
9939 };
9940 if (u) {
9941 genenvfn = sqxtunfns[size];
9942 } else {
9943 genfn = xtnfns[size];
9944 }
9945 break;
9946 }
9947 case 0x14: /* SQXTN, UQXTN */
9948 {
9949 static NeonGenNarrowEnvFn * const fns[3][2] = {
9950 { gen_helper_neon_narrow_sat_s8,
9951 gen_helper_neon_narrow_sat_u8 },
9952 { gen_helper_neon_narrow_sat_s16,
9953 gen_helper_neon_narrow_sat_u16 },
9954 { gen_helper_neon_narrow_sat_s32,
9955 gen_helper_neon_narrow_sat_u32 },
9956 };
9957 genenvfn = fns[size][u];
9958 break;
9959 }
9960 case 0x16: /* FCVTN, FCVTN2 */
9961 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9962 if (size == 2) {
9963 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
9964 } else {
9965 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9966 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9967 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9968 TCGv_i32 ahp = get_ahp_flag();
9969
9970 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9971 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9972 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9973 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9974 }
9975 break;
9976 case 0x36: /* BFCVTN, BFCVTN2 */
9977 {
9978 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9979 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9980 }
9981 break;
9982 case 0x56: /* FCVTXN, FCVTXN2 */
9983 /* 64 bit to 32 bit float conversion
9984 * with von Neumann rounding (round to odd)
9985 */
9986 assert(size == 2);
9987 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
9988 break;
9989 default:
9990 g_assert_not_reached();
9991 }
9992
9993 if (genfn) {
9994 genfn(tcg_res[pass], tcg_op);
9995 } else if (genenvfn) {
9996 genenvfn(tcg_res[pass], cpu_env, tcg_op);
9997 }
9998 }
9999
10000 for (pass = 0; pass < 2; pass++) {
10001 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10002 }
10003 clear_vec_high(s, is_q, rd);
10004 }
10005
10006 /* Remaining saturating accumulating ops */
10007 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
10008 bool is_q, int size, int rn, int rd)
10009 {
10010 bool is_double = (size == 3);
10011
10012 if (is_double) {
10013 TCGv_i64 tcg_rn = tcg_temp_new_i64();
10014 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10015 int pass;
10016
10017 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10018 read_vec_element(s, tcg_rn, rn, pass, MO_64);
10019 read_vec_element(s, tcg_rd, rd, pass, MO_64);
10020
10021 if (is_u) { /* USQADD */
10022 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10023 } else { /* SUQADD */
10024 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10025 }
10026 write_vec_element(s, tcg_rd, rd, pass, MO_64);
10027 }
10028 clear_vec_high(s, !is_scalar, rd);
10029 } else {
10030 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10031 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10032 int pass, maxpasses;
10033
10034 if (is_scalar) {
10035 maxpasses = 1;
10036 } else {
10037 maxpasses = is_q ? 4 : 2;
10038 }
10039
10040 for (pass = 0; pass < maxpasses; pass++) {
10041 if (is_scalar) {
10042 read_vec_element_i32(s, tcg_rn, rn, pass, size);
10043 read_vec_element_i32(s, tcg_rd, rd, pass, size);
10044 } else {
10045 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
10046 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10047 }
10048
10049 if (is_u) { /* USQADD */
10050 switch (size) {
10051 case 0:
10052 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10053 break;
10054 case 1:
10055 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10056 break;
10057 case 2:
10058 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10059 break;
10060 default:
10061 g_assert_not_reached();
10062 }
10063 } else { /* SUQADD */
10064 switch (size) {
10065 case 0:
10066 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10067 break;
10068 case 1:
10069 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10070 break;
10071 case 2:
10072 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10073 break;
10074 default:
10075 g_assert_not_reached();
10076 }
10077 }
10078
10079 if (is_scalar) {
10080 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
10081 }
10082 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10083 }
10084 clear_vec_high(s, is_q, rd);
10085 }
10086 }
10087
10088 /* AdvSIMD scalar two reg misc
10089 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
10090 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10091 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
10092 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10093 */
10094 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10095 {
10096 int rd = extract32(insn, 0, 5);
10097 int rn = extract32(insn, 5, 5);
10098 int opcode = extract32(insn, 12, 5);
10099 int size = extract32(insn, 22, 2);
10100 bool u = extract32(insn, 29, 1);
10101 bool is_fcvt = false;
10102 int rmode;
10103 TCGv_i32 tcg_rmode;
10104 TCGv_ptr tcg_fpstatus;
10105
10106 switch (opcode) {
10107 case 0x3: /* USQADD / SUQADD*/
10108 if (!fp_access_check(s)) {
10109 return;
10110 }
10111 handle_2misc_satacc(s, true, u, false, size, rn, rd);
10112 return;
10113 case 0x7: /* SQABS / SQNEG */
10114 break;
10115 case 0xa: /* CMLT */
10116 if (u) {
10117 unallocated_encoding(s);
10118 return;
10119 }
10120 /* fall through */
10121 case 0x8: /* CMGT, CMGE */
10122 case 0x9: /* CMEQ, CMLE */
10123 case 0xb: /* ABS, NEG */
10124 if (size != 3) {
10125 unallocated_encoding(s);
10126 return;
10127 }
10128 break;
10129 case 0x12: /* SQXTUN */
10130 if (!u) {
10131 unallocated_encoding(s);
10132 return;
10133 }
10134 /* fall through */
10135 case 0x14: /* SQXTN, UQXTN */
10136 if (size == 3) {
10137 unallocated_encoding(s);
10138 return;
10139 }
10140 if (!fp_access_check(s)) {
10141 return;
10142 }
10143 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10144 return;
10145 case 0xc ... 0xf:
10146 case 0x16 ... 0x1d:
10147 case 0x1f:
10148 /* Floating point: U, size[1] and opcode indicate operation;
10149 * size[0] indicates single or double precision.
10150 */
10151 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10152 size = extract32(size, 0, 1) ? 3 : 2;
10153 switch (opcode) {
10154 case 0x2c: /* FCMGT (zero) */
10155 case 0x2d: /* FCMEQ (zero) */
10156 case 0x2e: /* FCMLT (zero) */
10157 case 0x6c: /* FCMGE (zero) */
10158 case 0x6d: /* FCMLE (zero) */
10159 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10160 return;
10161 case 0x1d: /* SCVTF */
10162 case 0x5d: /* UCVTF */
10163 {
10164 bool is_signed = (opcode == 0x1d);
10165 if (!fp_access_check(s)) {
10166 return;
10167 }
10168 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10169 return;
10170 }
10171 case 0x3d: /* FRECPE */
10172 case 0x3f: /* FRECPX */
10173 case 0x7d: /* FRSQRTE */
10174 if (!fp_access_check(s)) {
10175 return;
10176 }
10177 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10178 return;
10179 case 0x1a: /* FCVTNS */
10180 case 0x1b: /* FCVTMS */
10181 case 0x3a: /* FCVTPS */
10182 case 0x3b: /* FCVTZS */
10183 case 0x5a: /* FCVTNU */
10184 case 0x5b: /* FCVTMU */
10185 case 0x7a: /* FCVTPU */
10186 case 0x7b: /* FCVTZU */
10187 is_fcvt = true;
10188 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10189 break;
10190 case 0x1c: /* FCVTAS */
10191 case 0x5c: /* FCVTAU */
10192 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10193 is_fcvt = true;
10194 rmode = FPROUNDING_TIEAWAY;
10195 break;
10196 case 0x56: /* FCVTXN, FCVTXN2 */
10197 if (size == 2) {
10198 unallocated_encoding(s);
10199 return;
10200 }
10201 if (!fp_access_check(s)) {
10202 return;
10203 }
10204 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10205 return;
10206 default:
10207 unallocated_encoding(s);
10208 return;
10209 }
10210 break;
10211 default:
10212 unallocated_encoding(s);
10213 return;
10214 }
10215
10216 if (!fp_access_check(s)) {
10217 return;
10218 }
10219
10220 if (is_fcvt) {
10221 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10222 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10223 } else {
10224 tcg_fpstatus = NULL;
10225 tcg_rmode = NULL;
10226 }
10227
10228 if (size == 3) {
10229 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10230 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10231
10232 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10233 write_fp_dreg(s, rd, tcg_rd);
10234 } else {
10235 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10236 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10237
10238 read_vec_element_i32(s, tcg_rn, rn, 0, size);
10239
10240 switch (opcode) {
10241 case 0x7: /* SQABS, SQNEG */
10242 {
10243 NeonGenOneOpEnvFn *genfn;
10244 static NeonGenOneOpEnvFn * const fns[3][2] = {
10245 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10246 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10247 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10248 };
10249 genfn = fns[size][u];
10250 genfn(tcg_rd, cpu_env, tcg_rn);
10251 break;
10252 }
10253 case 0x1a: /* FCVTNS */
10254 case 0x1b: /* FCVTMS */
10255 case 0x1c: /* FCVTAS */
10256 case 0x3a: /* FCVTPS */
10257 case 0x3b: /* FCVTZS */
10258 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10259 tcg_fpstatus);
10260 break;
10261 case 0x5a: /* FCVTNU */
10262 case 0x5b: /* FCVTMU */
10263 case 0x5c: /* FCVTAU */
10264 case 0x7a: /* FCVTPU */
10265 case 0x7b: /* FCVTZU */
10266 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10267 tcg_fpstatus);
10268 break;
10269 default:
10270 g_assert_not_reached();
10271 }
10272
10273 write_fp_sreg(s, rd, tcg_rd);
10274 }
10275
10276 if (is_fcvt) {
10277 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10278 }
10279 }
10280
10281 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10282 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10283 int immh, int immb, int opcode, int rn, int rd)
10284 {
10285 int size = 32 - clz32(immh) - 1;
10286 int immhb = immh << 3 | immb;
10287 int shift = 2 * (8 << size) - immhb;
10288 GVecGen2iFn *gvec_fn;
10289
10290 if (extract32(immh, 3, 1) && !is_q) {
10291 unallocated_encoding(s);
10292 return;
10293 }
10294 tcg_debug_assert(size <= 3);
10295
10296 if (!fp_access_check(s)) {
10297 return;
10298 }
10299
10300 switch (opcode) {
10301 case 0x02: /* SSRA / USRA (accumulate) */
10302 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10303 break;
10304
10305 case 0x08: /* SRI */
10306 gvec_fn = gen_gvec_sri;
10307 break;
10308
10309 case 0x00: /* SSHR / USHR */
10310 if (is_u) {
10311 if (shift == 8 << size) {
10312 /* Shift count the same size as element size produces zero. */
10313 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10314 is_q ? 16 : 8, vec_full_reg_size(s), 0);
10315 return;
10316 }
10317 gvec_fn = tcg_gen_gvec_shri;
10318 } else {
10319 /* Shift count the same size as element size produces all sign. */
10320 if (shift == 8 << size) {
10321 shift -= 1;
10322 }
10323 gvec_fn = tcg_gen_gvec_sari;
10324 }
10325 break;
10326
10327 case 0x04: /* SRSHR / URSHR (rounding) */
10328 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10329 break;
10330
10331 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10332 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10333 break;
10334
10335 default:
10336 g_assert_not_reached();
10337 }
10338
10339 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10340 }
10341
10342 /* SHL/SLI - Vector shift left */
10343 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10344 int immh, int immb, int opcode, int rn, int rd)
10345 {
10346 int size = 32 - clz32(immh) - 1;
10347 int immhb = immh << 3 | immb;
10348 int shift = immhb - (8 << size);
10349
10350 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10351 assert(size >= 0 && size <= 3);
10352
10353 if (extract32(immh, 3, 1) && !is_q) {
10354 unallocated_encoding(s);
10355 return;
10356 }
10357
10358 if (!fp_access_check(s)) {
10359 return;
10360 }
10361
10362 if (insert) {
10363 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10364 } else {
10365 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10366 }
10367 }
10368
10369 /* USHLL/SHLL - Vector shift left with widening */
10370 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10371 int immh, int immb, int opcode, int rn, int rd)
10372 {
10373 int size = 32 - clz32(immh) - 1;
10374 int immhb = immh << 3 | immb;
10375 int shift = immhb - (8 << size);
10376 int dsize = 64;
10377 int esize = 8 << size;
10378 int elements = dsize/esize;
10379 TCGv_i64 tcg_rn = tcg_temp_new_i64();
10380 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10381 int i;
10382
10383 if (size >= 3) {
10384 unallocated_encoding(s);
10385 return;
10386 }
10387
10388 if (!fp_access_check(s)) {
10389 return;
10390 }
10391
10392 /* For the LL variants the store is larger than the load,
10393 * so if rd == rn we would overwrite parts of our input.
10394 * So load everything right now and use shifts in the main loop.
10395 */
10396 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10397
10398 for (i = 0; i < elements; i++) {
10399 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10400 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10401 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10402 write_vec_element(s, tcg_rd, rd, i, size + 1);
10403 }
10404 }
10405
10406 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10407 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10408 int immh, int immb, int opcode, int rn, int rd)
10409 {
10410 int immhb = immh << 3 | immb;
10411 int size = 32 - clz32(immh) - 1;
10412 int dsize = 64;
10413 int esize = 8 << size;
10414 int elements = dsize/esize;
10415 int shift = (2 * esize) - immhb;
10416 bool round = extract32(opcode, 0, 1);
10417 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10418 TCGv_i64 tcg_round;
10419 int i;
10420
10421 if (extract32(immh, 3, 1)) {
10422 unallocated_encoding(s);
10423 return;
10424 }
10425
10426 if (!fp_access_check(s)) {
10427 return;
10428 }
10429
10430 tcg_rn = tcg_temp_new_i64();
10431 tcg_rd = tcg_temp_new_i64();
10432 tcg_final = tcg_temp_new_i64();
10433 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10434
10435 if (round) {
10436 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10437 } else {
10438 tcg_round = NULL;
10439 }
10440
10441 for (i = 0; i < elements; i++) {
10442 read_vec_element(s, tcg_rn, rn, i, size+1);
10443 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10444 false, true, size+1, shift);
10445
10446 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10447 }
10448
10449 if (!is_q) {
10450 write_vec_element(s, tcg_final, rd, 0, MO_64);
10451 } else {
10452 write_vec_element(s, tcg_final, rd, 1, MO_64);
10453 }
10454
10455 clear_vec_high(s, is_q, rd);
10456 }
10457
10458
10459 /* AdvSIMD shift by immediate
10460 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10461 * +---+---+---+-------------+------+------+--------+---+------+------+
10462 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10463 * +---+---+---+-------------+------+------+--------+---+------+------+
10464 */
10465 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10466 {
10467 int rd = extract32(insn, 0, 5);
10468 int rn = extract32(insn, 5, 5);
10469 int opcode = extract32(insn, 11, 5);
10470 int immb = extract32(insn, 16, 3);
10471 int immh = extract32(insn, 19, 4);
10472 bool is_u = extract32(insn, 29, 1);
10473 bool is_q = extract32(insn, 30, 1);
10474
10475 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10476 assert(immh != 0);
10477
10478 switch (opcode) {
10479 case 0x08: /* SRI */
10480 if (!is_u) {
10481 unallocated_encoding(s);
10482 return;
10483 }
10484 /* fall through */
10485 case 0x00: /* SSHR / USHR */
10486 case 0x02: /* SSRA / USRA (accumulate) */
10487 case 0x04: /* SRSHR / URSHR (rounding) */
10488 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10489 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10490 break;
10491 case 0x0a: /* SHL / SLI */
10492 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10493 break;
10494 case 0x10: /* SHRN */
10495 case 0x11: /* RSHRN / SQRSHRUN */
10496 if (is_u) {
10497 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10498 opcode, rn, rd);
10499 } else {
10500 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10501 }
10502 break;
10503 case 0x12: /* SQSHRN / UQSHRN */
10504 case 0x13: /* SQRSHRN / UQRSHRN */
10505 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10506 opcode, rn, rd);
10507 break;
10508 case 0x14: /* SSHLL / USHLL */
10509 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10510 break;
10511 case 0x1c: /* SCVTF / UCVTF */
10512 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10513 opcode, rn, rd);
10514 break;
10515 case 0xc: /* SQSHLU */
10516 if (!is_u) {
10517 unallocated_encoding(s);
10518 return;
10519 }
10520 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10521 break;
10522 case 0xe: /* SQSHL, UQSHL */
10523 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10524 break;
10525 case 0x1f: /* FCVTZS/ FCVTZU */
10526 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10527 return;
10528 default:
10529 unallocated_encoding(s);
10530 return;
10531 }
10532 }
10533
10534 /* Generate code to do a "long" addition or subtraction, ie one done in
10535 * TCGv_i64 on vector lanes twice the width specified by size.
10536 */
10537 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10538 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10539 {
10540 static NeonGenTwo64OpFn * const fns[3][2] = {
10541 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10542 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10543 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10544 };
10545 NeonGenTwo64OpFn *genfn;
10546 assert(size < 3);
10547
10548 genfn = fns[size][is_sub];
10549 genfn(tcg_res, tcg_op1, tcg_op2);
10550 }
10551
10552 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10553 int opcode, int rd, int rn, int rm)
10554 {
10555 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10556 TCGv_i64 tcg_res[2];
10557 int pass, accop;
10558
10559 tcg_res[0] = tcg_temp_new_i64();
10560 tcg_res[1] = tcg_temp_new_i64();
10561
10562 /* Does this op do an adding accumulate, a subtracting accumulate,
10563 * or no accumulate at all?
10564 */
10565 switch (opcode) {
10566 case 5:
10567 case 8:
10568 case 9:
10569 accop = 1;
10570 break;
10571 case 10:
10572 case 11:
10573 accop = -1;
10574 break;
10575 default:
10576 accop = 0;
10577 break;
10578 }
10579
10580 if (accop != 0) {
10581 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10582 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10583 }
10584
10585 /* size == 2 means two 32x32->64 operations; this is worth special
10586 * casing because we can generally handle it inline.
10587 */
10588 if (size == 2) {
10589 for (pass = 0; pass < 2; pass++) {
10590 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10591 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10592 TCGv_i64 tcg_passres;
10593 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10594
10595 int elt = pass + is_q * 2;
10596
10597 read_vec_element(s, tcg_op1, rn, elt, memop);
10598 read_vec_element(s, tcg_op2, rm, elt, memop);
10599
10600 if (accop == 0) {
10601 tcg_passres = tcg_res[pass];
10602 } else {
10603 tcg_passres = tcg_temp_new_i64();
10604 }
10605
10606 switch (opcode) {
10607 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10608 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10609 break;
10610 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10611 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10612 break;
10613 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10614 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10615 {
10616 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10617 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10618
10619 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10620 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10621 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10622 tcg_passres,
10623 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10624 break;
10625 }
10626 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10627 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10628 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10629 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10630 break;
10631 case 9: /* SQDMLAL, SQDMLAL2 */
10632 case 11: /* SQDMLSL, SQDMLSL2 */
10633 case 13: /* SQDMULL, SQDMULL2 */
10634 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10635 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10636 tcg_passres, tcg_passres);
10637 break;
10638 default:
10639 g_assert_not_reached();
10640 }
10641
10642 if (opcode == 9 || opcode == 11) {
10643 /* saturating accumulate ops */
10644 if (accop < 0) {
10645 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10646 }
10647 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10648 tcg_res[pass], tcg_passres);
10649 } else if (accop > 0) {
10650 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10651 } else if (accop < 0) {
10652 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10653 }
10654 }
10655 } else {
10656 /* size 0 or 1, generally helper functions */
10657 for (pass = 0; pass < 2; pass++) {
10658 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10659 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10660 TCGv_i64 tcg_passres;
10661 int elt = pass + is_q * 2;
10662
10663 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10664 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10665
10666 if (accop == 0) {
10667 tcg_passres = tcg_res[pass];
10668 } else {
10669 tcg_passres = tcg_temp_new_i64();
10670 }
10671
10672 switch (opcode) {
10673 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10674 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10675 {
10676 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10677 static NeonGenWidenFn * const widenfns[2][2] = {
10678 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10679 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10680 };
10681 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10682
10683 widenfn(tcg_op2_64, tcg_op2);
10684 widenfn(tcg_passres, tcg_op1);
10685 gen_neon_addl(size, (opcode == 2), tcg_passres,
10686 tcg_passres, tcg_op2_64);
10687 break;
10688 }
10689 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10690 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10691 if (size == 0) {
10692 if (is_u) {
10693 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10694 } else {
10695 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10696 }
10697 } else {
10698 if (is_u) {
10699 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10700 } else {
10701 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10702 }
10703 }
10704 break;
10705 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10706 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10707 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10708 if (size == 0) {
10709 if (is_u) {
10710 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10711 } else {
10712 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10713 }
10714 } else {
10715 if (is_u) {
10716 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10717 } else {
10718 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10719 }
10720 }
10721 break;
10722 case 9: /* SQDMLAL, SQDMLAL2 */
10723 case 11: /* SQDMLSL, SQDMLSL2 */
10724 case 13: /* SQDMULL, SQDMULL2 */
10725 assert(size == 1);
10726 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10727 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10728 tcg_passres, tcg_passres);
10729 break;
10730 default:
10731 g_assert_not_reached();
10732 }
10733
10734 if (accop != 0) {
10735 if (opcode == 9 || opcode == 11) {
10736 /* saturating accumulate ops */
10737 if (accop < 0) {
10738 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10739 }
10740 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10741 tcg_res[pass],
10742 tcg_passres);
10743 } else {
10744 gen_neon_addl(size, (accop < 0), tcg_res[pass],
10745 tcg_res[pass], tcg_passres);
10746 }
10747 }
10748 }
10749 }
10750
10751 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10752 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10753 }
10754
10755 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10756 int opcode, int rd, int rn, int rm)
10757 {
10758 TCGv_i64 tcg_res[2];
10759 int part = is_q ? 2 : 0;
10760 int pass;
10761
10762 for (pass = 0; pass < 2; pass++) {
10763 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10764 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10765 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10766 static NeonGenWidenFn * const widenfns[3][2] = {
10767 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10768 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10769 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10770 };
10771 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10772
10773 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10774 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10775 widenfn(tcg_op2_wide, tcg_op2);
10776 tcg_res[pass] = tcg_temp_new_i64();
10777 gen_neon_addl(size, (opcode == 3),
10778 tcg_res[pass], tcg_op1, tcg_op2_wide);
10779 }
10780
10781 for (pass = 0; pass < 2; pass++) {
10782 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10783 }
10784 }
10785
10786 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10787 {
10788 tcg_gen_addi_i64(in, in, 1U << 31);
10789 tcg_gen_extrh_i64_i32(res, in);
10790 }
10791
10792 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10793 int opcode, int rd, int rn, int rm)
10794 {
10795 TCGv_i32 tcg_res[2];
10796 int part = is_q ? 2 : 0;
10797 int pass;
10798
10799 for (pass = 0; pass < 2; pass++) {
10800 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10801 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10802 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10803 static NeonGenNarrowFn * const narrowfns[3][2] = {
10804 { gen_helper_neon_narrow_high_u8,
10805 gen_helper_neon_narrow_round_high_u8 },
10806 { gen_helper_neon_narrow_high_u16,
10807 gen_helper_neon_narrow_round_high_u16 },
10808 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10809 };
10810 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10811
10812 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10813 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10814
10815 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10816
10817 tcg_res[pass] = tcg_temp_new_i32();
10818 gennarrow(tcg_res[pass], tcg_wideres);
10819 }
10820
10821 for (pass = 0; pass < 2; pass++) {
10822 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10823 }
10824 clear_vec_high(s, is_q, rd);
10825 }
10826
10827 /* AdvSIMD three different
10828 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
10829 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10830 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
10831 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10832 */
10833 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10834 {
10835 /* Instructions in this group fall into three basic classes
10836 * (in each case with the operation working on each element in
10837 * the input vectors):
10838 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10839 * 128 bit input)
10840 * (2) wide 64 x 128 -> 128
10841 * (3) narrowing 128 x 128 -> 64
10842 * Here we do initial decode, catch unallocated cases and
10843 * dispatch to separate functions for each class.
10844 */
10845 int is_q = extract32(insn, 30, 1);
10846 int is_u = extract32(insn, 29, 1);
10847 int size = extract32(insn, 22, 2);
10848 int opcode = extract32(insn, 12, 4);
10849 int rm = extract32(insn, 16, 5);
10850 int rn = extract32(insn, 5, 5);
10851 int rd = extract32(insn, 0, 5);
10852
10853 switch (opcode) {
10854 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10855 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10856 /* 64 x 128 -> 128 */
10857 if (size == 3) {
10858 unallocated_encoding(s);
10859 return;
10860 }
10861 if (!fp_access_check(s)) {
10862 return;
10863 }
10864 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10865 break;
10866 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10867 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10868 /* 128 x 128 -> 64 */
10869 if (size == 3) {
10870 unallocated_encoding(s);
10871 return;
10872 }
10873 if (!fp_access_check(s)) {
10874 return;
10875 }
10876 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10877 break;
10878 case 14: /* PMULL, PMULL2 */
10879 if (is_u) {
10880 unallocated_encoding(s);
10881 return;
10882 }
10883 switch (size) {
10884 case 0: /* PMULL.P8 */
10885 if (!fp_access_check(s)) {
10886 return;
10887 }
10888 /* The Q field specifies lo/hi half input for this insn. */
10889 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10890 gen_helper_neon_pmull_h);
10891 break;
10892
10893 case 3: /* PMULL.P64 */
10894 if (!dc_isar_feature(aa64_pmull, s)) {
10895 unallocated_encoding(s);
10896 return;
10897 }
10898 if (!fp_access_check(s)) {
10899 return;
10900 }
10901 /* The Q field specifies lo/hi half input for this insn. */
10902 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10903 gen_helper_gvec_pmull_q);
10904 break;
10905
10906 default:
10907 unallocated_encoding(s);
10908 break;
10909 }
10910 return;
10911 case 9: /* SQDMLAL, SQDMLAL2 */
10912 case 11: /* SQDMLSL, SQDMLSL2 */
10913 case 13: /* SQDMULL, SQDMULL2 */
10914 if (is_u || size == 0) {
10915 unallocated_encoding(s);
10916 return;
10917 }
10918 /* fall through */
10919 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10920 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10921 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10922 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10923 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10924 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10925 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10926 /* 64 x 64 -> 128 */
10927 if (size == 3) {
10928 unallocated_encoding(s);
10929 return;
10930 }
10931 if (!fp_access_check(s)) {
10932 return;
10933 }
10934
10935 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10936 break;
10937 default:
10938 /* opcode 15 not allocated */
10939 unallocated_encoding(s);
10940 break;
10941 }
10942 }
10943
10944 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10945 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10946 {
10947 int rd = extract32(insn, 0, 5);
10948 int rn = extract32(insn, 5, 5);
10949 int rm = extract32(insn, 16, 5);
10950 int size = extract32(insn, 22, 2);
10951 bool is_u = extract32(insn, 29, 1);
10952 bool is_q = extract32(insn, 30, 1);
10953
10954 if (!fp_access_check(s)) {
10955 return;
10956 }
10957
10958 switch (size + 4 * is_u) {
10959 case 0: /* AND */
10960 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10961 return;
10962 case 1: /* BIC */
10963 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10964 return;
10965 case 2: /* ORR */
10966 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10967 return;
10968 case 3: /* ORN */
10969 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10970 return;
10971 case 4: /* EOR */
10972 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10973 return;
10974
10975 case 5: /* BSL bitwise select */
10976 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10977 return;
10978 case 6: /* BIT, bitwise insert if true */
10979 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10980 return;
10981 case 7: /* BIF, bitwise insert if false */
10982 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10983 return;
10984
10985 default:
10986 g_assert_not_reached();
10987 }
10988 }
10989
10990 /* Pairwise op subgroup of C3.6.16.
10991 *
10992 * This is called directly or via the handle_3same_float for float pairwise
10993 * operations where the opcode and size are calculated differently.
10994 */
10995 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10996 int size, int rn, int rm, int rd)
10997 {
10998 TCGv_ptr fpst;
10999 int pass;
11000
11001 /* Floating point operations need fpst */
11002 if (opcode >= 0x58) {
11003 fpst = fpstatus_ptr(FPST_FPCR);
11004 } else {
11005 fpst = NULL;
11006 }
11007
11008 if (!fp_access_check(s)) {
11009 return;
11010 }
11011
11012 /* These operations work on the concatenated rm:rn, with each pair of
11013 * adjacent elements being operated on to produce an element in the result.
11014 */
11015 if (size == 3) {
11016 TCGv_i64 tcg_res[2];
11017
11018 for (pass = 0; pass < 2; pass++) {
11019 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11020 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11021 int passreg = (pass == 0) ? rn : rm;
11022
11023 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
11024 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
11025 tcg_res[pass] = tcg_temp_new_i64();
11026
11027 switch (opcode) {
11028 case 0x17: /* ADDP */
11029 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11030 break;
11031 case 0x58: /* FMAXNMP */
11032 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11033 break;
11034 case 0x5a: /* FADDP */
11035 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11036 break;
11037 case 0x5e: /* FMAXP */
11038 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11039 break;
11040 case 0x78: /* FMINNMP */
11041 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11042 break;
11043 case 0x7e: /* FMINP */
11044 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11045 break;
11046 default:
11047 g_assert_not_reached();
11048 }
11049 }
11050
11051 for (pass = 0; pass < 2; pass++) {
11052 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11053 }
11054 } else {
11055 int maxpass = is_q ? 4 : 2;
11056 TCGv_i32 tcg_res[4];
11057
11058 for (pass = 0; pass < maxpass; pass++) {
11059 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11060 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11061 NeonGenTwoOpFn *genfn = NULL;
11062 int passreg = pass < (maxpass / 2) ? rn : rm;
11063 int passelt = (is_q && (pass & 1)) ? 2 : 0;
11064
11065 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11066 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11067 tcg_res[pass] = tcg_temp_new_i32();
11068
11069 switch (opcode) {
11070 case 0x17: /* ADDP */
11071 {
11072 static NeonGenTwoOpFn * const fns[3] = {
11073 gen_helper_neon_padd_u8,
11074 gen_helper_neon_padd_u16,
11075 tcg_gen_add_i32,
11076 };
11077 genfn = fns[size];
11078 break;
11079 }
11080 case 0x14: /* SMAXP, UMAXP */
11081 {
11082 static NeonGenTwoOpFn * const fns[3][2] = {
11083 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11084 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11085 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11086 };
11087 genfn = fns[size][u];
11088 break;
11089 }
11090 case 0x15: /* SMINP, UMINP */
11091 {
11092 static NeonGenTwoOpFn * const fns[3][2] = {
11093 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11094 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11095 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11096 };
11097 genfn = fns[size][u];
11098 break;
11099 }
11100 /* The FP operations are all on single floats (32 bit) */
11101 case 0x58: /* FMAXNMP */
11102 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11103 break;
11104 case 0x5a: /* FADDP */
11105 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11106 break;
11107 case 0x5e: /* FMAXP */
11108 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11109 break;
11110 case 0x78: /* FMINNMP */
11111 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11112 break;
11113 case 0x7e: /* FMINP */
11114 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11115 break;
11116 default:
11117 g_assert_not_reached();
11118 }
11119
11120 /* FP ops called directly, otherwise call now */
11121 if (genfn) {
11122 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11123 }
11124 }
11125
11126 for (pass = 0; pass < maxpass; pass++) {
11127 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11128 }
11129 clear_vec_high(s, is_q, rd);
11130 }
11131 }
11132
11133 /* Floating point op subgroup of C3.6.16. */
11134 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11135 {
11136 /* For floating point ops, the U, size[1] and opcode bits
11137 * together indicate the operation. size[0] indicates single
11138 * or double.
11139 */
11140 int fpopcode = extract32(insn, 11, 5)
11141 | (extract32(insn, 23, 1) << 5)
11142 | (extract32(insn, 29, 1) << 6);
11143 int is_q = extract32(insn, 30, 1);
11144 int size = extract32(insn, 22, 1);
11145 int rm = extract32(insn, 16, 5);
11146 int rn = extract32(insn, 5, 5);
11147 int rd = extract32(insn, 0, 5);
11148
11149 int datasize = is_q ? 128 : 64;
11150 int esize = 32 << size;
11151 int elements = datasize / esize;
11152
11153 if (size == 1 && !is_q) {
11154 unallocated_encoding(s);
11155 return;
11156 }
11157
11158 switch (fpopcode) {
11159 case 0x58: /* FMAXNMP */
11160 case 0x5a: /* FADDP */
11161 case 0x5e: /* FMAXP */
11162 case 0x78: /* FMINNMP */
11163 case 0x7e: /* FMINP */
11164 if (size && !is_q) {
11165 unallocated_encoding(s);
11166 return;
11167 }
11168 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11169 rn, rm, rd);
11170 return;
11171 case 0x1b: /* FMULX */
11172 case 0x1f: /* FRECPS */
11173 case 0x3f: /* FRSQRTS */
11174 case 0x5d: /* FACGE */
11175 case 0x7d: /* FACGT */
11176 case 0x19: /* FMLA */
11177 case 0x39: /* FMLS */
11178 case 0x18: /* FMAXNM */
11179 case 0x1a: /* FADD */
11180 case 0x1c: /* FCMEQ */
11181 case 0x1e: /* FMAX */
11182 case 0x38: /* FMINNM */
11183 case 0x3a: /* FSUB */
11184 case 0x3e: /* FMIN */
11185 case 0x5b: /* FMUL */
11186 case 0x5c: /* FCMGE */
11187 case 0x5f: /* FDIV */
11188 case 0x7a: /* FABD */
11189 case 0x7c: /* FCMGT */
11190 if (!fp_access_check(s)) {
11191 return;
11192 }
11193 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11194 return;
11195
11196 case 0x1d: /* FMLAL */
11197 case 0x3d: /* FMLSL */
11198 case 0x59: /* FMLAL2 */
11199 case 0x79: /* FMLSL2 */
11200 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11201 unallocated_encoding(s);
11202 return;
11203 }
11204 if (fp_access_check(s)) {
11205 int is_s = extract32(insn, 23, 1);
11206 int is_2 = extract32(insn, 29, 1);
11207 int data = (is_2 << 1) | is_s;
11208 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11209 vec_full_reg_offset(s, rn),
11210 vec_full_reg_offset(s, rm), cpu_env,
11211 is_q ? 16 : 8, vec_full_reg_size(s),
11212 data, gen_helper_gvec_fmlal_a64);
11213 }
11214 return;
11215
11216 default:
11217 unallocated_encoding(s);
11218 return;
11219 }
11220 }
11221
11222 /* Integer op subgroup of C3.6.16. */
11223 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11224 {
11225 int is_q = extract32(insn, 30, 1);
11226 int u = extract32(insn, 29, 1);
11227 int size = extract32(insn, 22, 2);
11228 int opcode = extract32(insn, 11, 5);
11229 int rm = extract32(insn, 16, 5);
11230 int rn = extract32(insn, 5, 5);
11231 int rd = extract32(insn, 0, 5);
11232 int pass;
11233 TCGCond cond;
11234
11235 switch (opcode) {
11236 case 0x13: /* MUL, PMUL */
11237 if (u && size != 0) {
11238 unallocated_encoding(s);
11239 return;
11240 }
11241 /* fall through */
11242 case 0x0: /* SHADD, UHADD */
11243 case 0x2: /* SRHADD, URHADD */
11244 case 0x4: /* SHSUB, UHSUB */
11245 case 0xc: /* SMAX, UMAX */
11246 case 0xd: /* SMIN, UMIN */
11247 case 0xe: /* SABD, UABD */
11248 case 0xf: /* SABA, UABA */
11249 case 0x12: /* MLA, MLS */
11250 if (size == 3) {
11251 unallocated_encoding(s);
11252 return;
11253 }
11254 break;
11255 case 0x16: /* SQDMULH, SQRDMULH */
11256 if (size == 0 || size == 3) {
11257 unallocated_encoding(s);
11258 return;
11259 }
11260 break;
11261 default:
11262 if (size == 3 && !is_q) {
11263 unallocated_encoding(s);
11264 return;
11265 }
11266 break;
11267 }
11268
11269 if (!fp_access_check(s)) {
11270 return;
11271 }
11272
11273 switch (opcode) {
11274 case 0x01: /* SQADD, UQADD */
11275 if (u) {
11276 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11277 } else {
11278 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11279 }
11280 return;
11281 case 0x05: /* SQSUB, UQSUB */
11282 if (u) {
11283 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11284 } else {
11285 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11286 }
11287 return;
11288 case 0x08: /* SSHL, USHL */
11289 if (u) {
11290 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11291 } else {
11292 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11293 }
11294 return;
11295 case 0x0c: /* SMAX, UMAX */
11296 if (u) {
11297 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11298 } else {
11299 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11300 }
11301 return;
11302 case 0x0d: /* SMIN, UMIN */
11303 if (u) {
11304 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11305 } else {
11306 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11307 }
11308 return;
11309 case 0xe: /* SABD, UABD */
11310 if (u) {
11311 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11312 } else {
11313 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11314 }
11315 return;
11316 case 0xf: /* SABA, UABA */
11317 if (u) {
11318 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11319 } else {
11320 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11321 }
11322 return;
11323 case 0x10: /* ADD, SUB */
11324 if (u) {
11325 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11326 } else {
11327 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11328 }
11329 return;
11330 case 0x13: /* MUL, PMUL */
11331 if (!u) { /* MUL */
11332 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11333 } else { /* PMUL */
11334 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11335 }
11336 return;
11337 case 0x12: /* MLA, MLS */
11338 if (u) {
11339 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11340 } else {
11341 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11342 }
11343 return;
11344 case 0x16: /* SQDMULH, SQRDMULH */
11345 {
11346 static gen_helper_gvec_3_ptr * const fns[2][2] = {
11347 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11348 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11349 };
11350 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11351 }
11352 return;
11353 case 0x11:
11354 if (!u) { /* CMTST */
11355 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11356 return;
11357 }
11358 /* else CMEQ */
11359 cond = TCG_COND_EQ;
11360 goto do_gvec_cmp;
11361 case 0x06: /* CMGT, CMHI */
11362 cond = u ? TCG_COND_GTU : TCG_COND_GT;
11363 goto do_gvec_cmp;
11364 case 0x07: /* CMGE, CMHS */
11365 cond = u ? TCG_COND_GEU : TCG_COND_GE;
11366 do_gvec_cmp:
11367 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11368 vec_full_reg_offset(s, rn),
11369 vec_full_reg_offset(s, rm),
11370 is_q ? 16 : 8, vec_full_reg_size(s));
11371 return;
11372 }
11373
11374 if (size == 3) {
11375 assert(is_q);
11376 for (pass = 0; pass < 2; pass++) {
11377 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11378 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11379 TCGv_i64 tcg_res = tcg_temp_new_i64();
11380
11381 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11382 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11383
11384 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11385
11386 write_vec_element(s, tcg_res, rd, pass, MO_64);
11387 }
11388 } else {
11389 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11390 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11391 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11392 TCGv_i32 tcg_res = tcg_temp_new_i32();
11393 NeonGenTwoOpFn *genfn = NULL;
11394 NeonGenTwoOpEnvFn *genenvfn = NULL;
11395
11396 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11397 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11398
11399 switch (opcode) {
11400 case 0x0: /* SHADD, UHADD */
11401 {
11402 static NeonGenTwoOpFn * const fns[3][2] = {
11403 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11404 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11405 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11406 };
11407 genfn = fns[size][u];
11408 break;
11409 }
11410 case 0x2: /* SRHADD, URHADD */
11411 {
11412 static NeonGenTwoOpFn * const fns[3][2] = {
11413 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11414 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11415 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11416 };
11417 genfn = fns[size][u];
11418 break;
11419 }
11420 case 0x4: /* SHSUB, UHSUB */
11421 {
11422 static NeonGenTwoOpFn * const fns[3][2] = {
11423 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11424 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11425 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11426 };
11427 genfn = fns[size][u];
11428 break;
11429 }
11430 case 0x9: /* SQSHL, UQSHL */
11431 {
11432 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11433 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11434 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11435 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11436 };
11437 genenvfn = fns[size][u];
11438 break;
11439 }
11440 case 0xa: /* SRSHL, URSHL */
11441 {
11442 static NeonGenTwoOpFn * const fns[3][2] = {
11443 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11444 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11445 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11446 };
11447 genfn = fns[size][u];
11448 break;
11449 }
11450 case 0xb: /* SQRSHL, UQRSHL */
11451 {
11452 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11453 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11454 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11455 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11456 };
11457 genenvfn = fns[size][u];
11458 break;
11459 }
11460 default:
11461 g_assert_not_reached();
11462 }
11463
11464 if (genenvfn) {
11465 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11466 } else {
11467 genfn(tcg_res, tcg_op1, tcg_op2);
11468 }
11469
11470 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11471 }
11472 }
11473 clear_vec_high(s, is_q, rd);
11474 }
11475
11476 /* AdvSIMD three same
11477 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11478 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11479 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11480 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11481 */
11482 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11483 {
11484 int opcode = extract32(insn, 11, 5);
11485
11486 switch (opcode) {
11487 case 0x3: /* logic ops */
11488 disas_simd_3same_logic(s, insn);
11489 break;
11490 case 0x17: /* ADDP */
11491 case 0x14: /* SMAXP, UMAXP */
11492 case 0x15: /* SMINP, UMINP */
11493 {
11494 /* Pairwise operations */
11495 int is_q = extract32(insn, 30, 1);
11496 int u = extract32(insn, 29, 1);
11497 int size = extract32(insn, 22, 2);
11498 int rm = extract32(insn, 16, 5);
11499 int rn = extract32(insn, 5, 5);
11500 int rd = extract32(insn, 0, 5);
11501 if (opcode == 0x17) {
11502 if (u || (size == 3 && !is_q)) {
11503 unallocated_encoding(s);
11504 return;
11505 }
11506 } else {
11507 if (size == 3) {
11508 unallocated_encoding(s);
11509 return;
11510 }
11511 }
11512 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11513 break;
11514 }
11515 case 0x18 ... 0x31:
11516 /* floating point ops, sz[1] and U are part of opcode */
11517 disas_simd_3same_float(s, insn);
11518 break;
11519 default:
11520 disas_simd_3same_int(s, insn);
11521 break;
11522 }
11523 }
11524
11525 /*
11526 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11527 *
11528 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11529 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11530 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11531 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11532 *
11533 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11534 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11535 *
11536 */
11537 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11538 {
11539 int opcode = extract32(insn, 11, 3);
11540 int u = extract32(insn, 29, 1);
11541 int a = extract32(insn, 23, 1);
11542 int is_q = extract32(insn, 30, 1);
11543 int rm = extract32(insn, 16, 5);
11544 int rn = extract32(insn, 5, 5);
11545 int rd = extract32(insn, 0, 5);
11546 /*
11547 * For these floating point ops, the U, a and opcode bits
11548 * together indicate the operation.
11549 */
11550 int fpopcode = opcode | (a << 3) | (u << 4);
11551 int datasize = is_q ? 128 : 64;
11552 int elements = datasize / 16;
11553 bool pairwise;
11554 TCGv_ptr fpst;
11555 int pass;
11556
11557 switch (fpopcode) {
11558 case 0x0: /* FMAXNM */
11559 case 0x1: /* FMLA */
11560 case 0x2: /* FADD */
11561 case 0x3: /* FMULX */
11562 case 0x4: /* FCMEQ */
11563 case 0x6: /* FMAX */
11564 case 0x7: /* FRECPS */
11565 case 0x8: /* FMINNM */
11566 case 0x9: /* FMLS */
11567 case 0xa: /* FSUB */
11568 case 0xe: /* FMIN */
11569 case 0xf: /* FRSQRTS */
11570 case 0x13: /* FMUL */
11571 case 0x14: /* FCMGE */
11572 case 0x15: /* FACGE */
11573 case 0x17: /* FDIV */
11574 case 0x1a: /* FABD */
11575 case 0x1c: /* FCMGT */
11576 case 0x1d: /* FACGT */
11577 pairwise = false;
11578 break;
11579 case 0x10: /* FMAXNMP */
11580 case 0x12: /* FADDP */
11581 case 0x16: /* FMAXP */
11582 case 0x18: /* FMINNMP */
11583 case 0x1e: /* FMINP */
11584 pairwise = true;
11585 break;
11586 default:
11587 unallocated_encoding(s);
11588 return;
11589 }
11590
11591 if (!dc_isar_feature(aa64_fp16, s)) {
11592 unallocated_encoding(s);
11593 return;
11594 }
11595
11596 if (!fp_access_check(s)) {
11597 return;
11598 }
11599
11600 fpst = fpstatus_ptr(FPST_FPCR_F16);
11601
11602 if (pairwise) {
11603 int maxpass = is_q ? 8 : 4;
11604 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11605 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11606 TCGv_i32 tcg_res[8];
11607
11608 for (pass = 0; pass < maxpass; pass++) {
11609 int passreg = pass < (maxpass / 2) ? rn : rm;
11610 int passelt = (pass << 1) & (maxpass - 1);
11611
11612 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11613 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11614 tcg_res[pass] = tcg_temp_new_i32();
11615
11616 switch (fpopcode) {
11617 case 0x10: /* FMAXNMP */
11618 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11619 fpst);
11620 break;
11621 case 0x12: /* FADDP */
11622 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11623 break;
11624 case 0x16: /* FMAXP */
11625 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11626 break;
11627 case 0x18: /* FMINNMP */
11628 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11629 fpst);
11630 break;
11631 case 0x1e: /* FMINP */
11632 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11633 break;
11634 default:
11635 g_assert_not_reached();
11636 }
11637 }
11638
11639 for (pass = 0; pass < maxpass; pass++) {
11640 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11641 }
11642 } else {
11643 for (pass = 0; pass < elements; pass++) {
11644 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11645 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11646 TCGv_i32 tcg_res = tcg_temp_new_i32();
11647
11648 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11649 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11650
11651 switch (fpopcode) {
11652 case 0x0: /* FMAXNM */
11653 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11654 break;
11655 case 0x1: /* FMLA */
11656 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11657 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11658 fpst);
11659 break;
11660 case 0x2: /* FADD */
11661 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11662 break;
11663 case 0x3: /* FMULX */
11664 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11665 break;
11666 case 0x4: /* FCMEQ */
11667 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11668 break;
11669 case 0x6: /* FMAX */
11670 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11671 break;
11672 case 0x7: /* FRECPS */
11673 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11674 break;
11675 case 0x8: /* FMINNM */
11676 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11677 break;
11678 case 0x9: /* FMLS */
11679 /* As usual for ARM, separate negation for fused multiply-add */
11680 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11681 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11682 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11683 fpst);
11684 break;
11685 case 0xa: /* FSUB */
11686 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11687 break;
11688 case 0xe: /* FMIN */
11689 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11690 break;
11691 case 0xf: /* FRSQRTS */
11692 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11693 break;
11694 case 0x13: /* FMUL */
11695 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11696 break;
11697 case 0x14: /* FCMGE */
11698 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11699 break;
11700 case 0x15: /* FACGE */
11701 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11702 break;
11703 case 0x17: /* FDIV */
11704 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11705 break;
11706 case 0x1a: /* FABD */
11707 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11708 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11709 break;
11710 case 0x1c: /* FCMGT */
11711 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11712 break;
11713 case 0x1d: /* FACGT */
11714 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11715 break;
11716 default:
11717 g_assert_not_reached();
11718 }
11719
11720 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11721 }
11722 }
11723
11724 clear_vec_high(s, is_q, rd);
11725 }
11726
11727 /* AdvSIMD three same extra
11728 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
11729 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11730 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
11731 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11732 */
11733 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11734 {
11735 int rd = extract32(insn, 0, 5);
11736 int rn = extract32(insn, 5, 5);
11737 int opcode = extract32(insn, 11, 4);
11738 int rm = extract32(insn, 16, 5);
11739 int size = extract32(insn, 22, 2);
11740 bool u = extract32(insn, 29, 1);
11741 bool is_q = extract32(insn, 30, 1);
11742 bool feature;
11743 int rot;
11744
11745 switch (u * 16 + opcode) {
11746 case 0x10: /* SQRDMLAH (vector) */
11747 case 0x11: /* SQRDMLSH (vector) */
11748 if (size != 1 && size != 2) {
11749 unallocated_encoding(s);
11750 return;
11751 }
11752 feature = dc_isar_feature(aa64_rdm, s);
11753 break;
11754 case 0x02: /* SDOT (vector) */
11755 case 0x12: /* UDOT (vector) */
11756 if (size != MO_32) {
11757 unallocated_encoding(s);
11758 return;
11759 }
11760 feature = dc_isar_feature(aa64_dp, s);
11761 break;
11762 case 0x03: /* USDOT */
11763 if (size != MO_32) {
11764 unallocated_encoding(s);
11765 return;
11766 }
11767 feature = dc_isar_feature(aa64_i8mm, s);
11768 break;
11769 case 0x04: /* SMMLA */
11770 case 0x14: /* UMMLA */
11771 case 0x05: /* USMMLA */
11772 if (!is_q || size != MO_32) {
11773 unallocated_encoding(s);
11774 return;
11775 }
11776 feature = dc_isar_feature(aa64_i8mm, s);
11777 break;
11778 case 0x18: /* FCMLA, #0 */
11779 case 0x19: /* FCMLA, #90 */
11780 case 0x1a: /* FCMLA, #180 */
11781 case 0x1b: /* FCMLA, #270 */
11782 case 0x1c: /* FCADD, #90 */
11783 case 0x1e: /* FCADD, #270 */
11784 if (size == 0
11785 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11786 || (size == 3 && !is_q)) {
11787 unallocated_encoding(s);
11788 return;
11789 }
11790 feature = dc_isar_feature(aa64_fcma, s);
11791 break;
11792 case 0x1d: /* BFMMLA */
11793 if (size != MO_16 || !is_q) {
11794 unallocated_encoding(s);
11795 return;
11796 }
11797 feature = dc_isar_feature(aa64_bf16, s);
11798 break;
11799 case 0x1f:
11800 switch (size) {
11801 case 1: /* BFDOT */
11802 case 3: /* BFMLAL{B,T} */
11803 feature = dc_isar_feature(aa64_bf16, s);
11804 break;
11805 default:
11806 unallocated_encoding(s);
11807 return;
11808 }
11809 break;
11810 default:
11811 unallocated_encoding(s);
11812 return;
11813 }
11814 if (!feature) {
11815 unallocated_encoding(s);
11816 return;
11817 }
11818 if (!fp_access_check(s)) {
11819 return;
11820 }
11821
11822 switch (opcode) {
11823 case 0x0: /* SQRDMLAH (vector) */
11824 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11825 return;
11826
11827 case 0x1: /* SQRDMLSH (vector) */
11828 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11829 return;
11830
11831 case 0x2: /* SDOT / UDOT */
11832 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11833 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11834 return;
11835
11836 case 0x3: /* USDOT */
11837 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11838 return;
11839
11840 case 0x04: /* SMMLA, UMMLA */
11841 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11842 u ? gen_helper_gvec_ummla_b
11843 : gen_helper_gvec_smmla_b);
11844 return;
11845 case 0x05: /* USMMLA */
11846 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11847 return;
11848
11849 case 0x8: /* FCMLA, #0 */
11850 case 0x9: /* FCMLA, #90 */
11851 case 0xa: /* FCMLA, #180 */
11852 case 0xb: /* FCMLA, #270 */
11853 rot = extract32(opcode, 0, 2);
11854 switch (size) {
11855 case 1:
11856 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11857 gen_helper_gvec_fcmlah);
11858 break;
11859 case 2:
11860 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11861 gen_helper_gvec_fcmlas);
11862 break;
11863 case 3:
11864 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11865 gen_helper_gvec_fcmlad);
11866 break;
11867 default:
11868 g_assert_not_reached();
11869 }
11870 return;
11871
11872 case 0xc: /* FCADD, #90 */
11873 case 0xe: /* FCADD, #270 */
11874 rot = extract32(opcode, 1, 1);
11875 switch (size) {
11876 case 1:
11877 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11878 gen_helper_gvec_fcaddh);
11879 break;
11880 case 2:
11881 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11882 gen_helper_gvec_fcadds);
11883 break;
11884 case 3:
11885 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11886 gen_helper_gvec_fcaddd);
11887 break;
11888 default:
11889 g_assert_not_reached();
11890 }
11891 return;
11892
11893 case 0xd: /* BFMMLA */
11894 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11895 return;
11896 case 0xf:
11897 switch (size) {
11898 case 1: /* BFDOT */
11899 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11900 break;
11901 case 3: /* BFMLAL{B,T} */
11902 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11903 gen_helper_gvec_bfmlal);
11904 break;
11905 default:
11906 g_assert_not_reached();
11907 }
11908 return;
11909
11910 default:
11911 g_assert_not_reached();
11912 }
11913 }
11914
11915 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11916 int size, int rn, int rd)
11917 {
11918 /* Handle 2-reg-misc ops which are widening (so each size element
11919 * in the source becomes a 2*size element in the destination.
11920 * The only instruction like this is FCVTL.
11921 */
11922 int pass;
11923
11924 if (size == 3) {
11925 /* 32 -> 64 bit fp conversion */
11926 TCGv_i64 tcg_res[2];
11927 int srcelt = is_q ? 2 : 0;
11928
11929 for (pass = 0; pass < 2; pass++) {
11930 TCGv_i32 tcg_op = tcg_temp_new_i32();
11931 tcg_res[pass] = tcg_temp_new_i64();
11932
11933 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11934 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11935 }
11936 for (pass = 0; pass < 2; pass++) {
11937 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11938 }
11939 } else {
11940 /* 16 -> 32 bit fp conversion */
11941 int srcelt = is_q ? 4 : 0;
11942 TCGv_i32 tcg_res[4];
11943 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11944 TCGv_i32 ahp = get_ahp_flag();
11945
11946 for (pass = 0; pass < 4; pass++) {
11947 tcg_res[pass] = tcg_temp_new_i32();
11948
11949 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11950 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11951 fpst, ahp);
11952 }
11953 for (pass = 0; pass < 4; pass++) {
11954 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11955 }
11956 }
11957 }
11958
11959 static void handle_rev(DisasContext *s, int opcode, bool u,
11960 bool is_q, int size, int rn, int rd)
11961 {
11962 int op = (opcode << 1) | u;
11963 int opsz = op + size;
11964 int grp_size = 3 - opsz;
11965 int dsize = is_q ? 128 : 64;
11966 int i;
11967
11968 if (opsz >= 3) {
11969 unallocated_encoding(s);
11970 return;
11971 }
11972
11973 if (!fp_access_check(s)) {
11974 return;
11975 }
11976
11977 if (size == 0) {
11978 /* Special case bytes, use bswap op on each group of elements */
11979 int groups = dsize / (8 << grp_size);
11980
11981 for (i = 0; i < groups; i++) {
11982 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11983
11984 read_vec_element(s, tcg_tmp, rn, i, grp_size);
11985 switch (grp_size) {
11986 case MO_16:
11987 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11988 break;
11989 case MO_32:
11990 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11991 break;
11992 case MO_64:
11993 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11994 break;
11995 default:
11996 g_assert_not_reached();
11997 }
11998 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11999 }
12000 clear_vec_high(s, is_q, rd);
12001 } else {
12002 int revmask = (1 << grp_size) - 1;
12003 int esize = 8 << size;
12004 int elements = dsize / esize;
12005 TCGv_i64 tcg_rn = tcg_temp_new_i64();
12006 TCGv_i64 tcg_rd[2];
12007
12008 for (i = 0; i < 2; i++) {
12009 tcg_rd[i] = tcg_temp_new_i64();
12010 tcg_gen_movi_i64(tcg_rd[i], 0);
12011 }
12012
12013 for (i = 0; i < elements; i++) {
12014 int e_rev = (i & 0xf) ^ revmask;
12015 int w = (e_rev * esize) / 64;
12016 int o = (e_rev * esize) % 64;
12017
12018 read_vec_element(s, tcg_rn, rn, i, size);
12019 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
12020 }
12021
12022 for (i = 0; i < 2; i++) {
12023 write_vec_element(s, tcg_rd[i], rd, i, MO_64);
12024 }
12025 clear_vec_high(s, true, rd);
12026 }
12027 }
12028
12029 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
12030 bool is_q, int size, int rn, int rd)
12031 {
12032 /* Implement the pairwise operations from 2-misc:
12033 * SADDLP, UADDLP, SADALP, UADALP.
12034 * These all add pairs of elements in the input to produce a
12035 * double-width result element in the output (possibly accumulating).
12036 */
12037 bool accum = (opcode == 0x6);
12038 int maxpass = is_q ? 2 : 1;
12039 int pass;
12040 TCGv_i64 tcg_res[2];
12041
12042 if (size == 2) {
12043 /* 32 + 32 -> 64 op */
12044 MemOp memop = size + (u ? 0 : MO_SIGN);
12045
12046 for (pass = 0; pass < maxpass; pass++) {
12047 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
12048 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
12049
12050 tcg_res[pass] = tcg_temp_new_i64();
12051
12052 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
12053 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
12054 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
12055 if (accum) {
12056 read_vec_element(s, tcg_op1, rd, pass, MO_64);
12057 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12058 }
12059 }
12060 } else {
12061 for (pass = 0; pass < maxpass; pass++) {
12062 TCGv_i64 tcg_op = tcg_temp_new_i64();
12063 NeonGenOne64OpFn *genfn;
12064 static NeonGenOne64OpFn * const fns[2][2] = {
12065 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
12066 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
12067 };
12068
12069 genfn = fns[size][u];
12070
12071 tcg_res[pass] = tcg_temp_new_i64();
12072
12073 read_vec_element(s, tcg_op, rn, pass, MO_64);
12074 genfn(tcg_res[pass], tcg_op);
12075
12076 if (accum) {
12077 read_vec_element(s, tcg_op, rd, pass, MO_64);
12078 if (size == 0) {
12079 gen_helper_neon_addl_u16(tcg_res[pass],
12080 tcg_res[pass], tcg_op);
12081 } else {
12082 gen_helper_neon_addl_u32(tcg_res[pass],
12083 tcg_res[pass], tcg_op);
12084 }
12085 }
12086 }
12087 }
12088 if (!is_q) {
12089 tcg_res[1] = tcg_constant_i64(0);
12090 }
12091 for (pass = 0; pass < 2; pass++) {
12092 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12093 }
12094 }
12095
12096 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12097 {
12098 /* Implement SHLL and SHLL2 */
12099 int pass;
12100 int part = is_q ? 2 : 0;
12101 TCGv_i64 tcg_res[2];
12102
12103 for (pass = 0; pass < 2; pass++) {
12104 static NeonGenWidenFn * const widenfns[3] = {
12105 gen_helper_neon_widen_u8,
12106 gen_helper_neon_widen_u16,
12107 tcg_gen_extu_i32_i64,
12108 };
12109 NeonGenWidenFn *widenfn = widenfns[size];
12110 TCGv_i32 tcg_op = tcg_temp_new_i32();
12111
12112 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12113 tcg_res[pass] = tcg_temp_new_i64();
12114 widenfn(tcg_res[pass], tcg_op);
12115 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12116 }
12117
12118 for (pass = 0; pass < 2; pass++) {
12119 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12120 }
12121 }
12122
12123 /* AdvSIMD two reg misc
12124 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
12125 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12126 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
12127 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12128 */
12129 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12130 {
12131 int size = extract32(insn, 22, 2);
12132 int opcode = extract32(insn, 12, 5);
12133 bool u = extract32(insn, 29, 1);
12134 bool is_q = extract32(insn, 30, 1);
12135 int rn = extract32(insn, 5, 5);
12136 int rd = extract32(insn, 0, 5);
12137 bool need_fpstatus = false;
12138 int rmode = -1;
12139 TCGv_i32 tcg_rmode;
12140 TCGv_ptr tcg_fpstatus;
12141
12142 switch (opcode) {
12143 case 0x0: /* REV64, REV32 */
12144 case 0x1: /* REV16 */
12145 handle_rev(s, opcode, u, is_q, size, rn, rd);
12146 return;
12147 case 0x5: /* CNT, NOT, RBIT */
12148 if (u && size == 0) {
12149 /* NOT */
12150 break;
12151 } else if (u && size == 1) {
12152 /* RBIT */
12153 break;
12154 } else if (!u && size == 0) {
12155 /* CNT */
12156 break;
12157 }
12158 unallocated_encoding(s);
12159 return;
12160 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12161 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12162 if (size == 3) {
12163 unallocated_encoding(s);
12164 return;
12165 }
12166 if (!fp_access_check(s)) {
12167 return;
12168 }
12169
12170 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12171 return;
12172 case 0x4: /* CLS, CLZ */
12173 if (size == 3) {
12174 unallocated_encoding(s);
12175 return;
12176 }
12177 break;
12178 case 0x2: /* SADDLP, UADDLP */
12179 case 0x6: /* SADALP, UADALP */
12180 if (size == 3) {
12181 unallocated_encoding(s);
12182 return;
12183 }
12184 if (!fp_access_check(s)) {
12185 return;
12186 }
12187 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12188 return;
12189 case 0x13: /* SHLL, SHLL2 */
12190 if (u == 0 || size == 3) {
12191 unallocated_encoding(s);
12192 return;
12193 }
12194 if (!fp_access_check(s)) {
12195 return;
12196 }
12197 handle_shll(s, is_q, size, rn, rd);
12198 return;
12199 case 0xa: /* CMLT */
12200 if (u == 1) {
12201 unallocated_encoding(s);
12202 return;
12203 }
12204 /* fall through */
12205 case 0x8: /* CMGT, CMGE */
12206 case 0x9: /* CMEQ, CMLE */
12207 case 0xb: /* ABS, NEG */
12208 if (size == 3 && !is_q) {
12209 unallocated_encoding(s);
12210 return;
12211 }
12212 break;
12213 case 0x3: /* SUQADD, USQADD */
12214 if (size == 3 && !is_q) {
12215 unallocated_encoding(s);
12216 return;
12217 }
12218 if (!fp_access_check(s)) {
12219 return;
12220 }
12221 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12222 return;
12223 case 0x7: /* SQABS, SQNEG */
12224 if (size == 3 && !is_q) {
12225 unallocated_encoding(s);
12226 return;
12227 }
12228 break;
12229 case 0xc ... 0xf:
12230 case 0x16 ... 0x1f:
12231 {
12232 /* Floating point: U, size[1] and opcode indicate operation;
12233 * size[0] indicates single or double precision.
12234 */
12235 int is_double = extract32(size, 0, 1);
12236 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12237 size = is_double ? 3 : 2;
12238 switch (opcode) {
12239 case 0x2f: /* FABS */
12240 case 0x6f: /* FNEG */
12241 if (size == 3 && !is_q) {
12242 unallocated_encoding(s);
12243 return;
12244 }
12245 break;
12246 case 0x1d: /* SCVTF */
12247 case 0x5d: /* UCVTF */
12248 {
12249 bool is_signed = (opcode == 0x1d) ? true : false;
12250 int elements = is_double ? 2 : is_q ? 4 : 2;
12251 if (is_double && !is_q) {
12252 unallocated_encoding(s);
12253 return;
12254 }
12255 if (!fp_access_check(s)) {
12256 return;
12257 }
12258 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12259 return;
12260 }
12261 case 0x2c: /* FCMGT (zero) */
12262 case 0x2d: /* FCMEQ (zero) */
12263 case 0x2e: /* FCMLT (zero) */
12264 case 0x6c: /* FCMGE (zero) */
12265 case 0x6d: /* FCMLE (zero) */
12266 if (size == 3 && !is_q) {
12267 unallocated_encoding(s);
12268 return;
12269 }
12270 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12271 return;
12272 case 0x7f: /* FSQRT */
12273 if (size == 3 && !is_q) {
12274 unallocated_encoding(s);
12275 return;
12276 }
12277 break;
12278 case 0x1a: /* FCVTNS */
12279 case 0x1b: /* FCVTMS */
12280 case 0x3a: /* FCVTPS */
12281 case 0x3b: /* FCVTZS */
12282 case 0x5a: /* FCVTNU */
12283 case 0x5b: /* FCVTMU */
12284 case 0x7a: /* FCVTPU */
12285 case 0x7b: /* FCVTZU */
12286 need_fpstatus = true;
12287 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12288 if (size == 3 && !is_q) {
12289 unallocated_encoding(s);
12290 return;
12291 }
12292 break;
12293 case 0x5c: /* FCVTAU */
12294 case 0x1c: /* FCVTAS */
12295 need_fpstatus = true;
12296 rmode = FPROUNDING_TIEAWAY;
12297 if (size == 3 && !is_q) {
12298 unallocated_encoding(s);
12299 return;
12300 }
12301 break;
12302 case 0x3c: /* URECPE */
12303 if (size == 3) {
12304 unallocated_encoding(s);
12305 return;
12306 }
12307 /* fall through */
12308 case 0x3d: /* FRECPE */
12309 case 0x7d: /* FRSQRTE */
12310 if (size == 3 && !is_q) {
12311 unallocated_encoding(s);
12312 return;
12313 }
12314 if (!fp_access_check(s)) {
12315 return;
12316 }
12317 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12318 return;
12319 case 0x56: /* FCVTXN, FCVTXN2 */
12320 if (size == 2) {
12321 unallocated_encoding(s);
12322 return;
12323 }
12324 /* fall through */
12325 case 0x16: /* FCVTN, FCVTN2 */
12326 /* handle_2misc_narrow does a 2*size -> size operation, but these
12327 * instructions encode the source size rather than dest size.
12328 */
12329 if (!fp_access_check(s)) {
12330 return;
12331 }
12332 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12333 return;
12334 case 0x36: /* BFCVTN, BFCVTN2 */
12335 if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12336 unallocated_encoding(s);
12337 return;
12338 }
12339 if (!fp_access_check(s)) {
12340 return;
12341 }
12342 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12343 return;
12344 case 0x17: /* FCVTL, FCVTL2 */
12345 if (!fp_access_check(s)) {
12346 return;
12347 }
12348 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12349 return;
12350 case 0x18: /* FRINTN */
12351 case 0x19: /* FRINTM */
12352 case 0x38: /* FRINTP */
12353 case 0x39: /* FRINTZ */
12354 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12355 /* fall through */
12356 case 0x59: /* FRINTX */
12357 case 0x79: /* FRINTI */
12358 need_fpstatus = true;
12359 if (size == 3 && !is_q) {
12360 unallocated_encoding(s);
12361 return;
12362 }
12363 break;
12364 case 0x58: /* FRINTA */
12365 rmode = FPROUNDING_TIEAWAY;
12366 need_fpstatus = true;
12367 if (size == 3 && !is_q) {
12368 unallocated_encoding(s);
12369 return;
12370 }
12371 break;
12372 case 0x7c: /* URSQRTE */
12373 if (size == 3) {
12374 unallocated_encoding(s);
12375 return;
12376 }
12377 break;
12378 case 0x1e: /* FRINT32Z */
12379 case 0x1f: /* FRINT64Z */
12380 rmode = FPROUNDING_ZERO;
12381 /* fall through */
12382 case 0x5e: /* FRINT32X */
12383 case 0x5f: /* FRINT64X */
12384 need_fpstatus = true;
12385 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12386 unallocated_encoding(s);
12387 return;
12388 }
12389 break;
12390 default:
12391 unallocated_encoding(s);
12392 return;
12393 }
12394 break;
12395 }
12396 default:
12397 unallocated_encoding(s);
12398 return;
12399 }
12400
12401 if (!fp_access_check(s)) {
12402 return;
12403 }
12404
12405 if (need_fpstatus || rmode >= 0) {
12406 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12407 } else {
12408 tcg_fpstatus = NULL;
12409 }
12410 if (rmode >= 0) {
12411 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12412 } else {
12413 tcg_rmode = NULL;
12414 }
12415
12416 switch (opcode) {
12417 case 0x5:
12418 if (u && size == 0) { /* NOT */
12419 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12420 return;
12421 }
12422 break;
12423 case 0x8: /* CMGT, CMGE */
12424 if (u) {
12425 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12426 } else {
12427 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12428 }
12429 return;
12430 case 0x9: /* CMEQ, CMLE */
12431 if (u) {
12432 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12433 } else {
12434 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12435 }
12436 return;
12437 case 0xa: /* CMLT */
12438 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12439 return;
12440 case 0xb:
12441 if (u) { /* ABS, NEG */
12442 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12443 } else {
12444 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12445 }
12446 return;
12447 }
12448
12449 if (size == 3) {
12450 /* All 64-bit element operations can be shared with scalar 2misc */
12451 int pass;
12452
12453 /* Coverity claims (size == 3 && !is_q) has been eliminated
12454 * from all paths leading to here.
12455 */
12456 tcg_debug_assert(is_q);
12457 for (pass = 0; pass < 2; pass++) {
12458 TCGv_i64 tcg_op = tcg_temp_new_i64();
12459 TCGv_i64 tcg_res = tcg_temp_new_i64();
12460
12461 read_vec_element(s, tcg_op, rn, pass, MO_64);
12462
12463 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12464 tcg_rmode, tcg_fpstatus);
12465
12466 write_vec_element(s, tcg_res, rd, pass, MO_64);
12467 }
12468 } else {
12469 int pass;
12470
12471 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12472 TCGv_i32 tcg_op = tcg_temp_new_i32();
12473 TCGv_i32 tcg_res = tcg_temp_new_i32();
12474
12475 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12476
12477 if (size == 2) {
12478 /* Special cases for 32 bit elements */
12479 switch (opcode) {
12480 case 0x4: /* CLS */
12481 if (u) {
12482 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12483 } else {
12484 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12485 }
12486 break;
12487 case 0x7: /* SQABS, SQNEG */
12488 if (u) {
12489 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12490 } else {
12491 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12492 }
12493 break;
12494 case 0x2f: /* FABS */
12495 gen_helper_vfp_abss(tcg_res, tcg_op);
12496 break;
12497 case 0x6f: /* FNEG */
12498 gen_helper_vfp_negs(tcg_res, tcg_op);
12499 break;
12500 case 0x7f: /* FSQRT */
12501 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12502 break;
12503 case 0x1a: /* FCVTNS */
12504 case 0x1b: /* FCVTMS */
12505 case 0x1c: /* FCVTAS */
12506 case 0x3a: /* FCVTPS */
12507 case 0x3b: /* FCVTZS */
12508 gen_helper_vfp_tosls(tcg_res, tcg_op,
12509 tcg_constant_i32(0), tcg_fpstatus);
12510 break;
12511 case 0x5a: /* FCVTNU */
12512 case 0x5b: /* FCVTMU */
12513 case 0x5c: /* FCVTAU */
12514 case 0x7a: /* FCVTPU */
12515 case 0x7b: /* FCVTZU */
12516 gen_helper_vfp_touls(tcg_res, tcg_op,
12517 tcg_constant_i32(0), tcg_fpstatus);
12518 break;
12519 case 0x18: /* FRINTN */
12520 case 0x19: /* FRINTM */
12521 case 0x38: /* FRINTP */
12522 case 0x39: /* FRINTZ */
12523 case 0x58: /* FRINTA */
12524 case 0x79: /* FRINTI */
12525 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12526 break;
12527 case 0x59: /* FRINTX */
12528 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12529 break;
12530 case 0x7c: /* URSQRTE */
12531 gen_helper_rsqrte_u32(tcg_res, tcg_op);
12532 break;
12533 case 0x1e: /* FRINT32Z */
12534 case 0x5e: /* FRINT32X */
12535 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12536 break;
12537 case 0x1f: /* FRINT64Z */
12538 case 0x5f: /* FRINT64X */
12539 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12540 break;
12541 default:
12542 g_assert_not_reached();
12543 }
12544 } else {
12545 /* Use helpers for 8 and 16 bit elements */
12546 switch (opcode) {
12547 case 0x5: /* CNT, RBIT */
12548 /* For these two insns size is part of the opcode specifier
12549 * (handled earlier); they always operate on byte elements.
12550 */
12551 if (u) {
12552 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12553 } else {
12554 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12555 }
12556 break;
12557 case 0x7: /* SQABS, SQNEG */
12558 {
12559 NeonGenOneOpEnvFn *genfn;
12560 static NeonGenOneOpEnvFn * const fns[2][2] = {
12561 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12562 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12563 };
12564 genfn = fns[size][u];
12565 genfn(tcg_res, cpu_env, tcg_op);
12566 break;
12567 }
12568 case 0x4: /* CLS, CLZ */
12569 if (u) {
12570 if (size == 0) {
12571 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12572 } else {
12573 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12574 }
12575 } else {
12576 if (size == 0) {
12577 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12578 } else {
12579 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12580 }
12581 }
12582 break;
12583 default:
12584 g_assert_not_reached();
12585 }
12586 }
12587
12588 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12589 }
12590 }
12591 clear_vec_high(s, is_q, rd);
12592
12593 if (tcg_rmode) {
12594 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12595 }
12596 }
12597
12598 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12599 *
12600 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
12601 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12602 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
12603 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12604 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12605 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12606 *
12607 * This actually covers two groups where scalar access is governed by
12608 * bit 28. A bunch of the instructions (float to integral) only exist
12609 * in the vector form and are un-allocated for the scalar decode. Also
12610 * in the scalar decode Q is always 1.
12611 */
12612 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12613 {
12614 int fpop, opcode, a, u;
12615 int rn, rd;
12616 bool is_q;
12617 bool is_scalar;
12618 bool only_in_vector = false;
12619
12620 int pass;
12621 TCGv_i32 tcg_rmode = NULL;
12622 TCGv_ptr tcg_fpstatus = NULL;
12623 bool need_fpst = true;
12624 int rmode = -1;
12625
12626 if (!dc_isar_feature(aa64_fp16, s)) {
12627 unallocated_encoding(s);
12628 return;
12629 }
12630
12631 rd = extract32(insn, 0, 5);
12632 rn = extract32(insn, 5, 5);
12633
12634 a = extract32(insn, 23, 1);
12635 u = extract32(insn, 29, 1);
12636 is_scalar = extract32(insn, 28, 1);
12637 is_q = extract32(insn, 30, 1);
12638
12639 opcode = extract32(insn, 12, 5);
12640 fpop = deposit32(opcode, 5, 1, a);
12641 fpop = deposit32(fpop, 6, 1, u);
12642
12643 switch (fpop) {
12644 case 0x1d: /* SCVTF */
12645 case 0x5d: /* UCVTF */
12646 {
12647 int elements;
12648
12649 if (is_scalar) {
12650 elements = 1;
12651 } else {
12652 elements = (is_q ? 8 : 4);
12653 }
12654
12655 if (!fp_access_check(s)) {
12656 return;
12657 }
12658 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12659 return;
12660 }
12661 break;
12662 case 0x2c: /* FCMGT (zero) */
12663 case 0x2d: /* FCMEQ (zero) */
12664 case 0x2e: /* FCMLT (zero) */
12665 case 0x6c: /* FCMGE (zero) */
12666 case 0x6d: /* FCMLE (zero) */
12667 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12668 return;
12669 case 0x3d: /* FRECPE */
12670 case 0x3f: /* FRECPX */
12671 break;
12672 case 0x18: /* FRINTN */
12673 only_in_vector = true;
12674 rmode = FPROUNDING_TIEEVEN;
12675 break;
12676 case 0x19: /* FRINTM */
12677 only_in_vector = true;
12678 rmode = FPROUNDING_NEGINF;
12679 break;
12680 case 0x38: /* FRINTP */
12681 only_in_vector = true;
12682 rmode = FPROUNDING_POSINF;
12683 break;
12684 case 0x39: /* FRINTZ */
12685 only_in_vector = true;
12686 rmode = FPROUNDING_ZERO;
12687 break;
12688 case 0x58: /* FRINTA */
12689 only_in_vector = true;
12690 rmode = FPROUNDING_TIEAWAY;
12691 break;
12692 case 0x59: /* FRINTX */
12693 case 0x79: /* FRINTI */
12694 only_in_vector = true;
12695 /* current rounding mode */
12696 break;
12697 case 0x1a: /* FCVTNS */
12698 rmode = FPROUNDING_TIEEVEN;
12699 break;
12700 case 0x1b: /* FCVTMS */
12701 rmode = FPROUNDING_NEGINF;
12702 break;
12703 case 0x1c: /* FCVTAS */
12704 rmode = FPROUNDING_TIEAWAY;
12705 break;
12706 case 0x3a: /* FCVTPS */
12707 rmode = FPROUNDING_POSINF;
12708 break;
12709 case 0x3b: /* FCVTZS */
12710 rmode = FPROUNDING_ZERO;
12711 break;
12712 case 0x5a: /* FCVTNU */
12713 rmode = FPROUNDING_TIEEVEN;
12714 break;
12715 case 0x5b: /* FCVTMU */
12716 rmode = FPROUNDING_NEGINF;
12717 break;
12718 case 0x5c: /* FCVTAU */
12719 rmode = FPROUNDING_TIEAWAY;
12720 break;
12721 case 0x7a: /* FCVTPU */
12722 rmode = FPROUNDING_POSINF;
12723 break;
12724 case 0x7b: /* FCVTZU */
12725 rmode = FPROUNDING_ZERO;
12726 break;
12727 case 0x2f: /* FABS */
12728 case 0x6f: /* FNEG */
12729 need_fpst = false;
12730 break;
12731 case 0x7d: /* FRSQRTE */
12732 case 0x7f: /* FSQRT (vector) */
12733 break;
12734 default:
12735 unallocated_encoding(s);
12736 return;
12737 }
12738
12739
12740 /* Check additional constraints for the scalar encoding */
12741 if (is_scalar) {
12742 if (!is_q) {
12743 unallocated_encoding(s);
12744 return;
12745 }
12746 /* FRINTxx is only in the vector form */
12747 if (only_in_vector) {
12748 unallocated_encoding(s);
12749 return;
12750 }
12751 }
12752
12753 if (!fp_access_check(s)) {
12754 return;
12755 }
12756
12757 if (rmode >= 0 || need_fpst) {
12758 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12759 }
12760
12761 if (rmode >= 0) {
12762 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12763 }
12764
12765 if (is_scalar) {
12766 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12767 TCGv_i32 tcg_res = tcg_temp_new_i32();
12768
12769 switch (fpop) {
12770 case 0x1a: /* FCVTNS */
12771 case 0x1b: /* FCVTMS */
12772 case 0x1c: /* FCVTAS */
12773 case 0x3a: /* FCVTPS */
12774 case 0x3b: /* FCVTZS */
12775 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12776 break;
12777 case 0x3d: /* FRECPE */
12778 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12779 break;
12780 case 0x3f: /* FRECPX */
12781 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12782 break;
12783 case 0x5a: /* FCVTNU */
12784 case 0x5b: /* FCVTMU */
12785 case 0x5c: /* FCVTAU */
12786 case 0x7a: /* FCVTPU */
12787 case 0x7b: /* FCVTZU */
12788 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12789 break;
12790 case 0x6f: /* FNEG */
12791 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12792 break;
12793 case 0x7d: /* FRSQRTE */
12794 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12795 break;
12796 default:
12797 g_assert_not_reached();
12798 }
12799
12800 /* limit any sign extension going on */
12801 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12802 write_fp_sreg(s, rd, tcg_res);
12803 } else {
12804 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12805 TCGv_i32 tcg_op = tcg_temp_new_i32();
12806 TCGv_i32 tcg_res = tcg_temp_new_i32();
12807
12808 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12809
12810 switch (fpop) {
12811 case 0x1a: /* FCVTNS */
12812 case 0x1b: /* FCVTMS */
12813 case 0x1c: /* FCVTAS */
12814 case 0x3a: /* FCVTPS */
12815 case 0x3b: /* FCVTZS */
12816 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12817 break;
12818 case 0x3d: /* FRECPE */
12819 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12820 break;
12821 case 0x5a: /* FCVTNU */
12822 case 0x5b: /* FCVTMU */
12823 case 0x5c: /* FCVTAU */
12824 case 0x7a: /* FCVTPU */
12825 case 0x7b: /* FCVTZU */
12826 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12827 break;
12828 case 0x18: /* FRINTN */
12829 case 0x19: /* FRINTM */
12830 case 0x38: /* FRINTP */
12831 case 0x39: /* FRINTZ */
12832 case 0x58: /* FRINTA */
12833 case 0x79: /* FRINTI */
12834 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12835 break;
12836 case 0x59: /* FRINTX */
12837 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12838 break;
12839 case 0x2f: /* FABS */
12840 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12841 break;
12842 case 0x6f: /* FNEG */
12843 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12844 break;
12845 case 0x7d: /* FRSQRTE */
12846 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12847 break;
12848 case 0x7f: /* FSQRT */
12849 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12850 break;
12851 default:
12852 g_assert_not_reached();
12853 }
12854
12855 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12856 }
12857
12858 clear_vec_high(s, is_q, rd);
12859 }
12860
12861 if (tcg_rmode) {
12862 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12863 }
12864 }
12865
12866 /* AdvSIMD scalar x indexed element
12867 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12868 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12869 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12870 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12871 * AdvSIMD vector x indexed element
12872 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12873 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12874 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12875 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12876 */
12877 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12878 {
12879 /* This encoding has two kinds of instruction:
12880 * normal, where we perform elt x idxelt => elt for each
12881 * element in the vector
12882 * long, where we perform elt x idxelt and generate a result of
12883 * double the width of the input element
12884 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12885 */
12886 bool is_scalar = extract32(insn, 28, 1);
12887 bool is_q = extract32(insn, 30, 1);
12888 bool u = extract32(insn, 29, 1);
12889 int size = extract32(insn, 22, 2);
12890 int l = extract32(insn, 21, 1);
12891 int m = extract32(insn, 20, 1);
12892 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12893 int rm = extract32(insn, 16, 4);
12894 int opcode = extract32(insn, 12, 4);
12895 int h = extract32(insn, 11, 1);
12896 int rn = extract32(insn, 5, 5);
12897 int rd = extract32(insn, 0, 5);
12898 bool is_long = false;
12899 int is_fp = 0;
12900 bool is_fp16 = false;
12901 int index;
12902 TCGv_ptr fpst;
12903
12904 switch (16 * u + opcode) {
12905 case 0x08: /* MUL */
12906 case 0x10: /* MLA */
12907 case 0x14: /* MLS */
12908 if (is_scalar) {
12909 unallocated_encoding(s);
12910 return;
12911 }
12912 break;
12913 case 0x02: /* SMLAL, SMLAL2 */
12914 case 0x12: /* UMLAL, UMLAL2 */
12915 case 0x06: /* SMLSL, SMLSL2 */
12916 case 0x16: /* UMLSL, UMLSL2 */
12917 case 0x0a: /* SMULL, SMULL2 */
12918 case 0x1a: /* UMULL, UMULL2 */
12919 if (is_scalar) {
12920 unallocated_encoding(s);
12921 return;
12922 }
12923 is_long = true;
12924 break;
12925 case 0x03: /* SQDMLAL, SQDMLAL2 */
12926 case 0x07: /* SQDMLSL, SQDMLSL2 */
12927 case 0x0b: /* SQDMULL, SQDMULL2 */
12928 is_long = true;
12929 break;
12930 case 0x0c: /* SQDMULH */
12931 case 0x0d: /* SQRDMULH */
12932 break;
12933 case 0x01: /* FMLA */
12934 case 0x05: /* FMLS */
12935 case 0x09: /* FMUL */
12936 case 0x19: /* FMULX */
12937 is_fp = 1;
12938 break;
12939 case 0x1d: /* SQRDMLAH */
12940 case 0x1f: /* SQRDMLSH */
12941 if (!dc_isar_feature(aa64_rdm, s)) {
12942 unallocated_encoding(s);
12943 return;
12944 }
12945 break;
12946 case 0x0e: /* SDOT */
12947 case 0x1e: /* UDOT */
12948 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12949 unallocated_encoding(s);
12950 return;
12951 }
12952 break;
12953 case 0x0f:
12954 switch (size) {
12955 case 0: /* SUDOT */
12956 case 2: /* USDOT */
12957 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12958 unallocated_encoding(s);
12959 return;
12960 }
12961 size = MO_32;
12962 break;
12963 case 1: /* BFDOT */
12964 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12965 unallocated_encoding(s);
12966 return;
12967 }
12968 size = MO_32;
12969 break;
12970 case 3: /* BFMLAL{B,T} */
12971 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12972 unallocated_encoding(s);
12973 return;
12974 }
12975 /* can't set is_fp without other incorrect size checks */
12976 size = MO_16;
12977 break;
12978 default:
12979 unallocated_encoding(s);
12980 return;
12981 }
12982 break;
12983 case 0x11: /* FCMLA #0 */
12984 case 0x13: /* FCMLA #90 */
12985 case 0x15: /* FCMLA #180 */
12986 case 0x17: /* FCMLA #270 */
12987 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12988 unallocated_encoding(s);
12989 return;
12990 }
12991 is_fp = 2;
12992 break;
12993 case 0x00: /* FMLAL */
12994 case 0x04: /* FMLSL */
12995 case 0x18: /* FMLAL2 */
12996 case 0x1c: /* FMLSL2 */
12997 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12998 unallocated_encoding(s);
12999 return;
13000 }
13001 size = MO_16;
13002 /* is_fp, but we pass cpu_env not fp_status. */
13003 break;
13004 default:
13005 unallocated_encoding(s);
13006 return;
13007 }
13008
13009 switch (is_fp) {
13010 case 1: /* normal fp */
13011 /* convert insn encoded size to MemOp size */
13012 switch (size) {
13013 case 0: /* half-precision */
13014 size = MO_16;
13015 is_fp16 = true;
13016 break;
13017 case MO_32: /* single precision */
13018 case MO_64: /* double precision */
13019 break;
13020 default:
13021 unallocated_encoding(s);
13022 return;
13023 }
13024 break;
13025
13026 case 2: /* complex fp */
13027 /* Each indexable element is a complex pair. */
13028 size += 1;
13029 switch (size) {
13030 case MO_32:
13031 if (h && !is_q) {
13032 unallocated_encoding(s);
13033 return;
13034 }
13035 is_fp16 = true;
13036 break;
13037 case MO_64:
13038 break;
13039 default:
13040 unallocated_encoding(s);
13041 return;
13042 }
13043 break;
13044
13045 default: /* integer */
13046 switch (size) {
13047 case MO_8:
13048 case MO_64:
13049 unallocated_encoding(s);
13050 return;
13051 }
13052 break;
13053 }
13054 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
13055 unallocated_encoding(s);
13056 return;
13057 }
13058
13059 /* Given MemOp size, adjust register and indexing. */
13060 switch (size) {
13061 case MO_16:
13062 index = h << 2 | l << 1 | m;
13063 break;
13064 case MO_32:
13065 index = h << 1 | l;
13066 rm |= m << 4;
13067 break;
13068 case MO_64:
13069 if (l || !is_q) {
13070 unallocated_encoding(s);
13071 return;
13072 }
13073 index = h;
13074 rm |= m << 4;
13075 break;
13076 default:
13077 g_assert_not_reached();
13078 }
13079
13080 if (!fp_access_check(s)) {
13081 return;
13082 }
13083
13084 if (is_fp) {
13085 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
13086 } else {
13087 fpst = NULL;
13088 }
13089
13090 switch (16 * u + opcode) {
13091 case 0x0e: /* SDOT */
13092 case 0x1e: /* UDOT */
13093 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13094 u ? gen_helper_gvec_udot_idx_b
13095 : gen_helper_gvec_sdot_idx_b);
13096 return;
13097 case 0x0f:
13098 switch (extract32(insn, 22, 2)) {
13099 case 0: /* SUDOT */
13100 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13101 gen_helper_gvec_sudot_idx_b);
13102 return;
13103 case 1: /* BFDOT */
13104 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13105 gen_helper_gvec_bfdot_idx);
13106 return;
13107 case 2: /* USDOT */
13108 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13109 gen_helper_gvec_usdot_idx_b);
13110 return;
13111 case 3: /* BFMLAL{B,T} */
13112 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
13113 gen_helper_gvec_bfmlal_idx);
13114 return;
13115 }
13116 g_assert_not_reached();
13117 case 0x11: /* FCMLA #0 */
13118 case 0x13: /* FCMLA #90 */
13119 case 0x15: /* FCMLA #180 */
13120 case 0x17: /* FCMLA #270 */
13121 {
13122 int rot = extract32(insn, 13, 2);
13123 int data = (index << 2) | rot;
13124 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
13125 vec_full_reg_offset(s, rn),
13126 vec_full_reg_offset(s, rm),
13127 vec_full_reg_offset(s, rd), fpst,
13128 is_q ? 16 : 8, vec_full_reg_size(s), data,
13129 size == MO_64
13130 ? gen_helper_gvec_fcmlas_idx
13131 : gen_helper_gvec_fcmlah_idx);
13132 }
13133 return;
13134
13135 case 0x00: /* FMLAL */
13136 case 0x04: /* FMLSL */
13137 case 0x18: /* FMLAL2 */
13138 case 0x1c: /* FMLSL2 */
13139 {
13140 int is_s = extract32(opcode, 2, 1);
13141 int is_2 = u;
13142 int data = (index << 2) | (is_2 << 1) | is_s;
13143 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13144 vec_full_reg_offset(s, rn),
13145 vec_full_reg_offset(s, rm), cpu_env,
13146 is_q ? 16 : 8, vec_full_reg_size(s),
13147 data, gen_helper_gvec_fmlal_idx_a64);
13148 }
13149 return;
13150
13151 case 0x08: /* MUL */
13152 if (!is_long && !is_scalar) {
13153 static gen_helper_gvec_3 * const fns[3] = {
13154 gen_helper_gvec_mul_idx_h,
13155 gen_helper_gvec_mul_idx_s,
13156 gen_helper_gvec_mul_idx_d,
13157 };
13158 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13159 vec_full_reg_offset(s, rn),
13160 vec_full_reg_offset(s, rm),
13161 is_q ? 16 : 8, vec_full_reg_size(s),
13162 index, fns[size - 1]);
13163 return;
13164 }
13165 break;
13166
13167 case 0x10: /* MLA */
13168 if (!is_long && !is_scalar) {
13169 static gen_helper_gvec_4 * const fns[3] = {
13170 gen_helper_gvec_mla_idx_h,
13171 gen_helper_gvec_mla_idx_s,
13172 gen_helper_gvec_mla_idx_d,
13173 };
13174 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13175 vec_full_reg_offset(s, rn),
13176 vec_full_reg_offset(s, rm),
13177 vec_full_reg_offset(s, rd),
13178 is_q ? 16 : 8, vec_full_reg_size(s),
13179 index, fns[size - 1]);
13180 return;
13181 }
13182 break;
13183
13184 case 0x14: /* MLS */
13185 if (!is_long && !is_scalar) {
13186 static gen_helper_gvec_4 * const fns[3] = {
13187 gen_helper_gvec_mls_idx_h,
13188 gen_helper_gvec_mls_idx_s,
13189 gen_helper_gvec_mls_idx_d,
13190 };
13191 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13192 vec_full_reg_offset(s, rn),
13193 vec_full_reg_offset(s, rm),
13194 vec_full_reg_offset(s, rd),
13195 is_q ? 16 : 8, vec_full_reg_size(s),
13196 index, fns[size - 1]);
13197 return;
13198 }
13199 break;
13200 }
13201
13202 if (size == 3) {
13203 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13204 int pass;
13205
13206 assert(is_fp && is_q && !is_long);
13207
13208 read_vec_element(s, tcg_idx, rm, index, MO_64);
13209
13210 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13211 TCGv_i64 tcg_op = tcg_temp_new_i64();
13212 TCGv_i64 tcg_res = tcg_temp_new_i64();
13213
13214 read_vec_element(s, tcg_op, rn, pass, MO_64);
13215
13216 switch (16 * u + opcode) {
13217 case 0x05: /* FMLS */
13218 /* As usual for ARM, separate negation for fused multiply-add */
13219 gen_helper_vfp_negd(tcg_op, tcg_op);
13220 /* fall through */
13221 case 0x01: /* FMLA */
13222 read_vec_element(s, tcg_res, rd, pass, MO_64);
13223 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13224 break;
13225 case 0x09: /* FMUL */
13226 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13227 break;
13228 case 0x19: /* FMULX */
13229 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13230 break;
13231 default:
13232 g_assert_not_reached();
13233 }
13234
13235 write_vec_element(s, tcg_res, rd, pass, MO_64);
13236 }
13237
13238 clear_vec_high(s, !is_scalar, rd);
13239 } else if (!is_long) {
13240 /* 32 bit floating point, or 16 or 32 bit integer.
13241 * For the 16 bit scalar case we use the usual Neon helpers and
13242 * rely on the fact that 0 op 0 == 0 with no side effects.
13243 */
13244 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13245 int pass, maxpasses;
13246
13247 if (is_scalar) {
13248 maxpasses = 1;
13249 } else {
13250 maxpasses = is_q ? 4 : 2;
13251 }
13252
13253 read_vec_element_i32(s, tcg_idx, rm, index, size);
13254
13255 if (size == 1 && !is_scalar) {
13256 /* The simplest way to handle the 16x16 indexed ops is to duplicate
13257 * the index into both halves of the 32 bit tcg_idx and then use
13258 * the usual Neon helpers.
13259 */
13260 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13261 }
13262
13263 for (pass = 0; pass < maxpasses; pass++) {
13264 TCGv_i32 tcg_op = tcg_temp_new_i32();
13265 TCGv_i32 tcg_res = tcg_temp_new_i32();
13266
13267 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13268
13269 switch (16 * u + opcode) {
13270 case 0x08: /* MUL */
13271 case 0x10: /* MLA */
13272 case 0x14: /* MLS */
13273 {
13274 static NeonGenTwoOpFn * const fns[2][2] = {
13275 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13276 { tcg_gen_add_i32, tcg_gen_sub_i32 },
13277 };
13278 NeonGenTwoOpFn *genfn;
13279 bool is_sub = opcode == 0x4;
13280
13281 if (size == 1) {
13282 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13283 } else {
13284 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13285 }
13286 if (opcode == 0x8) {
13287 break;
13288 }
13289 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13290 genfn = fns[size - 1][is_sub];
13291 genfn(tcg_res, tcg_op, tcg_res);
13292 break;
13293 }
13294 case 0x05: /* FMLS */
13295 case 0x01: /* FMLA */
13296 read_vec_element_i32(s, tcg_res, rd, pass,
13297 is_scalar ? size : MO_32);
13298 switch (size) {
13299 case 1:
13300 if (opcode == 0x5) {
13301 /* As usual for ARM, separate negation for fused
13302 * multiply-add */
13303 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13304 }
13305 if (is_scalar) {
13306 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13307 tcg_res, fpst);
13308 } else {
13309 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13310 tcg_res, fpst);
13311 }
13312 break;
13313 case 2:
13314 if (opcode == 0x5) {
13315 /* As usual for ARM, separate negation for
13316 * fused multiply-add */
13317 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13318 }
13319 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13320 tcg_res, fpst);
13321 break;
13322 default:
13323 g_assert_not_reached();
13324 }
13325 break;
13326 case 0x09: /* FMUL */
13327 switch (size) {
13328 case 1:
13329 if (is_scalar) {
13330 gen_helper_advsimd_mulh(tcg_res, tcg_op,
13331 tcg_idx, fpst);
13332 } else {
13333 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13334 tcg_idx, fpst);
13335 }
13336 break;
13337 case 2:
13338 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13339 break;
13340 default:
13341 g_assert_not_reached();
13342 }
13343 break;
13344 case 0x19: /* FMULX */
13345 switch (size) {
13346 case 1:
13347 if (is_scalar) {
13348 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13349 tcg_idx, fpst);
13350 } else {
13351 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13352 tcg_idx, fpst);
13353 }
13354 break;
13355 case 2:
13356 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13357 break;
13358 default:
13359 g_assert_not_reached();
13360 }
13361 break;
13362 case 0x0c: /* SQDMULH */
13363 if (size == 1) {
13364 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13365 tcg_op, tcg_idx);
13366 } else {
13367 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13368 tcg_op, tcg_idx);
13369 }
13370 break;
13371 case 0x0d: /* SQRDMULH */
13372 if (size == 1) {
13373 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13374 tcg_op, tcg_idx);
13375 } else {
13376 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13377 tcg_op, tcg_idx);
13378 }
13379 break;
13380 case 0x1d: /* SQRDMLAH */
13381 read_vec_element_i32(s, tcg_res, rd, pass,
13382 is_scalar ? size : MO_32);
13383 if (size == 1) {
13384 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13385 tcg_op, tcg_idx, tcg_res);
13386 } else {
13387 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13388 tcg_op, tcg_idx, tcg_res);
13389 }
13390 break;
13391 case 0x1f: /* SQRDMLSH */
13392 read_vec_element_i32(s, tcg_res, rd, pass,
13393 is_scalar ? size : MO_32);
13394 if (size == 1) {
13395 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13396 tcg_op, tcg_idx, tcg_res);
13397 } else {
13398 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13399 tcg_op, tcg_idx, tcg_res);
13400 }
13401 break;
13402 default:
13403 g_assert_not_reached();
13404 }
13405
13406 if (is_scalar) {
13407 write_fp_sreg(s, rd, tcg_res);
13408 } else {
13409 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13410 }
13411 }
13412
13413 clear_vec_high(s, is_q, rd);
13414 } else {
13415 /* long ops: 16x16->32 or 32x32->64 */
13416 TCGv_i64 tcg_res[2];
13417 int pass;
13418 bool satop = extract32(opcode, 0, 1);
13419 MemOp memop = MO_32;
13420
13421 if (satop || !u) {
13422 memop |= MO_SIGN;
13423 }
13424
13425 if (size == 2) {
13426 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13427
13428 read_vec_element(s, tcg_idx, rm, index, memop);
13429
13430 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13431 TCGv_i64 tcg_op = tcg_temp_new_i64();
13432 TCGv_i64 tcg_passres;
13433 int passelt;
13434
13435 if (is_scalar) {
13436 passelt = 0;
13437 } else {
13438 passelt = pass + (is_q * 2);
13439 }
13440
13441 read_vec_element(s, tcg_op, rn, passelt, memop);
13442
13443 tcg_res[pass] = tcg_temp_new_i64();
13444
13445 if (opcode == 0xa || opcode == 0xb) {
13446 /* Non-accumulating ops */
13447 tcg_passres = tcg_res[pass];
13448 } else {
13449 tcg_passres = tcg_temp_new_i64();
13450 }
13451
13452 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13453
13454 if (satop) {
13455 /* saturating, doubling */
13456 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13457 tcg_passres, tcg_passres);
13458 }
13459
13460 if (opcode == 0xa || opcode == 0xb) {
13461 continue;
13462 }
13463
13464 /* Accumulating op: handle accumulate step */
13465 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13466
13467 switch (opcode) {
13468 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13469 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13470 break;
13471 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13472 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13473 break;
13474 case 0x7: /* SQDMLSL, SQDMLSL2 */
13475 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13476 /* fall through */
13477 case 0x3: /* SQDMLAL, SQDMLAL2 */
13478 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13479 tcg_res[pass],
13480 tcg_passres);
13481 break;
13482 default:
13483 g_assert_not_reached();
13484 }
13485 }
13486
13487 clear_vec_high(s, !is_scalar, rd);
13488 } else {
13489 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13490
13491 assert(size == 1);
13492 read_vec_element_i32(s, tcg_idx, rm, index, size);
13493
13494 if (!is_scalar) {
13495 /* The simplest way to handle the 16x16 indexed ops is to
13496 * duplicate the index into both halves of the 32 bit tcg_idx
13497 * and then use the usual Neon helpers.
13498 */
13499 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13500 }
13501
13502 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13503 TCGv_i32 tcg_op = tcg_temp_new_i32();
13504 TCGv_i64 tcg_passres;
13505
13506 if (is_scalar) {
13507 read_vec_element_i32(s, tcg_op, rn, pass, size);
13508 } else {
13509 read_vec_element_i32(s, tcg_op, rn,
13510 pass + (is_q * 2), MO_32);
13511 }
13512
13513 tcg_res[pass] = tcg_temp_new_i64();
13514
13515 if (opcode == 0xa || opcode == 0xb) {
13516 /* Non-accumulating ops */
13517 tcg_passres = tcg_res[pass];
13518 } else {
13519 tcg_passres = tcg_temp_new_i64();
13520 }
13521
13522 if (memop & MO_SIGN) {
13523 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13524 } else {
13525 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13526 }
13527 if (satop) {
13528 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13529 tcg_passres, tcg_passres);
13530 }
13531
13532 if (opcode == 0xa || opcode == 0xb) {
13533 continue;
13534 }
13535
13536 /* Accumulating op: handle accumulate step */
13537 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13538
13539 switch (opcode) {
13540 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13541 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13542 tcg_passres);
13543 break;
13544 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13545 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13546 tcg_passres);
13547 break;
13548 case 0x7: /* SQDMLSL, SQDMLSL2 */
13549 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13550 /* fall through */
13551 case 0x3: /* SQDMLAL, SQDMLAL2 */
13552 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13553 tcg_res[pass],
13554 tcg_passres);
13555 break;
13556 default:
13557 g_assert_not_reached();
13558 }
13559 }
13560
13561 if (is_scalar) {
13562 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13563 }
13564 }
13565
13566 if (is_scalar) {
13567 tcg_res[1] = tcg_constant_i64(0);
13568 }
13569
13570 for (pass = 0; pass < 2; pass++) {
13571 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13572 }
13573 }
13574 }
13575
13576 /* Crypto AES
13577 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13578 * +-----------------+------+-----------+--------+-----+------+------+
13579 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13580 * +-----------------+------+-----------+--------+-----+------+------+
13581 */
13582 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13583 {
13584 int size = extract32(insn, 22, 2);
13585 int opcode = extract32(insn, 12, 5);
13586 int rn = extract32(insn, 5, 5);
13587 int rd = extract32(insn, 0, 5);
13588 int decrypt;
13589 gen_helper_gvec_2 *genfn2 = NULL;
13590 gen_helper_gvec_3 *genfn3 = NULL;
13591
13592 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13593 unallocated_encoding(s);
13594 return;
13595 }
13596
13597 switch (opcode) {
13598 case 0x4: /* AESE */
13599 decrypt = 0;
13600 genfn3 = gen_helper_crypto_aese;
13601 break;
13602 case 0x6: /* AESMC */
13603 decrypt = 0;
13604 genfn2 = gen_helper_crypto_aesmc;
13605 break;
13606 case 0x5: /* AESD */
13607 decrypt = 1;
13608 genfn3 = gen_helper_crypto_aese;
13609 break;
13610 case 0x7: /* AESIMC */
13611 decrypt = 1;
13612 genfn2 = gen_helper_crypto_aesmc;
13613 break;
13614 default:
13615 unallocated_encoding(s);
13616 return;
13617 }
13618
13619 if (!fp_access_check(s)) {
13620 return;
13621 }
13622 if (genfn2) {
13623 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2);
13624 } else {
13625 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3);
13626 }
13627 }
13628
13629 /* Crypto three-reg SHA
13630 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
13631 * +-----------------+------+---+------+---+--------+-----+------+------+
13632 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
13633 * +-----------------+------+---+------+---+--------+-----+------+------+
13634 */
13635 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13636 {
13637 int size = extract32(insn, 22, 2);
13638 int opcode = extract32(insn, 12, 3);
13639 int rm = extract32(insn, 16, 5);
13640 int rn = extract32(insn, 5, 5);
13641 int rd = extract32(insn, 0, 5);
13642 gen_helper_gvec_3 *genfn;
13643 bool feature;
13644
13645 if (size != 0) {
13646 unallocated_encoding(s);
13647 return;
13648 }
13649
13650 switch (opcode) {
13651 case 0: /* SHA1C */
13652 genfn = gen_helper_crypto_sha1c;
13653 feature = dc_isar_feature(aa64_sha1, s);
13654 break;
13655 case 1: /* SHA1P */
13656 genfn = gen_helper_crypto_sha1p;
13657 feature = dc_isar_feature(aa64_sha1, s);
13658 break;
13659 case 2: /* SHA1M */
13660 genfn = gen_helper_crypto_sha1m;
13661 feature = dc_isar_feature(aa64_sha1, s);
13662 break;
13663 case 3: /* SHA1SU0 */
13664 genfn = gen_helper_crypto_sha1su0;
13665 feature = dc_isar_feature(aa64_sha1, s);
13666 break;
13667 case 4: /* SHA256H */
13668 genfn = gen_helper_crypto_sha256h;
13669 feature = dc_isar_feature(aa64_sha256, s);
13670 break;
13671 case 5: /* SHA256H2 */
13672 genfn = gen_helper_crypto_sha256h2;
13673 feature = dc_isar_feature(aa64_sha256, s);
13674 break;
13675 case 6: /* SHA256SU1 */
13676 genfn = gen_helper_crypto_sha256su1;
13677 feature = dc_isar_feature(aa64_sha256, s);
13678 break;
13679 default:
13680 unallocated_encoding(s);
13681 return;
13682 }
13683
13684 if (!feature) {
13685 unallocated_encoding(s);
13686 return;
13687 }
13688
13689 if (!fp_access_check(s)) {
13690 return;
13691 }
13692 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
13693 }
13694
13695 /* Crypto two-reg SHA
13696 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13697 * +-----------------+------+-----------+--------+-----+------+------+
13698 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13699 * +-----------------+------+-----------+--------+-----+------+------+
13700 */
13701 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13702 {
13703 int size = extract32(insn, 22, 2);
13704 int opcode = extract32(insn, 12, 5);
13705 int rn = extract32(insn, 5, 5);
13706 int rd = extract32(insn, 0, 5);
13707 gen_helper_gvec_2 *genfn;
13708 bool feature;
13709
13710 if (size != 0) {
13711 unallocated_encoding(s);
13712 return;
13713 }
13714
13715 switch (opcode) {
13716 case 0: /* SHA1H */
13717 feature = dc_isar_feature(aa64_sha1, s);
13718 genfn = gen_helper_crypto_sha1h;
13719 break;
13720 case 1: /* SHA1SU1 */
13721 feature = dc_isar_feature(aa64_sha1, s);
13722 genfn = gen_helper_crypto_sha1su1;
13723 break;
13724 case 2: /* SHA256SU0 */
13725 feature = dc_isar_feature(aa64_sha256, s);
13726 genfn = gen_helper_crypto_sha256su0;
13727 break;
13728 default:
13729 unallocated_encoding(s);
13730 return;
13731 }
13732
13733 if (!feature) {
13734 unallocated_encoding(s);
13735 return;
13736 }
13737
13738 if (!fp_access_check(s)) {
13739 return;
13740 }
13741 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
13742 }
13743
13744 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
13745 {
13746 tcg_gen_rotli_i64(d, m, 1);
13747 tcg_gen_xor_i64(d, d, n);
13748 }
13749
13750 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
13751 {
13752 tcg_gen_rotli_vec(vece, d, m, 1);
13753 tcg_gen_xor_vec(vece, d, d, n);
13754 }
13755
13756 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
13757 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
13758 {
13759 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
13760 static const GVecGen3 op = {
13761 .fni8 = gen_rax1_i64,
13762 .fniv = gen_rax1_vec,
13763 .opt_opc = vecop_list,
13764 .fno = gen_helper_crypto_rax1,
13765 .vece = MO_64,
13766 };
13767 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
13768 }
13769
13770 /* Crypto three-reg SHA512
13771 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13772 * +-----------------------+------+---+---+-----+--------+------+------+
13773 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
13774 * +-----------------------+------+---+---+-----+--------+------+------+
13775 */
13776 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13777 {
13778 int opcode = extract32(insn, 10, 2);
13779 int o = extract32(insn, 14, 1);
13780 int rm = extract32(insn, 16, 5);
13781 int rn = extract32(insn, 5, 5);
13782 int rd = extract32(insn, 0, 5);
13783 bool feature;
13784 gen_helper_gvec_3 *oolfn = NULL;
13785 GVecGen3Fn *gvecfn = NULL;
13786
13787 if (o == 0) {
13788 switch (opcode) {
13789 case 0: /* SHA512H */
13790 feature = dc_isar_feature(aa64_sha512, s);
13791 oolfn = gen_helper_crypto_sha512h;
13792 break;
13793 case 1: /* SHA512H2 */
13794 feature = dc_isar_feature(aa64_sha512, s);
13795 oolfn = gen_helper_crypto_sha512h2;
13796 break;
13797 case 2: /* SHA512SU1 */
13798 feature = dc_isar_feature(aa64_sha512, s);
13799 oolfn = gen_helper_crypto_sha512su1;
13800 break;
13801 case 3: /* RAX1 */
13802 feature = dc_isar_feature(aa64_sha3, s);
13803 gvecfn = gen_gvec_rax1;
13804 break;
13805 default:
13806 g_assert_not_reached();
13807 }
13808 } else {
13809 switch (opcode) {
13810 case 0: /* SM3PARTW1 */
13811 feature = dc_isar_feature(aa64_sm3, s);
13812 oolfn = gen_helper_crypto_sm3partw1;
13813 break;
13814 case 1: /* SM3PARTW2 */
13815 feature = dc_isar_feature(aa64_sm3, s);
13816 oolfn = gen_helper_crypto_sm3partw2;
13817 break;
13818 case 2: /* SM4EKEY */
13819 feature = dc_isar_feature(aa64_sm4, s);
13820 oolfn = gen_helper_crypto_sm4ekey;
13821 break;
13822 default:
13823 unallocated_encoding(s);
13824 return;
13825 }
13826 }
13827
13828 if (!feature) {
13829 unallocated_encoding(s);
13830 return;
13831 }
13832
13833 if (!fp_access_check(s)) {
13834 return;
13835 }
13836
13837 if (oolfn) {
13838 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
13839 } else {
13840 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
13841 }
13842 }
13843
13844 /* Crypto two-reg SHA512
13845 * 31 12 11 10 9 5 4 0
13846 * +-----------------------------------------+--------+------+------+
13847 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
13848 * +-----------------------------------------+--------+------+------+
13849 */
13850 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13851 {
13852 int opcode = extract32(insn, 10, 2);
13853 int rn = extract32(insn, 5, 5);
13854 int rd = extract32(insn, 0, 5);
13855 bool feature;
13856
13857 switch (opcode) {
13858 case 0: /* SHA512SU0 */
13859 feature = dc_isar_feature(aa64_sha512, s);
13860 break;
13861 case 1: /* SM4E */
13862 feature = dc_isar_feature(aa64_sm4, s);
13863 break;
13864 default:
13865 unallocated_encoding(s);
13866 return;
13867 }
13868
13869 if (!feature) {
13870 unallocated_encoding(s);
13871 return;
13872 }
13873
13874 if (!fp_access_check(s)) {
13875 return;
13876 }
13877
13878 switch (opcode) {
13879 case 0: /* SHA512SU0 */
13880 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
13881 break;
13882 case 1: /* SM4E */
13883 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
13884 break;
13885 default:
13886 g_assert_not_reached();
13887 }
13888 }
13889
13890 /* Crypto four-register
13891 * 31 23 22 21 20 16 15 14 10 9 5 4 0
13892 * +-------------------+-----+------+---+------+------+------+
13893 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
13894 * +-------------------+-----+------+---+------+------+------+
13895 */
13896 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13897 {
13898 int op0 = extract32(insn, 21, 2);
13899 int rm = extract32(insn, 16, 5);
13900 int ra = extract32(insn, 10, 5);
13901 int rn = extract32(insn, 5, 5);
13902 int rd = extract32(insn, 0, 5);
13903 bool feature;
13904
13905 switch (op0) {
13906 case 0: /* EOR3 */
13907 case 1: /* BCAX */
13908 feature = dc_isar_feature(aa64_sha3, s);
13909 break;
13910 case 2: /* SM3SS1 */
13911 feature = dc_isar_feature(aa64_sm3, s);
13912 break;
13913 default:
13914 unallocated_encoding(s);
13915 return;
13916 }
13917
13918 if (!feature) {
13919 unallocated_encoding(s);
13920 return;
13921 }
13922
13923 if (!fp_access_check(s)) {
13924 return;
13925 }
13926
13927 if (op0 < 2) {
13928 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13929 int pass;
13930
13931 tcg_op1 = tcg_temp_new_i64();
13932 tcg_op2 = tcg_temp_new_i64();
13933 tcg_op3 = tcg_temp_new_i64();
13934 tcg_res[0] = tcg_temp_new_i64();
13935 tcg_res[1] = tcg_temp_new_i64();
13936
13937 for (pass = 0; pass < 2; pass++) {
13938 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13939 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13940 read_vec_element(s, tcg_op3, ra, pass, MO_64);
13941
13942 if (op0 == 0) {
13943 /* EOR3 */
13944 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13945 } else {
13946 /* BCAX */
13947 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13948 }
13949 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13950 }
13951 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13952 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13953 } else {
13954 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13955
13956 tcg_op1 = tcg_temp_new_i32();
13957 tcg_op2 = tcg_temp_new_i32();
13958 tcg_op3 = tcg_temp_new_i32();
13959 tcg_res = tcg_temp_new_i32();
13960 tcg_zero = tcg_constant_i32(0);
13961
13962 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13963 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13964 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13965
13966 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13967 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13968 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13969 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13970
13971 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13972 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13973 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13974 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13975 }
13976 }
13977
13978 /* Crypto XAR
13979 * 31 21 20 16 15 10 9 5 4 0
13980 * +-----------------------+------+--------+------+------+
13981 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
13982 * +-----------------------+------+--------+------+------+
13983 */
13984 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13985 {
13986 int rm = extract32(insn, 16, 5);
13987 int imm6 = extract32(insn, 10, 6);
13988 int rn = extract32(insn, 5, 5);
13989 int rd = extract32(insn, 0, 5);
13990
13991 if (!dc_isar_feature(aa64_sha3, s)) {
13992 unallocated_encoding(s);
13993 return;
13994 }
13995
13996 if (!fp_access_check(s)) {
13997 return;
13998 }
13999
14000 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
14001 vec_full_reg_offset(s, rn),
14002 vec_full_reg_offset(s, rm), imm6, 16,
14003 vec_full_reg_size(s));
14004 }
14005
14006 /* Crypto three-reg imm2
14007 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
14008 * +-----------------------+------+-----+------+--------+------+------+
14009 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
14010 * +-----------------------+------+-----+------+--------+------+------+
14011 */
14012 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
14013 {
14014 static gen_helper_gvec_3 * const fns[4] = {
14015 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
14016 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
14017 };
14018 int opcode = extract32(insn, 10, 2);
14019 int imm2 = extract32(insn, 12, 2);
14020 int rm = extract32(insn, 16, 5);
14021 int rn = extract32(insn, 5, 5);
14022 int rd = extract32(insn, 0, 5);
14023
14024 if (!dc_isar_feature(aa64_sm3, s)) {
14025 unallocated_encoding(s);
14026 return;
14027 }
14028
14029 if (!fp_access_check(s)) {
14030 return;
14031 }
14032
14033 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
14034 }
14035
14036 /* C3.6 Data processing - SIMD, inc Crypto
14037 *
14038 * As the decode gets a little complex we are using a table based
14039 * approach for this part of the decode.
14040 */
14041 static const AArch64DecodeTable data_proc_simd[] = {
14042 /* pattern , mask , fn */
14043 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
14044 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
14045 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
14046 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
14047 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
14048 { 0x0e000400, 0x9fe08400, disas_simd_copy },
14049 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
14050 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
14051 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
14052 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
14053 { 0x0e000000, 0xbf208c00, disas_simd_tb },
14054 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
14055 { 0x2e000000, 0xbf208400, disas_simd_ext },
14056 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
14057 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
14058 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
14059 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
14060 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
14061 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
14062 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
14063 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
14064 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
14065 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
14066 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
14067 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
14068 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
14069 { 0xce000000, 0xff808000, disas_crypto_four_reg },
14070 { 0xce800000, 0xffe00000, disas_crypto_xar },
14071 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
14072 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
14073 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
14074 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
14075 { 0x00000000, 0x00000000, NULL }
14076 };
14077
14078 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
14079 {
14080 /* Note that this is called with all non-FP cases from
14081 * table C3-6 so it must UNDEF for entries not specifically
14082 * allocated to instructions in that table.
14083 */
14084 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
14085 if (fn) {
14086 fn(s, insn);
14087 } else {
14088 unallocated_encoding(s);
14089 }
14090 }
14091
14092 /* C3.6 Data processing - SIMD and floating point */
14093 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
14094 {
14095 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
14096 disas_data_proc_fp(s, insn);
14097 } else {
14098 /* SIMD, including crypto */
14099 disas_data_proc_simd(s, insn);
14100 }
14101 }
14102
14103 /*
14104 * Include the generated SME FA64 decoder.
14105 */
14106
14107 #include "decode-sme-fa64.c.inc"
14108
14109 static bool trans_OK(DisasContext *s, arg_OK *a)
14110 {
14111 return true;
14112 }
14113
14114 static bool trans_FAIL(DisasContext *s, arg_OK *a)
14115 {
14116 s->is_nonstreaming = true;
14117 return true;
14118 }
14119
14120 /**
14121 * is_guarded_page:
14122 * @env: The cpu environment
14123 * @s: The DisasContext
14124 *
14125 * Return true if the page is guarded.
14126 */
14127 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
14128 {
14129 uint64_t addr = s->base.pc_first;
14130 #ifdef CONFIG_USER_ONLY
14131 return page_get_flags(addr) & PAGE_BTI;
14132 #else
14133 CPUTLBEntryFull *full;
14134 void *host;
14135 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
14136 int flags;
14137
14138 /*
14139 * We test this immediately after reading an insn, which means
14140 * that the TLB entry must be present and valid, and thus this
14141 * access will never raise an exception.
14142 */
14143 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
14144 false, &host, &full, 0);
14145 assert(!(flags & TLB_INVALID_MASK));
14146
14147 return full->guarded;
14148 #endif
14149 }
14150
14151 /**
14152 * btype_destination_ok:
14153 * @insn: The instruction at the branch destination
14154 * @bt: SCTLR_ELx.BT
14155 * @btype: PSTATE.BTYPE, and is non-zero
14156 *
14157 * On a guarded page, there are a limited number of insns
14158 * that may be present at the branch target:
14159 * - branch target identifiers,
14160 * - paciasp, pacibsp,
14161 * - BRK insn
14162 * - HLT insn
14163 * Anything else causes a Branch Target Exception.
14164 *
14165 * Return true if the branch is compatible, false to raise BTITRAP.
14166 */
14167 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14168 {
14169 if ((insn & 0xfffff01fu) == 0xd503201fu) {
14170 /* HINT space */
14171 switch (extract32(insn, 5, 7)) {
14172 case 0b011001: /* PACIASP */
14173 case 0b011011: /* PACIBSP */
14174 /*
14175 * If SCTLR_ELx.BT, then PACI*SP are not compatible
14176 * with btype == 3. Otherwise all btype are ok.
14177 */
14178 return !bt || btype != 3;
14179 case 0b100000: /* BTI */
14180 /* Not compatible with any btype. */
14181 return false;
14182 case 0b100010: /* BTI c */
14183 /* Not compatible with btype == 3 */
14184 return btype != 3;
14185 case 0b100100: /* BTI j */
14186 /* Not compatible with btype == 2 */
14187 return btype != 2;
14188 case 0b100110: /* BTI jc */
14189 /* Compatible with any btype. */
14190 return true;
14191 }
14192 } else {
14193 switch (insn & 0xffe0001fu) {
14194 case 0xd4200000u: /* BRK */
14195 case 0xd4400000u: /* HLT */
14196 /* Give priority to the breakpoint exception. */
14197 return true;
14198 }
14199 }
14200 return false;
14201 }
14202
14203 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14204 CPUState *cpu)
14205 {
14206 DisasContext *dc = container_of(dcbase, DisasContext, base);
14207 CPUARMState *env = cpu->env_ptr;
14208 ARMCPU *arm_cpu = env_archcpu(env);
14209 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
14210 int bound, core_mmu_idx;
14211
14212 dc->isar = &arm_cpu->isar;
14213 dc->condjmp = 0;
14214 dc->pc_save = dc->base.pc_first;
14215 dc->aarch64 = true;
14216 dc->thumb = false;
14217 dc->sctlr_b = 0;
14218 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
14219 dc->condexec_mask = 0;
14220 dc->condexec_cond = 0;
14221 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
14222 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14223 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
14224 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
14225 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
14226 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14227 #if !defined(CONFIG_USER_ONLY)
14228 dc->user = (dc->current_el == 0);
14229 #endif
14230 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
14231 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
14232 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
14233 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
14234 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
14235 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET);
14236 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
14237 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
14238 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
14239 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
14240 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
14241 dc->bt = EX_TBFLAG_A64(tb_flags, BT);
14242 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
14243 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
14244 dc->ata = EX_TBFLAG_A64(tb_flags, ATA);
14245 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
14246 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
14247 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
14248 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
14249 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
14250 dc->vec_len = 0;
14251 dc->vec_stride = 0;
14252 dc->cp_regs = arm_cpu->cp_regs;
14253 dc->features = env->features;
14254 dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14255
14256 #ifdef CONFIG_USER_ONLY
14257 /* In sve_probe_page, we assume TBI is enabled. */
14258 tcg_debug_assert(dc->tbid & 1);
14259 #endif
14260
14261 /* Single step state. The code-generation logic here is:
14262 * SS_ACTIVE == 0:
14263 * generate code with no special handling for single-stepping (except
14264 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14265 * this happens anyway because those changes are all system register or
14266 * PSTATE writes).
14267 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14268 * emit code for one insn
14269 * emit code to clear PSTATE.SS
14270 * emit code to generate software step exception for completed step
14271 * end TB (as usual for having generated an exception)
14272 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14273 * emit code to generate a software step exception
14274 * end the TB
14275 */
14276 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
14277 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
14278 dc->is_ldex = false;
14279
14280 /* Bound the number of insns to execute to those left on the page. */
14281 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14282
14283 /* If architectural single step active, limit to 1. */
14284 if (dc->ss_active) {
14285 bound = 1;
14286 }
14287 dc->base.max_insns = MIN(dc->base.max_insns, bound);
14288 }
14289
14290 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14291 {
14292 }
14293
14294 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14295 {
14296 DisasContext *dc = container_of(dcbase, DisasContext, base);
14297 target_ulong pc_arg = dc->base.pc_next;
14298
14299 if (tb_cflags(dcbase->tb) & CF_PCREL) {
14300 pc_arg &= ~TARGET_PAGE_MASK;
14301 }
14302 tcg_gen_insn_start(pc_arg, 0, 0);
14303 dc->insn_start = tcg_last_op();
14304 }
14305
14306 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14307 {
14308 DisasContext *s = container_of(dcbase, DisasContext, base);
14309 CPUARMState *env = cpu->env_ptr;
14310 uint64_t pc = s->base.pc_next;
14311 uint32_t insn;
14312
14313 /* Singlestep exceptions have the highest priority. */
14314 if (s->ss_active && !s->pstate_ss) {
14315 /* Singlestep state is Active-pending.
14316 * If we're in this state at the start of a TB then either
14317 * a) we just took an exception to an EL which is being debugged
14318 * and this is the first insn in the exception handler
14319 * b) debug exceptions were masked and we just unmasked them
14320 * without changing EL (eg by clearing PSTATE.D)
14321 * In either case we're going to take a swstep exception in the
14322 * "did not step an insn" case, and so the syndrome ISV and EX
14323 * bits should be zero.
14324 */
14325 assert(s->base.num_insns == 1);
14326 gen_swstep_exception(s, 0, 0);
14327 s->base.is_jmp = DISAS_NORETURN;
14328 s->base.pc_next = pc + 4;
14329 return;
14330 }
14331
14332 if (pc & 3) {
14333 /*
14334 * PC alignment fault. This has priority over the instruction abort
14335 * that we would receive from a translation fault via arm_ldl_code.
14336 * This should only be possible after an indirect branch, at the
14337 * start of the TB.
14338 */
14339 assert(s->base.num_insns == 1);
14340 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc));
14341 s->base.is_jmp = DISAS_NORETURN;
14342 s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
14343 return;
14344 }
14345
14346 s->pc_curr = pc;
14347 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
14348 s->insn = insn;
14349 s->base.pc_next = pc + 4;
14350
14351 s->fp_access_checked = false;
14352 s->sve_access_checked = false;
14353
14354 if (s->pstate_il) {
14355 /*
14356 * Illegal execution state. This has priority over BTI
14357 * exceptions, but comes after instruction abort exceptions.
14358 */
14359 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
14360 return;
14361 }
14362
14363 if (dc_isar_feature(aa64_bti, s)) {
14364 if (s->base.num_insns == 1) {
14365 /*
14366 * At the first insn of the TB, compute s->guarded_page.
14367 * We delayed computing this until successfully reading
14368 * the first insn of the TB, above. This (mostly) ensures
14369 * that the softmmu tlb entry has been populated, and the
14370 * page table GP bit is available.
14371 *
14372 * Note that we need to compute this even if btype == 0,
14373 * because this value is used for BR instructions later
14374 * where ENV is not available.
14375 */
14376 s->guarded_page = is_guarded_page(env, s);
14377
14378 /* First insn can have btype set to non-zero. */
14379 tcg_debug_assert(s->btype >= 0);
14380
14381 /*
14382 * Note that the Branch Target Exception has fairly high
14383 * priority -- below debugging exceptions but above most
14384 * everything else. This allows us to handle this now
14385 * instead of waiting until the insn is otherwise decoded.
14386 */
14387 if (s->btype != 0
14388 && s->guarded_page
14389 && !btype_destination_ok(insn, s->bt, s->btype)) {
14390 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
14391 return;
14392 }
14393 } else {
14394 /* Not the first insn: btype must be 0. */
14395 tcg_debug_assert(s->btype == 0);
14396 }
14397 }
14398
14399 s->is_nonstreaming = false;
14400 if (s->sme_trap_nonstreaming) {
14401 disas_sme_fa64(s, insn);
14402 }
14403
14404 switch (extract32(insn, 25, 4)) {
14405 case 0x0:
14406 if (!extract32(insn, 31, 1) || !disas_sme(s, insn)) {
14407 unallocated_encoding(s);
14408 }
14409 break;
14410 case 0x1: case 0x3: /* UNALLOCATED */
14411 unallocated_encoding(s);
14412 break;
14413 case 0x2:
14414 if (!disas_sve(s, insn)) {
14415 unallocated_encoding(s);
14416 }
14417 break;
14418 case 0x8: case 0x9: /* Data processing - immediate */
14419 disas_data_proc_imm(s, insn);
14420 break;
14421 case 0xa: case 0xb: /* Branch, exception generation and system insns */
14422 disas_b_exc_sys(s, insn);
14423 break;
14424 case 0x4:
14425 case 0x6:
14426 case 0xc:
14427 case 0xe: /* Loads and stores */
14428 disas_ldst(s, insn);
14429 break;
14430 case 0x5:
14431 case 0xd: /* Data processing - register */
14432 disas_data_proc_reg(s, insn);
14433 break;
14434 case 0x7:
14435 case 0xf: /* Data processing - SIMD and floating point */
14436 disas_data_proc_simd_fp(s, insn);
14437 break;
14438 default:
14439 assert(FALSE); /* all 15 cases should be handled above */
14440 break;
14441 }
14442
14443 /*
14444 * After execution of most insns, btype is reset to 0.
14445 * Note that we set btype == -1 when the insn sets btype.
14446 */
14447 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14448 reset_btype(s);
14449 }
14450 }
14451
14452 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14453 {
14454 DisasContext *dc = container_of(dcbase, DisasContext, base);
14455
14456 if (unlikely(dc->ss_active)) {
14457 /* Note that this means single stepping WFI doesn't halt the CPU.
14458 * For conditional branch insns this is harmless unreachable code as
14459 * gen_goto_tb() has already handled emitting the debug exception
14460 * (and thus a tb-jump is not possible when singlestepping).
14461 */
14462 switch (dc->base.is_jmp) {
14463 default:
14464 gen_a64_update_pc(dc, 4);
14465 /* fall through */
14466 case DISAS_EXIT:
14467 case DISAS_JUMP:
14468 gen_step_complete_exception(dc);
14469 break;
14470 case DISAS_NORETURN:
14471 break;
14472 }
14473 } else {
14474 switch (dc->base.is_jmp) {
14475 case DISAS_NEXT:
14476 case DISAS_TOO_MANY:
14477 gen_goto_tb(dc, 1, 4);
14478 break;
14479 default:
14480 case DISAS_UPDATE_EXIT:
14481 gen_a64_update_pc(dc, 4);
14482 /* fall through */
14483 case DISAS_EXIT:
14484 tcg_gen_exit_tb(NULL, 0);
14485 break;
14486 case DISAS_UPDATE_NOCHAIN:
14487 gen_a64_update_pc(dc, 4);
14488 /* fall through */
14489 case DISAS_JUMP:
14490 tcg_gen_lookup_and_goto_ptr();
14491 break;
14492 case DISAS_NORETURN:
14493 case DISAS_SWI:
14494 break;
14495 case DISAS_WFE:
14496 gen_a64_update_pc(dc, 4);
14497 gen_helper_wfe(cpu_env);
14498 break;
14499 case DISAS_YIELD:
14500 gen_a64_update_pc(dc, 4);
14501 gen_helper_yield(cpu_env);
14502 break;
14503 case DISAS_WFI:
14504 /*
14505 * This is a special case because we don't want to just halt
14506 * the CPU if trying to debug across a WFI.
14507 */
14508 gen_a64_update_pc(dc, 4);
14509 gen_helper_wfi(cpu_env, tcg_constant_i32(4));
14510 /*
14511 * The helper doesn't necessarily throw an exception, but we
14512 * must go back to the main loop to check for interrupts anyway.
14513 */
14514 tcg_gen_exit_tb(NULL, 0);
14515 break;
14516 }
14517 }
14518 }
14519
14520 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14521 CPUState *cpu, FILE *logfile)
14522 {
14523 DisasContext *dc = container_of(dcbase, DisasContext, base);
14524
14525 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first));
14526 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size);
14527 }
14528
14529 const TranslatorOps aarch64_translator_ops = {
14530 .init_disas_context = aarch64_tr_init_disas_context,
14531 .tb_start = aarch64_tr_tb_start,
14532 .insn_start = aarch64_tr_insn_start,
14533 .translate_insn = aarch64_tr_translate_insn,
14534 .tb_stop = aarch64_tr_tb_stop,
14535 .disas_log = aarch64_tr_disas_log,
14536 };