]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/tcg/vec_internal.h
target/arm: Use clmul_8* routines
[mirror_qemu.git] / target / arm / tcg / vec_internal.h
1 /*
2 * ARM AdvSIMD / SVE Vector Helpers
3 *
4 * Copyright (c) 2020 Linaro
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #ifndef TARGET_ARM_VEC_INTERNAL_H
21 #define TARGET_ARM_VEC_INTERNAL_H
22
23 /*
24 * Note that vector data is stored in host-endian 64-bit chunks,
25 * so addressing units smaller than that needs a host-endian fixup.
26 *
27 * The H<N> macros are used when indexing an array of elements of size N.
28 *
29 * The H1_<N> macros are used when performing byte arithmetic and then
30 * casting the final pointer to a type of size N.
31 */
32 #if HOST_BIG_ENDIAN
33 #define H1(x) ((x) ^ 7)
34 #define H1_2(x) ((x) ^ 6)
35 #define H1_4(x) ((x) ^ 4)
36 #define H2(x) ((x) ^ 3)
37 #define H4(x) ((x) ^ 1)
38 #else
39 #define H1(x) (x)
40 #define H1_2(x) (x)
41 #define H1_4(x) (x)
42 #define H2(x) (x)
43 #define H4(x) (x)
44 #endif
45 /*
46 * Access to 64-bit elements isn't host-endian dependent; we provide H8
47 * and H1_8 so that when a function is being generated from a macro we
48 * can pass these rather than an empty macro argument, for clarity.
49 */
50 #define H8(x) (x)
51 #define H1_8(x) (x)
52
53 /*
54 * Expand active predicate bits to bytes, for byte elements.
55 */
56 extern const uint64_t expand_pred_b_data[256];
57 static inline uint64_t expand_pred_b(uint8_t byte)
58 {
59 return expand_pred_b_data[byte];
60 }
61
62 /* Similarly for half-word elements. */
63 extern const uint64_t expand_pred_h_data[0x55 + 1];
64 static inline uint64_t expand_pred_h(uint8_t byte)
65 {
66 return expand_pred_h_data[byte & 0x55];
67 }
68
69 static inline void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz)
70 {
71 uint64_t *d = vd + opr_sz;
72 uintptr_t i;
73
74 for (i = opr_sz; i < max_sz; i += 8) {
75 *d++ = 0;
76 }
77 }
78
79 static inline int32_t do_sqrshl_bhs(int32_t src, int32_t shift, int bits,
80 bool round, uint32_t *sat)
81 {
82 if (shift <= -bits) {
83 /* Rounding the sign bit always produces 0. */
84 if (round) {
85 return 0;
86 }
87 return src >> 31;
88 } else if (shift < 0) {
89 if (round) {
90 src >>= -shift - 1;
91 return (src >> 1) + (src & 1);
92 }
93 return src >> -shift;
94 } else if (shift < bits) {
95 int32_t val = src << shift;
96 if (bits == 32) {
97 if (!sat || val >> shift == src) {
98 return val;
99 }
100 } else {
101 int32_t extval = sextract32(val, 0, bits);
102 if (!sat || val == extval) {
103 return extval;
104 }
105 }
106 } else if (!sat || src == 0) {
107 return 0;
108 }
109
110 *sat = 1;
111 return (1u << (bits - 1)) - (src >= 0);
112 }
113
114 static inline uint32_t do_uqrshl_bhs(uint32_t src, int32_t shift, int bits,
115 bool round, uint32_t *sat)
116 {
117 if (shift <= -(bits + round)) {
118 return 0;
119 } else if (shift < 0) {
120 if (round) {
121 src >>= -shift - 1;
122 return (src >> 1) + (src & 1);
123 }
124 return src >> -shift;
125 } else if (shift < bits) {
126 uint32_t val = src << shift;
127 if (bits == 32) {
128 if (!sat || val >> shift == src) {
129 return val;
130 }
131 } else {
132 uint32_t extval = extract32(val, 0, bits);
133 if (!sat || val == extval) {
134 return extval;
135 }
136 }
137 } else if (!sat || src == 0) {
138 return 0;
139 }
140
141 *sat = 1;
142 return MAKE_64BIT_MASK(0, bits);
143 }
144
145 static inline int32_t do_suqrshl_bhs(int32_t src, int32_t shift, int bits,
146 bool round, uint32_t *sat)
147 {
148 if (sat && src < 0) {
149 *sat = 1;
150 return 0;
151 }
152 return do_uqrshl_bhs(src, shift, bits, round, sat);
153 }
154
155 static inline int64_t do_sqrshl_d(int64_t src, int64_t shift,
156 bool round, uint32_t *sat)
157 {
158 if (shift <= -64) {
159 /* Rounding the sign bit always produces 0. */
160 if (round) {
161 return 0;
162 }
163 return src >> 63;
164 } else if (shift < 0) {
165 if (round) {
166 src >>= -shift - 1;
167 return (src >> 1) + (src & 1);
168 }
169 return src >> -shift;
170 } else if (shift < 64) {
171 int64_t val = src << shift;
172 if (!sat || val >> shift == src) {
173 return val;
174 }
175 } else if (!sat || src == 0) {
176 return 0;
177 }
178
179 *sat = 1;
180 return src < 0 ? INT64_MIN : INT64_MAX;
181 }
182
183 static inline uint64_t do_uqrshl_d(uint64_t src, int64_t shift,
184 bool round, uint32_t *sat)
185 {
186 if (shift <= -(64 + round)) {
187 return 0;
188 } else if (shift < 0) {
189 if (round) {
190 src >>= -shift - 1;
191 return (src >> 1) + (src & 1);
192 }
193 return src >> -shift;
194 } else if (shift < 64) {
195 uint64_t val = src << shift;
196 if (!sat || val >> shift == src) {
197 return val;
198 }
199 } else if (!sat || src == 0) {
200 return 0;
201 }
202
203 *sat = 1;
204 return UINT64_MAX;
205 }
206
207 static inline int64_t do_suqrshl_d(int64_t src, int64_t shift,
208 bool round, uint32_t *sat)
209 {
210 if (sat && src < 0) {
211 *sat = 1;
212 return 0;
213 }
214 return do_uqrshl_d(src, shift, round, sat);
215 }
216
217 int8_t do_sqrdmlah_b(int8_t, int8_t, int8_t, bool, bool);
218 int16_t do_sqrdmlah_h(int16_t, int16_t, int16_t, bool, bool, uint32_t *);
219 int32_t do_sqrdmlah_s(int32_t, int32_t, int32_t, bool, bool, uint32_t *);
220 int64_t do_sqrdmlah_d(int64_t, int64_t, int64_t, bool, bool);
221
222 /*
223 * 16 x 16 -> 32 vector polynomial multiply where the inputs are
224 * in the low 16 bits of each 32-bit element
225 */
226 uint64_t pmull_w(uint64_t op1, uint64_t op2);
227
228 /**
229 * bfdotadd:
230 * @sum: addend
231 * @e1, @e2: multiplicand vectors
232 *
233 * BFloat16 2-way dot product of @e1 & @e2, accumulating with @sum.
234 * The @e1 and @e2 operands correspond to the 32-bit source vector
235 * slots and contain two Bfloat16 values each.
236 *
237 * Corresponds to the ARM pseudocode function BFDotAdd.
238 */
239 float32 bfdotadd(float32 sum, uint32_t e1, uint32_t e2);
240
241 #endif /* TARGET_ARM_VEC_INTERNAL_H */