]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/translate-a64.c
03aa09259833439efbdc9a1e32f9e67101cc7963
[mirror_qemu.git] / target / arm / translate-a64.c
1 /*
2 * AArch64 translation
3 *
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg-op.h"
24 #include "tcg/tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
30
31 #include "hw/semihosting/semihost.h"
32 #include "exec/gen-icount.h"
33
34 #include "exec/helper-proto.h"
35 #include "exec/helper-gen.h"
36 #include "exec/log.h"
37
38 #include "trace-tcg.h"
39 #include "translate-a64.h"
40 #include "qemu/atomic128.h"
41
42 static TCGv_i64 cpu_X[32];
43 static TCGv_i64 cpu_pc;
44
45 /* Load/store exclusive handling */
46 static TCGv_i64 cpu_exclusive_high;
47
48 static const char *regnames[] = {
49 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
50 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
51 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
52 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
53 };
54
55 enum a64_shift_type {
56 A64_SHIFT_TYPE_LSL = 0,
57 A64_SHIFT_TYPE_LSR = 1,
58 A64_SHIFT_TYPE_ASR = 2,
59 A64_SHIFT_TYPE_ROR = 3
60 };
61
62 /* Table based decoder typedefs - used when the relevant bits for decode
63 * are too awkwardly scattered across the instruction (eg SIMD).
64 */
65 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
66
67 typedef struct AArch64DecodeTable {
68 uint32_t pattern;
69 uint32_t mask;
70 AArch64DecodeFn *disas_fn;
71 } AArch64DecodeTable;
72
73 /* initialize TCG globals. */
74 void a64_translate_init(void)
75 {
76 int i;
77
78 cpu_pc = tcg_global_mem_new_i64(cpu_env,
79 offsetof(CPUARMState, pc),
80 "pc");
81 for (i = 0; i < 32; i++) {
82 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
83 offsetof(CPUARMState, xregs[i]),
84 regnames[i]);
85 }
86
87 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
88 offsetof(CPUARMState, exclusive_high), "exclusive_high");
89 }
90
91 /*
92 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
93 */
94 static int get_a64_user_mem_index(DisasContext *s)
95 {
96 /*
97 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
98 * which is the usual mmu_idx for this cpu state.
99 */
100 ARMMMUIdx useridx = s->mmu_idx;
101
102 if (s->unpriv) {
103 /*
104 * We have pre-computed the condition for AccType_UNPRIV.
105 * Therefore we should never get here with a mmu_idx for
106 * which we do not know the corresponding user mmu_idx.
107 */
108 switch (useridx) {
109 case ARMMMUIdx_E10_1:
110 case ARMMMUIdx_E10_1_PAN:
111 useridx = ARMMMUIdx_E10_0;
112 break;
113 case ARMMMUIdx_E20_2:
114 case ARMMMUIdx_E20_2_PAN:
115 useridx = ARMMMUIdx_E20_0;
116 break;
117 case ARMMMUIdx_SE10_1:
118 case ARMMMUIdx_SE10_1_PAN:
119 useridx = ARMMMUIdx_SE10_0;
120 break;
121 default:
122 g_assert_not_reached();
123 }
124 }
125 return arm_to_core_mmu_idx(useridx);
126 }
127
128 static void reset_btype(DisasContext *s)
129 {
130 if (s->btype != 0) {
131 TCGv_i32 zero = tcg_const_i32(0);
132 tcg_gen_st_i32(zero, cpu_env, offsetof(CPUARMState, btype));
133 tcg_temp_free_i32(zero);
134 s->btype = 0;
135 }
136 }
137
138 static void set_btype(DisasContext *s, int val)
139 {
140 TCGv_i32 tcg_val;
141
142 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
143 tcg_debug_assert(val >= 1 && val <= 3);
144
145 tcg_val = tcg_const_i32(val);
146 tcg_gen_st_i32(tcg_val, cpu_env, offsetof(CPUARMState, btype));
147 tcg_temp_free_i32(tcg_val);
148 s->btype = -1;
149 }
150
151 void gen_a64_set_pc_im(uint64_t val)
152 {
153 tcg_gen_movi_i64(cpu_pc, val);
154 }
155
156 /*
157 * Handle Top Byte Ignore (TBI) bits.
158 *
159 * If address tagging is enabled via the TCR TBI bits:
160 * + for EL2 and EL3 there is only one TBI bit, and if it is set
161 * then the address is zero-extended, clearing bits [63:56]
162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
163 * and TBI1 controls addressses with bit 55 == 1.
164 * If the appropriate TBI bit is set for the address then
165 * the address is sign-extended from bit 55 into bits [63:56]
166 *
167 * Here We have concatenated TBI{1,0} into tbi.
168 */
169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
170 TCGv_i64 src, int tbi)
171 {
172 if (tbi == 0) {
173 /* Load unmodified address */
174 tcg_gen_mov_i64(dst, src);
175 } else if (!regime_has_2_ranges(s->mmu_idx)) {
176 /* Force tag byte to all zero */
177 tcg_gen_extract_i64(dst, src, 0, 56);
178 } else {
179 /* Sign-extend from bit 55. */
180 tcg_gen_sextract_i64(dst, src, 0, 56);
181
182 if (tbi != 3) {
183 TCGv_i64 tcg_zero = tcg_const_i64(0);
184
185 /*
186 * The two TBI bits differ.
187 * If tbi0, then !tbi1: only use the extension if positive.
188 * if !tbi0, then tbi1: only use the extension if negative.
189 */
190 tcg_gen_movcond_i64(tbi == 1 ? TCG_COND_GE : TCG_COND_LT,
191 dst, dst, tcg_zero, dst, src);
192 tcg_temp_free_i64(tcg_zero);
193 }
194 }
195 }
196
197 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
198 {
199 /*
200 * If address tagging is enabled for instructions via the TCR TBI bits,
201 * then loading an address into the PC will clear out any tag.
202 */
203 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
204 }
205
206 /*
207 * Return a "clean" address for ADDR according to TBID.
208 * This is always a fresh temporary, as we need to be able to
209 * increment this independently of a dirty write-back address.
210 */
211 static TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
212 {
213 TCGv_i64 clean = new_tmp_a64(s);
214 /*
215 * In order to get the correct value in the FAR_ELx register,
216 * we must present the memory subsystem with the "dirty" address
217 * including the TBI. In system mode we can make this work via
218 * the TLB, dropping the TBI during translation. But for user-only
219 * mode we don't have that option, and must remove the top byte now.
220 */
221 #ifdef CONFIG_USER_ONLY
222 gen_top_byte_ignore(s, clean, addr, s->tbid);
223 #else
224 tcg_gen_mov_i64(clean, addr);
225 #endif
226 return clean;
227 }
228
229 /* Insert a zero tag into src, with the result at dst. */
230 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
231 {
232 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
233 }
234
235 typedef struct DisasCompare64 {
236 TCGCond cond;
237 TCGv_i64 value;
238 } DisasCompare64;
239
240 static void a64_test_cc(DisasCompare64 *c64, int cc)
241 {
242 DisasCompare c32;
243
244 arm_test_cc(&c32, cc);
245
246 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
247 * properly. The NE/EQ comparisons are also fine with this choice. */
248 c64->cond = c32.cond;
249 c64->value = tcg_temp_new_i64();
250 tcg_gen_ext_i32_i64(c64->value, c32.value);
251
252 arm_free_cc(&c32);
253 }
254
255 static void a64_free_cc(DisasCompare64 *c64)
256 {
257 tcg_temp_free_i64(c64->value);
258 }
259
260 static void gen_exception_internal(int excp)
261 {
262 TCGv_i32 tcg_excp = tcg_const_i32(excp);
263
264 assert(excp_is_internal(excp));
265 gen_helper_exception_internal(cpu_env, tcg_excp);
266 tcg_temp_free_i32(tcg_excp);
267 }
268
269 static void gen_exception_internal_insn(DisasContext *s, uint64_t pc, int excp)
270 {
271 gen_a64_set_pc_im(pc);
272 gen_exception_internal(excp);
273 s->base.is_jmp = DISAS_NORETURN;
274 }
275
276 static void gen_exception_insn(DisasContext *s, uint64_t pc, int excp,
277 uint32_t syndrome, uint32_t target_el)
278 {
279 gen_a64_set_pc_im(pc);
280 gen_exception(excp, syndrome, target_el);
281 s->base.is_jmp = DISAS_NORETURN;
282 }
283
284 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
285 {
286 TCGv_i32 tcg_syn;
287
288 gen_a64_set_pc_im(s->pc_curr);
289 tcg_syn = tcg_const_i32(syndrome);
290 gen_helper_exception_bkpt_insn(cpu_env, tcg_syn);
291 tcg_temp_free_i32(tcg_syn);
292 s->base.is_jmp = DISAS_NORETURN;
293 }
294
295 static void gen_step_complete_exception(DisasContext *s)
296 {
297 /* We just completed step of an insn. Move from Active-not-pending
298 * to Active-pending, and then also take the swstep exception.
299 * This corresponds to making the (IMPDEF) choice to prioritize
300 * swstep exceptions over asynchronous exceptions taken to an exception
301 * level where debug is disabled. This choice has the advantage that
302 * we do not need to maintain internal state corresponding to the
303 * ISV/EX syndrome bits between completion of the step and generation
304 * of the exception, and our syndrome information is always correct.
305 */
306 gen_ss_advance(s);
307 gen_swstep_exception(s, 1, s->is_ldex);
308 s->base.is_jmp = DISAS_NORETURN;
309 }
310
311 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
312 {
313 /* No direct tb linking with singlestep (either QEMU's or the ARM
314 * debug architecture kind) or deterministic io
315 */
316 if (s->base.singlestep_enabled || s->ss_active ||
317 (tb_cflags(s->base.tb) & CF_LAST_IO)) {
318 return false;
319 }
320
321 #ifndef CONFIG_USER_ONLY
322 /* Only link tbs from inside the same guest page */
323 if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
324 return false;
325 }
326 #endif
327
328 return true;
329 }
330
331 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
332 {
333 TranslationBlock *tb;
334
335 tb = s->base.tb;
336 if (use_goto_tb(s, n, dest)) {
337 tcg_gen_goto_tb(n);
338 gen_a64_set_pc_im(dest);
339 tcg_gen_exit_tb(tb, n);
340 s->base.is_jmp = DISAS_NORETURN;
341 } else {
342 gen_a64_set_pc_im(dest);
343 if (s->ss_active) {
344 gen_step_complete_exception(s);
345 } else if (s->base.singlestep_enabled) {
346 gen_exception_internal(EXCP_DEBUG);
347 } else {
348 tcg_gen_lookup_and_goto_ptr();
349 s->base.is_jmp = DISAS_NORETURN;
350 }
351 }
352 }
353
354 void unallocated_encoding(DisasContext *s)
355 {
356 /* Unallocated and reserved encodings are uncategorized */
357 gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syn_uncategorized(),
358 default_exception_el(s));
359 }
360
361 static void init_tmp_a64_array(DisasContext *s)
362 {
363 #ifdef CONFIG_DEBUG_TCG
364 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
365 #endif
366 s->tmp_a64_count = 0;
367 }
368
369 static void free_tmp_a64(DisasContext *s)
370 {
371 int i;
372 for (i = 0; i < s->tmp_a64_count; i++) {
373 tcg_temp_free_i64(s->tmp_a64[i]);
374 }
375 init_tmp_a64_array(s);
376 }
377
378 TCGv_i64 new_tmp_a64(DisasContext *s)
379 {
380 assert(s->tmp_a64_count < TMP_A64_MAX);
381 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
382 }
383
384 TCGv_i64 new_tmp_a64_zero(DisasContext *s)
385 {
386 TCGv_i64 t = new_tmp_a64(s);
387 tcg_gen_movi_i64(t, 0);
388 return t;
389 }
390
391 /*
392 * Register access functions
393 *
394 * These functions are used for directly accessing a register in where
395 * changes to the final register value are likely to be made. If you
396 * need to use a register for temporary calculation (e.g. index type
397 * operations) use the read_* form.
398 *
399 * B1.2.1 Register mappings
400 *
401 * In instruction register encoding 31 can refer to ZR (zero register) or
402 * the SP (stack pointer) depending on context. In QEMU's case we map SP
403 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
404 * This is the point of the _sp forms.
405 */
406 TCGv_i64 cpu_reg(DisasContext *s, int reg)
407 {
408 if (reg == 31) {
409 return new_tmp_a64_zero(s);
410 } else {
411 return cpu_X[reg];
412 }
413 }
414
415 /* register access for when 31 == SP */
416 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
417 {
418 return cpu_X[reg];
419 }
420
421 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
422 * representing the register contents. This TCGv is an auto-freed
423 * temporary so it need not be explicitly freed, and may be modified.
424 */
425 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
426 {
427 TCGv_i64 v = new_tmp_a64(s);
428 if (reg != 31) {
429 if (sf) {
430 tcg_gen_mov_i64(v, cpu_X[reg]);
431 } else {
432 tcg_gen_ext32u_i64(v, cpu_X[reg]);
433 }
434 } else {
435 tcg_gen_movi_i64(v, 0);
436 }
437 return v;
438 }
439
440 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
441 {
442 TCGv_i64 v = new_tmp_a64(s);
443 if (sf) {
444 tcg_gen_mov_i64(v, cpu_X[reg]);
445 } else {
446 tcg_gen_ext32u_i64(v, cpu_X[reg]);
447 }
448 return v;
449 }
450
451 /* Return the offset into CPUARMState of a slice (from
452 * the least significant end) of FP register Qn (ie
453 * Dn, Sn, Hn or Bn).
454 * (Note that this is not the same mapping as for A32; see cpu.h)
455 */
456 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
457 {
458 return vec_reg_offset(s, regno, 0, size);
459 }
460
461 /* Offset of the high half of the 128 bit vector Qn */
462 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
463 {
464 return vec_reg_offset(s, regno, 1, MO_64);
465 }
466
467 /* Convenience accessors for reading and writing single and double
468 * FP registers. Writing clears the upper parts of the associated
469 * 128 bit vector register, as required by the architecture.
470 * Note that unlike the GP register accessors, the values returned
471 * by the read functions must be manually freed.
472 */
473 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
474 {
475 TCGv_i64 v = tcg_temp_new_i64();
476
477 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
478 return v;
479 }
480
481 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
482 {
483 TCGv_i32 v = tcg_temp_new_i32();
484
485 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
486 return v;
487 }
488
489 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
490 {
491 TCGv_i32 v = tcg_temp_new_i32();
492
493 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
494 return v;
495 }
496
497 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
498 * If SVE is not enabled, then there are only 128 bits in the vector.
499 */
500 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
501 {
502 unsigned ofs = fp_reg_offset(s, rd, MO_64);
503 unsigned vsz = vec_full_reg_size(s);
504
505 /* Nop move, with side effect of clearing the tail. */
506 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
507 }
508
509 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
510 {
511 unsigned ofs = fp_reg_offset(s, reg, MO_64);
512
513 tcg_gen_st_i64(v, cpu_env, ofs);
514 clear_vec_high(s, false, reg);
515 }
516
517 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
518 {
519 TCGv_i64 tmp = tcg_temp_new_i64();
520
521 tcg_gen_extu_i32_i64(tmp, v);
522 write_fp_dreg(s, reg, tmp);
523 tcg_temp_free_i64(tmp);
524 }
525
526 TCGv_ptr get_fpstatus_ptr(bool is_f16)
527 {
528 TCGv_ptr statusptr = tcg_temp_new_ptr();
529 int offset;
530
531 /* In A64 all instructions (both FP and Neon) use the FPCR; there
532 * is no equivalent of the A32 Neon "standard FPSCR value".
533 * However half-precision operations operate under a different
534 * FZ16 flag and use vfp.fp_status_f16 instead of vfp.fp_status.
535 */
536 if (is_f16) {
537 offset = offsetof(CPUARMState, vfp.fp_status_f16);
538 } else {
539 offset = offsetof(CPUARMState, vfp.fp_status);
540 }
541 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
542 return statusptr;
543 }
544
545 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
546 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
547 GVecGen2Fn *gvec_fn, int vece)
548 {
549 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
550 is_q ? 16 : 8, vec_full_reg_size(s));
551 }
552
553 /* Expand a 2-operand + immediate AdvSIMD vector operation using
554 * an expander function.
555 */
556 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
557 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
558 {
559 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
560 imm, is_q ? 16 : 8, vec_full_reg_size(s));
561 }
562
563 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
564 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
565 GVecGen3Fn *gvec_fn, int vece)
566 {
567 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
568 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
569 }
570
571 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
572 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
573 int rx, GVecGen4Fn *gvec_fn, int vece)
574 {
575 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
576 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
577 is_q ? 16 : 8, vec_full_reg_size(s));
578 }
579
580 /* Expand a 2-operand operation using an out-of-line helper. */
581 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
582 int rn, int data, gen_helper_gvec_2 *fn)
583 {
584 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
585 vec_full_reg_offset(s, rn),
586 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
587 }
588
589 /* Expand a 3-operand operation using an out-of-line helper. */
590 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
591 int rn, int rm, int data, gen_helper_gvec_3 *fn)
592 {
593 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
594 vec_full_reg_offset(s, rn),
595 vec_full_reg_offset(s, rm),
596 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
597 }
598
599 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
600 * an out-of-line helper.
601 */
602 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
603 int rm, bool is_fp16, int data,
604 gen_helper_gvec_3_ptr *fn)
605 {
606 TCGv_ptr fpst = get_fpstatus_ptr(is_fp16);
607 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
608 vec_full_reg_offset(s, rn),
609 vec_full_reg_offset(s, rm), fpst,
610 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
611 tcg_temp_free_ptr(fpst);
612 }
613
614 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
615 * than the 32 bit equivalent.
616 */
617 static inline void gen_set_NZ64(TCGv_i64 result)
618 {
619 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
620 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
621 }
622
623 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
624 static inline void gen_logic_CC(int sf, TCGv_i64 result)
625 {
626 if (sf) {
627 gen_set_NZ64(result);
628 } else {
629 tcg_gen_extrl_i64_i32(cpu_ZF, result);
630 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
631 }
632 tcg_gen_movi_i32(cpu_CF, 0);
633 tcg_gen_movi_i32(cpu_VF, 0);
634 }
635
636 /* dest = T0 + T1; compute C, N, V and Z flags */
637 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
638 {
639 if (sf) {
640 TCGv_i64 result, flag, tmp;
641 result = tcg_temp_new_i64();
642 flag = tcg_temp_new_i64();
643 tmp = tcg_temp_new_i64();
644
645 tcg_gen_movi_i64(tmp, 0);
646 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
647
648 tcg_gen_extrl_i64_i32(cpu_CF, flag);
649
650 gen_set_NZ64(result);
651
652 tcg_gen_xor_i64(flag, result, t0);
653 tcg_gen_xor_i64(tmp, t0, t1);
654 tcg_gen_andc_i64(flag, flag, tmp);
655 tcg_temp_free_i64(tmp);
656 tcg_gen_extrh_i64_i32(cpu_VF, flag);
657
658 tcg_gen_mov_i64(dest, result);
659 tcg_temp_free_i64(result);
660 tcg_temp_free_i64(flag);
661 } else {
662 /* 32 bit arithmetic */
663 TCGv_i32 t0_32 = tcg_temp_new_i32();
664 TCGv_i32 t1_32 = tcg_temp_new_i32();
665 TCGv_i32 tmp = tcg_temp_new_i32();
666
667 tcg_gen_movi_i32(tmp, 0);
668 tcg_gen_extrl_i64_i32(t0_32, t0);
669 tcg_gen_extrl_i64_i32(t1_32, t1);
670 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
671 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
672 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
673 tcg_gen_xor_i32(tmp, t0_32, t1_32);
674 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
675 tcg_gen_extu_i32_i64(dest, cpu_NF);
676
677 tcg_temp_free_i32(tmp);
678 tcg_temp_free_i32(t0_32);
679 tcg_temp_free_i32(t1_32);
680 }
681 }
682
683 /* dest = T0 - T1; compute C, N, V and Z flags */
684 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
685 {
686 if (sf) {
687 /* 64 bit arithmetic */
688 TCGv_i64 result, flag, tmp;
689
690 result = tcg_temp_new_i64();
691 flag = tcg_temp_new_i64();
692 tcg_gen_sub_i64(result, t0, t1);
693
694 gen_set_NZ64(result);
695
696 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
697 tcg_gen_extrl_i64_i32(cpu_CF, flag);
698
699 tcg_gen_xor_i64(flag, result, t0);
700 tmp = tcg_temp_new_i64();
701 tcg_gen_xor_i64(tmp, t0, t1);
702 tcg_gen_and_i64(flag, flag, tmp);
703 tcg_temp_free_i64(tmp);
704 tcg_gen_extrh_i64_i32(cpu_VF, flag);
705 tcg_gen_mov_i64(dest, result);
706 tcg_temp_free_i64(flag);
707 tcg_temp_free_i64(result);
708 } else {
709 /* 32 bit arithmetic */
710 TCGv_i32 t0_32 = tcg_temp_new_i32();
711 TCGv_i32 t1_32 = tcg_temp_new_i32();
712 TCGv_i32 tmp;
713
714 tcg_gen_extrl_i64_i32(t0_32, t0);
715 tcg_gen_extrl_i64_i32(t1_32, t1);
716 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
717 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
718 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
719 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
720 tmp = tcg_temp_new_i32();
721 tcg_gen_xor_i32(tmp, t0_32, t1_32);
722 tcg_temp_free_i32(t0_32);
723 tcg_temp_free_i32(t1_32);
724 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
725 tcg_temp_free_i32(tmp);
726 tcg_gen_extu_i32_i64(dest, cpu_NF);
727 }
728 }
729
730 /* dest = T0 + T1 + CF; do not compute flags. */
731 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
732 {
733 TCGv_i64 flag = tcg_temp_new_i64();
734 tcg_gen_extu_i32_i64(flag, cpu_CF);
735 tcg_gen_add_i64(dest, t0, t1);
736 tcg_gen_add_i64(dest, dest, flag);
737 tcg_temp_free_i64(flag);
738
739 if (!sf) {
740 tcg_gen_ext32u_i64(dest, dest);
741 }
742 }
743
744 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
745 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
746 {
747 if (sf) {
748 TCGv_i64 result, cf_64, vf_64, tmp;
749 result = tcg_temp_new_i64();
750 cf_64 = tcg_temp_new_i64();
751 vf_64 = tcg_temp_new_i64();
752 tmp = tcg_const_i64(0);
753
754 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
755 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
756 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
757 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
758 gen_set_NZ64(result);
759
760 tcg_gen_xor_i64(vf_64, result, t0);
761 tcg_gen_xor_i64(tmp, t0, t1);
762 tcg_gen_andc_i64(vf_64, vf_64, tmp);
763 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
764
765 tcg_gen_mov_i64(dest, result);
766
767 tcg_temp_free_i64(tmp);
768 tcg_temp_free_i64(vf_64);
769 tcg_temp_free_i64(cf_64);
770 tcg_temp_free_i64(result);
771 } else {
772 TCGv_i32 t0_32, t1_32, tmp;
773 t0_32 = tcg_temp_new_i32();
774 t1_32 = tcg_temp_new_i32();
775 tmp = tcg_const_i32(0);
776
777 tcg_gen_extrl_i64_i32(t0_32, t0);
778 tcg_gen_extrl_i64_i32(t1_32, t1);
779 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
780 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
781
782 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
783 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
784 tcg_gen_xor_i32(tmp, t0_32, t1_32);
785 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
786 tcg_gen_extu_i32_i64(dest, cpu_NF);
787
788 tcg_temp_free_i32(tmp);
789 tcg_temp_free_i32(t1_32);
790 tcg_temp_free_i32(t0_32);
791 }
792 }
793
794 /*
795 * Load/Store generators
796 */
797
798 /*
799 * Store from GPR register to memory.
800 */
801 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
802 TCGv_i64 tcg_addr, int size, int memidx,
803 bool iss_valid,
804 unsigned int iss_srt,
805 bool iss_sf, bool iss_ar)
806 {
807 g_assert(size <= 3);
808 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
809
810 if (iss_valid) {
811 uint32_t syn;
812
813 syn = syn_data_abort_with_iss(0,
814 size,
815 false,
816 iss_srt,
817 iss_sf,
818 iss_ar,
819 0, 0, 0, 0, 0, false);
820 disas_set_insn_syndrome(s, syn);
821 }
822 }
823
824 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
825 TCGv_i64 tcg_addr, int size,
826 bool iss_valid,
827 unsigned int iss_srt,
828 bool iss_sf, bool iss_ar)
829 {
830 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
831 iss_valid, iss_srt, iss_sf, iss_ar);
832 }
833
834 /*
835 * Load from memory to GPR register
836 */
837 static void do_gpr_ld_memidx(DisasContext *s,
838 TCGv_i64 dest, TCGv_i64 tcg_addr,
839 int size, bool is_signed,
840 bool extend, int memidx,
841 bool iss_valid, unsigned int iss_srt,
842 bool iss_sf, bool iss_ar)
843 {
844 MemOp memop = s->be_data + size;
845
846 g_assert(size <= 3);
847
848 if (is_signed) {
849 memop += MO_SIGN;
850 }
851
852 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
853
854 if (extend && is_signed) {
855 g_assert(size < 3);
856 tcg_gen_ext32u_i64(dest, dest);
857 }
858
859 if (iss_valid) {
860 uint32_t syn;
861
862 syn = syn_data_abort_with_iss(0,
863 size,
864 is_signed,
865 iss_srt,
866 iss_sf,
867 iss_ar,
868 0, 0, 0, 0, 0, false);
869 disas_set_insn_syndrome(s, syn);
870 }
871 }
872
873 static void do_gpr_ld(DisasContext *s,
874 TCGv_i64 dest, TCGv_i64 tcg_addr,
875 int size, bool is_signed, bool extend,
876 bool iss_valid, unsigned int iss_srt,
877 bool iss_sf, bool iss_ar)
878 {
879 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
880 get_mem_index(s),
881 iss_valid, iss_srt, iss_sf, iss_ar);
882 }
883
884 /*
885 * Store from FP register to memory
886 */
887 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
888 {
889 /* This writes the bottom N bits of a 128 bit wide vector to memory */
890 TCGv_i64 tmp = tcg_temp_new_i64();
891 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
892 if (size < 4) {
893 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
894 s->be_data + size);
895 } else {
896 bool be = s->be_data == MO_BE;
897 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
898
899 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
900 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
901 s->be_data | MO_Q);
902 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
903 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
904 s->be_data | MO_Q);
905 tcg_temp_free_i64(tcg_hiaddr);
906 }
907
908 tcg_temp_free_i64(tmp);
909 }
910
911 /*
912 * Load from memory to FP register
913 */
914 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
915 {
916 /* This always zero-extends and writes to a full 128 bit wide vector */
917 TCGv_i64 tmplo = tcg_temp_new_i64();
918 TCGv_i64 tmphi = NULL;
919
920 if (size < 4) {
921 MemOp memop = s->be_data + size;
922 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
923 } else {
924 bool be = s->be_data == MO_BE;
925 TCGv_i64 tcg_hiaddr;
926
927 tmphi = tcg_temp_new_i64();
928 tcg_hiaddr = tcg_temp_new_i64();
929
930 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
931 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
932 s->be_data | MO_Q);
933 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
934 s->be_data | MO_Q);
935 tcg_temp_free_i64(tcg_hiaddr);
936 }
937
938 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
939 tcg_temp_free_i64(tmplo);
940
941 if (tmphi) {
942 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
943 tcg_temp_free_i64(tmphi);
944 }
945 clear_vec_high(s, tmphi != NULL, destidx);
946 }
947
948 /*
949 * Vector load/store helpers.
950 *
951 * The principal difference between this and a FP load is that we don't
952 * zero extend as we are filling a partial chunk of the vector register.
953 * These functions don't support 128 bit loads/stores, which would be
954 * normal load/store operations.
955 *
956 * The _i32 versions are useful when operating on 32 bit quantities
957 * (eg for floating point single or using Neon helper functions).
958 */
959
960 /* Get value of an element within a vector register */
961 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
962 int element, MemOp memop)
963 {
964 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
965 switch (memop) {
966 case MO_8:
967 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
968 break;
969 case MO_16:
970 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
971 break;
972 case MO_32:
973 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
974 break;
975 case MO_8|MO_SIGN:
976 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
977 break;
978 case MO_16|MO_SIGN:
979 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
980 break;
981 case MO_32|MO_SIGN:
982 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
983 break;
984 case MO_64:
985 case MO_64|MO_SIGN:
986 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
987 break;
988 default:
989 g_assert_not_reached();
990 }
991 }
992
993 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
994 int element, MemOp memop)
995 {
996 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
997 switch (memop) {
998 case MO_8:
999 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1000 break;
1001 case MO_16:
1002 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1003 break;
1004 case MO_8|MO_SIGN:
1005 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1006 break;
1007 case MO_16|MO_SIGN:
1008 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1009 break;
1010 case MO_32:
1011 case MO_32|MO_SIGN:
1012 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1013 break;
1014 default:
1015 g_assert_not_reached();
1016 }
1017 }
1018
1019 /* Set value of an element within a vector register */
1020 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1021 int element, MemOp memop)
1022 {
1023 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1024 switch (memop) {
1025 case MO_8:
1026 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1027 break;
1028 case MO_16:
1029 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1030 break;
1031 case MO_32:
1032 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1033 break;
1034 case MO_64:
1035 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1036 break;
1037 default:
1038 g_assert_not_reached();
1039 }
1040 }
1041
1042 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1043 int destidx, int element, MemOp memop)
1044 {
1045 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1046 switch (memop) {
1047 case MO_8:
1048 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1049 break;
1050 case MO_16:
1051 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1052 break;
1053 case MO_32:
1054 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1055 break;
1056 default:
1057 g_assert_not_reached();
1058 }
1059 }
1060
1061 /* Store from vector register to memory */
1062 static void do_vec_st(DisasContext *s, int srcidx, int element,
1063 TCGv_i64 tcg_addr, int size, MemOp endian)
1064 {
1065 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1066
1067 read_vec_element(s, tcg_tmp, srcidx, element, size);
1068 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1069
1070 tcg_temp_free_i64(tcg_tmp);
1071 }
1072
1073 /* Load from memory to vector register */
1074 static void do_vec_ld(DisasContext *s, int destidx, int element,
1075 TCGv_i64 tcg_addr, int size, MemOp endian)
1076 {
1077 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1078
1079 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1080 write_vec_element(s, tcg_tmp, destidx, element, size);
1081
1082 tcg_temp_free_i64(tcg_tmp);
1083 }
1084
1085 /* Check that FP/Neon access is enabled. If it is, return
1086 * true. If not, emit code to generate an appropriate exception,
1087 * and return false; the caller should not emit any code for
1088 * the instruction. Note that this check must happen after all
1089 * unallocated-encoding checks (otherwise the syndrome information
1090 * for the resulting exception will be incorrect).
1091 */
1092 static inline bool fp_access_check(DisasContext *s)
1093 {
1094 assert(!s->fp_access_checked);
1095 s->fp_access_checked = true;
1096
1097 if (!s->fp_excp_el) {
1098 return true;
1099 }
1100
1101 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
1102 syn_fp_access_trap(1, 0xe, false), s->fp_excp_el);
1103 return false;
1104 }
1105
1106 /* Check that SVE access is enabled. If it is, return true.
1107 * If not, emit code to generate an appropriate exception and return false.
1108 */
1109 bool sve_access_check(DisasContext *s)
1110 {
1111 if (s->sve_excp_el) {
1112 gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syn_sve_access_trap(),
1113 s->sve_excp_el);
1114 return false;
1115 }
1116 return fp_access_check(s);
1117 }
1118
1119 /*
1120 * This utility function is for doing register extension with an
1121 * optional shift. You will likely want to pass a temporary for the
1122 * destination register. See DecodeRegExtend() in the ARM ARM.
1123 */
1124 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1125 int option, unsigned int shift)
1126 {
1127 int extsize = extract32(option, 0, 2);
1128 bool is_signed = extract32(option, 2, 1);
1129
1130 if (is_signed) {
1131 switch (extsize) {
1132 case 0:
1133 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1134 break;
1135 case 1:
1136 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1137 break;
1138 case 2:
1139 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1140 break;
1141 case 3:
1142 tcg_gen_mov_i64(tcg_out, tcg_in);
1143 break;
1144 }
1145 } else {
1146 switch (extsize) {
1147 case 0:
1148 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1149 break;
1150 case 1:
1151 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1152 break;
1153 case 2:
1154 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1155 break;
1156 case 3:
1157 tcg_gen_mov_i64(tcg_out, tcg_in);
1158 break;
1159 }
1160 }
1161
1162 if (shift) {
1163 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1164 }
1165 }
1166
1167 static inline void gen_check_sp_alignment(DisasContext *s)
1168 {
1169 /* The AArch64 architecture mandates that (if enabled via PSTATE
1170 * or SCTLR bits) there is a check that SP is 16-aligned on every
1171 * SP-relative load or store (with an exception generated if it is not).
1172 * In line with general QEMU practice regarding misaligned accesses,
1173 * we omit these checks for the sake of guest program performance.
1174 * This function is provided as a hook so we can more easily add these
1175 * checks in future (possibly as a "favour catching guest program bugs
1176 * over speed" user selectable option).
1177 */
1178 }
1179
1180 /*
1181 * This provides a simple table based table lookup decoder. It is
1182 * intended to be used when the relevant bits for decode are too
1183 * awkwardly placed and switch/if based logic would be confusing and
1184 * deeply nested. Since it's a linear search through the table, tables
1185 * should be kept small.
1186 *
1187 * It returns the first handler where insn & mask == pattern, or
1188 * NULL if there is no match.
1189 * The table is terminated by an empty mask (i.e. 0)
1190 */
1191 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1192 uint32_t insn)
1193 {
1194 const AArch64DecodeTable *tptr = table;
1195
1196 while (tptr->mask) {
1197 if ((insn & tptr->mask) == tptr->pattern) {
1198 return tptr->disas_fn;
1199 }
1200 tptr++;
1201 }
1202 return NULL;
1203 }
1204
1205 /*
1206 * The instruction disassembly implemented here matches
1207 * the instruction encoding classifications in chapter C4
1208 * of the ARM Architecture Reference Manual (DDI0487B_a);
1209 * classification names and decode diagrams here should generally
1210 * match up with those in the manual.
1211 */
1212
1213 /* Unconditional branch (immediate)
1214 * 31 30 26 25 0
1215 * +----+-----------+-------------------------------------+
1216 * | op | 0 0 1 0 1 | imm26 |
1217 * +----+-----------+-------------------------------------+
1218 */
1219 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1220 {
1221 uint64_t addr = s->pc_curr + sextract32(insn, 0, 26) * 4;
1222
1223 if (insn & (1U << 31)) {
1224 /* BL Branch with link */
1225 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
1226 }
1227
1228 /* B Branch / BL Branch with link */
1229 reset_btype(s);
1230 gen_goto_tb(s, 0, addr);
1231 }
1232
1233 /* Compare and branch (immediate)
1234 * 31 30 25 24 23 5 4 0
1235 * +----+-------------+----+---------------------+--------+
1236 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1237 * +----+-------------+----+---------------------+--------+
1238 */
1239 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1240 {
1241 unsigned int sf, op, rt;
1242 uint64_t addr;
1243 TCGLabel *label_match;
1244 TCGv_i64 tcg_cmp;
1245
1246 sf = extract32(insn, 31, 1);
1247 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1248 rt = extract32(insn, 0, 5);
1249 addr = s->pc_curr + sextract32(insn, 5, 19) * 4;
1250
1251 tcg_cmp = read_cpu_reg(s, rt, sf);
1252 label_match = gen_new_label();
1253
1254 reset_btype(s);
1255 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1256 tcg_cmp, 0, label_match);
1257
1258 gen_goto_tb(s, 0, s->base.pc_next);
1259 gen_set_label(label_match);
1260 gen_goto_tb(s, 1, addr);
1261 }
1262
1263 /* Test and branch (immediate)
1264 * 31 30 25 24 23 19 18 5 4 0
1265 * +----+-------------+----+-------+-------------+------+
1266 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1267 * +----+-------------+----+-------+-------------+------+
1268 */
1269 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1270 {
1271 unsigned int bit_pos, op, rt;
1272 uint64_t addr;
1273 TCGLabel *label_match;
1274 TCGv_i64 tcg_cmp;
1275
1276 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1277 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1278 addr = s->pc_curr + sextract32(insn, 5, 14) * 4;
1279 rt = extract32(insn, 0, 5);
1280
1281 tcg_cmp = tcg_temp_new_i64();
1282 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1283 label_match = gen_new_label();
1284
1285 reset_btype(s);
1286 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1287 tcg_cmp, 0, label_match);
1288 tcg_temp_free_i64(tcg_cmp);
1289 gen_goto_tb(s, 0, s->base.pc_next);
1290 gen_set_label(label_match);
1291 gen_goto_tb(s, 1, addr);
1292 }
1293
1294 /* Conditional branch (immediate)
1295 * 31 25 24 23 5 4 3 0
1296 * +---------------+----+---------------------+----+------+
1297 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1298 * +---------------+----+---------------------+----+------+
1299 */
1300 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1301 {
1302 unsigned int cond;
1303 uint64_t addr;
1304
1305 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1306 unallocated_encoding(s);
1307 return;
1308 }
1309 addr = s->pc_curr + sextract32(insn, 5, 19) * 4;
1310 cond = extract32(insn, 0, 4);
1311
1312 reset_btype(s);
1313 if (cond < 0x0e) {
1314 /* genuinely conditional branches */
1315 TCGLabel *label_match = gen_new_label();
1316 arm_gen_test_cc(cond, label_match);
1317 gen_goto_tb(s, 0, s->base.pc_next);
1318 gen_set_label(label_match);
1319 gen_goto_tb(s, 1, addr);
1320 } else {
1321 /* 0xe and 0xf are both "always" conditions */
1322 gen_goto_tb(s, 0, addr);
1323 }
1324 }
1325
1326 /* HINT instruction group, including various allocated HINTs */
1327 static void handle_hint(DisasContext *s, uint32_t insn,
1328 unsigned int op1, unsigned int op2, unsigned int crm)
1329 {
1330 unsigned int selector = crm << 3 | op2;
1331
1332 if (op1 != 3) {
1333 unallocated_encoding(s);
1334 return;
1335 }
1336
1337 switch (selector) {
1338 case 0b00000: /* NOP */
1339 break;
1340 case 0b00011: /* WFI */
1341 s->base.is_jmp = DISAS_WFI;
1342 break;
1343 case 0b00001: /* YIELD */
1344 /* When running in MTTCG we don't generate jumps to the yield and
1345 * WFE helpers as it won't affect the scheduling of other vCPUs.
1346 * If we wanted to more completely model WFE/SEV so we don't busy
1347 * spin unnecessarily we would need to do something more involved.
1348 */
1349 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1350 s->base.is_jmp = DISAS_YIELD;
1351 }
1352 break;
1353 case 0b00010: /* WFE */
1354 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1355 s->base.is_jmp = DISAS_WFE;
1356 }
1357 break;
1358 case 0b00100: /* SEV */
1359 case 0b00101: /* SEVL */
1360 /* we treat all as NOP at least for now */
1361 break;
1362 case 0b00111: /* XPACLRI */
1363 if (s->pauth_active) {
1364 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1365 }
1366 break;
1367 case 0b01000: /* PACIA1716 */
1368 if (s->pauth_active) {
1369 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1370 }
1371 break;
1372 case 0b01010: /* PACIB1716 */
1373 if (s->pauth_active) {
1374 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1375 }
1376 break;
1377 case 0b01100: /* AUTIA1716 */
1378 if (s->pauth_active) {
1379 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1380 }
1381 break;
1382 case 0b01110: /* AUTIB1716 */
1383 if (s->pauth_active) {
1384 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1385 }
1386 break;
1387 case 0b11000: /* PACIAZ */
1388 if (s->pauth_active) {
1389 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1390 new_tmp_a64_zero(s));
1391 }
1392 break;
1393 case 0b11001: /* PACIASP */
1394 if (s->pauth_active) {
1395 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1396 }
1397 break;
1398 case 0b11010: /* PACIBZ */
1399 if (s->pauth_active) {
1400 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1401 new_tmp_a64_zero(s));
1402 }
1403 break;
1404 case 0b11011: /* PACIBSP */
1405 if (s->pauth_active) {
1406 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1407 }
1408 break;
1409 case 0b11100: /* AUTIAZ */
1410 if (s->pauth_active) {
1411 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1412 new_tmp_a64_zero(s));
1413 }
1414 break;
1415 case 0b11101: /* AUTIASP */
1416 if (s->pauth_active) {
1417 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1418 }
1419 break;
1420 case 0b11110: /* AUTIBZ */
1421 if (s->pauth_active) {
1422 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1423 new_tmp_a64_zero(s));
1424 }
1425 break;
1426 case 0b11111: /* AUTIBSP */
1427 if (s->pauth_active) {
1428 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1429 }
1430 break;
1431 default:
1432 /* default specified as NOP equivalent */
1433 break;
1434 }
1435 }
1436
1437 static void gen_clrex(DisasContext *s, uint32_t insn)
1438 {
1439 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1440 }
1441
1442 /* CLREX, DSB, DMB, ISB */
1443 static void handle_sync(DisasContext *s, uint32_t insn,
1444 unsigned int op1, unsigned int op2, unsigned int crm)
1445 {
1446 TCGBar bar;
1447
1448 if (op1 != 3) {
1449 unallocated_encoding(s);
1450 return;
1451 }
1452
1453 switch (op2) {
1454 case 2: /* CLREX */
1455 gen_clrex(s, insn);
1456 return;
1457 case 4: /* DSB */
1458 case 5: /* DMB */
1459 switch (crm & 3) {
1460 case 1: /* MBReqTypes_Reads */
1461 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1462 break;
1463 case 2: /* MBReqTypes_Writes */
1464 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1465 break;
1466 default: /* MBReqTypes_All */
1467 bar = TCG_BAR_SC | TCG_MO_ALL;
1468 break;
1469 }
1470 tcg_gen_mb(bar);
1471 return;
1472 case 6: /* ISB */
1473 /* We need to break the TB after this insn to execute
1474 * a self-modified code correctly and also to take
1475 * any pending interrupts immediately.
1476 */
1477 reset_btype(s);
1478 gen_goto_tb(s, 0, s->base.pc_next);
1479 return;
1480
1481 case 7: /* SB */
1482 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1483 goto do_unallocated;
1484 }
1485 /*
1486 * TODO: There is no speculation barrier opcode for TCG;
1487 * MB and end the TB instead.
1488 */
1489 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1490 gen_goto_tb(s, 0, s->base.pc_next);
1491 return;
1492
1493 default:
1494 do_unallocated:
1495 unallocated_encoding(s);
1496 return;
1497 }
1498 }
1499
1500 static void gen_xaflag(void)
1501 {
1502 TCGv_i32 z = tcg_temp_new_i32();
1503
1504 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1505
1506 /*
1507 * (!C & !Z) << 31
1508 * (!(C | Z)) << 31
1509 * ~((C | Z) << 31)
1510 * ~-(C | Z)
1511 * (C | Z) - 1
1512 */
1513 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1514 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1515
1516 /* !(Z & C) */
1517 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1518 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1519
1520 /* (!C & Z) << 31 -> -(Z & ~C) */
1521 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1522 tcg_gen_neg_i32(cpu_VF, cpu_VF);
1523
1524 /* C | Z */
1525 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1526
1527 tcg_temp_free_i32(z);
1528 }
1529
1530 static void gen_axflag(void)
1531 {
1532 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
1533 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
1534
1535 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1536 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1537
1538 tcg_gen_movi_i32(cpu_NF, 0);
1539 tcg_gen_movi_i32(cpu_VF, 0);
1540 }
1541
1542 /* MSR (immediate) - move immediate to processor state field */
1543 static void handle_msr_i(DisasContext *s, uint32_t insn,
1544 unsigned int op1, unsigned int op2, unsigned int crm)
1545 {
1546 TCGv_i32 t1;
1547 int op = op1 << 3 | op2;
1548
1549 /* End the TB by default, chaining is ok. */
1550 s->base.is_jmp = DISAS_TOO_MANY;
1551
1552 switch (op) {
1553 case 0x00: /* CFINV */
1554 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) {
1555 goto do_unallocated;
1556 }
1557 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1558 s->base.is_jmp = DISAS_NEXT;
1559 break;
1560
1561 case 0x01: /* XAFlag */
1562 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1563 goto do_unallocated;
1564 }
1565 gen_xaflag();
1566 s->base.is_jmp = DISAS_NEXT;
1567 break;
1568
1569 case 0x02: /* AXFlag */
1570 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1571 goto do_unallocated;
1572 }
1573 gen_axflag();
1574 s->base.is_jmp = DISAS_NEXT;
1575 break;
1576
1577 case 0x03: /* UAO */
1578 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1579 goto do_unallocated;
1580 }
1581 if (crm & 1) {
1582 set_pstate_bits(PSTATE_UAO);
1583 } else {
1584 clear_pstate_bits(PSTATE_UAO);
1585 }
1586 t1 = tcg_const_i32(s->current_el);
1587 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1588 tcg_temp_free_i32(t1);
1589 break;
1590
1591 case 0x04: /* PAN */
1592 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1593 goto do_unallocated;
1594 }
1595 if (crm & 1) {
1596 set_pstate_bits(PSTATE_PAN);
1597 } else {
1598 clear_pstate_bits(PSTATE_PAN);
1599 }
1600 t1 = tcg_const_i32(s->current_el);
1601 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1602 tcg_temp_free_i32(t1);
1603 break;
1604
1605 case 0x05: /* SPSel */
1606 if (s->current_el == 0) {
1607 goto do_unallocated;
1608 }
1609 t1 = tcg_const_i32(crm & PSTATE_SP);
1610 gen_helper_msr_i_spsel(cpu_env, t1);
1611 tcg_temp_free_i32(t1);
1612 break;
1613
1614 case 0x1e: /* DAIFSet */
1615 t1 = tcg_const_i32(crm);
1616 gen_helper_msr_i_daifset(cpu_env, t1);
1617 tcg_temp_free_i32(t1);
1618 break;
1619
1620 case 0x1f: /* DAIFClear */
1621 t1 = tcg_const_i32(crm);
1622 gen_helper_msr_i_daifclear(cpu_env, t1);
1623 tcg_temp_free_i32(t1);
1624 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1625 s->base.is_jmp = DISAS_UPDATE_EXIT;
1626 break;
1627
1628 case 0x1c: /* TCO */
1629 if (dc_isar_feature(aa64_mte, s)) {
1630 /* Full MTE is enabled -- set the TCO bit as directed. */
1631 if (crm & 1) {
1632 set_pstate_bits(PSTATE_TCO);
1633 } else {
1634 clear_pstate_bits(PSTATE_TCO);
1635 }
1636 t1 = tcg_const_i32(s->current_el);
1637 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1638 tcg_temp_free_i32(t1);
1639 /* Many factors, including TCO, go into MTE_ACTIVE. */
1640 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1641 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
1642 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
1643 s->base.is_jmp = DISAS_NEXT;
1644 } else {
1645 goto do_unallocated;
1646 }
1647 break;
1648
1649 default:
1650 do_unallocated:
1651 unallocated_encoding(s);
1652 return;
1653 }
1654 }
1655
1656 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1657 {
1658 TCGv_i32 tmp = tcg_temp_new_i32();
1659 TCGv_i32 nzcv = tcg_temp_new_i32();
1660
1661 /* build bit 31, N */
1662 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1663 /* build bit 30, Z */
1664 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1665 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1666 /* build bit 29, C */
1667 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1668 /* build bit 28, V */
1669 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1670 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1671 /* generate result */
1672 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1673
1674 tcg_temp_free_i32(nzcv);
1675 tcg_temp_free_i32(tmp);
1676 }
1677
1678 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1679 {
1680 TCGv_i32 nzcv = tcg_temp_new_i32();
1681
1682 /* take NZCV from R[t] */
1683 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1684
1685 /* bit 31, N */
1686 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1687 /* bit 30, Z */
1688 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1689 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1690 /* bit 29, C */
1691 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1692 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1693 /* bit 28, V */
1694 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1695 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1696 tcg_temp_free_i32(nzcv);
1697 }
1698
1699 /* MRS - move from system register
1700 * MSR (register) - move to system register
1701 * SYS
1702 * SYSL
1703 * These are all essentially the same insn in 'read' and 'write'
1704 * versions, with varying op0 fields.
1705 */
1706 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1707 unsigned int op0, unsigned int op1, unsigned int op2,
1708 unsigned int crn, unsigned int crm, unsigned int rt)
1709 {
1710 const ARMCPRegInfo *ri;
1711 TCGv_i64 tcg_rt;
1712
1713 ri = get_arm_cp_reginfo(s->cp_regs,
1714 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1715 crn, crm, op0, op1, op2));
1716
1717 if (!ri) {
1718 /* Unknown register; this might be a guest error or a QEMU
1719 * unimplemented feature.
1720 */
1721 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1722 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1723 isread ? "read" : "write", op0, op1, crn, crm, op2);
1724 unallocated_encoding(s);
1725 return;
1726 }
1727
1728 /* Check access permissions */
1729 if (!cp_access_ok(s->current_el, ri, isread)) {
1730 unallocated_encoding(s);
1731 return;
1732 }
1733
1734 if (ri->accessfn) {
1735 /* Emit code to perform further access permissions checks at
1736 * runtime; this may result in an exception.
1737 */
1738 TCGv_ptr tmpptr;
1739 TCGv_i32 tcg_syn, tcg_isread;
1740 uint32_t syndrome;
1741
1742 gen_a64_set_pc_im(s->pc_curr);
1743 tmpptr = tcg_const_ptr(ri);
1744 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1745 tcg_syn = tcg_const_i32(syndrome);
1746 tcg_isread = tcg_const_i32(isread);
1747 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1748 tcg_temp_free_ptr(tmpptr);
1749 tcg_temp_free_i32(tcg_syn);
1750 tcg_temp_free_i32(tcg_isread);
1751 } else if (ri->type & ARM_CP_RAISES_EXC) {
1752 /*
1753 * The readfn or writefn might raise an exception;
1754 * synchronize the CPU state in case it does.
1755 */
1756 gen_a64_set_pc_im(s->pc_curr);
1757 }
1758
1759 /* Handle special cases first */
1760 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1761 case ARM_CP_NOP:
1762 return;
1763 case ARM_CP_NZCV:
1764 tcg_rt = cpu_reg(s, rt);
1765 if (isread) {
1766 gen_get_nzcv(tcg_rt);
1767 } else {
1768 gen_set_nzcv(tcg_rt);
1769 }
1770 return;
1771 case ARM_CP_CURRENTEL:
1772 /* Reads as current EL value from pstate, which is
1773 * guaranteed to be constant by the tb flags.
1774 */
1775 tcg_rt = cpu_reg(s, rt);
1776 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1777 return;
1778 case ARM_CP_DC_ZVA:
1779 /* Writes clear the aligned block of memory which rt points into. */
1780 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
1781 gen_helper_dc_zva(cpu_env, tcg_rt);
1782 return;
1783 default:
1784 break;
1785 }
1786 if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) {
1787 return;
1788 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
1789 return;
1790 }
1791
1792 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1793 gen_io_start();
1794 }
1795
1796 tcg_rt = cpu_reg(s, rt);
1797
1798 if (isread) {
1799 if (ri->type & ARM_CP_CONST) {
1800 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1801 } else if (ri->readfn) {
1802 TCGv_ptr tmpptr;
1803 tmpptr = tcg_const_ptr(ri);
1804 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1805 tcg_temp_free_ptr(tmpptr);
1806 } else {
1807 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1808 }
1809 } else {
1810 if (ri->type & ARM_CP_CONST) {
1811 /* If not forbidden by access permissions, treat as WI */
1812 return;
1813 } else if (ri->writefn) {
1814 TCGv_ptr tmpptr;
1815 tmpptr = tcg_const_ptr(ri);
1816 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1817 tcg_temp_free_ptr(tmpptr);
1818 } else {
1819 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1820 }
1821 }
1822
1823 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1824 /* I/O operations must end the TB here (whether read or write) */
1825 s->base.is_jmp = DISAS_UPDATE_EXIT;
1826 }
1827 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1828 /*
1829 * A write to any coprocessor regiser that ends a TB
1830 * must rebuild the hflags for the next TB.
1831 */
1832 TCGv_i32 tcg_el = tcg_const_i32(s->current_el);
1833 gen_helper_rebuild_hflags_a64(cpu_env, tcg_el);
1834 tcg_temp_free_i32(tcg_el);
1835 /*
1836 * We default to ending the TB on a coprocessor register write,
1837 * but allow this to be suppressed by the register definition
1838 * (usually only necessary to work around guest bugs).
1839 */
1840 s->base.is_jmp = DISAS_UPDATE_EXIT;
1841 }
1842 }
1843
1844 /* System
1845 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1846 * +---------------------+---+-----+-----+-------+-------+-----+------+
1847 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1848 * +---------------------+---+-----+-----+-------+-------+-----+------+
1849 */
1850 static void disas_system(DisasContext *s, uint32_t insn)
1851 {
1852 unsigned int l, op0, op1, crn, crm, op2, rt;
1853 l = extract32(insn, 21, 1);
1854 op0 = extract32(insn, 19, 2);
1855 op1 = extract32(insn, 16, 3);
1856 crn = extract32(insn, 12, 4);
1857 crm = extract32(insn, 8, 4);
1858 op2 = extract32(insn, 5, 3);
1859 rt = extract32(insn, 0, 5);
1860
1861 if (op0 == 0) {
1862 if (l || rt != 31) {
1863 unallocated_encoding(s);
1864 return;
1865 }
1866 switch (crn) {
1867 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
1868 handle_hint(s, insn, op1, op2, crm);
1869 break;
1870 case 3: /* CLREX, DSB, DMB, ISB */
1871 handle_sync(s, insn, op1, op2, crm);
1872 break;
1873 case 4: /* MSR (immediate) */
1874 handle_msr_i(s, insn, op1, op2, crm);
1875 break;
1876 default:
1877 unallocated_encoding(s);
1878 break;
1879 }
1880 return;
1881 }
1882 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1883 }
1884
1885 /* Exception generation
1886 *
1887 * 31 24 23 21 20 5 4 2 1 0
1888 * +-----------------+-----+------------------------+-----+----+
1889 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1890 * +-----------------------+------------------------+----------+
1891 */
1892 static void disas_exc(DisasContext *s, uint32_t insn)
1893 {
1894 int opc = extract32(insn, 21, 3);
1895 int op2_ll = extract32(insn, 0, 5);
1896 int imm16 = extract32(insn, 5, 16);
1897 TCGv_i32 tmp;
1898
1899 switch (opc) {
1900 case 0:
1901 /* For SVC, HVC and SMC we advance the single-step state
1902 * machine before taking the exception. This is architecturally
1903 * mandated, to ensure that single-stepping a system call
1904 * instruction works properly.
1905 */
1906 switch (op2_ll) {
1907 case 1: /* SVC */
1908 gen_ss_advance(s);
1909 gen_exception_insn(s, s->base.pc_next, EXCP_SWI,
1910 syn_aa64_svc(imm16), default_exception_el(s));
1911 break;
1912 case 2: /* HVC */
1913 if (s->current_el == 0) {
1914 unallocated_encoding(s);
1915 break;
1916 }
1917 /* The pre HVC helper handles cases when HVC gets trapped
1918 * as an undefined insn by runtime configuration.
1919 */
1920 gen_a64_set_pc_im(s->pc_curr);
1921 gen_helper_pre_hvc(cpu_env);
1922 gen_ss_advance(s);
1923 gen_exception_insn(s, s->base.pc_next, EXCP_HVC,
1924 syn_aa64_hvc(imm16), 2);
1925 break;
1926 case 3: /* SMC */
1927 if (s->current_el == 0) {
1928 unallocated_encoding(s);
1929 break;
1930 }
1931 gen_a64_set_pc_im(s->pc_curr);
1932 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1933 gen_helper_pre_smc(cpu_env, tmp);
1934 tcg_temp_free_i32(tmp);
1935 gen_ss_advance(s);
1936 gen_exception_insn(s, s->base.pc_next, EXCP_SMC,
1937 syn_aa64_smc(imm16), 3);
1938 break;
1939 default:
1940 unallocated_encoding(s);
1941 break;
1942 }
1943 break;
1944 case 1:
1945 if (op2_ll != 0) {
1946 unallocated_encoding(s);
1947 break;
1948 }
1949 /* BRK */
1950 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16));
1951 break;
1952 case 2:
1953 if (op2_ll != 0) {
1954 unallocated_encoding(s);
1955 break;
1956 }
1957 /* HLT. This has two purposes.
1958 * Architecturally, it is an external halting debug instruction.
1959 * Since QEMU doesn't implement external debug, we treat this as
1960 * it is required for halting debug disabled: it will UNDEF.
1961 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1962 */
1963 if (semihosting_enabled() && imm16 == 0xf000) {
1964 #ifndef CONFIG_USER_ONLY
1965 /* In system mode, don't allow userspace access to semihosting,
1966 * to provide some semblance of security (and for consistency
1967 * with our 32-bit semihosting).
1968 */
1969 if (s->current_el == 0) {
1970 unsupported_encoding(s, insn);
1971 break;
1972 }
1973 #endif
1974 gen_exception_internal_insn(s, s->pc_curr, EXCP_SEMIHOST);
1975 } else {
1976 unsupported_encoding(s, insn);
1977 }
1978 break;
1979 case 5:
1980 if (op2_ll < 1 || op2_ll > 3) {
1981 unallocated_encoding(s);
1982 break;
1983 }
1984 /* DCPS1, DCPS2, DCPS3 */
1985 unsupported_encoding(s, insn);
1986 break;
1987 default:
1988 unallocated_encoding(s);
1989 break;
1990 }
1991 }
1992
1993 /* Unconditional branch (register)
1994 * 31 25 24 21 20 16 15 10 9 5 4 0
1995 * +---------------+-------+-------+-------+------+-------+
1996 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
1997 * +---------------+-------+-------+-------+------+-------+
1998 */
1999 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
2000 {
2001 unsigned int opc, op2, op3, rn, op4;
2002 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */
2003 TCGv_i64 dst;
2004 TCGv_i64 modifier;
2005
2006 opc = extract32(insn, 21, 4);
2007 op2 = extract32(insn, 16, 5);
2008 op3 = extract32(insn, 10, 6);
2009 rn = extract32(insn, 5, 5);
2010 op4 = extract32(insn, 0, 5);
2011
2012 if (op2 != 0x1f) {
2013 goto do_unallocated;
2014 }
2015
2016 switch (opc) {
2017 case 0: /* BR */
2018 case 1: /* BLR */
2019 case 2: /* RET */
2020 btype_mod = opc;
2021 switch (op3) {
2022 case 0:
2023 /* BR, BLR, RET */
2024 if (op4 != 0) {
2025 goto do_unallocated;
2026 }
2027 dst = cpu_reg(s, rn);
2028 break;
2029
2030 case 2:
2031 case 3:
2032 if (!dc_isar_feature(aa64_pauth, s)) {
2033 goto do_unallocated;
2034 }
2035 if (opc == 2) {
2036 /* RETAA, RETAB */
2037 if (rn != 0x1f || op4 != 0x1f) {
2038 goto do_unallocated;
2039 }
2040 rn = 30;
2041 modifier = cpu_X[31];
2042 } else {
2043 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */
2044 if (op4 != 0x1f) {
2045 goto do_unallocated;
2046 }
2047 modifier = new_tmp_a64_zero(s);
2048 }
2049 if (s->pauth_active) {
2050 dst = new_tmp_a64(s);
2051 if (op3 == 2) {
2052 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2053 } else {
2054 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2055 }
2056 } else {
2057 dst = cpu_reg(s, rn);
2058 }
2059 break;
2060
2061 default:
2062 goto do_unallocated;
2063 }
2064 gen_a64_set_pc(s, dst);
2065 /* BLR also needs to load return address */
2066 if (opc == 1) {
2067 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
2068 }
2069 break;
2070
2071 case 8: /* BRAA */
2072 case 9: /* BLRAA */
2073 if (!dc_isar_feature(aa64_pauth, s)) {
2074 goto do_unallocated;
2075 }
2076 if ((op3 & ~1) != 2) {
2077 goto do_unallocated;
2078 }
2079 btype_mod = opc & 1;
2080 if (s->pauth_active) {
2081 dst = new_tmp_a64(s);
2082 modifier = cpu_reg_sp(s, op4);
2083 if (op3 == 2) {
2084 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2085 } else {
2086 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2087 }
2088 } else {
2089 dst = cpu_reg(s, rn);
2090 }
2091 gen_a64_set_pc(s, dst);
2092 /* BLRAA also needs to load return address */
2093 if (opc == 9) {
2094 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
2095 }
2096 break;
2097
2098 case 4: /* ERET */
2099 if (s->current_el == 0) {
2100 goto do_unallocated;
2101 }
2102 switch (op3) {
2103 case 0: /* ERET */
2104 if (op4 != 0) {
2105 goto do_unallocated;
2106 }
2107 dst = tcg_temp_new_i64();
2108 tcg_gen_ld_i64(dst, cpu_env,
2109 offsetof(CPUARMState, elr_el[s->current_el]));
2110 break;
2111
2112 case 2: /* ERETAA */
2113 case 3: /* ERETAB */
2114 if (!dc_isar_feature(aa64_pauth, s)) {
2115 goto do_unallocated;
2116 }
2117 if (rn != 0x1f || op4 != 0x1f) {
2118 goto do_unallocated;
2119 }
2120 dst = tcg_temp_new_i64();
2121 tcg_gen_ld_i64(dst, cpu_env,
2122 offsetof(CPUARMState, elr_el[s->current_el]));
2123 if (s->pauth_active) {
2124 modifier = cpu_X[31];
2125 if (op3 == 2) {
2126 gen_helper_autia(dst, cpu_env, dst, modifier);
2127 } else {
2128 gen_helper_autib(dst, cpu_env, dst, modifier);
2129 }
2130 }
2131 break;
2132
2133 default:
2134 goto do_unallocated;
2135 }
2136 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2137 gen_io_start();
2138 }
2139
2140 gen_helper_exception_return(cpu_env, dst);
2141 tcg_temp_free_i64(dst);
2142 /* Must exit loop to check un-masked IRQs */
2143 s->base.is_jmp = DISAS_EXIT;
2144 return;
2145
2146 case 5: /* DRPS */
2147 if (op3 != 0 || op4 != 0 || rn != 0x1f) {
2148 goto do_unallocated;
2149 } else {
2150 unsupported_encoding(s, insn);
2151 }
2152 return;
2153
2154 default:
2155 do_unallocated:
2156 unallocated_encoding(s);
2157 return;
2158 }
2159
2160 switch (btype_mod) {
2161 case 0: /* BR */
2162 if (dc_isar_feature(aa64_bti, s)) {
2163 /* BR to {x16,x17} or !guard -> 1, else 3. */
2164 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
2165 }
2166 break;
2167
2168 case 1: /* BLR */
2169 if (dc_isar_feature(aa64_bti, s)) {
2170 /* BLR sets BTYPE to 2, regardless of source guarded page. */
2171 set_btype(s, 2);
2172 }
2173 break;
2174
2175 default: /* RET or none of the above. */
2176 /* BTYPE will be set to 0 by normal end-of-insn processing. */
2177 break;
2178 }
2179
2180 s->base.is_jmp = DISAS_JUMP;
2181 }
2182
2183 /* Branches, exception generating and system instructions */
2184 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2185 {
2186 switch (extract32(insn, 25, 7)) {
2187 case 0x0a: case 0x0b:
2188 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
2189 disas_uncond_b_imm(s, insn);
2190 break;
2191 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
2192 disas_comp_b_imm(s, insn);
2193 break;
2194 case 0x1b: case 0x5b: /* Test & branch (immediate) */
2195 disas_test_b_imm(s, insn);
2196 break;
2197 case 0x2a: /* Conditional branch (immediate) */
2198 disas_cond_b_imm(s, insn);
2199 break;
2200 case 0x6a: /* Exception generation / System */
2201 if (insn & (1 << 24)) {
2202 if (extract32(insn, 22, 2) == 0) {
2203 disas_system(s, insn);
2204 } else {
2205 unallocated_encoding(s);
2206 }
2207 } else {
2208 disas_exc(s, insn);
2209 }
2210 break;
2211 case 0x6b: /* Unconditional branch (register) */
2212 disas_uncond_b_reg(s, insn);
2213 break;
2214 default:
2215 unallocated_encoding(s);
2216 break;
2217 }
2218 }
2219
2220 /*
2221 * Load/Store exclusive instructions are implemented by remembering
2222 * the value/address loaded, and seeing if these are the same
2223 * when the store is performed. This is not actually the architecturally
2224 * mandated semantics, but it works for typical guest code sequences
2225 * and avoids having to monitor regular stores.
2226 *
2227 * The store exclusive uses the atomic cmpxchg primitives to avoid
2228 * races in multi-threaded linux-user and when MTTCG softmmu is
2229 * enabled.
2230 */
2231 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2232 TCGv_i64 addr, int size, bool is_pair)
2233 {
2234 int idx = get_mem_index(s);
2235 MemOp memop = s->be_data;
2236
2237 g_assert(size <= 3);
2238 if (is_pair) {
2239 g_assert(size >= 2);
2240 if (size == 2) {
2241 /* The pair must be single-copy atomic for the doubleword. */
2242 memop |= MO_64 | MO_ALIGN;
2243 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2244 if (s->be_data == MO_LE) {
2245 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2246 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2247 } else {
2248 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2249 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2250 }
2251 } else {
2252 /* The pair must be single-copy atomic for *each* doubleword, not
2253 the entire quadword, however it must be quadword aligned. */
2254 memop |= MO_64;
2255 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2256 memop | MO_ALIGN_16);
2257
2258 TCGv_i64 addr2 = tcg_temp_new_i64();
2259 tcg_gen_addi_i64(addr2, addr, 8);
2260 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2261 tcg_temp_free_i64(addr2);
2262
2263 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2264 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2265 }
2266 } else {
2267 memop |= size | MO_ALIGN;
2268 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2269 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2270 }
2271 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2272 }
2273
2274 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2275 TCGv_i64 addr, int size, int is_pair)
2276 {
2277 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2278 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2279 * [addr] = {Rt};
2280 * if (is_pair) {
2281 * [addr + datasize] = {Rt2};
2282 * }
2283 * {Rd} = 0;
2284 * } else {
2285 * {Rd} = 1;
2286 * }
2287 * env->exclusive_addr = -1;
2288 */
2289 TCGLabel *fail_label = gen_new_label();
2290 TCGLabel *done_label = gen_new_label();
2291 TCGv_i64 tmp;
2292
2293 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2294
2295 tmp = tcg_temp_new_i64();
2296 if (is_pair) {
2297 if (size == 2) {
2298 if (s->be_data == MO_LE) {
2299 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2300 } else {
2301 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2302 }
2303 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2304 cpu_exclusive_val, tmp,
2305 get_mem_index(s),
2306 MO_64 | MO_ALIGN | s->be_data);
2307 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2308 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2309 if (!HAVE_CMPXCHG128) {
2310 gen_helper_exit_atomic(cpu_env);
2311 s->base.is_jmp = DISAS_NORETURN;
2312 } else if (s->be_data == MO_LE) {
2313 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
2314 cpu_exclusive_addr,
2315 cpu_reg(s, rt),
2316 cpu_reg(s, rt2));
2317 } else {
2318 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
2319 cpu_exclusive_addr,
2320 cpu_reg(s, rt),
2321 cpu_reg(s, rt2));
2322 }
2323 } else if (s->be_data == MO_LE) {
2324 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
2325 cpu_reg(s, rt), cpu_reg(s, rt2));
2326 } else {
2327 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
2328 cpu_reg(s, rt), cpu_reg(s, rt2));
2329 }
2330 } else {
2331 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2332 cpu_reg(s, rt), get_mem_index(s),
2333 size | MO_ALIGN | s->be_data);
2334 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2335 }
2336 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2337 tcg_temp_free_i64(tmp);
2338 tcg_gen_br(done_label);
2339
2340 gen_set_label(fail_label);
2341 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2342 gen_set_label(done_label);
2343 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2344 }
2345
2346 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2347 int rn, int size)
2348 {
2349 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2350 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2351 int memidx = get_mem_index(s);
2352 TCGv_i64 clean_addr;
2353
2354 if (rn == 31) {
2355 gen_check_sp_alignment(s);
2356 }
2357 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2358 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx,
2359 size | MO_ALIGN | s->be_data);
2360 }
2361
2362 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2363 int rn, int size)
2364 {
2365 TCGv_i64 s1 = cpu_reg(s, rs);
2366 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2367 TCGv_i64 t1 = cpu_reg(s, rt);
2368 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2369 TCGv_i64 clean_addr;
2370 int memidx = get_mem_index(s);
2371
2372 if (rn == 31) {
2373 gen_check_sp_alignment(s);
2374 }
2375 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2376
2377 if (size == 2) {
2378 TCGv_i64 cmp = tcg_temp_new_i64();
2379 TCGv_i64 val = tcg_temp_new_i64();
2380
2381 if (s->be_data == MO_LE) {
2382 tcg_gen_concat32_i64(val, t1, t2);
2383 tcg_gen_concat32_i64(cmp, s1, s2);
2384 } else {
2385 tcg_gen_concat32_i64(val, t2, t1);
2386 tcg_gen_concat32_i64(cmp, s2, s1);
2387 }
2388
2389 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx,
2390 MO_64 | MO_ALIGN | s->be_data);
2391 tcg_temp_free_i64(val);
2392
2393 if (s->be_data == MO_LE) {
2394 tcg_gen_extr32_i64(s1, s2, cmp);
2395 } else {
2396 tcg_gen_extr32_i64(s2, s1, cmp);
2397 }
2398 tcg_temp_free_i64(cmp);
2399 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2400 if (HAVE_CMPXCHG128) {
2401 TCGv_i32 tcg_rs = tcg_const_i32(rs);
2402 if (s->be_data == MO_LE) {
2403 gen_helper_casp_le_parallel(cpu_env, tcg_rs,
2404 clean_addr, t1, t2);
2405 } else {
2406 gen_helper_casp_be_parallel(cpu_env, tcg_rs,
2407 clean_addr, t1, t2);
2408 }
2409 tcg_temp_free_i32(tcg_rs);
2410 } else {
2411 gen_helper_exit_atomic(cpu_env);
2412 s->base.is_jmp = DISAS_NORETURN;
2413 }
2414 } else {
2415 TCGv_i64 d1 = tcg_temp_new_i64();
2416 TCGv_i64 d2 = tcg_temp_new_i64();
2417 TCGv_i64 a2 = tcg_temp_new_i64();
2418 TCGv_i64 c1 = tcg_temp_new_i64();
2419 TCGv_i64 c2 = tcg_temp_new_i64();
2420 TCGv_i64 zero = tcg_const_i64(0);
2421
2422 /* Load the two words, in memory order. */
2423 tcg_gen_qemu_ld_i64(d1, clean_addr, memidx,
2424 MO_64 | MO_ALIGN_16 | s->be_data);
2425 tcg_gen_addi_i64(a2, clean_addr, 8);
2426 tcg_gen_qemu_ld_i64(d2, a2, memidx, MO_64 | s->be_data);
2427
2428 /* Compare the two words, also in memory order. */
2429 tcg_gen_setcond_i64(TCG_COND_EQ, c1, d1, s1);
2430 tcg_gen_setcond_i64(TCG_COND_EQ, c2, d2, s2);
2431 tcg_gen_and_i64(c2, c2, c1);
2432
2433 /* If compare equal, write back new data, else write back old data. */
2434 tcg_gen_movcond_i64(TCG_COND_NE, c1, c2, zero, t1, d1);
2435 tcg_gen_movcond_i64(TCG_COND_NE, c2, c2, zero, t2, d2);
2436 tcg_gen_qemu_st_i64(c1, clean_addr, memidx, MO_64 | s->be_data);
2437 tcg_gen_qemu_st_i64(c2, a2, memidx, MO_64 | s->be_data);
2438 tcg_temp_free_i64(a2);
2439 tcg_temp_free_i64(c1);
2440 tcg_temp_free_i64(c2);
2441 tcg_temp_free_i64(zero);
2442
2443 /* Write back the data from memory to Rs. */
2444 tcg_gen_mov_i64(s1, d1);
2445 tcg_gen_mov_i64(s2, d2);
2446 tcg_temp_free_i64(d1);
2447 tcg_temp_free_i64(d2);
2448 }
2449 }
2450
2451 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2452 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2453 */
2454 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2455 {
2456 int opc0 = extract32(opc, 0, 1);
2457 int regsize;
2458
2459 if (is_signed) {
2460 regsize = opc0 ? 32 : 64;
2461 } else {
2462 regsize = size == 3 ? 64 : 32;
2463 }
2464 return regsize == 64;
2465 }
2466
2467 /* Load/store exclusive
2468 *
2469 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2470 * +-----+-------------+----+---+----+------+----+-------+------+------+
2471 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2472 * +-----+-------------+----+---+----+------+----+-------+------+------+
2473 *
2474 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2475 * L: 0 -> store, 1 -> load
2476 * o2: 0 -> exclusive, 1 -> not
2477 * o1: 0 -> single register, 1 -> register pair
2478 * o0: 1 -> load-acquire/store-release, 0 -> not
2479 */
2480 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2481 {
2482 int rt = extract32(insn, 0, 5);
2483 int rn = extract32(insn, 5, 5);
2484 int rt2 = extract32(insn, 10, 5);
2485 int rs = extract32(insn, 16, 5);
2486 int is_lasr = extract32(insn, 15, 1);
2487 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2488 int size = extract32(insn, 30, 2);
2489 TCGv_i64 clean_addr;
2490
2491 switch (o2_L_o1_o0) {
2492 case 0x0: /* STXR */
2493 case 0x1: /* STLXR */
2494 if (rn == 31) {
2495 gen_check_sp_alignment(s);
2496 }
2497 if (is_lasr) {
2498 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2499 }
2500 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2501 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false);
2502 return;
2503
2504 case 0x4: /* LDXR */
2505 case 0x5: /* LDAXR */
2506 if (rn == 31) {
2507 gen_check_sp_alignment(s);
2508 }
2509 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2510 s->is_ldex = true;
2511 gen_load_exclusive(s, rt, rt2, clean_addr, size, false);
2512 if (is_lasr) {
2513 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2514 }
2515 return;
2516
2517 case 0x8: /* STLLR */
2518 if (!dc_isar_feature(aa64_lor, s)) {
2519 break;
2520 }
2521 /* StoreLORelease is the same as Store-Release for QEMU. */
2522 /* fall through */
2523 case 0x9: /* STLR */
2524 /* Generate ISS for non-exclusive accesses including LASR. */
2525 if (rn == 31) {
2526 gen_check_sp_alignment(s);
2527 }
2528 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2529 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2530 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size, true, rt,
2531 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2532 return;
2533
2534 case 0xc: /* LDLAR */
2535 if (!dc_isar_feature(aa64_lor, s)) {
2536 break;
2537 }
2538 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2539 /* fall through */
2540 case 0xd: /* LDAR */
2541 /* Generate ISS for non-exclusive accesses including LASR. */
2542 if (rn == 31) {
2543 gen_check_sp_alignment(s);
2544 }
2545 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2546 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, false, true, rt,
2547 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2548 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2549 return;
2550
2551 case 0x2: case 0x3: /* CASP / STXP */
2552 if (size & 2) { /* STXP / STLXP */
2553 if (rn == 31) {
2554 gen_check_sp_alignment(s);
2555 }
2556 if (is_lasr) {
2557 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2558 }
2559 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2560 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true);
2561 return;
2562 }
2563 if (rt2 == 31
2564 && ((rt | rs) & 1) == 0
2565 && dc_isar_feature(aa64_atomics, s)) {
2566 /* CASP / CASPL */
2567 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2568 return;
2569 }
2570 break;
2571
2572 case 0x6: case 0x7: /* CASPA / LDXP */
2573 if (size & 2) { /* LDXP / LDAXP */
2574 if (rn == 31) {
2575 gen_check_sp_alignment(s);
2576 }
2577 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2578 s->is_ldex = true;
2579 gen_load_exclusive(s, rt, rt2, clean_addr, size, true);
2580 if (is_lasr) {
2581 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2582 }
2583 return;
2584 }
2585 if (rt2 == 31
2586 && ((rt | rs) & 1) == 0
2587 && dc_isar_feature(aa64_atomics, s)) {
2588 /* CASPA / CASPAL */
2589 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2590 return;
2591 }
2592 break;
2593
2594 case 0xa: /* CAS */
2595 case 0xb: /* CASL */
2596 case 0xe: /* CASA */
2597 case 0xf: /* CASAL */
2598 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2599 gen_compare_and_swap(s, rs, rt, rn, size);
2600 return;
2601 }
2602 break;
2603 }
2604 unallocated_encoding(s);
2605 }
2606
2607 /*
2608 * Load register (literal)
2609 *
2610 * 31 30 29 27 26 25 24 23 5 4 0
2611 * +-----+-------+---+-----+-------------------+-------+
2612 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2613 * +-----+-------+---+-----+-------------------+-------+
2614 *
2615 * V: 1 -> vector (simd/fp)
2616 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2617 * 10-> 32 bit signed, 11 -> prefetch
2618 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2619 */
2620 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2621 {
2622 int rt = extract32(insn, 0, 5);
2623 int64_t imm = sextract32(insn, 5, 19) << 2;
2624 bool is_vector = extract32(insn, 26, 1);
2625 int opc = extract32(insn, 30, 2);
2626 bool is_signed = false;
2627 int size = 2;
2628 TCGv_i64 tcg_rt, clean_addr;
2629
2630 if (is_vector) {
2631 if (opc == 3) {
2632 unallocated_encoding(s);
2633 return;
2634 }
2635 size = 2 + opc;
2636 if (!fp_access_check(s)) {
2637 return;
2638 }
2639 } else {
2640 if (opc == 3) {
2641 /* PRFM (literal) : prefetch */
2642 return;
2643 }
2644 size = 2 + extract32(opc, 0, 1);
2645 is_signed = extract32(opc, 1, 1);
2646 }
2647
2648 tcg_rt = cpu_reg(s, rt);
2649
2650 clean_addr = tcg_const_i64(s->pc_curr + imm);
2651 if (is_vector) {
2652 do_fp_ld(s, rt, clean_addr, size);
2653 } else {
2654 /* Only unsigned 32bit loads target 32bit registers. */
2655 bool iss_sf = opc != 0;
2656
2657 do_gpr_ld(s, tcg_rt, clean_addr, size, is_signed, false,
2658 true, rt, iss_sf, false);
2659 }
2660 tcg_temp_free_i64(clean_addr);
2661 }
2662
2663 /*
2664 * LDNP (Load Pair - non-temporal hint)
2665 * LDP (Load Pair - non vector)
2666 * LDPSW (Load Pair Signed Word - non vector)
2667 * STNP (Store Pair - non-temporal hint)
2668 * STP (Store Pair - non vector)
2669 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2670 * LDP (Load Pair of SIMD&FP)
2671 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2672 * STP (Store Pair of SIMD&FP)
2673 *
2674 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2675 * +-----+-------+---+---+-------+---+-----------------------------+
2676 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2677 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2678 *
2679 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2680 * LDPSW 01
2681 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2682 * V: 0 -> GPR, 1 -> Vector
2683 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2684 * 10 -> signed offset, 11 -> pre-index
2685 * L: 0 -> Store 1 -> Load
2686 *
2687 * Rt, Rt2 = GPR or SIMD registers to be stored
2688 * Rn = general purpose register containing address
2689 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2690 */
2691 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2692 {
2693 int rt = extract32(insn, 0, 5);
2694 int rn = extract32(insn, 5, 5);
2695 int rt2 = extract32(insn, 10, 5);
2696 uint64_t offset = sextract64(insn, 15, 7);
2697 int index = extract32(insn, 23, 2);
2698 bool is_vector = extract32(insn, 26, 1);
2699 bool is_load = extract32(insn, 22, 1);
2700 int opc = extract32(insn, 30, 2);
2701
2702 bool is_signed = false;
2703 bool postindex = false;
2704 bool wback = false;
2705
2706 TCGv_i64 clean_addr, dirty_addr;
2707
2708 int size;
2709
2710 if (opc == 3) {
2711 unallocated_encoding(s);
2712 return;
2713 }
2714
2715 if (is_vector) {
2716 size = 2 + opc;
2717 } else {
2718 size = 2 + extract32(opc, 1, 1);
2719 is_signed = extract32(opc, 0, 1);
2720 if (!is_load && is_signed) {
2721 unallocated_encoding(s);
2722 return;
2723 }
2724 }
2725
2726 switch (index) {
2727 case 1: /* post-index */
2728 postindex = true;
2729 wback = true;
2730 break;
2731 case 0:
2732 /* signed offset with "non-temporal" hint. Since we don't emulate
2733 * caches we don't care about hints to the cache system about
2734 * data access patterns, and handle this identically to plain
2735 * signed offset.
2736 */
2737 if (is_signed) {
2738 /* There is no non-temporal-hint version of LDPSW */
2739 unallocated_encoding(s);
2740 return;
2741 }
2742 postindex = false;
2743 break;
2744 case 2: /* signed offset, rn not updated */
2745 postindex = false;
2746 break;
2747 case 3: /* pre-index */
2748 postindex = false;
2749 wback = true;
2750 break;
2751 }
2752
2753 if (is_vector && !fp_access_check(s)) {
2754 return;
2755 }
2756
2757 offset <<= size;
2758
2759 if (rn == 31) {
2760 gen_check_sp_alignment(s);
2761 }
2762
2763 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2764 if (!postindex) {
2765 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2766 }
2767 clean_addr = clean_data_tbi(s, dirty_addr);
2768
2769 if (is_vector) {
2770 if (is_load) {
2771 do_fp_ld(s, rt, clean_addr, size);
2772 } else {
2773 do_fp_st(s, rt, clean_addr, size);
2774 }
2775 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2776 if (is_load) {
2777 do_fp_ld(s, rt2, clean_addr, size);
2778 } else {
2779 do_fp_st(s, rt2, clean_addr, size);
2780 }
2781 } else {
2782 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2783 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2784
2785 if (is_load) {
2786 TCGv_i64 tmp = tcg_temp_new_i64();
2787
2788 /* Do not modify tcg_rt before recognizing any exception
2789 * from the second load.
2790 */
2791 do_gpr_ld(s, tmp, clean_addr, size, is_signed, false,
2792 false, 0, false, false);
2793 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2794 do_gpr_ld(s, tcg_rt2, clean_addr, size, is_signed, false,
2795 false, 0, false, false);
2796
2797 tcg_gen_mov_i64(tcg_rt, tmp);
2798 tcg_temp_free_i64(tmp);
2799 } else {
2800 do_gpr_st(s, tcg_rt, clean_addr, size,
2801 false, 0, false, false);
2802 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2803 do_gpr_st(s, tcg_rt2, clean_addr, size,
2804 false, 0, false, false);
2805 }
2806 }
2807
2808 if (wback) {
2809 if (postindex) {
2810 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2811 }
2812 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
2813 }
2814 }
2815
2816 /*
2817 * Load/store (immediate post-indexed)
2818 * Load/store (immediate pre-indexed)
2819 * Load/store (unscaled immediate)
2820 *
2821 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2822 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2823 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2824 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2825 *
2826 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2827 10 -> unprivileged
2828 * V = 0 -> non-vector
2829 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2830 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2831 */
2832 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2833 int opc,
2834 int size,
2835 int rt,
2836 bool is_vector)
2837 {
2838 int rn = extract32(insn, 5, 5);
2839 int imm9 = sextract32(insn, 12, 9);
2840 int idx = extract32(insn, 10, 2);
2841 bool is_signed = false;
2842 bool is_store = false;
2843 bool is_extended = false;
2844 bool is_unpriv = (idx == 2);
2845 bool iss_valid = !is_vector;
2846 bool post_index;
2847 bool writeback;
2848
2849 TCGv_i64 clean_addr, dirty_addr;
2850
2851 if (is_vector) {
2852 size |= (opc & 2) << 1;
2853 if (size > 4 || is_unpriv) {
2854 unallocated_encoding(s);
2855 return;
2856 }
2857 is_store = ((opc & 1) == 0);
2858 if (!fp_access_check(s)) {
2859 return;
2860 }
2861 } else {
2862 if (size == 3 && opc == 2) {
2863 /* PRFM - prefetch */
2864 if (idx != 0) {
2865 unallocated_encoding(s);
2866 return;
2867 }
2868 return;
2869 }
2870 if (opc == 3 && size > 1) {
2871 unallocated_encoding(s);
2872 return;
2873 }
2874 is_store = (opc == 0);
2875 is_signed = extract32(opc, 1, 1);
2876 is_extended = (size < 3) && extract32(opc, 0, 1);
2877 }
2878
2879 switch (idx) {
2880 case 0:
2881 case 2:
2882 post_index = false;
2883 writeback = false;
2884 break;
2885 case 1:
2886 post_index = true;
2887 writeback = true;
2888 break;
2889 case 3:
2890 post_index = false;
2891 writeback = true;
2892 break;
2893 default:
2894 g_assert_not_reached();
2895 }
2896
2897 if (rn == 31) {
2898 gen_check_sp_alignment(s);
2899 }
2900
2901 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2902 if (!post_index) {
2903 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
2904 }
2905 clean_addr = clean_data_tbi(s, dirty_addr);
2906
2907 if (is_vector) {
2908 if (is_store) {
2909 do_fp_st(s, rt, clean_addr, size);
2910 } else {
2911 do_fp_ld(s, rt, clean_addr, size);
2912 }
2913 } else {
2914 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2915 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2916 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2917
2918 if (is_store) {
2919 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx,
2920 iss_valid, rt, iss_sf, false);
2921 } else {
2922 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size,
2923 is_signed, is_extended, memidx,
2924 iss_valid, rt, iss_sf, false);
2925 }
2926 }
2927
2928 if (writeback) {
2929 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2930 if (post_index) {
2931 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
2932 }
2933 tcg_gen_mov_i64(tcg_rn, dirty_addr);
2934 }
2935 }
2936
2937 /*
2938 * Load/store (register offset)
2939 *
2940 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2941 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2942 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2943 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2944 *
2945 * For non-vector:
2946 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2947 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2948 * For vector:
2949 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2950 * opc<0>: 0 -> store, 1 -> load
2951 * V: 1 -> vector/simd
2952 * opt: extend encoding (see DecodeRegExtend)
2953 * S: if S=1 then scale (essentially index by sizeof(size))
2954 * Rt: register to transfer into/out of
2955 * Rn: address register or SP for base
2956 * Rm: offset register or ZR for offset
2957 */
2958 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
2959 int opc,
2960 int size,
2961 int rt,
2962 bool is_vector)
2963 {
2964 int rn = extract32(insn, 5, 5);
2965 int shift = extract32(insn, 12, 1);
2966 int rm = extract32(insn, 16, 5);
2967 int opt = extract32(insn, 13, 3);
2968 bool is_signed = false;
2969 bool is_store = false;
2970 bool is_extended = false;
2971
2972 TCGv_i64 tcg_rm, clean_addr, dirty_addr;
2973
2974 if (extract32(opt, 1, 1) == 0) {
2975 unallocated_encoding(s);
2976 return;
2977 }
2978
2979 if (is_vector) {
2980 size |= (opc & 2) << 1;
2981 if (size > 4) {
2982 unallocated_encoding(s);
2983 return;
2984 }
2985 is_store = !extract32(opc, 0, 1);
2986 if (!fp_access_check(s)) {
2987 return;
2988 }
2989 } else {
2990 if (size == 3 && opc == 2) {
2991 /* PRFM - prefetch */
2992 return;
2993 }
2994 if (opc == 3 && size > 1) {
2995 unallocated_encoding(s);
2996 return;
2997 }
2998 is_store = (opc == 0);
2999 is_signed = extract32(opc, 1, 1);
3000 is_extended = (size < 3) && extract32(opc, 0, 1);
3001 }
3002
3003 if (rn == 31) {
3004 gen_check_sp_alignment(s);
3005 }
3006 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3007
3008 tcg_rm = read_cpu_reg(s, rm, 1);
3009 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3010
3011 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3012 clean_addr = clean_data_tbi(s, dirty_addr);
3013
3014 if (is_vector) {
3015 if (is_store) {
3016 do_fp_st(s, rt, clean_addr, size);
3017 } else {
3018 do_fp_ld(s, rt, clean_addr, size);
3019 }
3020 } else {
3021 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3022 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3023 if (is_store) {
3024 do_gpr_st(s, tcg_rt, clean_addr, size,
3025 true, rt, iss_sf, false);
3026 } else {
3027 do_gpr_ld(s, tcg_rt, clean_addr, size,
3028 is_signed, is_extended,
3029 true, rt, iss_sf, false);
3030 }
3031 }
3032 }
3033
3034 /*
3035 * Load/store (unsigned immediate)
3036 *
3037 * 31 30 29 27 26 25 24 23 22 21 10 9 5
3038 * +----+-------+---+-----+-----+------------+-------+------+
3039 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
3040 * +----+-------+---+-----+-----+------------+-------+------+
3041 *
3042 * For non-vector:
3043 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3044 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3045 * For vector:
3046 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3047 * opc<0>: 0 -> store, 1 -> load
3048 * Rn: base address register (inc SP)
3049 * Rt: target register
3050 */
3051 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3052 int opc,
3053 int size,
3054 int rt,
3055 bool is_vector)
3056 {
3057 int rn = extract32(insn, 5, 5);
3058 unsigned int imm12 = extract32(insn, 10, 12);
3059 unsigned int offset;
3060
3061 TCGv_i64 clean_addr, dirty_addr;
3062
3063 bool is_store;
3064 bool is_signed = false;
3065 bool is_extended = false;
3066
3067 if (is_vector) {
3068 size |= (opc & 2) << 1;
3069 if (size > 4) {
3070 unallocated_encoding(s);
3071 return;
3072 }
3073 is_store = !extract32(opc, 0, 1);
3074 if (!fp_access_check(s)) {
3075 return;
3076 }
3077 } else {
3078 if (size == 3 && opc == 2) {
3079 /* PRFM - prefetch */
3080 return;
3081 }
3082 if (opc == 3 && size > 1) {
3083 unallocated_encoding(s);
3084 return;
3085 }
3086 is_store = (opc == 0);
3087 is_signed = extract32(opc, 1, 1);
3088 is_extended = (size < 3) && extract32(opc, 0, 1);
3089 }
3090
3091 if (rn == 31) {
3092 gen_check_sp_alignment(s);
3093 }
3094 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3095 offset = imm12 << size;
3096 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3097 clean_addr = clean_data_tbi(s, dirty_addr);
3098
3099 if (is_vector) {
3100 if (is_store) {
3101 do_fp_st(s, rt, clean_addr, size);
3102 } else {
3103 do_fp_ld(s, rt, clean_addr, size);
3104 }
3105 } else {
3106 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3107 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3108 if (is_store) {
3109 do_gpr_st(s, tcg_rt, clean_addr, size,
3110 true, rt, iss_sf, false);
3111 } else {
3112 do_gpr_ld(s, tcg_rt, clean_addr, size, is_signed, is_extended,
3113 true, rt, iss_sf, false);
3114 }
3115 }
3116 }
3117
3118 /* Atomic memory operations
3119 *
3120 * 31 30 27 26 24 22 21 16 15 12 10 5 0
3121 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3122 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
3123 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3124 *
3125 * Rt: the result register
3126 * Rn: base address or SP
3127 * Rs: the source register for the operation
3128 * V: vector flag (always 0 as of v8.3)
3129 * A: acquire flag
3130 * R: release flag
3131 */
3132 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3133 int size, int rt, bool is_vector)
3134 {
3135 int rs = extract32(insn, 16, 5);
3136 int rn = extract32(insn, 5, 5);
3137 int o3_opc = extract32(insn, 12, 4);
3138 bool r = extract32(insn, 22, 1);
3139 bool a = extract32(insn, 23, 1);
3140 TCGv_i64 tcg_rs, clean_addr;
3141 AtomicThreeOpFn *fn;
3142
3143 if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3144 unallocated_encoding(s);
3145 return;
3146 }
3147 switch (o3_opc) {
3148 case 000: /* LDADD */
3149 fn = tcg_gen_atomic_fetch_add_i64;
3150 break;
3151 case 001: /* LDCLR */
3152 fn = tcg_gen_atomic_fetch_and_i64;
3153 break;
3154 case 002: /* LDEOR */
3155 fn = tcg_gen_atomic_fetch_xor_i64;
3156 break;
3157 case 003: /* LDSET */
3158 fn = tcg_gen_atomic_fetch_or_i64;
3159 break;
3160 case 004: /* LDSMAX */
3161 fn = tcg_gen_atomic_fetch_smax_i64;
3162 break;
3163 case 005: /* LDSMIN */
3164 fn = tcg_gen_atomic_fetch_smin_i64;
3165 break;
3166 case 006: /* LDUMAX */
3167 fn = tcg_gen_atomic_fetch_umax_i64;
3168 break;
3169 case 007: /* LDUMIN */
3170 fn = tcg_gen_atomic_fetch_umin_i64;
3171 break;
3172 case 010: /* SWP */
3173 fn = tcg_gen_atomic_xchg_i64;
3174 break;
3175 case 014: /* LDAPR, LDAPRH, LDAPRB */
3176 if (!dc_isar_feature(aa64_rcpc_8_3, s) ||
3177 rs != 31 || a != 1 || r != 0) {
3178 unallocated_encoding(s);
3179 return;
3180 }
3181 break;
3182 default:
3183 unallocated_encoding(s);
3184 return;
3185 }
3186
3187 if (rn == 31) {
3188 gen_check_sp_alignment(s);
3189 }
3190 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
3191
3192 if (o3_opc == 014) {
3193 /*
3194 * LDAPR* are a special case because they are a simple load, not a
3195 * fetch-and-do-something op.
3196 * The architectural consistency requirements here are weaker than
3197 * full load-acquire (we only need "load-acquire processor consistent"),
3198 * but we choose to implement them as full LDAQ.
3199 */
3200 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, false,
3201 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true);
3202 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3203 return;
3204 }
3205
3206 tcg_rs = read_cpu_reg(s, rs, true);
3207
3208 if (o3_opc == 1) { /* LDCLR */
3209 tcg_gen_not_i64(tcg_rs, tcg_rs);
3210 }
3211
3212 /* The tcg atomic primitives are all full barriers. Therefore we
3213 * can ignore the Acquire and Release bits of this instruction.
3214 */
3215 fn(cpu_reg(s, rt), clean_addr, tcg_rs, get_mem_index(s),
3216 s->be_data | size | MO_ALIGN);
3217 }
3218
3219 /*
3220 * PAC memory operations
3221 *
3222 * 31 30 27 26 24 22 21 12 11 10 5 0
3223 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3224 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt |
3225 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3226 *
3227 * Rt: the result register
3228 * Rn: base address or SP
3229 * V: vector flag (always 0 as of v8.3)
3230 * M: clear for key DA, set for key DB
3231 * W: pre-indexing flag
3232 * S: sign for imm9.
3233 */
3234 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3235 int size, int rt, bool is_vector)
3236 {
3237 int rn = extract32(insn, 5, 5);
3238 bool is_wback = extract32(insn, 11, 1);
3239 bool use_key_a = !extract32(insn, 23, 1);
3240 int offset;
3241 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3242
3243 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3244 unallocated_encoding(s);
3245 return;
3246 }
3247
3248 if (rn == 31) {
3249 gen_check_sp_alignment(s);
3250 }
3251 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3252
3253 if (s->pauth_active) {
3254 if (use_key_a) {
3255 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, cpu_X[31]);
3256 } else {
3257 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, cpu_X[31]);
3258 }
3259 }
3260
3261 /* Form the 10-bit signed, scaled offset. */
3262 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3263 offset = sextract32(offset << size, 0, 10 + size);
3264 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3265
3266 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3267 clean_addr = clean_data_tbi(s, dirty_addr);
3268
3269 tcg_rt = cpu_reg(s, rt);
3270 do_gpr_ld(s, tcg_rt, clean_addr, size, /* is_signed */ false,
3271 /* extend */ false, /* iss_valid */ !is_wback,
3272 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3273
3274 if (is_wback) {
3275 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3276 }
3277 }
3278
3279 /*
3280 * LDAPR/STLR (unscaled immediate)
3281 *
3282 * 31 30 24 22 21 12 10 5 0
3283 * +------+-------------+-----+---+--------+-----+----+-----+
3284 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt |
3285 * +------+-------------+-----+---+--------+-----+----+-----+
3286 *
3287 * Rt: source or destination register
3288 * Rn: base register
3289 * imm9: unscaled immediate offset
3290 * opc: 00: STLUR*, 01/10/11: various LDAPUR*
3291 * size: size of load/store
3292 */
3293 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn)
3294 {
3295 int rt = extract32(insn, 0, 5);
3296 int rn = extract32(insn, 5, 5);
3297 int offset = sextract32(insn, 12, 9);
3298 int opc = extract32(insn, 22, 2);
3299 int size = extract32(insn, 30, 2);
3300 TCGv_i64 clean_addr, dirty_addr;
3301 bool is_store = false;
3302 bool is_signed = false;
3303 bool extend = false;
3304 bool iss_sf;
3305
3306 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3307 unallocated_encoding(s);
3308 return;
3309 }
3310
3311 switch (opc) {
3312 case 0: /* STLURB */
3313 is_store = true;
3314 break;
3315 case 1: /* LDAPUR* */
3316 break;
3317 case 2: /* LDAPURS* 64-bit variant */
3318 if (size == 3) {
3319 unallocated_encoding(s);
3320 return;
3321 }
3322 is_signed = true;
3323 break;
3324 case 3: /* LDAPURS* 32-bit variant */
3325 if (size > 1) {
3326 unallocated_encoding(s);
3327 return;
3328 }
3329 is_signed = true;
3330 extend = true; /* zero-extend 32->64 after signed load */
3331 break;
3332 default:
3333 g_assert_not_reached();
3334 }
3335
3336 iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3337
3338 if (rn == 31) {
3339 gen_check_sp_alignment(s);
3340 }
3341
3342 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3343 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3344 clean_addr = clean_data_tbi(s, dirty_addr);
3345
3346 if (is_store) {
3347 /* Store-Release semantics */
3348 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3349 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size, true, rt, iss_sf, true);
3350 } else {
3351 /*
3352 * Load-AcquirePC semantics; we implement as the slightly more
3353 * restrictive Load-Acquire.
3354 */
3355 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, is_signed, extend,
3356 true, rt, iss_sf, true);
3357 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3358 }
3359 }
3360
3361 /* Load/store register (all forms) */
3362 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3363 {
3364 int rt = extract32(insn, 0, 5);
3365 int opc = extract32(insn, 22, 2);
3366 bool is_vector = extract32(insn, 26, 1);
3367 int size = extract32(insn, 30, 2);
3368
3369 switch (extract32(insn, 24, 2)) {
3370 case 0:
3371 if (extract32(insn, 21, 1) == 0) {
3372 /* Load/store register (unscaled immediate)
3373 * Load/store immediate pre/post-indexed
3374 * Load/store register unprivileged
3375 */
3376 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3377 return;
3378 }
3379 switch (extract32(insn, 10, 2)) {
3380 case 0:
3381 disas_ldst_atomic(s, insn, size, rt, is_vector);
3382 return;
3383 case 2:
3384 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3385 return;
3386 default:
3387 disas_ldst_pac(s, insn, size, rt, is_vector);
3388 return;
3389 }
3390 break;
3391 case 1:
3392 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3393 return;
3394 }
3395 unallocated_encoding(s);
3396 }
3397
3398 /* AdvSIMD load/store multiple structures
3399 *
3400 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
3401 * +---+---+---------------+---+-------------+--------+------+------+------+
3402 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
3403 * +---+---+---------------+---+-------------+--------+------+------+------+
3404 *
3405 * AdvSIMD load/store multiple structures (post-indexed)
3406 *
3407 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
3408 * +---+---+---------------+---+---+---------+--------+------+------+------+
3409 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
3410 * +---+---+---------------+---+---+---------+--------+------+------+------+
3411 *
3412 * Rt: first (or only) SIMD&FP register to be transferred
3413 * Rn: base address or SP
3414 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3415 */
3416 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3417 {
3418 int rt = extract32(insn, 0, 5);
3419 int rn = extract32(insn, 5, 5);
3420 int rm = extract32(insn, 16, 5);
3421 int size = extract32(insn, 10, 2);
3422 int opcode = extract32(insn, 12, 4);
3423 bool is_store = !extract32(insn, 22, 1);
3424 bool is_postidx = extract32(insn, 23, 1);
3425 bool is_q = extract32(insn, 30, 1);
3426 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3427 MemOp endian = s->be_data;
3428
3429 int ebytes; /* bytes per element */
3430 int elements; /* elements per vector */
3431 int rpt; /* num iterations */
3432 int selem; /* structure elements */
3433 int r;
3434
3435 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3436 unallocated_encoding(s);
3437 return;
3438 }
3439
3440 if (!is_postidx && rm != 0) {
3441 unallocated_encoding(s);
3442 return;
3443 }
3444
3445 /* From the shared decode logic */
3446 switch (opcode) {
3447 case 0x0:
3448 rpt = 1;
3449 selem = 4;
3450 break;
3451 case 0x2:
3452 rpt = 4;
3453 selem = 1;
3454 break;
3455 case 0x4:
3456 rpt = 1;
3457 selem = 3;
3458 break;
3459 case 0x6:
3460 rpt = 3;
3461 selem = 1;
3462 break;
3463 case 0x7:
3464 rpt = 1;
3465 selem = 1;
3466 break;
3467 case 0x8:
3468 rpt = 1;
3469 selem = 2;
3470 break;
3471 case 0xa:
3472 rpt = 2;
3473 selem = 1;
3474 break;
3475 default:
3476 unallocated_encoding(s);
3477 return;
3478 }
3479
3480 if (size == 3 && !is_q && selem != 1) {
3481 /* reserved */
3482 unallocated_encoding(s);
3483 return;
3484 }
3485
3486 if (!fp_access_check(s)) {
3487 return;
3488 }
3489
3490 if (rn == 31) {
3491 gen_check_sp_alignment(s);
3492 }
3493
3494 /* For our purposes, bytes are always little-endian. */
3495 if (size == 0) {
3496 endian = MO_LE;
3497 }
3498
3499 /* Consecutive little-endian elements from a single register
3500 * can be promoted to a larger little-endian operation.
3501 */
3502 if (selem == 1 && endian == MO_LE) {
3503 size = 3;
3504 }
3505 ebytes = 1 << size;
3506 elements = (is_q ? 16 : 8) / ebytes;
3507
3508 tcg_rn = cpu_reg_sp(s, rn);
3509 clean_addr = clean_data_tbi(s, tcg_rn);
3510 tcg_ebytes = tcg_const_i64(ebytes);
3511
3512 for (r = 0; r < rpt; r++) {
3513 int e;
3514 for (e = 0; e < elements; e++) {
3515 int xs;
3516 for (xs = 0; xs < selem; xs++) {
3517 int tt = (rt + r + xs) % 32;
3518 if (is_store) {
3519 do_vec_st(s, tt, e, clean_addr, size, endian);
3520 } else {
3521 do_vec_ld(s, tt, e, clean_addr, size, endian);
3522 }
3523 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3524 }
3525 }
3526 }
3527 tcg_temp_free_i64(tcg_ebytes);
3528
3529 if (!is_store) {
3530 /* For non-quad operations, setting a slice of the low
3531 * 64 bits of the register clears the high 64 bits (in
3532 * the ARM ARM pseudocode this is implicit in the fact
3533 * that 'rval' is a 64 bit wide variable).
3534 * For quad operations, we might still need to zero the
3535 * high bits of SVE.
3536 */
3537 for (r = 0; r < rpt * selem; r++) {
3538 int tt = (rt + r) % 32;
3539 clear_vec_high(s, is_q, tt);
3540 }
3541 }
3542
3543 if (is_postidx) {
3544 if (rm == 31) {
3545 tcg_gen_addi_i64(tcg_rn, tcg_rn, rpt * elements * selem * ebytes);
3546 } else {
3547 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3548 }
3549 }
3550 }
3551
3552 /* AdvSIMD load/store single structure
3553 *
3554 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3555 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3556 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3557 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3558 *
3559 * AdvSIMD load/store single structure (post-indexed)
3560 *
3561 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3562 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3563 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3564 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3565 *
3566 * Rt: first (or only) SIMD&FP register to be transferred
3567 * Rn: base address or SP
3568 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3569 * index = encoded in Q:S:size dependent on size
3570 *
3571 * lane_size = encoded in R, opc
3572 * transfer width = encoded in opc, S, size
3573 */
3574 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3575 {
3576 int rt = extract32(insn, 0, 5);
3577 int rn = extract32(insn, 5, 5);
3578 int rm = extract32(insn, 16, 5);
3579 int size = extract32(insn, 10, 2);
3580 int S = extract32(insn, 12, 1);
3581 int opc = extract32(insn, 13, 3);
3582 int R = extract32(insn, 21, 1);
3583 int is_load = extract32(insn, 22, 1);
3584 int is_postidx = extract32(insn, 23, 1);
3585 int is_q = extract32(insn, 30, 1);
3586
3587 int scale = extract32(opc, 1, 2);
3588 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3589 bool replicate = false;
3590 int index = is_q << 3 | S << 2 | size;
3591 int ebytes, xs;
3592 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3593
3594 if (extract32(insn, 31, 1)) {
3595 unallocated_encoding(s);
3596 return;
3597 }
3598 if (!is_postidx && rm != 0) {
3599 unallocated_encoding(s);
3600 return;
3601 }
3602
3603 switch (scale) {
3604 case 3:
3605 if (!is_load || S) {
3606 unallocated_encoding(s);
3607 return;
3608 }
3609 scale = size;
3610 replicate = true;
3611 break;
3612 case 0:
3613 break;
3614 case 1:
3615 if (extract32(size, 0, 1)) {
3616 unallocated_encoding(s);
3617 return;
3618 }
3619 index >>= 1;
3620 break;
3621 case 2:
3622 if (extract32(size, 1, 1)) {
3623 unallocated_encoding(s);
3624 return;
3625 }
3626 if (!extract32(size, 0, 1)) {
3627 index >>= 2;
3628 } else {
3629 if (S) {
3630 unallocated_encoding(s);
3631 return;
3632 }
3633 index >>= 3;
3634 scale = 3;
3635 }
3636 break;
3637 default:
3638 g_assert_not_reached();
3639 }
3640
3641 if (!fp_access_check(s)) {
3642 return;
3643 }
3644
3645 ebytes = 1 << scale;
3646
3647 if (rn == 31) {
3648 gen_check_sp_alignment(s);
3649 }
3650
3651 tcg_rn = cpu_reg_sp(s, rn);
3652 clean_addr = clean_data_tbi(s, tcg_rn);
3653 tcg_ebytes = tcg_const_i64(ebytes);
3654
3655 for (xs = 0; xs < selem; xs++) {
3656 if (replicate) {
3657 /* Load and replicate to all elements */
3658 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3659
3660 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr,
3661 get_mem_index(s), s->be_data + scale);
3662 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3663 (is_q + 1) * 8, vec_full_reg_size(s),
3664 tcg_tmp);
3665 tcg_temp_free_i64(tcg_tmp);
3666 } else {
3667 /* Load/store one element per register */
3668 if (is_load) {
3669 do_vec_ld(s, rt, index, clean_addr, scale, s->be_data);
3670 } else {
3671 do_vec_st(s, rt, index, clean_addr, scale, s->be_data);
3672 }
3673 }
3674 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3675 rt = (rt + 1) % 32;
3676 }
3677 tcg_temp_free_i64(tcg_ebytes);
3678
3679 if (is_postidx) {
3680 if (rm == 31) {
3681 tcg_gen_addi_i64(tcg_rn, tcg_rn, selem * ebytes);
3682 } else {
3683 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3684 }
3685 }
3686 }
3687
3688 /* Loads and stores */
3689 static void disas_ldst(DisasContext *s, uint32_t insn)
3690 {
3691 switch (extract32(insn, 24, 6)) {
3692 case 0x08: /* Load/store exclusive */
3693 disas_ldst_excl(s, insn);
3694 break;
3695 case 0x18: case 0x1c: /* Load register (literal) */
3696 disas_ld_lit(s, insn);
3697 break;
3698 case 0x28: case 0x29:
3699 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
3700 disas_ldst_pair(s, insn);
3701 break;
3702 case 0x38: case 0x39:
3703 case 0x3c: case 0x3d: /* Load/store register (all forms) */
3704 disas_ldst_reg(s, insn);
3705 break;
3706 case 0x0c: /* AdvSIMD load/store multiple structures */
3707 disas_ldst_multiple_struct(s, insn);
3708 break;
3709 case 0x0d: /* AdvSIMD load/store single structure */
3710 disas_ldst_single_struct(s, insn);
3711 break;
3712 case 0x19: /* LDAPR/STLR (unscaled immediate) */
3713 if (extract32(insn, 10, 2) != 0 ||
3714 extract32(insn, 21, 1) != 0) {
3715 unallocated_encoding(s);
3716 break;
3717 }
3718 disas_ldst_ldapr_stlr(s, insn);
3719 break;
3720 default:
3721 unallocated_encoding(s);
3722 break;
3723 }
3724 }
3725
3726 /* PC-rel. addressing
3727 * 31 30 29 28 24 23 5 4 0
3728 * +----+-------+-----------+-------------------+------+
3729 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
3730 * +----+-------+-----------+-------------------+------+
3731 */
3732 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
3733 {
3734 unsigned int page, rd;
3735 uint64_t base;
3736 uint64_t offset;
3737
3738 page = extract32(insn, 31, 1);
3739 /* SignExtend(immhi:immlo) -> offset */
3740 offset = sextract64(insn, 5, 19);
3741 offset = offset << 2 | extract32(insn, 29, 2);
3742 rd = extract32(insn, 0, 5);
3743 base = s->pc_curr;
3744
3745 if (page) {
3746 /* ADRP (page based) */
3747 base &= ~0xfff;
3748 offset <<= 12;
3749 }
3750
3751 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
3752 }
3753
3754 /*
3755 * Add/subtract (immediate)
3756 *
3757 * 31 30 29 28 23 22 21 10 9 5 4 0
3758 * +--+--+--+-------------+--+-------------+-----+-----+
3759 * |sf|op| S| 1 0 0 0 1 0 |sh| imm12 | Rn | Rd |
3760 * +--+--+--+-------------+--+-------------+-----+-----+
3761 *
3762 * sf: 0 -> 32bit, 1 -> 64bit
3763 * op: 0 -> add , 1 -> sub
3764 * S: 1 -> set flags
3765 * sh: 1 -> LSL imm by 12
3766 */
3767 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
3768 {
3769 int rd = extract32(insn, 0, 5);
3770 int rn = extract32(insn, 5, 5);
3771 uint64_t imm = extract32(insn, 10, 12);
3772 bool shift = extract32(insn, 22, 1);
3773 bool setflags = extract32(insn, 29, 1);
3774 bool sub_op = extract32(insn, 30, 1);
3775 bool is_64bit = extract32(insn, 31, 1);
3776
3777 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3778 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
3779 TCGv_i64 tcg_result;
3780
3781 if (shift) {
3782 imm <<= 12;
3783 }
3784
3785 tcg_result = tcg_temp_new_i64();
3786 if (!setflags) {
3787 if (sub_op) {
3788 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
3789 } else {
3790 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
3791 }
3792 } else {
3793 TCGv_i64 tcg_imm = tcg_const_i64(imm);
3794 if (sub_op) {
3795 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3796 } else {
3797 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3798 }
3799 tcg_temp_free_i64(tcg_imm);
3800 }
3801
3802 if (is_64bit) {
3803 tcg_gen_mov_i64(tcg_rd, tcg_result);
3804 } else {
3805 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3806 }
3807
3808 tcg_temp_free_i64(tcg_result);
3809 }
3810
3811 /* The input should be a value in the bottom e bits (with higher
3812 * bits zero); returns that value replicated into every element
3813 * of size e in a 64 bit integer.
3814 */
3815 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
3816 {
3817 assert(e != 0);
3818 while (e < 64) {
3819 mask |= mask << e;
3820 e *= 2;
3821 }
3822 return mask;
3823 }
3824
3825 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
3826 static inline uint64_t bitmask64(unsigned int length)
3827 {
3828 assert(length > 0 && length <= 64);
3829 return ~0ULL >> (64 - length);
3830 }
3831
3832 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
3833 * only require the wmask. Returns false if the imms/immr/immn are a reserved
3834 * value (ie should cause a guest UNDEF exception), and true if they are
3835 * valid, in which case the decoded bit pattern is written to result.
3836 */
3837 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
3838 unsigned int imms, unsigned int immr)
3839 {
3840 uint64_t mask;
3841 unsigned e, levels, s, r;
3842 int len;
3843
3844 assert(immn < 2 && imms < 64 && immr < 64);
3845
3846 /* The bit patterns we create here are 64 bit patterns which
3847 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
3848 * 64 bits each. Each element contains the same value: a run
3849 * of between 1 and e-1 non-zero bits, rotated within the
3850 * element by between 0 and e-1 bits.
3851 *
3852 * The element size and run length are encoded into immn (1 bit)
3853 * and imms (6 bits) as follows:
3854 * 64 bit elements: immn = 1, imms = <length of run - 1>
3855 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
3856 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
3857 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
3858 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
3859 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
3860 * Notice that immn = 0, imms = 11111x is the only combination
3861 * not covered by one of the above options; this is reserved.
3862 * Further, <length of run - 1> all-ones is a reserved pattern.
3863 *
3864 * In all cases the rotation is by immr % e (and immr is 6 bits).
3865 */
3866
3867 /* First determine the element size */
3868 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
3869 if (len < 1) {
3870 /* This is the immn == 0, imms == 0x11111x case */
3871 return false;
3872 }
3873 e = 1 << len;
3874
3875 levels = e - 1;
3876 s = imms & levels;
3877 r = immr & levels;
3878
3879 if (s == levels) {
3880 /* <length of run - 1> mustn't be all-ones. */
3881 return false;
3882 }
3883
3884 /* Create the value of one element: s+1 set bits rotated
3885 * by r within the element (which is e bits wide)...
3886 */
3887 mask = bitmask64(s + 1);
3888 if (r) {
3889 mask = (mask >> r) | (mask << (e - r));
3890 mask &= bitmask64(e);
3891 }
3892 /* ...then replicate the element over the whole 64 bit value */
3893 mask = bitfield_replicate(mask, e);
3894 *result = mask;
3895 return true;
3896 }
3897
3898 /* Logical (immediate)
3899 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3900 * +----+-----+-------------+---+------+------+------+------+
3901 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
3902 * +----+-----+-------------+---+------+------+------+------+
3903 */
3904 static void disas_logic_imm(DisasContext *s, uint32_t insn)
3905 {
3906 unsigned int sf, opc, is_n, immr, imms, rn, rd;
3907 TCGv_i64 tcg_rd, tcg_rn;
3908 uint64_t wmask;
3909 bool is_and = false;
3910
3911 sf = extract32(insn, 31, 1);
3912 opc = extract32(insn, 29, 2);
3913 is_n = extract32(insn, 22, 1);
3914 immr = extract32(insn, 16, 6);
3915 imms = extract32(insn, 10, 6);
3916 rn = extract32(insn, 5, 5);
3917 rd = extract32(insn, 0, 5);
3918
3919 if (!sf && is_n) {
3920 unallocated_encoding(s);
3921 return;
3922 }
3923
3924 if (opc == 0x3) { /* ANDS */
3925 tcg_rd = cpu_reg(s, rd);
3926 } else {
3927 tcg_rd = cpu_reg_sp(s, rd);
3928 }
3929 tcg_rn = cpu_reg(s, rn);
3930
3931 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
3932 /* some immediate field values are reserved */
3933 unallocated_encoding(s);
3934 return;
3935 }
3936
3937 if (!sf) {
3938 wmask &= 0xffffffff;
3939 }
3940
3941 switch (opc) {
3942 case 0x3: /* ANDS */
3943 case 0x0: /* AND */
3944 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
3945 is_and = true;
3946 break;
3947 case 0x1: /* ORR */
3948 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
3949 break;
3950 case 0x2: /* EOR */
3951 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
3952 break;
3953 default:
3954 assert(FALSE); /* must handle all above */
3955 break;
3956 }
3957
3958 if (!sf && !is_and) {
3959 /* zero extend final result; we know we can skip this for AND
3960 * since the immediate had the high 32 bits clear.
3961 */
3962 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3963 }
3964
3965 if (opc == 3) { /* ANDS */
3966 gen_logic_CC(sf, tcg_rd);
3967 }
3968 }
3969
3970 /*
3971 * Move wide (immediate)
3972 *
3973 * 31 30 29 28 23 22 21 20 5 4 0
3974 * +--+-----+-------------+-----+----------------+------+
3975 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
3976 * +--+-----+-------------+-----+----------------+------+
3977 *
3978 * sf: 0 -> 32 bit, 1 -> 64 bit
3979 * opc: 00 -> N, 10 -> Z, 11 -> K
3980 * hw: shift/16 (0,16, and sf only 32, 48)
3981 */
3982 static void disas_movw_imm(DisasContext *s, uint32_t insn)
3983 {
3984 int rd = extract32(insn, 0, 5);
3985 uint64_t imm = extract32(insn, 5, 16);
3986 int sf = extract32(insn, 31, 1);
3987 int opc = extract32(insn, 29, 2);
3988 int pos = extract32(insn, 21, 2) << 4;
3989 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3990 TCGv_i64 tcg_imm;
3991
3992 if (!sf && (pos >= 32)) {
3993 unallocated_encoding(s);
3994 return;
3995 }
3996
3997 switch (opc) {
3998 case 0: /* MOVN */
3999 case 2: /* MOVZ */
4000 imm <<= pos;
4001 if (opc == 0) {
4002 imm = ~imm;
4003 }
4004 if (!sf) {
4005 imm &= 0xffffffffu;
4006 }
4007 tcg_gen_movi_i64(tcg_rd, imm);
4008 break;
4009 case 3: /* MOVK */
4010 tcg_imm = tcg_const_i64(imm);
4011 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
4012 tcg_temp_free_i64(tcg_imm);
4013 if (!sf) {
4014 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4015 }
4016 break;
4017 default:
4018 unallocated_encoding(s);
4019 break;
4020 }
4021 }
4022
4023 /* Bitfield
4024 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4025 * +----+-----+-------------+---+------+------+------+------+
4026 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
4027 * +----+-----+-------------+---+------+------+------+------+
4028 */
4029 static void disas_bitfield(DisasContext *s, uint32_t insn)
4030 {
4031 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
4032 TCGv_i64 tcg_rd, tcg_tmp;
4033
4034 sf = extract32(insn, 31, 1);
4035 opc = extract32(insn, 29, 2);
4036 n = extract32(insn, 22, 1);
4037 ri = extract32(insn, 16, 6);
4038 si = extract32(insn, 10, 6);
4039 rn = extract32(insn, 5, 5);
4040 rd = extract32(insn, 0, 5);
4041 bitsize = sf ? 64 : 32;
4042
4043 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
4044 unallocated_encoding(s);
4045 return;
4046 }
4047
4048 tcg_rd = cpu_reg(s, rd);
4049
4050 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
4051 to be smaller than bitsize, we'll never reference data outside the
4052 low 32-bits anyway. */
4053 tcg_tmp = read_cpu_reg(s, rn, 1);
4054
4055 /* Recognize simple(r) extractions. */
4056 if (si >= ri) {
4057 /* Wd<s-r:0> = Wn<s:r> */
4058 len = (si - ri) + 1;
4059 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
4060 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4061 goto done;
4062 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
4063 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4064 return;
4065 }
4066 /* opc == 1, BFXIL fall through to deposit */
4067 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4068 pos = 0;
4069 } else {
4070 /* Handle the ri > si case with a deposit
4071 * Wd<32+s-r,32-r> = Wn<s:0>
4072 */
4073 len = si + 1;
4074 pos = (bitsize - ri) & (bitsize - 1);
4075 }
4076
4077 if (opc == 0 && len < ri) {
4078 /* SBFM: sign extend the destination field from len to fill
4079 the balance of the word. Let the deposit below insert all
4080 of those sign bits. */
4081 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4082 len = ri;
4083 }
4084
4085 if (opc == 1) { /* BFM, BFXIL */
4086 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4087 } else {
4088 /* SBFM or UBFM: We start with zero, and we haven't modified
4089 any bits outside bitsize, therefore the zero-extension
4090 below is unneeded. */
4091 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4092 return;
4093 }
4094
4095 done:
4096 if (!sf) { /* zero extend final result */
4097 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4098 }
4099 }
4100
4101 /* Extract
4102 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
4103 * +----+------+-------------+---+----+------+--------+------+------+
4104 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
4105 * +----+------+-------------+---+----+------+--------+------+------+
4106 */
4107 static void disas_extract(DisasContext *s, uint32_t insn)
4108 {
4109 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
4110
4111 sf = extract32(insn, 31, 1);
4112 n = extract32(insn, 22, 1);
4113 rm = extract32(insn, 16, 5);
4114 imm = extract32(insn, 10, 6);
4115 rn = extract32(insn, 5, 5);
4116 rd = extract32(insn, 0, 5);
4117 op21 = extract32(insn, 29, 2);
4118 op0 = extract32(insn, 21, 1);
4119 bitsize = sf ? 64 : 32;
4120
4121 if (sf != n || op21 || op0 || imm >= bitsize) {
4122 unallocated_encoding(s);
4123 } else {
4124 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4125
4126 tcg_rd = cpu_reg(s, rd);
4127
4128 if (unlikely(imm == 0)) {
4129 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4130 * so an extract from bit 0 is a special case.
4131 */
4132 if (sf) {
4133 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
4134 } else {
4135 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
4136 }
4137 } else {
4138 tcg_rm = cpu_reg(s, rm);
4139 tcg_rn = cpu_reg(s, rn);
4140
4141 if (sf) {
4142 /* Specialization to ROR happens in EXTRACT2. */
4143 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, imm);
4144 } else {
4145 TCGv_i32 t0 = tcg_temp_new_i32();
4146
4147 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4148 if (rm == rn) {
4149 tcg_gen_rotri_i32(t0, t0, imm);
4150 } else {
4151 TCGv_i32 t1 = tcg_temp_new_i32();
4152 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4153 tcg_gen_extract2_i32(t0, t0, t1, imm);
4154 tcg_temp_free_i32(t1);
4155 }
4156 tcg_gen_extu_i32_i64(tcg_rd, t0);
4157 tcg_temp_free_i32(t0);
4158 }
4159 }
4160 }
4161 }
4162
4163 /* Data processing - immediate */
4164 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
4165 {
4166 switch (extract32(insn, 23, 6)) {
4167 case 0x20: case 0x21: /* PC-rel. addressing */
4168 disas_pc_rel_adr(s, insn);
4169 break;
4170 case 0x22: /* Add/subtract (immediate) */
4171 disas_add_sub_imm(s, insn);
4172 break;
4173 case 0x24: /* Logical (immediate) */
4174 disas_logic_imm(s, insn);
4175 break;
4176 case 0x25: /* Move wide (immediate) */
4177 disas_movw_imm(s, insn);
4178 break;
4179 case 0x26: /* Bitfield */
4180 disas_bitfield(s, insn);
4181 break;
4182 case 0x27: /* Extract */
4183 disas_extract(s, insn);
4184 break;
4185 default:
4186 unallocated_encoding(s);
4187 break;
4188 }
4189 }
4190
4191 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4192 * Note that it is the caller's responsibility to ensure that the
4193 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4194 * mandated semantics for out of range shifts.
4195 */
4196 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4197 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4198 {
4199 switch (shift_type) {
4200 case A64_SHIFT_TYPE_LSL:
4201 tcg_gen_shl_i64(dst, src, shift_amount);
4202 break;
4203 case A64_SHIFT_TYPE_LSR:
4204 tcg_gen_shr_i64(dst, src, shift_amount);
4205 break;
4206 case A64_SHIFT_TYPE_ASR:
4207 if (!sf) {
4208 tcg_gen_ext32s_i64(dst, src);
4209 }
4210 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4211 break;
4212 case A64_SHIFT_TYPE_ROR:
4213 if (sf) {
4214 tcg_gen_rotr_i64(dst, src, shift_amount);
4215 } else {
4216 TCGv_i32 t0, t1;
4217 t0 = tcg_temp_new_i32();
4218 t1 = tcg_temp_new_i32();
4219 tcg_gen_extrl_i64_i32(t0, src);
4220 tcg_gen_extrl_i64_i32(t1, shift_amount);
4221 tcg_gen_rotr_i32(t0, t0, t1);
4222 tcg_gen_extu_i32_i64(dst, t0);
4223 tcg_temp_free_i32(t0);
4224 tcg_temp_free_i32(t1);
4225 }
4226 break;
4227 default:
4228 assert(FALSE); /* all shift types should be handled */
4229 break;
4230 }
4231
4232 if (!sf) { /* zero extend final result */
4233 tcg_gen_ext32u_i64(dst, dst);
4234 }
4235 }
4236
4237 /* Shift a TCGv src by immediate, put result in dst.
4238 * The shift amount must be in range (this should always be true as the
4239 * relevant instructions will UNDEF on bad shift immediates).
4240 */
4241 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4242 enum a64_shift_type shift_type, unsigned int shift_i)
4243 {
4244 assert(shift_i < (sf ? 64 : 32));
4245
4246 if (shift_i == 0) {
4247 tcg_gen_mov_i64(dst, src);
4248 } else {
4249 TCGv_i64 shift_const;
4250
4251 shift_const = tcg_const_i64(shift_i);
4252 shift_reg(dst, src, sf, shift_type, shift_const);
4253 tcg_temp_free_i64(shift_const);
4254 }
4255 }
4256
4257 /* Logical (shifted register)
4258 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4259 * +----+-----+-----------+-------+---+------+--------+------+------+
4260 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4261 * +----+-----+-----------+-------+---+------+--------+------+------+
4262 */
4263 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4264 {
4265 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4266 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4267
4268 sf = extract32(insn, 31, 1);
4269 opc = extract32(insn, 29, 2);
4270 shift_type = extract32(insn, 22, 2);
4271 invert = extract32(insn, 21, 1);
4272 rm = extract32(insn, 16, 5);
4273 shift_amount = extract32(insn, 10, 6);
4274 rn = extract32(insn, 5, 5);
4275 rd = extract32(insn, 0, 5);
4276
4277 if (!sf && (shift_amount & (1 << 5))) {
4278 unallocated_encoding(s);
4279 return;
4280 }
4281
4282 tcg_rd = cpu_reg(s, rd);
4283
4284 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4285 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4286 * register-register MOV and MVN, so it is worth special casing.
4287 */
4288 tcg_rm = cpu_reg(s, rm);
4289 if (invert) {
4290 tcg_gen_not_i64(tcg_rd, tcg_rm);
4291 if (!sf) {
4292 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4293 }
4294 } else {
4295 if (sf) {
4296 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4297 } else {
4298 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4299 }
4300 }
4301 return;
4302 }
4303
4304 tcg_rm = read_cpu_reg(s, rm, sf);
4305
4306 if (shift_amount) {
4307 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4308 }
4309
4310 tcg_rn = cpu_reg(s, rn);
4311
4312 switch (opc | (invert << 2)) {
4313 case 0: /* AND */
4314 case 3: /* ANDS */
4315 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4316 break;
4317 case 1: /* ORR */
4318 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4319 break;
4320 case 2: /* EOR */
4321 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4322 break;
4323 case 4: /* BIC */
4324 case 7: /* BICS */
4325 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4326 break;
4327 case 5: /* ORN */
4328 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4329 break;
4330 case 6: /* EON */
4331 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4332 break;
4333 default:
4334 assert(FALSE);
4335 break;
4336 }
4337
4338 if (!sf) {
4339 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4340 }
4341
4342 if (opc == 3) {
4343 gen_logic_CC(sf, tcg_rd);
4344 }
4345 }
4346
4347 /*
4348 * Add/subtract (extended register)
4349 *
4350 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4351 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4352 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4353 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4354 *
4355 * sf: 0 -> 32bit, 1 -> 64bit
4356 * op: 0 -> add , 1 -> sub
4357 * S: 1 -> set flags
4358 * opt: 00
4359 * option: extension type (see DecodeRegExtend)
4360 * imm3: optional shift to Rm
4361 *
4362 * Rd = Rn + LSL(extend(Rm), amount)
4363 */
4364 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4365 {
4366 int rd = extract32(insn, 0, 5);
4367 int rn = extract32(insn, 5, 5);
4368 int imm3 = extract32(insn, 10, 3);
4369 int option = extract32(insn, 13, 3);
4370 int rm = extract32(insn, 16, 5);
4371 int opt = extract32(insn, 22, 2);
4372 bool setflags = extract32(insn, 29, 1);
4373 bool sub_op = extract32(insn, 30, 1);
4374 bool sf = extract32(insn, 31, 1);
4375
4376 TCGv_i64 tcg_rm, tcg_rn; /* temps */
4377 TCGv_i64 tcg_rd;
4378 TCGv_i64 tcg_result;
4379
4380 if (imm3 > 4 || opt != 0) {
4381 unallocated_encoding(s);
4382 return;
4383 }
4384
4385 /* non-flag setting ops may use SP */
4386 if (!setflags) {
4387 tcg_rd = cpu_reg_sp(s, rd);
4388 } else {
4389 tcg_rd = cpu_reg(s, rd);
4390 }
4391 tcg_rn = read_cpu_reg_sp(s, rn, sf);
4392
4393 tcg_rm = read_cpu_reg(s, rm, sf);
4394 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4395
4396 tcg_result = tcg_temp_new_i64();
4397
4398 if (!setflags) {
4399 if (sub_op) {
4400 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4401 } else {
4402 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4403 }
4404 } else {
4405 if (sub_op) {
4406 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4407 } else {
4408 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4409 }
4410 }
4411
4412 if (sf) {
4413 tcg_gen_mov_i64(tcg_rd, tcg_result);
4414 } else {
4415 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4416 }
4417
4418 tcg_temp_free_i64(tcg_result);
4419 }
4420
4421 /*
4422 * Add/subtract (shifted register)
4423 *
4424 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4425 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4426 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4427 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4428 *
4429 * sf: 0 -> 32bit, 1 -> 64bit
4430 * op: 0 -> add , 1 -> sub
4431 * S: 1 -> set flags
4432 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4433 * imm6: Shift amount to apply to Rm before the add/sub
4434 */
4435 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4436 {
4437 int rd = extract32(insn, 0, 5);
4438 int rn = extract32(insn, 5, 5);
4439 int imm6 = extract32(insn, 10, 6);
4440 int rm = extract32(insn, 16, 5);
4441 int shift_type = extract32(insn, 22, 2);
4442 bool setflags = extract32(insn, 29, 1);
4443 bool sub_op = extract32(insn, 30, 1);
4444 bool sf = extract32(insn, 31, 1);
4445
4446 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4447 TCGv_i64 tcg_rn, tcg_rm;
4448 TCGv_i64 tcg_result;
4449
4450 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4451 unallocated_encoding(s);
4452 return;
4453 }
4454
4455 tcg_rn = read_cpu_reg(s, rn, sf);
4456 tcg_rm = read_cpu_reg(s, rm, sf);
4457
4458 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4459
4460 tcg_result = tcg_temp_new_i64();
4461
4462 if (!setflags) {
4463 if (sub_op) {
4464 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4465 } else {
4466 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4467 }
4468 } else {
4469 if (sub_op) {
4470 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4471 } else {
4472 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4473 }
4474 }
4475
4476 if (sf) {
4477 tcg_gen_mov_i64(tcg_rd, tcg_result);
4478 } else {
4479 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4480 }
4481
4482 tcg_temp_free_i64(tcg_result);
4483 }
4484
4485 /* Data-processing (3 source)
4486 *
4487 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4488 * +--+------+-----------+------+------+----+------+------+------+
4489 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4490 * +--+------+-----------+------+------+----+------+------+------+
4491 */
4492 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4493 {
4494 int rd = extract32(insn, 0, 5);
4495 int rn = extract32(insn, 5, 5);
4496 int ra = extract32(insn, 10, 5);
4497 int rm = extract32(insn, 16, 5);
4498 int op_id = (extract32(insn, 29, 3) << 4) |
4499 (extract32(insn, 21, 3) << 1) |
4500 extract32(insn, 15, 1);
4501 bool sf = extract32(insn, 31, 1);
4502 bool is_sub = extract32(op_id, 0, 1);
4503 bool is_high = extract32(op_id, 2, 1);
4504 bool is_signed = false;
4505 TCGv_i64 tcg_op1;
4506 TCGv_i64 tcg_op2;
4507 TCGv_i64 tcg_tmp;
4508
4509 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4510 switch (op_id) {
4511 case 0x42: /* SMADDL */
4512 case 0x43: /* SMSUBL */
4513 case 0x44: /* SMULH */
4514 is_signed = true;
4515 break;
4516 case 0x0: /* MADD (32bit) */
4517 case 0x1: /* MSUB (32bit) */
4518 case 0x40: /* MADD (64bit) */
4519 case 0x41: /* MSUB (64bit) */
4520 case 0x4a: /* UMADDL */
4521 case 0x4b: /* UMSUBL */
4522 case 0x4c: /* UMULH */
4523 break;
4524 default:
4525 unallocated_encoding(s);
4526 return;
4527 }
4528
4529 if (is_high) {
4530 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4531 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4532 TCGv_i64 tcg_rn = cpu_reg(s, rn);
4533 TCGv_i64 tcg_rm = cpu_reg(s, rm);
4534
4535 if (is_signed) {
4536 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4537 } else {
4538 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4539 }
4540
4541 tcg_temp_free_i64(low_bits);
4542 return;
4543 }
4544
4545 tcg_op1 = tcg_temp_new_i64();
4546 tcg_op2 = tcg_temp_new_i64();
4547 tcg_tmp = tcg_temp_new_i64();
4548
4549 if (op_id < 0x42) {
4550 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4551 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4552 } else {
4553 if (is_signed) {
4554 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4555 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4556 } else {
4557 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4558 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4559 }
4560 }
4561
4562 if (ra == 31 && !is_sub) {
4563 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4564 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4565 } else {
4566 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4567 if (is_sub) {
4568 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4569 } else {
4570 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4571 }
4572 }
4573
4574 if (!sf) {
4575 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4576 }
4577
4578 tcg_temp_free_i64(tcg_op1);
4579 tcg_temp_free_i64(tcg_op2);
4580 tcg_temp_free_i64(tcg_tmp);
4581 }
4582
4583 /* Add/subtract (with carry)
4584 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
4585 * +--+--+--+------------------------+------+-------------+------+-----+
4586 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
4587 * +--+--+--+------------------------+------+-------------+------+-----+
4588 */
4589
4590 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4591 {
4592 unsigned int sf, op, setflags, rm, rn, rd;
4593 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4594
4595 sf = extract32(insn, 31, 1);
4596 op = extract32(insn, 30, 1);
4597 setflags = extract32(insn, 29, 1);
4598 rm = extract32(insn, 16, 5);
4599 rn = extract32(insn, 5, 5);
4600 rd = extract32(insn, 0, 5);
4601
4602 tcg_rd = cpu_reg(s, rd);
4603 tcg_rn = cpu_reg(s, rn);
4604
4605 if (op) {
4606 tcg_y = new_tmp_a64(s);
4607 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4608 } else {
4609 tcg_y = cpu_reg(s, rm);
4610 }
4611
4612 if (setflags) {
4613 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4614 } else {
4615 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4616 }
4617 }
4618
4619 /*
4620 * Rotate right into flags
4621 * 31 30 29 21 15 10 5 4 0
4622 * +--+--+--+-----------------+--------+-----------+------+--+------+
4623 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
4624 * +--+--+--+-----------------+--------+-----------+------+--+------+
4625 */
4626 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
4627 {
4628 int mask = extract32(insn, 0, 4);
4629 int o2 = extract32(insn, 4, 1);
4630 int rn = extract32(insn, 5, 5);
4631 int imm6 = extract32(insn, 15, 6);
4632 int sf_op_s = extract32(insn, 29, 3);
4633 TCGv_i64 tcg_rn;
4634 TCGv_i32 nzcv;
4635
4636 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
4637 unallocated_encoding(s);
4638 return;
4639 }
4640
4641 tcg_rn = read_cpu_reg(s, rn, 1);
4642 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
4643
4644 nzcv = tcg_temp_new_i32();
4645 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
4646
4647 if (mask & 8) { /* N */
4648 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
4649 }
4650 if (mask & 4) { /* Z */
4651 tcg_gen_not_i32(cpu_ZF, nzcv);
4652 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
4653 }
4654 if (mask & 2) { /* C */
4655 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
4656 }
4657 if (mask & 1) { /* V */
4658 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
4659 }
4660
4661 tcg_temp_free_i32(nzcv);
4662 }
4663
4664 /*
4665 * Evaluate into flags
4666 * 31 30 29 21 15 14 10 5 4 0
4667 * +--+--+--+-----------------+---------+----+---------+------+--+------+
4668 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
4669 * +--+--+--+-----------------+---------+----+---------+------+--+------+
4670 */
4671 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
4672 {
4673 int o3_mask = extract32(insn, 0, 5);
4674 int rn = extract32(insn, 5, 5);
4675 int o2 = extract32(insn, 15, 6);
4676 int sz = extract32(insn, 14, 1);
4677 int sf_op_s = extract32(insn, 29, 3);
4678 TCGv_i32 tmp;
4679 int shift;
4680
4681 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
4682 !dc_isar_feature(aa64_condm_4, s)) {
4683 unallocated_encoding(s);
4684 return;
4685 }
4686 shift = sz ? 16 : 24; /* SETF16 or SETF8 */
4687
4688 tmp = tcg_temp_new_i32();
4689 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
4690 tcg_gen_shli_i32(cpu_NF, tmp, shift);
4691 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
4692 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
4693 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
4694 tcg_temp_free_i32(tmp);
4695 }
4696
4697 /* Conditional compare (immediate / register)
4698 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4699 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4700 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
4701 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4702 * [1] y [0] [0]
4703 */
4704 static void disas_cc(DisasContext *s, uint32_t insn)
4705 {
4706 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
4707 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
4708 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
4709 DisasCompare c;
4710
4711 if (!extract32(insn, 29, 1)) {
4712 unallocated_encoding(s);
4713 return;
4714 }
4715 if (insn & (1 << 10 | 1 << 4)) {
4716 unallocated_encoding(s);
4717 return;
4718 }
4719 sf = extract32(insn, 31, 1);
4720 op = extract32(insn, 30, 1);
4721 is_imm = extract32(insn, 11, 1);
4722 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
4723 cond = extract32(insn, 12, 4);
4724 rn = extract32(insn, 5, 5);
4725 nzcv = extract32(insn, 0, 4);
4726
4727 /* Set T0 = !COND. */
4728 tcg_t0 = tcg_temp_new_i32();
4729 arm_test_cc(&c, cond);
4730 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
4731 arm_free_cc(&c);
4732
4733 /* Load the arguments for the new comparison. */
4734 if (is_imm) {
4735 tcg_y = new_tmp_a64(s);
4736 tcg_gen_movi_i64(tcg_y, y);
4737 } else {
4738 tcg_y = cpu_reg(s, y);
4739 }
4740 tcg_rn = cpu_reg(s, rn);
4741
4742 /* Set the flags for the new comparison. */
4743 tcg_tmp = tcg_temp_new_i64();
4744 if (op) {
4745 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4746 } else {
4747 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4748 }
4749 tcg_temp_free_i64(tcg_tmp);
4750
4751 /* If COND was false, force the flags to #nzcv. Compute two masks
4752 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
4753 * For tcg hosts that support ANDC, we can make do with just T1.
4754 * In either case, allow the tcg optimizer to delete any unused mask.
4755 */
4756 tcg_t1 = tcg_temp_new_i32();
4757 tcg_t2 = tcg_temp_new_i32();
4758 tcg_gen_neg_i32(tcg_t1, tcg_t0);
4759 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
4760
4761 if (nzcv & 8) { /* N */
4762 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
4763 } else {
4764 if (TCG_TARGET_HAS_andc_i32) {
4765 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
4766 } else {
4767 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
4768 }
4769 }
4770 if (nzcv & 4) { /* Z */
4771 if (TCG_TARGET_HAS_andc_i32) {
4772 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
4773 } else {
4774 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
4775 }
4776 } else {
4777 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
4778 }
4779 if (nzcv & 2) { /* C */
4780 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
4781 } else {
4782 if (TCG_TARGET_HAS_andc_i32) {
4783 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
4784 } else {
4785 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
4786 }
4787 }
4788 if (nzcv & 1) { /* V */
4789 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
4790 } else {
4791 if (TCG_TARGET_HAS_andc_i32) {
4792 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
4793 } else {
4794 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
4795 }
4796 }
4797 tcg_temp_free_i32(tcg_t0);
4798 tcg_temp_free_i32(tcg_t1);
4799 tcg_temp_free_i32(tcg_t2);
4800 }
4801
4802 /* Conditional select
4803 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
4804 * +----+----+---+-----------------+------+------+-----+------+------+
4805 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
4806 * +----+----+---+-----------------+------+------+-----+------+------+
4807 */
4808 static void disas_cond_select(DisasContext *s, uint32_t insn)
4809 {
4810 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
4811 TCGv_i64 tcg_rd, zero;
4812 DisasCompare64 c;
4813
4814 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
4815 /* S == 1 or op2<1> == 1 */
4816 unallocated_encoding(s);
4817 return;
4818 }
4819 sf = extract32(insn, 31, 1);
4820 else_inv = extract32(insn, 30, 1);
4821 rm = extract32(insn, 16, 5);
4822 cond = extract32(insn, 12, 4);
4823 else_inc = extract32(insn, 10, 1);
4824 rn = extract32(insn, 5, 5);
4825 rd = extract32(insn, 0, 5);
4826
4827 tcg_rd = cpu_reg(s, rd);
4828
4829 a64_test_cc(&c, cond);
4830 zero = tcg_const_i64(0);
4831
4832 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
4833 /* CSET & CSETM. */
4834 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
4835 if (else_inv) {
4836 tcg_gen_neg_i64(tcg_rd, tcg_rd);
4837 }
4838 } else {
4839 TCGv_i64 t_true = cpu_reg(s, rn);
4840 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
4841 if (else_inv && else_inc) {
4842 tcg_gen_neg_i64(t_false, t_false);
4843 } else if (else_inv) {
4844 tcg_gen_not_i64(t_false, t_false);
4845 } else if (else_inc) {
4846 tcg_gen_addi_i64(t_false, t_false, 1);
4847 }
4848 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
4849 }
4850
4851 tcg_temp_free_i64(zero);
4852 a64_free_cc(&c);
4853
4854 if (!sf) {
4855 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4856 }
4857 }
4858
4859 static void handle_clz(DisasContext *s, unsigned int sf,
4860 unsigned int rn, unsigned int rd)
4861 {
4862 TCGv_i64 tcg_rd, tcg_rn;
4863 tcg_rd = cpu_reg(s, rd);
4864 tcg_rn = cpu_reg(s, rn);
4865
4866 if (sf) {
4867 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
4868 } else {
4869 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4870 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4871 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
4872 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4873 tcg_temp_free_i32(tcg_tmp32);
4874 }
4875 }
4876
4877 static void handle_cls(DisasContext *s, unsigned int sf,
4878 unsigned int rn, unsigned int rd)
4879 {
4880 TCGv_i64 tcg_rd, tcg_rn;
4881 tcg_rd = cpu_reg(s, rd);
4882 tcg_rn = cpu_reg(s, rn);
4883
4884 if (sf) {
4885 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
4886 } else {
4887 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4888 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4889 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
4890 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4891 tcg_temp_free_i32(tcg_tmp32);
4892 }
4893 }
4894
4895 static void handle_rbit(DisasContext *s, unsigned int sf,
4896 unsigned int rn, unsigned int rd)
4897 {
4898 TCGv_i64 tcg_rd, tcg_rn;
4899 tcg_rd = cpu_reg(s, rd);
4900 tcg_rn = cpu_reg(s, rn);
4901
4902 if (sf) {
4903 gen_helper_rbit64(tcg_rd, tcg_rn);
4904 } else {
4905 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4906 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4907 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
4908 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4909 tcg_temp_free_i32(tcg_tmp32);
4910 }
4911 }
4912
4913 /* REV with sf==1, opcode==3 ("REV64") */
4914 static void handle_rev64(DisasContext *s, unsigned int sf,
4915 unsigned int rn, unsigned int rd)
4916 {
4917 if (!sf) {
4918 unallocated_encoding(s);
4919 return;
4920 }
4921 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
4922 }
4923
4924 /* REV with sf==0, opcode==2
4925 * REV32 (sf==1, opcode==2)
4926 */
4927 static void handle_rev32(DisasContext *s, unsigned int sf,
4928 unsigned int rn, unsigned int rd)
4929 {
4930 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4931
4932 if (sf) {
4933 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4934 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4935
4936 /* bswap32_i64 requires zero high word */
4937 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
4938 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
4939 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4940 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
4941 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
4942
4943 tcg_temp_free_i64(tcg_tmp);
4944 } else {
4945 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
4946 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
4947 }
4948 }
4949
4950 /* REV16 (opcode==1) */
4951 static void handle_rev16(DisasContext *s, unsigned int sf,
4952 unsigned int rn, unsigned int rd)
4953 {
4954 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4955 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4956 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4957 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
4958
4959 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
4960 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
4961 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
4962 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
4963 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
4964
4965 tcg_temp_free_i64(mask);
4966 tcg_temp_free_i64(tcg_tmp);
4967 }
4968
4969 /* Data-processing (1 source)
4970 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4971 * +----+---+---+-----------------+---------+--------+------+------+
4972 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
4973 * +----+---+---+-----------------+---------+--------+------+------+
4974 */
4975 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
4976 {
4977 unsigned int sf, opcode, opcode2, rn, rd;
4978 TCGv_i64 tcg_rd;
4979
4980 if (extract32(insn, 29, 1)) {
4981 unallocated_encoding(s);
4982 return;
4983 }
4984
4985 sf = extract32(insn, 31, 1);
4986 opcode = extract32(insn, 10, 6);
4987 opcode2 = extract32(insn, 16, 5);
4988 rn = extract32(insn, 5, 5);
4989 rd = extract32(insn, 0, 5);
4990
4991 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
4992
4993 switch (MAP(sf, opcode2, opcode)) {
4994 case MAP(0, 0x00, 0x00): /* RBIT */
4995 case MAP(1, 0x00, 0x00):
4996 handle_rbit(s, sf, rn, rd);
4997 break;
4998 case MAP(0, 0x00, 0x01): /* REV16 */
4999 case MAP(1, 0x00, 0x01):
5000 handle_rev16(s, sf, rn, rd);
5001 break;
5002 case MAP(0, 0x00, 0x02): /* REV/REV32 */
5003 case MAP(1, 0x00, 0x02):
5004 handle_rev32(s, sf, rn, rd);
5005 break;
5006 case MAP(1, 0x00, 0x03): /* REV64 */
5007 handle_rev64(s, sf, rn, rd);
5008 break;
5009 case MAP(0, 0x00, 0x04): /* CLZ */
5010 case MAP(1, 0x00, 0x04):
5011 handle_clz(s, sf, rn, rd);
5012 break;
5013 case MAP(0, 0x00, 0x05): /* CLS */
5014 case MAP(1, 0x00, 0x05):
5015 handle_cls(s, sf, rn, rd);
5016 break;
5017 case MAP(1, 0x01, 0x00): /* PACIA */
5018 if (s->pauth_active) {
5019 tcg_rd = cpu_reg(s, rd);
5020 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5021 } else if (!dc_isar_feature(aa64_pauth, s)) {
5022 goto do_unallocated;
5023 }
5024 break;
5025 case MAP(1, 0x01, 0x01): /* PACIB */
5026 if (s->pauth_active) {
5027 tcg_rd = cpu_reg(s, rd);
5028 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5029 } else if (!dc_isar_feature(aa64_pauth, s)) {
5030 goto do_unallocated;
5031 }
5032 break;
5033 case MAP(1, 0x01, 0x02): /* PACDA */
5034 if (s->pauth_active) {
5035 tcg_rd = cpu_reg(s, rd);
5036 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5037 } else if (!dc_isar_feature(aa64_pauth, s)) {
5038 goto do_unallocated;
5039 }
5040 break;
5041 case MAP(1, 0x01, 0x03): /* PACDB */
5042 if (s->pauth_active) {
5043 tcg_rd = cpu_reg(s, rd);
5044 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5045 } else if (!dc_isar_feature(aa64_pauth, s)) {
5046 goto do_unallocated;
5047 }
5048 break;
5049 case MAP(1, 0x01, 0x04): /* AUTIA */
5050 if (s->pauth_active) {
5051 tcg_rd = cpu_reg(s, rd);
5052 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5053 } else if (!dc_isar_feature(aa64_pauth, s)) {
5054 goto do_unallocated;
5055 }
5056 break;
5057 case MAP(1, 0x01, 0x05): /* AUTIB */
5058 if (s->pauth_active) {
5059 tcg_rd = cpu_reg(s, rd);
5060 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5061 } else if (!dc_isar_feature(aa64_pauth, s)) {
5062 goto do_unallocated;
5063 }
5064 break;
5065 case MAP(1, 0x01, 0x06): /* AUTDA */
5066 if (s->pauth_active) {
5067 tcg_rd = cpu_reg(s, rd);
5068 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5069 } else if (!dc_isar_feature(aa64_pauth, s)) {
5070 goto do_unallocated;
5071 }
5072 break;
5073 case MAP(1, 0x01, 0x07): /* AUTDB */
5074 if (s->pauth_active) {
5075 tcg_rd = cpu_reg(s, rd);
5076 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5077 } else if (!dc_isar_feature(aa64_pauth, s)) {
5078 goto do_unallocated;
5079 }
5080 break;
5081 case MAP(1, 0x01, 0x08): /* PACIZA */
5082 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5083 goto do_unallocated;
5084 } else if (s->pauth_active) {
5085 tcg_rd = cpu_reg(s, rd);
5086 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5087 }
5088 break;
5089 case MAP(1, 0x01, 0x09): /* PACIZB */
5090 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5091 goto do_unallocated;
5092 } else if (s->pauth_active) {
5093 tcg_rd = cpu_reg(s, rd);
5094 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5095 }
5096 break;
5097 case MAP(1, 0x01, 0x0a): /* PACDZA */
5098 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5099 goto do_unallocated;
5100 } else if (s->pauth_active) {
5101 tcg_rd = cpu_reg(s, rd);
5102 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5103 }
5104 break;
5105 case MAP(1, 0x01, 0x0b): /* PACDZB */
5106 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5107 goto do_unallocated;
5108 } else if (s->pauth_active) {
5109 tcg_rd = cpu_reg(s, rd);
5110 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5111 }
5112 break;
5113 case MAP(1, 0x01, 0x0c): /* AUTIZA */
5114 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5115 goto do_unallocated;
5116 } else if (s->pauth_active) {
5117 tcg_rd = cpu_reg(s, rd);
5118 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5119 }
5120 break;
5121 case MAP(1, 0x01, 0x0d): /* AUTIZB */
5122 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5123 goto do_unallocated;
5124 } else if (s->pauth_active) {
5125 tcg_rd = cpu_reg(s, rd);
5126 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5127 }
5128 break;
5129 case MAP(1, 0x01, 0x0e): /* AUTDZA */
5130 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5131 goto do_unallocated;
5132 } else if (s->pauth_active) {
5133 tcg_rd = cpu_reg(s, rd);
5134 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5135 }
5136 break;
5137 case MAP(1, 0x01, 0x0f): /* AUTDZB */
5138 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5139 goto do_unallocated;
5140 } else if (s->pauth_active) {
5141 tcg_rd = cpu_reg(s, rd);
5142 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5143 }
5144 break;
5145 case MAP(1, 0x01, 0x10): /* XPACI */
5146 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5147 goto do_unallocated;
5148 } else if (s->pauth_active) {
5149 tcg_rd = cpu_reg(s, rd);
5150 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5151 }
5152 break;
5153 case MAP(1, 0x01, 0x11): /* XPACD */
5154 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5155 goto do_unallocated;
5156 } else if (s->pauth_active) {
5157 tcg_rd = cpu_reg(s, rd);
5158 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5159 }
5160 break;
5161 default:
5162 do_unallocated:
5163 unallocated_encoding(s);
5164 break;
5165 }
5166
5167 #undef MAP
5168 }
5169
5170 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5171 unsigned int rm, unsigned int rn, unsigned int rd)
5172 {
5173 TCGv_i64 tcg_n, tcg_m, tcg_rd;
5174 tcg_rd = cpu_reg(s, rd);
5175
5176 if (!sf && is_signed) {
5177 tcg_n = new_tmp_a64(s);
5178 tcg_m = new_tmp_a64(s);
5179 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5180 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5181 } else {
5182 tcg_n = read_cpu_reg(s, rn, sf);
5183 tcg_m = read_cpu_reg(s, rm, sf);
5184 }
5185
5186 if (is_signed) {
5187 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5188 } else {
5189 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5190 }
5191
5192 if (!sf) { /* zero extend final result */
5193 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5194 }
5195 }
5196
5197 /* LSLV, LSRV, ASRV, RORV */
5198 static void handle_shift_reg(DisasContext *s,
5199 enum a64_shift_type shift_type, unsigned int sf,
5200 unsigned int rm, unsigned int rn, unsigned int rd)
5201 {
5202 TCGv_i64 tcg_shift = tcg_temp_new_i64();
5203 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5204 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5205
5206 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5207 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5208 tcg_temp_free_i64(tcg_shift);
5209 }
5210
5211 /* CRC32[BHWX], CRC32C[BHWX] */
5212 static void handle_crc32(DisasContext *s,
5213 unsigned int sf, unsigned int sz, bool crc32c,
5214 unsigned int rm, unsigned int rn, unsigned int rd)
5215 {
5216 TCGv_i64 tcg_acc, tcg_val;
5217 TCGv_i32 tcg_bytes;
5218
5219 if (!dc_isar_feature(aa64_crc32, s)
5220 || (sf == 1 && sz != 3)
5221 || (sf == 0 && sz == 3)) {
5222 unallocated_encoding(s);
5223 return;
5224 }
5225
5226 if (sz == 3) {
5227 tcg_val = cpu_reg(s, rm);
5228 } else {
5229 uint64_t mask;
5230 switch (sz) {
5231 case 0:
5232 mask = 0xFF;
5233 break;
5234 case 1:
5235 mask = 0xFFFF;
5236 break;
5237 case 2:
5238 mask = 0xFFFFFFFF;
5239 break;
5240 default:
5241 g_assert_not_reached();
5242 }
5243 tcg_val = new_tmp_a64(s);
5244 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5245 }
5246
5247 tcg_acc = cpu_reg(s, rn);
5248 tcg_bytes = tcg_const_i32(1 << sz);
5249
5250 if (crc32c) {
5251 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5252 } else {
5253 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5254 }
5255
5256 tcg_temp_free_i32(tcg_bytes);
5257 }
5258
5259 /* Data-processing (2 source)
5260 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5261 * +----+---+---+-----------------+------+--------+------+------+
5262 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5263 * +----+---+---+-----------------+------+--------+------+------+
5264 */
5265 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5266 {
5267 unsigned int sf, rm, opcode, rn, rd;
5268 sf = extract32(insn, 31, 1);
5269 rm = extract32(insn, 16, 5);
5270 opcode = extract32(insn, 10, 6);
5271 rn = extract32(insn, 5, 5);
5272 rd = extract32(insn, 0, 5);
5273
5274 if (extract32(insn, 29, 1)) {
5275 unallocated_encoding(s);
5276 return;
5277 }
5278
5279 switch (opcode) {
5280 case 2: /* UDIV */
5281 handle_div(s, false, sf, rm, rn, rd);
5282 break;
5283 case 3: /* SDIV */
5284 handle_div(s, true, sf, rm, rn, rd);
5285 break;
5286 case 4: /* IRG */
5287 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5288 goto do_unallocated;
5289 }
5290 if (s->ata) {
5291 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env,
5292 cpu_reg_sp(s, rn), cpu_reg(s, rm));
5293 } else {
5294 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5295 cpu_reg_sp(s, rn));
5296 }
5297 break;
5298 case 8: /* LSLV */
5299 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5300 break;
5301 case 9: /* LSRV */
5302 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5303 break;
5304 case 10: /* ASRV */
5305 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5306 break;
5307 case 11: /* RORV */
5308 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5309 break;
5310 case 12: /* PACGA */
5311 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5312 goto do_unallocated;
5313 }
5314 gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5315 cpu_reg(s, rn), cpu_reg_sp(s, rm));
5316 break;
5317 case 16:
5318 case 17:
5319 case 18:
5320 case 19:
5321 case 20:
5322 case 21:
5323 case 22:
5324 case 23: /* CRC32 */
5325 {
5326 int sz = extract32(opcode, 0, 2);
5327 bool crc32c = extract32(opcode, 2, 1);
5328 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5329 break;
5330 }
5331 default:
5332 do_unallocated:
5333 unallocated_encoding(s);
5334 break;
5335 }
5336 }
5337
5338 /*
5339 * Data processing - register
5340 * 31 30 29 28 25 21 20 16 10 0
5341 * +--+---+--+---+-------+-----+-------+-------+---------+
5342 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
5343 * +--+---+--+---+-------+-----+-------+-------+---------+
5344 */
5345 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5346 {
5347 int op0 = extract32(insn, 30, 1);
5348 int op1 = extract32(insn, 28, 1);
5349 int op2 = extract32(insn, 21, 4);
5350 int op3 = extract32(insn, 10, 6);
5351
5352 if (!op1) {
5353 if (op2 & 8) {
5354 if (op2 & 1) {
5355 /* Add/sub (extended register) */
5356 disas_add_sub_ext_reg(s, insn);
5357 } else {
5358 /* Add/sub (shifted register) */
5359 disas_add_sub_reg(s, insn);
5360 }
5361 } else {
5362 /* Logical (shifted register) */
5363 disas_logic_reg(s, insn);
5364 }
5365 return;
5366 }
5367
5368 switch (op2) {
5369 case 0x0:
5370 switch (op3) {
5371 case 0x00: /* Add/subtract (with carry) */
5372 disas_adc_sbc(s, insn);
5373 break;
5374
5375 case 0x01: /* Rotate right into flags */
5376 case 0x21:
5377 disas_rotate_right_into_flags(s, insn);
5378 break;
5379
5380 case 0x02: /* Evaluate into flags */
5381 case 0x12:
5382 case 0x22:
5383 case 0x32:
5384 disas_evaluate_into_flags(s, insn);
5385 break;
5386
5387 default:
5388 goto do_unallocated;
5389 }
5390 break;
5391
5392 case 0x2: /* Conditional compare */
5393 disas_cc(s, insn); /* both imm and reg forms */
5394 break;
5395
5396 case 0x4: /* Conditional select */
5397 disas_cond_select(s, insn);
5398 break;
5399
5400 case 0x6: /* Data-processing */
5401 if (op0) { /* (1 source) */
5402 disas_data_proc_1src(s, insn);
5403 } else { /* (2 source) */
5404 disas_data_proc_2src(s, insn);
5405 }
5406 break;
5407 case 0x8 ... 0xf: /* (3 source) */
5408 disas_data_proc_3src(s, insn);
5409 break;
5410
5411 default:
5412 do_unallocated:
5413 unallocated_encoding(s);
5414 break;
5415 }
5416 }
5417
5418 static void handle_fp_compare(DisasContext *s, int size,
5419 unsigned int rn, unsigned int rm,
5420 bool cmp_with_zero, bool signal_all_nans)
5421 {
5422 TCGv_i64 tcg_flags = tcg_temp_new_i64();
5423 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
5424
5425 if (size == MO_64) {
5426 TCGv_i64 tcg_vn, tcg_vm;
5427
5428 tcg_vn = read_fp_dreg(s, rn);
5429 if (cmp_with_zero) {
5430 tcg_vm = tcg_const_i64(0);
5431 } else {
5432 tcg_vm = read_fp_dreg(s, rm);
5433 }
5434 if (signal_all_nans) {
5435 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5436 } else {
5437 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5438 }
5439 tcg_temp_free_i64(tcg_vn);
5440 tcg_temp_free_i64(tcg_vm);
5441 } else {
5442 TCGv_i32 tcg_vn = tcg_temp_new_i32();
5443 TCGv_i32 tcg_vm = tcg_temp_new_i32();
5444
5445 read_vec_element_i32(s, tcg_vn, rn, 0, size);
5446 if (cmp_with_zero) {
5447 tcg_gen_movi_i32(tcg_vm, 0);
5448 } else {
5449 read_vec_element_i32(s, tcg_vm, rm, 0, size);
5450 }
5451
5452 switch (size) {
5453 case MO_32:
5454 if (signal_all_nans) {
5455 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5456 } else {
5457 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5458 }
5459 break;
5460 case MO_16:
5461 if (signal_all_nans) {
5462 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5463 } else {
5464 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5465 }
5466 break;
5467 default:
5468 g_assert_not_reached();
5469 }
5470
5471 tcg_temp_free_i32(tcg_vn);
5472 tcg_temp_free_i32(tcg_vm);
5473 }
5474
5475 tcg_temp_free_ptr(fpst);
5476
5477 gen_set_nzcv(tcg_flags);
5478
5479 tcg_temp_free_i64(tcg_flags);
5480 }
5481
5482 /* Floating point compare
5483 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
5484 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5485 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
5486 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5487 */
5488 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5489 {
5490 unsigned int mos, type, rm, op, rn, opc, op2r;
5491 int size;
5492
5493 mos = extract32(insn, 29, 3);
5494 type = extract32(insn, 22, 2);
5495 rm = extract32(insn, 16, 5);
5496 op = extract32(insn, 14, 2);
5497 rn = extract32(insn, 5, 5);
5498 opc = extract32(insn, 3, 2);
5499 op2r = extract32(insn, 0, 3);
5500
5501 if (mos || op || op2r) {
5502 unallocated_encoding(s);
5503 return;
5504 }
5505
5506 switch (type) {
5507 case 0:
5508 size = MO_32;
5509 break;
5510 case 1:
5511 size = MO_64;
5512 break;
5513 case 3:
5514 size = MO_16;
5515 if (dc_isar_feature(aa64_fp16, s)) {
5516 break;
5517 }
5518 /* fallthru */
5519 default:
5520 unallocated_encoding(s);
5521 return;
5522 }
5523
5524 if (!fp_access_check(s)) {
5525 return;
5526 }
5527
5528 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5529 }
5530
5531 /* Floating point conditional compare
5532 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5533 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5534 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
5535 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5536 */
5537 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5538 {
5539 unsigned int mos, type, rm, cond, rn, op, nzcv;
5540 TCGv_i64 tcg_flags;
5541 TCGLabel *label_continue = NULL;
5542 int size;
5543
5544 mos = extract32(insn, 29, 3);
5545 type = extract32(insn, 22, 2);
5546 rm = extract32(insn, 16, 5);
5547 cond = extract32(insn, 12, 4);
5548 rn = extract32(insn, 5, 5);
5549 op = extract32(insn, 4, 1);
5550 nzcv = extract32(insn, 0, 4);
5551
5552 if (mos) {
5553 unallocated_encoding(s);
5554 return;
5555 }
5556
5557 switch (type) {
5558 case 0:
5559 size = MO_32;
5560 break;
5561 case 1:
5562 size = MO_64;
5563 break;
5564 case 3:
5565 size = MO_16;
5566 if (dc_isar_feature(aa64_fp16, s)) {
5567 break;
5568 }
5569 /* fallthru */
5570 default:
5571 unallocated_encoding(s);
5572 return;
5573 }
5574
5575 if (!fp_access_check(s)) {
5576 return;
5577 }
5578
5579 if (cond < 0x0e) { /* not always */
5580 TCGLabel *label_match = gen_new_label();
5581 label_continue = gen_new_label();
5582 arm_gen_test_cc(cond, label_match);
5583 /* nomatch: */
5584 tcg_flags = tcg_const_i64(nzcv << 28);
5585 gen_set_nzcv(tcg_flags);
5586 tcg_temp_free_i64(tcg_flags);
5587 tcg_gen_br(label_continue);
5588 gen_set_label(label_match);
5589 }
5590
5591 handle_fp_compare(s, size, rn, rm, false, op);
5592
5593 if (cond < 0x0e) {
5594 gen_set_label(label_continue);
5595 }
5596 }
5597
5598 /* Floating point conditional select
5599 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5600 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5601 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
5602 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5603 */
5604 static void disas_fp_csel(DisasContext *s, uint32_t insn)
5605 {
5606 unsigned int mos, type, rm, cond, rn, rd;
5607 TCGv_i64 t_true, t_false, t_zero;
5608 DisasCompare64 c;
5609 MemOp sz;
5610
5611 mos = extract32(insn, 29, 3);
5612 type = extract32(insn, 22, 2);
5613 rm = extract32(insn, 16, 5);
5614 cond = extract32(insn, 12, 4);
5615 rn = extract32(insn, 5, 5);
5616 rd = extract32(insn, 0, 5);
5617
5618 if (mos) {
5619 unallocated_encoding(s);
5620 return;
5621 }
5622
5623 switch (type) {
5624 case 0:
5625 sz = MO_32;
5626 break;
5627 case 1:
5628 sz = MO_64;
5629 break;
5630 case 3:
5631 sz = MO_16;
5632 if (dc_isar_feature(aa64_fp16, s)) {
5633 break;
5634 }
5635 /* fallthru */
5636 default:
5637 unallocated_encoding(s);
5638 return;
5639 }
5640
5641 if (!fp_access_check(s)) {
5642 return;
5643 }
5644
5645 /* Zero extend sreg & hreg inputs to 64 bits now. */
5646 t_true = tcg_temp_new_i64();
5647 t_false = tcg_temp_new_i64();
5648 read_vec_element(s, t_true, rn, 0, sz);
5649 read_vec_element(s, t_false, rm, 0, sz);
5650
5651 a64_test_cc(&c, cond);
5652 t_zero = tcg_const_i64(0);
5653 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
5654 tcg_temp_free_i64(t_zero);
5655 tcg_temp_free_i64(t_false);
5656 a64_free_cc(&c);
5657
5658 /* Note that sregs & hregs write back zeros to the high bits,
5659 and we've already done the zero-extension. */
5660 write_fp_dreg(s, rd, t_true);
5661 tcg_temp_free_i64(t_true);
5662 }
5663
5664 /* Floating-point data-processing (1 source) - half precision */
5665 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
5666 {
5667 TCGv_ptr fpst = NULL;
5668 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
5669 TCGv_i32 tcg_res = tcg_temp_new_i32();
5670
5671 switch (opcode) {
5672 case 0x0: /* FMOV */
5673 tcg_gen_mov_i32(tcg_res, tcg_op);
5674 break;
5675 case 0x1: /* FABS */
5676 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
5677 break;
5678 case 0x2: /* FNEG */
5679 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
5680 break;
5681 case 0x3: /* FSQRT */
5682 fpst = get_fpstatus_ptr(true);
5683 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
5684 break;
5685 case 0x8: /* FRINTN */
5686 case 0x9: /* FRINTP */
5687 case 0xa: /* FRINTM */
5688 case 0xb: /* FRINTZ */
5689 case 0xc: /* FRINTA */
5690 {
5691 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5692 fpst = get_fpstatus_ptr(true);
5693
5694 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5695 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5696
5697 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5698 tcg_temp_free_i32(tcg_rmode);
5699 break;
5700 }
5701 case 0xe: /* FRINTX */
5702 fpst = get_fpstatus_ptr(true);
5703 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
5704 break;
5705 case 0xf: /* FRINTI */
5706 fpst = get_fpstatus_ptr(true);
5707 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5708 break;
5709 default:
5710 abort();
5711 }
5712
5713 write_fp_sreg(s, rd, tcg_res);
5714
5715 if (fpst) {
5716 tcg_temp_free_ptr(fpst);
5717 }
5718 tcg_temp_free_i32(tcg_op);
5719 tcg_temp_free_i32(tcg_res);
5720 }
5721
5722 /* Floating-point data-processing (1 source) - single precision */
5723 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
5724 {
5725 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
5726 TCGv_i32 tcg_op, tcg_res;
5727 TCGv_ptr fpst;
5728 int rmode = -1;
5729
5730 tcg_op = read_fp_sreg(s, rn);
5731 tcg_res = tcg_temp_new_i32();
5732
5733 switch (opcode) {
5734 case 0x0: /* FMOV */
5735 tcg_gen_mov_i32(tcg_res, tcg_op);
5736 goto done;
5737 case 0x1: /* FABS */
5738 gen_helper_vfp_abss(tcg_res, tcg_op);
5739 goto done;
5740 case 0x2: /* FNEG */
5741 gen_helper_vfp_negs(tcg_res, tcg_op);
5742 goto done;
5743 case 0x3: /* FSQRT */
5744 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
5745 goto done;
5746 case 0x8: /* FRINTN */
5747 case 0x9: /* FRINTP */
5748 case 0xa: /* FRINTM */
5749 case 0xb: /* FRINTZ */
5750 case 0xc: /* FRINTA */
5751 rmode = arm_rmode_to_sf(opcode & 7);
5752 gen_fpst = gen_helper_rints;
5753 break;
5754 case 0xe: /* FRINTX */
5755 gen_fpst = gen_helper_rints_exact;
5756 break;
5757 case 0xf: /* FRINTI */
5758 gen_fpst = gen_helper_rints;
5759 break;
5760 case 0x10: /* FRINT32Z */
5761 rmode = float_round_to_zero;
5762 gen_fpst = gen_helper_frint32_s;
5763 break;
5764 case 0x11: /* FRINT32X */
5765 gen_fpst = gen_helper_frint32_s;
5766 break;
5767 case 0x12: /* FRINT64Z */
5768 rmode = float_round_to_zero;
5769 gen_fpst = gen_helper_frint64_s;
5770 break;
5771 case 0x13: /* FRINT64X */
5772 gen_fpst = gen_helper_frint64_s;
5773 break;
5774 default:
5775 g_assert_not_reached();
5776 }
5777
5778 fpst = get_fpstatus_ptr(false);
5779 if (rmode >= 0) {
5780 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
5781 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5782 gen_fpst(tcg_res, tcg_op, fpst);
5783 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5784 tcg_temp_free_i32(tcg_rmode);
5785 } else {
5786 gen_fpst(tcg_res, tcg_op, fpst);
5787 }
5788 tcg_temp_free_ptr(fpst);
5789
5790 done:
5791 write_fp_sreg(s, rd, tcg_res);
5792 tcg_temp_free_i32(tcg_op);
5793 tcg_temp_free_i32(tcg_res);
5794 }
5795
5796 /* Floating-point data-processing (1 source) - double precision */
5797 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
5798 {
5799 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
5800 TCGv_i64 tcg_op, tcg_res;
5801 TCGv_ptr fpst;
5802 int rmode = -1;
5803
5804 switch (opcode) {
5805 case 0x0: /* FMOV */
5806 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
5807 return;
5808 }
5809
5810 tcg_op = read_fp_dreg(s, rn);
5811 tcg_res = tcg_temp_new_i64();
5812
5813 switch (opcode) {
5814 case 0x1: /* FABS */
5815 gen_helper_vfp_absd(tcg_res, tcg_op);
5816 goto done;
5817 case 0x2: /* FNEG */
5818 gen_helper_vfp_negd(tcg_res, tcg_op);
5819 goto done;
5820 case 0x3: /* FSQRT */
5821 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
5822 goto done;
5823 case 0x8: /* FRINTN */
5824 case 0x9: /* FRINTP */
5825 case 0xa: /* FRINTM */
5826 case 0xb: /* FRINTZ */
5827 case 0xc: /* FRINTA */
5828 rmode = arm_rmode_to_sf(opcode & 7);
5829 gen_fpst = gen_helper_rintd;
5830 break;
5831 case 0xe: /* FRINTX */
5832 gen_fpst = gen_helper_rintd_exact;
5833 break;
5834 case 0xf: /* FRINTI */
5835 gen_fpst = gen_helper_rintd;
5836 break;
5837 case 0x10: /* FRINT32Z */
5838 rmode = float_round_to_zero;
5839 gen_fpst = gen_helper_frint32_d;
5840 break;
5841 case 0x11: /* FRINT32X */
5842 gen_fpst = gen_helper_frint32_d;
5843 break;
5844 case 0x12: /* FRINT64Z */
5845 rmode = float_round_to_zero;
5846 gen_fpst = gen_helper_frint64_d;
5847 break;
5848 case 0x13: /* FRINT64X */
5849 gen_fpst = gen_helper_frint64_d;
5850 break;
5851 default:
5852 g_assert_not_reached();
5853 }
5854
5855 fpst = get_fpstatus_ptr(false);
5856 if (rmode >= 0) {
5857 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
5858 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5859 gen_fpst(tcg_res, tcg_op, fpst);
5860 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5861 tcg_temp_free_i32(tcg_rmode);
5862 } else {
5863 gen_fpst(tcg_res, tcg_op, fpst);
5864 }
5865 tcg_temp_free_ptr(fpst);
5866
5867 done:
5868 write_fp_dreg(s, rd, tcg_res);
5869 tcg_temp_free_i64(tcg_op);
5870 tcg_temp_free_i64(tcg_res);
5871 }
5872
5873 static void handle_fp_fcvt(DisasContext *s, int opcode,
5874 int rd, int rn, int dtype, int ntype)
5875 {
5876 switch (ntype) {
5877 case 0x0:
5878 {
5879 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5880 if (dtype == 1) {
5881 /* Single to double */
5882 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5883 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
5884 write_fp_dreg(s, rd, tcg_rd);
5885 tcg_temp_free_i64(tcg_rd);
5886 } else {
5887 /* Single to half */
5888 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5889 TCGv_i32 ahp = get_ahp_flag();
5890 TCGv_ptr fpst = get_fpstatus_ptr(false);
5891
5892 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5893 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5894 write_fp_sreg(s, rd, tcg_rd);
5895 tcg_temp_free_i32(tcg_rd);
5896 tcg_temp_free_i32(ahp);
5897 tcg_temp_free_ptr(fpst);
5898 }
5899 tcg_temp_free_i32(tcg_rn);
5900 break;
5901 }
5902 case 0x1:
5903 {
5904 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
5905 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5906 if (dtype == 0) {
5907 /* Double to single */
5908 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
5909 } else {
5910 TCGv_ptr fpst = get_fpstatus_ptr(false);
5911 TCGv_i32 ahp = get_ahp_flag();
5912 /* Double to half */
5913 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5914 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5915 tcg_temp_free_ptr(fpst);
5916 tcg_temp_free_i32(ahp);
5917 }
5918 write_fp_sreg(s, rd, tcg_rd);
5919 tcg_temp_free_i32(tcg_rd);
5920 tcg_temp_free_i64(tcg_rn);
5921 break;
5922 }
5923 case 0x3:
5924 {
5925 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5926 TCGv_ptr tcg_fpst = get_fpstatus_ptr(false);
5927 TCGv_i32 tcg_ahp = get_ahp_flag();
5928 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
5929 if (dtype == 0) {
5930 /* Half to single */
5931 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5932 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5933 write_fp_sreg(s, rd, tcg_rd);
5934 tcg_temp_free_i32(tcg_rd);
5935 } else {
5936 /* Half to double */
5937 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5938 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5939 write_fp_dreg(s, rd, tcg_rd);
5940 tcg_temp_free_i64(tcg_rd);
5941 }
5942 tcg_temp_free_i32(tcg_rn);
5943 tcg_temp_free_ptr(tcg_fpst);
5944 tcg_temp_free_i32(tcg_ahp);
5945 break;
5946 }
5947 default:
5948 abort();
5949 }
5950 }
5951
5952 /* Floating point data-processing (1 source)
5953 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
5954 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5955 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
5956 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5957 */
5958 static void disas_fp_1src(DisasContext *s, uint32_t insn)
5959 {
5960 int mos = extract32(insn, 29, 3);
5961 int type = extract32(insn, 22, 2);
5962 int opcode = extract32(insn, 15, 6);
5963 int rn = extract32(insn, 5, 5);
5964 int rd = extract32(insn, 0, 5);
5965
5966 if (mos) {
5967 unallocated_encoding(s);
5968 return;
5969 }
5970
5971 switch (opcode) {
5972 case 0x4: case 0x5: case 0x7:
5973 {
5974 /* FCVT between half, single and double precision */
5975 int dtype = extract32(opcode, 0, 2);
5976 if (type == 2 || dtype == type) {
5977 unallocated_encoding(s);
5978 return;
5979 }
5980 if (!fp_access_check(s)) {
5981 return;
5982 }
5983
5984 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
5985 break;
5986 }
5987
5988 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
5989 if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
5990 unallocated_encoding(s);
5991 return;
5992 }
5993 /* fall through */
5994 case 0x0 ... 0x3:
5995 case 0x8 ... 0xc:
5996 case 0xe ... 0xf:
5997 /* 32-to-32 and 64-to-64 ops */
5998 switch (type) {
5999 case 0:
6000 if (!fp_access_check(s)) {
6001 return;
6002 }
6003 handle_fp_1src_single(s, opcode, rd, rn);
6004 break;
6005 case 1:
6006 if (!fp_access_check(s)) {
6007 return;
6008 }
6009 handle_fp_1src_double(s, opcode, rd, rn);
6010 break;
6011 case 3:
6012 if (!dc_isar_feature(aa64_fp16, s)) {
6013 unallocated_encoding(s);
6014 return;
6015 }
6016
6017 if (!fp_access_check(s)) {
6018 return;
6019 }
6020 handle_fp_1src_half(s, opcode, rd, rn);
6021 break;
6022 default:
6023 unallocated_encoding(s);
6024 }
6025 break;
6026
6027 default:
6028 unallocated_encoding(s);
6029 break;
6030 }
6031 }
6032
6033 /* Floating-point data-processing (2 source) - single precision */
6034 static void handle_fp_2src_single(DisasContext *s, int opcode,
6035 int rd, int rn, int rm)
6036 {
6037 TCGv_i32 tcg_op1;
6038 TCGv_i32 tcg_op2;
6039 TCGv_i32 tcg_res;
6040 TCGv_ptr fpst;
6041
6042 tcg_res = tcg_temp_new_i32();
6043 fpst = get_fpstatus_ptr(false);
6044 tcg_op1 = read_fp_sreg(s, rn);
6045 tcg_op2 = read_fp_sreg(s, rm);
6046
6047 switch (opcode) {
6048 case 0x0: /* FMUL */
6049 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6050 break;
6051 case 0x1: /* FDIV */
6052 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6053 break;
6054 case 0x2: /* FADD */
6055 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6056 break;
6057 case 0x3: /* FSUB */
6058 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6059 break;
6060 case 0x4: /* FMAX */
6061 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6062 break;
6063 case 0x5: /* FMIN */
6064 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6065 break;
6066 case 0x6: /* FMAXNM */
6067 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6068 break;
6069 case 0x7: /* FMINNM */
6070 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6071 break;
6072 case 0x8: /* FNMUL */
6073 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6074 gen_helper_vfp_negs(tcg_res, tcg_res);
6075 break;
6076 }
6077
6078 write_fp_sreg(s, rd, tcg_res);
6079
6080 tcg_temp_free_ptr(fpst);
6081 tcg_temp_free_i32(tcg_op1);
6082 tcg_temp_free_i32(tcg_op2);
6083 tcg_temp_free_i32(tcg_res);
6084 }
6085
6086 /* Floating-point data-processing (2 source) - double precision */
6087 static void handle_fp_2src_double(DisasContext *s, int opcode,
6088 int rd, int rn, int rm)
6089 {
6090 TCGv_i64 tcg_op1;
6091 TCGv_i64 tcg_op2;
6092 TCGv_i64 tcg_res;
6093 TCGv_ptr fpst;
6094
6095 tcg_res = tcg_temp_new_i64();
6096 fpst = get_fpstatus_ptr(false);
6097 tcg_op1 = read_fp_dreg(s, rn);
6098 tcg_op2 = read_fp_dreg(s, rm);
6099
6100 switch (opcode) {
6101 case 0x0: /* FMUL */
6102 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6103 break;
6104 case 0x1: /* FDIV */
6105 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6106 break;
6107 case 0x2: /* FADD */
6108 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6109 break;
6110 case 0x3: /* FSUB */
6111 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6112 break;
6113 case 0x4: /* FMAX */
6114 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6115 break;
6116 case 0x5: /* FMIN */
6117 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6118 break;
6119 case 0x6: /* FMAXNM */
6120 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6121 break;
6122 case 0x7: /* FMINNM */
6123 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6124 break;
6125 case 0x8: /* FNMUL */
6126 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6127 gen_helper_vfp_negd(tcg_res, tcg_res);
6128 break;
6129 }
6130
6131 write_fp_dreg(s, rd, tcg_res);
6132
6133 tcg_temp_free_ptr(fpst);
6134 tcg_temp_free_i64(tcg_op1);
6135 tcg_temp_free_i64(tcg_op2);
6136 tcg_temp_free_i64(tcg_res);
6137 }
6138
6139 /* Floating-point data-processing (2 source) - half precision */
6140 static void handle_fp_2src_half(DisasContext *s, int opcode,
6141 int rd, int rn, int rm)
6142 {
6143 TCGv_i32 tcg_op1;
6144 TCGv_i32 tcg_op2;
6145 TCGv_i32 tcg_res;
6146 TCGv_ptr fpst;
6147
6148 tcg_res = tcg_temp_new_i32();
6149 fpst = get_fpstatus_ptr(true);
6150 tcg_op1 = read_fp_hreg(s, rn);
6151 tcg_op2 = read_fp_hreg(s, rm);
6152
6153 switch (opcode) {
6154 case 0x0: /* FMUL */
6155 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6156 break;
6157 case 0x1: /* FDIV */
6158 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6159 break;
6160 case 0x2: /* FADD */
6161 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6162 break;
6163 case 0x3: /* FSUB */
6164 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6165 break;
6166 case 0x4: /* FMAX */
6167 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6168 break;
6169 case 0x5: /* FMIN */
6170 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6171 break;
6172 case 0x6: /* FMAXNM */
6173 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6174 break;
6175 case 0x7: /* FMINNM */
6176 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6177 break;
6178 case 0x8: /* FNMUL */
6179 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6180 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6181 break;
6182 default:
6183 g_assert_not_reached();
6184 }
6185
6186 write_fp_sreg(s, rd, tcg_res);
6187
6188 tcg_temp_free_ptr(fpst);
6189 tcg_temp_free_i32(tcg_op1);
6190 tcg_temp_free_i32(tcg_op2);
6191 tcg_temp_free_i32(tcg_res);
6192 }
6193
6194 /* Floating point data-processing (2 source)
6195 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6196 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6197 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
6198 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6199 */
6200 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6201 {
6202 int mos = extract32(insn, 29, 3);
6203 int type = extract32(insn, 22, 2);
6204 int rd = extract32(insn, 0, 5);
6205 int rn = extract32(insn, 5, 5);
6206 int rm = extract32(insn, 16, 5);
6207 int opcode = extract32(insn, 12, 4);
6208
6209 if (opcode > 8 || mos) {
6210 unallocated_encoding(s);
6211 return;
6212 }
6213
6214 switch (type) {
6215 case 0:
6216 if (!fp_access_check(s)) {
6217 return;
6218 }
6219 handle_fp_2src_single(s, opcode, rd, rn, rm);
6220 break;
6221 case 1:
6222 if (!fp_access_check(s)) {
6223 return;
6224 }
6225 handle_fp_2src_double(s, opcode, rd, rn, rm);
6226 break;
6227 case 3:
6228 if (!dc_isar_feature(aa64_fp16, s)) {
6229 unallocated_encoding(s);
6230 return;
6231 }
6232 if (!fp_access_check(s)) {
6233 return;
6234 }
6235 handle_fp_2src_half(s, opcode, rd, rn, rm);
6236 break;
6237 default:
6238 unallocated_encoding(s);
6239 }
6240 }
6241
6242 /* Floating-point data-processing (3 source) - single precision */
6243 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6244 int rd, int rn, int rm, int ra)
6245 {
6246 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6247 TCGv_i32 tcg_res = tcg_temp_new_i32();
6248 TCGv_ptr fpst = get_fpstatus_ptr(false);
6249
6250 tcg_op1 = read_fp_sreg(s, rn);
6251 tcg_op2 = read_fp_sreg(s, rm);
6252 tcg_op3 = read_fp_sreg(s, ra);
6253
6254 /* These are fused multiply-add, and must be done as one
6255 * floating point operation with no rounding between the
6256 * multiplication and addition steps.
6257 * NB that doing the negations here as separate steps is
6258 * correct : an input NaN should come out with its sign bit
6259 * flipped if it is a negated-input.
6260 */
6261 if (o1 == true) {
6262 gen_helper_vfp_negs(tcg_op3, tcg_op3);
6263 }
6264
6265 if (o0 != o1) {
6266 gen_helper_vfp_negs(tcg_op1, tcg_op1);
6267 }
6268
6269 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6270
6271 write_fp_sreg(s, rd, tcg_res);
6272
6273 tcg_temp_free_ptr(fpst);
6274 tcg_temp_free_i32(tcg_op1);
6275 tcg_temp_free_i32(tcg_op2);
6276 tcg_temp_free_i32(tcg_op3);
6277 tcg_temp_free_i32(tcg_res);
6278 }
6279
6280 /* Floating-point data-processing (3 source) - double precision */
6281 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6282 int rd, int rn, int rm, int ra)
6283 {
6284 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6285 TCGv_i64 tcg_res = tcg_temp_new_i64();
6286 TCGv_ptr fpst = get_fpstatus_ptr(false);
6287
6288 tcg_op1 = read_fp_dreg(s, rn);
6289 tcg_op2 = read_fp_dreg(s, rm);
6290 tcg_op3 = read_fp_dreg(s, ra);
6291
6292 /* These are fused multiply-add, and must be done as one
6293 * floating point operation with no rounding between the
6294 * multiplication and addition steps.
6295 * NB that doing the negations here as separate steps is
6296 * correct : an input NaN should come out with its sign bit
6297 * flipped if it is a negated-input.
6298 */
6299 if (o1 == true) {
6300 gen_helper_vfp_negd(tcg_op3, tcg_op3);
6301 }
6302
6303 if (o0 != o1) {
6304 gen_helper_vfp_negd(tcg_op1, tcg_op1);
6305 }
6306
6307 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6308
6309 write_fp_dreg(s, rd, tcg_res);
6310
6311 tcg_temp_free_ptr(fpst);
6312 tcg_temp_free_i64(tcg_op1);
6313 tcg_temp_free_i64(tcg_op2);
6314 tcg_temp_free_i64(tcg_op3);
6315 tcg_temp_free_i64(tcg_res);
6316 }
6317
6318 /* Floating-point data-processing (3 source) - half precision */
6319 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6320 int rd, int rn, int rm, int ra)
6321 {
6322 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6323 TCGv_i32 tcg_res = tcg_temp_new_i32();
6324 TCGv_ptr fpst = get_fpstatus_ptr(true);
6325
6326 tcg_op1 = read_fp_hreg(s, rn);
6327 tcg_op2 = read_fp_hreg(s, rm);
6328 tcg_op3 = read_fp_hreg(s, ra);
6329
6330 /* These are fused multiply-add, and must be done as one
6331 * floating point operation with no rounding between the
6332 * multiplication and addition steps.
6333 * NB that doing the negations here as separate steps is
6334 * correct : an input NaN should come out with its sign bit
6335 * flipped if it is a negated-input.
6336 */
6337 if (o1 == true) {
6338 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6339 }
6340
6341 if (o0 != o1) {
6342 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6343 }
6344
6345 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6346
6347 write_fp_sreg(s, rd, tcg_res);
6348
6349 tcg_temp_free_ptr(fpst);
6350 tcg_temp_free_i32(tcg_op1);
6351 tcg_temp_free_i32(tcg_op2);
6352 tcg_temp_free_i32(tcg_op3);
6353 tcg_temp_free_i32(tcg_res);
6354 }
6355
6356 /* Floating point data-processing (3 source)
6357 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6358 * +---+---+---+-----------+------+----+------+----+------+------+------+
6359 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6360 * +---+---+---+-----------+------+----+------+----+------+------+------+
6361 */
6362 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6363 {
6364 int mos = extract32(insn, 29, 3);
6365 int type = extract32(insn, 22, 2);
6366 int rd = extract32(insn, 0, 5);
6367 int rn = extract32(insn, 5, 5);
6368 int ra = extract32(insn, 10, 5);
6369 int rm = extract32(insn, 16, 5);
6370 bool o0 = extract32(insn, 15, 1);
6371 bool o1 = extract32(insn, 21, 1);
6372
6373 if (mos) {
6374 unallocated_encoding(s);
6375 return;
6376 }
6377
6378 switch (type) {
6379 case 0:
6380 if (!fp_access_check(s)) {
6381 return;
6382 }
6383 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6384 break;
6385 case 1:
6386 if (!fp_access_check(s)) {
6387 return;
6388 }
6389 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6390 break;
6391 case 3:
6392 if (!dc_isar_feature(aa64_fp16, s)) {
6393 unallocated_encoding(s);
6394 return;
6395 }
6396 if (!fp_access_check(s)) {
6397 return;
6398 }
6399 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6400 break;
6401 default:
6402 unallocated_encoding(s);
6403 }
6404 }
6405
6406 /* Floating point immediate
6407 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
6408 * +---+---+---+-----------+------+---+------------+-------+------+------+
6409 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
6410 * +---+---+---+-----------+------+---+------------+-------+------+------+
6411 */
6412 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6413 {
6414 int rd = extract32(insn, 0, 5);
6415 int imm5 = extract32(insn, 5, 5);
6416 int imm8 = extract32(insn, 13, 8);
6417 int type = extract32(insn, 22, 2);
6418 int mos = extract32(insn, 29, 3);
6419 uint64_t imm;
6420 TCGv_i64 tcg_res;
6421 MemOp sz;
6422
6423 if (mos || imm5) {
6424 unallocated_encoding(s);
6425 return;
6426 }
6427
6428 switch (type) {
6429 case 0:
6430 sz = MO_32;
6431 break;
6432 case 1:
6433 sz = MO_64;
6434 break;
6435 case 3:
6436 sz = MO_16;
6437 if (dc_isar_feature(aa64_fp16, s)) {
6438 break;
6439 }
6440 /* fallthru */
6441 default:
6442 unallocated_encoding(s);
6443 return;
6444 }
6445
6446 if (!fp_access_check(s)) {
6447 return;
6448 }
6449
6450 imm = vfp_expand_imm(sz, imm8);
6451
6452 tcg_res = tcg_const_i64(imm);
6453 write_fp_dreg(s, rd, tcg_res);
6454 tcg_temp_free_i64(tcg_res);
6455 }
6456
6457 /* Handle floating point <=> fixed point conversions. Note that we can
6458 * also deal with fp <=> integer conversions as a special case (scale == 64)
6459 * OPTME: consider handling that special case specially or at least skipping
6460 * the call to scalbn in the helpers for zero shifts.
6461 */
6462 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6463 bool itof, int rmode, int scale, int sf, int type)
6464 {
6465 bool is_signed = !(opcode & 1);
6466 TCGv_ptr tcg_fpstatus;
6467 TCGv_i32 tcg_shift, tcg_single;
6468 TCGv_i64 tcg_double;
6469
6470 tcg_fpstatus = get_fpstatus_ptr(type == 3);
6471
6472 tcg_shift = tcg_const_i32(64 - scale);
6473
6474 if (itof) {
6475 TCGv_i64 tcg_int = cpu_reg(s, rn);
6476 if (!sf) {
6477 TCGv_i64 tcg_extend = new_tmp_a64(s);
6478
6479 if (is_signed) {
6480 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6481 } else {
6482 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6483 }
6484
6485 tcg_int = tcg_extend;
6486 }
6487
6488 switch (type) {
6489 case 1: /* float64 */
6490 tcg_double = tcg_temp_new_i64();
6491 if (is_signed) {
6492 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6493 tcg_shift, tcg_fpstatus);
6494 } else {
6495 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6496 tcg_shift, tcg_fpstatus);
6497 }
6498 write_fp_dreg(s, rd, tcg_double);
6499 tcg_temp_free_i64(tcg_double);
6500 break;
6501
6502 case 0: /* float32 */
6503 tcg_single = tcg_temp_new_i32();
6504 if (is_signed) {
6505 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6506 tcg_shift, tcg_fpstatus);
6507 } else {
6508 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6509 tcg_shift, tcg_fpstatus);
6510 }
6511 write_fp_sreg(s, rd, tcg_single);
6512 tcg_temp_free_i32(tcg_single);
6513 break;
6514
6515 case 3: /* float16 */
6516 tcg_single = tcg_temp_new_i32();
6517 if (is_signed) {
6518 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6519 tcg_shift, tcg_fpstatus);
6520 } else {
6521 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6522 tcg_shift, tcg_fpstatus);
6523 }
6524 write_fp_sreg(s, rd, tcg_single);
6525 tcg_temp_free_i32(tcg_single);
6526 break;
6527
6528 default:
6529 g_assert_not_reached();
6530 }
6531 } else {
6532 TCGv_i64 tcg_int = cpu_reg(s, rd);
6533 TCGv_i32 tcg_rmode;
6534
6535 if (extract32(opcode, 2, 1)) {
6536 /* There are too many rounding modes to all fit into rmode,
6537 * so FCVTA[US] is a special case.
6538 */
6539 rmode = FPROUNDING_TIEAWAY;
6540 }
6541
6542 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
6543
6544 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
6545
6546 switch (type) {
6547 case 1: /* float64 */
6548 tcg_double = read_fp_dreg(s, rn);
6549 if (is_signed) {
6550 if (!sf) {
6551 gen_helper_vfp_tosld(tcg_int, tcg_double,
6552 tcg_shift, tcg_fpstatus);
6553 } else {
6554 gen_helper_vfp_tosqd(tcg_int, tcg_double,
6555 tcg_shift, tcg_fpstatus);
6556 }
6557 } else {
6558 if (!sf) {
6559 gen_helper_vfp_tould(tcg_int, tcg_double,
6560 tcg_shift, tcg_fpstatus);
6561 } else {
6562 gen_helper_vfp_touqd(tcg_int, tcg_double,
6563 tcg_shift, tcg_fpstatus);
6564 }
6565 }
6566 if (!sf) {
6567 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6568 }
6569 tcg_temp_free_i64(tcg_double);
6570 break;
6571
6572 case 0: /* float32 */
6573 tcg_single = read_fp_sreg(s, rn);
6574 if (sf) {
6575 if (is_signed) {
6576 gen_helper_vfp_tosqs(tcg_int, tcg_single,
6577 tcg_shift, tcg_fpstatus);
6578 } else {
6579 gen_helper_vfp_touqs(tcg_int, tcg_single,
6580 tcg_shift, tcg_fpstatus);
6581 }
6582 } else {
6583 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6584 if (is_signed) {
6585 gen_helper_vfp_tosls(tcg_dest, tcg_single,
6586 tcg_shift, tcg_fpstatus);
6587 } else {
6588 gen_helper_vfp_touls(tcg_dest, tcg_single,
6589 tcg_shift, tcg_fpstatus);
6590 }
6591 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6592 tcg_temp_free_i32(tcg_dest);
6593 }
6594 tcg_temp_free_i32(tcg_single);
6595 break;
6596
6597 case 3: /* float16 */
6598 tcg_single = read_fp_sreg(s, rn);
6599 if (sf) {
6600 if (is_signed) {
6601 gen_helper_vfp_tosqh(tcg_int, tcg_single,
6602 tcg_shift, tcg_fpstatus);
6603 } else {
6604 gen_helper_vfp_touqh(tcg_int, tcg_single,
6605 tcg_shift, tcg_fpstatus);
6606 }
6607 } else {
6608 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6609 if (is_signed) {
6610 gen_helper_vfp_toslh(tcg_dest, tcg_single,
6611 tcg_shift, tcg_fpstatus);
6612 } else {
6613 gen_helper_vfp_toulh(tcg_dest, tcg_single,
6614 tcg_shift, tcg_fpstatus);
6615 }
6616 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6617 tcg_temp_free_i32(tcg_dest);
6618 }
6619 tcg_temp_free_i32(tcg_single);
6620 break;
6621
6622 default:
6623 g_assert_not_reached();
6624 }
6625
6626 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
6627 tcg_temp_free_i32(tcg_rmode);
6628 }
6629
6630 tcg_temp_free_ptr(tcg_fpstatus);
6631 tcg_temp_free_i32(tcg_shift);
6632 }
6633
6634 /* Floating point <-> fixed point conversions
6635 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6636 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6637 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
6638 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6639 */
6640 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6641 {
6642 int rd = extract32(insn, 0, 5);
6643 int rn = extract32(insn, 5, 5);
6644 int scale = extract32(insn, 10, 6);
6645 int opcode = extract32(insn, 16, 3);
6646 int rmode = extract32(insn, 19, 2);
6647 int type = extract32(insn, 22, 2);
6648 bool sbit = extract32(insn, 29, 1);
6649 bool sf = extract32(insn, 31, 1);
6650 bool itof;
6651
6652 if (sbit || (!sf && scale < 32)) {
6653 unallocated_encoding(s);
6654 return;
6655 }
6656
6657 switch (type) {
6658 case 0: /* float32 */
6659 case 1: /* float64 */
6660 break;
6661 case 3: /* float16 */
6662 if (dc_isar_feature(aa64_fp16, s)) {
6663 break;
6664 }
6665 /* fallthru */
6666 default:
6667 unallocated_encoding(s);
6668 return;
6669 }
6670
6671 switch ((rmode << 3) | opcode) {
6672 case 0x2: /* SCVTF */
6673 case 0x3: /* UCVTF */
6674 itof = true;
6675 break;
6676 case 0x18: /* FCVTZS */
6677 case 0x19: /* FCVTZU */
6678 itof = false;
6679 break;
6680 default:
6681 unallocated_encoding(s);
6682 return;
6683 }
6684
6685 if (!fp_access_check(s)) {
6686 return;
6687 }
6688
6689 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
6690 }
6691
6692 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
6693 {
6694 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
6695 * without conversion.
6696 */
6697
6698 if (itof) {
6699 TCGv_i64 tcg_rn = cpu_reg(s, rn);
6700 TCGv_i64 tmp;
6701
6702 switch (type) {
6703 case 0:
6704 /* 32 bit */
6705 tmp = tcg_temp_new_i64();
6706 tcg_gen_ext32u_i64(tmp, tcg_rn);
6707 write_fp_dreg(s, rd, tmp);
6708 tcg_temp_free_i64(tmp);
6709 break;
6710 case 1:
6711 /* 64 bit */
6712 write_fp_dreg(s, rd, tcg_rn);
6713 break;
6714 case 2:
6715 /* 64 bit to top half. */
6716 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
6717 clear_vec_high(s, true, rd);
6718 break;
6719 case 3:
6720 /* 16 bit */
6721 tmp = tcg_temp_new_i64();
6722 tcg_gen_ext16u_i64(tmp, tcg_rn);
6723 write_fp_dreg(s, rd, tmp);
6724 tcg_temp_free_i64(tmp);
6725 break;
6726 default:
6727 g_assert_not_reached();
6728 }
6729 } else {
6730 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6731
6732 switch (type) {
6733 case 0:
6734 /* 32 bit */
6735 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
6736 break;
6737 case 1:
6738 /* 64 bit */
6739 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
6740 break;
6741 case 2:
6742 /* 64 bits from top half */
6743 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
6744 break;
6745 case 3:
6746 /* 16 bit */
6747 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
6748 break;
6749 default:
6750 g_assert_not_reached();
6751 }
6752 }
6753 }
6754
6755 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
6756 {
6757 TCGv_i64 t = read_fp_dreg(s, rn);
6758 TCGv_ptr fpstatus = get_fpstatus_ptr(false);
6759
6760 gen_helper_fjcvtzs(t, t, fpstatus);
6761
6762 tcg_temp_free_ptr(fpstatus);
6763
6764 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
6765 tcg_gen_extrh_i64_i32(cpu_ZF, t);
6766 tcg_gen_movi_i32(cpu_CF, 0);
6767 tcg_gen_movi_i32(cpu_NF, 0);
6768 tcg_gen_movi_i32(cpu_VF, 0);
6769
6770 tcg_temp_free_i64(t);
6771 }
6772
6773 /* Floating point <-> integer conversions
6774 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6775 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6776 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
6777 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6778 */
6779 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
6780 {
6781 int rd = extract32(insn, 0, 5);
6782 int rn = extract32(insn, 5, 5);
6783 int opcode = extract32(insn, 16, 3);
6784 int rmode = extract32(insn, 19, 2);
6785 int type = extract32(insn, 22, 2);
6786 bool sbit = extract32(insn, 29, 1);
6787 bool sf = extract32(insn, 31, 1);
6788 bool itof = false;
6789
6790 if (sbit) {
6791 goto do_unallocated;
6792 }
6793
6794 switch (opcode) {
6795 case 2: /* SCVTF */
6796 case 3: /* UCVTF */
6797 itof = true;
6798 /* fallthru */
6799 case 4: /* FCVTAS */
6800 case 5: /* FCVTAU */
6801 if (rmode != 0) {
6802 goto do_unallocated;
6803 }
6804 /* fallthru */
6805 case 0: /* FCVT[NPMZ]S */
6806 case 1: /* FCVT[NPMZ]U */
6807 switch (type) {
6808 case 0: /* float32 */
6809 case 1: /* float64 */
6810 break;
6811 case 3: /* float16 */
6812 if (!dc_isar_feature(aa64_fp16, s)) {
6813 goto do_unallocated;
6814 }
6815 break;
6816 default:
6817 goto do_unallocated;
6818 }
6819 if (!fp_access_check(s)) {
6820 return;
6821 }
6822 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
6823 break;
6824
6825 default:
6826 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
6827 case 0b01100110: /* FMOV half <-> 32-bit int */
6828 case 0b01100111:
6829 case 0b11100110: /* FMOV half <-> 64-bit int */
6830 case 0b11100111:
6831 if (!dc_isar_feature(aa64_fp16, s)) {
6832 goto do_unallocated;
6833 }
6834 /* fallthru */
6835 case 0b00000110: /* FMOV 32-bit */
6836 case 0b00000111:
6837 case 0b10100110: /* FMOV 64-bit */
6838 case 0b10100111:
6839 case 0b11001110: /* FMOV top half of 128-bit */
6840 case 0b11001111:
6841 if (!fp_access_check(s)) {
6842 return;
6843 }
6844 itof = opcode & 1;
6845 handle_fmov(s, rd, rn, type, itof);
6846 break;
6847
6848 case 0b00111110: /* FJCVTZS */
6849 if (!dc_isar_feature(aa64_jscvt, s)) {
6850 goto do_unallocated;
6851 } else if (fp_access_check(s)) {
6852 handle_fjcvtzs(s, rd, rn);
6853 }
6854 break;
6855
6856 default:
6857 do_unallocated:
6858 unallocated_encoding(s);
6859 return;
6860 }
6861 break;
6862 }
6863 }
6864
6865 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
6866 * 31 30 29 28 25 24 0
6867 * +---+---+---+---------+-----------------------------+
6868 * | | 0 | | 1 1 1 1 | |
6869 * +---+---+---+---------+-----------------------------+
6870 */
6871 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
6872 {
6873 if (extract32(insn, 24, 1)) {
6874 /* Floating point data-processing (3 source) */
6875 disas_fp_3src(s, insn);
6876 } else if (extract32(insn, 21, 1) == 0) {
6877 /* Floating point to fixed point conversions */
6878 disas_fp_fixed_conv(s, insn);
6879 } else {
6880 switch (extract32(insn, 10, 2)) {
6881 case 1:
6882 /* Floating point conditional compare */
6883 disas_fp_ccomp(s, insn);
6884 break;
6885 case 2:
6886 /* Floating point data-processing (2 source) */
6887 disas_fp_2src(s, insn);
6888 break;
6889 case 3:
6890 /* Floating point conditional select */
6891 disas_fp_csel(s, insn);
6892 break;
6893 case 0:
6894 switch (ctz32(extract32(insn, 12, 4))) {
6895 case 0: /* [15:12] == xxx1 */
6896 /* Floating point immediate */
6897 disas_fp_imm(s, insn);
6898 break;
6899 case 1: /* [15:12] == xx10 */
6900 /* Floating point compare */
6901 disas_fp_compare(s, insn);
6902 break;
6903 case 2: /* [15:12] == x100 */
6904 /* Floating point data-processing (1 source) */
6905 disas_fp_1src(s, insn);
6906 break;
6907 case 3: /* [15:12] == 1000 */
6908 unallocated_encoding(s);
6909 break;
6910 default: /* [15:12] == 0000 */
6911 /* Floating point <-> integer conversions */
6912 disas_fp_int_conv(s, insn);
6913 break;
6914 }
6915 break;
6916 }
6917 }
6918 }
6919
6920 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
6921 int pos)
6922 {
6923 /* Extract 64 bits from the middle of two concatenated 64 bit
6924 * vector register slices left:right. The extracted bits start
6925 * at 'pos' bits into the right (least significant) side.
6926 * We return the result in tcg_right, and guarantee not to
6927 * trash tcg_left.
6928 */
6929 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6930 assert(pos > 0 && pos < 64);
6931
6932 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
6933 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
6934 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
6935
6936 tcg_temp_free_i64(tcg_tmp);
6937 }
6938
6939 /* EXT
6940 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
6941 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6942 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
6943 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6944 */
6945 static void disas_simd_ext(DisasContext *s, uint32_t insn)
6946 {
6947 int is_q = extract32(insn, 30, 1);
6948 int op2 = extract32(insn, 22, 2);
6949 int imm4 = extract32(insn, 11, 4);
6950 int rm = extract32(insn, 16, 5);
6951 int rn = extract32(insn, 5, 5);
6952 int rd = extract32(insn, 0, 5);
6953 int pos = imm4 << 3;
6954 TCGv_i64 tcg_resl, tcg_resh;
6955
6956 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
6957 unallocated_encoding(s);
6958 return;
6959 }
6960
6961 if (!fp_access_check(s)) {
6962 return;
6963 }
6964
6965 tcg_resh = tcg_temp_new_i64();
6966 tcg_resl = tcg_temp_new_i64();
6967
6968 /* Vd gets bits starting at pos bits into Vm:Vn. This is
6969 * either extracting 128 bits from a 128:128 concatenation, or
6970 * extracting 64 bits from a 64:64 concatenation.
6971 */
6972 if (!is_q) {
6973 read_vec_element(s, tcg_resl, rn, 0, MO_64);
6974 if (pos != 0) {
6975 read_vec_element(s, tcg_resh, rm, 0, MO_64);
6976 do_ext64(s, tcg_resh, tcg_resl, pos);
6977 }
6978 } else {
6979 TCGv_i64 tcg_hh;
6980 typedef struct {
6981 int reg;
6982 int elt;
6983 } EltPosns;
6984 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
6985 EltPosns *elt = eltposns;
6986
6987 if (pos >= 64) {
6988 elt++;
6989 pos -= 64;
6990 }
6991
6992 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
6993 elt++;
6994 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
6995 elt++;
6996 if (pos != 0) {
6997 do_ext64(s, tcg_resh, tcg_resl, pos);
6998 tcg_hh = tcg_temp_new_i64();
6999 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7000 do_ext64(s, tcg_hh, tcg_resh, pos);
7001 tcg_temp_free_i64(tcg_hh);
7002 }
7003 }
7004
7005 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7006 tcg_temp_free_i64(tcg_resl);
7007 if (is_q) {
7008 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7009 }
7010 tcg_temp_free_i64(tcg_resh);
7011 clear_vec_high(s, is_q, rd);
7012 }
7013
7014 /* TBL/TBX
7015 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
7016 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7017 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
7018 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7019 */
7020 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7021 {
7022 int op2 = extract32(insn, 22, 2);
7023 int is_q = extract32(insn, 30, 1);
7024 int rm = extract32(insn, 16, 5);
7025 int rn = extract32(insn, 5, 5);
7026 int rd = extract32(insn, 0, 5);
7027 int is_tblx = extract32(insn, 12, 1);
7028 int len = extract32(insn, 13, 2);
7029 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
7030 TCGv_i32 tcg_regno, tcg_numregs;
7031
7032 if (op2 != 0) {
7033 unallocated_encoding(s);
7034 return;
7035 }
7036
7037 if (!fp_access_check(s)) {
7038 return;
7039 }
7040
7041 /* This does a table lookup: for every byte element in the input
7042 * we index into a table formed from up to four vector registers,
7043 * and then the output is the result of the lookups. Our helper
7044 * function does the lookup operation for a single 64 bit part of
7045 * the input.
7046 */
7047 tcg_resl = tcg_temp_new_i64();
7048 tcg_resh = NULL;
7049
7050 if (is_tblx) {
7051 read_vec_element(s, tcg_resl, rd, 0, MO_64);
7052 } else {
7053 tcg_gen_movi_i64(tcg_resl, 0);
7054 }
7055
7056 if (is_q) {
7057 tcg_resh = tcg_temp_new_i64();
7058 if (is_tblx) {
7059 read_vec_element(s, tcg_resh, rd, 1, MO_64);
7060 } else {
7061 tcg_gen_movi_i64(tcg_resh, 0);
7062 }
7063 }
7064
7065 tcg_idx = tcg_temp_new_i64();
7066 tcg_regno = tcg_const_i32(rn);
7067 tcg_numregs = tcg_const_i32(len + 1);
7068 read_vec_element(s, tcg_idx, rm, 0, MO_64);
7069 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
7070 tcg_regno, tcg_numregs);
7071 if (is_q) {
7072 read_vec_element(s, tcg_idx, rm, 1, MO_64);
7073 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
7074 tcg_regno, tcg_numregs);
7075 }
7076 tcg_temp_free_i64(tcg_idx);
7077 tcg_temp_free_i32(tcg_regno);
7078 tcg_temp_free_i32(tcg_numregs);
7079
7080 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7081 tcg_temp_free_i64(tcg_resl);
7082
7083 if (is_q) {
7084 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7085 tcg_temp_free_i64(tcg_resh);
7086 }
7087 clear_vec_high(s, is_q, rd);
7088 }
7089
7090 /* ZIP/UZP/TRN
7091 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
7092 * +---+---+-------------+------+---+------+---+------------------+------+
7093 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
7094 * +---+---+-------------+------+---+------+---+------------------+------+
7095 */
7096 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7097 {
7098 int rd = extract32(insn, 0, 5);
7099 int rn = extract32(insn, 5, 5);
7100 int rm = extract32(insn, 16, 5);
7101 int size = extract32(insn, 22, 2);
7102 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7103 * bit 2 indicates 1 vs 2 variant of the insn.
7104 */
7105 int opcode = extract32(insn, 12, 2);
7106 bool part = extract32(insn, 14, 1);
7107 bool is_q = extract32(insn, 30, 1);
7108 int esize = 8 << size;
7109 int i, ofs;
7110 int datasize = is_q ? 128 : 64;
7111 int elements = datasize / esize;
7112 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
7113
7114 if (opcode == 0 || (size == 3 && !is_q)) {
7115 unallocated_encoding(s);
7116 return;
7117 }
7118
7119 if (!fp_access_check(s)) {
7120 return;
7121 }
7122
7123 tcg_resl = tcg_const_i64(0);
7124 tcg_resh = is_q ? tcg_const_i64(0) : NULL;
7125 tcg_res = tcg_temp_new_i64();
7126
7127 for (i = 0; i < elements; i++) {
7128 switch (opcode) {
7129 case 1: /* UZP1/2 */
7130 {
7131 int midpoint = elements / 2;
7132 if (i < midpoint) {
7133 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
7134 } else {
7135 read_vec_element(s, tcg_res, rm,
7136 2 * (i - midpoint) + part, size);
7137 }
7138 break;
7139 }
7140 case 2: /* TRN1/2 */
7141 if (i & 1) {
7142 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
7143 } else {
7144 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
7145 }
7146 break;
7147 case 3: /* ZIP1/2 */
7148 {
7149 int base = part * elements / 2;
7150 if (i & 1) {
7151 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
7152 } else {
7153 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
7154 }
7155 break;
7156 }
7157 default:
7158 g_assert_not_reached();
7159 }
7160
7161 ofs = i * esize;
7162 if (ofs < 64) {
7163 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
7164 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
7165 } else {
7166 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
7167 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
7168 }
7169 }
7170
7171 tcg_temp_free_i64(tcg_res);
7172
7173 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7174 tcg_temp_free_i64(tcg_resl);
7175
7176 if (is_q) {
7177 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7178 tcg_temp_free_i64(tcg_resh);
7179 }
7180 clear_vec_high(s, is_q, rd);
7181 }
7182
7183 /*
7184 * do_reduction_op helper
7185 *
7186 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7187 * important for correct NaN propagation that we do these
7188 * operations in exactly the order specified by the pseudocode.
7189 *
7190 * This is a recursive function, TCG temps should be freed by the
7191 * calling function once it is done with the values.
7192 */
7193 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7194 int esize, int size, int vmap, TCGv_ptr fpst)
7195 {
7196 if (esize == size) {
7197 int element;
7198 MemOp msize = esize == 16 ? MO_16 : MO_32;
7199 TCGv_i32 tcg_elem;
7200
7201 /* We should have one register left here */
7202 assert(ctpop8(vmap) == 1);
7203 element = ctz32(vmap);
7204 assert(element < 8);
7205
7206 tcg_elem = tcg_temp_new_i32();
7207 read_vec_element_i32(s, tcg_elem, rn, element, msize);
7208 return tcg_elem;
7209 } else {
7210 int bits = size / 2;
7211 int shift = ctpop8(vmap) / 2;
7212 int vmap_lo = (vmap >> shift) & vmap;
7213 int vmap_hi = (vmap & ~vmap_lo);
7214 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7215
7216 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7217 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7218 tcg_res = tcg_temp_new_i32();
7219
7220 switch (fpopcode) {
7221 case 0x0c: /* fmaxnmv half-precision */
7222 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7223 break;
7224 case 0x0f: /* fmaxv half-precision */
7225 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7226 break;
7227 case 0x1c: /* fminnmv half-precision */
7228 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7229 break;
7230 case 0x1f: /* fminv half-precision */
7231 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7232 break;
7233 case 0x2c: /* fmaxnmv */
7234 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7235 break;
7236 case 0x2f: /* fmaxv */
7237 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7238 break;
7239 case 0x3c: /* fminnmv */
7240 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7241 break;
7242 case 0x3f: /* fminv */
7243 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7244 break;
7245 default:
7246 g_assert_not_reached();
7247 }
7248
7249 tcg_temp_free_i32(tcg_hi);
7250 tcg_temp_free_i32(tcg_lo);
7251 return tcg_res;
7252 }
7253 }
7254
7255 /* AdvSIMD across lanes
7256 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7257 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7258 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7259 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7260 */
7261 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7262 {
7263 int rd = extract32(insn, 0, 5);
7264 int rn = extract32(insn, 5, 5);
7265 int size = extract32(insn, 22, 2);
7266 int opcode = extract32(insn, 12, 5);
7267 bool is_q = extract32(insn, 30, 1);
7268 bool is_u = extract32(insn, 29, 1);
7269 bool is_fp = false;
7270 bool is_min = false;
7271 int esize;
7272 int elements;
7273 int i;
7274 TCGv_i64 tcg_res, tcg_elt;
7275
7276 switch (opcode) {
7277 case 0x1b: /* ADDV */
7278 if (is_u) {
7279 unallocated_encoding(s);
7280 return;
7281 }
7282 /* fall through */
7283 case 0x3: /* SADDLV, UADDLV */
7284 case 0xa: /* SMAXV, UMAXV */
7285 case 0x1a: /* SMINV, UMINV */
7286 if (size == 3 || (size == 2 && !is_q)) {
7287 unallocated_encoding(s);
7288 return;
7289 }
7290 break;
7291 case 0xc: /* FMAXNMV, FMINNMV */
7292 case 0xf: /* FMAXV, FMINV */
7293 /* Bit 1 of size field encodes min vs max and the actual size
7294 * depends on the encoding of the U bit. If not set (and FP16
7295 * enabled) then we do half-precision float instead of single
7296 * precision.
7297 */
7298 is_min = extract32(size, 1, 1);
7299 is_fp = true;
7300 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7301 size = 1;
7302 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7303 unallocated_encoding(s);
7304 return;
7305 } else {
7306 size = 2;
7307 }
7308 break;
7309 default:
7310 unallocated_encoding(s);
7311 return;
7312 }
7313
7314 if (!fp_access_check(s)) {
7315 return;
7316 }
7317
7318 esize = 8 << size;
7319 elements = (is_q ? 128 : 64) / esize;
7320
7321 tcg_res = tcg_temp_new_i64();
7322 tcg_elt = tcg_temp_new_i64();
7323
7324 /* These instructions operate across all lanes of a vector
7325 * to produce a single result. We can guarantee that a 64
7326 * bit intermediate is sufficient:
7327 * + for [US]ADDLV the maximum element size is 32 bits, and
7328 * the result type is 64 bits
7329 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7330 * same as the element size, which is 32 bits at most
7331 * For the integer operations we can choose to work at 64
7332 * or 32 bits and truncate at the end; for simplicity
7333 * we use 64 bits always. The floating point
7334 * ops do require 32 bit intermediates, though.
7335 */
7336 if (!is_fp) {
7337 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7338
7339 for (i = 1; i < elements; i++) {
7340 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7341
7342 switch (opcode) {
7343 case 0x03: /* SADDLV / UADDLV */
7344 case 0x1b: /* ADDV */
7345 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7346 break;
7347 case 0x0a: /* SMAXV / UMAXV */
7348 if (is_u) {
7349 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7350 } else {
7351 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7352 }
7353 break;
7354 case 0x1a: /* SMINV / UMINV */
7355 if (is_u) {
7356 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7357 } else {
7358 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7359 }
7360 break;
7361 default:
7362 g_assert_not_reached();
7363 }
7364
7365 }
7366 } else {
7367 /* Floating point vector reduction ops which work across 32
7368 * bit (single) or 16 bit (half-precision) intermediates.
7369 * Note that correct NaN propagation requires that we do these
7370 * operations in exactly the order specified by the pseudocode.
7371 */
7372 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
7373 int fpopcode = opcode | is_min << 4 | is_u << 5;
7374 int vmap = (1 << elements) - 1;
7375 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7376 (is_q ? 128 : 64), vmap, fpst);
7377 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7378 tcg_temp_free_i32(tcg_res32);
7379 tcg_temp_free_ptr(fpst);
7380 }
7381
7382 tcg_temp_free_i64(tcg_elt);
7383
7384 /* Now truncate the result to the width required for the final output */
7385 if (opcode == 0x03) {
7386 /* SADDLV, UADDLV: result is 2*esize */
7387 size++;
7388 }
7389
7390 switch (size) {
7391 case 0:
7392 tcg_gen_ext8u_i64(tcg_res, tcg_res);
7393 break;
7394 case 1:
7395 tcg_gen_ext16u_i64(tcg_res, tcg_res);
7396 break;
7397 case 2:
7398 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7399 break;
7400 case 3:
7401 break;
7402 default:
7403 g_assert_not_reached();
7404 }
7405
7406 write_fp_dreg(s, rd, tcg_res);
7407 tcg_temp_free_i64(tcg_res);
7408 }
7409
7410 /* DUP (Element, Vector)
7411 *
7412 * 31 30 29 21 20 16 15 10 9 5 4 0
7413 * +---+---+-------------------+--------+-------------+------+------+
7414 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7415 * +---+---+-------------------+--------+-------------+------+------+
7416 *
7417 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7418 */
7419 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7420 int imm5)
7421 {
7422 int size = ctz32(imm5);
7423 int index;
7424
7425 if (size > 3 || (size == 3 && !is_q)) {
7426 unallocated_encoding(s);
7427 return;
7428 }
7429
7430 if (!fp_access_check(s)) {
7431 return;
7432 }
7433
7434 index = imm5 >> (size + 1);
7435 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7436 vec_reg_offset(s, rn, index, size),
7437 is_q ? 16 : 8, vec_full_reg_size(s));
7438 }
7439
7440 /* DUP (element, scalar)
7441 * 31 21 20 16 15 10 9 5 4 0
7442 * +-----------------------+--------+-------------+------+------+
7443 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7444 * +-----------------------+--------+-------------+------+------+
7445 */
7446 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7447 int imm5)
7448 {
7449 int size = ctz32(imm5);
7450 int index;
7451 TCGv_i64 tmp;
7452
7453 if (size > 3) {
7454 unallocated_encoding(s);
7455 return;
7456 }
7457
7458 if (!fp_access_check(s)) {
7459 return;
7460 }
7461
7462 index = imm5 >> (size + 1);
7463
7464 /* This instruction just extracts the specified element and
7465 * zero-extends it into the bottom of the destination register.
7466 */
7467 tmp = tcg_temp_new_i64();
7468 read_vec_element(s, tmp, rn, index, size);
7469 write_fp_dreg(s, rd, tmp);
7470 tcg_temp_free_i64(tmp);
7471 }
7472
7473 /* DUP (General)
7474 *
7475 * 31 30 29 21 20 16 15 10 9 5 4 0
7476 * +---+---+-------------------+--------+-------------+------+------+
7477 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
7478 * +---+---+-------------------+--------+-------------+------+------+
7479 *
7480 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7481 */
7482 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7483 int imm5)
7484 {
7485 int size = ctz32(imm5);
7486 uint32_t dofs, oprsz, maxsz;
7487
7488 if (size > 3 || ((size == 3) && !is_q)) {
7489 unallocated_encoding(s);
7490 return;
7491 }
7492
7493 if (!fp_access_check(s)) {
7494 return;
7495 }
7496
7497 dofs = vec_full_reg_offset(s, rd);
7498 oprsz = is_q ? 16 : 8;
7499 maxsz = vec_full_reg_size(s);
7500
7501 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7502 }
7503
7504 /* INS (Element)
7505 *
7506 * 31 21 20 16 15 14 11 10 9 5 4 0
7507 * +-----------------------+--------+------------+---+------+------+
7508 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7509 * +-----------------------+--------+------------+---+------+------+
7510 *
7511 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7512 * index: encoded in imm5<4:size+1>
7513 */
7514 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7515 int imm4, int imm5)
7516 {
7517 int size = ctz32(imm5);
7518 int src_index, dst_index;
7519 TCGv_i64 tmp;
7520
7521 if (size > 3) {
7522 unallocated_encoding(s);
7523 return;
7524 }
7525
7526 if (!fp_access_check(s)) {
7527 return;
7528 }
7529
7530 dst_index = extract32(imm5, 1+size, 5);
7531 src_index = extract32(imm4, size, 4);
7532
7533 tmp = tcg_temp_new_i64();
7534
7535 read_vec_element(s, tmp, rn, src_index, size);
7536 write_vec_element(s, tmp, rd, dst_index, size);
7537
7538 tcg_temp_free_i64(tmp);
7539
7540 /* INS is considered a 128-bit write for SVE. */
7541 clear_vec_high(s, true, rd);
7542 }
7543
7544
7545 /* INS (General)
7546 *
7547 * 31 21 20 16 15 10 9 5 4 0
7548 * +-----------------------+--------+-------------+------+------+
7549 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
7550 * +-----------------------+--------+-------------+------+------+
7551 *
7552 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7553 * index: encoded in imm5<4:size+1>
7554 */
7555 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7556 {
7557 int size = ctz32(imm5);
7558 int idx;
7559
7560 if (size > 3) {
7561 unallocated_encoding(s);
7562 return;
7563 }
7564
7565 if (!fp_access_check(s)) {
7566 return;
7567 }
7568
7569 idx = extract32(imm5, 1 + size, 4 - size);
7570 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7571
7572 /* INS is considered a 128-bit write for SVE. */
7573 clear_vec_high(s, true, rd);
7574 }
7575
7576 /*
7577 * UMOV (General)
7578 * SMOV (General)
7579 *
7580 * 31 30 29 21 20 16 15 12 10 9 5 4 0
7581 * +---+---+-------------------+--------+-------------+------+------+
7582 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
7583 * +---+---+-------------------+--------+-------------+------+------+
7584 *
7585 * U: unsigned when set
7586 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7587 */
7588 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7589 int rn, int rd, int imm5)
7590 {
7591 int size = ctz32(imm5);
7592 int element;
7593 TCGv_i64 tcg_rd;
7594
7595 /* Check for UnallocatedEncodings */
7596 if (is_signed) {
7597 if (size > 2 || (size == 2 && !is_q)) {
7598 unallocated_encoding(s);
7599 return;
7600 }
7601 } else {
7602 if (size > 3
7603 || (size < 3 && is_q)
7604 || (size == 3 && !is_q)) {
7605 unallocated_encoding(s);
7606 return;
7607 }
7608 }
7609
7610 if (!fp_access_check(s)) {
7611 return;
7612 }
7613
7614 element = extract32(imm5, 1+size, 4);
7615
7616 tcg_rd = cpu_reg(s, rd);
7617 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7618 if (is_signed && !is_q) {
7619 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7620 }
7621 }
7622
7623 /* AdvSIMD copy
7624 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7625 * +---+---+----+-----------------+------+---+------+---+------+------+
7626 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7627 * +---+---+----+-----------------+------+---+------+---+------+------+
7628 */
7629 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7630 {
7631 int rd = extract32(insn, 0, 5);
7632 int rn = extract32(insn, 5, 5);
7633 int imm4 = extract32(insn, 11, 4);
7634 int op = extract32(insn, 29, 1);
7635 int is_q = extract32(insn, 30, 1);
7636 int imm5 = extract32(insn, 16, 5);
7637
7638 if (op) {
7639 if (is_q) {
7640 /* INS (element) */
7641 handle_simd_inse(s, rd, rn, imm4, imm5);
7642 } else {
7643 unallocated_encoding(s);
7644 }
7645 } else {
7646 switch (imm4) {
7647 case 0:
7648 /* DUP (element - vector) */
7649 handle_simd_dupe(s, is_q, rd, rn, imm5);
7650 break;
7651 case 1:
7652 /* DUP (general) */
7653 handle_simd_dupg(s, is_q, rd, rn, imm5);
7654 break;
7655 case 3:
7656 if (is_q) {
7657 /* INS (general) */
7658 handle_simd_insg(s, rd, rn, imm5);
7659 } else {
7660 unallocated_encoding(s);
7661 }
7662 break;
7663 case 5:
7664 case 7:
7665 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7666 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7667 break;
7668 default:
7669 unallocated_encoding(s);
7670 break;
7671 }
7672 }
7673 }
7674
7675 /* AdvSIMD modified immediate
7676 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
7677 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7678 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
7679 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7680 *
7681 * There are a number of operations that can be carried out here:
7682 * MOVI - move (shifted) imm into register
7683 * MVNI - move inverted (shifted) imm into register
7684 * ORR - bitwise OR of (shifted) imm with register
7685 * BIC - bitwise clear of (shifted) imm with register
7686 * With ARMv8.2 we also have:
7687 * FMOV half-precision
7688 */
7689 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7690 {
7691 int rd = extract32(insn, 0, 5);
7692 int cmode = extract32(insn, 12, 4);
7693 int cmode_3_1 = extract32(cmode, 1, 3);
7694 int cmode_0 = extract32(cmode, 0, 1);
7695 int o2 = extract32(insn, 11, 1);
7696 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7697 bool is_neg = extract32(insn, 29, 1);
7698 bool is_q = extract32(insn, 30, 1);
7699 uint64_t imm = 0;
7700
7701 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7702 /* Check for FMOV (vector, immediate) - half-precision */
7703 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7704 unallocated_encoding(s);
7705 return;
7706 }
7707 }
7708
7709 if (!fp_access_check(s)) {
7710 return;
7711 }
7712
7713 /* See AdvSIMDExpandImm() in ARM ARM */
7714 switch (cmode_3_1) {
7715 case 0: /* Replicate(Zeros(24):imm8, 2) */
7716 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
7717 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
7718 case 3: /* Replicate(imm8:Zeros(24), 2) */
7719 {
7720 int shift = cmode_3_1 * 8;
7721 imm = bitfield_replicate(abcdefgh << shift, 32);
7722 break;
7723 }
7724 case 4: /* Replicate(Zeros(8):imm8, 4) */
7725 case 5: /* Replicate(imm8:Zeros(8), 4) */
7726 {
7727 int shift = (cmode_3_1 & 0x1) * 8;
7728 imm = bitfield_replicate(abcdefgh << shift, 16);
7729 break;
7730 }
7731 case 6:
7732 if (cmode_0) {
7733 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
7734 imm = (abcdefgh << 16) | 0xffff;
7735 } else {
7736 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
7737 imm = (abcdefgh << 8) | 0xff;
7738 }
7739 imm = bitfield_replicate(imm, 32);
7740 break;
7741 case 7:
7742 if (!cmode_0 && !is_neg) {
7743 imm = bitfield_replicate(abcdefgh, 8);
7744 } else if (!cmode_0 && is_neg) {
7745 int i;
7746 imm = 0;
7747 for (i = 0; i < 8; i++) {
7748 if ((abcdefgh) & (1 << i)) {
7749 imm |= 0xffULL << (i * 8);
7750 }
7751 }
7752 } else if (cmode_0) {
7753 if (is_neg) {
7754 imm = (abcdefgh & 0x3f) << 48;
7755 if (abcdefgh & 0x80) {
7756 imm |= 0x8000000000000000ULL;
7757 }
7758 if (abcdefgh & 0x40) {
7759 imm |= 0x3fc0000000000000ULL;
7760 } else {
7761 imm |= 0x4000000000000000ULL;
7762 }
7763 } else {
7764 if (o2) {
7765 /* FMOV (vector, immediate) - half-precision */
7766 imm = vfp_expand_imm(MO_16, abcdefgh);
7767 /* now duplicate across the lanes */
7768 imm = bitfield_replicate(imm, 16);
7769 } else {
7770 imm = (abcdefgh & 0x3f) << 19;
7771 if (abcdefgh & 0x80) {
7772 imm |= 0x80000000;
7773 }
7774 if (abcdefgh & 0x40) {
7775 imm |= 0x3e000000;
7776 } else {
7777 imm |= 0x40000000;
7778 }
7779 imm |= (imm << 32);
7780 }
7781 }
7782 }
7783 break;
7784 default:
7785 fprintf(stderr, "%s: cmode_3_1: %x\n", __func__, cmode_3_1);
7786 g_assert_not_reached();
7787 }
7788
7789 if (cmode_3_1 != 7 && is_neg) {
7790 imm = ~imm;
7791 }
7792
7793 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7794 /* MOVI or MVNI, with MVNI negation handled above. */
7795 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7796 vec_full_reg_size(s), imm);
7797 } else {
7798 /* ORR or BIC, with BIC negation to AND handled above. */
7799 if (is_neg) {
7800 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7801 } else {
7802 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7803 }
7804 }
7805 }
7806
7807 /* AdvSIMD scalar copy
7808 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7809 * +-----+----+-----------------+------+---+------+---+------+------+
7810 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7811 * +-----+----+-----------------+------+---+------+---+------+------+
7812 */
7813 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7814 {
7815 int rd = extract32(insn, 0, 5);
7816 int rn = extract32(insn, 5, 5);
7817 int imm4 = extract32(insn, 11, 4);
7818 int imm5 = extract32(insn, 16, 5);
7819 int op = extract32(insn, 29, 1);
7820
7821 if (op != 0 || imm4 != 0) {
7822 unallocated_encoding(s);
7823 return;
7824 }
7825
7826 /* DUP (element, scalar) */
7827 handle_simd_dupes(s, rd, rn, imm5);
7828 }
7829
7830 /* AdvSIMD scalar pairwise
7831 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7832 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7833 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7834 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7835 */
7836 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7837 {
7838 int u = extract32(insn, 29, 1);
7839 int size = extract32(insn, 22, 2);
7840 int opcode = extract32(insn, 12, 5);
7841 int rn = extract32(insn, 5, 5);
7842 int rd = extract32(insn, 0, 5);
7843 TCGv_ptr fpst;
7844
7845 /* For some ops (the FP ones), size[1] is part of the encoding.
7846 * For ADDP strictly it is not but size[1] is always 1 for valid
7847 * encodings.
7848 */
7849 opcode |= (extract32(size, 1, 1) << 5);
7850
7851 switch (opcode) {
7852 case 0x3b: /* ADDP */
7853 if (u || size != 3) {
7854 unallocated_encoding(s);
7855 return;
7856 }
7857 if (!fp_access_check(s)) {
7858 return;
7859 }
7860
7861 fpst = NULL;
7862 break;
7863 case 0xc: /* FMAXNMP */
7864 case 0xd: /* FADDP */
7865 case 0xf: /* FMAXP */
7866 case 0x2c: /* FMINNMP */
7867 case 0x2f: /* FMINP */
7868 /* FP op, size[0] is 32 or 64 bit*/
7869 if (!u) {
7870 if (!dc_isar_feature(aa64_fp16, s)) {
7871 unallocated_encoding(s);
7872 return;
7873 } else {
7874 size = MO_16;
7875 }
7876 } else {
7877 size = extract32(size, 0, 1) ? MO_64 : MO_32;
7878 }
7879
7880 if (!fp_access_check(s)) {
7881 return;
7882 }
7883
7884 fpst = get_fpstatus_ptr(size == MO_16);
7885 break;
7886 default:
7887 unallocated_encoding(s);
7888 return;
7889 }
7890
7891 if (size == MO_64) {
7892 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7893 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7894 TCGv_i64 tcg_res = tcg_temp_new_i64();
7895
7896 read_vec_element(s, tcg_op1, rn, 0, MO_64);
7897 read_vec_element(s, tcg_op2, rn, 1, MO_64);
7898
7899 switch (opcode) {
7900 case 0x3b: /* ADDP */
7901 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
7902 break;
7903 case 0xc: /* FMAXNMP */
7904 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7905 break;
7906 case 0xd: /* FADDP */
7907 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7908 break;
7909 case 0xf: /* FMAXP */
7910 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7911 break;
7912 case 0x2c: /* FMINNMP */
7913 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7914 break;
7915 case 0x2f: /* FMINP */
7916 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7917 break;
7918 default:
7919 g_assert_not_reached();
7920 }
7921
7922 write_fp_dreg(s, rd, tcg_res);
7923
7924 tcg_temp_free_i64(tcg_op1);
7925 tcg_temp_free_i64(tcg_op2);
7926 tcg_temp_free_i64(tcg_res);
7927 } else {
7928 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7929 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7930 TCGv_i32 tcg_res = tcg_temp_new_i32();
7931
7932 read_vec_element_i32(s, tcg_op1, rn, 0, size);
7933 read_vec_element_i32(s, tcg_op2, rn, 1, size);
7934
7935 if (size == MO_16) {
7936 switch (opcode) {
7937 case 0xc: /* FMAXNMP */
7938 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7939 break;
7940 case 0xd: /* FADDP */
7941 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
7942 break;
7943 case 0xf: /* FMAXP */
7944 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
7945 break;
7946 case 0x2c: /* FMINNMP */
7947 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7948 break;
7949 case 0x2f: /* FMINP */
7950 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
7951 break;
7952 default:
7953 g_assert_not_reached();
7954 }
7955 } else {
7956 switch (opcode) {
7957 case 0xc: /* FMAXNMP */
7958 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7959 break;
7960 case 0xd: /* FADDP */
7961 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7962 break;
7963 case 0xf: /* FMAXP */
7964 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7965 break;
7966 case 0x2c: /* FMINNMP */
7967 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7968 break;
7969 case 0x2f: /* FMINP */
7970 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7971 break;
7972 default:
7973 g_assert_not_reached();
7974 }
7975 }
7976
7977 write_fp_sreg(s, rd, tcg_res);
7978
7979 tcg_temp_free_i32(tcg_op1);
7980 tcg_temp_free_i32(tcg_op2);
7981 tcg_temp_free_i32(tcg_res);
7982 }
7983
7984 if (fpst) {
7985 tcg_temp_free_ptr(fpst);
7986 }
7987 }
7988
7989 /*
7990 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
7991 *
7992 * This code is handles the common shifting code and is used by both
7993 * the vector and scalar code.
7994 */
7995 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
7996 TCGv_i64 tcg_rnd, bool accumulate,
7997 bool is_u, int size, int shift)
7998 {
7999 bool extended_result = false;
8000 bool round = tcg_rnd != NULL;
8001 int ext_lshift = 0;
8002 TCGv_i64 tcg_src_hi;
8003
8004 if (round && size == 3) {
8005 extended_result = true;
8006 ext_lshift = 64 - shift;
8007 tcg_src_hi = tcg_temp_new_i64();
8008 } else if (shift == 64) {
8009 if (!accumulate && is_u) {
8010 /* result is zero */
8011 tcg_gen_movi_i64(tcg_res, 0);
8012 return;
8013 }
8014 }
8015
8016 /* Deal with the rounding step */
8017 if (round) {
8018 if (extended_result) {
8019 TCGv_i64 tcg_zero = tcg_const_i64(0);
8020 if (!is_u) {
8021 /* take care of sign extending tcg_res */
8022 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8023 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8024 tcg_src, tcg_src_hi,
8025 tcg_rnd, tcg_zero);
8026 } else {
8027 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8028 tcg_src, tcg_zero,
8029 tcg_rnd, tcg_zero);
8030 }
8031 tcg_temp_free_i64(tcg_zero);
8032 } else {
8033 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8034 }
8035 }
8036
8037 /* Now do the shift right */
8038 if (round && extended_result) {
8039 /* extended case, >64 bit precision required */
8040 if (ext_lshift == 0) {
8041 /* special case, only high bits matter */
8042 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8043 } else {
8044 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8045 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8046 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8047 }
8048 } else {
8049 if (is_u) {
8050 if (shift == 64) {
8051 /* essentially shifting in 64 zeros */
8052 tcg_gen_movi_i64(tcg_src, 0);
8053 } else {
8054 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8055 }
8056 } else {
8057 if (shift == 64) {
8058 /* effectively extending the sign-bit */
8059 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8060 } else {
8061 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8062 }
8063 }
8064 }
8065
8066 if (accumulate) {
8067 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8068 } else {
8069 tcg_gen_mov_i64(tcg_res, tcg_src);
8070 }
8071
8072 if (extended_result) {
8073 tcg_temp_free_i64(tcg_src_hi);
8074 }
8075 }
8076
8077 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8078 static void handle_scalar_simd_shri(DisasContext *s,
8079 bool is_u, int immh, int immb,
8080 int opcode, int rn, int rd)
8081 {
8082 const int size = 3;
8083 int immhb = immh << 3 | immb;
8084 int shift = 2 * (8 << size) - immhb;
8085 bool accumulate = false;
8086 bool round = false;
8087 bool insert = false;
8088 TCGv_i64 tcg_rn;
8089 TCGv_i64 tcg_rd;
8090 TCGv_i64 tcg_round;
8091
8092 if (!extract32(immh, 3, 1)) {
8093 unallocated_encoding(s);
8094 return;
8095 }
8096
8097 if (!fp_access_check(s)) {
8098 return;
8099 }
8100
8101 switch (opcode) {
8102 case 0x02: /* SSRA / USRA (accumulate) */
8103 accumulate = true;
8104 break;
8105 case 0x04: /* SRSHR / URSHR (rounding) */
8106 round = true;
8107 break;
8108 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8109 accumulate = round = true;
8110 break;
8111 case 0x08: /* SRI */
8112 insert = true;
8113 break;
8114 }
8115
8116 if (round) {
8117 uint64_t round_const = 1ULL << (shift - 1);
8118 tcg_round = tcg_const_i64(round_const);
8119 } else {
8120 tcg_round = NULL;
8121 }
8122
8123 tcg_rn = read_fp_dreg(s, rn);
8124 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8125
8126 if (insert) {
8127 /* shift count same as element size is valid but does nothing;
8128 * special case to avoid potential shift by 64.
8129 */
8130 int esize = 8 << size;
8131 if (shift != esize) {
8132 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8133 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8134 }
8135 } else {
8136 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8137 accumulate, is_u, size, shift);
8138 }
8139
8140 write_fp_dreg(s, rd, tcg_rd);
8141
8142 tcg_temp_free_i64(tcg_rn);
8143 tcg_temp_free_i64(tcg_rd);
8144 if (round) {
8145 tcg_temp_free_i64(tcg_round);
8146 }
8147 }
8148
8149 /* SHL/SLI - Scalar shift left */
8150 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8151 int immh, int immb, int opcode,
8152 int rn, int rd)
8153 {
8154 int size = 32 - clz32(immh) - 1;
8155 int immhb = immh << 3 | immb;
8156 int shift = immhb - (8 << size);
8157 TCGv_i64 tcg_rn = new_tmp_a64(s);
8158 TCGv_i64 tcg_rd = new_tmp_a64(s);
8159
8160 if (!extract32(immh, 3, 1)) {
8161 unallocated_encoding(s);
8162 return;
8163 }
8164
8165 if (!fp_access_check(s)) {
8166 return;
8167 }
8168
8169 tcg_rn = read_fp_dreg(s, rn);
8170 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8171
8172 if (insert) {
8173 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8174 } else {
8175 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8176 }
8177
8178 write_fp_dreg(s, rd, tcg_rd);
8179
8180 tcg_temp_free_i64(tcg_rn);
8181 tcg_temp_free_i64(tcg_rd);
8182 }
8183
8184 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8185 * (signed/unsigned) narrowing */
8186 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8187 bool is_u_shift, bool is_u_narrow,
8188 int immh, int immb, int opcode,
8189 int rn, int rd)
8190 {
8191 int immhb = immh << 3 | immb;
8192 int size = 32 - clz32(immh) - 1;
8193 int esize = 8 << size;
8194 int shift = (2 * esize) - immhb;
8195 int elements = is_scalar ? 1 : (64 / esize);
8196 bool round = extract32(opcode, 0, 1);
8197 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8198 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8199 TCGv_i32 tcg_rd_narrowed;
8200 TCGv_i64 tcg_final;
8201
8202 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8203 { gen_helper_neon_narrow_sat_s8,
8204 gen_helper_neon_unarrow_sat8 },
8205 { gen_helper_neon_narrow_sat_s16,
8206 gen_helper_neon_unarrow_sat16 },
8207 { gen_helper_neon_narrow_sat_s32,
8208 gen_helper_neon_unarrow_sat32 },
8209 { NULL, NULL },
8210 };
8211 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8212 gen_helper_neon_narrow_sat_u8,
8213 gen_helper_neon_narrow_sat_u16,
8214 gen_helper_neon_narrow_sat_u32,
8215 NULL
8216 };
8217 NeonGenNarrowEnvFn *narrowfn;
8218
8219 int i;
8220
8221 assert(size < 4);
8222
8223 if (extract32(immh, 3, 1)) {
8224 unallocated_encoding(s);
8225 return;
8226 }
8227
8228 if (!fp_access_check(s)) {
8229 return;
8230 }
8231
8232 if (is_u_shift) {
8233 narrowfn = unsigned_narrow_fns[size];
8234 } else {
8235 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8236 }
8237
8238 tcg_rn = tcg_temp_new_i64();
8239 tcg_rd = tcg_temp_new_i64();
8240 tcg_rd_narrowed = tcg_temp_new_i32();
8241 tcg_final = tcg_const_i64(0);
8242
8243 if (round) {
8244 uint64_t round_const = 1ULL << (shift - 1);
8245 tcg_round = tcg_const_i64(round_const);
8246 } else {
8247 tcg_round = NULL;
8248 }
8249
8250 for (i = 0; i < elements; i++) {
8251 read_vec_element(s, tcg_rn, rn, i, ldop);
8252 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8253 false, is_u_shift, size+1, shift);
8254 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8255 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8256 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8257 }
8258
8259 if (!is_q) {
8260 write_vec_element(s, tcg_final, rd, 0, MO_64);
8261 } else {
8262 write_vec_element(s, tcg_final, rd, 1, MO_64);
8263 }
8264
8265 if (round) {
8266 tcg_temp_free_i64(tcg_round);
8267 }
8268 tcg_temp_free_i64(tcg_rn);
8269 tcg_temp_free_i64(tcg_rd);
8270 tcg_temp_free_i32(tcg_rd_narrowed);
8271 tcg_temp_free_i64(tcg_final);
8272
8273 clear_vec_high(s, is_q, rd);
8274 }
8275
8276 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8277 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8278 bool src_unsigned, bool dst_unsigned,
8279 int immh, int immb, int rn, int rd)
8280 {
8281 int immhb = immh << 3 | immb;
8282 int size = 32 - clz32(immh) - 1;
8283 int shift = immhb - (8 << size);
8284 int pass;
8285
8286 assert(immh != 0);
8287 assert(!(scalar && is_q));
8288
8289 if (!scalar) {
8290 if (!is_q && extract32(immh, 3, 1)) {
8291 unallocated_encoding(s);
8292 return;
8293 }
8294
8295 /* Since we use the variable-shift helpers we must
8296 * replicate the shift count into each element of
8297 * the tcg_shift value.
8298 */
8299 switch (size) {
8300 case 0:
8301 shift |= shift << 8;
8302 /* fall through */
8303 case 1:
8304 shift |= shift << 16;
8305 break;
8306 case 2:
8307 case 3:
8308 break;
8309 default:
8310 g_assert_not_reached();
8311 }
8312 }
8313
8314 if (!fp_access_check(s)) {
8315 return;
8316 }
8317
8318 if (size == 3) {
8319 TCGv_i64 tcg_shift = tcg_const_i64(shift);
8320 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8321 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8322 { NULL, gen_helper_neon_qshl_u64 },
8323 };
8324 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8325 int maxpass = is_q ? 2 : 1;
8326
8327 for (pass = 0; pass < maxpass; pass++) {
8328 TCGv_i64 tcg_op = tcg_temp_new_i64();
8329
8330 read_vec_element(s, tcg_op, rn, pass, MO_64);
8331 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8332 write_vec_element(s, tcg_op, rd, pass, MO_64);
8333
8334 tcg_temp_free_i64(tcg_op);
8335 }
8336 tcg_temp_free_i64(tcg_shift);
8337 clear_vec_high(s, is_q, rd);
8338 } else {
8339 TCGv_i32 tcg_shift = tcg_const_i32(shift);
8340 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8341 {
8342 { gen_helper_neon_qshl_s8,
8343 gen_helper_neon_qshl_s16,
8344 gen_helper_neon_qshl_s32 },
8345 { gen_helper_neon_qshlu_s8,
8346 gen_helper_neon_qshlu_s16,
8347 gen_helper_neon_qshlu_s32 }
8348 }, {
8349 { NULL, NULL, NULL },
8350 { gen_helper_neon_qshl_u8,
8351 gen_helper_neon_qshl_u16,
8352 gen_helper_neon_qshl_u32 }
8353 }
8354 };
8355 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8356 MemOp memop = scalar ? size : MO_32;
8357 int maxpass = scalar ? 1 : is_q ? 4 : 2;
8358
8359 for (pass = 0; pass < maxpass; pass++) {
8360 TCGv_i32 tcg_op = tcg_temp_new_i32();
8361
8362 read_vec_element_i32(s, tcg_op, rn, pass, memop);
8363 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8364 if (scalar) {
8365 switch (size) {
8366 case 0:
8367 tcg_gen_ext8u_i32(tcg_op, tcg_op);
8368 break;
8369 case 1:
8370 tcg_gen_ext16u_i32(tcg_op, tcg_op);
8371 break;
8372 case 2:
8373 break;
8374 default:
8375 g_assert_not_reached();
8376 }
8377 write_fp_sreg(s, rd, tcg_op);
8378 } else {
8379 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8380 }
8381
8382 tcg_temp_free_i32(tcg_op);
8383 }
8384 tcg_temp_free_i32(tcg_shift);
8385
8386 if (!scalar) {
8387 clear_vec_high(s, is_q, rd);
8388 }
8389 }
8390 }
8391
8392 /* Common vector code for handling integer to FP conversion */
8393 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8394 int elements, int is_signed,
8395 int fracbits, int size)
8396 {
8397 TCGv_ptr tcg_fpst = get_fpstatus_ptr(size == MO_16);
8398 TCGv_i32 tcg_shift = NULL;
8399
8400 MemOp mop = size | (is_signed ? MO_SIGN : 0);
8401 int pass;
8402
8403 if (fracbits || size == MO_64) {
8404 tcg_shift = tcg_const_i32(fracbits);
8405 }
8406
8407 if (size == MO_64) {
8408 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8409 TCGv_i64 tcg_double = tcg_temp_new_i64();
8410
8411 for (pass = 0; pass < elements; pass++) {
8412 read_vec_element(s, tcg_int64, rn, pass, mop);
8413
8414 if (is_signed) {
8415 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8416 tcg_shift, tcg_fpst);
8417 } else {
8418 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8419 tcg_shift, tcg_fpst);
8420 }
8421 if (elements == 1) {
8422 write_fp_dreg(s, rd, tcg_double);
8423 } else {
8424 write_vec_element(s, tcg_double, rd, pass, MO_64);
8425 }
8426 }
8427
8428 tcg_temp_free_i64(tcg_int64);
8429 tcg_temp_free_i64(tcg_double);
8430
8431 } else {
8432 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8433 TCGv_i32 tcg_float = tcg_temp_new_i32();
8434
8435 for (pass = 0; pass < elements; pass++) {
8436 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8437
8438 switch (size) {
8439 case MO_32:
8440 if (fracbits) {
8441 if (is_signed) {
8442 gen_helper_vfp_sltos(tcg_float, tcg_int32,
8443 tcg_shift, tcg_fpst);
8444 } else {
8445 gen_helper_vfp_ultos(tcg_float, tcg_int32,
8446 tcg_shift, tcg_fpst);
8447 }
8448 } else {
8449 if (is_signed) {
8450 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8451 } else {
8452 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8453 }
8454 }
8455 break;
8456 case MO_16:
8457 if (fracbits) {
8458 if (is_signed) {
8459 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8460 tcg_shift, tcg_fpst);
8461 } else {
8462 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8463 tcg_shift, tcg_fpst);
8464 }
8465 } else {
8466 if (is_signed) {
8467 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8468 } else {
8469 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8470 }
8471 }
8472 break;
8473 default:
8474 g_assert_not_reached();
8475 }
8476
8477 if (elements == 1) {
8478 write_fp_sreg(s, rd, tcg_float);
8479 } else {
8480 write_vec_element_i32(s, tcg_float, rd, pass, size);
8481 }
8482 }
8483
8484 tcg_temp_free_i32(tcg_int32);
8485 tcg_temp_free_i32(tcg_float);
8486 }
8487
8488 tcg_temp_free_ptr(tcg_fpst);
8489 if (tcg_shift) {
8490 tcg_temp_free_i32(tcg_shift);
8491 }
8492
8493 clear_vec_high(s, elements << size == 16, rd);
8494 }
8495
8496 /* UCVTF/SCVTF - Integer to FP conversion */
8497 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8498 bool is_q, bool is_u,
8499 int immh, int immb, int opcode,
8500 int rn, int rd)
8501 {
8502 int size, elements, fracbits;
8503 int immhb = immh << 3 | immb;
8504
8505 if (immh & 8) {
8506 size = MO_64;
8507 if (!is_scalar && !is_q) {
8508 unallocated_encoding(s);
8509 return;
8510 }
8511 } else if (immh & 4) {
8512 size = MO_32;
8513 } else if (immh & 2) {
8514 size = MO_16;
8515 if (!dc_isar_feature(aa64_fp16, s)) {
8516 unallocated_encoding(s);
8517 return;
8518 }
8519 } else {
8520 /* immh == 0 would be a failure of the decode logic */
8521 g_assert(immh == 1);
8522 unallocated_encoding(s);
8523 return;
8524 }
8525
8526 if (is_scalar) {
8527 elements = 1;
8528 } else {
8529 elements = (8 << is_q) >> size;
8530 }
8531 fracbits = (16 << size) - immhb;
8532
8533 if (!fp_access_check(s)) {
8534 return;
8535 }
8536
8537 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8538 }
8539
8540 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8541 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8542 bool is_q, bool is_u,
8543 int immh, int immb, int rn, int rd)
8544 {
8545 int immhb = immh << 3 | immb;
8546 int pass, size, fracbits;
8547 TCGv_ptr tcg_fpstatus;
8548 TCGv_i32 tcg_rmode, tcg_shift;
8549
8550 if (immh & 0x8) {
8551 size = MO_64;
8552 if (!is_scalar && !is_q) {
8553 unallocated_encoding(s);
8554 return;
8555 }
8556 } else if (immh & 0x4) {
8557 size = MO_32;
8558 } else if (immh & 0x2) {
8559 size = MO_16;
8560 if (!dc_isar_feature(aa64_fp16, s)) {
8561 unallocated_encoding(s);
8562 return;
8563 }
8564 } else {
8565 /* Should have split out AdvSIMD modified immediate earlier. */
8566 assert(immh == 1);
8567 unallocated_encoding(s);
8568 return;
8569 }
8570
8571 if (!fp_access_check(s)) {
8572 return;
8573 }
8574
8575 assert(!(is_scalar && is_q));
8576
8577 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
8578 tcg_fpstatus = get_fpstatus_ptr(size == MO_16);
8579 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8580 fracbits = (16 << size) - immhb;
8581 tcg_shift = tcg_const_i32(fracbits);
8582
8583 if (size == MO_64) {
8584 int maxpass = is_scalar ? 1 : 2;
8585
8586 for (pass = 0; pass < maxpass; pass++) {
8587 TCGv_i64 tcg_op = tcg_temp_new_i64();
8588
8589 read_vec_element(s, tcg_op, rn, pass, MO_64);
8590 if (is_u) {
8591 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8592 } else {
8593 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8594 }
8595 write_vec_element(s, tcg_op, rd, pass, MO_64);
8596 tcg_temp_free_i64(tcg_op);
8597 }
8598 clear_vec_high(s, is_q, rd);
8599 } else {
8600 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8601 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8602
8603 switch (size) {
8604 case MO_16:
8605 if (is_u) {
8606 fn = gen_helper_vfp_touhh;
8607 } else {
8608 fn = gen_helper_vfp_toshh;
8609 }
8610 break;
8611 case MO_32:
8612 if (is_u) {
8613 fn = gen_helper_vfp_touls;
8614 } else {
8615 fn = gen_helper_vfp_tosls;
8616 }
8617 break;
8618 default:
8619 g_assert_not_reached();
8620 }
8621
8622 for (pass = 0; pass < maxpass; pass++) {
8623 TCGv_i32 tcg_op = tcg_temp_new_i32();
8624
8625 read_vec_element_i32(s, tcg_op, rn, pass, size);
8626 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8627 if (is_scalar) {
8628 write_fp_sreg(s, rd, tcg_op);
8629 } else {
8630 write_vec_element_i32(s, tcg_op, rd, pass, size);
8631 }
8632 tcg_temp_free_i32(tcg_op);
8633 }
8634 if (!is_scalar) {
8635 clear_vec_high(s, is_q, rd);
8636 }
8637 }
8638
8639 tcg_temp_free_ptr(tcg_fpstatus);
8640 tcg_temp_free_i32(tcg_shift);
8641 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8642 tcg_temp_free_i32(tcg_rmode);
8643 }
8644
8645 /* AdvSIMD scalar shift by immediate
8646 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8647 * +-----+---+-------------+------+------+--------+---+------+------+
8648 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8649 * +-----+---+-------------+------+------+--------+---+------+------+
8650 *
8651 * This is the scalar version so it works on a fixed sized registers
8652 */
8653 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8654 {
8655 int rd = extract32(insn, 0, 5);
8656 int rn = extract32(insn, 5, 5);
8657 int opcode = extract32(insn, 11, 5);
8658 int immb = extract32(insn, 16, 3);
8659 int immh = extract32(insn, 19, 4);
8660 bool is_u = extract32(insn, 29, 1);
8661
8662 if (immh == 0) {
8663 unallocated_encoding(s);
8664 return;
8665 }
8666
8667 switch (opcode) {
8668 case 0x08: /* SRI */
8669 if (!is_u) {
8670 unallocated_encoding(s);
8671 return;
8672 }
8673 /* fall through */
8674 case 0x00: /* SSHR / USHR */
8675 case 0x02: /* SSRA / USRA */
8676 case 0x04: /* SRSHR / URSHR */
8677 case 0x06: /* SRSRA / URSRA */
8678 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8679 break;
8680 case 0x0a: /* SHL / SLI */
8681 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8682 break;
8683 case 0x1c: /* SCVTF, UCVTF */
8684 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8685 opcode, rn, rd);
8686 break;
8687 case 0x10: /* SQSHRUN, SQSHRUN2 */
8688 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8689 if (!is_u) {
8690 unallocated_encoding(s);
8691 return;
8692 }
8693 handle_vec_simd_sqshrn(s, true, false, false, true,
8694 immh, immb, opcode, rn, rd);
8695 break;
8696 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8697 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8698 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8699 immh, immb, opcode, rn, rd);
8700 break;
8701 case 0xc: /* SQSHLU */
8702 if (!is_u) {
8703 unallocated_encoding(s);
8704 return;
8705 }
8706 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8707 break;
8708 case 0xe: /* SQSHL, UQSHL */
8709 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8710 break;
8711 case 0x1f: /* FCVTZS, FCVTZU */
8712 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8713 break;
8714 default:
8715 unallocated_encoding(s);
8716 break;
8717 }
8718 }
8719
8720 /* AdvSIMD scalar three different
8721 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8722 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8723 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8724 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8725 */
8726 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8727 {
8728 bool is_u = extract32(insn, 29, 1);
8729 int size = extract32(insn, 22, 2);
8730 int opcode = extract32(insn, 12, 4);
8731 int rm = extract32(insn, 16, 5);
8732 int rn = extract32(insn, 5, 5);
8733 int rd = extract32(insn, 0, 5);
8734
8735 if (is_u) {
8736 unallocated_encoding(s);
8737 return;
8738 }
8739
8740 switch (opcode) {
8741 case 0x9: /* SQDMLAL, SQDMLAL2 */
8742 case 0xb: /* SQDMLSL, SQDMLSL2 */
8743 case 0xd: /* SQDMULL, SQDMULL2 */
8744 if (size == 0 || size == 3) {
8745 unallocated_encoding(s);
8746 return;
8747 }
8748 break;
8749 default:
8750 unallocated_encoding(s);
8751 return;
8752 }
8753
8754 if (!fp_access_check(s)) {
8755 return;
8756 }
8757
8758 if (size == 2) {
8759 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8760 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8761 TCGv_i64 tcg_res = tcg_temp_new_i64();
8762
8763 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8764 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8765
8766 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8767 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
8768
8769 switch (opcode) {
8770 case 0xd: /* SQDMULL, SQDMULL2 */
8771 break;
8772 case 0xb: /* SQDMLSL, SQDMLSL2 */
8773 tcg_gen_neg_i64(tcg_res, tcg_res);
8774 /* fall through */
8775 case 0x9: /* SQDMLAL, SQDMLAL2 */
8776 read_vec_element(s, tcg_op1, rd, 0, MO_64);
8777 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
8778 tcg_res, tcg_op1);
8779 break;
8780 default:
8781 g_assert_not_reached();
8782 }
8783
8784 write_fp_dreg(s, rd, tcg_res);
8785
8786 tcg_temp_free_i64(tcg_op1);
8787 tcg_temp_free_i64(tcg_op2);
8788 tcg_temp_free_i64(tcg_res);
8789 } else {
8790 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8791 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8792 TCGv_i64 tcg_res = tcg_temp_new_i64();
8793
8794 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8795 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
8796
8797 switch (opcode) {
8798 case 0xd: /* SQDMULL, SQDMULL2 */
8799 break;
8800 case 0xb: /* SQDMLSL, SQDMLSL2 */
8801 gen_helper_neon_negl_u32(tcg_res, tcg_res);
8802 /* fall through */
8803 case 0x9: /* SQDMLAL, SQDMLAL2 */
8804 {
8805 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8806 read_vec_element(s, tcg_op3, rd, 0, MO_32);
8807 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
8808 tcg_res, tcg_op3);
8809 tcg_temp_free_i64(tcg_op3);
8810 break;
8811 }
8812 default:
8813 g_assert_not_reached();
8814 }
8815
8816 tcg_gen_ext32u_i64(tcg_res, tcg_res);
8817 write_fp_dreg(s, rd, tcg_res);
8818
8819 tcg_temp_free_i32(tcg_op1);
8820 tcg_temp_free_i32(tcg_op2);
8821 tcg_temp_free_i64(tcg_res);
8822 }
8823 }
8824
8825 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8826 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8827 {
8828 /* Handle 64x64->64 opcodes which are shared between the scalar
8829 * and vector 3-same groups. We cover every opcode where size == 3
8830 * is valid in either the three-reg-same (integer, not pairwise)
8831 * or scalar-three-reg-same groups.
8832 */
8833 TCGCond cond;
8834
8835 switch (opcode) {
8836 case 0x1: /* SQADD */
8837 if (u) {
8838 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8839 } else {
8840 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8841 }
8842 break;
8843 case 0x5: /* SQSUB */
8844 if (u) {
8845 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8846 } else {
8847 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8848 }
8849 break;
8850 case 0x6: /* CMGT, CMHI */
8851 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
8852 * We implement this using setcond (test) and then negating.
8853 */
8854 cond = u ? TCG_COND_GTU : TCG_COND_GT;
8855 do_cmop:
8856 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8857 tcg_gen_neg_i64(tcg_rd, tcg_rd);
8858 break;
8859 case 0x7: /* CMGE, CMHS */
8860 cond = u ? TCG_COND_GEU : TCG_COND_GE;
8861 goto do_cmop;
8862 case 0x11: /* CMTST, CMEQ */
8863 if (u) {
8864 cond = TCG_COND_EQ;
8865 goto do_cmop;
8866 }
8867 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8868 break;
8869 case 0x8: /* SSHL, USHL */
8870 if (u) {
8871 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
8872 } else {
8873 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
8874 }
8875 break;
8876 case 0x9: /* SQSHL, UQSHL */
8877 if (u) {
8878 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8879 } else {
8880 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8881 }
8882 break;
8883 case 0xa: /* SRSHL, URSHL */
8884 if (u) {
8885 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8886 } else {
8887 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8888 }
8889 break;
8890 case 0xb: /* SQRSHL, UQRSHL */
8891 if (u) {
8892 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8893 } else {
8894 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8895 }
8896 break;
8897 case 0x10: /* ADD, SUB */
8898 if (u) {
8899 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8900 } else {
8901 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8902 }
8903 break;
8904 default:
8905 g_assert_not_reached();
8906 }
8907 }
8908
8909 /* Handle the 3-same-operands float operations; shared by the scalar
8910 * and vector encodings. The caller must filter out any encodings
8911 * not allocated for the encoding it is dealing with.
8912 */
8913 static void handle_3same_float(DisasContext *s, int size, int elements,
8914 int fpopcode, int rd, int rn, int rm)
8915 {
8916 int pass;
8917 TCGv_ptr fpst = get_fpstatus_ptr(false);
8918
8919 for (pass = 0; pass < elements; pass++) {
8920 if (size) {
8921 /* Double */
8922 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8923 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8924 TCGv_i64 tcg_res = tcg_temp_new_i64();
8925
8926 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8927 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8928
8929 switch (fpopcode) {
8930 case 0x39: /* FMLS */
8931 /* As usual for ARM, separate negation for fused multiply-add */
8932 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8933 /* fall through */
8934 case 0x19: /* FMLA */
8935 read_vec_element(s, tcg_res, rd, pass, MO_64);
8936 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8937 tcg_res, fpst);
8938 break;
8939 case 0x18: /* FMAXNM */
8940 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8941 break;
8942 case 0x1a: /* FADD */
8943 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8944 break;
8945 case 0x1b: /* FMULX */
8946 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8947 break;
8948 case 0x1c: /* FCMEQ */
8949 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8950 break;
8951 case 0x1e: /* FMAX */
8952 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8953 break;
8954 case 0x1f: /* FRECPS */
8955 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8956 break;
8957 case 0x38: /* FMINNM */
8958 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8959 break;
8960 case 0x3a: /* FSUB */
8961 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8962 break;
8963 case 0x3e: /* FMIN */
8964 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8965 break;
8966 case 0x3f: /* FRSQRTS */
8967 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8968 break;
8969 case 0x5b: /* FMUL */
8970 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
8971 break;
8972 case 0x5c: /* FCMGE */
8973 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8974 break;
8975 case 0x5d: /* FACGE */
8976 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8977 break;
8978 case 0x5f: /* FDIV */
8979 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
8980 break;
8981 case 0x7a: /* FABD */
8982 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8983 gen_helper_vfp_absd(tcg_res, tcg_res);
8984 break;
8985 case 0x7c: /* FCMGT */
8986 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8987 break;
8988 case 0x7d: /* FACGT */
8989 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8990 break;
8991 default:
8992 g_assert_not_reached();
8993 }
8994
8995 write_vec_element(s, tcg_res, rd, pass, MO_64);
8996
8997 tcg_temp_free_i64(tcg_res);
8998 tcg_temp_free_i64(tcg_op1);
8999 tcg_temp_free_i64(tcg_op2);
9000 } else {
9001 /* Single */
9002 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9003 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9004 TCGv_i32 tcg_res = tcg_temp_new_i32();
9005
9006 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9007 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9008
9009 switch (fpopcode) {
9010 case 0x39: /* FMLS */
9011 /* As usual for ARM, separate negation for fused multiply-add */
9012 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9013 /* fall through */
9014 case 0x19: /* FMLA */
9015 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9016 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9017 tcg_res, fpst);
9018 break;
9019 case 0x1a: /* FADD */
9020 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9021 break;
9022 case 0x1b: /* FMULX */
9023 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9024 break;
9025 case 0x1c: /* FCMEQ */
9026 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9027 break;
9028 case 0x1e: /* FMAX */
9029 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9030 break;
9031 case 0x1f: /* FRECPS */
9032 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9033 break;
9034 case 0x18: /* FMAXNM */
9035 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9036 break;
9037 case 0x38: /* FMINNM */
9038 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9039 break;
9040 case 0x3a: /* FSUB */
9041 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9042 break;
9043 case 0x3e: /* FMIN */
9044 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9045 break;
9046 case 0x3f: /* FRSQRTS */
9047 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9048 break;
9049 case 0x5b: /* FMUL */
9050 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9051 break;
9052 case 0x5c: /* FCMGE */
9053 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9054 break;
9055 case 0x5d: /* FACGE */
9056 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9057 break;
9058 case 0x5f: /* FDIV */
9059 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9060 break;
9061 case 0x7a: /* FABD */
9062 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9063 gen_helper_vfp_abss(tcg_res, tcg_res);
9064 break;
9065 case 0x7c: /* FCMGT */
9066 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9067 break;
9068 case 0x7d: /* FACGT */
9069 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9070 break;
9071 default:
9072 g_assert_not_reached();
9073 }
9074
9075 if (elements == 1) {
9076 /* scalar single so clear high part */
9077 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9078
9079 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9080 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9081 tcg_temp_free_i64(tcg_tmp);
9082 } else {
9083 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9084 }
9085
9086 tcg_temp_free_i32(tcg_res);
9087 tcg_temp_free_i32(tcg_op1);
9088 tcg_temp_free_i32(tcg_op2);
9089 }
9090 }
9091
9092 tcg_temp_free_ptr(fpst);
9093
9094 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9095 }
9096
9097 /* AdvSIMD scalar three same
9098 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9099 * +-----+---+-----------+------+---+------+--------+---+------+------+
9100 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9101 * +-----+---+-----------+------+---+------+--------+---+------+------+
9102 */
9103 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9104 {
9105 int rd = extract32(insn, 0, 5);
9106 int rn = extract32(insn, 5, 5);
9107 int opcode = extract32(insn, 11, 5);
9108 int rm = extract32(insn, 16, 5);
9109 int size = extract32(insn, 22, 2);
9110 bool u = extract32(insn, 29, 1);
9111 TCGv_i64 tcg_rd;
9112
9113 if (opcode >= 0x18) {
9114 /* Floating point: U, size[1] and opcode indicate operation */
9115 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9116 switch (fpopcode) {
9117 case 0x1b: /* FMULX */
9118 case 0x1f: /* FRECPS */
9119 case 0x3f: /* FRSQRTS */
9120 case 0x5d: /* FACGE */
9121 case 0x7d: /* FACGT */
9122 case 0x1c: /* FCMEQ */
9123 case 0x5c: /* FCMGE */
9124 case 0x7c: /* FCMGT */
9125 case 0x7a: /* FABD */
9126 break;
9127 default:
9128 unallocated_encoding(s);
9129 return;
9130 }
9131
9132 if (!fp_access_check(s)) {
9133 return;
9134 }
9135
9136 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9137 return;
9138 }
9139
9140 switch (opcode) {
9141 case 0x1: /* SQADD, UQADD */
9142 case 0x5: /* SQSUB, UQSUB */
9143 case 0x9: /* SQSHL, UQSHL */
9144 case 0xb: /* SQRSHL, UQRSHL */
9145 break;
9146 case 0x8: /* SSHL, USHL */
9147 case 0xa: /* SRSHL, URSHL */
9148 case 0x6: /* CMGT, CMHI */
9149 case 0x7: /* CMGE, CMHS */
9150 case 0x11: /* CMTST, CMEQ */
9151 case 0x10: /* ADD, SUB (vector) */
9152 if (size != 3) {
9153 unallocated_encoding(s);
9154 return;
9155 }
9156 break;
9157 case 0x16: /* SQDMULH, SQRDMULH (vector) */
9158 if (size != 1 && size != 2) {
9159 unallocated_encoding(s);
9160 return;
9161 }
9162 break;
9163 default:
9164 unallocated_encoding(s);
9165 return;
9166 }
9167
9168 if (!fp_access_check(s)) {
9169 return;
9170 }
9171
9172 tcg_rd = tcg_temp_new_i64();
9173
9174 if (size == 3) {
9175 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9176 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9177
9178 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9179 tcg_temp_free_i64(tcg_rn);
9180 tcg_temp_free_i64(tcg_rm);
9181 } else {
9182 /* Do a single operation on the lowest element in the vector.
9183 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9184 * no side effects for all these operations.
9185 * OPTME: special-purpose helpers would avoid doing some
9186 * unnecessary work in the helper for the 8 and 16 bit cases.
9187 */
9188 NeonGenTwoOpEnvFn *genenvfn;
9189 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9190 TCGv_i32 tcg_rm = tcg_temp_new_i32();
9191 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9192
9193 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9194 read_vec_element_i32(s, tcg_rm, rm, 0, size);
9195
9196 switch (opcode) {
9197 case 0x1: /* SQADD, UQADD */
9198 {
9199 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9200 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9201 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9202 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9203 };
9204 genenvfn = fns[size][u];
9205 break;
9206 }
9207 case 0x5: /* SQSUB, UQSUB */
9208 {
9209 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9210 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9211 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9212 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9213 };
9214 genenvfn = fns[size][u];
9215 break;
9216 }
9217 case 0x9: /* SQSHL, UQSHL */
9218 {
9219 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9220 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9221 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9222 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9223 };
9224 genenvfn = fns[size][u];
9225 break;
9226 }
9227 case 0xb: /* SQRSHL, UQRSHL */
9228 {
9229 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9230 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9231 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9232 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9233 };
9234 genenvfn = fns[size][u];
9235 break;
9236 }
9237 case 0x16: /* SQDMULH, SQRDMULH */
9238 {
9239 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9240 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9241 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9242 };
9243 assert(size == 1 || size == 2);
9244 genenvfn = fns[size - 1][u];
9245 break;
9246 }
9247 default:
9248 g_assert_not_reached();
9249 }
9250
9251 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9252 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9253 tcg_temp_free_i32(tcg_rd32);
9254 tcg_temp_free_i32(tcg_rn);
9255 tcg_temp_free_i32(tcg_rm);
9256 }
9257
9258 write_fp_dreg(s, rd, tcg_rd);
9259
9260 tcg_temp_free_i64(tcg_rd);
9261 }
9262
9263 /* AdvSIMD scalar three same FP16
9264 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
9265 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9266 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
9267 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9268 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9269 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9270 */
9271 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9272 uint32_t insn)
9273 {
9274 int rd = extract32(insn, 0, 5);
9275 int rn = extract32(insn, 5, 5);
9276 int opcode = extract32(insn, 11, 3);
9277 int rm = extract32(insn, 16, 5);
9278 bool u = extract32(insn, 29, 1);
9279 bool a = extract32(insn, 23, 1);
9280 int fpopcode = opcode | (a << 3) | (u << 4);
9281 TCGv_ptr fpst;
9282 TCGv_i32 tcg_op1;
9283 TCGv_i32 tcg_op2;
9284 TCGv_i32 tcg_res;
9285
9286 switch (fpopcode) {
9287 case 0x03: /* FMULX */
9288 case 0x04: /* FCMEQ (reg) */
9289 case 0x07: /* FRECPS */
9290 case 0x0f: /* FRSQRTS */
9291 case 0x14: /* FCMGE (reg) */
9292 case 0x15: /* FACGE */
9293 case 0x1a: /* FABD */
9294 case 0x1c: /* FCMGT (reg) */
9295 case 0x1d: /* FACGT */
9296 break;
9297 default:
9298 unallocated_encoding(s);
9299 return;
9300 }
9301
9302 if (!dc_isar_feature(aa64_fp16, s)) {
9303 unallocated_encoding(s);
9304 }
9305
9306 if (!fp_access_check(s)) {
9307 return;
9308 }
9309
9310 fpst = get_fpstatus_ptr(true);
9311
9312 tcg_op1 = read_fp_hreg(s, rn);
9313 tcg_op2 = read_fp_hreg(s, rm);
9314 tcg_res = tcg_temp_new_i32();
9315
9316 switch (fpopcode) {
9317 case 0x03: /* FMULX */
9318 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9319 break;
9320 case 0x04: /* FCMEQ (reg) */
9321 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9322 break;
9323 case 0x07: /* FRECPS */
9324 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9325 break;
9326 case 0x0f: /* FRSQRTS */
9327 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9328 break;
9329 case 0x14: /* FCMGE (reg) */
9330 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9331 break;
9332 case 0x15: /* FACGE */
9333 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9334 break;
9335 case 0x1a: /* FABD */
9336 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9337 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9338 break;
9339 case 0x1c: /* FCMGT (reg) */
9340 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9341 break;
9342 case 0x1d: /* FACGT */
9343 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9344 break;
9345 default:
9346 g_assert_not_reached();
9347 }
9348
9349 write_fp_sreg(s, rd, tcg_res);
9350
9351
9352 tcg_temp_free_i32(tcg_res);
9353 tcg_temp_free_i32(tcg_op1);
9354 tcg_temp_free_i32(tcg_op2);
9355 tcg_temp_free_ptr(fpst);
9356 }
9357
9358 /* AdvSIMD scalar three same extra
9359 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9360 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9361 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9362 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9363 */
9364 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9365 uint32_t insn)
9366 {
9367 int rd = extract32(insn, 0, 5);
9368 int rn = extract32(insn, 5, 5);
9369 int opcode = extract32(insn, 11, 4);
9370 int rm = extract32(insn, 16, 5);
9371 int size = extract32(insn, 22, 2);
9372 bool u = extract32(insn, 29, 1);
9373 TCGv_i32 ele1, ele2, ele3;
9374 TCGv_i64 res;
9375 bool feature;
9376
9377 switch (u * 16 + opcode) {
9378 case 0x10: /* SQRDMLAH (vector) */
9379 case 0x11: /* SQRDMLSH (vector) */
9380 if (size != 1 && size != 2) {
9381 unallocated_encoding(s);
9382 return;
9383 }
9384 feature = dc_isar_feature(aa64_rdm, s);
9385 break;
9386 default:
9387 unallocated_encoding(s);
9388 return;
9389 }
9390 if (!feature) {
9391 unallocated_encoding(s);
9392 return;
9393 }
9394 if (!fp_access_check(s)) {
9395 return;
9396 }
9397
9398 /* Do a single operation on the lowest element in the vector.
9399 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9400 * with no side effects for all these operations.
9401 * OPTME: special-purpose helpers would avoid doing some
9402 * unnecessary work in the helper for the 16 bit cases.
9403 */
9404 ele1 = tcg_temp_new_i32();
9405 ele2 = tcg_temp_new_i32();
9406 ele3 = tcg_temp_new_i32();
9407
9408 read_vec_element_i32(s, ele1, rn, 0, size);
9409 read_vec_element_i32(s, ele2, rm, 0, size);
9410 read_vec_element_i32(s, ele3, rd, 0, size);
9411
9412 switch (opcode) {
9413 case 0x0: /* SQRDMLAH */
9414 if (size == 1) {
9415 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9416 } else {
9417 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9418 }
9419 break;
9420 case 0x1: /* SQRDMLSH */
9421 if (size == 1) {
9422 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9423 } else {
9424 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9425 }
9426 break;
9427 default:
9428 g_assert_not_reached();
9429 }
9430 tcg_temp_free_i32(ele1);
9431 tcg_temp_free_i32(ele2);
9432
9433 res = tcg_temp_new_i64();
9434 tcg_gen_extu_i32_i64(res, ele3);
9435 tcg_temp_free_i32(ele3);
9436
9437 write_fp_dreg(s, rd, res);
9438 tcg_temp_free_i64(res);
9439 }
9440
9441 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9442 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9443 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9444 {
9445 /* Handle 64->64 opcodes which are shared between the scalar and
9446 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9447 * is valid in either group and also the double-precision fp ops.
9448 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9449 * requires them.
9450 */
9451 TCGCond cond;
9452
9453 switch (opcode) {
9454 case 0x4: /* CLS, CLZ */
9455 if (u) {
9456 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9457 } else {
9458 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9459 }
9460 break;
9461 case 0x5: /* NOT */
9462 /* This opcode is shared with CNT and RBIT but we have earlier
9463 * enforced that size == 3 if and only if this is the NOT insn.
9464 */
9465 tcg_gen_not_i64(tcg_rd, tcg_rn);
9466 break;
9467 case 0x7: /* SQABS, SQNEG */
9468 if (u) {
9469 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9470 } else {
9471 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9472 }
9473 break;
9474 case 0xa: /* CMLT */
9475 /* 64 bit integer comparison against zero, result is
9476 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9477 * subtracting 1.
9478 */
9479 cond = TCG_COND_LT;
9480 do_cmop:
9481 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9482 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9483 break;
9484 case 0x8: /* CMGT, CMGE */
9485 cond = u ? TCG_COND_GE : TCG_COND_GT;
9486 goto do_cmop;
9487 case 0x9: /* CMEQ, CMLE */
9488 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9489 goto do_cmop;
9490 case 0xb: /* ABS, NEG */
9491 if (u) {
9492 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9493 } else {
9494 tcg_gen_abs_i64(tcg_rd, tcg_rn);
9495 }
9496 break;
9497 case 0x2f: /* FABS */
9498 gen_helper_vfp_absd(tcg_rd, tcg_rn);
9499 break;
9500 case 0x6f: /* FNEG */
9501 gen_helper_vfp_negd(tcg_rd, tcg_rn);
9502 break;
9503 case 0x7f: /* FSQRT */
9504 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9505 break;
9506 case 0x1a: /* FCVTNS */
9507 case 0x1b: /* FCVTMS */
9508 case 0x1c: /* FCVTAS */
9509 case 0x3a: /* FCVTPS */
9510 case 0x3b: /* FCVTZS */
9511 {
9512 TCGv_i32 tcg_shift = tcg_const_i32(0);
9513 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9514 tcg_temp_free_i32(tcg_shift);
9515 break;
9516 }
9517 case 0x5a: /* FCVTNU */
9518 case 0x5b: /* FCVTMU */
9519 case 0x5c: /* FCVTAU */
9520 case 0x7a: /* FCVTPU */
9521 case 0x7b: /* FCVTZU */
9522 {
9523 TCGv_i32 tcg_shift = tcg_const_i32(0);
9524 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9525 tcg_temp_free_i32(tcg_shift);
9526 break;
9527 }
9528 case 0x18: /* FRINTN */
9529 case 0x19: /* FRINTM */
9530 case 0x38: /* FRINTP */
9531 case 0x39: /* FRINTZ */
9532 case 0x58: /* FRINTA */
9533 case 0x79: /* FRINTI */
9534 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9535 break;
9536 case 0x59: /* FRINTX */
9537 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9538 break;
9539 case 0x1e: /* FRINT32Z */
9540 case 0x5e: /* FRINT32X */
9541 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9542 break;
9543 case 0x1f: /* FRINT64Z */
9544 case 0x5f: /* FRINT64X */
9545 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9546 break;
9547 default:
9548 g_assert_not_reached();
9549 }
9550 }
9551
9552 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9553 bool is_scalar, bool is_u, bool is_q,
9554 int size, int rn, int rd)
9555 {
9556 bool is_double = (size == MO_64);
9557 TCGv_ptr fpst;
9558
9559 if (!fp_access_check(s)) {
9560 return;
9561 }
9562
9563 fpst = get_fpstatus_ptr(size == MO_16);
9564
9565 if (is_double) {
9566 TCGv_i64 tcg_op = tcg_temp_new_i64();
9567 TCGv_i64 tcg_zero = tcg_const_i64(0);
9568 TCGv_i64 tcg_res = tcg_temp_new_i64();
9569 NeonGenTwoDoubleOpFn *genfn;
9570 bool swap = false;
9571 int pass;
9572
9573 switch (opcode) {
9574 case 0x2e: /* FCMLT (zero) */
9575 swap = true;
9576 /* fallthrough */
9577 case 0x2c: /* FCMGT (zero) */
9578 genfn = gen_helper_neon_cgt_f64;
9579 break;
9580 case 0x2d: /* FCMEQ (zero) */
9581 genfn = gen_helper_neon_ceq_f64;
9582 break;
9583 case 0x6d: /* FCMLE (zero) */
9584 swap = true;
9585 /* fall through */
9586 case 0x6c: /* FCMGE (zero) */
9587 genfn = gen_helper_neon_cge_f64;
9588 break;
9589 default:
9590 g_assert_not_reached();
9591 }
9592
9593 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9594 read_vec_element(s, tcg_op, rn, pass, MO_64);
9595 if (swap) {
9596 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9597 } else {
9598 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9599 }
9600 write_vec_element(s, tcg_res, rd, pass, MO_64);
9601 }
9602 tcg_temp_free_i64(tcg_res);
9603 tcg_temp_free_i64(tcg_zero);
9604 tcg_temp_free_i64(tcg_op);
9605
9606 clear_vec_high(s, !is_scalar, rd);
9607 } else {
9608 TCGv_i32 tcg_op = tcg_temp_new_i32();
9609 TCGv_i32 tcg_zero = tcg_const_i32(0);
9610 TCGv_i32 tcg_res = tcg_temp_new_i32();
9611 NeonGenTwoSingleOpFn *genfn;
9612 bool swap = false;
9613 int pass, maxpasses;
9614
9615 if (size == MO_16) {
9616 switch (opcode) {
9617 case 0x2e: /* FCMLT (zero) */
9618 swap = true;
9619 /* fall through */
9620 case 0x2c: /* FCMGT (zero) */
9621 genfn = gen_helper_advsimd_cgt_f16;
9622 break;
9623 case 0x2d: /* FCMEQ (zero) */
9624 genfn = gen_helper_advsimd_ceq_f16;
9625 break;
9626 case 0x6d: /* FCMLE (zero) */
9627 swap = true;
9628 /* fall through */
9629 case 0x6c: /* FCMGE (zero) */
9630 genfn = gen_helper_advsimd_cge_f16;
9631 break;
9632 default:
9633 g_assert_not_reached();
9634 }
9635 } else {
9636 switch (opcode) {
9637 case 0x2e: /* FCMLT (zero) */
9638 swap = true;
9639 /* fall through */
9640 case 0x2c: /* FCMGT (zero) */
9641 genfn = gen_helper_neon_cgt_f32;
9642 break;
9643 case 0x2d: /* FCMEQ (zero) */
9644 genfn = gen_helper_neon_ceq_f32;
9645 break;
9646 case 0x6d: /* FCMLE (zero) */
9647 swap = true;
9648 /* fall through */
9649 case 0x6c: /* FCMGE (zero) */
9650 genfn = gen_helper_neon_cge_f32;
9651 break;
9652 default:
9653 g_assert_not_reached();
9654 }
9655 }
9656
9657 if (is_scalar) {
9658 maxpasses = 1;
9659 } else {
9660 int vector_size = 8 << is_q;
9661 maxpasses = vector_size >> size;
9662 }
9663
9664 for (pass = 0; pass < maxpasses; pass++) {
9665 read_vec_element_i32(s, tcg_op, rn, pass, size);
9666 if (swap) {
9667 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9668 } else {
9669 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9670 }
9671 if (is_scalar) {
9672 write_fp_sreg(s, rd, tcg_res);
9673 } else {
9674 write_vec_element_i32(s, tcg_res, rd, pass, size);
9675 }
9676 }
9677 tcg_temp_free_i32(tcg_res);
9678 tcg_temp_free_i32(tcg_zero);
9679 tcg_temp_free_i32(tcg_op);
9680 if (!is_scalar) {
9681 clear_vec_high(s, is_q, rd);
9682 }
9683 }
9684
9685 tcg_temp_free_ptr(fpst);
9686 }
9687
9688 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9689 bool is_scalar, bool is_u, bool is_q,
9690 int size, int rn, int rd)
9691 {
9692 bool is_double = (size == 3);
9693 TCGv_ptr fpst = get_fpstatus_ptr(false);
9694
9695 if (is_double) {
9696 TCGv_i64 tcg_op = tcg_temp_new_i64();
9697 TCGv_i64 tcg_res = tcg_temp_new_i64();
9698 int pass;
9699
9700 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9701 read_vec_element(s, tcg_op, rn, pass, MO_64);
9702 switch (opcode) {
9703 case 0x3d: /* FRECPE */
9704 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9705 break;
9706 case 0x3f: /* FRECPX */
9707 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9708 break;
9709 case 0x7d: /* FRSQRTE */
9710 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9711 break;
9712 default:
9713 g_assert_not_reached();
9714 }
9715 write_vec_element(s, tcg_res, rd, pass, MO_64);
9716 }
9717 tcg_temp_free_i64(tcg_res);
9718 tcg_temp_free_i64(tcg_op);
9719 clear_vec_high(s, !is_scalar, rd);
9720 } else {
9721 TCGv_i32 tcg_op = tcg_temp_new_i32();
9722 TCGv_i32 tcg_res = tcg_temp_new_i32();
9723 int pass, maxpasses;
9724
9725 if (is_scalar) {
9726 maxpasses = 1;
9727 } else {
9728 maxpasses = is_q ? 4 : 2;
9729 }
9730
9731 for (pass = 0; pass < maxpasses; pass++) {
9732 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9733
9734 switch (opcode) {
9735 case 0x3c: /* URECPE */
9736 gen_helper_recpe_u32(tcg_res, tcg_op);
9737 break;
9738 case 0x3d: /* FRECPE */
9739 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9740 break;
9741 case 0x3f: /* FRECPX */
9742 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9743 break;
9744 case 0x7d: /* FRSQRTE */
9745 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9746 break;
9747 default:
9748 g_assert_not_reached();
9749 }
9750
9751 if (is_scalar) {
9752 write_fp_sreg(s, rd, tcg_res);
9753 } else {
9754 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9755 }
9756 }
9757 tcg_temp_free_i32(tcg_res);
9758 tcg_temp_free_i32(tcg_op);
9759 if (!is_scalar) {
9760 clear_vec_high(s, is_q, rd);
9761 }
9762 }
9763 tcg_temp_free_ptr(fpst);
9764 }
9765
9766 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9767 int opcode, bool u, bool is_q,
9768 int size, int rn, int rd)
9769 {
9770 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9771 * in the source becomes a size element in the destination).
9772 */
9773 int pass;
9774 TCGv_i32 tcg_res[2];
9775 int destelt = is_q ? 2 : 0;
9776 int passes = scalar ? 1 : 2;
9777
9778 if (scalar) {
9779 tcg_res[1] = tcg_const_i32(0);
9780 }
9781
9782 for (pass = 0; pass < passes; pass++) {
9783 TCGv_i64 tcg_op = tcg_temp_new_i64();
9784 NeonGenNarrowFn *genfn = NULL;
9785 NeonGenNarrowEnvFn *genenvfn = NULL;
9786
9787 if (scalar) {
9788 read_vec_element(s, tcg_op, rn, pass, size + 1);
9789 } else {
9790 read_vec_element(s, tcg_op, rn, pass, MO_64);
9791 }
9792 tcg_res[pass] = tcg_temp_new_i32();
9793
9794 switch (opcode) {
9795 case 0x12: /* XTN, SQXTUN */
9796 {
9797 static NeonGenNarrowFn * const xtnfns[3] = {
9798 gen_helper_neon_narrow_u8,
9799 gen_helper_neon_narrow_u16,
9800 tcg_gen_extrl_i64_i32,
9801 };
9802 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9803 gen_helper_neon_unarrow_sat8,
9804 gen_helper_neon_unarrow_sat16,
9805 gen_helper_neon_unarrow_sat32,
9806 };
9807 if (u) {
9808 genenvfn = sqxtunfns[size];
9809 } else {
9810 genfn = xtnfns[size];
9811 }
9812 break;
9813 }
9814 case 0x14: /* SQXTN, UQXTN */
9815 {
9816 static NeonGenNarrowEnvFn * const fns[3][2] = {
9817 { gen_helper_neon_narrow_sat_s8,
9818 gen_helper_neon_narrow_sat_u8 },
9819 { gen_helper_neon_narrow_sat_s16,
9820 gen_helper_neon_narrow_sat_u16 },
9821 { gen_helper_neon_narrow_sat_s32,
9822 gen_helper_neon_narrow_sat_u32 },
9823 };
9824 genenvfn = fns[size][u];
9825 break;
9826 }
9827 case 0x16: /* FCVTN, FCVTN2 */
9828 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9829 if (size == 2) {
9830 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
9831 } else {
9832 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9833 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9834 TCGv_ptr fpst = get_fpstatus_ptr(false);
9835 TCGv_i32 ahp = get_ahp_flag();
9836
9837 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9838 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9839 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9840 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9841 tcg_temp_free_i32(tcg_lo);
9842 tcg_temp_free_i32(tcg_hi);
9843 tcg_temp_free_ptr(fpst);
9844 tcg_temp_free_i32(ahp);
9845 }
9846 break;
9847 case 0x56: /* FCVTXN, FCVTXN2 */
9848 /* 64 bit to 32 bit float conversion
9849 * with von Neumann rounding (round to odd)
9850 */
9851 assert(size == 2);
9852 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
9853 break;
9854 default:
9855 g_assert_not_reached();
9856 }
9857
9858 if (genfn) {
9859 genfn(tcg_res[pass], tcg_op);
9860 } else if (genenvfn) {
9861 genenvfn(tcg_res[pass], cpu_env, tcg_op);
9862 }
9863
9864 tcg_temp_free_i64(tcg_op);
9865 }
9866
9867 for (pass = 0; pass < 2; pass++) {
9868 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9869 tcg_temp_free_i32(tcg_res[pass]);
9870 }
9871 clear_vec_high(s, is_q, rd);
9872 }
9873
9874 /* Remaining saturating accumulating ops */
9875 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9876 bool is_q, int size, int rn, int rd)
9877 {
9878 bool is_double = (size == 3);
9879
9880 if (is_double) {
9881 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9882 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9883 int pass;
9884
9885 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9886 read_vec_element(s, tcg_rn, rn, pass, MO_64);
9887 read_vec_element(s, tcg_rd, rd, pass, MO_64);
9888
9889 if (is_u) { /* USQADD */
9890 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9891 } else { /* SUQADD */
9892 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9893 }
9894 write_vec_element(s, tcg_rd, rd, pass, MO_64);
9895 }
9896 tcg_temp_free_i64(tcg_rd);
9897 tcg_temp_free_i64(tcg_rn);
9898 clear_vec_high(s, !is_scalar, rd);
9899 } else {
9900 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9901 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9902 int pass, maxpasses;
9903
9904 if (is_scalar) {
9905 maxpasses = 1;
9906 } else {
9907 maxpasses = is_q ? 4 : 2;
9908 }
9909
9910 for (pass = 0; pass < maxpasses; pass++) {
9911 if (is_scalar) {
9912 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9913 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9914 } else {
9915 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9916 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9917 }
9918
9919 if (is_u) { /* USQADD */
9920 switch (size) {
9921 case 0:
9922 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9923 break;
9924 case 1:
9925 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9926 break;
9927 case 2:
9928 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9929 break;
9930 default:
9931 g_assert_not_reached();
9932 }
9933 } else { /* SUQADD */
9934 switch (size) {
9935 case 0:
9936 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9937 break;
9938 case 1:
9939 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9940 break;
9941 case 2:
9942 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9943 break;
9944 default:
9945 g_assert_not_reached();
9946 }
9947 }
9948
9949 if (is_scalar) {
9950 TCGv_i64 tcg_zero = tcg_const_i64(0);
9951 write_vec_element(s, tcg_zero, rd, 0, MO_64);
9952 tcg_temp_free_i64(tcg_zero);
9953 }
9954 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9955 }
9956 tcg_temp_free_i32(tcg_rd);
9957 tcg_temp_free_i32(tcg_rn);
9958 clear_vec_high(s, is_q, rd);
9959 }
9960 }
9961
9962 /* AdvSIMD scalar two reg misc
9963 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9964 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9965 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9966 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9967 */
9968 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9969 {
9970 int rd = extract32(insn, 0, 5);
9971 int rn = extract32(insn, 5, 5);
9972 int opcode = extract32(insn, 12, 5);
9973 int size = extract32(insn, 22, 2);
9974 bool u = extract32(insn, 29, 1);
9975 bool is_fcvt = false;
9976 int rmode;
9977 TCGv_i32 tcg_rmode;
9978 TCGv_ptr tcg_fpstatus;
9979
9980 switch (opcode) {
9981 case 0x3: /* USQADD / SUQADD*/
9982 if (!fp_access_check(s)) {
9983 return;
9984 }
9985 handle_2misc_satacc(s, true, u, false, size, rn, rd);
9986 return;
9987 case 0x7: /* SQABS / SQNEG */
9988 break;
9989 case 0xa: /* CMLT */
9990 if (u) {
9991 unallocated_encoding(s);
9992 return;
9993 }
9994 /* fall through */
9995 case 0x8: /* CMGT, CMGE */
9996 case 0x9: /* CMEQ, CMLE */
9997 case 0xb: /* ABS, NEG */
9998 if (size != 3) {
9999 unallocated_encoding(s);
10000 return;
10001 }
10002 break;
10003 case 0x12: /* SQXTUN */
10004 if (!u) {
10005 unallocated_encoding(s);
10006 return;
10007 }
10008 /* fall through */
10009 case 0x14: /* SQXTN, UQXTN */
10010 if (size == 3) {
10011 unallocated_encoding(s);
10012 return;
10013 }
10014 if (!fp_access_check(s)) {
10015 return;
10016 }
10017 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10018 return;
10019 case 0xc ... 0xf:
10020 case 0x16 ... 0x1d:
10021 case 0x1f:
10022 /* Floating point: U, size[1] and opcode indicate operation;
10023 * size[0] indicates single or double precision.
10024 */
10025 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10026 size = extract32(size, 0, 1) ? 3 : 2;
10027 switch (opcode) {
10028 case 0x2c: /* FCMGT (zero) */
10029 case 0x2d: /* FCMEQ (zero) */
10030 case 0x2e: /* FCMLT (zero) */
10031 case 0x6c: /* FCMGE (zero) */
10032 case 0x6d: /* FCMLE (zero) */
10033 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10034 return;
10035 case 0x1d: /* SCVTF */
10036 case 0x5d: /* UCVTF */
10037 {
10038 bool is_signed = (opcode == 0x1d);
10039 if (!fp_access_check(s)) {
10040 return;
10041 }
10042 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10043 return;
10044 }
10045 case 0x3d: /* FRECPE */
10046 case 0x3f: /* FRECPX */
10047 case 0x7d: /* FRSQRTE */
10048 if (!fp_access_check(s)) {
10049 return;
10050 }
10051 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10052 return;
10053 case 0x1a: /* FCVTNS */
10054 case 0x1b: /* FCVTMS */
10055 case 0x3a: /* FCVTPS */
10056 case 0x3b: /* FCVTZS */
10057 case 0x5a: /* FCVTNU */
10058 case 0x5b: /* FCVTMU */
10059 case 0x7a: /* FCVTPU */
10060 case 0x7b: /* FCVTZU */
10061 is_fcvt = true;
10062 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10063 break;
10064 case 0x1c: /* FCVTAS */
10065 case 0x5c: /* FCVTAU */
10066 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10067 is_fcvt = true;
10068 rmode = FPROUNDING_TIEAWAY;
10069 break;
10070 case 0x56: /* FCVTXN, FCVTXN2 */
10071 if (size == 2) {
10072 unallocated_encoding(s);
10073 return;
10074 }
10075 if (!fp_access_check(s)) {
10076 return;
10077 }
10078 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10079 return;
10080 default:
10081 unallocated_encoding(s);
10082 return;
10083 }
10084 break;
10085 default:
10086 unallocated_encoding(s);
10087 return;
10088 }
10089
10090 if (!fp_access_check(s)) {
10091 return;
10092 }
10093
10094 if (is_fcvt) {
10095 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10096 tcg_fpstatus = get_fpstatus_ptr(false);
10097 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10098 } else {
10099 tcg_rmode = NULL;
10100 tcg_fpstatus = NULL;
10101 }
10102
10103 if (size == 3) {
10104 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10105 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10106
10107 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10108 write_fp_dreg(s, rd, tcg_rd);
10109 tcg_temp_free_i64(tcg_rd);
10110 tcg_temp_free_i64(tcg_rn);
10111 } else {
10112 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10113 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10114
10115 read_vec_element_i32(s, tcg_rn, rn, 0, size);
10116
10117 switch (opcode) {
10118 case 0x7: /* SQABS, SQNEG */
10119 {
10120 NeonGenOneOpEnvFn *genfn;
10121 static NeonGenOneOpEnvFn * const fns[3][2] = {
10122 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10123 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10124 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10125 };
10126 genfn = fns[size][u];
10127 genfn(tcg_rd, cpu_env, tcg_rn);
10128 break;
10129 }
10130 case 0x1a: /* FCVTNS */
10131 case 0x1b: /* FCVTMS */
10132 case 0x1c: /* FCVTAS */
10133 case 0x3a: /* FCVTPS */
10134 case 0x3b: /* FCVTZS */
10135 {
10136 TCGv_i32 tcg_shift = tcg_const_i32(0);
10137 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
10138 tcg_temp_free_i32(tcg_shift);
10139 break;
10140 }
10141 case 0x5a: /* FCVTNU */
10142 case 0x5b: /* FCVTMU */
10143 case 0x5c: /* FCVTAU */
10144 case 0x7a: /* FCVTPU */
10145 case 0x7b: /* FCVTZU */
10146 {
10147 TCGv_i32 tcg_shift = tcg_const_i32(0);
10148 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
10149 tcg_temp_free_i32(tcg_shift);
10150 break;
10151 }
10152 default:
10153 g_assert_not_reached();
10154 }
10155
10156 write_fp_sreg(s, rd, tcg_rd);
10157 tcg_temp_free_i32(tcg_rd);
10158 tcg_temp_free_i32(tcg_rn);
10159 }
10160
10161 if (is_fcvt) {
10162 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10163 tcg_temp_free_i32(tcg_rmode);
10164 tcg_temp_free_ptr(tcg_fpstatus);
10165 }
10166 }
10167
10168 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10169 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10170 int immh, int immb, int opcode, int rn, int rd)
10171 {
10172 int size = 32 - clz32(immh) - 1;
10173 int immhb = immh << 3 | immb;
10174 int shift = 2 * (8 << size) - immhb;
10175 GVecGen2iFn *gvec_fn;
10176
10177 if (extract32(immh, 3, 1) && !is_q) {
10178 unallocated_encoding(s);
10179 return;
10180 }
10181 tcg_debug_assert(size <= 3);
10182
10183 if (!fp_access_check(s)) {
10184 return;
10185 }
10186
10187 switch (opcode) {
10188 case 0x02: /* SSRA / USRA (accumulate) */
10189 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10190 break;
10191
10192 case 0x08: /* SRI */
10193 gvec_fn = gen_gvec_sri;
10194 break;
10195
10196 case 0x00: /* SSHR / USHR */
10197 if (is_u) {
10198 if (shift == 8 << size) {
10199 /* Shift count the same size as element size produces zero. */
10200 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10201 is_q ? 16 : 8, vec_full_reg_size(s), 0);
10202 return;
10203 }
10204 gvec_fn = tcg_gen_gvec_shri;
10205 } else {
10206 /* Shift count the same size as element size produces all sign. */
10207 if (shift == 8 << size) {
10208 shift -= 1;
10209 }
10210 gvec_fn = tcg_gen_gvec_sari;
10211 }
10212 break;
10213
10214 case 0x04: /* SRSHR / URSHR (rounding) */
10215 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10216 break;
10217
10218 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10219 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10220 break;
10221
10222 default:
10223 g_assert_not_reached();
10224 }
10225
10226 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10227 }
10228
10229 /* SHL/SLI - Vector shift left */
10230 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10231 int immh, int immb, int opcode, int rn, int rd)
10232 {
10233 int size = 32 - clz32(immh) - 1;
10234 int immhb = immh << 3 | immb;
10235 int shift = immhb - (8 << size);
10236
10237 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10238 assert(size >= 0 && size <= 3);
10239
10240 if (extract32(immh, 3, 1) && !is_q) {
10241 unallocated_encoding(s);
10242 return;
10243 }
10244
10245 if (!fp_access_check(s)) {
10246 return;
10247 }
10248
10249 if (insert) {
10250 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10251 } else {
10252 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10253 }
10254 }
10255
10256 /* USHLL/SHLL - Vector shift left with widening */
10257 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10258 int immh, int immb, int opcode, int rn, int rd)
10259 {
10260 int size = 32 - clz32(immh) - 1;
10261 int immhb = immh << 3 | immb;
10262 int shift = immhb - (8 << size);
10263 int dsize = 64;
10264 int esize = 8 << size;
10265 int elements = dsize/esize;
10266 TCGv_i64 tcg_rn = new_tmp_a64(s);
10267 TCGv_i64 tcg_rd = new_tmp_a64(s);
10268 int i;
10269
10270 if (size >= 3) {
10271 unallocated_encoding(s);
10272 return;
10273 }
10274
10275 if (!fp_access_check(s)) {
10276 return;
10277 }
10278
10279 /* For the LL variants the store is larger than the load,
10280 * so if rd == rn we would overwrite parts of our input.
10281 * So load everything right now and use shifts in the main loop.
10282 */
10283 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10284
10285 for (i = 0; i < elements; i++) {
10286 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10287 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10288 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10289 write_vec_element(s, tcg_rd, rd, i, size + 1);
10290 }
10291 }
10292
10293 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10294 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10295 int immh, int immb, int opcode, int rn, int rd)
10296 {
10297 int immhb = immh << 3 | immb;
10298 int size = 32 - clz32(immh) - 1;
10299 int dsize = 64;
10300 int esize = 8 << size;
10301 int elements = dsize/esize;
10302 int shift = (2 * esize) - immhb;
10303 bool round = extract32(opcode, 0, 1);
10304 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10305 TCGv_i64 tcg_round;
10306 int i;
10307
10308 if (extract32(immh, 3, 1)) {
10309 unallocated_encoding(s);
10310 return;
10311 }
10312
10313 if (!fp_access_check(s)) {
10314 return;
10315 }
10316
10317 tcg_rn = tcg_temp_new_i64();
10318 tcg_rd = tcg_temp_new_i64();
10319 tcg_final = tcg_temp_new_i64();
10320 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10321
10322 if (round) {
10323 uint64_t round_const = 1ULL << (shift - 1);
10324 tcg_round = tcg_const_i64(round_const);
10325 } else {
10326 tcg_round = NULL;
10327 }
10328
10329 for (i = 0; i < elements; i++) {
10330 read_vec_element(s, tcg_rn, rn, i, size+1);
10331 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10332 false, true, size+1, shift);
10333
10334 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10335 }
10336
10337 if (!is_q) {
10338 write_vec_element(s, tcg_final, rd, 0, MO_64);
10339 } else {
10340 write_vec_element(s, tcg_final, rd, 1, MO_64);
10341 }
10342 if (round) {
10343 tcg_temp_free_i64(tcg_round);
10344 }
10345 tcg_temp_free_i64(tcg_rn);
10346 tcg_temp_free_i64(tcg_rd);
10347 tcg_temp_free_i64(tcg_final);
10348
10349 clear_vec_high(s, is_q, rd);
10350 }
10351
10352
10353 /* AdvSIMD shift by immediate
10354 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10355 * +---+---+---+-------------+------+------+--------+---+------+------+
10356 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10357 * +---+---+---+-------------+------+------+--------+---+------+------+
10358 */
10359 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10360 {
10361 int rd = extract32(insn, 0, 5);
10362 int rn = extract32(insn, 5, 5);
10363 int opcode = extract32(insn, 11, 5);
10364 int immb = extract32(insn, 16, 3);
10365 int immh = extract32(insn, 19, 4);
10366 bool is_u = extract32(insn, 29, 1);
10367 bool is_q = extract32(insn, 30, 1);
10368
10369 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10370 assert(immh != 0);
10371
10372 switch (opcode) {
10373 case 0x08: /* SRI */
10374 if (!is_u) {
10375 unallocated_encoding(s);
10376 return;
10377 }
10378 /* fall through */
10379 case 0x00: /* SSHR / USHR */
10380 case 0x02: /* SSRA / USRA (accumulate) */
10381 case 0x04: /* SRSHR / URSHR (rounding) */
10382 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10383 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10384 break;
10385 case 0x0a: /* SHL / SLI */
10386 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10387 break;
10388 case 0x10: /* SHRN */
10389 case 0x11: /* RSHRN / SQRSHRUN */
10390 if (is_u) {
10391 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10392 opcode, rn, rd);
10393 } else {
10394 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10395 }
10396 break;
10397 case 0x12: /* SQSHRN / UQSHRN */
10398 case 0x13: /* SQRSHRN / UQRSHRN */
10399 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10400 opcode, rn, rd);
10401 break;
10402 case 0x14: /* SSHLL / USHLL */
10403 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10404 break;
10405 case 0x1c: /* SCVTF / UCVTF */
10406 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10407 opcode, rn, rd);
10408 break;
10409 case 0xc: /* SQSHLU */
10410 if (!is_u) {
10411 unallocated_encoding(s);
10412 return;
10413 }
10414 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10415 break;
10416 case 0xe: /* SQSHL, UQSHL */
10417 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10418 break;
10419 case 0x1f: /* FCVTZS/ FCVTZU */
10420 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10421 return;
10422 default:
10423 unallocated_encoding(s);
10424 return;
10425 }
10426 }
10427
10428 /* Generate code to do a "long" addition or subtraction, ie one done in
10429 * TCGv_i64 on vector lanes twice the width specified by size.
10430 */
10431 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10432 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10433 {
10434 static NeonGenTwo64OpFn * const fns[3][2] = {
10435 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10436 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10437 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10438 };
10439 NeonGenTwo64OpFn *genfn;
10440 assert(size < 3);
10441
10442 genfn = fns[size][is_sub];
10443 genfn(tcg_res, tcg_op1, tcg_op2);
10444 }
10445
10446 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10447 int opcode, int rd, int rn, int rm)
10448 {
10449 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10450 TCGv_i64 tcg_res[2];
10451 int pass, accop;
10452
10453 tcg_res[0] = tcg_temp_new_i64();
10454 tcg_res[1] = tcg_temp_new_i64();
10455
10456 /* Does this op do an adding accumulate, a subtracting accumulate,
10457 * or no accumulate at all?
10458 */
10459 switch (opcode) {
10460 case 5:
10461 case 8:
10462 case 9:
10463 accop = 1;
10464 break;
10465 case 10:
10466 case 11:
10467 accop = -1;
10468 break;
10469 default:
10470 accop = 0;
10471 break;
10472 }
10473
10474 if (accop != 0) {
10475 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10476 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10477 }
10478
10479 /* size == 2 means two 32x32->64 operations; this is worth special
10480 * casing because we can generally handle it inline.
10481 */
10482 if (size == 2) {
10483 for (pass = 0; pass < 2; pass++) {
10484 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10485 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10486 TCGv_i64 tcg_passres;
10487 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10488
10489 int elt = pass + is_q * 2;
10490
10491 read_vec_element(s, tcg_op1, rn, elt, memop);
10492 read_vec_element(s, tcg_op2, rm, elt, memop);
10493
10494 if (accop == 0) {
10495 tcg_passres = tcg_res[pass];
10496 } else {
10497 tcg_passres = tcg_temp_new_i64();
10498 }
10499
10500 switch (opcode) {
10501 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10502 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10503 break;
10504 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10505 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10506 break;
10507 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10508 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10509 {
10510 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10511 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10512
10513 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10514 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10515 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10516 tcg_passres,
10517 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10518 tcg_temp_free_i64(tcg_tmp1);
10519 tcg_temp_free_i64(tcg_tmp2);
10520 break;
10521 }
10522 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10523 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10524 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10525 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10526 break;
10527 case 9: /* SQDMLAL, SQDMLAL2 */
10528 case 11: /* SQDMLSL, SQDMLSL2 */
10529 case 13: /* SQDMULL, SQDMULL2 */
10530 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10531 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10532 tcg_passres, tcg_passres);
10533 break;
10534 default:
10535 g_assert_not_reached();
10536 }
10537
10538 if (opcode == 9 || opcode == 11) {
10539 /* saturating accumulate ops */
10540 if (accop < 0) {
10541 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10542 }
10543 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10544 tcg_res[pass], tcg_passres);
10545 } else if (accop > 0) {
10546 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10547 } else if (accop < 0) {
10548 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10549 }
10550
10551 if (accop != 0) {
10552 tcg_temp_free_i64(tcg_passres);
10553 }
10554
10555 tcg_temp_free_i64(tcg_op1);
10556 tcg_temp_free_i64(tcg_op2);
10557 }
10558 } else {
10559 /* size 0 or 1, generally helper functions */
10560 for (pass = 0; pass < 2; pass++) {
10561 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10562 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10563 TCGv_i64 tcg_passres;
10564 int elt = pass + is_q * 2;
10565
10566 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10567 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10568
10569 if (accop == 0) {
10570 tcg_passres = tcg_res[pass];
10571 } else {
10572 tcg_passres = tcg_temp_new_i64();
10573 }
10574
10575 switch (opcode) {
10576 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10577 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10578 {
10579 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10580 static NeonGenWidenFn * const widenfns[2][2] = {
10581 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10582 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10583 };
10584 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10585
10586 widenfn(tcg_op2_64, tcg_op2);
10587 widenfn(tcg_passres, tcg_op1);
10588 gen_neon_addl(size, (opcode == 2), tcg_passres,
10589 tcg_passres, tcg_op2_64);
10590 tcg_temp_free_i64(tcg_op2_64);
10591 break;
10592 }
10593 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10594 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10595 if (size == 0) {
10596 if (is_u) {
10597 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10598 } else {
10599 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10600 }
10601 } else {
10602 if (is_u) {
10603 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10604 } else {
10605 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10606 }
10607 }
10608 break;
10609 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10610 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10611 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10612 if (size == 0) {
10613 if (is_u) {
10614 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10615 } else {
10616 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10617 }
10618 } else {
10619 if (is_u) {
10620 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10621 } else {
10622 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10623 }
10624 }
10625 break;
10626 case 9: /* SQDMLAL, SQDMLAL2 */
10627 case 11: /* SQDMLSL, SQDMLSL2 */
10628 case 13: /* SQDMULL, SQDMULL2 */
10629 assert(size == 1);
10630 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10631 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10632 tcg_passres, tcg_passres);
10633 break;
10634 default:
10635 g_assert_not_reached();
10636 }
10637 tcg_temp_free_i32(tcg_op1);
10638 tcg_temp_free_i32(tcg_op2);
10639
10640 if (accop != 0) {
10641 if (opcode == 9 || opcode == 11) {
10642 /* saturating accumulate ops */
10643 if (accop < 0) {
10644 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10645 }
10646 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10647 tcg_res[pass],
10648 tcg_passres);
10649 } else {
10650 gen_neon_addl(size, (accop < 0), tcg_res[pass],
10651 tcg_res[pass], tcg_passres);
10652 }
10653 tcg_temp_free_i64(tcg_passres);
10654 }
10655 }
10656 }
10657
10658 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10659 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10660 tcg_temp_free_i64(tcg_res[0]);
10661 tcg_temp_free_i64(tcg_res[1]);
10662 }
10663
10664 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10665 int opcode, int rd, int rn, int rm)
10666 {
10667 TCGv_i64 tcg_res[2];
10668 int part = is_q ? 2 : 0;
10669 int pass;
10670
10671 for (pass = 0; pass < 2; pass++) {
10672 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10673 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10674 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10675 static NeonGenWidenFn * const widenfns[3][2] = {
10676 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10677 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10678 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10679 };
10680 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10681
10682 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10683 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10684 widenfn(tcg_op2_wide, tcg_op2);
10685 tcg_temp_free_i32(tcg_op2);
10686 tcg_res[pass] = tcg_temp_new_i64();
10687 gen_neon_addl(size, (opcode == 3),
10688 tcg_res[pass], tcg_op1, tcg_op2_wide);
10689 tcg_temp_free_i64(tcg_op1);
10690 tcg_temp_free_i64(tcg_op2_wide);
10691 }
10692
10693 for (pass = 0; pass < 2; pass++) {
10694 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10695 tcg_temp_free_i64(tcg_res[pass]);
10696 }
10697 }
10698
10699 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10700 {
10701 tcg_gen_addi_i64(in, in, 1U << 31);
10702 tcg_gen_extrh_i64_i32(res, in);
10703 }
10704
10705 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10706 int opcode, int rd, int rn, int rm)
10707 {
10708 TCGv_i32 tcg_res[2];
10709 int part = is_q ? 2 : 0;
10710 int pass;
10711
10712 for (pass = 0; pass < 2; pass++) {
10713 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10714 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10715 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10716 static NeonGenNarrowFn * const narrowfns[3][2] = {
10717 { gen_helper_neon_narrow_high_u8,
10718 gen_helper_neon_narrow_round_high_u8 },
10719 { gen_helper_neon_narrow_high_u16,
10720 gen_helper_neon_narrow_round_high_u16 },
10721 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10722 };
10723 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10724
10725 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10726 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10727
10728 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10729
10730 tcg_temp_free_i64(tcg_op1);
10731 tcg_temp_free_i64(tcg_op2);
10732
10733 tcg_res[pass] = tcg_temp_new_i32();
10734 gennarrow(tcg_res[pass], tcg_wideres);
10735 tcg_temp_free_i64(tcg_wideres);
10736 }
10737
10738 for (pass = 0; pass < 2; pass++) {
10739 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10740 tcg_temp_free_i32(tcg_res[pass]);
10741 }
10742 clear_vec_high(s, is_q, rd);
10743 }
10744
10745 /* AdvSIMD three different
10746 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
10747 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10748 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
10749 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10750 */
10751 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10752 {
10753 /* Instructions in this group fall into three basic classes
10754 * (in each case with the operation working on each element in
10755 * the input vectors):
10756 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10757 * 128 bit input)
10758 * (2) wide 64 x 128 -> 128
10759 * (3) narrowing 128 x 128 -> 64
10760 * Here we do initial decode, catch unallocated cases and
10761 * dispatch to separate functions for each class.
10762 */
10763 int is_q = extract32(insn, 30, 1);
10764 int is_u = extract32(insn, 29, 1);
10765 int size = extract32(insn, 22, 2);
10766 int opcode = extract32(insn, 12, 4);
10767 int rm = extract32(insn, 16, 5);
10768 int rn = extract32(insn, 5, 5);
10769 int rd = extract32(insn, 0, 5);
10770
10771 switch (opcode) {
10772 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10773 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10774 /* 64 x 128 -> 128 */
10775 if (size == 3) {
10776 unallocated_encoding(s);
10777 return;
10778 }
10779 if (!fp_access_check(s)) {
10780 return;
10781 }
10782 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10783 break;
10784 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10785 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10786 /* 128 x 128 -> 64 */
10787 if (size == 3) {
10788 unallocated_encoding(s);
10789 return;
10790 }
10791 if (!fp_access_check(s)) {
10792 return;
10793 }
10794 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10795 break;
10796 case 14: /* PMULL, PMULL2 */
10797 if (is_u) {
10798 unallocated_encoding(s);
10799 return;
10800 }
10801 switch (size) {
10802 case 0: /* PMULL.P8 */
10803 if (!fp_access_check(s)) {
10804 return;
10805 }
10806 /* The Q field specifies lo/hi half input for this insn. */
10807 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10808 gen_helper_neon_pmull_h);
10809 break;
10810
10811 case 3: /* PMULL.P64 */
10812 if (!dc_isar_feature(aa64_pmull, s)) {
10813 unallocated_encoding(s);
10814 return;
10815 }
10816 if (!fp_access_check(s)) {
10817 return;
10818 }
10819 /* The Q field specifies lo/hi half input for this insn. */
10820 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10821 gen_helper_gvec_pmull_q);
10822 break;
10823
10824 default:
10825 unallocated_encoding(s);
10826 break;
10827 }
10828 return;
10829 case 9: /* SQDMLAL, SQDMLAL2 */
10830 case 11: /* SQDMLSL, SQDMLSL2 */
10831 case 13: /* SQDMULL, SQDMULL2 */
10832 if (is_u || size == 0) {
10833 unallocated_encoding(s);
10834 return;
10835 }
10836 /* fall through */
10837 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10838 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10839 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10840 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10841 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10842 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10843 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10844 /* 64 x 64 -> 128 */
10845 if (size == 3) {
10846 unallocated_encoding(s);
10847 return;
10848 }
10849 if (!fp_access_check(s)) {
10850 return;
10851 }
10852
10853 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10854 break;
10855 default:
10856 /* opcode 15 not allocated */
10857 unallocated_encoding(s);
10858 break;
10859 }
10860 }
10861
10862 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10863 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10864 {
10865 int rd = extract32(insn, 0, 5);
10866 int rn = extract32(insn, 5, 5);
10867 int rm = extract32(insn, 16, 5);
10868 int size = extract32(insn, 22, 2);
10869 bool is_u = extract32(insn, 29, 1);
10870 bool is_q = extract32(insn, 30, 1);
10871
10872 if (!fp_access_check(s)) {
10873 return;
10874 }
10875
10876 switch (size + 4 * is_u) {
10877 case 0: /* AND */
10878 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10879 return;
10880 case 1: /* BIC */
10881 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10882 return;
10883 case 2: /* ORR */
10884 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10885 return;
10886 case 3: /* ORN */
10887 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10888 return;
10889 case 4: /* EOR */
10890 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10891 return;
10892
10893 case 5: /* BSL bitwise select */
10894 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10895 return;
10896 case 6: /* BIT, bitwise insert if true */
10897 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10898 return;
10899 case 7: /* BIF, bitwise insert if false */
10900 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10901 return;
10902
10903 default:
10904 g_assert_not_reached();
10905 }
10906 }
10907
10908 /* Pairwise op subgroup of C3.6.16.
10909 *
10910 * This is called directly or via the handle_3same_float for float pairwise
10911 * operations where the opcode and size are calculated differently.
10912 */
10913 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10914 int size, int rn, int rm, int rd)
10915 {
10916 TCGv_ptr fpst;
10917 int pass;
10918
10919 /* Floating point operations need fpst */
10920 if (opcode >= 0x58) {
10921 fpst = get_fpstatus_ptr(false);
10922 } else {
10923 fpst = NULL;
10924 }
10925
10926 if (!fp_access_check(s)) {
10927 return;
10928 }
10929
10930 /* These operations work on the concatenated rm:rn, with each pair of
10931 * adjacent elements being operated on to produce an element in the result.
10932 */
10933 if (size == 3) {
10934 TCGv_i64 tcg_res[2];
10935
10936 for (pass = 0; pass < 2; pass++) {
10937 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10938 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10939 int passreg = (pass == 0) ? rn : rm;
10940
10941 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10942 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10943 tcg_res[pass] = tcg_temp_new_i64();
10944
10945 switch (opcode) {
10946 case 0x17: /* ADDP */
10947 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10948 break;
10949 case 0x58: /* FMAXNMP */
10950 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10951 break;
10952 case 0x5a: /* FADDP */
10953 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10954 break;
10955 case 0x5e: /* FMAXP */
10956 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10957 break;
10958 case 0x78: /* FMINNMP */
10959 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10960 break;
10961 case 0x7e: /* FMINP */
10962 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10963 break;
10964 default:
10965 g_assert_not_reached();
10966 }
10967
10968 tcg_temp_free_i64(tcg_op1);
10969 tcg_temp_free_i64(tcg_op2);
10970 }
10971
10972 for (pass = 0; pass < 2; pass++) {
10973 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10974 tcg_temp_free_i64(tcg_res[pass]);
10975 }
10976 } else {
10977 int maxpass = is_q ? 4 : 2;
10978 TCGv_i32 tcg_res[4];
10979
10980 for (pass = 0; pass < maxpass; pass++) {
10981 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10982 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10983 NeonGenTwoOpFn *genfn = NULL;
10984 int passreg = pass < (maxpass / 2) ? rn : rm;
10985 int passelt = (is_q && (pass & 1)) ? 2 : 0;
10986
10987 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10988 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10989 tcg_res[pass] = tcg_temp_new_i32();
10990
10991 switch (opcode) {
10992 case 0x17: /* ADDP */
10993 {
10994 static NeonGenTwoOpFn * const fns[3] = {
10995 gen_helper_neon_padd_u8,
10996 gen_helper_neon_padd_u16,
10997 tcg_gen_add_i32,
10998 };
10999 genfn = fns[size];
11000 break;
11001 }
11002 case 0x14: /* SMAXP, UMAXP */
11003 {
11004 static NeonGenTwoOpFn * const fns[3][2] = {
11005 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11006 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11007 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11008 };
11009 genfn = fns[size][u];
11010 break;
11011 }
11012 case 0x15: /* SMINP, UMINP */
11013 {
11014 static NeonGenTwoOpFn * const fns[3][2] = {
11015 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11016 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11017 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11018 };
11019 genfn = fns[size][u];
11020 break;
11021 }
11022 /* The FP operations are all on single floats (32 bit) */
11023 case 0x58: /* FMAXNMP */
11024 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11025 break;
11026 case 0x5a: /* FADDP */
11027 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11028 break;
11029 case 0x5e: /* FMAXP */
11030 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11031 break;
11032 case 0x78: /* FMINNMP */
11033 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11034 break;
11035 case 0x7e: /* FMINP */
11036 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11037 break;
11038 default:
11039 g_assert_not_reached();
11040 }
11041
11042 /* FP ops called directly, otherwise call now */
11043 if (genfn) {
11044 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11045 }
11046
11047 tcg_temp_free_i32(tcg_op1);
11048 tcg_temp_free_i32(tcg_op2);
11049 }
11050
11051 for (pass = 0; pass < maxpass; pass++) {
11052 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11053 tcg_temp_free_i32(tcg_res[pass]);
11054 }
11055 clear_vec_high(s, is_q, rd);
11056 }
11057
11058 if (fpst) {
11059 tcg_temp_free_ptr(fpst);
11060 }
11061 }
11062
11063 /* Floating point op subgroup of C3.6.16. */
11064 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11065 {
11066 /* For floating point ops, the U, size[1] and opcode bits
11067 * together indicate the operation. size[0] indicates single
11068 * or double.
11069 */
11070 int fpopcode = extract32(insn, 11, 5)
11071 | (extract32(insn, 23, 1) << 5)
11072 | (extract32(insn, 29, 1) << 6);
11073 int is_q = extract32(insn, 30, 1);
11074 int size = extract32(insn, 22, 1);
11075 int rm = extract32(insn, 16, 5);
11076 int rn = extract32(insn, 5, 5);
11077 int rd = extract32(insn, 0, 5);
11078
11079 int datasize = is_q ? 128 : 64;
11080 int esize = 32 << size;
11081 int elements = datasize / esize;
11082
11083 if (size == 1 && !is_q) {
11084 unallocated_encoding(s);
11085 return;
11086 }
11087
11088 switch (fpopcode) {
11089 case 0x58: /* FMAXNMP */
11090 case 0x5a: /* FADDP */
11091 case 0x5e: /* FMAXP */
11092 case 0x78: /* FMINNMP */
11093 case 0x7e: /* FMINP */
11094 if (size && !is_q) {
11095 unallocated_encoding(s);
11096 return;
11097 }
11098 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11099 rn, rm, rd);
11100 return;
11101 case 0x1b: /* FMULX */
11102 case 0x1f: /* FRECPS */
11103 case 0x3f: /* FRSQRTS */
11104 case 0x5d: /* FACGE */
11105 case 0x7d: /* FACGT */
11106 case 0x19: /* FMLA */
11107 case 0x39: /* FMLS */
11108 case 0x18: /* FMAXNM */
11109 case 0x1a: /* FADD */
11110 case 0x1c: /* FCMEQ */
11111 case 0x1e: /* FMAX */
11112 case 0x38: /* FMINNM */
11113 case 0x3a: /* FSUB */
11114 case 0x3e: /* FMIN */
11115 case 0x5b: /* FMUL */
11116 case 0x5c: /* FCMGE */
11117 case 0x5f: /* FDIV */
11118 case 0x7a: /* FABD */
11119 case 0x7c: /* FCMGT */
11120 if (!fp_access_check(s)) {
11121 return;
11122 }
11123 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11124 return;
11125
11126 case 0x1d: /* FMLAL */
11127 case 0x3d: /* FMLSL */
11128 case 0x59: /* FMLAL2 */
11129 case 0x79: /* FMLSL2 */
11130 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11131 unallocated_encoding(s);
11132 return;
11133 }
11134 if (fp_access_check(s)) {
11135 int is_s = extract32(insn, 23, 1);
11136 int is_2 = extract32(insn, 29, 1);
11137 int data = (is_2 << 1) | is_s;
11138 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11139 vec_full_reg_offset(s, rn),
11140 vec_full_reg_offset(s, rm), cpu_env,
11141 is_q ? 16 : 8, vec_full_reg_size(s),
11142 data, gen_helper_gvec_fmlal_a64);
11143 }
11144 return;
11145
11146 default:
11147 unallocated_encoding(s);
11148 return;
11149 }
11150 }
11151
11152 /* Integer op subgroup of C3.6.16. */
11153 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11154 {
11155 int is_q = extract32(insn, 30, 1);
11156 int u = extract32(insn, 29, 1);
11157 int size = extract32(insn, 22, 2);
11158 int opcode = extract32(insn, 11, 5);
11159 int rm = extract32(insn, 16, 5);
11160 int rn = extract32(insn, 5, 5);
11161 int rd = extract32(insn, 0, 5);
11162 int pass;
11163 TCGCond cond;
11164
11165 switch (opcode) {
11166 case 0x13: /* MUL, PMUL */
11167 if (u && size != 0) {
11168 unallocated_encoding(s);
11169 return;
11170 }
11171 /* fall through */
11172 case 0x0: /* SHADD, UHADD */
11173 case 0x2: /* SRHADD, URHADD */
11174 case 0x4: /* SHSUB, UHSUB */
11175 case 0xc: /* SMAX, UMAX */
11176 case 0xd: /* SMIN, UMIN */
11177 case 0xe: /* SABD, UABD */
11178 case 0xf: /* SABA, UABA */
11179 case 0x12: /* MLA, MLS */
11180 if (size == 3) {
11181 unallocated_encoding(s);
11182 return;
11183 }
11184 break;
11185 case 0x16: /* SQDMULH, SQRDMULH */
11186 if (size == 0 || size == 3) {
11187 unallocated_encoding(s);
11188 return;
11189 }
11190 break;
11191 default:
11192 if (size == 3 && !is_q) {
11193 unallocated_encoding(s);
11194 return;
11195 }
11196 break;
11197 }
11198
11199 if (!fp_access_check(s)) {
11200 return;
11201 }
11202
11203 switch (opcode) {
11204 case 0x01: /* SQADD, UQADD */
11205 if (u) {
11206 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11207 } else {
11208 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11209 }
11210 return;
11211 case 0x05: /* SQSUB, UQSUB */
11212 if (u) {
11213 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11214 } else {
11215 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11216 }
11217 return;
11218 case 0x08: /* SSHL, USHL */
11219 if (u) {
11220 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11221 } else {
11222 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11223 }
11224 return;
11225 case 0x0c: /* SMAX, UMAX */
11226 if (u) {
11227 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11228 } else {
11229 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11230 }
11231 return;
11232 case 0x0d: /* SMIN, UMIN */
11233 if (u) {
11234 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11235 } else {
11236 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11237 }
11238 return;
11239 case 0xe: /* SABD, UABD */
11240 if (u) {
11241 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11242 } else {
11243 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11244 }
11245 return;
11246 case 0xf: /* SABA, UABA */
11247 if (u) {
11248 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11249 } else {
11250 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11251 }
11252 return;
11253 case 0x10: /* ADD, SUB */
11254 if (u) {
11255 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11256 } else {
11257 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11258 }
11259 return;
11260 case 0x13: /* MUL, PMUL */
11261 if (!u) { /* MUL */
11262 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11263 } else { /* PMUL */
11264 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11265 }
11266 return;
11267 case 0x12: /* MLA, MLS */
11268 if (u) {
11269 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11270 } else {
11271 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11272 }
11273 return;
11274 case 0x11:
11275 if (!u) { /* CMTST */
11276 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11277 return;
11278 }
11279 /* else CMEQ */
11280 cond = TCG_COND_EQ;
11281 goto do_gvec_cmp;
11282 case 0x06: /* CMGT, CMHI */
11283 cond = u ? TCG_COND_GTU : TCG_COND_GT;
11284 goto do_gvec_cmp;
11285 case 0x07: /* CMGE, CMHS */
11286 cond = u ? TCG_COND_GEU : TCG_COND_GE;
11287 do_gvec_cmp:
11288 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11289 vec_full_reg_offset(s, rn),
11290 vec_full_reg_offset(s, rm),
11291 is_q ? 16 : 8, vec_full_reg_size(s));
11292 return;
11293 }
11294
11295 if (size == 3) {
11296 assert(is_q);
11297 for (pass = 0; pass < 2; pass++) {
11298 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11299 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11300 TCGv_i64 tcg_res = tcg_temp_new_i64();
11301
11302 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11303 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11304
11305 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11306
11307 write_vec_element(s, tcg_res, rd, pass, MO_64);
11308
11309 tcg_temp_free_i64(tcg_res);
11310 tcg_temp_free_i64(tcg_op1);
11311 tcg_temp_free_i64(tcg_op2);
11312 }
11313 } else {
11314 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11315 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11316 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11317 TCGv_i32 tcg_res = tcg_temp_new_i32();
11318 NeonGenTwoOpFn *genfn = NULL;
11319 NeonGenTwoOpEnvFn *genenvfn = NULL;
11320
11321 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11322 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11323
11324 switch (opcode) {
11325 case 0x0: /* SHADD, UHADD */
11326 {
11327 static NeonGenTwoOpFn * const fns[3][2] = {
11328 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11329 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11330 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11331 };
11332 genfn = fns[size][u];
11333 break;
11334 }
11335 case 0x2: /* SRHADD, URHADD */
11336 {
11337 static NeonGenTwoOpFn * const fns[3][2] = {
11338 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11339 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11340 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11341 };
11342 genfn = fns[size][u];
11343 break;
11344 }
11345 case 0x4: /* SHSUB, UHSUB */
11346 {
11347 static NeonGenTwoOpFn * const fns[3][2] = {
11348 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11349 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11350 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11351 };
11352 genfn = fns[size][u];
11353 break;
11354 }
11355 case 0x9: /* SQSHL, UQSHL */
11356 {
11357 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11358 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11359 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11360 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11361 };
11362 genenvfn = fns[size][u];
11363 break;
11364 }
11365 case 0xa: /* SRSHL, URSHL */
11366 {
11367 static NeonGenTwoOpFn * const fns[3][2] = {
11368 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11369 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11370 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11371 };
11372 genfn = fns[size][u];
11373 break;
11374 }
11375 case 0xb: /* SQRSHL, UQRSHL */
11376 {
11377 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11378 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11379 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11380 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11381 };
11382 genenvfn = fns[size][u];
11383 break;
11384 }
11385 case 0x16: /* SQDMULH, SQRDMULH */
11386 {
11387 static NeonGenTwoOpEnvFn * const fns[2][2] = {
11388 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
11389 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
11390 };
11391 assert(size == 1 || size == 2);
11392 genenvfn = fns[size - 1][u];
11393 break;
11394 }
11395 default:
11396 g_assert_not_reached();
11397 }
11398
11399 if (genenvfn) {
11400 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11401 } else {
11402 genfn(tcg_res, tcg_op1, tcg_op2);
11403 }
11404
11405 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11406
11407 tcg_temp_free_i32(tcg_res);
11408 tcg_temp_free_i32(tcg_op1);
11409 tcg_temp_free_i32(tcg_op2);
11410 }
11411 }
11412 clear_vec_high(s, is_q, rd);
11413 }
11414
11415 /* AdvSIMD three same
11416 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11417 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11418 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11419 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11420 */
11421 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11422 {
11423 int opcode = extract32(insn, 11, 5);
11424
11425 switch (opcode) {
11426 case 0x3: /* logic ops */
11427 disas_simd_3same_logic(s, insn);
11428 break;
11429 case 0x17: /* ADDP */
11430 case 0x14: /* SMAXP, UMAXP */
11431 case 0x15: /* SMINP, UMINP */
11432 {
11433 /* Pairwise operations */
11434 int is_q = extract32(insn, 30, 1);
11435 int u = extract32(insn, 29, 1);
11436 int size = extract32(insn, 22, 2);
11437 int rm = extract32(insn, 16, 5);
11438 int rn = extract32(insn, 5, 5);
11439 int rd = extract32(insn, 0, 5);
11440 if (opcode == 0x17) {
11441 if (u || (size == 3 && !is_q)) {
11442 unallocated_encoding(s);
11443 return;
11444 }
11445 } else {
11446 if (size == 3) {
11447 unallocated_encoding(s);
11448 return;
11449 }
11450 }
11451 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11452 break;
11453 }
11454 case 0x18 ... 0x31:
11455 /* floating point ops, sz[1] and U are part of opcode */
11456 disas_simd_3same_float(s, insn);
11457 break;
11458 default:
11459 disas_simd_3same_int(s, insn);
11460 break;
11461 }
11462 }
11463
11464 /*
11465 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11466 *
11467 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11468 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11469 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11470 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11471 *
11472 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11473 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11474 *
11475 */
11476 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11477 {
11478 int opcode, fpopcode;
11479 int is_q, u, a, rm, rn, rd;
11480 int datasize, elements;
11481 int pass;
11482 TCGv_ptr fpst;
11483 bool pairwise = false;
11484
11485 if (!dc_isar_feature(aa64_fp16, s)) {
11486 unallocated_encoding(s);
11487 return;
11488 }
11489
11490 if (!fp_access_check(s)) {
11491 return;
11492 }
11493
11494 /* For these floating point ops, the U, a and opcode bits
11495 * together indicate the operation.
11496 */
11497 opcode = extract32(insn, 11, 3);
11498 u = extract32(insn, 29, 1);
11499 a = extract32(insn, 23, 1);
11500 is_q = extract32(insn, 30, 1);
11501 rm = extract32(insn, 16, 5);
11502 rn = extract32(insn, 5, 5);
11503 rd = extract32(insn, 0, 5);
11504
11505 fpopcode = opcode | (a << 3) | (u << 4);
11506 datasize = is_q ? 128 : 64;
11507 elements = datasize / 16;
11508
11509 switch (fpopcode) {
11510 case 0x10: /* FMAXNMP */
11511 case 0x12: /* FADDP */
11512 case 0x16: /* FMAXP */
11513 case 0x18: /* FMINNMP */
11514 case 0x1e: /* FMINP */
11515 pairwise = true;
11516 break;
11517 }
11518
11519 fpst = get_fpstatus_ptr(true);
11520
11521 if (pairwise) {
11522 int maxpass = is_q ? 8 : 4;
11523 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11524 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11525 TCGv_i32 tcg_res[8];
11526
11527 for (pass = 0; pass < maxpass; pass++) {
11528 int passreg = pass < (maxpass / 2) ? rn : rm;
11529 int passelt = (pass << 1) & (maxpass - 1);
11530
11531 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11532 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11533 tcg_res[pass] = tcg_temp_new_i32();
11534
11535 switch (fpopcode) {
11536 case 0x10: /* FMAXNMP */
11537 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11538 fpst);
11539 break;
11540 case 0x12: /* FADDP */
11541 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11542 break;
11543 case 0x16: /* FMAXP */
11544 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11545 break;
11546 case 0x18: /* FMINNMP */
11547 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11548 fpst);
11549 break;
11550 case 0x1e: /* FMINP */
11551 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11552 break;
11553 default:
11554 g_assert_not_reached();
11555 }
11556 }
11557
11558 for (pass = 0; pass < maxpass; pass++) {
11559 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11560 tcg_temp_free_i32(tcg_res[pass]);
11561 }
11562
11563 tcg_temp_free_i32(tcg_op1);
11564 tcg_temp_free_i32(tcg_op2);
11565
11566 } else {
11567 for (pass = 0; pass < elements; pass++) {
11568 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11569 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11570 TCGv_i32 tcg_res = tcg_temp_new_i32();
11571
11572 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11573 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11574
11575 switch (fpopcode) {
11576 case 0x0: /* FMAXNM */
11577 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11578 break;
11579 case 0x1: /* FMLA */
11580 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11581 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11582 fpst);
11583 break;
11584 case 0x2: /* FADD */
11585 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11586 break;
11587 case 0x3: /* FMULX */
11588 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11589 break;
11590 case 0x4: /* FCMEQ */
11591 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11592 break;
11593 case 0x6: /* FMAX */
11594 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11595 break;
11596 case 0x7: /* FRECPS */
11597 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11598 break;
11599 case 0x8: /* FMINNM */
11600 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11601 break;
11602 case 0x9: /* FMLS */
11603 /* As usual for ARM, separate negation for fused multiply-add */
11604 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11605 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11606 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11607 fpst);
11608 break;
11609 case 0xa: /* FSUB */
11610 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11611 break;
11612 case 0xe: /* FMIN */
11613 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11614 break;
11615 case 0xf: /* FRSQRTS */
11616 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11617 break;
11618 case 0x13: /* FMUL */
11619 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11620 break;
11621 case 0x14: /* FCMGE */
11622 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11623 break;
11624 case 0x15: /* FACGE */
11625 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11626 break;
11627 case 0x17: /* FDIV */
11628 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11629 break;
11630 case 0x1a: /* FABD */
11631 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11632 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11633 break;
11634 case 0x1c: /* FCMGT */
11635 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11636 break;
11637 case 0x1d: /* FACGT */
11638 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11639 break;
11640 default:
11641 fprintf(stderr, "%s: insn %#04x, fpop %#2x @ %#" PRIx64 "\n",
11642 __func__, insn, fpopcode, s->pc_curr);
11643 g_assert_not_reached();
11644 }
11645
11646 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11647 tcg_temp_free_i32(tcg_res);
11648 tcg_temp_free_i32(tcg_op1);
11649 tcg_temp_free_i32(tcg_op2);
11650 }
11651 }
11652
11653 tcg_temp_free_ptr(fpst);
11654
11655 clear_vec_high(s, is_q, rd);
11656 }
11657
11658 /* AdvSIMD three same extra
11659 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
11660 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11661 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
11662 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11663 */
11664 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11665 {
11666 int rd = extract32(insn, 0, 5);
11667 int rn = extract32(insn, 5, 5);
11668 int opcode = extract32(insn, 11, 4);
11669 int rm = extract32(insn, 16, 5);
11670 int size = extract32(insn, 22, 2);
11671 bool u = extract32(insn, 29, 1);
11672 bool is_q = extract32(insn, 30, 1);
11673 bool feature;
11674 int rot;
11675
11676 switch (u * 16 + opcode) {
11677 case 0x10: /* SQRDMLAH (vector) */
11678 case 0x11: /* SQRDMLSH (vector) */
11679 if (size != 1 && size != 2) {
11680 unallocated_encoding(s);
11681 return;
11682 }
11683 feature = dc_isar_feature(aa64_rdm, s);
11684 break;
11685 case 0x02: /* SDOT (vector) */
11686 case 0x12: /* UDOT (vector) */
11687 if (size != MO_32) {
11688 unallocated_encoding(s);
11689 return;
11690 }
11691 feature = dc_isar_feature(aa64_dp, s);
11692 break;
11693 case 0x18: /* FCMLA, #0 */
11694 case 0x19: /* FCMLA, #90 */
11695 case 0x1a: /* FCMLA, #180 */
11696 case 0x1b: /* FCMLA, #270 */
11697 case 0x1c: /* FCADD, #90 */
11698 case 0x1e: /* FCADD, #270 */
11699 if (size == 0
11700 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11701 || (size == 3 && !is_q)) {
11702 unallocated_encoding(s);
11703 return;
11704 }
11705 feature = dc_isar_feature(aa64_fcma, s);
11706 break;
11707 default:
11708 unallocated_encoding(s);
11709 return;
11710 }
11711 if (!feature) {
11712 unallocated_encoding(s);
11713 return;
11714 }
11715 if (!fp_access_check(s)) {
11716 return;
11717 }
11718
11719 switch (opcode) {
11720 case 0x0: /* SQRDMLAH (vector) */
11721 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11722 return;
11723
11724 case 0x1: /* SQRDMLSH (vector) */
11725 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11726 return;
11727
11728 case 0x2: /* SDOT / UDOT */
11729 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0,
11730 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11731 return;
11732
11733 case 0x8: /* FCMLA, #0 */
11734 case 0x9: /* FCMLA, #90 */
11735 case 0xa: /* FCMLA, #180 */
11736 case 0xb: /* FCMLA, #270 */
11737 rot = extract32(opcode, 0, 2);
11738 switch (size) {
11739 case 1:
11740 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, true, rot,
11741 gen_helper_gvec_fcmlah);
11742 break;
11743 case 2:
11744 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11745 gen_helper_gvec_fcmlas);
11746 break;
11747 case 3:
11748 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11749 gen_helper_gvec_fcmlad);
11750 break;
11751 default:
11752 g_assert_not_reached();
11753 }
11754 return;
11755
11756 case 0xc: /* FCADD, #90 */
11757 case 0xe: /* FCADD, #270 */
11758 rot = extract32(opcode, 1, 1);
11759 switch (size) {
11760 case 1:
11761 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11762 gen_helper_gvec_fcaddh);
11763 break;
11764 case 2:
11765 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11766 gen_helper_gvec_fcadds);
11767 break;
11768 case 3:
11769 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11770 gen_helper_gvec_fcaddd);
11771 break;
11772 default:
11773 g_assert_not_reached();
11774 }
11775 return;
11776
11777 default:
11778 g_assert_not_reached();
11779 }
11780 }
11781
11782 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11783 int size, int rn, int rd)
11784 {
11785 /* Handle 2-reg-misc ops which are widening (so each size element
11786 * in the source becomes a 2*size element in the destination.
11787 * The only instruction like this is FCVTL.
11788 */
11789 int pass;
11790
11791 if (size == 3) {
11792 /* 32 -> 64 bit fp conversion */
11793 TCGv_i64 tcg_res[2];
11794 int srcelt = is_q ? 2 : 0;
11795
11796 for (pass = 0; pass < 2; pass++) {
11797 TCGv_i32 tcg_op = tcg_temp_new_i32();
11798 tcg_res[pass] = tcg_temp_new_i64();
11799
11800 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11801 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11802 tcg_temp_free_i32(tcg_op);
11803 }
11804 for (pass = 0; pass < 2; pass++) {
11805 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11806 tcg_temp_free_i64(tcg_res[pass]);
11807 }
11808 } else {
11809 /* 16 -> 32 bit fp conversion */
11810 int srcelt = is_q ? 4 : 0;
11811 TCGv_i32 tcg_res[4];
11812 TCGv_ptr fpst = get_fpstatus_ptr(false);
11813 TCGv_i32 ahp = get_ahp_flag();
11814
11815 for (pass = 0; pass < 4; pass++) {
11816 tcg_res[pass] = tcg_temp_new_i32();
11817
11818 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11819 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11820 fpst, ahp);
11821 }
11822 for (pass = 0; pass < 4; pass++) {
11823 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11824 tcg_temp_free_i32(tcg_res[pass]);
11825 }
11826
11827 tcg_temp_free_ptr(fpst);
11828 tcg_temp_free_i32(ahp);
11829 }
11830 }
11831
11832 static void handle_rev(DisasContext *s, int opcode, bool u,
11833 bool is_q, int size, int rn, int rd)
11834 {
11835 int op = (opcode << 1) | u;
11836 int opsz = op + size;
11837 int grp_size = 3 - opsz;
11838 int dsize = is_q ? 128 : 64;
11839 int i;
11840
11841 if (opsz >= 3) {
11842 unallocated_encoding(s);
11843 return;
11844 }
11845
11846 if (!fp_access_check(s)) {
11847 return;
11848 }
11849
11850 if (size == 0) {
11851 /* Special case bytes, use bswap op on each group of elements */
11852 int groups = dsize / (8 << grp_size);
11853
11854 for (i = 0; i < groups; i++) {
11855 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11856
11857 read_vec_element(s, tcg_tmp, rn, i, grp_size);
11858 switch (grp_size) {
11859 case MO_16:
11860 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
11861 break;
11862 case MO_32:
11863 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
11864 break;
11865 case MO_64:
11866 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11867 break;
11868 default:
11869 g_assert_not_reached();
11870 }
11871 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11872 tcg_temp_free_i64(tcg_tmp);
11873 }
11874 clear_vec_high(s, is_q, rd);
11875 } else {
11876 int revmask = (1 << grp_size) - 1;
11877 int esize = 8 << size;
11878 int elements = dsize / esize;
11879 TCGv_i64 tcg_rn = tcg_temp_new_i64();
11880 TCGv_i64 tcg_rd = tcg_const_i64(0);
11881 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
11882
11883 for (i = 0; i < elements; i++) {
11884 int e_rev = (i & 0xf) ^ revmask;
11885 int off = e_rev * esize;
11886 read_vec_element(s, tcg_rn, rn, i, size);
11887 if (off >= 64) {
11888 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
11889 tcg_rn, off - 64, esize);
11890 } else {
11891 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
11892 }
11893 }
11894 write_vec_element(s, tcg_rd, rd, 0, MO_64);
11895 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
11896
11897 tcg_temp_free_i64(tcg_rd_hi);
11898 tcg_temp_free_i64(tcg_rd);
11899 tcg_temp_free_i64(tcg_rn);
11900 }
11901 }
11902
11903 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11904 bool is_q, int size, int rn, int rd)
11905 {
11906 /* Implement the pairwise operations from 2-misc:
11907 * SADDLP, UADDLP, SADALP, UADALP.
11908 * These all add pairs of elements in the input to produce a
11909 * double-width result element in the output (possibly accumulating).
11910 */
11911 bool accum = (opcode == 0x6);
11912 int maxpass = is_q ? 2 : 1;
11913 int pass;
11914 TCGv_i64 tcg_res[2];
11915
11916 if (size == 2) {
11917 /* 32 + 32 -> 64 op */
11918 MemOp memop = size + (u ? 0 : MO_SIGN);
11919
11920 for (pass = 0; pass < maxpass; pass++) {
11921 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11922 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11923
11924 tcg_res[pass] = tcg_temp_new_i64();
11925
11926 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11927 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11928 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11929 if (accum) {
11930 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11931 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11932 }
11933
11934 tcg_temp_free_i64(tcg_op1);
11935 tcg_temp_free_i64(tcg_op2);
11936 }
11937 } else {
11938 for (pass = 0; pass < maxpass; pass++) {
11939 TCGv_i64 tcg_op = tcg_temp_new_i64();
11940 NeonGenOne64OpFn *genfn;
11941 static NeonGenOne64OpFn * const fns[2][2] = {
11942 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
11943 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
11944 };
11945
11946 genfn = fns[size][u];
11947
11948 tcg_res[pass] = tcg_temp_new_i64();
11949
11950 read_vec_element(s, tcg_op, rn, pass, MO_64);
11951 genfn(tcg_res[pass], tcg_op);
11952
11953 if (accum) {
11954 read_vec_element(s, tcg_op, rd, pass, MO_64);
11955 if (size == 0) {
11956 gen_helper_neon_addl_u16(tcg_res[pass],
11957 tcg_res[pass], tcg_op);
11958 } else {
11959 gen_helper_neon_addl_u32(tcg_res[pass],
11960 tcg_res[pass], tcg_op);
11961 }
11962 }
11963 tcg_temp_free_i64(tcg_op);
11964 }
11965 }
11966 if (!is_q) {
11967 tcg_res[1] = tcg_const_i64(0);
11968 }
11969 for (pass = 0; pass < 2; pass++) {
11970 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11971 tcg_temp_free_i64(tcg_res[pass]);
11972 }
11973 }
11974
11975 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11976 {
11977 /* Implement SHLL and SHLL2 */
11978 int pass;
11979 int part = is_q ? 2 : 0;
11980 TCGv_i64 tcg_res[2];
11981
11982 for (pass = 0; pass < 2; pass++) {
11983 static NeonGenWidenFn * const widenfns[3] = {
11984 gen_helper_neon_widen_u8,
11985 gen_helper_neon_widen_u16,
11986 tcg_gen_extu_i32_i64,
11987 };
11988 NeonGenWidenFn *widenfn = widenfns[size];
11989 TCGv_i32 tcg_op = tcg_temp_new_i32();
11990
11991 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11992 tcg_res[pass] = tcg_temp_new_i64();
11993 widenfn(tcg_res[pass], tcg_op);
11994 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11995
11996 tcg_temp_free_i32(tcg_op);
11997 }
11998
11999 for (pass = 0; pass < 2; pass++) {
12000 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12001 tcg_temp_free_i64(tcg_res[pass]);
12002 }
12003 }
12004
12005 /* AdvSIMD two reg misc
12006 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
12007 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12008 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
12009 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12010 */
12011 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12012 {
12013 int size = extract32(insn, 22, 2);
12014 int opcode = extract32(insn, 12, 5);
12015 bool u = extract32(insn, 29, 1);
12016 bool is_q = extract32(insn, 30, 1);
12017 int rn = extract32(insn, 5, 5);
12018 int rd = extract32(insn, 0, 5);
12019 bool need_fpstatus = false;
12020 bool need_rmode = false;
12021 int rmode = -1;
12022 TCGv_i32 tcg_rmode;
12023 TCGv_ptr tcg_fpstatus;
12024
12025 switch (opcode) {
12026 case 0x0: /* REV64, REV32 */
12027 case 0x1: /* REV16 */
12028 handle_rev(s, opcode, u, is_q, size, rn, rd);
12029 return;
12030 case 0x5: /* CNT, NOT, RBIT */
12031 if (u && size == 0) {
12032 /* NOT */
12033 break;
12034 } else if (u && size == 1) {
12035 /* RBIT */
12036 break;
12037 } else if (!u && size == 0) {
12038 /* CNT */
12039 break;
12040 }
12041 unallocated_encoding(s);
12042 return;
12043 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12044 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12045 if (size == 3) {
12046 unallocated_encoding(s);
12047 return;
12048 }
12049 if (!fp_access_check(s)) {
12050 return;
12051 }
12052
12053 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12054 return;
12055 case 0x4: /* CLS, CLZ */
12056 if (size == 3) {
12057 unallocated_encoding(s);
12058 return;
12059 }
12060 break;
12061 case 0x2: /* SADDLP, UADDLP */
12062 case 0x6: /* SADALP, UADALP */
12063 if (size == 3) {
12064 unallocated_encoding(s);
12065 return;
12066 }
12067 if (!fp_access_check(s)) {
12068 return;
12069 }
12070 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12071 return;
12072 case 0x13: /* SHLL, SHLL2 */
12073 if (u == 0 || size == 3) {
12074 unallocated_encoding(s);
12075 return;
12076 }
12077 if (!fp_access_check(s)) {
12078 return;
12079 }
12080 handle_shll(s, is_q, size, rn, rd);
12081 return;
12082 case 0xa: /* CMLT */
12083 if (u == 1) {
12084 unallocated_encoding(s);
12085 return;
12086 }
12087 /* fall through */
12088 case 0x8: /* CMGT, CMGE */
12089 case 0x9: /* CMEQ, CMLE */
12090 case 0xb: /* ABS, NEG */
12091 if (size == 3 && !is_q) {
12092 unallocated_encoding(s);
12093 return;
12094 }
12095 break;
12096 case 0x3: /* SUQADD, USQADD */
12097 if (size == 3 && !is_q) {
12098 unallocated_encoding(s);
12099 return;
12100 }
12101 if (!fp_access_check(s)) {
12102 return;
12103 }
12104 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12105 return;
12106 case 0x7: /* SQABS, SQNEG */
12107 if (size == 3 && !is_q) {
12108 unallocated_encoding(s);
12109 return;
12110 }
12111 break;
12112 case 0xc ... 0xf:
12113 case 0x16 ... 0x1f:
12114 {
12115 /* Floating point: U, size[1] and opcode indicate operation;
12116 * size[0] indicates single or double precision.
12117 */
12118 int is_double = extract32(size, 0, 1);
12119 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12120 size = is_double ? 3 : 2;
12121 switch (opcode) {
12122 case 0x2f: /* FABS */
12123 case 0x6f: /* FNEG */
12124 if (size == 3 && !is_q) {
12125 unallocated_encoding(s);
12126 return;
12127 }
12128 break;
12129 case 0x1d: /* SCVTF */
12130 case 0x5d: /* UCVTF */
12131 {
12132 bool is_signed = (opcode == 0x1d) ? true : false;
12133 int elements = is_double ? 2 : is_q ? 4 : 2;
12134 if (is_double && !is_q) {
12135 unallocated_encoding(s);
12136 return;
12137 }
12138 if (!fp_access_check(s)) {
12139 return;
12140 }
12141 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12142 return;
12143 }
12144 case 0x2c: /* FCMGT (zero) */
12145 case 0x2d: /* FCMEQ (zero) */
12146 case 0x2e: /* FCMLT (zero) */
12147 case 0x6c: /* FCMGE (zero) */
12148 case 0x6d: /* FCMLE (zero) */
12149 if (size == 3 && !is_q) {
12150 unallocated_encoding(s);
12151 return;
12152 }
12153 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12154 return;
12155 case 0x7f: /* FSQRT */
12156 if (size == 3 && !is_q) {
12157 unallocated_encoding(s);
12158 return;
12159 }
12160 break;
12161 case 0x1a: /* FCVTNS */
12162 case 0x1b: /* FCVTMS */
12163 case 0x3a: /* FCVTPS */
12164 case 0x3b: /* FCVTZS */
12165 case 0x5a: /* FCVTNU */
12166 case 0x5b: /* FCVTMU */
12167 case 0x7a: /* FCVTPU */
12168 case 0x7b: /* FCVTZU */
12169 need_fpstatus = true;
12170 need_rmode = true;
12171 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12172 if (size == 3 && !is_q) {
12173 unallocated_encoding(s);
12174 return;
12175 }
12176 break;
12177 case 0x5c: /* FCVTAU */
12178 case 0x1c: /* FCVTAS */
12179 need_fpstatus = true;
12180 need_rmode = true;
12181 rmode = FPROUNDING_TIEAWAY;
12182 if (size == 3 && !is_q) {
12183 unallocated_encoding(s);
12184 return;
12185 }
12186 break;
12187 case 0x3c: /* URECPE */
12188 if (size == 3) {
12189 unallocated_encoding(s);
12190 return;
12191 }
12192 /* fall through */
12193 case 0x3d: /* FRECPE */
12194 case 0x7d: /* FRSQRTE */
12195 if (size == 3 && !is_q) {
12196 unallocated_encoding(s);
12197 return;
12198 }
12199 if (!fp_access_check(s)) {
12200 return;
12201 }
12202 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12203 return;
12204 case 0x56: /* FCVTXN, FCVTXN2 */
12205 if (size == 2) {
12206 unallocated_encoding(s);
12207 return;
12208 }
12209 /* fall through */
12210 case 0x16: /* FCVTN, FCVTN2 */
12211 /* handle_2misc_narrow does a 2*size -> size operation, but these
12212 * instructions encode the source size rather than dest size.
12213 */
12214 if (!fp_access_check(s)) {
12215 return;
12216 }
12217 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12218 return;
12219 case 0x17: /* FCVTL, FCVTL2 */
12220 if (!fp_access_check(s)) {
12221 return;
12222 }
12223 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12224 return;
12225 case 0x18: /* FRINTN */
12226 case 0x19: /* FRINTM */
12227 case 0x38: /* FRINTP */
12228 case 0x39: /* FRINTZ */
12229 need_rmode = true;
12230 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12231 /* fall through */
12232 case 0x59: /* FRINTX */
12233 case 0x79: /* FRINTI */
12234 need_fpstatus = true;
12235 if (size == 3 && !is_q) {
12236 unallocated_encoding(s);
12237 return;
12238 }
12239 break;
12240 case 0x58: /* FRINTA */
12241 need_rmode = true;
12242 rmode = FPROUNDING_TIEAWAY;
12243 need_fpstatus = true;
12244 if (size == 3 && !is_q) {
12245 unallocated_encoding(s);
12246 return;
12247 }
12248 break;
12249 case 0x7c: /* URSQRTE */
12250 if (size == 3) {
12251 unallocated_encoding(s);
12252 return;
12253 }
12254 break;
12255 case 0x1e: /* FRINT32Z */
12256 case 0x1f: /* FRINT64Z */
12257 need_rmode = true;
12258 rmode = FPROUNDING_ZERO;
12259 /* fall through */
12260 case 0x5e: /* FRINT32X */
12261 case 0x5f: /* FRINT64X */
12262 need_fpstatus = true;
12263 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12264 unallocated_encoding(s);
12265 return;
12266 }
12267 break;
12268 default:
12269 unallocated_encoding(s);
12270 return;
12271 }
12272 break;
12273 }
12274 default:
12275 unallocated_encoding(s);
12276 return;
12277 }
12278
12279 if (!fp_access_check(s)) {
12280 return;
12281 }
12282
12283 if (need_fpstatus || need_rmode) {
12284 tcg_fpstatus = get_fpstatus_ptr(false);
12285 } else {
12286 tcg_fpstatus = NULL;
12287 }
12288 if (need_rmode) {
12289 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12290 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12291 } else {
12292 tcg_rmode = NULL;
12293 }
12294
12295 switch (opcode) {
12296 case 0x5:
12297 if (u && size == 0) { /* NOT */
12298 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12299 return;
12300 }
12301 break;
12302 case 0x8: /* CMGT, CMGE */
12303 if (u) {
12304 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12305 } else {
12306 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12307 }
12308 return;
12309 case 0x9: /* CMEQ, CMLE */
12310 if (u) {
12311 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12312 } else {
12313 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12314 }
12315 return;
12316 case 0xa: /* CMLT */
12317 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12318 return;
12319 case 0xb:
12320 if (u) { /* ABS, NEG */
12321 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12322 } else {
12323 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12324 }
12325 return;
12326 }
12327
12328 if (size == 3) {
12329 /* All 64-bit element operations can be shared with scalar 2misc */
12330 int pass;
12331
12332 /* Coverity claims (size == 3 && !is_q) has been eliminated
12333 * from all paths leading to here.
12334 */
12335 tcg_debug_assert(is_q);
12336 for (pass = 0; pass < 2; pass++) {
12337 TCGv_i64 tcg_op = tcg_temp_new_i64();
12338 TCGv_i64 tcg_res = tcg_temp_new_i64();
12339
12340 read_vec_element(s, tcg_op, rn, pass, MO_64);
12341
12342 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12343 tcg_rmode, tcg_fpstatus);
12344
12345 write_vec_element(s, tcg_res, rd, pass, MO_64);
12346
12347 tcg_temp_free_i64(tcg_res);
12348 tcg_temp_free_i64(tcg_op);
12349 }
12350 } else {
12351 int pass;
12352
12353 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12354 TCGv_i32 tcg_op = tcg_temp_new_i32();
12355 TCGv_i32 tcg_res = tcg_temp_new_i32();
12356
12357 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12358
12359 if (size == 2) {
12360 /* Special cases for 32 bit elements */
12361 switch (opcode) {
12362 case 0x4: /* CLS */
12363 if (u) {
12364 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12365 } else {
12366 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12367 }
12368 break;
12369 case 0x7: /* SQABS, SQNEG */
12370 if (u) {
12371 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12372 } else {
12373 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12374 }
12375 break;
12376 case 0x2f: /* FABS */
12377 gen_helper_vfp_abss(tcg_res, tcg_op);
12378 break;
12379 case 0x6f: /* FNEG */
12380 gen_helper_vfp_negs(tcg_res, tcg_op);
12381 break;
12382 case 0x7f: /* FSQRT */
12383 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12384 break;
12385 case 0x1a: /* FCVTNS */
12386 case 0x1b: /* FCVTMS */
12387 case 0x1c: /* FCVTAS */
12388 case 0x3a: /* FCVTPS */
12389 case 0x3b: /* FCVTZS */
12390 {
12391 TCGv_i32 tcg_shift = tcg_const_i32(0);
12392 gen_helper_vfp_tosls(tcg_res, tcg_op,
12393 tcg_shift, tcg_fpstatus);
12394 tcg_temp_free_i32(tcg_shift);
12395 break;
12396 }
12397 case 0x5a: /* FCVTNU */
12398 case 0x5b: /* FCVTMU */
12399 case 0x5c: /* FCVTAU */
12400 case 0x7a: /* FCVTPU */
12401 case 0x7b: /* FCVTZU */
12402 {
12403 TCGv_i32 tcg_shift = tcg_const_i32(0);
12404 gen_helper_vfp_touls(tcg_res, tcg_op,
12405 tcg_shift, tcg_fpstatus);
12406 tcg_temp_free_i32(tcg_shift);
12407 break;
12408 }
12409 case 0x18: /* FRINTN */
12410 case 0x19: /* FRINTM */
12411 case 0x38: /* FRINTP */
12412 case 0x39: /* FRINTZ */
12413 case 0x58: /* FRINTA */
12414 case 0x79: /* FRINTI */
12415 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12416 break;
12417 case 0x59: /* FRINTX */
12418 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12419 break;
12420 case 0x7c: /* URSQRTE */
12421 gen_helper_rsqrte_u32(tcg_res, tcg_op);
12422 break;
12423 case 0x1e: /* FRINT32Z */
12424 case 0x5e: /* FRINT32X */
12425 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12426 break;
12427 case 0x1f: /* FRINT64Z */
12428 case 0x5f: /* FRINT64X */
12429 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12430 break;
12431 default:
12432 g_assert_not_reached();
12433 }
12434 } else {
12435 /* Use helpers for 8 and 16 bit elements */
12436 switch (opcode) {
12437 case 0x5: /* CNT, RBIT */
12438 /* For these two insns size is part of the opcode specifier
12439 * (handled earlier); they always operate on byte elements.
12440 */
12441 if (u) {
12442 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12443 } else {
12444 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12445 }
12446 break;
12447 case 0x7: /* SQABS, SQNEG */
12448 {
12449 NeonGenOneOpEnvFn *genfn;
12450 static NeonGenOneOpEnvFn * const fns[2][2] = {
12451 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12452 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12453 };
12454 genfn = fns[size][u];
12455 genfn(tcg_res, cpu_env, tcg_op);
12456 break;
12457 }
12458 case 0x4: /* CLS, CLZ */
12459 if (u) {
12460 if (size == 0) {
12461 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12462 } else {
12463 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12464 }
12465 } else {
12466 if (size == 0) {
12467 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12468 } else {
12469 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12470 }
12471 }
12472 break;
12473 default:
12474 g_assert_not_reached();
12475 }
12476 }
12477
12478 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12479
12480 tcg_temp_free_i32(tcg_res);
12481 tcg_temp_free_i32(tcg_op);
12482 }
12483 }
12484 clear_vec_high(s, is_q, rd);
12485
12486 if (need_rmode) {
12487 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12488 tcg_temp_free_i32(tcg_rmode);
12489 }
12490 if (need_fpstatus) {
12491 tcg_temp_free_ptr(tcg_fpstatus);
12492 }
12493 }
12494
12495 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12496 *
12497 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
12498 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12499 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
12500 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12501 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12502 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12503 *
12504 * This actually covers two groups where scalar access is governed by
12505 * bit 28. A bunch of the instructions (float to integral) only exist
12506 * in the vector form and are un-allocated for the scalar decode. Also
12507 * in the scalar decode Q is always 1.
12508 */
12509 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12510 {
12511 int fpop, opcode, a, u;
12512 int rn, rd;
12513 bool is_q;
12514 bool is_scalar;
12515 bool only_in_vector = false;
12516
12517 int pass;
12518 TCGv_i32 tcg_rmode = NULL;
12519 TCGv_ptr tcg_fpstatus = NULL;
12520 bool need_rmode = false;
12521 bool need_fpst = true;
12522 int rmode;
12523
12524 if (!dc_isar_feature(aa64_fp16, s)) {
12525 unallocated_encoding(s);
12526 return;
12527 }
12528
12529 rd = extract32(insn, 0, 5);
12530 rn = extract32(insn, 5, 5);
12531
12532 a = extract32(insn, 23, 1);
12533 u = extract32(insn, 29, 1);
12534 is_scalar = extract32(insn, 28, 1);
12535 is_q = extract32(insn, 30, 1);
12536
12537 opcode = extract32(insn, 12, 5);
12538 fpop = deposit32(opcode, 5, 1, a);
12539 fpop = deposit32(fpop, 6, 1, u);
12540
12541 rd = extract32(insn, 0, 5);
12542 rn = extract32(insn, 5, 5);
12543
12544 switch (fpop) {
12545 case 0x1d: /* SCVTF */
12546 case 0x5d: /* UCVTF */
12547 {
12548 int elements;
12549
12550 if (is_scalar) {
12551 elements = 1;
12552 } else {
12553 elements = (is_q ? 8 : 4);
12554 }
12555
12556 if (!fp_access_check(s)) {
12557 return;
12558 }
12559 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12560 return;
12561 }
12562 break;
12563 case 0x2c: /* FCMGT (zero) */
12564 case 0x2d: /* FCMEQ (zero) */
12565 case 0x2e: /* FCMLT (zero) */
12566 case 0x6c: /* FCMGE (zero) */
12567 case 0x6d: /* FCMLE (zero) */
12568 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12569 return;
12570 case 0x3d: /* FRECPE */
12571 case 0x3f: /* FRECPX */
12572 break;
12573 case 0x18: /* FRINTN */
12574 need_rmode = true;
12575 only_in_vector = true;
12576 rmode = FPROUNDING_TIEEVEN;
12577 break;
12578 case 0x19: /* FRINTM */
12579 need_rmode = true;
12580 only_in_vector = true;
12581 rmode = FPROUNDING_NEGINF;
12582 break;
12583 case 0x38: /* FRINTP */
12584 need_rmode = true;
12585 only_in_vector = true;
12586 rmode = FPROUNDING_POSINF;
12587 break;
12588 case 0x39: /* FRINTZ */
12589 need_rmode = true;
12590 only_in_vector = true;
12591 rmode = FPROUNDING_ZERO;
12592 break;
12593 case 0x58: /* FRINTA */
12594 need_rmode = true;
12595 only_in_vector = true;
12596 rmode = FPROUNDING_TIEAWAY;
12597 break;
12598 case 0x59: /* FRINTX */
12599 case 0x79: /* FRINTI */
12600 only_in_vector = true;
12601 /* current rounding mode */
12602 break;
12603 case 0x1a: /* FCVTNS */
12604 need_rmode = true;
12605 rmode = FPROUNDING_TIEEVEN;
12606 break;
12607 case 0x1b: /* FCVTMS */
12608 need_rmode = true;
12609 rmode = FPROUNDING_NEGINF;
12610 break;
12611 case 0x1c: /* FCVTAS */
12612 need_rmode = true;
12613 rmode = FPROUNDING_TIEAWAY;
12614 break;
12615 case 0x3a: /* FCVTPS */
12616 need_rmode = true;
12617 rmode = FPROUNDING_POSINF;
12618 break;
12619 case 0x3b: /* FCVTZS */
12620 need_rmode = true;
12621 rmode = FPROUNDING_ZERO;
12622 break;
12623 case 0x5a: /* FCVTNU */
12624 need_rmode = true;
12625 rmode = FPROUNDING_TIEEVEN;
12626 break;
12627 case 0x5b: /* FCVTMU */
12628 need_rmode = true;
12629 rmode = FPROUNDING_NEGINF;
12630 break;
12631 case 0x5c: /* FCVTAU */
12632 need_rmode = true;
12633 rmode = FPROUNDING_TIEAWAY;
12634 break;
12635 case 0x7a: /* FCVTPU */
12636 need_rmode = true;
12637 rmode = FPROUNDING_POSINF;
12638 break;
12639 case 0x7b: /* FCVTZU */
12640 need_rmode = true;
12641 rmode = FPROUNDING_ZERO;
12642 break;
12643 case 0x2f: /* FABS */
12644 case 0x6f: /* FNEG */
12645 need_fpst = false;
12646 break;
12647 case 0x7d: /* FRSQRTE */
12648 case 0x7f: /* FSQRT (vector) */
12649 break;
12650 default:
12651 fprintf(stderr, "%s: insn %#04x fpop %#2x\n", __func__, insn, fpop);
12652 g_assert_not_reached();
12653 }
12654
12655
12656 /* Check additional constraints for the scalar encoding */
12657 if (is_scalar) {
12658 if (!is_q) {
12659 unallocated_encoding(s);
12660 return;
12661 }
12662 /* FRINTxx is only in the vector form */
12663 if (only_in_vector) {
12664 unallocated_encoding(s);
12665 return;
12666 }
12667 }
12668
12669 if (!fp_access_check(s)) {
12670 return;
12671 }
12672
12673 if (need_rmode || need_fpst) {
12674 tcg_fpstatus = get_fpstatus_ptr(true);
12675 }
12676
12677 if (need_rmode) {
12678 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12679 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12680 }
12681
12682 if (is_scalar) {
12683 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12684 TCGv_i32 tcg_res = tcg_temp_new_i32();
12685
12686 switch (fpop) {
12687 case 0x1a: /* FCVTNS */
12688 case 0x1b: /* FCVTMS */
12689 case 0x1c: /* FCVTAS */
12690 case 0x3a: /* FCVTPS */
12691 case 0x3b: /* FCVTZS */
12692 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12693 break;
12694 case 0x3d: /* FRECPE */
12695 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12696 break;
12697 case 0x3f: /* FRECPX */
12698 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12699 break;
12700 case 0x5a: /* FCVTNU */
12701 case 0x5b: /* FCVTMU */
12702 case 0x5c: /* FCVTAU */
12703 case 0x7a: /* FCVTPU */
12704 case 0x7b: /* FCVTZU */
12705 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12706 break;
12707 case 0x6f: /* FNEG */
12708 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12709 break;
12710 case 0x7d: /* FRSQRTE */
12711 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12712 break;
12713 default:
12714 g_assert_not_reached();
12715 }
12716
12717 /* limit any sign extension going on */
12718 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12719 write_fp_sreg(s, rd, tcg_res);
12720
12721 tcg_temp_free_i32(tcg_res);
12722 tcg_temp_free_i32(tcg_op);
12723 } else {
12724 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12725 TCGv_i32 tcg_op = tcg_temp_new_i32();
12726 TCGv_i32 tcg_res = tcg_temp_new_i32();
12727
12728 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12729
12730 switch (fpop) {
12731 case 0x1a: /* FCVTNS */
12732 case 0x1b: /* FCVTMS */
12733 case 0x1c: /* FCVTAS */
12734 case 0x3a: /* FCVTPS */
12735 case 0x3b: /* FCVTZS */
12736 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12737 break;
12738 case 0x3d: /* FRECPE */
12739 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12740 break;
12741 case 0x5a: /* FCVTNU */
12742 case 0x5b: /* FCVTMU */
12743 case 0x5c: /* FCVTAU */
12744 case 0x7a: /* FCVTPU */
12745 case 0x7b: /* FCVTZU */
12746 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12747 break;
12748 case 0x18: /* FRINTN */
12749 case 0x19: /* FRINTM */
12750 case 0x38: /* FRINTP */
12751 case 0x39: /* FRINTZ */
12752 case 0x58: /* FRINTA */
12753 case 0x79: /* FRINTI */
12754 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12755 break;
12756 case 0x59: /* FRINTX */
12757 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12758 break;
12759 case 0x2f: /* FABS */
12760 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12761 break;
12762 case 0x6f: /* FNEG */
12763 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12764 break;
12765 case 0x7d: /* FRSQRTE */
12766 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12767 break;
12768 case 0x7f: /* FSQRT */
12769 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12770 break;
12771 default:
12772 g_assert_not_reached();
12773 }
12774
12775 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12776
12777 tcg_temp_free_i32(tcg_res);
12778 tcg_temp_free_i32(tcg_op);
12779 }
12780
12781 clear_vec_high(s, is_q, rd);
12782 }
12783
12784 if (tcg_rmode) {
12785 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12786 tcg_temp_free_i32(tcg_rmode);
12787 }
12788
12789 if (tcg_fpstatus) {
12790 tcg_temp_free_ptr(tcg_fpstatus);
12791 }
12792 }
12793
12794 /* AdvSIMD scalar x indexed element
12795 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12796 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12797 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12798 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12799 * AdvSIMD vector x indexed element
12800 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12801 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12802 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12803 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12804 */
12805 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12806 {
12807 /* This encoding has two kinds of instruction:
12808 * normal, where we perform elt x idxelt => elt for each
12809 * element in the vector
12810 * long, where we perform elt x idxelt and generate a result of
12811 * double the width of the input element
12812 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12813 */
12814 bool is_scalar = extract32(insn, 28, 1);
12815 bool is_q = extract32(insn, 30, 1);
12816 bool u = extract32(insn, 29, 1);
12817 int size = extract32(insn, 22, 2);
12818 int l = extract32(insn, 21, 1);
12819 int m = extract32(insn, 20, 1);
12820 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12821 int rm = extract32(insn, 16, 4);
12822 int opcode = extract32(insn, 12, 4);
12823 int h = extract32(insn, 11, 1);
12824 int rn = extract32(insn, 5, 5);
12825 int rd = extract32(insn, 0, 5);
12826 bool is_long = false;
12827 int is_fp = 0;
12828 bool is_fp16 = false;
12829 int index;
12830 TCGv_ptr fpst;
12831
12832 switch (16 * u + opcode) {
12833 case 0x08: /* MUL */
12834 case 0x10: /* MLA */
12835 case 0x14: /* MLS */
12836 if (is_scalar) {
12837 unallocated_encoding(s);
12838 return;
12839 }
12840 break;
12841 case 0x02: /* SMLAL, SMLAL2 */
12842 case 0x12: /* UMLAL, UMLAL2 */
12843 case 0x06: /* SMLSL, SMLSL2 */
12844 case 0x16: /* UMLSL, UMLSL2 */
12845 case 0x0a: /* SMULL, SMULL2 */
12846 case 0x1a: /* UMULL, UMULL2 */
12847 if (is_scalar) {
12848 unallocated_encoding(s);
12849 return;
12850 }
12851 is_long = true;
12852 break;
12853 case 0x03: /* SQDMLAL, SQDMLAL2 */
12854 case 0x07: /* SQDMLSL, SQDMLSL2 */
12855 case 0x0b: /* SQDMULL, SQDMULL2 */
12856 is_long = true;
12857 break;
12858 case 0x0c: /* SQDMULH */
12859 case 0x0d: /* SQRDMULH */
12860 break;
12861 case 0x01: /* FMLA */
12862 case 0x05: /* FMLS */
12863 case 0x09: /* FMUL */
12864 case 0x19: /* FMULX */
12865 is_fp = 1;
12866 break;
12867 case 0x1d: /* SQRDMLAH */
12868 case 0x1f: /* SQRDMLSH */
12869 if (!dc_isar_feature(aa64_rdm, s)) {
12870 unallocated_encoding(s);
12871 return;
12872 }
12873 break;
12874 case 0x0e: /* SDOT */
12875 case 0x1e: /* UDOT */
12876 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12877 unallocated_encoding(s);
12878 return;
12879 }
12880 break;
12881 case 0x11: /* FCMLA #0 */
12882 case 0x13: /* FCMLA #90 */
12883 case 0x15: /* FCMLA #180 */
12884 case 0x17: /* FCMLA #270 */
12885 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12886 unallocated_encoding(s);
12887 return;
12888 }
12889 is_fp = 2;
12890 break;
12891 case 0x00: /* FMLAL */
12892 case 0x04: /* FMLSL */
12893 case 0x18: /* FMLAL2 */
12894 case 0x1c: /* FMLSL2 */
12895 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12896 unallocated_encoding(s);
12897 return;
12898 }
12899 size = MO_16;
12900 /* is_fp, but we pass cpu_env not fp_status. */
12901 break;
12902 default:
12903 unallocated_encoding(s);
12904 return;
12905 }
12906
12907 switch (is_fp) {
12908 case 1: /* normal fp */
12909 /* convert insn encoded size to MemOp size */
12910 switch (size) {
12911 case 0: /* half-precision */
12912 size = MO_16;
12913 is_fp16 = true;
12914 break;
12915 case MO_32: /* single precision */
12916 case MO_64: /* double precision */
12917 break;
12918 default:
12919 unallocated_encoding(s);
12920 return;
12921 }
12922 break;
12923
12924 case 2: /* complex fp */
12925 /* Each indexable element is a complex pair. */
12926 size += 1;
12927 switch (size) {
12928 case MO_32:
12929 if (h && !is_q) {
12930 unallocated_encoding(s);
12931 return;
12932 }
12933 is_fp16 = true;
12934 break;
12935 case MO_64:
12936 break;
12937 default:
12938 unallocated_encoding(s);
12939 return;
12940 }
12941 break;
12942
12943 default: /* integer */
12944 switch (size) {
12945 case MO_8:
12946 case MO_64:
12947 unallocated_encoding(s);
12948 return;
12949 }
12950 break;
12951 }
12952 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12953 unallocated_encoding(s);
12954 return;
12955 }
12956
12957 /* Given MemOp size, adjust register and indexing. */
12958 switch (size) {
12959 case MO_16:
12960 index = h << 2 | l << 1 | m;
12961 break;
12962 case MO_32:
12963 index = h << 1 | l;
12964 rm |= m << 4;
12965 break;
12966 case MO_64:
12967 if (l || !is_q) {
12968 unallocated_encoding(s);
12969 return;
12970 }
12971 index = h;
12972 rm |= m << 4;
12973 break;
12974 default:
12975 g_assert_not_reached();
12976 }
12977
12978 if (!fp_access_check(s)) {
12979 return;
12980 }
12981
12982 if (is_fp) {
12983 fpst = get_fpstatus_ptr(is_fp16);
12984 } else {
12985 fpst = NULL;
12986 }
12987
12988 switch (16 * u + opcode) {
12989 case 0x0e: /* SDOT */
12990 case 0x1e: /* UDOT */
12991 gen_gvec_op3_ool(s, is_q, rd, rn, rm, index,
12992 u ? gen_helper_gvec_udot_idx_b
12993 : gen_helper_gvec_sdot_idx_b);
12994 return;
12995 case 0x11: /* FCMLA #0 */
12996 case 0x13: /* FCMLA #90 */
12997 case 0x15: /* FCMLA #180 */
12998 case 0x17: /* FCMLA #270 */
12999 {
13000 int rot = extract32(insn, 13, 2);
13001 int data = (index << 2) | rot;
13002 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13003 vec_full_reg_offset(s, rn),
13004 vec_full_reg_offset(s, rm), fpst,
13005 is_q ? 16 : 8, vec_full_reg_size(s), data,
13006 size == MO_64
13007 ? gen_helper_gvec_fcmlas_idx
13008 : gen_helper_gvec_fcmlah_idx);
13009 tcg_temp_free_ptr(fpst);
13010 }
13011 return;
13012
13013 case 0x00: /* FMLAL */
13014 case 0x04: /* FMLSL */
13015 case 0x18: /* FMLAL2 */
13016 case 0x1c: /* FMLSL2 */
13017 {
13018 int is_s = extract32(opcode, 2, 1);
13019 int is_2 = u;
13020 int data = (index << 2) | (is_2 << 1) | is_s;
13021 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13022 vec_full_reg_offset(s, rn),
13023 vec_full_reg_offset(s, rm), cpu_env,
13024 is_q ? 16 : 8, vec_full_reg_size(s),
13025 data, gen_helper_gvec_fmlal_idx_a64);
13026 }
13027 return;
13028 }
13029
13030 if (size == 3) {
13031 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13032 int pass;
13033
13034 assert(is_fp && is_q && !is_long);
13035
13036 read_vec_element(s, tcg_idx, rm, index, MO_64);
13037
13038 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13039 TCGv_i64 tcg_op = tcg_temp_new_i64();
13040 TCGv_i64 tcg_res = tcg_temp_new_i64();
13041
13042 read_vec_element(s, tcg_op, rn, pass, MO_64);
13043
13044 switch (16 * u + opcode) {
13045 case 0x05: /* FMLS */
13046 /* As usual for ARM, separate negation for fused multiply-add */
13047 gen_helper_vfp_negd(tcg_op, tcg_op);
13048 /* fall through */
13049 case 0x01: /* FMLA */
13050 read_vec_element(s, tcg_res, rd, pass, MO_64);
13051 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13052 break;
13053 case 0x09: /* FMUL */
13054 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13055 break;
13056 case 0x19: /* FMULX */
13057 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13058 break;
13059 default:
13060 g_assert_not_reached();
13061 }
13062
13063 write_vec_element(s, tcg_res, rd, pass, MO_64);
13064 tcg_temp_free_i64(tcg_op);
13065 tcg_temp_free_i64(tcg_res);
13066 }
13067
13068 tcg_temp_free_i64(tcg_idx);
13069 clear_vec_high(s, !is_scalar, rd);
13070 } else if (!is_long) {
13071 /* 32 bit floating point, or 16 or 32 bit integer.
13072 * For the 16 bit scalar case we use the usual Neon helpers and
13073 * rely on the fact that 0 op 0 == 0 with no side effects.
13074 */
13075 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13076 int pass, maxpasses;
13077
13078 if (is_scalar) {
13079 maxpasses = 1;
13080 } else {
13081 maxpasses = is_q ? 4 : 2;
13082 }
13083
13084 read_vec_element_i32(s, tcg_idx, rm, index, size);
13085
13086 if (size == 1 && !is_scalar) {
13087 /* The simplest way to handle the 16x16 indexed ops is to duplicate
13088 * the index into both halves of the 32 bit tcg_idx and then use
13089 * the usual Neon helpers.
13090 */
13091 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13092 }
13093
13094 for (pass = 0; pass < maxpasses; pass++) {
13095 TCGv_i32 tcg_op = tcg_temp_new_i32();
13096 TCGv_i32 tcg_res = tcg_temp_new_i32();
13097
13098 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13099
13100 switch (16 * u + opcode) {
13101 case 0x08: /* MUL */
13102 case 0x10: /* MLA */
13103 case 0x14: /* MLS */
13104 {
13105 static NeonGenTwoOpFn * const fns[2][2] = {
13106 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13107 { tcg_gen_add_i32, tcg_gen_sub_i32 },
13108 };
13109 NeonGenTwoOpFn *genfn;
13110 bool is_sub = opcode == 0x4;
13111
13112 if (size == 1) {
13113 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13114 } else {
13115 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13116 }
13117 if (opcode == 0x8) {
13118 break;
13119 }
13120 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13121 genfn = fns[size - 1][is_sub];
13122 genfn(tcg_res, tcg_op, tcg_res);
13123 break;
13124 }
13125 case 0x05: /* FMLS */
13126 case 0x01: /* FMLA */
13127 read_vec_element_i32(s, tcg_res, rd, pass,
13128 is_scalar ? size : MO_32);
13129 switch (size) {
13130 case 1:
13131 if (opcode == 0x5) {
13132 /* As usual for ARM, separate negation for fused
13133 * multiply-add */
13134 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13135 }
13136 if (is_scalar) {
13137 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13138 tcg_res, fpst);
13139 } else {
13140 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13141 tcg_res, fpst);
13142 }
13143 break;
13144 case 2:
13145 if (opcode == 0x5) {
13146 /* As usual for ARM, separate negation for
13147 * fused multiply-add */
13148 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13149 }
13150 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13151 tcg_res, fpst);
13152 break;
13153 default:
13154 g_assert_not_reached();
13155 }
13156 break;
13157 case 0x09: /* FMUL */
13158 switch (size) {
13159 case 1:
13160 if (is_scalar) {
13161 gen_helper_advsimd_mulh(tcg_res, tcg_op,
13162 tcg_idx, fpst);
13163 } else {
13164 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13165 tcg_idx, fpst);
13166 }
13167 break;
13168 case 2:
13169 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13170 break;
13171 default:
13172 g_assert_not_reached();
13173 }
13174 break;
13175 case 0x19: /* FMULX */
13176 switch (size) {
13177 case 1:
13178 if (is_scalar) {
13179 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13180 tcg_idx, fpst);
13181 } else {
13182 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13183 tcg_idx, fpst);
13184 }
13185 break;
13186 case 2:
13187 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13188 break;
13189 default:
13190 g_assert_not_reached();
13191 }
13192 break;
13193 case 0x0c: /* SQDMULH */
13194 if (size == 1) {
13195 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13196 tcg_op, tcg_idx);
13197 } else {
13198 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13199 tcg_op, tcg_idx);
13200 }
13201 break;
13202 case 0x0d: /* SQRDMULH */
13203 if (size == 1) {
13204 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13205 tcg_op, tcg_idx);
13206 } else {
13207 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13208 tcg_op, tcg_idx);
13209 }
13210 break;
13211 case 0x1d: /* SQRDMLAH */
13212 read_vec_element_i32(s, tcg_res, rd, pass,
13213 is_scalar ? size : MO_32);
13214 if (size == 1) {
13215 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13216 tcg_op, tcg_idx, tcg_res);
13217 } else {
13218 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13219 tcg_op, tcg_idx, tcg_res);
13220 }
13221 break;
13222 case 0x1f: /* SQRDMLSH */
13223 read_vec_element_i32(s, tcg_res, rd, pass,
13224 is_scalar ? size : MO_32);
13225 if (size == 1) {
13226 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13227 tcg_op, tcg_idx, tcg_res);
13228 } else {
13229 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13230 tcg_op, tcg_idx, tcg_res);
13231 }
13232 break;
13233 default:
13234 g_assert_not_reached();
13235 }
13236
13237 if (is_scalar) {
13238 write_fp_sreg(s, rd, tcg_res);
13239 } else {
13240 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13241 }
13242
13243 tcg_temp_free_i32(tcg_op);
13244 tcg_temp_free_i32(tcg_res);
13245 }
13246
13247 tcg_temp_free_i32(tcg_idx);
13248 clear_vec_high(s, is_q, rd);
13249 } else {
13250 /* long ops: 16x16->32 or 32x32->64 */
13251 TCGv_i64 tcg_res[2];
13252 int pass;
13253 bool satop = extract32(opcode, 0, 1);
13254 MemOp memop = MO_32;
13255
13256 if (satop || !u) {
13257 memop |= MO_SIGN;
13258 }
13259
13260 if (size == 2) {
13261 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13262
13263 read_vec_element(s, tcg_idx, rm, index, memop);
13264
13265 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13266 TCGv_i64 tcg_op = tcg_temp_new_i64();
13267 TCGv_i64 tcg_passres;
13268 int passelt;
13269
13270 if (is_scalar) {
13271 passelt = 0;
13272 } else {
13273 passelt = pass + (is_q * 2);
13274 }
13275
13276 read_vec_element(s, tcg_op, rn, passelt, memop);
13277
13278 tcg_res[pass] = tcg_temp_new_i64();
13279
13280 if (opcode == 0xa || opcode == 0xb) {
13281 /* Non-accumulating ops */
13282 tcg_passres = tcg_res[pass];
13283 } else {
13284 tcg_passres = tcg_temp_new_i64();
13285 }
13286
13287 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13288 tcg_temp_free_i64(tcg_op);
13289
13290 if (satop) {
13291 /* saturating, doubling */
13292 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13293 tcg_passres, tcg_passres);
13294 }
13295
13296 if (opcode == 0xa || opcode == 0xb) {
13297 continue;
13298 }
13299
13300 /* Accumulating op: handle accumulate step */
13301 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13302
13303 switch (opcode) {
13304 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13305 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13306 break;
13307 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13308 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13309 break;
13310 case 0x7: /* SQDMLSL, SQDMLSL2 */
13311 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13312 /* fall through */
13313 case 0x3: /* SQDMLAL, SQDMLAL2 */
13314 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13315 tcg_res[pass],
13316 tcg_passres);
13317 break;
13318 default:
13319 g_assert_not_reached();
13320 }
13321 tcg_temp_free_i64(tcg_passres);
13322 }
13323 tcg_temp_free_i64(tcg_idx);
13324
13325 clear_vec_high(s, !is_scalar, rd);
13326 } else {
13327 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13328
13329 assert(size == 1);
13330 read_vec_element_i32(s, tcg_idx, rm, index, size);
13331
13332 if (!is_scalar) {
13333 /* The simplest way to handle the 16x16 indexed ops is to
13334 * duplicate the index into both halves of the 32 bit tcg_idx
13335 * and then use the usual Neon helpers.
13336 */
13337 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13338 }
13339
13340 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13341 TCGv_i32 tcg_op = tcg_temp_new_i32();
13342 TCGv_i64 tcg_passres;
13343
13344 if (is_scalar) {
13345 read_vec_element_i32(s, tcg_op, rn, pass, size);
13346 } else {
13347 read_vec_element_i32(s, tcg_op, rn,
13348 pass + (is_q * 2), MO_32);
13349 }
13350
13351 tcg_res[pass] = tcg_temp_new_i64();
13352
13353 if (opcode == 0xa || opcode == 0xb) {
13354 /* Non-accumulating ops */
13355 tcg_passres = tcg_res[pass];
13356 } else {
13357 tcg_passres = tcg_temp_new_i64();
13358 }
13359
13360 if (memop & MO_SIGN) {
13361 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13362 } else {
13363 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13364 }
13365 if (satop) {
13366 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13367 tcg_passres, tcg_passres);
13368 }
13369 tcg_temp_free_i32(tcg_op);
13370
13371 if (opcode == 0xa || opcode == 0xb) {
13372 continue;
13373 }
13374
13375 /* Accumulating op: handle accumulate step */
13376 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13377
13378 switch (opcode) {
13379 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13380 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13381 tcg_passres);
13382 break;
13383 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13384 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13385 tcg_passres);
13386 break;
13387 case 0x7: /* SQDMLSL, SQDMLSL2 */
13388 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13389 /* fall through */
13390 case 0x3: /* SQDMLAL, SQDMLAL2 */
13391 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13392 tcg_res[pass],
13393 tcg_passres);
13394 break;
13395 default:
13396 g_assert_not_reached();
13397 }
13398 tcg_temp_free_i64(tcg_passres);
13399 }
13400 tcg_temp_free_i32(tcg_idx);
13401
13402 if (is_scalar) {
13403 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13404 }
13405 }
13406
13407 if (is_scalar) {
13408 tcg_res[1] = tcg_const_i64(0);
13409 }
13410
13411 for (pass = 0; pass < 2; pass++) {
13412 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13413 tcg_temp_free_i64(tcg_res[pass]);
13414 }
13415 }
13416
13417 if (fpst) {
13418 tcg_temp_free_ptr(fpst);
13419 }
13420 }
13421
13422 /* Crypto AES
13423 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13424 * +-----------------+------+-----------+--------+-----+------+------+
13425 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13426 * +-----------------+------+-----------+--------+-----+------+------+
13427 */
13428 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13429 {
13430 int size = extract32(insn, 22, 2);
13431 int opcode = extract32(insn, 12, 5);
13432 int rn = extract32(insn, 5, 5);
13433 int rd = extract32(insn, 0, 5);
13434 int decrypt;
13435 gen_helper_gvec_2 *genfn2 = NULL;
13436 gen_helper_gvec_3 *genfn3 = NULL;
13437
13438 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13439 unallocated_encoding(s);
13440 return;
13441 }
13442
13443 switch (opcode) {
13444 case 0x4: /* AESE */
13445 decrypt = 0;
13446 genfn3 = gen_helper_crypto_aese;
13447 break;
13448 case 0x6: /* AESMC */
13449 decrypt = 0;
13450 genfn2 = gen_helper_crypto_aesmc;
13451 break;
13452 case 0x5: /* AESD */
13453 decrypt = 1;
13454 genfn3 = gen_helper_crypto_aese;
13455 break;
13456 case 0x7: /* AESIMC */
13457 decrypt = 1;
13458 genfn2 = gen_helper_crypto_aesmc;
13459 break;
13460 default:
13461 unallocated_encoding(s);
13462 return;
13463 }
13464
13465 if (!fp_access_check(s)) {
13466 return;
13467 }
13468 if (genfn2) {
13469 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2);
13470 } else {
13471 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3);
13472 }
13473 }
13474
13475 /* Crypto three-reg SHA
13476 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
13477 * +-----------------+------+---+------+---+--------+-----+------+------+
13478 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
13479 * +-----------------+------+---+------+---+--------+-----+------+------+
13480 */
13481 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13482 {
13483 int size = extract32(insn, 22, 2);
13484 int opcode = extract32(insn, 12, 3);
13485 int rm = extract32(insn, 16, 5);
13486 int rn = extract32(insn, 5, 5);
13487 int rd = extract32(insn, 0, 5);
13488 gen_helper_gvec_3 *genfn;
13489 bool feature;
13490
13491 if (size != 0) {
13492 unallocated_encoding(s);
13493 return;
13494 }
13495
13496 switch (opcode) {
13497 case 0: /* SHA1C */
13498 genfn = gen_helper_crypto_sha1c;
13499 feature = dc_isar_feature(aa64_sha1, s);
13500 break;
13501 case 1: /* SHA1P */
13502 genfn = gen_helper_crypto_sha1p;
13503 feature = dc_isar_feature(aa64_sha1, s);
13504 break;
13505 case 2: /* SHA1M */
13506 genfn = gen_helper_crypto_sha1m;
13507 feature = dc_isar_feature(aa64_sha1, s);
13508 break;
13509 case 3: /* SHA1SU0 */
13510 genfn = gen_helper_crypto_sha1su0;
13511 feature = dc_isar_feature(aa64_sha1, s);
13512 break;
13513 case 4: /* SHA256H */
13514 genfn = gen_helper_crypto_sha256h;
13515 feature = dc_isar_feature(aa64_sha256, s);
13516 break;
13517 case 5: /* SHA256H2 */
13518 genfn = gen_helper_crypto_sha256h2;
13519 feature = dc_isar_feature(aa64_sha256, s);
13520 break;
13521 case 6: /* SHA256SU1 */
13522 genfn = gen_helper_crypto_sha256su1;
13523 feature = dc_isar_feature(aa64_sha256, s);
13524 break;
13525 default:
13526 unallocated_encoding(s);
13527 return;
13528 }
13529
13530 if (!feature) {
13531 unallocated_encoding(s);
13532 return;
13533 }
13534
13535 if (!fp_access_check(s)) {
13536 return;
13537 }
13538 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
13539 }
13540
13541 /* Crypto two-reg SHA
13542 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13543 * +-----------------+------+-----------+--------+-----+------+------+
13544 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13545 * +-----------------+------+-----------+--------+-----+------+------+
13546 */
13547 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13548 {
13549 int size = extract32(insn, 22, 2);
13550 int opcode = extract32(insn, 12, 5);
13551 int rn = extract32(insn, 5, 5);
13552 int rd = extract32(insn, 0, 5);
13553 gen_helper_gvec_2 *genfn;
13554 bool feature;
13555
13556 if (size != 0) {
13557 unallocated_encoding(s);
13558 return;
13559 }
13560
13561 switch (opcode) {
13562 case 0: /* SHA1H */
13563 feature = dc_isar_feature(aa64_sha1, s);
13564 genfn = gen_helper_crypto_sha1h;
13565 break;
13566 case 1: /* SHA1SU1 */
13567 feature = dc_isar_feature(aa64_sha1, s);
13568 genfn = gen_helper_crypto_sha1su1;
13569 break;
13570 case 2: /* SHA256SU0 */
13571 feature = dc_isar_feature(aa64_sha256, s);
13572 genfn = gen_helper_crypto_sha256su0;
13573 break;
13574 default:
13575 unallocated_encoding(s);
13576 return;
13577 }
13578
13579 if (!feature) {
13580 unallocated_encoding(s);
13581 return;
13582 }
13583
13584 if (!fp_access_check(s)) {
13585 return;
13586 }
13587 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
13588 }
13589
13590 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
13591 {
13592 tcg_gen_rotli_i64(d, m, 1);
13593 tcg_gen_xor_i64(d, d, n);
13594 }
13595
13596 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
13597 {
13598 tcg_gen_rotli_vec(vece, d, m, 1);
13599 tcg_gen_xor_vec(vece, d, d, n);
13600 }
13601
13602 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
13603 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
13604 {
13605 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
13606 static const GVecGen3 op = {
13607 .fni8 = gen_rax1_i64,
13608 .fniv = gen_rax1_vec,
13609 .opt_opc = vecop_list,
13610 .fno = gen_helper_crypto_rax1,
13611 .vece = MO_64,
13612 };
13613 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
13614 }
13615
13616 /* Crypto three-reg SHA512
13617 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13618 * +-----------------------+------+---+---+-----+--------+------+------+
13619 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
13620 * +-----------------------+------+---+---+-----+--------+------+------+
13621 */
13622 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13623 {
13624 int opcode = extract32(insn, 10, 2);
13625 int o = extract32(insn, 14, 1);
13626 int rm = extract32(insn, 16, 5);
13627 int rn = extract32(insn, 5, 5);
13628 int rd = extract32(insn, 0, 5);
13629 bool feature;
13630 gen_helper_gvec_3 *oolfn = NULL;
13631 GVecGen3Fn *gvecfn = NULL;
13632
13633 if (o == 0) {
13634 switch (opcode) {
13635 case 0: /* SHA512H */
13636 feature = dc_isar_feature(aa64_sha512, s);
13637 oolfn = gen_helper_crypto_sha512h;
13638 break;
13639 case 1: /* SHA512H2 */
13640 feature = dc_isar_feature(aa64_sha512, s);
13641 oolfn = gen_helper_crypto_sha512h2;
13642 break;
13643 case 2: /* SHA512SU1 */
13644 feature = dc_isar_feature(aa64_sha512, s);
13645 oolfn = gen_helper_crypto_sha512su1;
13646 break;
13647 case 3: /* RAX1 */
13648 feature = dc_isar_feature(aa64_sha3, s);
13649 gvecfn = gen_gvec_rax1;
13650 break;
13651 default:
13652 g_assert_not_reached();
13653 }
13654 } else {
13655 switch (opcode) {
13656 case 0: /* SM3PARTW1 */
13657 feature = dc_isar_feature(aa64_sm3, s);
13658 oolfn = gen_helper_crypto_sm3partw1;
13659 break;
13660 case 1: /* SM3PARTW2 */
13661 feature = dc_isar_feature(aa64_sm3, s);
13662 oolfn = gen_helper_crypto_sm3partw2;
13663 break;
13664 case 2: /* SM4EKEY */
13665 feature = dc_isar_feature(aa64_sm4, s);
13666 oolfn = gen_helper_crypto_sm4ekey;
13667 break;
13668 default:
13669 unallocated_encoding(s);
13670 return;
13671 }
13672 }
13673
13674 if (!feature) {
13675 unallocated_encoding(s);
13676 return;
13677 }
13678
13679 if (!fp_access_check(s)) {
13680 return;
13681 }
13682
13683 if (oolfn) {
13684 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
13685 } else {
13686 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
13687 }
13688 }
13689
13690 /* Crypto two-reg SHA512
13691 * 31 12 11 10 9 5 4 0
13692 * +-----------------------------------------+--------+------+------+
13693 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
13694 * +-----------------------------------------+--------+------+------+
13695 */
13696 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13697 {
13698 int opcode = extract32(insn, 10, 2);
13699 int rn = extract32(insn, 5, 5);
13700 int rd = extract32(insn, 0, 5);
13701 bool feature;
13702
13703 switch (opcode) {
13704 case 0: /* SHA512SU0 */
13705 feature = dc_isar_feature(aa64_sha512, s);
13706 break;
13707 case 1: /* SM4E */
13708 feature = dc_isar_feature(aa64_sm4, s);
13709 break;
13710 default:
13711 unallocated_encoding(s);
13712 return;
13713 }
13714
13715 if (!feature) {
13716 unallocated_encoding(s);
13717 return;
13718 }
13719
13720 if (!fp_access_check(s)) {
13721 return;
13722 }
13723
13724 switch (opcode) {
13725 case 0: /* SHA512SU0 */
13726 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
13727 break;
13728 case 1: /* SM4E */
13729 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
13730 break;
13731 default:
13732 g_assert_not_reached();
13733 }
13734 }
13735
13736 /* Crypto four-register
13737 * 31 23 22 21 20 16 15 14 10 9 5 4 0
13738 * +-------------------+-----+------+---+------+------+------+
13739 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
13740 * +-------------------+-----+------+---+------+------+------+
13741 */
13742 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13743 {
13744 int op0 = extract32(insn, 21, 2);
13745 int rm = extract32(insn, 16, 5);
13746 int ra = extract32(insn, 10, 5);
13747 int rn = extract32(insn, 5, 5);
13748 int rd = extract32(insn, 0, 5);
13749 bool feature;
13750
13751 switch (op0) {
13752 case 0: /* EOR3 */
13753 case 1: /* BCAX */
13754 feature = dc_isar_feature(aa64_sha3, s);
13755 break;
13756 case 2: /* SM3SS1 */
13757 feature = dc_isar_feature(aa64_sm3, s);
13758 break;
13759 default:
13760 unallocated_encoding(s);
13761 return;
13762 }
13763
13764 if (!feature) {
13765 unallocated_encoding(s);
13766 return;
13767 }
13768
13769 if (!fp_access_check(s)) {
13770 return;
13771 }
13772
13773 if (op0 < 2) {
13774 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13775 int pass;
13776
13777 tcg_op1 = tcg_temp_new_i64();
13778 tcg_op2 = tcg_temp_new_i64();
13779 tcg_op3 = tcg_temp_new_i64();
13780 tcg_res[0] = tcg_temp_new_i64();
13781 tcg_res[1] = tcg_temp_new_i64();
13782
13783 for (pass = 0; pass < 2; pass++) {
13784 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13785 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13786 read_vec_element(s, tcg_op3, ra, pass, MO_64);
13787
13788 if (op0 == 0) {
13789 /* EOR3 */
13790 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13791 } else {
13792 /* BCAX */
13793 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13794 }
13795 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13796 }
13797 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13798 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13799
13800 tcg_temp_free_i64(tcg_op1);
13801 tcg_temp_free_i64(tcg_op2);
13802 tcg_temp_free_i64(tcg_op3);
13803 tcg_temp_free_i64(tcg_res[0]);
13804 tcg_temp_free_i64(tcg_res[1]);
13805 } else {
13806 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13807
13808 tcg_op1 = tcg_temp_new_i32();
13809 tcg_op2 = tcg_temp_new_i32();
13810 tcg_op3 = tcg_temp_new_i32();
13811 tcg_res = tcg_temp_new_i32();
13812 tcg_zero = tcg_const_i32(0);
13813
13814 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13815 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13816 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13817
13818 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13819 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13820 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13821 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13822
13823 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13824 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13825 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13826 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13827
13828 tcg_temp_free_i32(tcg_op1);
13829 tcg_temp_free_i32(tcg_op2);
13830 tcg_temp_free_i32(tcg_op3);
13831 tcg_temp_free_i32(tcg_res);
13832 tcg_temp_free_i32(tcg_zero);
13833 }
13834 }
13835
13836 /* Crypto XAR
13837 * 31 21 20 16 15 10 9 5 4 0
13838 * +-----------------------+------+--------+------+------+
13839 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
13840 * +-----------------------+------+--------+------+------+
13841 */
13842 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13843 {
13844 int rm = extract32(insn, 16, 5);
13845 int imm6 = extract32(insn, 10, 6);
13846 int rn = extract32(insn, 5, 5);
13847 int rd = extract32(insn, 0, 5);
13848 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13849 int pass;
13850
13851 if (!dc_isar_feature(aa64_sha3, s)) {
13852 unallocated_encoding(s);
13853 return;
13854 }
13855
13856 if (!fp_access_check(s)) {
13857 return;
13858 }
13859
13860 tcg_op1 = tcg_temp_new_i64();
13861 tcg_op2 = tcg_temp_new_i64();
13862 tcg_res[0] = tcg_temp_new_i64();
13863 tcg_res[1] = tcg_temp_new_i64();
13864
13865 for (pass = 0; pass < 2; pass++) {
13866 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13867 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13868
13869 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
13870 tcg_gen_rotri_i64(tcg_res[pass], tcg_res[pass], imm6);
13871 }
13872 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13873 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13874
13875 tcg_temp_free_i64(tcg_op1);
13876 tcg_temp_free_i64(tcg_op2);
13877 tcg_temp_free_i64(tcg_res[0]);
13878 tcg_temp_free_i64(tcg_res[1]);
13879 }
13880
13881 /* Crypto three-reg imm2
13882 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13883 * +-----------------------+------+-----+------+--------+------+------+
13884 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
13885 * +-----------------------+------+-----+------+--------+------+------+
13886 */
13887 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13888 {
13889 static gen_helper_gvec_3 * const fns[4] = {
13890 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
13891 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
13892 };
13893 int opcode = extract32(insn, 10, 2);
13894 int imm2 = extract32(insn, 12, 2);
13895 int rm = extract32(insn, 16, 5);
13896 int rn = extract32(insn, 5, 5);
13897 int rd = extract32(insn, 0, 5);
13898
13899 if (!dc_isar_feature(aa64_sm3, s)) {
13900 unallocated_encoding(s);
13901 return;
13902 }
13903
13904 if (!fp_access_check(s)) {
13905 return;
13906 }
13907
13908 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
13909 }
13910
13911 /* C3.6 Data processing - SIMD, inc Crypto
13912 *
13913 * As the decode gets a little complex we are using a table based
13914 * approach for this part of the decode.
13915 */
13916 static const AArch64DecodeTable data_proc_simd[] = {
13917 /* pattern , mask , fn */
13918 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13919 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13920 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13921 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13922 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13923 { 0x0e000400, 0x9fe08400, disas_simd_copy },
13924 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13925 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13926 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13927 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13928 { 0x0e000000, 0xbf208c00, disas_simd_tb },
13929 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13930 { 0x2e000000, 0xbf208400, disas_simd_ext },
13931 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13932 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13933 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13934 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13935 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13936 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13937 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13938 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13939 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13940 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13941 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13942 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13943 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13944 { 0xce000000, 0xff808000, disas_crypto_four_reg },
13945 { 0xce800000, 0xffe00000, disas_crypto_xar },
13946 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13947 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13948 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13949 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13950 { 0x00000000, 0x00000000, NULL }
13951 };
13952
13953 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13954 {
13955 /* Note that this is called with all non-FP cases from
13956 * table C3-6 so it must UNDEF for entries not specifically
13957 * allocated to instructions in that table.
13958 */
13959 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13960 if (fn) {
13961 fn(s, insn);
13962 } else {
13963 unallocated_encoding(s);
13964 }
13965 }
13966
13967 /* C3.6 Data processing - SIMD and floating point */
13968 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13969 {
13970 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13971 disas_data_proc_fp(s, insn);
13972 } else {
13973 /* SIMD, including crypto */
13974 disas_data_proc_simd(s, insn);
13975 }
13976 }
13977
13978 /**
13979 * is_guarded_page:
13980 * @env: The cpu environment
13981 * @s: The DisasContext
13982 *
13983 * Return true if the page is guarded.
13984 */
13985 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13986 {
13987 #ifdef CONFIG_USER_ONLY
13988 return false; /* FIXME */
13989 #else
13990 uint64_t addr = s->base.pc_first;
13991 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13992 unsigned int index = tlb_index(env, mmu_idx, addr);
13993 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
13994
13995 /*
13996 * We test this immediately after reading an insn, which means
13997 * that any normal page must be in the TLB. The only exception
13998 * would be for executing from flash or device memory, which
13999 * does not retain the TLB entry.
14000 *
14001 * FIXME: Assume false for those, for now. We could use
14002 * arm_cpu_get_phys_page_attrs_debug to re-read the page
14003 * table entry even for that case.
14004 */
14005 return (tlb_hit(entry->addr_code, addr) &&
14006 env_tlb(env)->d[mmu_idx].iotlb[index].attrs.target_tlb_bit0);
14007 #endif
14008 }
14009
14010 /**
14011 * btype_destination_ok:
14012 * @insn: The instruction at the branch destination
14013 * @bt: SCTLR_ELx.BT
14014 * @btype: PSTATE.BTYPE, and is non-zero
14015 *
14016 * On a guarded page, there are a limited number of insns
14017 * that may be present at the branch target:
14018 * - branch target identifiers,
14019 * - paciasp, pacibsp,
14020 * - BRK insn
14021 * - HLT insn
14022 * Anything else causes a Branch Target Exception.
14023 *
14024 * Return true if the branch is compatible, false to raise BTITRAP.
14025 */
14026 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14027 {
14028 if ((insn & 0xfffff01fu) == 0xd503201fu) {
14029 /* HINT space */
14030 switch (extract32(insn, 5, 7)) {
14031 case 0b011001: /* PACIASP */
14032 case 0b011011: /* PACIBSP */
14033 /*
14034 * If SCTLR_ELx.BT, then PACI*SP are not compatible
14035 * with btype == 3. Otherwise all btype are ok.
14036 */
14037 return !bt || btype != 3;
14038 case 0b100000: /* BTI */
14039 /* Not compatible with any btype. */
14040 return false;
14041 case 0b100010: /* BTI c */
14042 /* Not compatible with btype == 3 */
14043 return btype != 3;
14044 case 0b100100: /* BTI j */
14045 /* Not compatible with btype == 2 */
14046 return btype != 2;
14047 case 0b100110: /* BTI jc */
14048 /* Compatible with any btype. */
14049 return true;
14050 }
14051 } else {
14052 switch (insn & 0xffe0001fu) {
14053 case 0xd4200000u: /* BRK */
14054 case 0xd4400000u: /* HLT */
14055 /* Give priority to the breakpoint exception. */
14056 return true;
14057 }
14058 }
14059 return false;
14060 }
14061
14062 /* C3.1 A64 instruction index by encoding */
14063 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
14064 {
14065 uint32_t insn;
14066
14067 s->pc_curr = s->base.pc_next;
14068 insn = arm_ldl_code(env, s->base.pc_next, s->sctlr_b);
14069 s->insn = insn;
14070 s->base.pc_next += 4;
14071
14072 s->fp_access_checked = false;
14073
14074 if (dc_isar_feature(aa64_bti, s)) {
14075 if (s->base.num_insns == 1) {
14076 /*
14077 * At the first insn of the TB, compute s->guarded_page.
14078 * We delayed computing this until successfully reading
14079 * the first insn of the TB, above. This (mostly) ensures
14080 * that the softmmu tlb entry has been populated, and the
14081 * page table GP bit is available.
14082 *
14083 * Note that we need to compute this even if btype == 0,
14084 * because this value is used for BR instructions later
14085 * where ENV is not available.
14086 */
14087 s->guarded_page = is_guarded_page(env, s);
14088
14089 /* First insn can have btype set to non-zero. */
14090 tcg_debug_assert(s->btype >= 0);
14091
14092 /*
14093 * Note that the Branch Target Exception has fairly high
14094 * priority -- below debugging exceptions but above most
14095 * everything else. This allows us to handle this now
14096 * instead of waiting until the insn is otherwise decoded.
14097 */
14098 if (s->btype != 0
14099 && s->guarded_page
14100 && !btype_destination_ok(insn, s->bt, s->btype)) {
14101 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
14102 syn_btitrap(s->btype),
14103 default_exception_el(s));
14104 return;
14105 }
14106 } else {
14107 /* Not the first insn: btype must be 0. */
14108 tcg_debug_assert(s->btype == 0);
14109 }
14110 }
14111
14112 switch (extract32(insn, 25, 4)) {
14113 case 0x0: case 0x1: case 0x3: /* UNALLOCATED */
14114 unallocated_encoding(s);
14115 break;
14116 case 0x2:
14117 if (!dc_isar_feature(aa64_sve, s) || !disas_sve(s, insn)) {
14118 unallocated_encoding(s);
14119 }
14120 break;
14121 case 0x8: case 0x9: /* Data processing - immediate */
14122 disas_data_proc_imm(s, insn);
14123 break;
14124 case 0xa: case 0xb: /* Branch, exception generation and system insns */
14125 disas_b_exc_sys(s, insn);
14126 break;
14127 case 0x4:
14128 case 0x6:
14129 case 0xc:
14130 case 0xe: /* Loads and stores */
14131 disas_ldst(s, insn);
14132 break;
14133 case 0x5:
14134 case 0xd: /* Data processing - register */
14135 disas_data_proc_reg(s, insn);
14136 break;
14137 case 0x7:
14138 case 0xf: /* Data processing - SIMD and floating point */
14139 disas_data_proc_simd_fp(s, insn);
14140 break;
14141 default:
14142 assert(FALSE); /* all 15 cases should be handled above */
14143 break;
14144 }
14145
14146 /* if we allocated any temporaries, free them here */
14147 free_tmp_a64(s);
14148
14149 /*
14150 * After execution of most insns, btype is reset to 0.
14151 * Note that we set btype == -1 when the insn sets btype.
14152 */
14153 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14154 reset_btype(s);
14155 }
14156 }
14157
14158 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14159 CPUState *cpu)
14160 {
14161 DisasContext *dc = container_of(dcbase, DisasContext, base);
14162 CPUARMState *env = cpu->env_ptr;
14163 ARMCPU *arm_cpu = env_archcpu(env);
14164 uint32_t tb_flags = dc->base.tb->flags;
14165 int bound, core_mmu_idx;
14166
14167 dc->isar = &arm_cpu->isar;
14168 dc->condjmp = 0;
14169
14170 dc->aarch64 = 1;
14171 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
14172 * there is no secure EL1, so we route exceptions to EL3.
14173 */
14174 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
14175 !arm_el_is_aa64(env, 3);
14176 dc->thumb = 0;
14177 dc->sctlr_b = 0;
14178 dc->be_data = FIELD_EX32(tb_flags, TBFLAG_ANY, BE_DATA) ? MO_BE : MO_LE;
14179 dc->condexec_mask = 0;
14180 dc->condexec_cond = 0;
14181 core_mmu_idx = FIELD_EX32(tb_flags, TBFLAG_ANY, MMUIDX);
14182 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14183 dc->tbii = FIELD_EX32(tb_flags, TBFLAG_A64, TBII);
14184 dc->tbid = FIELD_EX32(tb_flags, TBFLAG_A64, TBID);
14185 dc->tcma = FIELD_EX32(tb_flags, TBFLAG_A64, TCMA);
14186 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14187 #if !defined(CONFIG_USER_ONLY)
14188 dc->user = (dc->current_el == 0);
14189 #endif
14190 dc->fp_excp_el = FIELD_EX32(tb_flags, TBFLAG_ANY, FPEXC_EL);
14191 dc->sve_excp_el = FIELD_EX32(tb_flags, TBFLAG_A64, SVEEXC_EL);
14192 dc->sve_len = (FIELD_EX32(tb_flags, TBFLAG_A64, ZCR_LEN) + 1) * 16;
14193 dc->pauth_active = FIELD_EX32(tb_flags, TBFLAG_A64, PAUTH_ACTIVE);
14194 dc->bt = FIELD_EX32(tb_flags, TBFLAG_A64, BT);
14195 dc->btype = FIELD_EX32(tb_flags, TBFLAG_A64, BTYPE);
14196 dc->unpriv = FIELD_EX32(tb_flags, TBFLAG_A64, UNPRIV);
14197 dc->ata = FIELD_EX32(tb_flags, TBFLAG_A64, ATA);
14198 dc->mte_active[0] = FIELD_EX32(tb_flags, TBFLAG_A64, MTE_ACTIVE);
14199 dc->mte_active[1] = FIELD_EX32(tb_flags, TBFLAG_A64, MTE0_ACTIVE);
14200 dc->vec_len = 0;
14201 dc->vec_stride = 0;
14202 dc->cp_regs = arm_cpu->cp_regs;
14203 dc->features = env->features;
14204
14205 /* Single step state. The code-generation logic here is:
14206 * SS_ACTIVE == 0:
14207 * generate code with no special handling for single-stepping (except
14208 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14209 * this happens anyway because those changes are all system register or
14210 * PSTATE writes).
14211 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14212 * emit code for one insn
14213 * emit code to clear PSTATE.SS
14214 * emit code to generate software step exception for completed step
14215 * end TB (as usual for having generated an exception)
14216 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14217 * emit code to generate a software step exception
14218 * end the TB
14219 */
14220 dc->ss_active = FIELD_EX32(tb_flags, TBFLAG_ANY, SS_ACTIVE);
14221 dc->pstate_ss = FIELD_EX32(tb_flags, TBFLAG_ANY, PSTATE_SS);
14222 dc->is_ldex = false;
14223 dc->debug_target_el = FIELD_EX32(tb_flags, TBFLAG_ANY, DEBUG_TARGET_EL);
14224
14225 /* Bound the number of insns to execute to those left on the page. */
14226 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14227
14228 /* If architectural single step active, limit to 1. */
14229 if (dc->ss_active) {
14230 bound = 1;
14231 }
14232 dc->base.max_insns = MIN(dc->base.max_insns, bound);
14233
14234 init_tmp_a64_array(dc);
14235 }
14236
14237 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14238 {
14239 }
14240
14241 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14242 {
14243 DisasContext *dc = container_of(dcbase, DisasContext, base);
14244
14245 tcg_gen_insn_start(dc->base.pc_next, 0, 0);
14246 dc->insn_start = tcg_last_op();
14247 }
14248
14249 static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
14250 const CPUBreakpoint *bp)
14251 {
14252 DisasContext *dc = container_of(dcbase, DisasContext, base);
14253
14254 if (bp->flags & BP_CPU) {
14255 gen_a64_set_pc_im(dc->base.pc_next);
14256 gen_helper_check_breakpoints(cpu_env);
14257 /* End the TB early; it likely won't be executed */
14258 dc->base.is_jmp = DISAS_TOO_MANY;
14259 } else {
14260 gen_exception_internal_insn(dc, dc->base.pc_next, EXCP_DEBUG);
14261 /* The address covered by the breakpoint must be
14262 included in [tb->pc, tb->pc + tb->size) in order
14263 to for it to be properly cleared -- thus we
14264 increment the PC here so that the logic setting
14265 tb->size below does the right thing. */
14266 dc->base.pc_next += 4;
14267 dc->base.is_jmp = DISAS_NORETURN;
14268 }
14269
14270 return true;
14271 }
14272
14273 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14274 {
14275 DisasContext *dc = container_of(dcbase, DisasContext, base);
14276 CPUARMState *env = cpu->env_ptr;
14277
14278 if (dc->ss_active && !dc->pstate_ss) {
14279 /* Singlestep state is Active-pending.
14280 * If we're in this state at the start of a TB then either
14281 * a) we just took an exception to an EL which is being debugged
14282 * and this is the first insn in the exception handler
14283 * b) debug exceptions were masked and we just unmasked them
14284 * without changing EL (eg by clearing PSTATE.D)
14285 * In either case we're going to take a swstep exception in the
14286 * "did not step an insn" case, and so the syndrome ISV and EX
14287 * bits should be zero.
14288 */
14289 assert(dc->base.num_insns == 1);
14290 gen_swstep_exception(dc, 0, 0);
14291 dc->base.is_jmp = DISAS_NORETURN;
14292 } else {
14293 disas_a64_insn(env, dc);
14294 }
14295
14296 translator_loop_temp_check(&dc->base);
14297 }
14298
14299 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14300 {
14301 DisasContext *dc = container_of(dcbase, DisasContext, base);
14302
14303 if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
14304 /* Note that this means single stepping WFI doesn't halt the CPU.
14305 * For conditional branch insns this is harmless unreachable code as
14306 * gen_goto_tb() has already handled emitting the debug exception
14307 * (and thus a tb-jump is not possible when singlestepping).
14308 */
14309 switch (dc->base.is_jmp) {
14310 default:
14311 gen_a64_set_pc_im(dc->base.pc_next);
14312 /* fall through */
14313 case DISAS_EXIT:
14314 case DISAS_JUMP:
14315 if (dc->base.singlestep_enabled) {
14316 gen_exception_internal(EXCP_DEBUG);
14317 } else {
14318 gen_step_complete_exception(dc);
14319 }
14320 break;
14321 case DISAS_NORETURN:
14322 break;
14323 }
14324 } else {
14325 switch (dc->base.is_jmp) {
14326 case DISAS_NEXT:
14327 case DISAS_TOO_MANY:
14328 gen_goto_tb(dc, 1, dc->base.pc_next);
14329 break;
14330 default:
14331 case DISAS_UPDATE_EXIT:
14332 gen_a64_set_pc_im(dc->base.pc_next);
14333 /* fall through */
14334 case DISAS_EXIT:
14335 tcg_gen_exit_tb(NULL, 0);
14336 break;
14337 case DISAS_UPDATE_NOCHAIN:
14338 gen_a64_set_pc_im(dc->base.pc_next);
14339 /* fall through */
14340 case DISAS_JUMP:
14341 tcg_gen_lookup_and_goto_ptr();
14342 break;
14343 case DISAS_NORETURN:
14344 case DISAS_SWI:
14345 break;
14346 case DISAS_WFE:
14347 gen_a64_set_pc_im(dc->base.pc_next);
14348 gen_helper_wfe(cpu_env);
14349 break;
14350 case DISAS_YIELD:
14351 gen_a64_set_pc_im(dc->base.pc_next);
14352 gen_helper_yield(cpu_env);
14353 break;
14354 case DISAS_WFI:
14355 {
14356 /* This is a special case because we don't want to just halt the CPU
14357 * if trying to debug across a WFI.
14358 */
14359 TCGv_i32 tmp = tcg_const_i32(4);
14360
14361 gen_a64_set_pc_im(dc->base.pc_next);
14362 gen_helper_wfi(cpu_env, tmp);
14363 tcg_temp_free_i32(tmp);
14364 /* The helper doesn't necessarily throw an exception, but we
14365 * must go back to the main loop to check for interrupts anyway.
14366 */
14367 tcg_gen_exit_tb(NULL, 0);
14368 break;
14369 }
14370 }
14371 }
14372 }
14373
14374 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14375 CPUState *cpu)
14376 {
14377 DisasContext *dc = container_of(dcbase, DisasContext, base);
14378
14379 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
14380 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
14381 }
14382
14383 const TranslatorOps aarch64_translator_ops = {
14384 .init_disas_context = aarch64_tr_init_disas_context,
14385 .tb_start = aarch64_tr_tb_start,
14386 .insn_start = aarch64_tr_insn_start,
14387 .breakpoint_check = aarch64_tr_breakpoint_check,
14388 .translate_insn = aarch64_tr_translate_insn,
14389 .tb_stop = aarch64_tr_tb_stop,
14390 .disas_log = aarch64_tr_disas_log,
14391 };