]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/translate-a64.c
d3231477a271e4b3b0f99c261071825b6e5a7a2c
[mirror_qemu.git] / target / arm / translate-a64.c
1 /*
2 * AArch64 translation
3 *
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg-op.h"
24 #include "tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
30
31 #include "hw/semihosting/semihost.h"
32 #include "exec/gen-icount.h"
33
34 #include "exec/helper-proto.h"
35 #include "exec/helper-gen.h"
36 #include "exec/log.h"
37
38 #include "trace-tcg.h"
39 #include "translate-a64.h"
40 #include "qemu/atomic128.h"
41
42 static TCGv_i64 cpu_X[32];
43 static TCGv_i64 cpu_pc;
44
45 /* Load/store exclusive handling */
46 static TCGv_i64 cpu_exclusive_high;
47
48 static const char *regnames[] = {
49 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
50 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
51 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
52 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
53 };
54
55 enum a64_shift_type {
56 A64_SHIFT_TYPE_LSL = 0,
57 A64_SHIFT_TYPE_LSR = 1,
58 A64_SHIFT_TYPE_ASR = 2,
59 A64_SHIFT_TYPE_ROR = 3
60 };
61
62 /* Table based decoder typedefs - used when the relevant bits for decode
63 * are too awkwardly scattered across the instruction (eg SIMD).
64 */
65 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
66
67 typedef struct AArch64DecodeTable {
68 uint32_t pattern;
69 uint32_t mask;
70 AArch64DecodeFn *disas_fn;
71 } AArch64DecodeTable;
72
73 /* Function prototype for gen_ functions for calling Neon helpers */
74 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
75 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
76 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
77 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
78 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
79 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
80 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
81 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
82 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
83 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
84 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
85 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
86 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
87 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
88 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, TCGMemOp);
89
90 /* initialize TCG globals. */
91 void a64_translate_init(void)
92 {
93 int i;
94
95 cpu_pc = tcg_global_mem_new_i64(cpu_env,
96 offsetof(CPUARMState, pc),
97 "pc");
98 for (i = 0; i < 32; i++) {
99 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
100 offsetof(CPUARMState, xregs[i]),
101 regnames[i]);
102 }
103
104 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
105 offsetof(CPUARMState, exclusive_high), "exclusive_high");
106 }
107
108 static inline int get_a64_user_mem_index(DisasContext *s)
109 {
110 /* Return the core mmu_idx to use for A64 "unprivileged load/store" insns:
111 * if EL1, access as if EL0; otherwise access at current EL
112 */
113 ARMMMUIdx useridx;
114
115 switch (s->mmu_idx) {
116 case ARMMMUIdx_S12NSE1:
117 useridx = ARMMMUIdx_S12NSE0;
118 break;
119 case ARMMMUIdx_S1SE1:
120 useridx = ARMMMUIdx_S1SE0;
121 break;
122 case ARMMMUIdx_S2NS:
123 g_assert_not_reached();
124 default:
125 useridx = s->mmu_idx;
126 break;
127 }
128 return arm_to_core_mmu_idx(useridx);
129 }
130
131 static void reset_btype(DisasContext *s)
132 {
133 if (s->btype != 0) {
134 TCGv_i32 zero = tcg_const_i32(0);
135 tcg_gen_st_i32(zero, cpu_env, offsetof(CPUARMState, btype));
136 tcg_temp_free_i32(zero);
137 s->btype = 0;
138 }
139 }
140
141 static void set_btype(DisasContext *s, int val)
142 {
143 TCGv_i32 tcg_val;
144
145 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
146 tcg_debug_assert(val >= 1 && val <= 3);
147
148 tcg_val = tcg_const_i32(val);
149 tcg_gen_st_i32(tcg_val, cpu_env, offsetof(CPUARMState, btype));
150 tcg_temp_free_i32(tcg_val);
151 s->btype = -1;
152 }
153
154 void gen_a64_set_pc_im(uint64_t val)
155 {
156 tcg_gen_movi_i64(cpu_pc, val);
157 }
158
159 /*
160 * Handle Top Byte Ignore (TBI) bits.
161 *
162 * If address tagging is enabled via the TCR TBI bits:
163 * + for EL2 and EL3 there is only one TBI bit, and if it is set
164 * then the address is zero-extended, clearing bits [63:56]
165 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
166 * and TBI1 controls addressses with bit 55 == 1.
167 * If the appropriate TBI bit is set for the address then
168 * the address is sign-extended from bit 55 into bits [63:56]
169 *
170 * Here We have concatenated TBI{1,0} into tbi.
171 */
172 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
173 TCGv_i64 src, int tbi)
174 {
175 if (tbi == 0) {
176 /* Load unmodified address */
177 tcg_gen_mov_i64(dst, src);
178 } else if (s->current_el >= 2) {
179 /* FIXME: ARMv8.1-VHE S2 translation regime. */
180 /* Force tag byte to all zero */
181 tcg_gen_extract_i64(dst, src, 0, 56);
182 } else {
183 /* Sign-extend from bit 55. */
184 tcg_gen_sextract_i64(dst, src, 0, 56);
185
186 if (tbi != 3) {
187 TCGv_i64 tcg_zero = tcg_const_i64(0);
188
189 /*
190 * The two TBI bits differ.
191 * If tbi0, then !tbi1: only use the extension if positive.
192 * if !tbi0, then tbi1: only use the extension if negative.
193 */
194 tcg_gen_movcond_i64(tbi == 1 ? TCG_COND_GE : TCG_COND_LT,
195 dst, dst, tcg_zero, dst, src);
196 tcg_temp_free_i64(tcg_zero);
197 }
198 }
199 }
200
201 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
202 {
203 /*
204 * If address tagging is enabled for instructions via the TCR TBI bits,
205 * then loading an address into the PC will clear out any tag.
206 */
207 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
208 }
209
210 /*
211 * Return a "clean" address for ADDR according to TBID.
212 * This is always a fresh temporary, as we need to be able to
213 * increment this independently of a dirty write-back address.
214 */
215 static TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
216 {
217 TCGv_i64 clean = new_tmp_a64(s);
218 gen_top_byte_ignore(s, clean, addr, s->tbid);
219 return clean;
220 }
221
222 typedef struct DisasCompare64 {
223 TCGCond cond;
224 TCGv_i64 value;
225 } DisasCompare64;
226
227 static void a64_test_cc(DisasCompare64 *c64, int cc)
228 {
229 DisasCompare c32;
230
231 arm_test_cc(&c32, cc);
232
233 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
234 * properly. The NE/EQ comparisons are also fine with this choice. */
235 c64->cond = c32.cond;
236 c64->value = tcg_temp_new_i64();
237 tcg_gen_ext_i32_i64(c64->value, c32.value);
238
239 arm_free_cc(&c32);
240 }
241
242 static void a64_free_cc(DisasCompare64 *c64)
243 {
244 tcg_temp_free_i64(c64->value);
245 }
246
247 static void gen_exception_internal(int excp)
248 {
249 TCGv_i32 tcg_excp = tcg_const_i32(excp);
250
251 assert(excp_is_internal(excp));
252 gen_helper_exception_internal(cpu_env, tcg_excp);
253 tcg_temp_free_i32(tcg_excp);
254 }
255
256 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
257 {
258 TCGv_i32 tcg_excp = tcg_const_i32(excp);
259 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
260 TCGv_i32 tcg_el = tcg_const_i32(target_el);
261
262 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
263 tcg_syn, tcg_el);
264 tcg_temp_free_i32(tcg_el);
265 tcg_temp_free_i32(tcg_syn);
266 tcg_temp_free_i32(tcg_excp);
267 }
268
269 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
270 {
271 gen_a64_set_pc_im(s->pc - offset);
272 gen_exception_internal(excp);
273 s->base.is_jmp = DISAS_NORETURN;
274 }
275
276 static void gen_exception_insn(DisasContext *s, int offset, int excp,
277 uint32_t syndrome, uint32_t target_el)
278 {
279 gen_a64_set_pc_im(s->pc - offset);
280 gen_exception(excp, syndrome, target_el);
281 s->base.is_jmp = DISAS_NORETURN;
282 }
283
284 static void gen_exception_bkpt_insn(DisasContext *s, int offset,
285 uint32_t syndrome)
286 {
287 TCGv_i32 tcg_syn;
288
289 gen_a64_set_pc_im(s->pc - offset);
290 tcg_syn = tcg_const_i32(syndrome);
291 gen_helper_exception_bkpt_insn(cpu_env, tcg_syn);
292 tcg_temp_free_i32(tcg_syn);
293 s->base.is_jmp = DISAS_NORETURN;
294 }
295
296 static void gen_step_complete_exception(DisasContext *s)
297 {
298 /* We just completed step of an insn. Move from Active-not-pending
299 * to Active-pending, and then also take the swstep exception.
300 * This corresponds to making the (IMPDEF) choice to prioritize
301 * swstep exceptions over asynchronous exceptions taken to an exception
302 * level where debug is disabled. This choice has the advantage that
303 * we do not need to maintain internal state corresponding to the
304 * ISV/EX syndrome bits between completion of the step and generation
305 * of the exception, and our syndrome information is always correct.
306 */
307 gen_ss_advance(s);
308 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
309 default_exception_el(s));
310 s->base.is_jmp = DISAS_NORETURN;
311 }
312
313 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
314 {
315 /* No direct tb linking with singlestep (either QEMU's or the ARM
316 * debug architecture kind) or deterministic io
317 */
318 if (s->base.singlestep_enabled || s->ss_active ||
319 (tb_cflags(s->base.tb) & CF_LAST_IO)) {
320 return false;
321 }
322
323 #ifndef CONFIG_USER_ONLY
324 /* Only link tbs from inside the same guest page */
325 if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
326 return false;
327 }
328 #endif
329
330 return true;
331 }
332
333 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
334 {
335 TranslationBlock *tb;
336
337 tb = s->base.tb;
338 if (use_goto_tb(s, n, dest)) {
339 tcg_gen_goto_tb(n);
340 gen_a64_set_pc_im(dest);
341 tcg_gen_exit_tb(tb, n);
342 s->base.is_jmp = DISAS_NORETURN;
343 } else {
344 gen_a64_set_pc_im(dest);
345 if (s->ss_active) {
346 gen_step_complete_exception(s);
347 } else if (s->base.singlestep_enabled) {
348 gen_exception_internal(EXCP_DEBUG);
349 } else {
350 tcg_gen_lookup_and_goto_ptr();
351 s->base.is_jmp = DISAS_NORETURN;
352 }
353 }
354 }
355
356 void unallocated_encoding(DisasContext *s)
357 {
358 /* Unallocated and reserved encodings are uncategorized */
359 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
360 default_exception_el(s));
361 }
362
363 static void init_tmp_a64_array(DisasContext *s)
364 {
365 #ifdef CONFIG_DEBUG_TCG
366 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
367 #endif
368 s->tmp_a64_count = 0;
369 }
370
371 static void free_tmp_a64(DisasContext *s)
372 {
373 int i;
374 for (i = 0; i < s->tmp_a64_count; i++) {
375 tcg_temp_free_i64(s->tmp_a64[i]);
376 }
377 init_tmp_a64_array(s);
378 }
379
380 TCGv_i64 new_tmp_a64(DisasContext *s)
381 {
382 assert(s->tmp_a64_count < TMP_A64_MAX);
383 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
384 }
385
386 TCGv_i64 new_tmp_a64_zero(DisasContext *s)
387 {
388 TCGv_i64 t = new_tmp_a64(s);
389 tcg_gen_movi_i64(t, 0);
390 return t;
391 }
392
393 /*
394 * Register access functions
395 *
396 * These functions are used for directly accessing a register in where
397 * changes to the final register value are likely to be made. If you
398 * need to use a register for temporary calculation (e.g. index type
399 * operations) use the read_* form.
400 *
401 * B1.2.1 Register mappings
402 *
403 * In instruction register encoding 31 can refer to ZR (zero register) or
404 * the SP (stack pointer) depending on context. In QEMU's case we map SP
405 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
406 * This is the point of the _sp forms.
407 */
408 TCGv_i64 cpu_reg(DisasContext *s, int reg)
409 {
410 if (reg == 31) {
411 return new_tmp_a64_zero(s);
412 } else {
413 return cpu_X[reg];
414 }
415 }
416
417 /* register access for when 31 == SP */
418 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
419 {
420 return cpu_X[reg];
421 }
422
423 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
424 * representing the register contents. This TCGv is an auto-freed
425 * temporary so it need not be explicitly freed, and may be modified.
426 */
427 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
428 {
429 TCGv_i64 v = new_tmp_a64(s);
430 if (reg != 31) {
431 if (sf) {
432 tcg_gen_mov_i64(v, cpu_X[reg]);
433 } else {
434 tcg_gen_ext32u_i64(v, cpu_X[reg]);
435 }
436 } else {
437 tcg_gen_movi_i64(v, 0);
438 }
439 return v;
440 }
441
442 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
443 {
444 TCGv_i64 v = new_tmp_a64(s);
445 if (sf) {
446 tcg_gen_mov_i64(v, cpu_X[reg]);
447 } else {
448 tcg_gen_ext32u_i64(v, cpu_X[reg]);
449 }
450 return v;
451 }
452
453 /* Return the offset into CPUARMState of a slice (from
454 * the least significant end) of FP register Qn (ie
455 * Dn, Sn, Hn or Bn).
456 * (Note that this is not the same mapping as for A32; see cpu.h)
457 */
458 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
459 {
460 return vec_reg_offset(s, regno, 0, size);
461 }
462
463 /* Offset of the high half of the 128 bit vector Qn */
464 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
465 {
466 return vec_reg_offset(s, regno, 1, MO_64);
467 }
468
469 /* Convenience accessors for reading and writing single and double
470 * FP registers. Writing clears the upper parts of the associated
471 * 128 bit vector register, as required by the architecture.
472 * Note that unlike the GP register accessors, the values returned
473 * by the read functions must be manually freed.
474 */
475 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
476 {
477 TCGv_i64 v = tcg_temp_new_i64();
478
479 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
480 return v;
481 }
482
483 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
484 {
485 TCGv_i32 v = tcg_temp_new_i32();
486
487 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
488 return v;
489 }
490
491 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
492 {
493 TCGv_i32 v = tcg_temp_new_i32();
494
495 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
496 return v;
497 }
498
499 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
500 * If SVE is not enabled, then there are only 128 bits in the vector.
501 */
502 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
503 {
504 unsigned ofs = fp_reg_offset(s, rd, MO_64);
505 unsigned vsz = vec_full_reg_size(s);
506
507 if (!is_q) {
508 TCGv_i64 tcg_zero = tcg_const_i64(0);
509 tcg_gen_st_i64(tcg_zero, cpu_env, ofs + 8);
510 tcg_temp_free_i64(tcg_zero);
511 }
512 if (vsz > 16) {
513 tcg_gen_gvec_dup8i(ofs + 16, vsz - 16, vsz - 16, 0);
514 }
515 }
516
517 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
518 {
519 unsigned ofs = fp_reg_offset(s, reg, MO_64);
520
521 tcg_gen_st_i64(v, cpu_env, ofs);
522 clear_vec_high(s, false, reg);
523 }
524
525 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
526 {
527 TCGv_i64 tmp = tcg_temp_new_i64();
528
529 tcg_gen_extu_i32_i64(tmp, v);
530 write_fp_dreg(s, reg, tmp);
531 tcg_temp_free_i64(tmp);
532 }
533
534 TCGv_ptr get_fpstatus_ptr(bool is_f16)
535 {
536 TCGv_ptr statusptr = tcg_temp_new_ptr();
537 int offset;
538
539 /* In A64 all instructions (both FP and Neon) use the FPCR; there
540 * is no equivalent of the A32 Neon "standard FPSCR value".
541 * However half-precision operations operate under a different
542 * FZ16 flag and use vfp.fp_status_f16 instead of vfp.fp_status.
543 */
544 if (is_f16) {
545 offset = offsetof(CPUARMState, vfp.fp_status_f16);
546 } else {
547 offset = offsetof(CPUARMState, vfp.fp_status);
548 }
549 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
550 return statusptr;
551 }
552
553 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
554 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
555 GVecGen2Fn *gvec_fn, int vece)
556 {
557 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
558 is_q ? 16 : 8, vec_full_reg_size(s));
559 }
560
561 /* Expand a 2-operand + immediate AdvSIMD vector operation using
562 * an expander function.
563 */
564 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
565 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
566 {
567 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
568 imm, is_q ? 16 : 8, vec_full_reg_size(s));
569 }
570
571 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
572 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
573 GVecGen3Fn *gvec_fn, int vece)
574 {
575 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
576 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
577 }
578
579 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
580 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
581 int rx, GVecGen4Fn *gvec_fn, int vece)
582 {
583 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
584 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
585 is_q ? 16 : 8, vec_full_reg_size(s));
586 }
587
588 /* Expand a 2-operand + immediate AdvSIMD vector operation using
589 * an op descriptor.
590 */
591 static void gen_gvec_op2i(DisasContext *s, bool is_q, int rd,
592 int rn, int64_t imm, const GVecGen2i *gvec_op)
593 {
594 tcg_gen_gvec_2i(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
595 is_q ? 16 : 8, vec_full_reg_size(s), imm, gvec_op);
596 }
597
598 /* Expand a 3-operand AdvSIMD vector operation using an op descriptor. */
599 static void gen_gvec_op3(DisasContext *s, bool is_q, int rd,
600 int rn, int rm, const GVecGen3 *gvec_op)
601 {
602 tcg_gen_gvec_3(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
603 vec_full_reg_offset(s, rm), is_q ? 16 : 8,
604 vec_full_reg_size(s), gvec_op);
605 }
606
607 /* Expand a 3-operand operation using an out-of-line helper. */
608 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
609 int rn, int rm, int data, gen_helper_gvec_3 *fn)
610 {
611 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
612 vec_full_reg_offset(s, rn),
613 vec_full_reg_offset(s, rm),
614 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
615 }
616
617 /* Expand a 3-operand + env pointer operation using
618 * an out-of-line helper.
619 */
620 static void gen_gvec_op3_env(DisasContext *s, bool is_q, int rd,
621 int rn, int rm, gen_helper_gvec_3_ptr *fn)
622 {
623 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
624 vec_full_reg_offset(s, rn),
625 vec_full_reg_offset(s, rm), cpu_env,
626 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
627 }
628
629 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
630 * an out-of-line helper.
631 */
632 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
633 int rm, bool is_fp16, int data,
634 gen_helper_gvec_3_ptr *fn)
635 {
636 TCGv_ptr fpst = get_fpstatus_ptr(is_fp16);
637 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
638 vec_full_reg_offset(s, rn),
639 vec_full_reg_offset(s, rm), fpst,
640 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
641 tcg_temp_free_ptr(fpst);
642 }
643
644 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
645 * than the 32 bit equivalent.
646 */
647 static inline void gen_set_NZ64(TCGv_i64 result)
648 {
649 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
650 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
651 }
652
653 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
654 static inline void gen_logic_CC(int sf, TCGv_i64 result)
655 {
656 if (sf) {
657 gen_set_NZ64(result);
658 } else {
659 tcg_gen_extrl_i64_i32(cpu_ZF, result);
660 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
661 }
662 tcg_gen_movi_i32(cpu_CF, 0);
663 tcg_gen_movi_i32(cpu_VF, 0);
664 }
665
666 /* dest = T0 + T1; compute C, N, V and Z flags */
667 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
668 {
669 if (sf) {
670 TCGv_i64 result, flag, tmp;
671 result = tcg_temp_new_i64();
672 flag = tcg_temp_new_i64();
673 tmp = tcg_temp_new_i64();
674
675 tcg_gen_movi_i64(tmp, 0);
676 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
677
678 tcg_gen_extrl_i64_i32(cpu_CF, flag);
679
680 gen_set_NZ64(result);
681
682 tcg_gen_xor_i64(flag, result, t0);
683 tcg_gen_xor_i64(tmp, t0, t1);
684 tcg_gen_andc_i64(flag, flag, tmp);
685 tcg_temp_free_i64(tmp);
686 tcg_gen_extrh_i64_i32(cpu_VF, flag);
687
688 tcg_gen_mov_i64(dest, result);
689 tcg_temp_free_i64(result);
690 tcg_temp_free_i64(flag);
691 } else {
692 /* 32 bit arithmetic */
693 TCGv_i32 t0_32 = tcg_temp_new_i32();
694 TCGv_i32 t1_32 = tcg_temp_new_i32();
695 TCGv_i32 tmp = tcg_temp_new_i32();
696
697 tcg_gen_movi_i32(tmp, 0);
698 tcg_gen_extrl_i64_i32(t0_32, t0);
699 tcg_gen_extrl_i64_i32(t1_32, t1);
700 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
701 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
702 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
703 tcg_gen_xor_i32(tmp, t0_32, t1_32);
704 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
705 tcg_gen_extu_i32_i64(dest, cpu_NF);
706
707 tcg_temp_free_i32(tmp);
708 tcg_temp_free_i32(t0_32);
709 tcg_temp_free_i32(t1_32);
710 }
711 }
712
713 /* dest = T0 - T1; compute C, N, V and Z flags */
714 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
715 {
716 if (sf) {
717 /* 64 bit arithmetic */
718 TCGv_i64 result, flag, tmp;
719
720 result = tcg_temp_new_i64();
721 flag = tcg_temp_new_i64();
722 tcg_gen_sub_i64(result, t0, t1);
723
724 gen_set_NZ64(result);
725
726 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
727 tcg_gen_extrl_i64_i32(cpu_CF, flag);
728
729 tcg_gen_xor_i64(flag, result, t0);
730 tmp = tcg_temp_new_i64();
731 tcg_gen_xor_i64(tmp, t0, t1);
732 tcg_gen_and_i64(flag, flag, tmp);
733 tcg_temp_free_i64(tmp);
734 tcg_gen_extrh_i64_i32(cpu_VF, flag);
735 tcg_gen_mov_i64(dest, result);
736 tcg_temp_free_i64(flag);
737 tcg_temp_free_i64(result);
738 } else {
739 /* 32 bit arithmetic */
740 TCGv_i32 t0_32 = tcg_temp_new_i32();
741 TCGv_i32 t1_32 = tcg_temp_new_i32();
742 TCGv_i32 tmp;
743
744 tcg_gen_extrl_i64_i32(t0_32, t0);
745 tcg_gen_extrl_i64_i32(t1_32, t1);
746 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
747 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
748 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
749 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
750 tmp = tcg_temp_new_i32();
751 tcg_gen_xor_i32(tmp, t0_32, t1_32);
752 tcg_temp_free_i32(t0_32);
753 tcg_temp_free_i32(t1_32);
754 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
755 tcg_temp_free_i32(tmp);
756 tcg_gen_extu_i32_i64(dest, cpu_NF);
757 }
758 }
759
760 /* dest = T0 + T1 + CF; do not compute flags. */
761 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
762 {
763 TCGv_i64 flag = tcg_temp_new_i64();
764 tcg_gen_extu_i32_i64(flag, cpu_CF);
765 tcg_gen_add_i64(dest, t0, t1);
766 tcg_gen_add_i64(dest, dest, flag);
767 tcg_temp_free_i64(flag);
768
769 if (!sf) {
770 tcg_gen_ext32u_i64(dest, dest);
771 }
772 }
773
774 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
775 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
776 {
777 if (sf) {
778 TCGv_i64 result, cf_64, vf_64, tmp;
779 result = tcg_temp_new_i64();
780 cf_64 = tcg_temp_new_i64();
781 vf_64 = tcg_temp_new_i64();
782 tmp = tcg_const_i64(0);
783
784 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
785 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
786 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
787 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
788 gen_set_NZ64(result);
789
790 tcg_gen_xor_i64(vf_64, result, t0);
791 tcg_gen_xor_i64(tmp, t0, t1);
792 tcg_gen_andc_i64(vf_64, vf_64, tmp);
793 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
794
795 tcg_gen_mov_i64(dest, result);
796
797 tcg_temp_free_i64(tmp);
798 tcg_temp_free_i64(vf_64);
799 tcg_temp_free_i64(cf_64);
800 tcg_temp_free_i64(result);
801 } else {
802 TCGv_i32 t0_32, t1_32, tmp;
803 t0_32 = tcg_temp_new_i32();
804 t1_32 = tcg_temp_new_i32();
805 tmp = tcg_const_i32(0);
806
807 tcg_gen_extrl_i64_i32(t0_32, t0);
808 tcg_gen_extrl_i64_i32(t1_32, t1);
809 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
810 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
811
812 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
813 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
814 tcg_gen_xor_i32(tmp, t0_32, t1_32);
815 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
816 tcg_gen_extu_i32_i64(dest, cpu_NF);
817
818 tcg_temp_free_i32(tmp);
819 tcg_temp_free_i32(t1_32);
820 tcg_temp_free_i32(t0_32);
821 }
822 }
823
824 /*
825 * Load/Store generators
826 */
827
828 /*
829 * Store from GPR register to memory.
830 */
831 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
832 TCGv_i64 tcg_addr, int size, int memidx,
833 bool iss_valid,
834 unsigned int iss_srt,
835 bool iss_sf, bool iss_ar)
836 {
837 g_assert(size <= 3);
838 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
839
840 if (iss_valid) {
841 uint32_t syn;
842
843 syn = syn_data_abort_with_iss(0,
844 size,
845 false,
846 iss_srt,
847 iss_sf,
848 iss_ar,
849 0, 0, 0, 0, 0, false);
850 disas_set_insn_syndrome(s, syn);
851 }
852 }
853
854 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
855 TCGv_i64 tcg_addr, int size,
856 bool iss_valid,
857 unsigned int iss_srt,
858 bool iss_sf, bool iss_ar)
859 {
860 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
861 iss_valid, iss_srt, iss_sf, iss_ar);
862 }
863
864 /*
865 * Load from memory to GPR register
866 */
867 static void do_gpr_ld_memidx(DisasContext *s,
868 TCGv_i64 dest, TCGv_i64 tcg_addr,
869 int size, bool is_signed,
870 bool extend, int memidx,
871 bool iss_valid, unsigned int iss_srt,
872 bool iss_sf, bool iss_ar)
873 {
874 TCGMemOp memop = s->be_data + size;
875
876 g_assert(size <= 3);
877
878 if (is_signed) {
879 memop += MO_SIGN;
880 }
881
882 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
883
884 if (extend && is_signed) {
885 g_assert(size < 3);
886 tcg_gen_ext32u_i64(dest, dest);
887 }
888
889 if (iss_valid) {
890 uint32_t syn;
891
892 syn = syn_data_abort_with_iss(0,
893 size,
894 is_signed,
895 iss_srt,
896 iss_sf,
897 iss_ar,
898 0, 0, 0, 0, 0, false);
899 disas_set_insn_syndrome(s, syn);
900 }
901 }
902
903 static void do_gpr_ld(DisasContext *s,
904 TCGv_i64 dest, TCGv_i64 tcg_addr,
905 int size, bool is_signed, bool extend,
906 bool iss_valid, unsigned int iss_srt,
907 bool iss_sf, bool iss_ar)
908 {
909 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
910 get_mem_index(s),
911 iss_valid, iss_srt, iss_sf, iss_ar);
912 }
913
914 /*
915 * Store from FP register to memory
916 */
917 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
918 {
919 /* This writes the bottom N bits of a 128 bit wide vector to memory */
920 TCGv_i64 tmp = tcg_temp_new_i64();
921 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
922 if (size < 4) {
923 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
924 s->be_data + size);
925 } else {
926 bool be = s->be_data == MO_BE;
927 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
928
929 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
930 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
931 s->be_data | MO_Q);
932 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
933 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
934 s->be_data | MO_Q);
935 tcg_temp_free_i64(tcg_hiaddr);
936 }
937
938 tcg_temp_free_i64(tmp);
939 }
940
941 /*
942 * Load from memory to FP register
943 */
944 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
945 {
946 /* This always zero-extends and writes to a full 128 bit wide vector */
947 TCGv_i64 tmplo = tcg_temp_new_i64();
948 TCGv_i64 tmphi;
949
950 if (size < 4) {
951 TCGMemOp memop = s->be_data + size;
952 tmphi = tcg_const_i64(0);
953 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
954 } else {
955 bool be = s->be_data == MO_BE;
956 TCGv_i64 tcg_hiaddr;
957
958 tmphi = tcg_temp_new_i64();
959 tcg_hiaddr = tcg_temp_new_i64();
960
961 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
962 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
963 s->be_data | MO_Q);
964 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
965 s->be_data | MO_Q);
966 tcg_temp_free_i64(tcg_hiaddr);
967 }
968
969 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
970 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
971
972 tcg_temp_free_i64(tmplo);
973 tcg_temp_free_i64(tmphi);
974
975 clear_vec_high(s, true, destidx);
976 }
977
978 /*
979 * Vector load/store helpers.
980 *
981 * The principal difference between this and a FP load is that we don't
982 * zero extend as we are filling a partial chunk of the vector register.
983 * These functions don't support 128 bit loads/stores, which would be
984 * normal load/store operations.
985 *
986 * The _i32 versions are useful when operating on 32 bit quantities
987 * (eg for floating point single or using Neon helper functions).
988 */
989
990 /* Get value of an element within a vector register */
991 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
992 int element, TCGMemOp memop)
993 {
994 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
995 switch (memop) {
996 case MO_8:
997 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
998 break;
999 case MO_16:
1000 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1001 break;
1002 case MO_32:
1003 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1004 break;
1005 case MO_8|MO_SIGN:
1006 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1007 break;
1008 case MO_16|MO_SIGN:
1009 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1010 break;
1011 case MO_32|MO_SIGN:
1012 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1013 break;
1014 case MO_64:
1015 case MO_64|MO_SIGN:
1016 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1017 break;
1018 default:
1019 g_assert_not_reached();
1020 }
1021 }
1022
1023 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1024 int element, TCGMemOp memop)
1025 {
1026 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1027 switch (memop) {
1028 case MO_8:
1029 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1030 break;
1031 case MO_16:
1032 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1033 break;
1034 case MO_8|MO_SIGN:
1035 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1036 break;
1037 case MO_16|MO_SIGN:
1038 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1039 break;
1040 case MO_32:
1041 case MO_32|MO_SIGN:
1042 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1043 break;
1044 default:
1045 g_assert_not_reached();
1046 }
1047 }
1048
1049 /* Set value of an element within a vector register */
1050 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1051 int element, TCGMemOp memop)
1052 {
1053 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1054 switch (memop) {
1055 case MO_8:
1056 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1057 break;
1058 case MO_16:
1059 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1060 break;
1061 case MO_32:
1062 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1063 break;
1064 case MO_64:
1065 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1066 break;
1067 default:
1068 g_assert_not_reached();
1069 }
1070 }
1071
1072 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1073 int destidx, int element, TCGMemOp memop)
1074 {
1075 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1076 switch (memop) {
1077 case MO_8:
1078 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1079 break;
1080 case MO_16:
1081 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1082 break;
1083 case MO_32:
1084 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1085 break;
1086 default:
1087 g_assert_not_reached();
1088 }
1089 }
1090
1091 /* Store from vector register to memory */
1092 static void do_vec_st(DisasContext *s, int srcidx, int element,
1093 TCGv_i64 tcg_addr, int size, TCGMemOp endian)
1094 {
1095 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1096
1097 read_vec_element(s, tcg_tmp, srcidx, element, size);
1098 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1099
1100 tcg_temp_free_i64(tcg_tmp);
1101 }
1102
1103 /* Load from memory to vector register */
1104 static void do_vec_ld(DisasContext *s, int destidx, int element,
1105 TCGv_i64 tcg_addr, int size, TCGMemOp endian)
1106 {
1107 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1108
1109 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1110 write_vec_element(s, tcg_tmp, destidx, element, size);
1111
1112 tcg_temp_free_i64(tcg_tmp);
1113 }
1114
1115 /* Check that FP/Neon access is enabled. If it is, return
1116 * true. If not, emit code to generate an appropriate exception,
1117 * and return false; the caller should not emit any code for
1118 * the instruction. Note that this check must happen after all
1119 * unallocated-encoding checks (otherwise the syndrome information
1120 * for the resulting exception will be incorrect).
1121 */
1122 static inline bool fp_access_check(DisasContext *s)
1123 {
1124 assert(!s->fp_access_checked);
1125 s->fp_access_checked = true;
1126
1127 if (!s->fp_excp_el) {
1128 return true;
1129 }
1130
1131 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
1132 s->fp_excp_el);
1133 return false;
1134 }
1135
1136 /* Check that SVE access is enabled. If it is, return true.
1137 * If not, emit code to generate an appropriate exception and return false.
1138 */
1139 bool sve_access_check(DisasContext *s)
1140 {
1141 if (s->sve_excp_el) {
1142 gen_exception_insn(s, 4, EXCP_UDEF, syn_sve_access_trap(),
1143 s->sve_excp_el);
1144 return false;
1145 }
1146 return fp_access_check(s);
1147 }
1148
1149 /*
1150 * This utility function is for doing register extension with an
1151 * optional shift. You will likely want to pass a temporary for the
1152 * destination register. See DecodeRegExtend() in the ARM ARM.
1153 */
1154 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1155 int option, unsigned int shift)
1156 {
1157 int extsize = extract32(option, 0, 2);
1158 bool is_signed = extract32(option, 2, 1);
1159
1160 if (is_signed) {
1161 switch (extsize) {
1162 case 0:
1163 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1164 break;
1165 case 1:
1166 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1167 break;
1168 case 2:
1169 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1170 break;
1171 case 3:
1172 tcg_gen_mov_i64(tcg_out, tcg_in);
1173 break;
1174 }
1175 } else {
1176 switch (extsize) {
1177 case 0:
1178 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1179 break;
1180 case 1:
1181 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1182 break;
1183 case 2:
1184 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1185 break;
1186 case 3:
1187 tcg_gen_mov_i64(tcg_out, tcg_in);
1188 break;
1189 }
1190 }
1191
1192 if (shift) {
1193 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1194 }
1195 }
1196
1197 static inline void gen_check_sp_alignment(DisasContext *s)
1198 {
1199 /* The AArch64 architecture mandates that (if enabled via PSTATE
1200 * or SCTLR bits) there is a check that SP is 16-aligned on every
1201 * SP-relative load or store (with an exception generated if it is not).
1202 * In line with general QEMU practice regarding misaligned accesses,
1203 * we omit these checks for the sake of guest program performance.
1204 * This function is provided as a hook so we can more easily add these
1205 * checks in future (possibly as a "favour catching guest program bugs
1206 * over speed" user selectable option).
1207 */
1208 }
1209
1210 /*
1211 * This provides a simple table based table lookup decoder. It is
1212 * intended to be used when the relevant bits for decode are too
1213 * awkwardly placed and switch/if based logic would be confusing and
1214 * deeply nested. Since it's a linear search through the table, tables
1215 * should be kept small.
1216 *
1217 * It returns the first handler where insn & mask == pattern, or
1218 * NULL if there is no match.
1219 * The table is terminated by an empty mask (i.e. 0)
1220 */
1221 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1222 uint32_t insn)
1223 {
1224 const AArch64DecodeTable *tptr = table;
1225
1226 while (tptr->mask) {
1227 if ((insn & tptr->mask) == tptr->pattern) {
1228 return tptr->disas_fn;
1229 }
1230 tptr++;
1231 }
1232 return NULL;
1233 }
1234
1235 /*
1236 * The instruction disassembly implemented here matches
1237 * the instruction encoding classifications in chapter C4
1238 * of the ARM Architecture Reference Manual (DDI0487B_a);
1239 * classification names and decode diagrams here should generally
1240 * match up with those in the manual.
1241 */
1242
1243 /* Unconditional branch (immediate)
1244 * 31 30 26 25 0
1245 * +----+-----------+-------------------------------------+
1246 * | op | 0 0 1 0 1 | imm26 |
1247 * +----+-----------+-------------------------------------+
1248 */
1249 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1250 {
1251 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1252
1253 if (insn & (1U << 31)) {
1254 /* BL Branch with link */
1255 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1256 }
1257
1258 /* B Branch / BL Branch with link */
1259 reset_btype(s);
1260 gen_goto_tb(s, 0, addr);
1261 }
1262
1263 /* Compare and branch (immediate)
1264 * 31 30 25 24 23 5 4 0
1265 * +----+-------------+----+---------------------+--------+
1266 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1267 * +----+-------------+----+---------------------+--------+
1268 */
1269 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1270 {
1271 unsigned int sf, op, rt;
1272 uint64_t addr;
1273 TCGLabel *label_match;
1274 TCGv_i64 tcg_cmp;
1275
1276 sf = extract32(insn, 31, 1);
1277 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1278 rt = extract32(insn, 0, 5);
1279 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1280
1281 tcg_cmp = read_cpu_reg(s, rt, sf);
1282 label_match = gen_new_label();
1283
1284 reset_btype(s);
1285 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1286 tcg_cmp, 0, label_match);
1287
1288 gen_goto_tb(s, 0, s->pc);
1289 gen_set_label(label_match);
1290 gen_goto_tb(s, 1, addr);
1291 }
1292
1293 /* Test and branch (immediate)
1294 * 31 30 25 24 23 19 18 5 4 0
1295 * +----+-------------+----+-------+-------------+------+
1296 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1297 * +----+-------------+----+-------+-------------+------+
1298 */
1299 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1300 {
1301 unsigned int bit_pos, op, rt;
1302 uint64_t addr;
1303 TCGLabel *label_match;
1304 TCGv_i64 tcg_cmp;
1305
1306 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1307 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1308 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1309 rt = extract32(insn, 0, 5);
1310
1311 tcg_cmp = tcg_temp_new_i64();
1312 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1313 label_match = gen_new_label();
1314
1315 reset_btype(s);
1316 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1317 tcg_cmp, 0, label_match);
1318 tcg_temp_free_i64(tcg_cmp);
1319 gen_goto_tb(s, 0, s->pc);
1320 gen_set_label(label_match);
1321 gen_goto_tb(s, 1, addr);
1322 }
1323
1324 /* Conditional branch (immediate)
1325 * 31 25 24 23 5 4 3 0
1326 * +---------------+----+---------------------+----+------+
1327 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1328 * +---------------+----+---------------------+----+------+
1329 */
1330 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1331 {
1332 unsigned int cond;
1333 uint64_t addr;
1334
1335 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1336 unallocated_encoding(s);
1337 return;
1338 }
1339 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1340 cond = extract32(insn, 0, 4);
1341
1342 reset_btype(s);
1343 if (cond < 0x0e) {
1344 /* genuinely conditional branches */
1345 TCGLabel *label_match = gen_new_label();
1346 arm_gen_test_cc(cond, label_match);
1347 gen_goto_tb(s, 0, s->pc);
1348 gen_set_label(label_match);
1349 gen_goto_tb(s, 1, addr);
1350 } else {
1351 /* 0xe and 0xf are both "always" conditions */
1352 gen_goto_tb(s, 0, addr);
1353 }
1354 }
1355
1356 /* HINT instruction group, including various allocated HINTs */
1357 static void handle_hint(DisasContext *s, uint32_t insn,
1358 unsigned int op1, unsigned int op2, unsigned int crm)
1359 {
1360 unsigned int selector = crm << 3 | op2;
1361
1362 if (op1 != 3) {
1363 unallocated_encoding(s);
1364 return;
1365 }
1366
1367 switch (selector) {
1368 case 0b00000: /* NOP */
1369 break;
1370 case 0b00011: /* WFI */
1371 s->base.is_jmp = DISAS_WFI;
1372 break;
1373 case 0b00001: /* YIELD */
1374 /* When running in MTTCG we don't generate jumps to the yield and
1375 * WFE helpers as it won't affect the scheduling of other vCPUs.
1376 * If we wanted to more completely model WFE/SEV so we don't busy
1377 * spin unnecessarily we would need to do something more involved.
1378 */
1379 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1380 s->base.is_jmp = DISAS_YIELD;
1381 }
1382 break;
1383 case 0b00010: /* WFE */
1384 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1385 s->base.is_jmp = DISAS_WFE;
1386 }
1387 break;
1388 case 0b00100: /* SEV */
1389 case 0b00101: /* SEVL */
1390 /* we treat all as NOP at least for now */
1391 break;
1392 case 0b00111: /* XPACLRI */
1393 if (s->pauth_active) {
1394 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1395 }
1396 break;
1397 case 0b01000: /* PACIA1716 */
1398 if (s->pauth_active) {
1399 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1400 }
1401 break;
1402 case 0b01010: /* PACIB1716 */
1403 if (s->pauth_active) {
1404 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1405 }
1406 break;
1407 case 0b01100: /* AUTIA1716 */
1408 if (s->pauth_active) {
1409 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1410 }
1411 break;
1412 case 0b01110: /* AUTIB1716 */
1413 if (s->pauth_active) {
1414 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1415 }
1416 break;
1417 case 0b11000: /* PACIAZ */
1418 if (s->pauth_active) {
1419 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1420 new_tmp_a64_zero(s));
1421 }
1422 break;
1423 case 0b11001: /* PACIASP */
1424 if (s->pauth_active) {
1425 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1426 }
1427 break;
1428 case 0b11010: /* PACIBZ */
1429 if (s->pauth_active) {
1430 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1431 new_tmp_a64_zero(s));
1432 }
1433 break;
1434 case 0b11011: /* PACIBSP */
1435 if (s->pauth_active) {
1436 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1437 }
1438 break;
1439 case 0b11100: /* AUTIAZ */
1440 if (s->pauth_active) {
1441 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1442 new_tmp_a64_zero(s));
1443 }
1444 break;
1445 case 0b11101: /* AUTIASP */
1446 if (s->pauth_active) {
1447 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1448 }
1449 break;
1450 case 0b11110: /* AUTIBZ */
1451 if (s->pauth_active) {
1452 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1453 new_tmp_a64_zero(s));
1454 }
1455 break;
1456 case 0b11111: /* AUTIBSP */
1457 if (s->pauth_active) {
1458 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1459 }
1460 break;
1461 default:
1462 /* default specified as NOP equivalent */
1463 break;
1464 }
1465 }
1466
1467 static void gen_clrex(DisasContext *s, uint32_t insn)
1468 {
1469 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1470 }
1471
1472 /* CLREX, DSB, DMB, ISB */
1473 static void handle_sync(DisasContext *s, uint32_t insn,
1474 unsigned int op1, unsigned int op2, unsigned int crm)
1475 {
1476 TCGBar bar;
1477
1478 if (op1 != 3) {
1479 unallocated_encoding(s);
1480 return;
1481 }
1482
1483 switch (op2) {
1484 case 2: /* CLREX */
1485 gen_clrex(s, insn);
1486 return;
1487 case 4: /* DSB */
1488 case 5: /* DMB */
1489 switch (crm & 3) {
1490 case 1: /* MBReqTypes_Reads */
1491 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1492 break;
1493 case 2: /* MBReqTypes_Writes */
1494 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1495 break;
1496 default: /* MBReqTypes_All */
1497 bar = TCG_BAR_SC | TCG_MO_ALL;
1498 break;
1499 }
1500 tcg_gen_mb(bar);
1501 return;
1502 case 6: /* ISB */
1503 /* We need to break the TB after this insn to execute
1504 * a self-modified code correctly and also to take
1505 * any pending interrupts immediately.
1506 */
1507 reset_btype(s);
1508 gen_goto_tb(s, 0, s->pc);
1509 return;
1510
1511 case 7: /* SB */
1512 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1513 goto do_unallocated;
1514 }
1515 /*
1516 * TODO: There is no speculation barrier opcode for TCG;
1517 * MB and end the TB instead.
1518 */
1519 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1520 gen_goto_tb(s, 0, s->pc);
1521 return;
1522
1523 default:
1524 do_unallocated:
1525 unallocated_encoding(s);
1526 return;
1527 }
1528 }
1529
1530 static void gen_xaflag(void)
1531 {
1532 TCGv_i32 z = tcg_temp_new_i32();
1533
1534 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1535
1536 /*
1537 * (!C & !Z) << 31
1538 * (!(C | Z)) << 31
1539 * ~((C | Z) << 31)
1540 * ~-(C | Z)
1541 * (C | Z) - 1
1542 */
1543 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1544 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1545
1546 /* !(Z & C) */
1547 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1548 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1549
1550 /* (!C & Z) << 31 -> -(Z & ~C) */
1551 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1552 tcg_gen_neg_i32(cpu_VF, cpu_VF);
1553
1554 /* C | Z */
1555 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1556
1557 tcg_temp_free_i32(z);
1558 }
1559
1560 static void gen_axflag(void)
1561 {
1562 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
1563 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
1564
1565 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1566 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1567
1568 tcg_gen_movi_i32(cpu_NF, 0);
1569 tcg_gen_movi_i32(cpu_VF, 0);
1570 }
1571
1572 /* MSR (immediate) - move immediate to processor state field */
1573 static void handle_msr_i(DisasContext *s, uint32_t insn,
1574 unsigned int op1, unsigned int op2, unsigned int crm)
1575 {
1576 TCGv_i32 t1;
1577 int op = op1 << 3 | op2;
1578
1579 /* End the TB by default, chaining is ok. */
1580 s->base.is_jmp = DISAS_TOO_MANY;
1581
1582 switch (op) {
1583 case 0x00: /* CFINV */
1584 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) {
1585 goto do_unallocated;
1586 }
1587 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1588 s->base.is_jmp = DISAS_NEXT;
1589 break;
1590
1591 case 0x01: /* XAFlag */
1592 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1593 goto do_unallocated;
1594 }
1595 gen_xaflag();
1596 s->base.is_jmp = DISAS_NEXT;
1597 break;
1598
1599 case 0x02: /* AXFlag */
1600 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1601 goto do_unallocated;
1602 }
1603 gen_axflag();
1604 s->base.is_jmp = DISAS_NEXT;
1605 break;
1606
1607 case 0x05: /* SPSel */
1608 if (s->current_el == 0) {
1609 goto do_unallocated;
1610 }
1611 t1 = tcg_const_i32(crm & PSTATE_SP);
1612 gen_helper_msr_i_spsel(cpu_env, t1);
1613 tcg_temp_free_i32(t1);
1614 break;
1615
1616 case 0x1e: /* DAIFSet */
1617 t1 = tcg_const_i32(crm);
1618 gen_helper_msr_i_daifset(cpu_env, t1);
1619 tcg_temp_free_i32(t1);
1620 break;
1621
1622 case 0x1f: /* DAIFClear */
1623 t1 = tcg_const_i32(crm);
1624 gen_helper_msr_i_daifclear(cpu_env, t1);
1625 tcg_temp_free_i32(t1);
1626 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1627 s->base.is_jmp = DISAS_UPDATE;
1628 break;
1629
1630 default:
1631 do_unallocated:
1632 unallocated_encoding(s);
1633 return;
1634 }
1635 }
1636
1637 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1638 {
1639 TCGv_i32 tmp = tcg_temp_new_i32();
1640 TCGv_i32 nzcv = tcg_temp_new_i32();
1641
1642 /* build bit 31, N */
1643 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1644 /* build bit 30, Z */
1645 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1646 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1647 /* build bit 29, C */
1648 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1649 /* build bit 28, V */
1650 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1651 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1652 /* generate result */
1653 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1654
1655 tcg_temp_free_i32(nzcv);
1656 tcg_temp_free_i32(tmp);
1657 }
1658
1659 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1660 {
1661 TCGv_i32 nzcv = tcg_temp_new_i32();
1662
1663 /* take NZCV from R[t] */
1664 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1665
1666 /* bit 31, N */
1667 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1668 /* bit 30, Z */
1669 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1670 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1671 /* bit 29, C */
1672 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1673 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1674 /* bit 28, V */
1675 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1676 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1677 tcg_temp_free_i32(nzcv);
1678 }
1679
1680 /* MRS - move from system register
1681 * MSR (register) - move to system register
1682 * SYS
1683 * SYSL
1684 * These are all essentially the same insn in 'read' and 'write'
1685 * versions, with varying op0 fields.
1686 */
1687 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1688 unsigned int op0, unsigned int op1, unsigned int op2,
1689 unsigned int crn, unsigned int crm, unsigned int rt)
1690 {
1691 const ARMCPRegInfo *ri;
1692 TCGv_i64 tcg_rt;
1693
1694 ri = get_arm_cp_reginfo(s->cp_regs,
1695 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1696 crn, crm, op0, op1, op2));
1697
1698 if (!ri) {
1699 /* Unknown register; this might be a guest error or a QEMU
1700 * unimplemented feature.
1701 */
1702 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1703 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1704 isread ? "read" : "write", op0, op1, crn, crm, op2);
1705 unallocated_encoding(s);
1706 return;
1707 }
1708
1709 /* Check access permissions */
1710 if (!cp_access_ok(s->current_el, ri, isread)) {
1711 unallocated_encoding(s);
1712 return;
1713 }
1714
1715 if (ri->accessfn) {
1716 /* Emit code to perform further access permissions checks at
1717 * runtime; this may result in an exception.
1718 */
1719 TCGv_ptr tmpptr;
1720 TCGv_i32 tcg_syn, tcg_isread;
1721 uint32_t syndrome;
1722
1723 gen_a64_set_pc_im(s->pc - 4);
1724 tmpptr = tcg_const_ptr(ri);
1725 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1726 tcg_syn = tcg_const_i32(syndrome);
1727 tcg_isread = tcg_const_i32(isread);
1728 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1729 tcg_temp_free_ptr(tmpptr);
1730 tcg_temp_free_i32(tcg_syn);
1731 tcg_temp_free_i32(tcg_isread);
1732 }
1733
1734 /* Handle special cases first */
1735 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1736 case ARM_CP_NOP:
1737 return;
1738 case ARM_CP_NZCV:
1739 tcg_rt = cpu_reg(s, rt);
1740 if (isread) {
1741 gen_get_nzcv(tcg_rt);
1742 } else {
1743 gen_set_nzcv(tcg_rt);
1744 }
1745 return;
1746 case ARM_CP_CURRENTEL:
1747 /* Reads as current EL value from pstate, which is
1748 * guaranteed to be constant by the tb flags.
1749 */
1750 tcg_rt = cpu_reg(s, rt);
1751 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1752 return;
1753 case ARM_CP_DC_ZVA:
1754 /* Writes clear the aligned block of memory which rt points into. */
1755 tcg_rt = cpu_reg(s, rt);
1756 gen_helper_dc_zva(cpu_env, tcg_rt);
1757 return;
1758 default:
1759 break;
1760 }
1761 if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) {
1762 return;
1763 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
1764 return;
1765 }
1766
1767 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1768 gen_io_start();
1769 }
1770
1771 tcg_rt = cpu_reg(s, rt);
1772
1773 if (isread) {
1774 if (ri->type & ARM_CP_CONST) {
1775 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1776 } else if (ri->readfn) {
1777 TCGv_ptr tmpptr;
1778 tmpptr = tcg_const_ptr(ri);
1779 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1780 tcg_temp_free_ptr(tmpptr);
1781 } else {
1782 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1783 }
1784 } else {
1785 if (ri->type & ARM_CP_CONST) {
1786 /* If not forbidden by access permissions, treat as WI */
1787 return;
1788 } else if (ri->writefn) {
1789 TCGv_ptr tmpptr;
1790 tmpptr = tcg_const_ptr(ri);
1791 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1792 tcg_temp_free_ptr(tmpptr);
1793 } else {
1794 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1795 }
1796 }
1797
1798 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1799 /* I/O operations must end the TB here (whether read or write) */
1800 gen_io_end();
1801 s->base.is_jmp = DISAS_UPDATE;
1802 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1803 /* We default to ending the TB on a coprocessor register write,
1804 * but allow this to be suppressed by the register definition
1805 * (usually only necessary to work around guest bugs).
1806 */
1807 s->base.is_jmp = DISAS_UPDATE;
1808 }
1809 }
1810
1811 /* System
1812 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1813 * +---------------------+---+-----+-----+-------+-------+-----+------+
1814 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1815 * +---------------------+---+-----+-----+-------+-------+-----+------+
1816 */
1817 static void disas_system(DisasContext *s, uint32_t insn)
1818 {
1819 unsigned int l, op0, op1, crn, crm, op2, rt;
1820 l = extract32(insn, 21, 1);
1821 op0 = extract32(insn, 19, 2);
1822 op1 = extract32(insn, 16, 3);
1823 crn = extract32(insn, 12, 4);
1824 crm = extract32(insn, 8, 4);
1825 op2 = extract32(insn, 5, 3);
1826 rt = extract32(insn, 0, 5);
1827
1828 if (op0 == 0) {
1829 if (l || rt != 31) {
1830 unallocated_encoding(s);
1831 return;
1832 }
1833 switch (crn) {
1834 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
1835 handle_hint(s, insn, op1, op2, crm);
1836 break;
1837 case 3: /* CLREX, DSB, DMB, ISB */
1838 handle_sync(s, insn, op1, op2, crm);
1839 break;
1840 case 4: /* MSR (immediate) */
1841 handle_msr_i(s, insn, op1, op2, crm);
1842 break;
1843 default:
1844 unallocated_encoding(s);
1845 break;
1846 }
1847 return;
1848 }
1849 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1850 }
1851
1852 /* Exception generation
1853 *
1854 * 31 24 23 21 20 5 4 2 1 0
1855 * +-----------------+-----+------------------------+-----+----+
1856 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1857 * +-----------------------+------------------------+----------+
1858 */
1859 static void disas_exc(DisasContext *s, uint32_t insn)
1860 {
1861 int opc = extract32(insn, 21, 3);
1862 int op2_ll = extract32(insn, 0, 5);
1863 int imm16 = extract32(insn, 5, 16);
1864 TCGv_i32 tmp;
1865
1866 switch (opc) {
1867 case 0:
1868 /* For SVC, HVC and SMC we advance the single-step state
1869 * machine before taking the exception. This is architecturally
1870 * mandated, to ensure that single-stepping a system call
1871 * instruction works properly.
1872 */
1873 switch (op2_ll) {
1874 case 1: /* SVC */
1875 gen_ss_advance(s);
1876 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1877 default_exception_el(s));
1878 break;
1879 case 2: /* HVC */
1880 if (s->current_el == 0) {
1881 unallocated_encoding(s);
1882 break;
1883 }
1884 /* The pre HVC helper handles cases when HVC gets trapped
1885 * as an undefined insn by runtime configuration.
1886 */
1887 gen_a64_set_pc_im(s->pc - 4);
1888 gen_helper_pre_hvc(cpu_env);
1889 gen_ss_advance(s);
1890 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
1891 break;
1892 case 3: /* SMC */
1893 if (s->current_el == 0) {
1894 unallocated_encoding(s);
1895 break;
1896 }
1897 gen_a64_set_pc_im(s->pc - 4);
1898 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1899 gen_helper_pre_smc(cpu_env, tmp);
1900 tcg_temp_free_i32(tmp);
1901 gen_ss_advance(s);
1902 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
1903 break;
1904 default:
1905 unallocated_encoding(s);
1906 break;
1907 }
1908 break;
1909 case 1:
1910 if (op2_ll != 0) {
1911 unallocated_encoding(s);
1912 break;
1913 }
1914 /* BRK */
1915 gen_exception_bkpt_insn(s, 4, syn_aa64_bkpt(imm16));
1916 break;
1917 case 2:
1918 if (op2_ll != 0) {
1919 unallocated_encoding(s);
1920 break;
1921 }
1922 /* HLT. This has two purposes.
1923 * Architecturally, it is an external halting debug instruction.
1924 * Since QEMU doesn't implement external debug, we treat this as
1925 * it is required for halting debug disabled: it will UNDEF.
1926 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1927 */
1928 if (semihosting_enabled() && imm16 == 0xf000) {
1929 #ifndef CONFIG_USER_ONLY
1930 /* In system mode, don't allow userspace access to semihosting,
1931 * to provide some semblance of security (and for consistency
1932 * with our 32-bit semihosting).
1933 */
1934 if (s->current_el == 0) {
1935 unsupported_encoding(s, insn);
1936 break;
1937 }
1938 #endif
1939 gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
1940 } else {
1941 unsupported_encoding(s, insn);
1942 }
1943 break;
1944 case 5:
1945 if (op2_ll < 1 || op2_ll > 3) {
1946 unallocated_encoding(s);
1947 break;
1948 }
1949 /* DCPS1, DCPS2, DCPS3 */
1950 unsupported_encoding(s, insn);
1951 break;
1952 default:
1953 unallocated_encoding(s);
1954 break;
1955 }
1956 }
1957
1958 /* Unconditional branch (register)
1959 * 31 25 24 21 20 16 15 10 9 5 4 0
1960 * +---------------+-------+-------+-------+------+-------+
1961 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
1962 * +---------------+-------+-------+-------+------+-------+
1963 */
1964 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
1965 {
1966 unsigned int opc, op2, op3, rn, op4;
1967 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */
1968 TCGv_i64 dst;
1969 TCGv_i64 modifier;
1970
1971 opc = extract32(insn, 21, 4);
1972 op2 = extract32(insn, 16, 5);
1973 op3 = extract32(insn, 10, 6);
1974 rn = extract32(insn, 5, 5);
1975 op4 = extract32(insn, 0, 5);
1976
1977 if (op2 != 0x1f) {
1978 goto do_unallocated;
1979 }
1980
1981 switch (opc) {
1982 case 0: /* BR */
1983 case 1: /* BLR */
1984 case 2: /* RET */
1985 btype_mod = opc;
1986 switch (op3) {
1987 case 0:
1988 /* BR, BLR, RET */
1989 if (op4 != 0) {
1990 goto do_unallocated;
1991 }
1992 dst = cpu_reg(s, rn);
1993 break;
1994
1995 case 2:
1996 case 3:
1997 if (!dc_isar_feature(aa64_pauth, s)) {
1998 goto do_unallocated;
1999 }
2000 if (opc == 2) {
2001 /* RETAA, RETAB */
2002 if (rn != 0x1f || op4 != 0x1f) {
2003 goto do_unallocated;
2004 }
2005 rn = 30;
2006 modifier = cpu_X[31];
2007 } else {
2008 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */
2009 if (op4 != 0x1f) {
2010 goto do_unallocated;
2011 }
2012 modifier = new_tmp_a64_zero(s);
2013 }
2014 if (s->pauth_active) {
2015 dst = new_tmp_a64(s);
2016 if (op3 == 2) {
2017 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2018 } else {
2019 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2020 }
2021 } else {
2022 dst = cpu_reg(s, rn);
2023 }
2024 break;
2025
2026 default:
2027 goto do_unallocated;
2028 }
2029 gen_a64_set_pc(s, dst);
2030 /* BLR also needs to load return address */
2031 if (opc == 1) {
2032 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
2033 }
2034 break;
2035
2036 case 8: /* BRAA */
2037 case 9: /* BLRAA */
2038 if (!dc_isar_feature(aa64_pauth, s)) {
2039 goto do_unallocated;
2040 }
2041 if ((op3 & ~1) != 2) {
2042 goto do_unallocated;
2043 }
2044 btype_mod = opc & 1;
2045 if (s->pauth_active) {
2046 dst = new_tmp_a64(s);
2047 modifier = cpu_reg_sp(s, op4);
2048 if (op3 == 2) {
2049 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2050 } else {
2051 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2052 }
2053 } else {
2054 dst = cpu_reg(s, rn);
2055 }
2056 gen_a64_set_pc(s, dst);
2057 /* BLRAA also needs to load return address */
2058 if (opc == 9) {
2059 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
2060 }
2061 break;
2062
2063 case 4: /* ERET */
2064 if (s->current_el == 0) {
2065 goto do_unallocated;
2066 }
2067 switch (op3) {
2068 case 0: /* ERET */
2069 if (op4 != 0) {
2070 goto do_unallocated;
2071 }
2072 dst = tcg_temp_new_i64();
2073 tcg_gen_ld_i64(dst, cpu_env,
2074 offsetof(CPUARMState, elr_el[s->current_el]));
2075 break;
2076
2077 case 2: /* ERETAA */
2078 case 3: /* ERETAB */
2079 if (!dc_isar_feature(aa64_pauth, s)) {
2080 goto do_unallocated;
2081 }
2082 if (rn != 0x1f || op4 != 0x1f) {
2083 goto do_unallocated;
2084 }
2085 dst = tcg_temp_new_i64();
2086 tcg_gen_ld_i64(dst, cpu_env,
2087 offsetof(CPUARMState, elr_el[s->current_el]));
2088 if (s->pauth_active) {
2089 modifier = cpu_X[31];
2090 if (op3 == 2) {
2091 gen_helper_autia(dst, cpu_env, dst, modifier);
2092 } else {
2093 gen_helper_autib(dst, cpu_env, dst, modifier);
2094 }
2095 }
2096 break;
2097
2098 default:
2099 goto do_unallocated;
2100 }
2101 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2102 gen_io_start();
2103 }
2104
2105 gen_helper_exception_return(cpu_env, dst);
2106 tcg_temp_free_i64(dst);
2107 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2108 gen_io_end();
2109 }
2110 /* Must exit loop to check un-masked IRQs */
2111 s->base.is_jmp = DISAS_EXIT;
2112 return;
2113
2114 case 5: /* DRPS */
2115 if (op3 != 0 || op4 != 0 || rn != 0x1f) {
2116 goto do_unallocated;
2117 } else {
2118 unsupported_encoding(s, insn);
2119 }
2120 return;
2121
2122 default:
2123 do_unallocated:
2124 unallocated_encoding(s);
2125 return;
2126 }
2127
2128 switch (btype_mod) {
2129 case 0: /* BR */
2130 if (dc_isar_feature(aa64_bti, s)) {
2131 /* BR to {x16,x17} or !guard -> 1, else 3. */
2132 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
2133 }
2134 break;
2135
2136 case 1: /* BLR */
2137 if (dc_isar_feature(aa64_bti, s)) {
2138 /* BLR sets BTYPE to 2, regardless of source guarded page. */
2139 set_btype(s, 2);
2140 }
2141 break;
2142
2143 default: /* RET or none of the above. */
2144 /* BTYPE will be set to 0 by normal end-of-insn processing. */
2145 break;
2146 }
2147
2148 s->base.is_jmp = DISAS_JUMP;
2149 }
2150
2151 /* Branches, exception generating and system instructions */
2152 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2153 {
2154 switch (extract32(insn, 25, 7)) {
2155 case 0x0a: case 0x0b:
2156 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
2157 disas_uncond_b_imm(s, insn);
2158 break;
2159 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
2160 disas_comp_b_imm(s, insn);
2161 break;
2162 case 0x1b: case 0x5b: /* Test & branch (immediate) */
2163 disas_test_b_imm(s, insn);
2164 break;
2165 case 0x2a: /* Conditional branch (immediate) */
2166 disas_cond_b_imm(s, insn);
2167 break;
2168 case 0x6a: /* Exception generation / System */
2169 if (insn & (1 << 24)) {
2170 if (extract32(insn, 22, 2) == 0) {
2171 disas_system(s, insn);
2172 } else {
2173 unallocated_encoding(s);
2174 }
2175 } else {
2176 disas_exc(s, insn);
2177 }
2178 break;
2179 case 0x6b: /* Unconditional branch (register) */
2180 disas_uncond_b_reg(s, insn);
2181 break;
2182 default:
2183 unallocated_encoding(s);
2184 break;
2185 }
2186 }
2187
2188 /*
2189 * Load/Store exclusive instructions are implemented by remembering
2190 * the value/address loaded, and seeing if these are the same
2191 * when the store is performed. This is not actually the architecturally
2192 * mandated semantics, but it works for typical guest code sequences
2193 * and avoids having to monitor regular stores.
2194 *
2195 * The store exclusive uses the atomic cmpxchg primitives to avoid
2196 * races in multi-threaded linux-user and when MTTCG softmmu is
2197 * enabled.
2198 */
2199 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2200 TCGv_i64 addr, int size, bool is_pair)
2201 {
2202 int idx = get_mem_index(s);
2203 TCGMemOp memop = s->be_data;
2204
2205 g_assert(size <= 3);
2206 if (is_pair) {
2207 g_assert(size >= 2);
2208 if (size == 2) {
2209 /* The pair must be single-copy atomic for the doubleword. */
2210 memop |= MO_64 | MO_ALIGN;
2211 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2212 if (s->be_data == MO_LE) {
2213 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2214 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2215 } else {
2216 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2217 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2218 }
2219 } else {
2220 /* The pair must be single-copy atomic for *each* doubleword, not
2221 the entire quadword, however it must be quadword aligned. */
2222 memop |= MO_64;
2223 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2224 memop | MO_ALIGN_16);
2225
2226 TCGv_i64 addr2 = tcg_temp_new_i64();
2227 tcg_gen_addi_i64(addr2, addr, 8);
2228 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2229 tcg_temp_free_i64(addr2);
2230
2231 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2232 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2233 }
2234 } else {
2235 memop |= size | MO_ALIGN;
2236 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2237 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2238 }
2239 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2240 }
2241
2242 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2243 TCGv_i64 addr, int size, int is_pair)
2244 {
2245 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2246 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2247 * [addr] = {Rt};
2248 * if (is_pair) {
2249 * [addr + datasize] = {Rt2};
2250 * }
2251 * {Rd} = 0;
2252 * } else {
2253 * {Rd} = 1;
2254 * }
2255 * env->exclusive_addr = -1;
2256 */
2257 TCGLabel *fail_label = gen_new_label();
2258 TCGLabel *done_label = gen_new_label();
2259 TCGv_i64 tmp;
2260
2261 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2262
2263 tmp = tcg_temp_new_i64();
2264 if (is_pair) {
2265 if (size == 2) {
2266 if (s->be_data == MO_LE) {
2267 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2268 } else {
2269 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2270 }
2271 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2272 cpu_exclusive_val, tmp,
2273 get_mem_index(s),
2274 MO_64 | MO_ALIGN | s->be_data);
2275 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2276 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2277 if (!HAVE_CMPXCHG128) {
2278 gen_helper_exit_atomic(cpu_env);
2279 s->base.is_jmp = DISAS_NORETURN;
2280 } else if (s->be_data == MO_LE) {
2281 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
2282 cpu_exclusive_addr,
2283 cpu_reg(s, rt),
2284 cpu_reg(s, rt2));
2285 } else {
2286 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
2287 cpu_exclusive_addr,
2288 cpu_reg(s, rt),
2289 cpu_reg(s, rt2));
2290 }
2291 } else if (s->be_data == MO_LE) {
2292 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
2293 cpu_reg(s, rt), cpu_reg(s, rt2));
2294 } else {
2295 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
2296 cpu_reg(s, rt), cpu_reg(s, rt2));
2297 }
2298 } else {
2299 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2300 cpu_reg(s, rt), get_mem_index(s),
2301 size | MO_ALIGN | s->be_data);
2302 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2303 }
2304 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2305 tcg_temp_free_i64(tmp);
2306 tcg_gen_br(done_label);
2307
2308 gen_set_label(fail_label);
2309 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2310 gen_set_label(done_label);
2311 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2312 }
2313
2314 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2315 int rn, int size)
2316 {
2317 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2318 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2319 int memidx = get_mem_index(s);
2320 TCGv_i64 clean_addr;
2321
2322 if (rn == 31) {
2323 gen_check_sp_alignment(s);
2324 }
2325 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2326 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx,
2327 size | MO_ALIGN | s->be_data);
2328 }
2329
2330 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2331 int rn, int size)
2332 {
2333 TCGv_i64 s1 = cpu_reg(s, rs);
2334 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2335 TCGv_i64 t1 = cpu_reg(s, rt);
2336 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2337 TCGv_i64 clean_addr;
2338 int memidx = get_mem_index(s);
2339
2340 if (rn == 31) {
2341 gen_check_sp_alignment(s);
2342 }
2343 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2344
2345 if (size == 2) {
2346 TCGv_i64 cmp = tcg_temp_new_i64();
2347 TCGv_i64 val = tcg_temp_new_i64();
2348
2349 if (s->be_data == MO_LE) {
2350 tcg_gen_concat32_i64(val, t1, t2);
2351 tcg_gen_concat32_i64(cmp, s1, s2);
2352 } else {
2353 tcg_gen_concat32_i64(val, t2, t1);
2354 tcg_gen_concat32_i64(cmp, s2, s1);
2355 }
2356
2357 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx,
2358 MO_64 | MO_ALIGN | s->be_data);
2359 tcg_temp_free_i64(val);
2360
2361 if (s->be_data == MO_LE) {
2362 tcg_gen_extr32_i64(s1, s2, cmp);
2363 } else {
2364 tcg_gen_extr32_i64(s2, s1, cmp);
2365 }
2366 tcg_temp_free_i64(cmp);
2367 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2368 if (HAVE_CMPXCHG128) {
2369 TCGv_i32 tcg_rs = tcg_const_i32(rs);
2370 if (s->be_data == MO_LE) {
2371 gen_helper_casp_le_parallel(cpu_env, tcg_rs,
2372 clean_addr, t1, t2);
2373 } else {
2374 gen_helper_casp_be_parallel(cpu_env, tcg_rs,
2375 clean_addr, t1, t2);
2376 }
2377 tcg_temp_free_i32(tcg_rs);
2378 } else {
2379 gen_helper_exit_atomic(cpu_env);
2380 s->base.is_jmp = DISAS_NORETURN;
2381 }
2382 } else {
2383 TCGv_i64 d1 = tcg_temp_new_i64();
2384 TCGv_i64 d2 = tcg_temp_new_i64();
2385 TCGv_i64 a2 = tcg_temp_new_i64();
2386 TCGv_i64 c1 = tcg_temp_new_i64();
2387 TCGv_i64 c2 = tcg_temp_new_i64();
2388 TCGv_i64 zero = tcg_const_i64(0);
2389
2390 /* Load the two words, in memory order. */
2391 tcg_gen_qemu_ld_i64(d1, clean_addr, memidx,
2392 MO_64 | MO_ALIGN_16 | s->be_data);
2393 tcg_gen_addi_i64(a2, clean_addr, 8);
2394 tcg_gen_qemu_ld_i64(d2, a2, memidx, MO_64 | s->be_data);
2395
2396 /* Compare the two words, also in memory order. */
2397 tcg_gen_setcond_i64(TCG_COND_EQ, c1, d1, s1);
2398 tcg_gen_setcond_i64(TCG_COND_EQ, c2, d2, s2);
2399 tcg_gen_and_i64(c2, c2, c1);
2400
2401 /* If compare equal, write back new data, else write back old data. */
2402 tcg_gen_movcond_i64(TCG_COND_NE, c1, c2, zero, t1, d1);
2403 tcg_gen_movcond_i64(TCG_COND_NE, c2, c2, zero, t2, d2);
2404 tcg_gen_qemu_st_i64(c1, clean_addr, memidx, MO_64 | s->be_data);
2405 tcg_gen_qemu_st_i64(c2, a2, memidx, MO_64 | s->be_data);
2406 tcg_temp_free_i64(a2);
2407 tcg_temp_free_i64(c1);
2408 tcg_temp_free_i64(c2);
2409 tcg_temp_free_i64(zero);
2410
2411 /* Write back the data from memory to Rs. */
2412 tcg_gen_mov_i64(s1, d1);
2413 tcg_gen_mov_i64(s2, d2);
2414 tcg_temp_free_i64(d1);
2415 tcg_temp_free_i64(d2);
2416 }
2417 }
2418
2419 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2420 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2421 */
2422 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2423 {
2424 int opc0 = extract32(opc, 0, 1);
2425 int regsize;
2426
2427 if (is_signed) {
2428 regsize = opc0 ? 32 : 64;
2429 } else {
2430 regsize = size == 3 ? 64 : 32;
2431 }
2432 return regsize == 64;
2433 }
2434
2435 /* Load/store exclusive
2436 *
2437 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2438 * +-----+-------------+----+---+----+------+----+-------+------+------+
2439 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2440 * +-----+-------------+----+---+----+------+----+-------+------+------+
2441 *
2442 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2443 * L: 0 -> store, 1 -> load
2444 * o2: 0 -> exclusive, 1 -> not
2445 * o1: 0 -> single register, 1 -> register pair
2446 * o0: 1 -> load-acquire/store-release, 0 -> not
2447 */
2448 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2449 {
2450 int rt = extract32(insn, 0, 5);
2451 int rn = extract32(insn, 5, 5);
2452 int rt2 = extract32(insn, 10, 5);
2453 int rs = extract32(insn, 16, 5);
2454 int is_lasr = extract32(insn, 15, 1);
2455 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2456 int size = extract32(insn, 30, 2);
2457 TCGv_i64 clean_addr;
2458
2459 switch (o2_L_o1_o0) {
2460 case 0x0: /* STXR */
2461 case 0x1: /* STLXR */
2462 if (rn == 31) {
2463 gen_check_sp_alignment(s);
2464 }
2465 if (is_lasr) {
2466 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2467 }
2468 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2469 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false);
2470 return;
2471
2472 case 0x4: /* LDXR */
2473 case 0x5: /* LDAXR */
2474 if (rn == 31) {
2475 gen_check_sp_alignment(s);
2476 }
2477 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2478 s->is_ldex = true;
2479 gen_load_exclusive(s, rt, rt2, clean_addr, size, false);
2480 if (is_lasr) {
2481 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2482 }
2483 return;
2484
2485 case 0x8: /* STLLR */
2486 if (!dc_isar_feature(aa64_lor, s)) {
2487 break;
2488 }
2489 /* StoreLORelease is the same as Store-Release for QEMU. */
2490 /* fall through */
2491 case 0x9: /* STLR */
2492 /* Generate ISS for non-exclusive accesses including LASR. */
2493 if (rn == 31) {
2494 gen_check_sp_alignment(s);
2495 }
2496 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2497 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2498 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size, true, rt,
2499 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2500 return;
2501
2502 case 0xc: /* LDLAR */
2503 if (!dc_isar_feature(aa64_lor, s)) {
2504 break;
2505 }
2506 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2507 /* fall through */
2508 case 0xd: /* LDAR */
2509 /* Generate ISS for non-exclusive accesses including LASR. */
2510 if (rn == 31) {
2511 gen_check_sp_alignment(s);
2512 }
2513 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2514 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, false, true, rt,
2515 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2516 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2517 return;
2518
2519 case 0x2: case 0x3: /* CASP / STXP */
2520 if (size & 2) { /* STXP / STLXP */
2521 if (rn == 31) {
2522 gen_check_sp_alignment(s);
2523 }
2524 if (is_lasr) {
2525 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2526 }
2527 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2528 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true);
2529 return;
2530 }
2531 if (rt2 == 31
2532 && ((rt | rs) & 1) == 0
2533 && dc_isar_feature(aa64_atomics, s)) {
2534 /* CASP / CASPL */
2535 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2536 return;
2537 }
2538 break;
2539
2540 case 0x6: case 0x7: /* CASPA / LDXP */
2541 if (size & 2) { /* LDXP / LDAXP */
2542 if (rn == 31) {
2543 gen_check_sp_alignment(s);
2544 }
2545 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2546 s->is_ldex = true;
2547 gen_load_exclusive(s, rt, rt2, clean_addr, size, true);
2548 if (is_lasr) {
2549 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2550 }
2551 return;
2552 }
2553 if (rt2 == 31
2554 && ((rt | rs) & 1) == 0
2555 && dc_isar_feature(aa64_atomics, s)) {
2556 /* CASPA / CASPAL */
2557 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2558 return;
2559 }
2560 break;
2561
2562 case 0xa: /* CAS */
2563 case 0xb: /* CASL */
2564 case 0xe: /* CASA */
2565 case 0xf: /* CASAL */
2566 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2567 gen_compare_and_swap(s, rs, rt, rn, size);
2568 return;
2569 }
2570 break;
2571 }
2572 unallocated_encoding(s);
2573 }
2574
2575 /*
2576 * Load register (literal)
2577 *
2578 * 31 30 29 27 26 25 24 23 5 4 0
2579 * +-----+-------+---+-----+-------------------+-------+
2580 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2581 * +-----+-------+---+-----+-------------------+-------+
2582 *
2583 * V: 1 -> vector (simd/fp)
2584 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2585 * 10-> 32 bit signed, 11 -> prefetch
2586 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2587 */
2588 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2589 {
2590 int rt = extract32(insn, 0, 5);
2591 int64_t imm = sextract32(insn, 5, 19) << 2;
2592 bool is_vector = extract32(insn, 26, 1);
2593 int opc = extract32(insn, 30, 2);
2594 bool is_signed = false;
2595 int size = 2;
2596 TCGv_i64 tcg_rt, clean_addr;
2597
2598 if (is_vector) {
2599 if (opc == 3) {
2600 unallocated_encoding(s);
2601 return;
2602 }
2603 size = 2 + opc;
2604 if (!fp_access_check(s)) {
2605 return;
2606 }
2607 } else {
2608 if (opc == 3) {
2609 /* PRFM (literal) : prefetch */
2610 return;
2611 }
2612 size = 2 + extract32(opc, 0, 1);
2613 is_signed = extract32(opc, 1, 1);
2614 }
2615
2616 tcg_rt = cpu_reg(s, rt);
2617
2618 clean_addr = tcg_const_i64((s->pc - 4) + imm);
2619 if (is_vector) {
2620 do_fp_ld(s, rt, clean_addr, size);
2621 } else {
2622 /* Only unsigned 32bit loads target 32bit registers. */
2623 bool iss_sf = opc != 0;
2624
2625 do_gpr_ld(s, tcg_rt, clean_addr, size, is_signed, false,
2626 true, rt, iss_sf, false);
2627 }
2628 tcg_temp_free_i64(clean_addr);
2629 }
2630
2631 /*
2632 * LDNP (Load Pair - non-temporal hint)
2633 * LDP (Load Pair - non vector)
2634 * LDPSW (Load Pair Signed Word - non vector)
2635 * STNP (Store Pair - non-temporal hint)
2636 * STP (Store Pair - non vector)
2637 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2638 * LDP (Load Pair of SIMD&FP)
2639 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2640 * STP (Store Pair of SIMD&FP)
2641 *
2642 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2643 * +-----+-------+---+---+-------+---+-----------------------------+
2644 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2645 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2646 *
2647 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2648 * LDPSW 01
2649 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2650 * V: 0 -> GPR, 1 -> Vector
2651 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2652 * 10 -> signed offset, 11 -> pre-index
2653 * L: 0 -> Store 1 -> Load
2654 *
2655 * Rt, Rt2 = GPR or SIMD registers to be stored
2656 * Rn = general purpose register containing address
2657 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2658 */
2659 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2660 {
2661 int rt = extract32(insn, 0, 5);
2662 int rn = extract32(insn, 5, 5);
2663 int rt2 = extract32(insn, 10, 5);
2664 uint64_t offset = sextract64(insn, 15, 7);
2665 int index = extract32(insn, 23, 2);
2666 bool is_vector = extract32(insn, 26, 1);
2667 bool is_load = extract32(insn, 22, 1);
2668 int opc = extract32(insn, 30, 2);
2669
2670 bool is_signed = false;
2671 bool postindex = false;
2672 bool wback = false;
2673
2674 TCGv_i64 clean_addr, dirty_addr;
2675
2676 int size;
2677
2678 if (opc == 3) {
2679 unallocated_encoding(s);
2680 return;
2681 }
2682
2683 if (is_vector) {
2684 size = 2 + opc;
2685 } else {
2686 size = 2 + extract32(opc, 1, 1);
2687 is_signed = extract32(opc, 0, 1);
2688 if (!is_load && is_signed) {
2689 unallocated_encoding(s);
2690 return;
2691 }
2692 }
2693
2694 switch (index) {
2695 case 1: /* post-index */
2696 postindex = true;
2697 wback = true;
2698 break;
2699 case 0:
2700 /* signed offset with "non-temporal" hint. Since we don't emulate
2701 * caches we don't care about hints to the cache system about
2702 * data access patterns, and handle this identically to plain
2703 * signed offset.
2704 */
2705 if (is_signed) {
2706 /* There is no non-temporal-hint version of LDPSW */
2707 unallocated_encoding(s);
2708 return;
2709 }
2710 postindex = false;
2711 break;
2712 case 2: /* signed offset, rn not updated */
2713 postindex = false;
2714 break;
2715 case 3: /* pre-index */
2716 postindex = false;
2717 wback = true;
2718 break;
2719 }
2720
2721 if (is_vector && !fp_access_check(s)) {
2722 return;
2723 }
2724
2725 offset <<= size;
2726
2727 if (rn == 31) {
2728 gen_check_sp_alignment(s);
2729 }
2730
2731 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2732 if (!postindex) {
2733 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2734 }
2735 clean_addr = clean_data_tbi(s, dirty_addr);
2736
2737 if (is_vector) {
2738 if (is_load) {
2739 do_fp_ld(s, rt, clean_addr, size);
2740 } else {
2741 do_fp_st(s, rt, clean_addr, size);
2742 }
2743 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2744 if (is_load) {
2745 do_fp_ld(s, rt2, clean_addr, size);
2746 } else {
2747 do_fp_st(s, rt2, clean_addr, size);
2748 }
2749 } else {
2750 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2751 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2752
2753 if (is_load) {
2754 TCGv_i64 tmp = tcg_temp_new_i64();
2755
2756 /* Do not modify tcg_rt before recognizing any exception
2757 * from the second load.
2758 */
2759 do_gpr_ld(s, tmp, clean_addr, size, is_signed, false,
2760 false, 0, false, false);
2761 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2762 do_gpr_ld(s, tcg_rt2, clean_addr, size, is_signed, false,
2763 false, 0, false, false);
2764
2765 tcg_gen_mov_i64(tcg_rt, tmp);
2766 tcg_temp_free_i64(tmp);
2767 } else {
2768 do_gpr_st(s, tcg_rt, clean_addr, size,
2769 false, 0, false, false);
2770 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2771 do_gpr_st(s, tcg_rt2, clean_addr, size,
2772 false, 0, false, false);
2773 }
2774 }
2775
2776 if (wback) {
2777 if (postindex) {
2778 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2779 }
2780 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
2781 }
2782 }
2783
2784 /*
2785 * Load/store (immediate post-indexed)
2786 * Load/store (immediate pre-indexed)
2787 * Load/store (unscaled immediate)
2788 *
2789 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2790 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2791 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2792 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2793 *
2794 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2795 10 -> unprivileged
2796 * V = 0 -> non-vector
2797 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2798 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2799 */
2800 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2801 int opc,
2802 int size,
2803 int rt,
2804 bool is_vector)
2805 {
2806 int rn = extract32(insn, 5, 5);
2807 int imm9 = sextract32(insn, 12, 9);
2808 int idx = extract32(insn, 10, 2);
2809 bool is_signed = false;
2810 bool is_store = false;
2811 bool is_extended = false;
2812 bool is_unpriv = (idx == 2);
2813 bool iss_valid = !is_vector;
2814 bool post_index;
2815 bool writeback;
2816
2817 TCGv_i64 clean_addr, dirty_addr;
2818
2819 if (is_vector) {
2820 size |= (opc & 2) << 1;
2821 if (size > 4 || is_unpriv) {
2822 unallocated_encoding(s);
2823 return;
2824 }
2825 is_store = ((opc & 1) == 0);
2826 if (!fp_access_check(s)) {
2827 return;
2828 }
2829 } else {
2830 if (size == 3 && opc == 2) {
2831 /* PRFM - prefetch */
2832 if (idx != 0) {
2833 unallocated_encoding(s);
2834 return;
2835 }
2836 return;
2837 }
2838 if (opc == 3 && size > 1) {
2839 unallocated_encoding(s);
2840 return;
2841 }
2842 is_store = (opc == 0);
2843 is_signed = extract32(opc, 1, 1);
2844 is_extended = (size < 3) && extract32(opc, 0, 1);
2845 }
2846
2847 switch (idx) {
2848 case 0:
2849 case 2:
2850 post_index = false;
2851 writeback = false;
2852 break;
2853 case 1:
2854 post_index = true;
2855 writeback = true;
2856 break;
2857 case 3:
2858 post_index = false;
2859 writeback = true;
2860 break;
2861 default:
2862 g_assert_not_reached();
2863 }
2864
2865 if (rn == 31) {
2866 gen_check_sp_alignment(s);
2867 }
2868
2869 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2870 if (!post_index) {
2871 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
2872 }
2873 clean_addr = clean_data_tbi(s, dirty_addr);
2874
2875 if (is_vector) {
2876 if (is_store) {
2877 do_fp_st(s, rt, clean_addr, size);
2878 } else {
2879 do_fp_ld(s, rt, clean_addr, size);
2880 }
2881 } else {
2882 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2883 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2884 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2885
2886 if (is_store) {
2887 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx,
2888 iss_valid, rt, iss_sf, false);
2889 } else {
2890 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size,
2891 is_signed, is_extended, memidx,
2892 iss_valid, rt, iss_sf, false);
2893 }
2894 }
2895
2896 if (writeback) {
2897 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2898 if (post_index) {
2899 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
2900 }
2901 tcg_gen_mov_i64(tcg_rn, dirty_addr);
2902 }
2903 }
2904
2905 /*
2906 * Load/store (register offset)
2907 *
2908 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2909 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2910 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2911 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2912 *
2913 * For non-vector:
2914 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2915 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2916 * For vector:
2917 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2918 * opc<0>: 0 -> store, 1 -> load
2919 * V: 1 -> vector/simd
2920 * opt: extend encoding (see DecodeRegExtend)
2921 * S: if S=1 then scale (essentially index by sizeof(size))
2922 * Rt: register to transfer into/out of
2923 * Rn: address register or SP for base
2924 * Rm: offset register or ZR for offset
2925 */
2926 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
2927 int opc,
2928 int size,
2929 int rt,
2930 bool is_vector)
2931 {
2932 int rn = extract32(insn, 5, 5);
2933 int shift = extract32(insn, 12, 1);
2934 int rm = extract32(insn, 16, 5);
2935 int opt = extract32(insn, 13, 3);
2936 bool is_signed = false;
2937 bool is_store = false;
2938 bool is_extended = false;
2939
2940 TCGv_i64 tcg_rm, clean_addr, dirty_addr;
2941
2942 if (extract32(opt, 1, 1) == 0) {
2943 unallocated_encoding(s);
2944 return;
2945 }
2946
2947 if (is_vector) {
2948 size |= (opc & 2) << 1;
2949 if (size > 4) {
2950 unallocated_encoding(s);
2951 return;
2952 }
2953 is_store = !extract32(opc, 0, 1);
2954 if (!fp_access_check(s)) {
2955 return;
2956 }
2957 } else {
2958 if (size == 3 && opc == 2) {
2959 /* PRFM - prefetch */
2960 return;
2961 }
2962 if (opc == 3 && size > 1) {
2963 unallocated_encoding(s);
2964 return;
2965 }
2966 is_store = (opc == 0);
2967 is_signed = extract32(opc, 1, 1);
2968 is_extended = (size < 3) && extract32(opc, 0, 1);
2969 }
2970
2971 if (rn == 31) {
2972 gen_check_sp_alignment(s);
2973 }
2974 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2975
2976 tcg_rm = read_cpu_reg(s, rm, 1);
2977 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
2978
2979 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
2980 clean_addr = clean_data_tbi(s, dirty_addr);
2981
2982 if (is_vector) {
2983 if (is_store) {
2984 do_fp_st(s, rt, clean_addr, size);
2985 } else {
2986 do_fp_ld(s, rt, clean_addr, size);
2987 }
2988 } else {
2989 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2990 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2991 if (is_store) {
2992 do_gpr_st(s, tcg_rt, clean_addr, size,
2993 true, rt, iss_sf, false);
2994 } else {
2995 do_gpr_ld(s, tcg_rt, clean_addr, size,
2996 is_signed, is_extended,
2997 true, rt, iss_sf, false);
2998 }
2999 }
3000 }
3001
3002 /*
3003 * Load/store (unsigned immediate)
3004 *
3005 * 31 30 29 27 26 25 24 23 22 21 10 9 5
3006 * +----+-------+---+-----+-----+------------+-------+------+
3007 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
3008 * +----+-------+---+-----+-----+------------+-------+------+
3009 *
3010 * For non-vector:
3011 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3012 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3013 * For vector:
3014 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3015 * opc<0>: 0 -> store, 1 -> load
3016 * Rn: base address register (inc SP)
3017 * Rt: target register
3018 */
3019 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3020 int opc,
3021 int size,
3022 int rt,
3023 bool is_vector)
3024 {
3025 int rn = extract32(insn, 5, 5);
3026 unsigned int imm12 = extract32(insn, 10, 12);
3027 unsigned int offset;
3028
3029 TCGv_i64 clean_addr, dirty_addr;
3030
3031 bool is_store;
3032 bool is_signed = false;
3033 bool is_extended = false;
3034
3035 if (is_vector) {
3036 size |= (opc & 2) << 1;
3037 if (size > 4) {
3038 unallocated_encoding(s);
3039 return;
3040 }
3041 is_store = !extract32(opc, 0, 1);
3042 if (!fp_access_check(s)) {
3043 return;
3044 }
3045 } else {
3046 if (size == 3 && opc == 2) {
3047 /* PRFM - prefetch */
3048 return;
3049 }
3050 if (opc == 3 && size > 1) {
3051 unallocated_encoding(s);
3052 return;
3053 }
3054 is_store = (opc == 0);
3055 is_signed = extract32(opc, 1, 1);
3056 is_extended = (size < 3) && extract32(opc, 0, 1);
3057 }
3058
3059 if (rn == 31) {
3060 gen_check_sp_alignment(s);
3061 }
3062 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3063 offset = imm12 << size;
3064 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3065 clean_addr = clean_data_tbi(s, dirty_addr);
3066
3067 if (is_vector) {
3068 if (is_store) {
3069 do_fp_st(s, rt, clean_addr, size);
3070 } else {
3071 do_fp_ld(s, rt, clean_addr, size);
3072 }
3073 } else {
3074 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3075 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3076 if (is_store) {
3077 do_gpr_st(s, tcg_rt, clean_addr, size,
3078 true, rt, iss_sf, false);
3079 } else {
3080 do_gpr_ld(s, tcg_rt, clean_addr, size, is_signed, is_extended,
3081 true, rt, iss_sf, false);
3082 }
3083 }
3084 }
3085
3086 /* Atomic memory operations
3087 *
3088 * 31 30 27 26 24 22 21 16 15 12 10 5 0
3089 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3090 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
3091 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3092 *
3093 * Rt: the result register
3094 * Rn: base address or SP
3095 * Rs: the source register for the operation
3096 * V: vector flag (always 0 as of v8.3)
3097 * A: acquire flag
3098 * R: release flag
3099 */
3100 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3101 int size, int rt, bool is_vector)
3102 {
3103 int rs = extract32(insn, 16, 5);
3104 int rn = extract32(insn, 5, 5);
3105 int o3_opc = extract32(insn, 12, 4);
3106 TCGv_i64 tcg_rs, clean_addr;
3107 AtomicThreeOpFn *fn;
3108
3109 if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3110 unallocated_encoding(s);
3111 return;
3112 }
3113 switch (o3_opc) {
3114 case 000: /* LDADD */
3115 fn = tcg_gen_atomic_fetch_add_i64;
3116 break;
3117 case 001: /* LDCLR */
3118 fn = tcg_gen_atomic_fetch_and_i64;
3119 break;
3120 case 002: /* LDEOR */
3121 fn = tcg_gen_atomic_fetch_xor_i64;
3122 break;
3123 case 003: /* LDSET */
3124 fn = tcg_gen_atomic_fetch_or_i64;
3125 break;
3126 case 004: /* LDSMAX */
3127 fn = tcg_gen_atomic_fetch_smax_i64;
3128 break;
3129 case 005: /* LDSMIN */
3130 fn = tcg_gen_atomic_fetch_smin_i64;
3131 break;
3132 case 006: /* LDUMAX */
3133 fn = tcg_gen_atomic_fetch_umax_i64;
3134 break;
3135 case 007: /* LDUMIN */
3136 fn = tcg_gen_atomic_fetch_umin_i64;
3137 break;
3138 case 010: /* SWP */
3139 fn = tcg_gen_atomic_xchg_i64;
3140 break;
3141 default:
3142 unallocated_encoding(s);
3143 return;
3144 }
3145
3146 if (rn == 31) {
3147 gen_check_sp_alignment(s);
3148 }
3149 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
3150 tcg_rs = read_cpu_reg(s, rs, true);
3151
3152 if (o3_opc == 1) { /* LDCLR */
3153 tcg_gen_not_i64(tcg_rs, tcg_rs);
3154 }
3155
3156 /* The tcg atomic primitives are all full barriers. Therefore we
3157 * can ignore the Acquire and Release bits of this instruction.
3158 */
3159 fn(cpu_reg(s, rt), clean_addr, tcg_rs, get_mem_index(s),
3160 s->be_data | size | MO_ALIGN);
3161 }
3162
3163 /*
3164 * PAC memory operations
3165 *
3166 * 31 30 27 26 24 22 21 12 11 10 5 0
3167 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3168 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt |
3169 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3170 *
3171 * Rt: the result register
3172 * Rn: base address or SP
3173 * V: vector flag (always 0 as of v8.3)
3174 * M: clear for key DA, set for key DB
3175 * W: pre-indexing flag
3176 * S: sign for imm9.
3177 */
3178 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3179 int size, int rt, bool is_vector)
3180 {
3181 int rn = extract32(insn, 5, 5);
3182 bool is_wback = extract32(insn, 11, 1);
3183 bool use_key_a = !extract32(insn, 23, 1);
3184 int offset;
3185 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3186
3187 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3188 unallocated_encoding(s);
3189 return;
3190 }
3191
3192 if (rn == 31) {
3193 gen_check_sp_alignment(s);
3194 }
3195 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3196
3197 if (s->pauth_active) {
3198 if (use_key_a) {
3199 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, cpu_X[31]);
3200 } else {
3201 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, cpu_X[31]);
3202 }
3203 }
3204
3205 /* Form the 10-bit signed, scaled offset. */
3206 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3207 offset = sextract32(offset << size, 0, 10 + size);
3208 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3209
3210 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3211 clean_addr = clean_data_tbi(s, dirty_addr);
3212
3213 tcg_rt = cpu_reg(s, rt);
3214 do_gpr_ld(s, tcg_rt, clean_addr, size, /* is_signed */ false,
3215 /* extend */ false, /* iss_valid */ !is_wback,
3216 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3217
3218 if (is_wback) {
3219 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3220 }
3221 }
3222
3223 /* Load/store register (all forms) */
3224 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3225 {
3226 int rt = extract32(insn, 0, 5);
3227 int opc = extract32(insn, 22, 2);
3228 bool is_vector = extract32(insn, 26, 1);
3229 int size = extract32(insn, 30, 2);
3230
3231 switch (extract32(insn, 24, 2)) {
3232 case 0:
3233 if (extract32(insn, 21, 1) == 0) {
3234 /* Load/store register (unscaled immediate)
3235 * Load/store immediate pre/post-indexed
3236 * Load/store register unprivileged
3237 */
3238 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3239 return;
3240 }
3241 switch (extract32(insn, 10, 2)) {
3242 case 0:
3243 disas_ldst_atomic(s, insn, size, rt, is_vector);
3244 return;
3245 case 2:
3246 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3247 return;
3248 default:
3249 disas_ldst_pac(s, insn, size, rt, is_vector);
3250 return;
3251 }
3252 break;
3253 case 1:
3254 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3255 return;
3256 }
3257 unallocated_encoding(s);
3258 }
3259
3260 /* AdvSIMD load/store multiple structures
3261 *
3262 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
3263 * +---+---+---------------+---+-------------+--------+------+------+------+
3264 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
3265 * +---+---+---------------+---+-------------+--------+------+------+------+
3266 *
3267 * AdvSIMD load/store multiple structures (post-indexed)
3268 *
3269 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
3270 * +---+---+---------------+---+---+---------+--------+------+------+------+
3271 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
3272 * +---+---+---------------+---+---+---------+--------+------+------+------+
3273 *
3274 * Rt: first (or only) SIMD&FP register to be transferred
3275 * Rn: base address or SP
3276 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3277 */
3278 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3279 {
3280 int rt = extract32(insn, 0, 5);
3281 int rn = extract32(insn, 5, 5);
3282 int rm = extract32(insn, 16, 5);
3283 int size = extract32(insn, 10, 2);
3284 int opcode = extract32(insn, 12, 4);
3285 bool is_store = !extract32(insn, 22, 1);
3286 bool is_postidx = extract32(insn, 23, 1);
3287 bool is_q = extract32(insn, 30, 1);
3288 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3289 TCGMemOp endian = s->be_data;
3290
3291 int ebytes; /* bytes per element */
3292 int elements; /* elements per vector */
3293 int rpt; /* num iterations */
3294 int selem; /* structure elements */
3295 int r;
3296
3297 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3298 unallocated_encoding(s);
3299 return;
3300 }
3301
3302 if (!is_postidx && rm != 0) {
3303 unallocated_encoding(s);
3304 return;
3305 }
3306
3307 /* From the shared decode logic */
3308 switch (opcode) {
3309 case 0x0:
3310 rpt = 1;
3311 selem = 4;
3312 break;
3313 case 0x2:
3314 rpt = 4;
3315 selem = 1;
3316 break;
3317 case 0x4:
3318 rpt = 1;
3319 selem = 3;
3320 break;
3321 case 0x6:
3322 rpt = 3;
3323 selem = 1;
3324 break;
3325 case 0x7:
3326 rpt = 1;
3327 selem = 1;
3328 break;
3329 case 0x8:
3330 rpt = 1;
3331 selem = 2;
3332 break;
3333 case 0xa:
3334 rpt = 2;
3335 selem = 1;
3336 break;
3337 default:
3338 unallocated_encoding(s);
3339 return;
3340 }
3341
3342 if (size == 3 && !is_q && selem != 1) {
3343 /* reserved */
3344 unallocated_encoding(s);
3345 return;
3346 }
3347
3348 if (!fp_access_check(s)) {
3349 return;
3350 }
3351
3352 if (rn == 31) {
3353 gen_check_sp_alignment(s);
3354 }
3355
3356 /* For our purposes, bytes are always little-endian. */
3357 if (size == 0) {
3358 endian = MO_LE;
3359 }
3360
3361 /* Consecutive little-endian elements from a single register
3362 * can be promoted to a larger little-endian operation.
3363 */
3364 if (selem == 1 && endian == MO_LE) {
3365 size = 3;
3366 }
3367 ebytes = 1 << size;
3368 elements = (is_q ? 16 : 8) / ebytes;
3369
3370 tcg_rn = cpu_reg_sp(s, rn);
3371 clean_addr = clean_data_tbi(s, tcg_rn);
3372 tcg_ebytes = tcg_const_i64(ebytes);
3373
3374 for (r = 0; r < rpt; r++) {
3375 int e;
3376 for (e = 0; e < elements; e++) {
3377 int xs;
3378 for (xs = 0; xs < selem; xs++) {
3379 int tt = (rt + r + xs) % 32;
3380 if (is_store) {
3381 do_vec_st(s, tt, e, clean_addr, size, endian);
3382 } else {
3383 do_vec_ld(s, tt, e, clean_addr, size, endian);
3384 }
3385 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3386 }
3387 }
3388 }
3389 tcg_temp_free_i64(tcg_ebytes);
3390
3391 if (!is_store) {
3392 /* For non-quad operations, setting a slice of the low
3393 * 64 bits of the register clears the high 64 bits (in
3394 * the ARM ARM pseudocode this is implicit in the fact
3395 * that 'rval' is a 64 bit wide variable).
3396 * For quad operations, we might still need to zero the
3397 * high bits of SVE.
3398 */
3399 for (r = 0; r < rpt * selem; r++) {
3400 int tt = (rt + r) % 32;
3401 clear_vec_high(s, is_q, tt);
3402 }
3403 }
3404
3405 if (is_postidx) {
3406 if (rm == 31) {
3407 tcg_gen_addi_i64(tcg_rn, tcg_rn, rpt * elements * selem * ebytes);
3408 } else {
3409 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3410 }
3411 }
3412 }
3413
3414 /* AdvSIMD load/store single structure
3415 *
3416 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3417 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3418 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3419 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3420 *
3421 * AdvSIMD load/store single structure (post-indexed)
3422 *
3423 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3424 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3425 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3426 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3427 *
3428 * Rt: first (or only) SIMD&FP register to be transferred
3429 * Rn: base address or SP
3430 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3431 * index = encoded in Q:S:size dependent on size
3432 *
3433 * lane_size = encoded in R, opc
3434 * transfer width = encoded in opc, S, size
3435 */
3436 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3437 {
3438 int rt = extract32(insn, 0, 5);
3439 int rn = extract32(insn, 5, 5);
3440 int rm = extract32(insn, 16, 5);
3441 int size = extract32(insn, 10, 2);
3442 int S = extract32(insn, 12, 1);
3443 int opc = extract32(insn, 13, 3);
3444 int R = extract32(insn, 21, 1);
3445 int is_load = extract32(insn, 22, 1);
3446 int is_postidx = extract32(insn, 23, 1);
3447 int is_q = extract32(insn, 30, 1);
3448
3449 int scale = extract32(opc, 1, 2);
3450 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3451 bool replicate = false;
3452 int index = is_q << 3 | S << 2 | size;
3453 int ebytes, xs;
3454 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3455
3456 if (extract32(insn, 31, 1)) {
3457 unallocated_encoding(s);
3458 return;
3459 }
3460 if (!is_postidx && rm != 0) {
3461 unallocated_encoding(s);
3462 return;
3463 }
3464
3465 switch (scale) {
3466 case 3:
3467 if (!is_load || S) {
3468 unallocated_encoding(s);
3469 return;
3470 }
3471 scale = size;
3472 replicate = true;
3473 break;
3474 case 0:
3475 break;
3476 case 1:
3477 if (extract32(size, 0, 1)) {
3478 unallocated_encoding(s);
3479 return;
3480 }
3481 index >>= 1;
3482 break;
3483 case 2:
3484 if (extract32(size, 1, 1)) {
3485 unallocated_encoding(s);
3486 return;
3487 }
3488 if (!extract32(size, 0, 1)) {
3489 index >>= 2;
3490 } else {
3491 if (S) {
3492 unallocated_encoding(s);
3493 return;
3494 }
3495 index >>= 3;
3496 scale = 3;
3497 }
3498 break;
3499 default:
3500 g_assert_not_reached();
3501 }
3502
3503 if (!fp_access_check(s)) {
3504 return;
3505 }
3506
3507 ebytes = 1 << scale;
3508
3509 if (rn == 31) {
3510 gen_check_sp_alignment(s);
3511 }
3512
3513 tcg_rn = cpu_reg_sp(s, rn);
3514 clean_addr = clean_data_tbi(s, tcg_rn);
3515 tcg_ebytes = tcg_const_i64(ebytes);
3516
3517 for (xs = 0; xs < selem; xs++) {
3518 if (replicate) {
3519 /* Load and replicate to all elements */
3520 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3521
3522 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr,
3523 get_mem_index(s), s->be_data + scale);
3524 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3525 (is_q + 1) * 8, vec_full_reg_size(s),
3526 tcg_tmp);
3527 tcg_temp_free_i64(tcg_tmp);
3528 } else {
3529 /* Load/store one element per register */
3530 if (is_load) {
3531 do_vec_ld(s, rt, index, clean_addr, scale, s->be_data);
3532 } else {
3533 do_vec_st(s, rt, index, clean_addr, scale, s->be_data);
3534 }
3535 }
3536 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3537 rt = (rt + 1) % 32;
3538 }
3539 tcg_temp_free_i64(tcg_ebytes);
3540
3541 if (is_postidx) {
3542 if (rm == 31) {
3543 tcg_gen_addi_i64(tcg_rn, tcg_rn, selem * ebytes);
3544 } else {
3545 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3546 }
3547 }
3548 }
3549
3550 /* Loads and stores */
3551 static void disas_ldst(DisasContext *s, uint32_t insn)
3552 {
3553 switch (extract32(insn, 24, 6)) {
3554 case 0x08: /* Load/store exclusive */
3555 disas_ldst_excl(s, insn);
3556 break;
3557 case 0x18: case 0x1c: /* Load register (literal) */
3558 disas_ld_lit(s, insn);
3559 break;
3560 case 0x28: case 0x29:
3561 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
3562 disas_ldst_pair(s, insn);
3563 break;
3564 case 0x38: case 0x39:
3565 case 0x3c: case 0x3d: /* Load/store register (all forms) */
3566 disas_ldst_reg(s, insn);
3567 break;
3568 case 0x0c: /* AdvSIMD load/store multiple structures */
3569 disas_ldst_multiple_struct(s, insn);
3570 break;
3571 case 0x0d: /* AdvSIMD load/store single structure */
3572 disas_ldst_single_struct(s, insn);
3573 break;
3574 default:
3575 unallocated_encoding(s);
3576 break;
3577 }
3578 }
3579
3580 /* PC-rel. addressing
3581 * 31 30 29 28 24 23 5 4 0
3582 * +----+-------+-----------+-------------------+------+
3583 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
3584 * +----+-------+-----------+-------------------+------+
3585 */
3586 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
3587 {
3588 unsigned int page, rd;
3589 uint64_t base;
3590 uint64_t offset;
3591
3592 page = extract32(insn, 31, 1);
3593 /* SignExtend(immhi:immlo) -> offset */
3594 offset = sextract64(insn, 5, 19);
3595 offset = offset << 2 | extract32(insn, 29, 2);
3596 rd = extract32(insn, 0, 5);
3597 base = s->pc - 4;
3598
3599 if (page) {
3600 /* ADRP (page based) */
3601 base &= ~0xfff;
3602 offset <<= 12;
3603 }
3604
3605 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
3606 }
3607
3608 /*
3609 * Add/subtract (immediate)
3610 *
3611 * 31 30 29 28 24 23 22 21 10 9 5 4 0
3612 * +--+--+--+-----------+-----+-------------+-----+-----+
3613 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
3614 * +--+--+--+-----------+-----+-------------+-----+-----+
3615 *
3616 * sf: 0 -> 32bit, 1 -> 64bit
3617 * op: 0 -> add , 1 -> sub
3618 * S: 1 -> set flags
3619 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
3620 */
3621 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
3622 {
3623 int rd = extract32(insn, 0, 5);
3624 int rn = extract32(insn, 5, 5);
3625 uint64_t imm = extract32(insn, 10, 12);
3626 int shift = extract32(insn, 22, 2);
3627 bool setflags = extract32(insn, 29, 1);
3628 bool sub_op = extract32(insn, 30, 1);
3629 bool is_64bit = extract32(insn, 31, 1);
3630
3631 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3632 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
3633 TCGv_i64 tcg_result;
3634
3635 switch (shift) {
3636 case 0x0:
3637 break;
3638 case 0x1:
3639 imm <<= 12;
3640 break;
3641 default:
3642 unallocated_encoding(s);
3643 return;
3644 }
3645
3646 tcg_result = tcg_temp_new_i64();
3647 if (!setflags) {
3648 if (sub_op) {
3649 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
3650 } else {
3651 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
3652 }
3653 } else {
3654 TCGv_i64 tcg_imm = tcg_const_i64(imm);
3655 if (sub_op) {
3656 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3657 } else {
3658 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3659 }
3660 tcg_temp_free_i64(tcg_imm);
3661 }
3662
3663 if (is_64bit) {
3664 tcg_gen_mov_i64(tcg_rd, tcg_result);
3665 } else {
3666 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3667 }
3668
3669 tcg_temp_free_i64(tcg_result);
3670 }
3671
3672 /* The input should be a value in the bottom e bits (with higher
3673 * bits zero); returns that value replicated into every element
3674 * of size e in a 64 bit integer.
3675 */
3676 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
3677 {
3678 assert(e != 0);
3679 while (e < 64) {
3680 mask |= mask << e;
3681 e *= 2;
3682 }
3683 return mask;
3684 }
3685
3686 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
3687 static inline uint64_t bitmask64(unsigned int length)
3688 {
3689 assert(length > 0 && length <= 64);
3690 return ~0ULL >> (64 - length);
3691 }
3692
3693 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
3694 * only require the wmask. Returns false if the imms/immr/immn are a reserved
3695 * value (ie should cause a guest UNDEF exception), and true if they are
3696 * valid, in which case the decoded bit pattern is written to result.
3697 */
3698 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
3699 unsigned int imms, unsigned int immr)
3700 {
3701 uint64_t mask;
3702 unsigned e, levels, s, r;
3703 int len;
3704
3705 assert(immn < 2 && imms < 64 && immr < 64);
3706
3707 /* The bit patterns we create here are 64 bit patterns which
3708 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
3709 * 64 bits each. Each element contains the same value: a run
3710 * of between 1 and e-1 non-zero bits, rotated within the
3711 * element by between 0 and e-1 bits.
3712 *
3713 * The element size and run length are encoded into immn (1 bit)
3714 * and imms (6 bits) as follows:
3715 * 64 bit elements: immn = 1, imms = <length of run - 1>
3716 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
3717 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
3718 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
3719 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
3720 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
3721 * Notice that immn = 0, imms = 11111x is the only combination
3722 * not covered by one of the above options; this is reserved.
3723 * Further, <length of run - 1> all-ones is a reserved pattern.
3724 *
3725 * In all cases the rotation is by immr % e (and immr is 6 bits).
3726 */
3727
3728 /* First determine the element size */
3729 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
3730 if (len < 1) {
3731 /* This is the immn == 0, imms == 0x11111x case */
3732 return false;
3733 }
3734 e = 1 << len;
3735
3736 levels = e - 1;
3737 s = imms & levels;
3738 r = immr & levels;
3739
3740 if (s == levels) {
3741 /* <length of run - 1> mustn't be all-ones. */
3742 return false;
3743 }
3744
3745 /* Create the value of one element: s+1 set bits rotated
3746 * by r within the element (which is e bits wide)...
3747 */
3748 mask = bitmask64(s + 1);
3749 if (r) {
3750 mask = (mask >> r) | (mask << (e - r));
3751 mask &= bitmask64(e);
3752 }
3753 /* ...then replicate the element over the whole 64 bit value */
3754 mask = bitfield_replicate(mask, e);
3755 *result = mask;
3756 return true;
3757 }
3758
3759 /* Logical (immediate)
3760 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3761 * +----+-----+-------------+---+------+------+------+------+
3762 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
3763 * +----+-----+-------------+---+------+------+------+------+
3764 */
3765 static void disas_logic_imm(DisasContext *s, uint32_t insn)
3766 {
3767 unsigned int sf, opc, is_n, immr, imms, rn, rd;
3768 TCGv_i64 tcg_rd, tcg_rn;
3769 uint64_t wmask;
3770 bool is_and = false;
3771
3772 sf = extract32(insn, 31, 1);
3773 opc = extract32(insn, 29, 2);
3774 is_n = extract32(insn, 22, 1);
3775 immr = extract32(insn, 16, 6);
3776 imms = extract32(insn, 10, 6);
3777 rn = extract32(insn, 5, 5);
3778 rd = extract32(insn, 0, 5);
3779
3780 if (!sf && is_n) {
3781 unallocated_encoding(s);
3782 return;
3783 }
3784
3785 if (opc == 0x3) { /* ANDS */
3786 tcg_rd = cpu_reg(s, rd);
3787 } else {
3788 tcg_rd = cpu_reg_sp(s, rd);
3789 }
3790 tcg_rn = cpu_reg(s, rn);
3791
3792 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
3793 /* some immediate field values are reserved */
3794 unallocated_encoding(s);
3795 return;
3796 }
3797
3798 if (!sf) {
3799 wmask &= 0xffffffff;
3800 }
3801
3802 switch (opc) {
3803 case 0x3: /* ANDS */
3804 case 0x0: /* AND */
3805 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
3806 is_and = true;
3807 break;
3808 case 0x1: /* ORR */
3809 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
3810 break;
3811 case 0x2: /* EOR */
3812 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
3813 break;
3814 default:
3815 assert(FALSE); /* must handle all above */
3816 break;
3817 }
3818
3819 if (!sf && !is_and) {
3820 /* zero extend final result; we know we can skip this for AND
3821 * since the immediate had the high 32 bits clear.
3822 */
3823 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3824 }
3825
3826 if (opc == 3) { /* ANDS */
3827 gen_logic_CC(sf, tcg_rd);
3828 }
3829 }
3830
3831 /*
3832 * Move wide (immediate)
3833 *
3834 * 31 30 29 28 23 22 21 20 5 4 0
3835 * +--+-----+-------------+-----+----------------+------+
3836 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
3837 * +--+-----+-------------+-----+----------------+------+
3838 *
3839 * sf: 0 -> 32 bit, 1 -> 64 bit
3840 * opc: 00 -> N, 10 -> Z, 11 -> K
3841 * hw: shift/16 (0,16, and sf only 32, 48)
3842 */
3843 static void disas_movw_imm(DisasContext *s, uint32_t insn)
3844 {
3845 int rd = extract32(insn, 0, 5);
3846 uint64_t imm = extract32(insn, 5, 16);
3847 int sf = extract32(insn, 31, 1);
3848 int opc = extract32(insn, 29, 2);
3849 int pos = extract32(insn, 21, 2) << 4;
3850 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3851 TCGv_i64 tcg_imm;
3852
3853 if (!sf && (pos >= 32)) {
3854 unallocated_encoding(s);
3855 return;
3856 }
3857
3858 switch (opc) {
3859 case 0: /* MOVN */
3860 case 2: /* MOVZ */
3861 imm <<= pos;
3862 if (opc == 0) {
3863 imm = ~imm;
3864 }
3865 if (!sf) {
3866 imm &= 0xffffffffu;
3867 }
3868 tcg_gen_movi_i64(tcg_rd, imm);
3869 break;
3870 case 3: /* MOVK */
3871 tcg_imm = tcg_const_i64(imm);
3872 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
3873 tcg_temp_free_i64(tcg_imm);
3874 if (!sf) {
3875 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3876 }
3877 break;
3878 default:
3879 unallocated_encoding(s);
3880 break;
3881 }
3882 }
3883
3884 /* Bitfield
3885 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3886 * +----+-----+-------------+---+------+------+------+------+
3887 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
3888 * +----+-----+-------------+---+------+------+------+------+
3889 */
3890 static void disas_bitfield(DisasContext *s, uint32_t insn)
3891 {
3892 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
3893 TCGv_i64 tcg_rd, tcg_tmp;
3894
3895 sf = extract32(insn, 31, 1);
3896 opc = extract32(insn, 29, 2);
3897 n = extract32(insn, 22, 1);
3898 ri = extract32(insn, 16, 6);
3899 si = extract32(insn, 10, 6);
3900 rn = extract32(insn, 5, 5);
3901 rd = extract32(insn, 0, 5);
3902 bitsize = sf ? 64 : 32;
3903
3904 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
3905 unallocated_encoding(s);
3906 return;
3907 }
3908
3909 tcg_rd = cpu_reg(s, rd);
3910
3911 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
3912 to be smaller than bitsize, we'll never reference data outside the
3913 low 32-bits anyway. */
3914 tcg_tmp = read_cpu_reg(s, rn, 1);
3915
3916 /* Recognize simple(r) extractions. */
3917 if (si >= ri) {
3918 /* Wd<s-r:0> = Wn<s:r> */
3919 len = (si - ri) + 1;
3920 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
3921 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
3922 goto done;
3923 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
3924 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
3925 return;
3926 }
3927 /* opc == 1, BFXIL fall through to deposit */
3928 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
3929 pos = 0;
3930 } else {
3931 /* Handle the ri > si case with a deposit
3932 * Wd<32+s-r,32-r> = Wn<s:0>
3933 */
3934 len = si + 1;
3935 pos = (bitsize - ri) & (bitsize - 1);
3936 }
3937
3938 if (opc == 0 && len < ri) {
3939 /* SBFM: sign extend the destination field from len to fill
3940 the balance of the word. Let the deposit below insert all
3941 of those sign bits. */
3942 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
3943 len = ri;
3944 }
3945
3946 if (opc == 1) { /* BFM, BFXIL */
3947 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
3948 } else {
3949 /* SBFM or UBFM: We start with zero, and we haven't modified
3950 any bits outside bitsize, therefore the zero-extension
3951 below is unneeded. */
3952 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
3953 return;
3954 }
3955
3956 done:
3957 if (!sf) { /* zero extend final result */
3958 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3959 }
3960 }
3961
3962 /* Extract
3963 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
3964 * +----+------+-------------+---+----+------+--------+------+------+
3965 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
3966 * +----+------+-------------+---+----+------+--------+------+------+
3967 */
3968 static void disas_extract(DisasContext *s, uint32_t insn)
3969 {
3970 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
3971
3972 sf = extract32(insn, 31, 1);
3973 n = extract32(insn, 22, 1);
3974 rm = extract32(insn, 16, 5);
3975 imm = extract32(insn, 10, 6);
3976 rn = extract32(insn, 5, 5);
3977 rd = extract32(insn, 0, 5);
3978 op21 = extract32(insn, 29, 2);
3979 op0 = extract32(insn, 21, 1);
3980 bitsize = sf ? 64 : 32;
3981
3982 if (sf != n || op21 || op0 || imm >= bitsize) {
3983 unallocated_encoding(s);
3984 } else {
3985 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
3986
3987 tcg_rd = cpu_reg(s, rd);
3988
3989 if (unlikely(imm == 0)) {
3990 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
3991 * so an extract from bit 0 is a special case.
3992 */
3993 if (sf) {
3994 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
3995 } else {
3996 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
3997 }
3998 } else {
3999 tcg_rm = cpu_reg(s, rm);
4000 tcg_rn = cpu_reg(s, rn);
4001
4002 if (sf) {
4003 /* Specialization to ROR happens in EXTRACT2. */
4004 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, imm);
4005 } else {
4006 TCGv_i32 t0 = tcg_temp_new_i32();
4007
4008 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4009 if (rm == rn) {
4010 tcg_gen_rotri_i32(t0, t0, imm);
4011 } else {
4012 TCGv_i32 t1 = tcg_temp_new_i32();
4013 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4014 tcg_gen_extract2_i32(t0, t0, t1, imm);
4015 tcg_temp_free_i32(t1);
4016 }
4017 tcg_gen_extu_i32_i64(tcg_rd, t0);
4018 tcg_temp_free_i32(t0);
4019 }
4020 }
4021 }
4022 }
4023
4024 /* Data processing - immediate */
4025 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
4026 {
4027 switch (extract32(insn, 23, 6)) {
4028 case 0x20: case 0x21: /* PC-rel. addressing */
4029 disas_pc_rel_adr(s, insn);
4030 break;
4031 case 0x22: case 0x23: /* Add/subtract (immediate) */
4032 disas_add_sub_imm(s, insn);
4033 break;
4034 case 0x24: /* Logical (immediate) */
4035 disas_logic_imm(s, insn);
4036 break;
4037 case 0x25: /* Move wide (immediate) */
4038 disas_movw_imm(s, insn);
4039 break;
4040 case 0x26: /* Bitfield */
4041 disas_bitfield(s, insn);
4042 break;
4043 case 0x27: /* Extract */
4044 disas_extract(s, insn);
4045 break;
4046 default:
4047 unallocated_encoding(s);
4048 break;
4049 }
4050 }
4051
4052 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4053 * Note that it is the caller's responsibility to ensure that the
4054 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4055 * mandated semantics for out of range shifts.
4056 */
4057 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4058 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4059 {
4060 switch (shift_type) {
4061 case A64_SHIFT_TYPE_LSL:
4062 tcg_gen_shl_i64(dst, src, shift_amount);
4063 break;
4064 case A64_SHIFT_TYPE_LSR:
4065 tcg_gen_shr_i64(dst, src, shift_amount);
4066 break;
4067 case A64_SHIFT_TYPE_ASR:
4068 if (!sf) {
4069 tcg_gen_ext32s_i64(dst, src);
4070 }
4071 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4072 break;
4073 case A64_SHIFT_TYPE_ROR:
4074 if (sf) {
4075 tcg_gen_rotr_i64(dst, src, shift_amount);
4076 } else {
4077 TCGv_i32 t0, t1;
4078 t0 = tcg_temp_new_i32();
4079 t1 = tcg_temp_new_i32();
4080 tcg_gen_extrl_i64_i32(t0, src);
4081 tcg_gen_extrl_i64_i32(t1, shift_amount);
4082 tcg_gen_rotr_i32(t0, t0, t1);
4083 tcg_gen_extu_i32_i64(dst, t0);
4084 tcg_temp_free_i32(t0);
4085 tcg_temp_free_i32(t1);
4086 }
4087 break;
4088 default:
4089 assert(FALSE); /* all shift types should be handled */
4090 break;
4091 }
4092
4093 if (!sf) { /* zero extend final result */
4094 tcg_gen_ext32u_i64(dst, dst);
4095 }
4096 }
4097
4098 /* Shift a TCGv src by immediate, put result in dst.
4099 * The shift amount must be in range (this should always be true as the
4100 * relevant instructions will UNDEF on bad shift immediates).
4101 */
4102 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4103 enum a64_shift_type shift_type, unsigned int shift_i)
4104 {
4105 assert(shift_i < (sf ? 64 : 32));
4106
4107 if (shift_i == 0) {
4108 tcg_gen_mov_i64(dst, src);
4109 } else {
4110 TCGv_i64 shift_const;
4111
4112 shift_const = tcg_const_i64(shift_i);
4113 shift_reg(dst, src, sf, shift_type, shift_const);
4114 tcg_temp_free_i64(shift_const);
4115 }
4116 }
4117
4118 /* Logical (shifted register)
4119 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4120 * +----+-----+-----------+-------+---+------+--------+------+------+
4121 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4122 * +----+-----+-----------+-------+---+------+--------+------+------+
4123 */
4124 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4125 {
4126 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4127 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4128
4129 sf = extract32(insn, 31, 1);
4130 opc = extract32(insn, 29, 2);
4131 shift_type = extract32(insn, 22, 2);
4132 invert = extract32(insn, 21, 1);
4133 rm = extract32(insn, 16, 5);
4134 shift_amount = extract32(insn, 10, 6);
4135 rn = extract32(insn, 5, 5);
4136 rd = extract32(insn, 0, 5);
4137
4138 if (!sf && (shift_amount & (1 << 5))) {
4139 unallocated_encoding(s);
4140 return;
4141 }
4142
4143 tcg_rd = cpu_reg(s, rd);
4144
4145 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4146 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4147 * register-register MOV and MVN, so it is worth special casing.
4148 */
4149 tcg_rm = cpu_reg(s, rm);
4150 if (invert) {
4151 tcg_gen_not_i64(tcg_rd, tcg_rm);
4152 if (!sf) {
4153 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4154 }
4155 } else {
4156 if (sf) {
4157 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4158 } else {
4159 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4160 }
4161 }
4162 return;
4163 }
4164
4165 tcg_rm = read_cpu_reg(s, rm, sf);
4166
4167 if (shift_amount) {
4168 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4169 }
4170
4171 tcg_rn = cpu_reg(s, rn);
4172
4173 switch (opc | (invert << 2)) {
4174 case 0: /* AND */
4175 case 3: /* ANDS */
4176 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4177 break;
4178 case 1: /* ORR */
4179 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4180 break;
4181 case 2: /* EOR */
4182 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4183 break;
4184 case 4: /* BIC */
4185 case 7: /* BICS */
4186 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4187 break;
4188 case 5: /* ORN */
4189 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4190 break;
4191 case 6: /* EON */
4192 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4193 break;
4194 default:
4195 assert(FALSE);
4196 break;
4197 }
4198
4199 if (!sf) {
4200 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4201 }
4202
4203 if (opc == 3) {
4204 gen_logic_CC(sf, tcg_rd);
4205 }
4206 }
4207
4208 /*
4209 * Add/subtract (extended register)
4210 *
4211 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4212 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4213 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4214 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4215 *
4216 * sf: 0 -> 32bit, 1 -> 64bit
4217 * op: 0 -> add , 1 -> sub
4218 * S: 1 -> set flags
4219 * opt: 00
4220 * option: extension type (see DecodeRegExtend)
4221 * imm3: optional shift to Rm
4222 *
4223 * Rd = Rn + LSL(extend(Rm), amount)
4224 */
4225 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4226 {
4227 int rd = extract32(insn, 0, 5);
4228 int rn = extract32(insn, 5, 5);
4229 int imm3 = extract32(insn, 10, 3);
4230 int option = extract32(insn, 13, 3);
4231 int rm = extract32(insn, 16, 5);
4232 int opt = extract32(insn, 22, 2);
4233 bool setflags = extract32(insn, 29, 1);
4234 bool sub_op = extract32(insn, 30, 1);
4235 bool sf = extract32(insn, 31, 1);
4236
4237 TCGv_i64 tcg_rm, tcg_rn; /* temps */
4238 TCGv_i64 tcg_rd;
4239 TCGv_i64 tcg_result;
4240
4241 if (imm3 > 4 || opt != 0) {
4242 unallocated_encoding(s);
4243 return;
4244 }
4245
4246 /* non-flag setting ops may use SP */
4247 if (!setflags) {
4248 tcg_rd = cpu_reg_sp(s, rd);
4249 } else {
4250 tcg_rd = cpu_reg(s, rd);
4251 }
4252 tcg_rn = read_cpu_reg_sp(s, rn, sf);
4253
4254 tcg_rm = read_cpu_reg(s, rm, sf);
4255 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4256
4257 tcg_result = tcg_temp_new_i64();
4258
4259 if (!setflags) {
4260 if (sub_op) {
4261 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4262 } else {
4263 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4264 }
4265 } else {
4266 if (sub_op) {
4267 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4268 } else {
4269 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4270 }
4271 }
4272
4273 if (sf) {
4274 tcg_gen_mov_i64(tcg_rd, tcg_result);
4275 } else {
4276 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4277 }
4278
4279 tcg_temp_free_i64(tcg_result);
4280 }
4281
4282 /*
4283 * Add/subtract (shifted register)
4284 *
4285 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4286 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4287 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4288 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4289 *
4290 * sf: 0 -> 32bit, 1 -> 64bit
4291 * op: 0 -> add , 1 -> sub
4292 * S: 1 -> set flags
4293 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4294 * imm6: Shift amount to apply to Rm before the add/sub
4295 */
4296 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4297 {
4298 int rd = extract32(insn, 0, 5);
4299 int rn = extract32(insn, 5, 5);
4300 int imm6 = extract32(insn, 10, 6);
4301 int rm = extract32(insn, 16, 5);
4302 int shift_type = extract32(insn, 22, 2);
4303 bool setflags = extract32(insn, 29, 1);
4304 bool sub_op = extract32(insn, 30, 1);
4305 bool sf = extract32(insn, 31, 1);
4306
4307 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4308 TCGv_i64 tcg_rn, tcg_rm;
4309 TCGv_i64 tcg_result;
4310
4311 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4312 unallocated_encoding(s);
4313 return;
4314 }
4315
4316 tcg_rn = read_cpu_reg(s, rn, sf);
4317 tcg_rm = read_cpu_reg(s, rm, sf);
4318
4319 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4320
4321 tcg_result = tcg_temp_new_i64();
4322
4323 if (!setflags) {
4324 if (sub_op) {
4325 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4326 } else {
4327 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4328 }
4329 } else {
4330 if (sub_op) {
4331 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4332 } else {
4333 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4334 }
4335 }
4336
4337 if (sf) {
4338 tcg_gen_mov_i64(tcg_rd, tcg_result);
4339 } else {
4340 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4341 }
4342
4343 tcg_temp_free_i64(tcg_result);
4344 }
4345
4346 /* Data-processing (3 source)
4347 *
4348 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4349 * +--+------+-----------+------+------+----+------+------+------+
4350 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4351 * +--+------+-----------+------+------+----+------+------+------+
4352 */
4353 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4354 {
4355 int rd = extract32(insn, 0, 5);
4356 int rn = extract32(insn, 5, 5);
4357 int ra = extract32(insn, 10, 5);
4358 int rm = extract32(insn, 16, 5);
4359 int op_id = (extract32(insn, 29, 3) << 4) |
4360 (extract32(insn, 21, 3) << 1) |
4361 extract32(insn, 15, 1);
4362 bool sf = extract32(insn, 31, 1);
4363 bool is_sub = extract32(op_id, 0, 1);
4364 bool is_high = extract32(op_id, 2, 1);
4365 bool is_signed = false;
4366 TCGv_i64 tcg_op1;
4367 TCGv_i64 tcg_op2;
4368 TCGv_i64 tcg_tmp;
4369
4370 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4371 switch (op_id) {
4372 case 0x42: /* SMADDL */
4373 case 0x43: /* SMSUBL */
4374 case 0x44: /* SMULH */
4375 is_signed = true;
4376 break;
4377 case 0x0: /* MADD (32bit) */
4378 case 0x1: /* MSUB (32bit) */
4379 case 0x40: /* MADD (64bit) */
4380 case 0x41: /* MSUB (64bit) */
4381 case 0x4a: /* UMADDL */
4382 case 0x4b: /* UMSUBL */
4383 case 0x4c: /* UMULH */
4384 break;
4385 default:
4386 unallocated_encoding(s);
4387 return;
4388 }
4389
4390 if (is_high) {
4391 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4392 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4393 TCGv_i64 tcg_rn = cpu_reg(s, rn);
4394 TCGv_i64 tcg_rm = cpu_reg(s, rm);
4395
4396 if (is_signed) {
4397 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4398 } else {
4399 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4400 }
4401
4402 tcg_temp_free_i64(low_bits);
4403 return;
4404 }
4405
4406 tcg_op1 = tcg_temp_new_i64();
4407 tcg_op2 = tcg_temp_new_i64();
4408 tcg_tmp = tcg_temp_new_i64();
4409
4410 if (op_id < 0x42) {
4411 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4412 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4413 } else {
4414 if (is_signed) {
4415 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4416 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4417 } else {
4418 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4419 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4420 }
4421 }
4422
4423 if (ra == 31 && !is_sub) {
4424 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4425 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4426 } else {
4427 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4428 if (is_sub) {
4429 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4430 } else {
4431 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4432 }
4433 }
4434
4435 if (!sf) {
4436 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4437 }
4438
4439 tcg_temp_free_i64(tcg_op1);
4440 tcg_temp_free_i64(tcg_op2);
4441 tcg_temp_free_i64(tcg_tmp);
4442 }
4443
4444 /* Add/subtract (with carry)
4445 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
4446 * +--+--+--+------------------------+------+-------------+------+-----+
4447 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
4448 * +--+--+--+------------------------+------+-------------+------+-----+
4449 */
4450
4451 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4452 {
4453 unsigned int sf, op, setflags, rm, rn, rd;
4454 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4455
4456 sf = extract32(insn, 31, 1);
4457 op = extract32(insn, 30, 1);
4458 setflags = extract32(insn, 29, 1);
4459 rm = extract32(insn, 16, 5);
4460 rn = extract32(insn, 5, 5);
4461 rd = extract32(insn, 0, 5);
4462
4463 tcg_rd = cpu_reg(s, rd);
4464 tcg_rn = cpu_reg(s, rn);
4465
4466 if (op) {
4467 tcg_y = new_tmp_a64(s);
4468 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4469 } else {
4470 tcg_y = cpu_reg(s, rm);
4471 }
4472
4473 if (setflags) {
4474 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4475 } else {
4476 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4477 }
4478 }
4479
4480 /*
4481 * Rotate right into flags
4482 * 31 30 29 21 15 10 5 4 0
4483 * +--+--+--+-----------------+--------+-----------+------+--+------+
4484 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
4485 * +--+--+--+-----------------+--------+-----------+------+--+------+
4486 */
4487 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
4488 {
4489 int mask = extract32(insn, 0, 4);
4490 int o2 = extract32(insn, 4, 1);
4491 int rn = extract32(insn, 5, 5);
4492 int imm6 = extract32(insn, 15, 6);
4493 int sf_op_s = extract32(insn, 29, 3);
4494 TCGv_i64 tcg_rn;
4495 TCGv_i32 nzcv;
4496
4497 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
4498 unallocated_encoding(s);
4499 return;
4500 }
4501
4502 tcg_rn = read_cpu_reg(s, rn, 1);
4503 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
4504
4505 nzcv = tcg_temp_new_i32();
4506 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
4507
4508 if (mask & 8) { /* N */
4509 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
4510 }
4511 if (mask & 4) { /* Z */
4512 tcg_gen_not_i32(cpu_ZF, nzcv);
4513 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
4514 }
4515 if (mask & 2) { /* C */
4516 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
4517 }
4518 if (mask & 1) { /* V */
4519 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
4520 }
4521
4522 tcg_temp_free_i32(nzcv);
4523 }
4524
4525 /*
4526 * Evaluate into flags
4527 * 31 30 29 21 15 14 10 5 4 0
4528 * +--+--+--+-----------------+---------+----+---------+------+--+------+
4529 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
4530 * +--+--+--+-----------------+---------+----+---------+------+--+------+
4531 */
4532 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
4533 {
4534 int o3_mask = extract32(insn, 0, 5);
4535 int rn = extract32(insn, 5, 5);
4536 int o2 = extract32(insn, 15, 6);
4537 int sz = extract32(insn, 14, 1);
4538 int sf_op_s = extract32(insn, 29, 3);
4539 TCGv_i32 tmp;
4540 int shift;
4541
4542 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
4543 !dc_isar_feature(aa64_condm_4, s)) {
4544 unallocated_encoding(s);
4545 return;
4546 }
4547 shift = sz ? 16 : 24; /* SETF16 or SETF8 */
4548
4549 tmp = tcg_temp_new_i32();
4550 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
4551 tcg_gen_shli_i32(cpu_NF, tmp, shift);
4552 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
4553 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
4554 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
4555 tcg_temp_free_i32(tmp);
4556 }
4557
4558 /* Conditional compare (immediate / register)
4559 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4560 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4561 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
4562 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4563 * [1] y [0] [0]
4564 */
4565 static void disas_cc(DisasContext *s, uint32_t insn)
4566 {
4567 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
4568 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
4569 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
4570 DisasCompare c;
4571
4572 if (!extract32(insn, 29, 1)) {
4573 unallocated_encoding(s);
4574 return;
4575 }
4576 if (insn & (1 << 10 | 1 << 4)) {
4577 unallocated_encoding(s);
4578 return;
4579 }
4580 sf = extract32(insn, 31, 1);
4581 op = extract32(insn, 30, 1);
4582 is_imm = extract32(insn, 11, 1);
4583 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
4584 cond = extract32(insn, 12, 4);
4585 rn = extract32(insn, 5, 5);
4586 nzcv = extract32(insn, 0, 4);
4587
4588 /* Set T0 = !COND. */
4589 tcg_t0 = tcg_temp_new_i32();
4590 arm_test_cc(&c, cond);
4591 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
4592 arm_free_cc(&c);
4593
4594 /* Load the arguments for the new comparison. */
4595 if (is_imm) {
4596 tcg_y = new_tmp_a64(s);
4597 tcg_gen_movi_i64(tcg_y, y);
4598 } else {
4599 tcg_y = cpu_reg(s, y);
4600 }
4601 tcg_rn = cpu_reg(s, rn);
4602
4603 /* Set the flags for the new comparison. */
4604 tcg_tmp = tcg_temp_new_i64();
4605 if (op) {
4606 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4607 } else {
4608 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4609 }
4610 tcg_temp_free_i64(tcg_tmp);
4611
4612 /* If COND was false, force the flags to #nzcv. Compute two masks
4613 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
4614 * For tcg hosts that support ANDC, we can make do with just T1.
4615 * In either case, allow the tcg optimizer to delete any unused mask.
4616 */
4617 tcg_t1 = tcg_temp_new_i32();
4618 tcg_t2 = tcg_temp_new_i32();
4619 tcg_gen_neg_i32(tcg_t1, tcg_t0);
4620 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
4621
4622 if (nzcv & 8) { /* N */
4623 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
4624 } else {
4625 if (TCG_TARGET_HAS_andc_i32) {
4626 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
4627 } else {
4628 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
4629 }
4630 }
4631 if (nzcv & 4) { /* Z */
4632 if (TCG_TARGET_HAS_andc_i32) {
4633 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
4634 } else {
4635 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
4636 }
4637 } else {
4638 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
4639 }
4640 if (nzcv & 2) { /* C */
4641 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
4642 } else {
4643 if (TCG_TARGET_HAS_andc_i32) {
4644 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
4645 } else {
4646 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
4647 }
4648 }
4649 if (nzcv & 1) { /* V */
4650 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
4651 } else {
4652 if (TCG_TARGET_HAS_andc_i32) {
4653 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
4654 } else {
4655 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
4656 }
4657 }
4658 tcg_temp_free_i32(tcg_t0);
4659 tcg_temp_free_i32(tcg_t1);
4660 tcg_temp_free_i32(tcg_t2);
4661 }
4662
4663 /* Conditional select
4664 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
4665 * +----+----+---+-----------------+------+------+-----+------+------+
4666 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
4667 * +----+----+---+-----------------+------+------+-----+------+------+
4668 */
4669 static void disas_cond_select(DisasContext *s, uint32_t insn)
4670 {
4671 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
4672 TCGv_i64 tcg_rd, zero;
4673 DisasCompare64 c;
4674
4675 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
4676 /* S == 1 or op2<1> == 1 */
4677 unallocated_encoding(s);
4678 return;
4679 }
4680 sf = extract32(insn, 31, 1);
4681 else_inv = extract32(insn, 30, 1);
4682 rm = extract32(insn, 16, 5);
4683 cond = extract32(insn, 12, 4);
4684 else_inc = extract32(insn, 10, 1);
4685 rn = extract32(insn, 5, 5);
4686 rd = extract32(insn, 0, 5);
4687
4688 tcg_rd = cpu_reg(s, rd);
4689
4690 a64_test_cc(&c, cond);
4691 zero = tcg_const_i64(0);
4692
4693 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
4694 /* CSET & CSETM. */
4695 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
4696 if (else_inv) {
4697 tcg_gen_neg_i64(tcg_rd, tcg_rd);
4698 }
4699 } else {
4700 TCGv_i64 t_true = cpu_reg(s, rn);
4701 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
4702 if (else_inv && else_inc) {
4703 tcg_gen_neg_i64(t_false, t_false);
4704 } else if (else_inv) {
4705 tcg_gen_not_i64(t_false, t_false);
4706 } else if (else_inc) {
4707 tcg_gen_addi_i64(t_false, t_false, 1);
4708 }
4709 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
4710 }
4711
4712 tcg_temp_free_i64(zero);
4713 a64_free_cc(&c);
4714
4715 if (!sf) {
4716 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4717 }
4718 }
4719
4720 static void handle_clz(DisasContext *s, unsigned int sf,
4721 unsigned int rn, unsigned int rd)
4722 {
4723 TCGv_i64 tcg_rd, tcg_rn;
4724 tcg_rd = cpu_reg(s, rd);
4725 tcg_rn = cpu_reg(s, rn);
4726
4727 if (sf) {
4728 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
4729 } else {
4730 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4731 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4732 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
4733 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4734 tcg_temp_free_i32(tcg_tmp32);
4735 }
4736 }
4737
4738 static void handle_cls(DisasContext *s, unsigned int sf,
4739 unsigned int rn, unsigned int rd)
4740 {
4741 TCGv_i64 tcg_rd, tcg_rn;
4742 tcg_rd = cpu_reg(s, rd);
4743 tcg_rn = cpu_reg(s, rn);
4744
4745 if (sf) {
4746 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
4747 } else {
4748 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4749 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4750 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
4751 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4752 tcg_temp_free_i32(tcg_tmp32);
4753 }
4754 }
4755
4756 static void handle_rbit(DisasContext *s, unsigned int sf,
4757 unsigned int rn, unsigned int rd)
4758 {
4759 TCGv_i64 tcg_rd, tcg_rn;
4760 tcg_rd = cpu_reg(s, rd);
4761 tcg_rn = cpu_reg(s, rn);
4762
4763 if (sf) {
4764 gen_helper_rbit64(tcg_rd, tcg_rn);
4765 } else {
4766 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4767 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4768 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
4769 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4770 tcg_temp_free_i32(tcg_tmp32);
4771 }
4772 }
4773
4774 /* REV with sf==1, opcode==3 ("REV64") */
4775 static void handle_rev64(DisasContext *s, unsigned int sf,
4776 unsigned int rn, unsigned int rd)
4777 {
4778 if (!sf) {
4779 unallocated_encoding(s);
4780 return;
4781 }
4782 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
4783 }
4784
4785 /* REV with sf==0, opcode==2
4786 * REV32 (sf==1, opcode==2)
4787 */
4788 static void handle_rev32(DisasContext *s, unsigned int sf,
4789 unsigned int rn, unsigned int rd)
4790 {
4791 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4792
4793 if (sf) {
4794 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4795 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4796
4797 /* bswap32_i64 requires zero high word */
4798 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
4799 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
4800 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4801 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
4802 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
4803
4804 tcg_temp_free_i64(tcg_tmp);
4805 } else {
4806 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
4807 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
4808 }
4809 }
4810
4811 /* REV16 (opcode==1) */
4812 static void handle_rev16(DisasContext *s, unsigned int sf,
4813 unsigned int rn, unsigned int rd)
4814 {
4815 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4816 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4817 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4818 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
4819
4820 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
4821 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
4822 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
4823 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
4824 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
4825
4826 tcg_temp_free_i64(mask);
4827 tcg_temp_free_i64(tcg_tmp);
4828 }
4829
4830 /* Data-processing (1 source)
4831 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4832 * +----+---+---+-----------------+---------+--------+------+------+
4833 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
4834 * +----+---+---+-----------------+---------+--------+------+------+
4835 */
4836 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
4837 {
4838 unsigned int sf, opcode, opcode2, rn, rd;
4839 TCGv_i64 tcg_rd;
4840
4841 if (extract32(insn, 29, 1)) {
4842 unallocated_encoding(s);
4843 return;
4844 }
4845
4846 sf = extract32(insn, 31, 1);
4847 opcode = extract32(insn, 10, 6);
4848 opcode2 = extract32(insn, 16, 5);
4849 rn = extract32(insn, 5, 5);
4850 rd = extract32(insn, 0, 5);
4851
4852 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
4853
4854 switch (MAP(sf, opcode2, opcode)) {
4855 case MAP(0, 0x00, 0x00): /* RBIT */
4856 case MAP(1, 0x00, 0x00):
4857 handle_rbit(s, sf, rn, rd);
4858 break;
4859 case MAP(0, 0x00, 0x01): /* REV16 */
4860 case MAP(1, 0x00, 0x01):
4861 handle_rev16(s, sf, rn, rd);
4862 break;
4863 case MAP(0, 0x00, 0x02): /* REV/REV32 */
4864 case MAP(1, 0x00, 0x02):
4865 handle_rev32(s, sf, rn, rd);
4866 break;
4867 case MAP(1, 0x00, 0x03): /* REV64 */
4868 handle_rev64(s, sf, rn, rd);
4869 break;
4870 case MAP(0, 0x00, 0x04): /* CLZ */
4871 case MAP(1, 0x00, 0x04):
4872 handle_clz(s, sf, rn, rd);
4873 break;
4874 case MAP(0, 0x00, 0x05): /* CLS */
4875 case MAP(1, 0x00, 0x05):
4876 handle_cls(s, sf, rn, rd);
4877 break;
4878 case MAP(1, 0x01, 0x00): /* PACIA */
4879 if (s->pauth_active) {
4880 tcg_rd = cpu_reg(s, rd);
4881 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4882 } else if (!dc_isar_feature(aa64_pauth, s)) {
4883 goto do_unallocated;
4884 }
4885 break;
4886 case MAP(1, 0x01, 0x01): /* PACIB */
4887 if (s->pauth_active) {
4888 tcg_rd = cpu_reg(s, rd);
4889 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4890 } else if (!dc_isar_feature(aa64_pauth, s)) {
4891 goto do_unallocated;
4892 }
4893 break;
4894 case MAP(1, 0x01, 0x02): /* PACDA */
4895 if (s->pauth_active) {
4896 tcg_rd = cpu_reg(s, rd);
4897 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4898 } else if (!dc_isar_feature(aa64_pauth, s)) {
4899 goto do_unallocated;
4900 }
4901 break;
4902 case MAP(1, 0x01, 0x03): /* PACDB */
4903 if (s->pauth_active) {
4904 tcg_rd = cpu_reg(s, rd);
4905 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4906 } else if (!dc_isar_feature(aa64_pauth, s)) {
4907 goto do_unallocated;
4908 }
4909 break;
4910 case MAP(1, 0x01, 0x04): /* AUTIA */
4911 if (s->pauth_active) {
4912 tcg_rd = cpu_reg(s, rd);
4913 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4914 } else if (!dc_isar_feature(aa64_pauth, s)) {
4915 goto do_unallocated;
4916 }
4917 break;
4918 case MAP(1, 0x01, 0x05): /* AUTIB */
4919 if (s->pauth_active) {
4920 tcg_rd = cpu_reg(s, rd);
4921 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4922 } else if (!dc_isar_feature(aa64_pauth, s)) {
4923 goto do_unallocated;
4924 }
4925 break;
4926 case MAP(1, 0x01, 0x06): /* AUTDA */
4927 if (s->pauth_active) {
4928 tcg_rd = cpu_reg(s, rd);
4929 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4930 } else if (!dc_isar_feature(aa64_pauth, s)) {
4931 goto do_unallocated;
4932 }
4933 break;
4934 case MAP(1, 0x01, 0x07): /* AUTDB */
4935 if (s->pauth_active) {
4936 tcg_rd = cpu_reg(s, rd);
4937 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4938 } else if (!dc_isar_feature(aa64_pauth, s)) {
4939 goto do_unallocated;
4940 }
4941 break;
4942 case MAP(1, 0x01, 0x08): /* PACIZA */
4943 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4944 goto do_unallocated;
4945 } else if (s->pauth_active) {
4946 tcg_rd = cpu_reg(s, rd);
4947 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4948 }
4949 break;
4950 case MAP(1, 0x01, 0x09): /* PACIZB */
4951 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4952 goto do_unallocated;
4953 } else if (s->pauth_active) {
4954 tcg_rd = cpu_reg(s, rd);
4955 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4956 }
4957 break;
4958 case MAP(1, 0x01, 0x0a): /* PACDZA */
4959 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4960 goto do_unallocated;
4961 } else if (s->pauth_active) {
4962 tcg_rd = cpu_reg(s, rd);
4963 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4964 }
4965 break;
4966 case MAP(1, 0x01, 0x0b): /* PACDZB */
4967 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4968 goto do_unallocated;
4969 } else if (s->pauth_active) {
4970 tcg_rd = cpu_reg(s, rd);
4971 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4972 }
4973 break;
4974 case MAP(1, 0x01, 0x0c): /* AUTIZA */
4975 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4976 goto do_unallocated;
4977 } else if (s->pauth_active) {
4978 tcg_rd = cpu_reg(s, rd);
4979 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4980 }
4981 break;
4982 case MAP(1, 0x01, 0x0d): /* AUTIZB */
4983 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4984 goto do_unallocated;
4985 } else if (s->pauth_active) {
4986 tcg_rd = cpu_reg(s, rd);
4987 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4988 }
4989 break;
4990 case MAP(1, 0x01, 0x0e): /* AUTDZA */
4991 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4992 goto do_unallocated;
4993 } else if (s->pauth_active) {
4994 tcg_rd = cpu_reg(s, rd);
4995 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4996 }
4997 break;
4998 case MAP(1, 0x01, 0x0f): /* AUTDZB */
4999 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5000 goto do_unallocated;
5001 } else if (s->pauth_active) {
5002 tcg_rd = cpu_reg(s, rd);
5003 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5004 }
5005 break;
5006 case MAP(1, 0x01, 0x10): /* XPACI */
5007 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5008 goto do_unallocated;
5009 } else if (s->pauth_active) {
5010 tcg_rd = cpu_reg(s, rd);
5011 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5012 }
5013 break;
5014 case MAP(1, 0x01, 0x11): /* XPACD */
5015 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5016 goto do_unallocated;
5017 } else if (s->pauth_active) {
5018 tcg_rd = cpu_reg(s, rd);
5019 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5020 }
5021 break;
5022 default:
5023 do_unallocated:
5024 unallocated_encoding(s);
5025 break;
5026 }
5027
5028 #undef MAP
5029 }
5030
5031 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5032 unsigned int rm, unsigned int rn, unsigned int rd)
5033 {
5034 TCGv_i64 tcg_n, tcg_m, tcg_rd;
5035 tcg_rd = cpu_reg(s, rd);
5036
5037 if (!sf && is_signed) {
5038 tcg_n = new_tmp_a64(s);
5039 tcg_m = new_tmp_a64(s);
5040 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5041 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5042 } else {
5043 tcg_n = read_cpu_reg(s, rn, sf);
5044 tcg_m = read_cpu_reg(s, rm, sf);
5045 }
5046
5047 if (is_signed) {
5048 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5049 } else {
5050 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5051 }
5052
5053 if (!sf) { /* zero extend final result */
5054 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5055 }
5056 }
5057
5058 /* LSLV, LSRV, ASRV, RORV */
5059 static void handle_shift_reg(DisasContext *s,
5060 enum a64_shift_type shift_type, unsigned int sf,
5061 unsigned int rm, unsigned int rn, unsigned int rd)
5062 {
5063 TCGv_i64 tcg_shift = tcg_temp_new_i64();
5064 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5065 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5066
5067 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5068 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5069 tcg_temp_free_i64(tcg_shift);
5070 }
5071
5072 /* CRC32[BHWX], CRC32C[BHWX] */
5073 static void handle_crc32(DisasContext *s,
5074 unsigned int sf, unsigned int sz, bool crc32c,
5075 unsigned int rm, unsigned int rn, unsigned int rd)
5076 {
5077 TCGv_i64 tcg_acc, tcg_val;
5078 TCGv_i32 tcg_bytes;
5079
5080 if (!dc_isar_feature(aa64_crc32, s)
5081 || (sf == 1 && sz != 3)
5082 || (sf == 0 && sz == 3)) {
5083 unallocated_encoding(s);
5084 return;
5085 }
5086
5087 if (sz == 3) {
5088 tcg_val = cpu_reg(s, rm);
5089 } else {
5090 uint64_t mask;
5091 switch (sz) {
5092 case 0:
5093 mask = 0xFF;
5094 break;
5095 case 1:
5096 mask = 0xFFFF;
5097 break;
5098 case 2:
5099 mask = 0xFFFFFFFF;
5100 break;
5101 default:
5102 g_assert_not_reached();
5103 }
5104 tcg_val = new_tmp_a64(s);
5105 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5106 }
5107
5108 tcg_acc = cpu_reg(s, rn);
5109 tcg_bytes = tcg_const_i32(1 << sz);
5110
5111 if (crc32c) {
5112 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5113 } else {
5114 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5115 }
5116
5117 tcg_temp_free_i32(tcg_bytes);
5118 }
5119
5120 /* Data-processing (2 source)
5121 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5122 * +----+---+---+-----------------+------+--------+------+------+
5123 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5124 * +----+---+---+-----------------+------+--------+------+------+
5125 */
5126 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5127 {
5128 unsigned int sf, rm, opcode, rn, rd;
5129 sf = extract32(insn, 31, 1);
5130 rm = extract32(insn, 16, 5);
5131 opcode = extract32(insn, 10, 6);
5132 rn = extract32(insn, 5, 5);
5133 rd = extract32(insn, 0, 5);
5134
5135 if (extract32(insn, 29, 1)) {
5136 unallocated_encoding(s);
5137 return;
5138 }
5139
5140 switch (opcode) {
5141 case 2: /* UDIV */
5142 handle_div(s, false, sf, rm, rn, rd);
5143 break;
5144 case 3: /* SDIV */
5145 handle_div(s, true, sf, rm, rn, rd);
5146 break;
5147 case 8: /* LSLV */
5148 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5149 break;
5150 case 9: /* LSRV */
5151 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5152 break;
5153 case 10: /* ASRV */
5154 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5155 break;
5156 case 11: /* RORV */
5157 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5158 break;
5159 case 12: /* PACGA */
5160 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5161 goto do_unallocated;
5162 }
5163 gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5164 cpu_reg(s, rn), cpu_reg_sp(s, rm));
5165 break;
5166 case 16:
5167 case 17:
5168 case 18:
5169 case 19:
5170 case 20:
5171 case 21:
5172 case 22:
5173 case 23: /* CRC32 */
5174 {
5175 int sz = extract32(opcode, 0, 2);
5176 bool crc32c = extract32(opcode, 2, 1);
5177 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5178 break;
5179 }
5180 default:
5181 do_unallocated:
5182 unallocated_encoding(s);
5183 break;
5184 }
5185 }
5186
5187 /*
5188 * Data processing - register
5189 * 31 30 29 28 25 21 20 16 10 0
5190 * +--+---+--+---+-------+-----+-------+-------+---------+
5191 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
5192 * +--+---+--+---+-------+-----+-------+-------+---------+
5193 */
5194 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5195 {
5196 int op0 = extract32(insn, 30, 1);
5197 int op1 = extract32(insn, 28, 1);
5198 int op2 = extract32(insn, 21, 4);
5199 int op3 = extract32(insn, 10, 6);
5200
5201 if (!op1) {
5202 if (op2 & 8) {
5203 if (op2 & 1) {
5204 /* Add/sub (extended register) */
5205 disas_add_sub_ext_reg(s, insn);
5206 } else {
5207 /* Add/sub (shifted register) */
5208 disas_add_sub_reg(s, insn);
5209 }
5210 } else {
5211 /* Logical (shifted register) */
5212 disas_logic_reg(s, insn);
5213 }
5214 return;
5215 }
5216
5217 switch (op2) {
5218 case 0x0:
5219 switch (op3) {
5220 case 0x00: /* Add/subtract (with carry) */
5221 disas_adc_sbc(s, insn);
5222 break;
5223
5224 case 0x01: /* Rotate right into flags */
5225 case 0x21:
5226 disas_rotate_right_into_flags(s, insn);
5227 break;
5228
5229 case 0x02: /* Evaluate into flags */
5230 case 0x12:
5231 case 0x22:
5232 case 0x32:
5233 disas_evaluate_into_flags(s, insn);
5234 break;
5235
5236 default:
5237 goto do_unallocated;
5238 }
5239 break;
5240
5241 case 0x2: /* Conditional compare */
5242 disas_cc(s, insn); /* both imm and reg forms */
5243 break;
5244
5245 case 0x4: /* Conditional select */
5246 disas_cond_select(s, insn);
5247 break;
5248
5249 case 0x6: /* Data-processing */
5250 if (op0) { /* (1 source) */
5251 disas_data_proc_1src(s, insn);
5252 } else { /* (2 source) */
5253 disas_data_proc_2src(s, insn);
5254 }
5255 break;
5256 case 0x8 ... 0xf: /* (3 source) */
5257 disas_data_proc_3src(s, insn);
5258 break;
5259
5260 default:
5261 do_unallocated:
5262 unallocated_encoding(s);
5263 break;
5264 }
5265 }
5266
5267 static void handle_fp_compare(DisasContext *s, int size,
5268 unsigned int rn, unsigned int rm,
5269 bool cmp_with_zero, bool signal_all_nans)
5270 {
5271 TCGv_i64 tcg_flags = tcg_temp_new_i64();
5272 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
5273
5274 if (size == MO_64) {
5275 TCGv_i64 tcg_vn, tcg_vm;
5276
5277 tcg_vn = read_fp_dreg(s, rn);
5278 if (cmp_with_zero) {
5279 tcg_vm = tcg_const_i64(0);
5280 } else {
5281 tcg_vm = read_fp_dreg(s, rm);
5282 }
5283 if (signal_all_nans) {
5284 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5285 } else {
5286 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5287 }
5288 tcg_temp_free_i64(tcg_vn);
5289 tcg_temp_free_i64(tcg_vm);
5290 } else {
5291 TCGv_i32 tcg_vn = tcg_temp_new_i32();
5292 TCGv_i32 tcg_vm = tcg_temp_new_i32();
5293
5294 read_vec_element_i32(s, tcg_vn, rn, 0, size);
5295 if (cmp_with_zero) {
5296 tcg_gen_movi_i32(tcg_vm, 0);
5297 } else {
5298 read_vec_element_i32(s, tcg_vm, rm, 0, size);
5299 }
5300
5301 switch (size) {
5302 case MO_32:
5303 if (signal_all_nans) {
5304 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5305 } else {
5306 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5307 }
5308 break;
5309 case MO_16:
5310 if (signal_all_nans) {
5311 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5312 } else {
5313 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5314 }
5315 break;
5316 default:
5317 g_assert_not_reached();
5318 }
5319
5320 tcg_temp_free_i32(tcg_vn);
5321 tcg_temp_free_i32(tcg_vm);
5322 }
5323
5324 tcg_temp_free_ptr(fpst);
5325
5326 gen_set_nzcv(tcg_flags);
5327
5328 tcg_temp_free_i64(tcg_flags);
5329 }
5330
5331 /* Floating point compare
5332 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
5333 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5334 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
5335 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5336 */
5337 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5338 {
5339 unsigned int mos, type, rm, op, rn, opc, op2r;
5340 int size;
5341
5342 mos = extract32(insn, 29, 3);
5343 type = extract32(insn, 22, 2);
5344 rm = extract32(insn, 16, 5);
5345 op = extract32(insn, 14, 2);
5346 rn = extract32(insn, 5, 5);
5347 opc = extract32(insn, 3, 2);
5348 op2r = extract32(insn, 0, 3);
5349
5350 if (mos || op || op2r) {
5351 unallocated_encoding(s);
5352 return;
5353 }
5354
5355 switch (type) {
5356 case 0:
5357 size = MO_32;
5358 break;
5359 case 1:
5360 size = MO_64;
5361 break;
5362 case 3:
5363 size = MO_16;
5364 if (dc_isar_feature(aa64_fp16, s)) {
5365 break;
5366 }
5367 /* fallthru */
5368 default:
5369 unallocated_encoding(s);
5370 return;
5371 }
5372
5373 if (!fp_access_check(s)) {
5374 return;
5375 }
5376
5377 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5378 }
5379
5380 /* Floating point conditional compare
5381 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5382 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5383 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
5384 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5385 */
5386 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5387 {
5388 unsigned int mos, type, rm, cond, rn, op, nzcv;
5389 TCGv_i64 tcg_flags;
5390 TCGLabel *label_continue = NULL;
5391 int size;
5392
5393 mos = extract32(insn, 29, 3);
5394 type = extract32(insn, 22, 2);
5395 rm = extract32(insn, 16, 5);
5396 cond = extract32(insn, 12, 4);
5397 rn = extract32(insn, 5, 5);
5398 op = extract32(insn, 4, 1);
5399 nzcv = extract32(insn, 0, 4);
5400
5401 if (mos) {
5402 unallocated_encoding(s);
5403 return;
5404 }
5405
5406 switch (type) {
5407 case 0:
5408 size = MO_32;
5409 break;
5410 case 1:
5411 size = MO_64;
5412 break;
5413 case 3:
5414 size = MO_16;
5415 if (dc_isar_feature(aa64_fp16, s)) {
5416 break;
5417 }
5418 /* fallthru */
5419 default:
5420 unallocated_encoding(s);
5421 return;
5422 }
5423
5424 if (!fp_access_check(s)) {
5425 return;
5426 }
5427
5428 if (cond < 0x0e) { /* not always */
5429 TCGLabel *label_match = gen_new_label();
5430 label_continue = gen_new_label();
5431 arm_gen_test_cc(cond, label_match);
5432 /* nomatch: */
5433 tcg_flags = tcg_const_i64(nzcv << 28);
5434 gen_set_nzcv(tcg_flags);
5435 tcg_temp_free_i64(tcg_flags);
5436 tcg_gen_br(label_continue);
5437 gen_set_label(label_match);
5438 }
5439
5440 handle_fp_compare(s, size, rn, rm, false, op);
5441
5442 if (cond < 0x0e) {
5443 gen_set_label(label_continue);
5444 }
5445 }
5446
5447 /* Floating point conditional select
5448 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5449 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5450 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
5451 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5452 */
5453 static void disas_fp_csel(DisasContext *s, uint32_t insn)
5454 {
5455 unsigned int mos, type, rm, cond, rn, rd;
5456 TCGv_i64 t_true, t_false, t_zero;
5457 DisasCompare64 c;
5458 TCGMemOp sz;
5459
5460 mos = extract32(insn, 29, 3);
5461 type = extract32(insn, 22, 2);
5462 rm = extract32(insn, 16, 5);
5463 cond = extract32(insn, 12, 4);
5464 rn = extract32(insn, 5, 5);
5465 rd = extract32(insn, 0, 5);
5466
5467 if (mos) {
5468 unallocated_encoding(s);
5469 return;
5470 }
5471
5472 switch (type) {
5473 case 0:
5474 sz = MO_32;
5475 break;
5476 case 1:
5477 sz = MO_64;
5478 break;
5479 case 3:
5480 sz = MO_16;
5481 if (dc_isar_feature(aa64_fp16, s)) {
5482 break;
5483 }
5484 /* fallthru */
5485 default:
5486 unallocated_encoding(s);
5487 return;
5488 }
5489
5490 if (!fp_access_check(s)) {
5491 return;
5492 }
5493
5494 /* Zero extend sreg & hreg inputs to 64 bits now. */
5495 t_true = tcg_temp_new_i64();
5496 t_false = tcg_temp_new_i64();
5497 read_vec_element(s, t_true, rn, 0, sz);
5498 read_vec_element(s, t_false, rm, 0, sz);
5499
5500 a64_test_cc(&c, cond);
5501 t_zero = tcg_const_i64(0);
5502 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
5503 tcg_temp_free_i64(t_zero);
5504 tcg_temp_free_i64(t_false);
5505 a64_free_cc(&c);
5506
5507 /* Note that sregs & hregs write back zeros to the high bits,
5508 and we've already done the zero-extension. */
5509 write_fp_dreg(s, rd, t_true);
5510 tcg_temp_free_i64(t_true);
5511 }
5512
5513 /* Floating-point data-processing (1 source) - half precision */
5514 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
5515 {
5516 TCGv_ptr fpst = NULL;
5517 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
5518 TCGv_i32 tcg_res = tcg_temp_new_i32();
5519
5520 switch (opcode) {
5521 case 0x0: /* FMOV */
5522 tcg_gen_mov_i32(tcg_res, tcg_op);
5523 break;
5524 case 0x1: /* FABS */
5525 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
5526 break;
5527 case 0x2: /* FNEG */
5528 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
5529 break;
5530 case 0x3: /* FSQRT */
5531 fpst = get_fpstatus_ptr(true);
5532 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
5533 break;
5534 case 0x8: /* FRINTN */
5535 case 0x9: /* FRINTP */
5536 case 0xa: /* FRINTM */
5537 case 0xb: /* FRINTZ */
5538 case 0xc: /* FRINTA */
5539 {
5540 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5541 fpst = get_fpstatus_ptr(true);
5542
5543 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5544 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5545
5546 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5547 tcg_temp_free_i32(tcg_rmode);
5548 break;
5549 }
5550 case 0xe: /* FRINTX */
5551 fpst = get_fpstatus_ptr(true);
5552 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
5553 break;
5554 case 0xf: /* FRINTI */
5555 fpst = get_fpstatus_ptr(true);
5556 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5557 break;
5558 default:
5559 abort();
5560 }
5561
5562 write_fp_sreg(s, rd, tcg_res);
5563
5564 if (fpst) {
5565 tcg_temp_free_ptr(fpst);
5566 }
5567 tcg_temp_free_i32(tcg_op);
5568 tcg_temp_free_i32(tcg_res);
5569 }
5570
5571 /* Floating-point data-processing (1 source) - single precision */
5572 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
5573 {
5574 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
5575 TCGv_i32 tcg_op, tcg_res;
5576 TCGv_ptr fpst;
5577 int rmode = -1;
5578
5579 tcg_op = read_fp_sreg(s, rn);
5580 tcg_res = tcg_temp_new_i32();
5581
5582 switch (opcode) {
5583 case 0x0: /* FMOV */
5584 tcg_gen_mov_i32(tcg_res, tcg_op);
5585 goto done;
5586 case 0x1: /* FABS */
5587 gen_helper_vfp_abss(tcg_res, tcg_op);
5588 goto done;
5589 case 0x2: /* FNEG */
5590 gen_helper_vfp_negs(tcg_res, tcg_op);
5591 goto done;
5592 case 0x3: /* FSQRT */
5593 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
5594 goto done;
5595 case 0x8: /* FRINTN */
5596 case 0x9: /* FRINTP */
5597 case 0xa: /* FRINTM */
5598 case 0xb: /* FRINTZ */
5599 case 0xc: /* FRINTA */
5600 rmode = arm_rmode_to_sf(opcode & 7);
5601 gen_fpst = gen_helper_rints;
5602 break;
5603 case 0xe: /* FRINTX */
5604 gen_fpst = gen_helper_rints_exact;
5605 break;
5606 case 0xf: /* FRINTI */
5607 gen_fpst = gen_helper_rints;
5608 break;
5609 case 0x10: /* FRINT32Z */
5610 rmode = float_round_to_zero;
5611 gen_fpst = gen_helper_frint32_s;
5612 break;
5613 case 0x11: /* FRINT32X */
5614 gen_fpst = gen_helper_frint32_s;
5615 break;
5616 case 0x12: /* FRINT64Z */
5617 rmode = float_round_to_zero;
5618 gen_fpst = gen_helper_frint64_s;
5619 break;
5620 case 0x13: /* FRINT64X */
5621 gen_fpst = gen_helper_frint64_s;
5622 break;
5623 default:
5624 g_assert_not_reached();
5625 }
5626
5627 fpst = get_fpstatus_ptr(false);
5628 if (rmode >= 0) {
5629 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
5630 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5631 gen_fpst(tcg_res, tcg_op, fpst);
5632 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5633 tcg_temp_free_i32(tcg_rmode);
5634 } else {
5635 gen_fpst(tcg_res, tcg_op, fpst);
5636 }
5637 tcg_temp_free_ptr(fpst);
5638
5639 done:
5640 write_fp_sreg(s, rd, tcg_res);
5641 tcg_temp_free_i32(tcg_op);
5642 tcg_temp_free_i32(tcg_res);
5643 }
5644
5645 /* Floating-point data-processing (1 source) - double precision */
5646 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
5647 {
5648 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
5649 TCGv_i64 tcg_op, tcg_res;
5650 TCGv_ptr fpst;
5651 int rmode = -1;
5652
5653 switch (opcode) {
5654 case 0x0: /* FMOV */
5655 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
5656 return;
5657 }
5658
5659 tcg_op = read_fp_dreg(s, rn);
5660 tcg_res = tcg_temp_new_i64();
5661
5662 switch (opcode) {
5663 case 0x1: /* FABS */
5664 gen_helper_vfp_absd(tcg_res, tcg_op);
5665 goto done;
5666 case 0x2: /* FNEG */
5667 gen_helper_vfp_negd(tcg_res, tcg_op);
5668 goto done;
5669 case 0x3: /* FSQRT */
5670 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
5671 goto done;
5672 case 0x8: /* FRINTN */
5673 case 0x9: /* FRINTP */
5674 case 0xa: /* FRINTM */
5675 case 0xb: /* FRINTZ */
5676 case 0xc: /* FRINTA */
5677 rmode = arm_rmode_to_sf(opcode & 7);
5678 gen_fpst = gen_helper_rintd;
5679 break;
5680 case 0xe: /* FRINTX */
5681 gen_fpst = gen_helper_rintd_exact;
5682 break;
5683 case 0xf: /* FRINTI */
5684 gen_fpst = gen_helper_rintd;
5685 break;
5686 case 0x10: /* FRINT32Z */
5687 rmode = float_round_to_zero;
5688 gen_fpst = gen_helper_frint32_d;
5689 break;
5690 case 0x11: /* FRINT32X */
5691 gen_fpst = gen_helper_frint32_d;
5692 break;
5693 case 0x12: /* FRINT64Z */
5694 rmode = float_round_to_zero;
5695 gen_fpst = gen_helper_frint64_d;
5696 break;
5697 case 0x13: /* FRINT64X */
5698 gen_fpst = gen_helper_frint64_d;
5699 break;
5700 default:
5701 g_assert_not_reached();
5702 }
5703
5704 fpst = get_fpstatus_ptr(false);
5705 if (rmode >= 0) {
5706 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
5707 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5708 gen_fpst(tcg_res, tcg_op, fpst);
5709 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5710 tcg_temp_free_i32(tcg_rmode);
5711 } else {
5712 gen_fpst(tcg_res, tcg_op, fpst);
5713 }
5714 tcg_temp_free_ptr(fpst);
5715
5716 done:
5717 write_fp_dreg(s, rd, tcg_res);
5718 tcg_temp_free_i64(tcg_op);
5719 tcg_temp_free_i64(tcg_res);
5720 }
5721
5722 static void handle_fp_fcvt(DisasContext *s, int opcode,
5723 int rd, int rn, int dtype, int ntype)
5724 {
5725 switch (ntype) {
5726 case 0x0:
5727 {
5728 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5729 if (dtype == 1) {
5730 /* Single to double */
5731 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5732 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
5733 write_fp_dreg(s, rd, tcg_rd);
5734 tcg_temp_free_i64(tcg_rd);
5735 } else {
5736 /* Single to half */
5737 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5738 TCGv_i32 ahp = get_ahp_flag();
5739 TCGv_ptr fpst = get_fpstatus_ptr(false);
5740
5741 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5742 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5743 write_fp_sreg(s, rd, tcg_rd);
5744 tcg_temp_free_i32(tcg_rd);
5745 tcg_temp_free_i32(ahp);
5746 tcg_temp_free_ptr(fpst);
5747 }
5748 tcg_temp_free_i32(tcg_rn);
5749 break;
5750 }
5751 case 0x1:
5752 {
5753 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
5754 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5755 if (dtype == 0) {
5756 /* Double to single */
5757 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
5758 } else {
5759 TCGv_ptr fpst = get_fpstatus_ptr(false);
5760 TCGv_i32 ahp = get_ahp_flag();
5761 /* Double to half */
5762 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5763 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5764 tcg_temp_free_ptr(fpst);
5765 tcg_temp_free_i32(ahp);
5766 }
5767 write_fp_sreg(s, rd, tcg_rd);
5768 tcg_temp_free_i32(tcg_rd);
5769 tcg_temp_free_i64(tcg_rn);
5770 break;
5771 }
5772 case 0x3:
5773 {
5774 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5775 TCGv_ptr tcg_fpst = get_fpstatus_ptr(false);
5776 TCGv_i32 tcg_ahp = get_ahp_flag();
5777 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
5778 if (dtype == 0) {
5779 /* Half to single */
5780 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5781 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5782 write_fp_sreg(s, rd, tcg_rd);
5783 tcg_temp_free_ptr(tcg_fpst);
5784 tcg_temp_free_i32(tcg_ahp);
5785 tcg_temp_free_i32(tcg_rd);
5786 } else {
5787 /* Half to double */
5788 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5789 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5790 write_fp_dreg(s, rd, tcg_rd);
5791 tcg_temp_free_i64(tcg_rd);
5792 }
5793 tcg_temp_free_i32(tcg_rn);
5794 break;
5795 }
5796 default:
5797 abort();
5798 }
5799 }
5800
5801 /* Floating point data-processing (1 source)
5802 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
5803 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5804 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
5805 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5806 */
5807 static void disas_fp_1src(DisasContext *s, uint32_t insn)
5808 {
5809 int mos = extract32(insn, 29, 3);
5810 int type = extract32(insn, 22, 2);
5811 int opcode = extract32(insn, 15, 6);
5812 int rn = extract32(insn, 5, 5);
5813 int rd = extract32(insn, 0, 5);
5814
5815 if (mos) {
5816 unallocated_encoding(s);
5817 return;
5818 }
5819
5820 switch (opcode) {
5821 case 0x4: case 0x5: case 0x7:
5822 {
5823 /* FCVT between half, single and double precision */
5824 int dtype = extract32(opcode, 0, 2);
5825 if (type == 2 || dtype == type) {
5826 unallocated_encoding(s);
5827 return;
5828 }
5829 if (!fp_access_check(s)) {
5830 return;
5831 }
5832
5833 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
5834 break;
5835 }
5836
5837 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
5838 if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
5839 unallocated_encoding(s);
5840 return;
5841 }
5842 /* fall through */
5843 case 0x0 ... 0x3:
5844 case 0x8 ... 0xc:
5845 case 0xe ... 0xf:
5846 /* 32-to-32 and 64-to-64 ops */
5847 switch (type) {
5848 case 0:
5849 if (!fp_access_check(s)) {
5850 return;
5851 }
5852 handle_fp_1src_single(s, opcode, rd, rn);
5853 break;
5854 case 1:
5855 if (!fp_access_check(s)) {
5856 return;
5857 }
5858 handle_fp_1src_double(s, opcode, rd, rn);
5859 break;
5860 case 3:
5861 if (!dc_isar_feature(aa64_fp16, s)) {
5862 unallocated_encoding(s);
5863 return;
5864 }
5865
5866 if (!fp_access_check(s)) {
5867 return;
5868 }
5869 handle_fp_1src_half(s, opcode, rd, rn);
5870 break;
5871 default:
5872 unallocated_encoding(s);
5873 }
5874 break;
5875
5876 default:
5877 unallocated_encoding(s);
5878 break;
5879 }
5880 }
5881
5882 /* Floating-point data-processing (2 source) - single precision */
5883 static void handle_fp_2src_single(DisasContext *s, int opcode,
5884 int rd, int rn, int rm)
5885 {
5886 TCGv_i32 tcg_op1;
5887 TCGv_i32 tcg_op2;
5888 TCGv_i32 tcg_res;
5889 TCGv_ptr fpst;
5890
5891 tcg_res = tcg_temp_new_i32();
5892 fpst = get_fpstatus_ptr(false);
5893 tcg_op1 = read_fp_sreg(s, rn);
5894 tcg_op2 = read_fp_sreg(s, rm);
5895
5896 switch (opcode) {
5897 case 0x0: /* FMUL */
5898 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
5899 break;
5900 case 0x1: /* FDIV */
5901 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
5902 break;
5903 case 0x2: /* FADD */
5904 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
5905 break;
5906 case 0x3: /* FSUB */
5907 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
5908 break;
5909 case 0x4: /* FMAX */
5910 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
5911 break;
5912 case 0x5: /* FMIN */
5913 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
5914 break;
5915 case 0x6: /* FMAXNM */
5916 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
5917 break;
5918 case 0x7: /* FMINNM */
5919 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
5920 break;
5921 case 0x8: /* FNMUL */
5922 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
5923 gen_helper_vfp_negs(tcg_res, tcg_res);
5924 break;
5925 }
5926
5927 write_fp_sreg(s, rd, tcg_res);
5928
5929 tcg_temp_free_ptr(fpst);
5930 tcg_temp_free_i32(tcg_op1);
5931 tcg_temp_free_i32(tcg_op2);
5932 tcg_temp_free_i32(tcg_res);
5933 }
5934
5935 /* Floating-point data-processing (2 source) - double precision */
5936 static void handle_fp_2src_double(DisasContext *s, int opcode,
5937 int rd, int rn, int rm)
5938 {
5939 TCGv_i64 tcg_op1;
5940 TCGv_i64 tcg_op2;
5941 TCGv_i64 tcg_res;
5942 TCGv_ptr fpst;
5943
5944 tcg_res = tcg_temp_new_i64();
5945 fpst = get_fpstatus_ptr(false);
5946 tcg_op1 = read_fp_dreg(s, rn);
5947 tcg_op2 = read_fp_dreg(s, rm);
5948
5949 switch (opcode) {
5950 case 0x0: /* FMUL */
5951 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5952 break;
5953 case 0x1: /* FDIV */
5954 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
5955 break;
5956 case 0x2: /* FADD */
5957 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
5958 break;
5959 case 0x3: /* FSUB */
5960 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
5961 break;
5962 case 0x4: /* FMAX */
5963 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
5964 break;
5965 case 0x5: /* FMIN */
5966 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
5967 break;
5968 case 0x6: /* FMAXNM */
5969 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5970 break;
5971 case 0x7: /* FMINNM */
5972 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5973 break;
5974 case 0x8: /* FNMUL */
5975 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5976 gen_helper_vfp_negd(tcg_res, tcg_res);
5977 break;
5978 }
5979
5980 write_fp_dreg(s, rd, tcg_res);
5981
5982 tcg_temp_free_ptr(fpst);
5983 tcg_temp_free_i64(tcg_op1);
5984 tcg_temp_free_i64(tcg_op2);
5985 tcg_temp_free_i64(tcg_res);
5986 }
5987
5988 /* Floating-point data-processing (2 source) - half precision */
5989 static void handle_fp_2src_half(DisasContext *s, int opcode,
5990 int rd, int rn, int rm)
5991 {
5992 TCGv_i32 tcg_op1;
5993 TCGv_i32 tcg_op2;
5994 TCGv_i32 tcg_res;
5995 TCGv_ptr fpst;
5996
5997 tcg_res = tcg_temp_new_i32();
5998 fpst = get_fpstatus_ptr(true);
5999 tcg_op1 = read_fp_hreg(s, rn);
6000 tcg_op2 = read_fp_hreg(s, rm);
6001
6002 switch (opcode) {
6003 case 0x0: /* FMUL */
6004 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6005 break;
6006 case 0x1: /* FDIV */
6007 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6008 break;
6009 case 0x2: /* FADD */
6010 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6011 break;
6012 case 0x3: /* FSUB */
6013 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6014 break;
6015 case 0x4: /* FMAX */
6016 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6017 break;
6018 case 0x5: /* FMIN */
6019 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6020 break;
6021 case 0x6: /* FMAXNM */
6022 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6023 break;
6024 case 0x7: /* FMINNM */
6025 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6026 break;
6027 case 0x8: /* FNMUL */
6028 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6029 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6030 break;
6031 default:
6032 g_assert_not_reached();
6033 }
6034
6035 write_fp_sreg(s, rd, tcg_res);
6036
6037 tcg_temp_free_ptr(fpst);
6038 tcg_temp_free_i32(tcg_op1);
6039 tcg_temp_free_i32(tcg_op2);
6040 tcg_temp_free_i32(tcg_res);
6041 }
6042
6043 /* Floating point data-processing (2 source)
6044 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6045 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6046 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
6047 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6048 */
6049 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6050 {
6051 int mos = extract32(insn, 29, 3);
6052 int type = extract32(insn, 22, 2);
6053 int rd = extract32(insn, 0, 5);
6054 int rn = extract32(insn, 5, 5);
6055 int rm = extract32(insn, 16, 5);
6056 int opcode = extract32(insn, 12, 4);
6057
6058 if (opcode > 8 || mos) {
6059 unallocated_encoding(s);
6060 return;
6061 }
6062
6063 switch (type) {
6064 case 0:
6065 if (!fp_access_check(s)) {
6066 return;
6067 }
6068 handle_fp_2src_single(s, opcode, rd, rn, rm);
6069 break;
6070 case 1:
6071 if (!fp_access_check(s)) {
6072 return;
6073 }
6074 handle_fp_2src_double(s, opcode, rd, rn, rm);
6075 break;
6076 case 3:
6077 if (!dc_isar_feature(aa64_fp16, s)) {
6078 unallocated_encoding(s);
6079 return;
6080 }
6081 if (!fp_access_check(s)) {
6082 return;
6083 }
6084 handle_fp_2src_half(s, opcode, rd, rn, rm);
6085 break;
6086 default:
6087 unallocated_encoding(s);
6088 }
6089 }
6090
6091 /* Floating-point data-processing (3 source) - single precision */
6092 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6093 int rd, int rn, int rm, int ra)
6094 {
6095 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6096 TCGv_i32 tcg_res = tcg_temp_new_i32();
6097 TCGv_ptr fpst = get_fpstatus_ptr(false);
6098
6099 tcg_op1 = read_fp_sreg(s, rn);
6100 tcg_op2 = read_fp_sreg(s, rm);
6101 tcg_op3 = read_fp_sreg(s, ra);
6102
6103 /* These are fused multiply-add, and must be done as one
6104 * floating point operation with no rounding between the
6105 * multiplication and addition steps.
6106 * NB that doing the negations here as separate steps is
6107 * correct : an input NaN should come out with its sign bit
6108 * flipped if it is a negated-input.
6109 */
6110 if (o1 == true) {
6111 gen_helper_vfp_negs(tcg_op3, tcg_op3);
6112 }
6113
6114 if (o0 != o1) {
6115 gen_helper_vfp_negs(tcg_op1, tcg_op1);
6116 }
6117
6118 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6119
6120 write_fp_sreg(s, rd, tcg_res);
6121
6122 tcg_temp_free_ptr(fpst);
6123 tcg_temp_free_i32(tcg_op1);
6124 tcg_temp_free_i32(tcg_op2);
6125 tcg_temp_free_i32(tcg_op3);
6126 tcg_temp_free_i32(tcg_res);
6127 }
6128
6129 /* Floating-point data-processing (3 source) - double precision */
6130 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6131 int rd, int rn, int rm, int ra)
6132 {
6133 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6134 TCGv_i64 tcg_res = tcg_temp_new_i64();
6135 TCGv_ptr fpst = get_fpstatus_ptr(false);
6136
6137 tcg_op1 = read_fp_dreg(s, rn);
6138 tcg_op2 = read_fp_dreg(s, rm);
6139 tcg_op3 = read_fp_dreg(s, ra);
6140
6141 /* These are fused multiply-add, and must be done as one
6142 * floating point operation with no rounding between the
6143 * multiplication and addition steps.
6144 * NB that doing the negations here as separate steps is
6145 * correct : an input NaN should come out with its sign bit
6146 * flipped if it is a negated-input.
6147 */
6148 if (o1 == true) {
6149 gen_helper_vfp_negd(tcg_op3, tcg_op3);
6150 }
6151
6152 if (o0 != o1) {
6153 gen_helper_vfp_negd(tcg_op1, tcg_op1);
6154 }
6155
6156 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6157
6158 write_fp_dreg(s, rd, tcg_res);
6159
6160 tcg_temp_free_ptr(fpst);
6161 tcg_temp_free_i64(tcg_op1);
6162 tcg_temp_free_i64(tcg_op2);
6163 tcg_temp_free_i64(tcg_op3);
6164 tcg_temp_free_i64(tcg_res);
6165 }
6166
6167 /* Floating-point data-processing (3 source) - half precision */
6168 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6169 int rd, int rn, int rm, int ra)
6170 {
6171 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6172 TCGv_i32 tcg_res = tcg_temp_new_i32();
6173 TCGv_ptr fpst = get_fpstatus_ptr(true);
6174
6175 tcg_op1 = read_fp_hreg(s, rn);
6176 tcg_op2 = read_fp_hreg(s, rm);
6177 tcg_op3 = read_fp_hreg(s, ra);
6178
6179 /* These are fused multiply-add, and must be done as one
6180 * floating point operation with no rounding between the
6181 * multiplication and addition steps.
6182 * NB that doing the negations here as separate steps is
6183 * correct : an input NaN should come out with its sign bit
6184 * flipped if it is a negated-input.
6185 */
6186 if (o1 == true) {
6187 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6188 }
6189
6190 if (o0 != o1) {
6191 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6192 }
6193
6194 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6195
6196 write_fp_sreg(s, rd, tcg_res);
6197
6198 tcg_temp_free_ptr(fpst);
6199 tcg_temp_free_i32(tcg_op1);
6200 tcg_temp_free_i32(tcg_op2);
6201 tcg_temp_free_i32(tcg_op3);
6202 tcg_temp_free_i32(tcg_res);
6203 }
6204
6205 /* Floating point data-processing (3 source)
6206 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6207 * +---+---+---+-----------+------+----+------+----+------+------+------+
6208 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6209 * +---+---+---+-----------+------+----+------+----+------+------+------+
6210 */
6211 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6212 {
6213 int mos = extract32(insn, 29, 3);
6214 int type = extract32(insn, 22, 2);
6215 int rd = extract32(insn, 0, 5);
6216 int rn = extract32(insn, 5, 5);
6217 int ra = extract32(insn, 10, 5);
6218 int rm = extract32(insn, 16, 5);
6219 bool o0 = extract32(insn, 15, 1);
6220 bool o1 = extract32(insn, 21, 1);
6221
6222 if (mos) {
6223 unallocated_encoding(s);
6224 return;
6225 }
6226
6227 switch (type) {
6228 case 0:
6229 if (!fp_access_check(s)) {
6230 return;
6231 }
6232 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6233 break;
6234 case 1:
6235 if (!fp_access_check(s)) {
6236 return;
6237 }
6238 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6239 break;
6240 case 3:
6241 if (!dc_isar_feature(aa64_fp16, s)) {
6242 unallocated_encoding(s);
6243 return;
6244 }
6245 if (!fp_access_check(s)) {
6246 return;
6247 }
6248 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6249 break;
6250 default:
6251 unallocated_encoding(s);
6252 }
6253 }
6254
6255 /* Floating point immediate
6256 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
6257 * +---+---+---+-----------+------+---+------------+-------+------+------+
6258 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
6259 * +---+---+---+-----------+------+---+------------+-------+------+------+
6260 */
6261 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6262 {
6263 int rd = extract32(insn, 0, 5);
6264 int imm5 = extract32(insn, 5, 5);
6265 int imm8 = extract32(insn, 13, 8);
6266 int type = extract32(insn, 22, 2);
6267 int mos = extract32(insn, 29, 3);
6268 uint64_t imm;
6269 TCGv_i64 tcg_res;
6270 TCGMemOp sz;
6271
6272 if (mos || imm5) {
6273 unallocated_encoding(s);
6274 return;
6275 }
6276
6277 switch (type) {
6278 case 0:
6279 sz = MO_32;
6280 break;
6281 case 1:
6282 sz = MO_64;
6283 break;
6284 case 3:
6285 sz = MO_16;
6286 if (dc_isar_feature(aa64_fp16, s)) {
6287 break;
6288 }
6289 /* fallthru */
6290 default:
6291 unallocated_encoding(s);
6292 return;
6293 }
6294
6295 if (!fp_access_check(s)) {
6296 return;
6297 }
6298
6299 imm = vfp_expand_imm(sz, imm8);
6300
6301 tcg_res = tcg_const_i64(imm);
6302 write_fp_dreg(s, rd, tcg_res);
6303 tcg_temp_free_i64(tcg_res);
6304 }
6305
6306 /* Handle floating point <=> fixed point conversions. Note that we can
6307 * also deal with fp <=> integer conversions as a special case (scale == 64)
6308 * OPTME: consider handling that special case specially or at least skipping
6309 * the call to scalbn in the helpers for zero shifts.
6310 */
6311 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6312 bool itof, int rmode, int scale, int sf, int type)
6313 {
6314 bool is_signed = !(opcode & 1);
6315 TCGv_ptr tcg_fpstatus;
6316 TCGv_i32 tcg_shift, tcg_single;
6317 TCGv_i64 tcg_double;
6318
6319 tcg_fpstatus = get_fpstatus_ptr(type == 3);
6320
6321 tcg_shift = tcg_const_i32(64 - scale);
6322
6323 if (itof) {
6324 TCGv_i64 tcg_int = cpu_reg(s, rn);
6325 if (!sf) {
6326 TCGv_i64 tcg_extend = new_tmp_a64(s);
6327
6328 if (is_signed) {
6329 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6330 } else {
6331 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6332 }
6333
6334 tcg_int = tcg_extend;
6335 }
6336
6337 switch (type) {
6338 case 1: /* float64 */
6339 tcg_double = tcg_temp_new_i64();
6340 if (is_signed) {
6341 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6342 tcg_shift, tcg_fpstatus);
6343 } else {
6344 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6345 tcg_shift, tcg_fpstatus);
6346 }
6347 write_fp_dreg(s, rd, tcg_double);
6348 tcg_temp_free_i64(tcg_double);
6349 break;
6350
6351 case 0: /* float32 */
6352 tcg_single = tcg_temp_new_i32();
6353 if (is_signed) {
6354 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6355 tcg_shift, tcg_fpstatus);
6356 } else {
6357 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6358 tcg_shift, tcg_fpstatus);
6359 }
6360 write_fp_sreg(s, rd, tcg_single);
6361 tcg_temp_free_i32(tcg_single);
6362 break;
6363
6364 case 3: /* float16 */
6365 tcg_single = tcg_temp_new_i32();
6366 if (is_signed) {
6367 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6368 tcg_shift, tcg_fpstatus);
6369 } else {
6370 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6371 tcg_shift, tcg_fpstatus);
6372 }
6373 write_fp_sreg(s, rd, tcg_single);
6374 tcg_temp_free_i32(tcg_single);
6375 break;
6376
6377 default:
6378 g_assert_not_reached();
6379 }
6380 } else {
6381 TCGv_i64 tcg_int = cpu_reg(s, rd);
6382 TCGv_i32 tcg_rmode;
6383
6384 if (extract32(opcode, 2, 1)) {
6385 /* There are too many rounding modes to all fit into rmode,
6386 * so FCVTA[US] is a special case.
6387 */
6388 rmode = FPROUNDING_TIEAWAY;
6389 }
6390
6391 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
6392
6393 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
6394
6395 switch (type) {
6396 case 1: /* float64 */
6397 tcg_double = read_fp_dreg(s, rn);
6398 if (is_signed) {
6399 if (!sf) {
6400 gen_helper_vfp_tosld(tcg_int, tcg_double,
6401 tcg_shift, tcg_fpstatus);
6402 } else {
6403 gen_helper_vfp_tosqd(tcg_int, tcg_double,
6404 tcg_shift, tcg_fpstatus);
6405 }
6406 } else {
6407 if (!sf) {
6408 gen_helper_vfp_tould(tcg_int, tcg_double,
6409 tcg_shift, tcg_fpstatus);
6410 } else {
6411 gen_helper_vfp_touqd(tcg_int, tcg_double,
6412 tcg_shift, tcg_fpstatus);
6413 }
6414 }
6415 if (!sf) {
6416 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6417 }
6418 tcg_temp_free_i64(tcg_double);
6419 break;
6420
6421 case 0: /* float32 */
6422 tcg_single = read_fp_sreg(s, rn);
6423 if (sf) {
6424 if (is_signed) {
6425 gen_helper_vfp_tosqs(tcg_int, tcg_single,
6426 tcg_shift, tcg_fpstatus);
6427 } else {
6428 gen_helper_vfp_touqs(tcg_int, tcg_single,
6429 tcg_shift, tcg_fpstatus);
6430 }
6431 } else {
6432 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6433 if (is_signed) {
6434 gen_helper_vfp_tosls(tcg_dest, tcg_single,
6435 tcg_shift, tcg_fpstatus);
6436 } else {
6437 gen_helper_vfp_touls(tcg_dest, tcg_single,
6438 tcg_shift, tcg_fpstatus);
6439 }
6440 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6441 tcg_temp_free_i32(tcg_dest);
6442 }
6443 tcg_temp_free_i32(tcg_single);
6444 break;
6445
6446 case 3: /* float16 */
6447 tcg_single = read_fp_sreg(s, rn);
6448 if (sf) {
6449 if (is_signed) {
6450 gen_helper_vfp_tosqh(tcg_int, tcg_single,
6451 tcg_shift, tcg_fpstatus);
6452 } else {
6453 gen_helper_vfp_touqh(tcg_int, tcg_single,
6454 tcg_shift, tcg_fpstatus);
6455 }
6456 } else {
6457 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6458 if (is_signed) {
6459 gen_helper_vfp_toslh(tcg_dest, tcg_single,
6460 tcg_shift, tcg_fpstatus);
6461 } else {
6462 gen_helper_vfp_toulh(tcg_dest, tcg_single,
6463 tcg_shift, tcg_fpstatus);
6464 }
6465 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6466 tcg_temp_free_i32(tcg_dest);
6467 }
6468 tcg_temp_free_i32(tcg_single);
6469 break;
6470
6471 default:
6472 g_assert_not_reached();
6473 }
6474
6475 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
6476 tcg_temp_free_i32(tcg_rmode);
6477 }
6478
6479 tcg_temp_free_ptr(tcg_fpstatus);
6480 tcg_temp_free_i32(tcg_shift);
6481 }
6482
6483 /* Floating point <-> fixed point conversions
6484 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6485 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6486 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
6487 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6488 */
6489 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6490 {
6491 int rd = extract32(insn, 0, 5);
6492 int rn = extract32(insn, 5, 5);
6493 int scale = extract32(insn, 10, 6);
6494 int opcode = extract32(insn, 16, 3);
6495 int rmode = extract32(insn, 19, 2);
6496 int type = extract32(insn, 22, 2);
6497 bool sbit = extract32(insn, 29, 1);
6498 bool sf = extract32(insn, 31, 1);
6499 bool itof;
6500
6501 if (sbit || (!sf && scale < 32)) {
6502 unallocated_encoding(s);
6503 return;
6504 }
6505
6506 switch (type) {
6507 case 0: /* float32 */
6508 case 1: /* float64 */
6509 break;
6510 case 3: /* float16 */
6511 if (dc_isar_feature(aa64_fp16, s)) {
6512 break;
6513 }
6514 /* fallthru */
6515 default:
6516 unallocated_encoding(s);
6517 return;
6518 }
6519
6520 switch ((rmode << 3) | opcode) {
6521 case 0x2: /* SCVTF */
6522 case 0x3: /* UCVTF */
6523 itof = true;
6524 break;
6525 case 0x18: /* FCVTZS */
6526 case 0x19: /* FCVTZU */
6527 itof = false;
6528 break;
6529 default:
6530 unallocated_encoding(s);
6531 return;
6532 }
6533
6534 if (!fp_access_check(s)) {
6535 return;
6536 }
6537
6538 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
6539 }
6540
6541 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
6542 {
6543 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
6544 * without conversion.
6545 */
6546
6547 if (itof) {
6548 TCGv_i64 tcg_rn = cpu_reg(s, rn);
6549 TCGv_i64 tmp;
6550
6551 switch (type) {
6552 case 0:
6553 /* 32 bit */
6554 tmp = tcg_temp_new_i64();
6555 tcg_gen_ext32u_i64(tmp, tcg_rn);
6556 write_fp_dreg(s, rd, tmp);
6557 tcg_temp_free_i64(tmp);
6558 break;
6559 case 1:
6560 /* 64 bit */
6561 write_fp_dreg(s, rd, tcg_rn);
6562 break;
6563 case 2:
6564 /* 64 bit to top half. */
6565 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
6566 clear_vec_high(s, true, rd);
6567 break;
6568 case 3:
6569 /* 16 bit */
6570 tmp = tcg_temp_new_i64();
6571 tcg_gen_ext16u_i64(tmp, tcg_rn);
6572 write_fp_dreg(s, rd, tmp);
6573 tcg_temp_free_i64(tmp);
6574 break;
6575 default:
6576 g_assert_not_reached();
6577 }
6578 } else {
6579 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6580
6581 switch (type) {
6582 case 0:
6583 /* 32 bit */
6584 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
6585 break;
6586 case 1:
6587 /* 64 bit */
6588 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
6589 break;
6590 case 2:
6591 /* 64 bits from top half */
6592 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
6593 break;
6594 case 3:
6595 /* 16 bit */
6596 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
6597 break;
6598 default:
6599 g_assert_not_reached();
6600 }
6601 }
6602 }
6603
6604 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
6605 {
6606 TCGv_i64 t = read_fp_dreg(s, rn);
6607 TCGv_ptr fpstatus = get_fpstatus_ptr(false);
6608
6609 gen_helper_fjcvtzs(t, t, fpstatus);
6610
6611 tcg_temp_free_ptr(fpstatus);
6612
6613 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
6614 tcg_gen_extrh_i64_i32(cpu_ZF, t);
6615 tcg_gen_movi_i32(cpu_CF, 0);
6616 tcg_gen_movi_i32(cpu_NF, 0);
6617 tcg_gen_movi_i32(cpu_VF, 0);
6618
6619 tcg_temp_free_i64(t);
6620 }
6621
6622 /* Floating point <-> integer conversions
6623 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6624 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6625 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
6626 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6627 */
6628 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
6629 {
6630 int rd = extract32(insn, 0, 5);
6631 int rn = extract32(insn, 5, 5);
6632 int opcode = extract32(insn, 16, 3);
6633 int rmode = extract32(insn, 19, 2);
6634 int type = extract32(insn, 22, 2);
6635 bool sbit = extract32(insn, 29, 1);
6636 bool sf = extract32(insn, 31, 1);
6637 bool itof = false;
6638
6639 if (sbit) {
6640 goto do_unallocated;
6641 }
6642
6643 switch (opcode) {
6644 case 2: /* SCVTF */
6645 case 3: /* UCVTF */
6646 itof = true;
6647 /* fallthru */
6648 case 4: /* FCVTAS */
6649 case 5: /* FCVTAU */
6650 if (rmode != 0) {
6651 goto do_unallocated;
6652 }
6653 /* fallthru */
6654 case 0: /* FCVT[NPMZ]S */
6655 case 1: /* FCVT[NPMZ]U */
6656 switch (type) {
6657 case 0: /* float32 */
6658 case 1: /* float64 */
6659 break;
6660 case 3: /* float16 */
6661 if (!dc_isar_feature(aa64_fp16, s)) {
6662 goto do_unallocated;
6663 }
6664 break;
6665 default:
6666 goto do_unallocated;
6667 }
6668 if (!fp_access_check(s)) {
6669 return;
6670 }
6671 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
6672 break;
6673
6674 default:
6675 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
6676 case 0b01100110: /* FMOV half <-> 32-bit int */
6677 case 0b01100111:
6678 case 0b11100110: /* FMOV half <-> 64-bit int */
6679 case 0b11100111:
6680 if (!dc_isar_feature(aa64_fp16, s)) {
6681 goto do_unallocated;
6682 }
6683 /* fallthru */
6684 case 0b00000110: /* FMOV 32-bit */
6685 case 0b00000111:
6686 case 0b10100110: /* FMOV 64-bit */
6687 case 0b10100111:
6688 case 0b11001110: /* FMOV top half of 128-bit */
6689 case 0b11001111:
6690 if (!fp_access_check(s)) {
6691 return;
6692 }
6693 itof = opcode & 1;
6694 handle_fmov(s, rd, rn, type, itof);
6695 break;
6696
6697 case 0b00111110: /* FJCVTZS */
6698 if (!dc_isar_feature(aa64_jscvt, s)) {
6699 goto do_unallocated;
6700 } else if (fp_access_check(s)) {
6701 handle_fjcvtzs(s, rd, rn);
6702 }
6703 break;
6704
6705 default:
6706 do_unallocated:
6707 unallocated_encoding(s);
6708 return;
6709 }
6710 break;
6711 }
6712 }
6713
6714 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
6715 * 31 30 29 28 25 24 0
6716 * +---+---+---+---------+-----------------------------+
6717 * | | 0 | | 1 1 1 1 | |
6718 * +---+---+---+---------+-----------------------------+
6719 */
6720 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
6721 {
6722 if (extract32(insn, 24, 1)) {
6723 /* Floating point data-processing (3 source) */
6724 disas_fp_3src(s, insn);
6725 } else if (extract32(insn, 21, 1) == 0) {
6726 /* Floating point to fixed point conversions */
6727 disas_fp_fixed_conv(s, insn);
6728 } else {
6729 switch (extract32(insn, 10, 2)) {
6730 case 1:
6731 /* Floating point conditional compare */
6732 disas_fp_ccomp(s, insn);
6733 break;
6734 case 2:
6735 /* Floating point data-processing (2 source) */
6736 disas_fp_2src(s, insn);
6737 break;
6738 case 3:
6739 /* Floating point conditional select */
6740 disas_fp_csel(s, insn);
6741 break;
6742 case 0:
6743 switch (ctz32(extract32(insn, 12, 4))) {
6744 case 0: /* [15:12] == xxx1 */
6745 /* Floating point immediate */
6746 disas_fp_imm(s, insn);
6747 break;
6748 case 1: /* [15:12] == xx10 */
6749 /* Floating point compare */
6750 disas_fp_compare(s, insn);
6751 break;
6752 case 2: /* [15:12] == x100 */
6753 /* Floating point data-processing (1 source) */
6754 disas_fp_1src(s, insn);
6755 break;
6756 case 3: /* [15:12] == 1000 */
6757 unallocated_encoding(s);
6758 break;
6759 default: /* [15:12] == 0000 */
6760 /* Floating point <-> integer conversions */
6761 disas_fp_int_conv(s, insn);
6762 break;
6763 }
6764 break;
6765 }
6766 }
6767 }
6768
6769 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
6770 int pos)
6771 {
6772 /* Extract 64 bits from the middle of two concatenated 64 bit
6773 * vector register slices left:right. The extracted bits start
6774 * at 'pos' bits into the right (least significant) side.
6775 * We return the result in tcg_right, and guarantee not to
6776 * trash tcg_left.
6777 */
6778 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6779 assert(pos > 0 && pos < 64);
6780
6781 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
6782 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
6783 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
6784
6785 tcg_temp_free_i64(tcg_tmp);
6786 }
6787
6788 /* EXT
6789 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
6790 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6791 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
6792 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6793 */
6794 static void disas_simd_ext(DisasContext *s, uint32_t insn)
6795 {
6796 int is_q = extract32(insn, 30, 1);
6797 int op2 = extract32(insn, 22, 2);
6798 int imm4 = extract32(insn, 11, 4);
6799 int rm = extract32(insn, 16, 5);
6800 int rn = extract32(insn, 5, 5);
6801 int rd = extract32(insn, 0, 5);
6802 int pos = imm4 << 3;
6803 TCGv_i64 tcg_resl, tcg_resh;
6804
6805 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
6806 unallocated_encoding(s);
6807 return;
6808 }
6809
6810 if (!fp_access_check(s)) {
6811 return;
6812 }
6813
6814 tcg_resh = tcg_temp_new_i64();
6815 tcg_resl = tcg_temp_new_i64();
6816
6817 /* Vd gets bits starting at pos bits into Vm:Vn. This is
6818 * either extracting 128 bits from a 128:128 concatenation, or
6819 * extracting 64 bits from a 64:64 concatenation.
6820 */
6821 if (!is_q) {
6822 read_vec_element(s, tcg_resl, rn, 0, MO_64);
6823 if (pos != 0) {
6824 read_vec_element(s, tcg_resh, rm, 0, MO_64);
6825 do_ext64(s, tcg_resh, tcg_resl, pos);
6826 }
6827 tcg_gen_movi_i64(tcg_resh, 0);
6828 } else {
6829 TCGv_i64 tcg_hh;
6830 typedef struct {
6831 int reg;
6832 int elt;
6833 } EltPosns;
6834 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
6835 EltPosns *elt = eltposns;
6836
6837 if (pos >= 64) {
6838 elt++;
6839 pos -= 64;
6840 }
6841
6842 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
6843 elt++;
6844 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
6845 elt++;
6846 if (pos != 0) {
6847 do_ext64(s, tcg_resh, tcg_resl, pos);
6848 tcg_hh = tcg_temp_new_i64();
6849 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
6850 do_ext64(s, tcg_hh, tcg_resh, pos);
6851 tcg_temp_free_i64(tcg_hh);
6852 }
6853 }
6854
6855 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6856 tcg_temp_free_i64(tcg_resl);
6857 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6858 tcg_temp_free_i64(tcg_resh);
6859 }
6860
6861 /* TBL/TBX
6862 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
6863 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
6864 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
6865 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
6866 */
6867 static void disas_simd_tb(DisasContext *s, uint32_t insn)
6868 {
6869 int op2 = extract32(insn, 22, 2);
6870 int is_q = extract32(insn, 30, 1);
6871 int rm = extract32(insn, 16, 5);
6872 int rn = extract32(insn, 5, 5);
6873 int rd = extract32(insn, 0, 5);
6874 int is_tblx = extract32(insn, 12, 1);
6875 int len = extract32(insn, 13, 2);
6876 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
6877 TCGv_i32 tcg_regno, tcg_numregs;
6878
6879 if (op2 != 0) {
6880 unallocated_encoding(s);
6881 return;
6882 }
6883
6884 if (!fp_access_check(s)) {
6885 return;
6886 }
6887
6888 /* This does a table lookup: for every byte element in the input
6889 * we index into a table formed from up to four vector registers,
6890 * and then the output is the result of the lookups. Our helper
6891 * function does the lookup operation for a single 64 bit part of
6892 * the input.
6893 */
6894 tcg_resl = tcg_temp_new_i64();
6895 tcg_resh = tcg_temp_new_i64();
6896
6897 if (is_tblx) {
6898 read_vec_element(s, tcg_resl, rd, 0, MO_64);
6899 } else {
6900 tcg_gen_movi_i64(tcg_resl, 0);
6901 }
6902 if (is_tblx && is_q) {
6903 read_vec_element(s, tcg_resh, rd, 1, MO_64);
6904 } else {
6905 tcg_gen_movi_i64(tcg_resh, 0);
6906 }
6907
6908 tcg_idx = tcg_temp_new_i64();
6909 tcg_regno = tcg_const_i32(rn);
6910 tcg_numregs = tcg_const_i32(len + 1);
6911 read_vec_element(s, tcg_idx, rm, 0, MO_64);
6912 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
6913 tcg_regno, tcg_numregs);
6914 if (is_q) {
6915 read_vec_element(s, tcg_idx, rm, 1, MO_64);
6916 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
6917 tcg_regno, tcg_numregs);
6918 }
6919 tcg_temp_free_i64(tcg_idx);
6920 tcg_temp_free_i32(tcg_regno);
6921 tcg_temp_free_i32(tcg_numregs);
6922
6923 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6924 tcg_temp_free_i64(tcg_resl);
6925 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6926 tcg_temp_free_i64(tcg_resh);
6927 }
6928
6929 /* ZIP/UZP/TRN
6930 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
6931 * +---+---+-------------+------+---+------+---+------------------+------+
6932 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
6933 * +---+---+-------------+------+---+------+---+------------------+------+
6934 */
6935 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
6936 {
6937 int rd = extract32(insn, 0, 5);
6938 int rn = extract32(insn, 5, 5);
6939 int rm = extract32(insn, 16, 5);
6940 int size = extract32(insn, 22, 2);
6941 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
6942 * bit 2 indicates 1 vs 2 variant of the insn.
6943 */
6944 int opcode = extract32(insn, 12, 2);
6945 bool part = extract32(insn, 14, 1);
6946 bool is_q = extract32(insn, 30, 1);
6947 int esize = 8 << size;
6948 int i, ofs;
6949 int datasize = is_q ? 128 : 64;
6950 int elements = datasize / esize;
6951 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
6952
6953 if (opcode == 0 || (size == 3 && !is_q)) {
6954 unallocated_encoding(s);
6955 return;
6956 }
6957
6958 if (!fp_access_check(s)) {
6959 return;
6960 }
6961
6962 tcg_resl = tcg_const_i64(0);
6963 tcg_resh = tcg_const_i64(0);
6964 tcg_res = tcg_temp_new_i64();
6965
6966 for (i = 0; i < elements; i++) {
6967 switch (opcode) {
6968 case 1: /* UZP1/2 */
6969 {
6970 int midpoint = elements / 2;
6971 if (i < midpoint) {
6972 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
6973 } else {
6974 read_vec_element(s, tcg_res, rm,
6975 2 * (i - midpoint) + part, size);
6976 }
6977 break;
6978 }
6979 case 2: /* TRN1/2 */
6980 if (i & 1) {
6981 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
6982 } else {
6983 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
6984 }
6985 break;
6986 case 3: /* ZIP1/2 */
6987 {
6988 int base = part * elements / 2;
6989 if (i & 1) {
6990 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
6991 } else {
6992 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
6993 }
6994 break;
6995 }
6996 default:
6997 g_assert_not_reached();
6998 }
6999
7000 ofs = i * esize;
7001 if (ofs < 64) {
7002 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
7003 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
7004 } else {
7005 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
7006 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
7007 }
7008 }
7009
7010 tcg_temp_free_i64(tcg_res);
7011
7012 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7013 tcg_temp_free_i64(tcg_resl);
7014 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7015 tcg_temp_free_i64(tcg_resh);
7016 }
7017
7018 /*
7019 * do_reduction_op helper
7020 *
7021 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7022 * important for correct NaN propagation that we do these
7023 * operations in exactly the order specified by the pseudocode.
7024 *
7025 * This is a recursive function, TCG temps should be freed by the
7026 * calling function once it is done with the values.
7027 */
7028 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7029 int esize, int size, int vmap, TCGv_ptr fpst)
7030 {
7031 if (esize == size) {
7032 int element;
7033 TCGMemOp msize = esize == 16 ? MO_16 : MO_32;
7034 TCGv_i32 tcg_elem;
7035
7036 /* We should have one register left here */
7037 assert(ctpop8(vmap) == 1);
7038 element = ctz32(vmap);
7039 assert(element < 8);
7040
7041 tcg_elem = tcg_temp_new_i32();
7042 read_vec_element_i32(s, tcg_elem, rn, element, msize);
7043 return tcg_elem;
7044 } else {
7045 int bits = size / 2;
7046 int shift = ctpop8(vmap) / 2;
7047 int vmap_lo = (vmap >> shift) & vmap;
7048 int vmap_hi = (vmap & ~vmap_lo);
7049 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7050
7051 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7052 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7053 tcg_res = tcg_temp_new_i32();
7054
7055 switch (fpopcode) {
7056 case 0x0c: /* fmaxnmv half-precision */
7057 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7058 break;
7059 case 0x0f: /* fmaxv half-precision */
7060 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7061 break;
7062 case 0x1c: /* fminnmv half-precision */
7063 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7064 break;
7065 case 0x1f: /* fminv half-precision */
7066 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7067 break;
7068 case 0x2c: /* fmaxnmv */
7069 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7070 break;
7071 case 0x2f: /* fmaxv */
7072 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7073 break;
7074 case 0x3c: /* fminnmv */
7075 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7076 break;
7077 case 0x3f: /* fminv */
7078 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7079 break;
7080 default:
7081 g_assert_not_reached();
7082 }
7083
7084 tcg_temp_free_i32(tcg_hi);
7085 tcg_temp_free_i32(tcg_lo);
7086 return tcg_res;
7087 }
7088 }
7089
7090 /* AdvSIMD across lanes
7091 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7092 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7093 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7094 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7095 */
7096 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7097 {
7098 int rd = extract32(insn, 0, 5);
7099 int rn = extract32(insn, 5, 5);
7100 int size = extract32(insn, 22, 2);
7101 int opcode = extract32(insn, 12, 5);
7102 bool is_q = extract32(insn, 30, 1);
7103 bool is_u = extract32(insn, 29, 1);
7104 bool is_fp = false;
7105 bool is_min = false;
7106 int esize;
7107 int elements;
7108 int i;
7109 TCGv_i64 tcg_res, tcg_elt;
7110
7111 switch (opcode) {
7112 case 0x1b: /* ADDV */
7113 if (is_u) {
7114 unallocated_encoding(s);
7115 return;
7116 }
7117 /* fall through */
7118 case 0x3: /* SADDLV, UADDLV */
7119 case 0xa: /* SMAXV, UMAXV */
7120 case 0x1a: /* SMINV, UMINV */
7121 if (size == 3 || (size == 2 && !is_q)) {
7122 unallocated_encoding(s);
7123 return;
7124 }
7125 break;
7126 case 0xc: /* FMAXNMV, FMINNMV */
7127 case 0xf: /* FMAXV, FMINV */
7128 /* Bit 1 of size field encodes min vs max and the actual size
7129 * depends on the encoding of the U bit. If not set (and FP16
7130 * enabled) then we do half-precision float instead of single
7131 * precision.
7132 */
7133 is_min = extract32(size, 1, 1);
7134 is_fp = true;
7135 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7136 size = 1;
7137 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7138 unallocated_encoding(s);
7139 return;
7140 } else {
7141 size = 2;
7142 }
7143 break;
7144 default:
7145 unallocated_encoding(s);
7146 return;
7147 }
7148
7149 if (!fp_access_check(s)) {
7150 return;
7151 }
7152
7153 esize = 8 << size;
7154 elements = (is_q ? 128 : 64) / esize;
7155
7156 tcg_res = tcg_temp_new_i64();
7157 tcg_elt = tcg_temp_new_i64();
7158
7159 /* These instructions operate across all lanes of a vector
7160 * to produce a single result. We can guarantee that a 64
7161 * bit intermediate is sufficient:
7162 * + for [US]ADDLV the maximum element size is 32 bits, and
7163 * the result type is 64 bits
7164 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7165 * same as the element size, which is 32 bits at most
7166 * For the integer operations we can choose to work at 64
7167 * or 32 bits and truncate at the end; for simplicity
7168 * we use 64 bits always. The floating point
7169 * ops do require 32 bit intermediates, though.
7170 */
7171 if (!is_fp) {
7172 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7173
7174 for (i = 1; i < elements; i++) {
7175 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7176
7177 switch (opcode) {
7178 case 0x03: /* SADDLV / UADDLV */
7179 case 0x1b: /* ADDV */
7180 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7181 break;
7182 case 0x0a: /* SMAXV / UMAXV */
7183 if (is_u) {
7184 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7185 } else {
7186 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7187 }
7188 break;
7189 case 0x1a: /* SMINV / UMINV */
7190 if (is_u) {
7191 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7192 } else {
7193 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7194 }
7195 break;
7196 default:
7197 g_assert_not_reached();
7198 }
7199
7200 }
7201 } else {
7202 /* Floating point vector reduction ops which work across 32
7203 * bit (single) or 16 bit (half-precision) intermediates.
7204 * Note that correct NaN propagation requires that we do these
7205 * operations in exactly the order specified by the pseudocode.
7206 */
7207 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
7208 int fpopcode = opcode | is_min << 4 | is_u << 5;
7209 int vmap = (1 << elements) - 1;
7210 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7211 (is_q ? 128 : 64), vmap, fpst);
7212 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7213 tcg_temp_free_i32(tcg_res32);
7214 tcg_temp_free_ptr(fpst);
7215 }
7216
7217 tcg_temp_free_i64(tcg_elt);
7218
7219 /* Now truncate the result to the width required for the final output */
7220 if (opcode == 0x03) {
7221 /* SADDLV, UADDLV: result is 2*esize */
7222 size++;
7223 }
7224
7225 switch (size) {
7226 case 0:
7227 tcg_gen_ext8u_i64(tcg_res, tcg_res);
7228 break;
7229 case 1:
7230 tcg_gen_ext16u_i64(tcg_res, tcg_res);
7231 break;
7232 case 2:
7233 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7234 break;
7235 case 3:
7236 break;
7237 default:
7238 g_assert_not_reached();
7239 }
7240
7241 write_fp_dreg(s, rd, tcg_res);
7242 tcg_temp_free_i64(tcg_res);
7243 }
7244
7245 /* DUP (Element, Vector)
7246 *
7247 * 31 30 29 21 20 16 15 10 9 5 4 0
7248 * +---+---+-------------------+--------+-------------+------+------+
7249 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7250 * +---+---+-------------------+--------+-------------+------+------+
7251 *
7252 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7253 */
7254 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7255 int imm5)
7256 {
7257 int size = ctz32(imm5);
7258 int index = imm5 >> (size + 1);
7259
7260 if (size > 3 || (size == 3 && !is_q)) {
7261 unallocated_encoding(s);
7262 return;
7263 }
7264
7265 if (!fp_access_check(s)) {
7266 return;
7267 }
7268
7269 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7270 vec_reg_offset(s, rn, index, size),
7271 is_q ? 16 : 8, vec_full_reg_size(s));
7272 }
7273
7274 /* DUP (element, scalar)
7275 * 31 21 20 16 15 10 9 5 4 0
7276 * +-----------------------+--------+-------------+------+------+
7277 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7278 * +-----------------------+--------+-------------+------+------+
7279 */
7280 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7281 int imm5)
7282 {
7283 int size = ctz32(imm5);
7284 int index;
7285 TCGv_i64 tmp;
7286
7287 if (size > 3) {
7288 unallocated_encoding(s);
7289 return;
7290 }
7291
7292 if (!fp_access_check(s)) {
7293 return;
7294 }
7295
7296 index = imm5 >> (size + 1);
7297
7298 /* This instruction just extracts the specified element and
7299 * zero-extends it into the bottom of the destination register.
7300 */
7301 tmp = tcg_temp_new_i64();
7302 read_vec_element(s, tmp, rn, index, size);
7303 write_fp_dreg(s, rd, tmp);
7304 tcg_temp_free_i64(tmp);
7305 }
7306
7307 /* DUP (General)
7308 *
7309 * 31 30 29 21 20 16 15 10 9 5 4 0
7310 * +---+---+-------------------+--------+-------------+------+------+
7311 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
7312 * +---+---+-------------------+--------+-------------+------+------+
7313 *
7314 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7315 */
7316 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7317 int imm5)
7318 {
7319 int size = ctz32(imm5);
7320 uint32_t dofs, oprsz, maxsz;
7321
7322 if (size > 3 || ((size == 3) && !is_q)) {
7323 unallocated_encoding(s);
7324 return;
7325 }
7326
7327 if (!fp_access_check(s)) {
7328 return;
7329 }
7330
7331 dofs = vec_full_reg_offset(s, rd);
7332 oprsz = is_q ? 16 : 8;
7333 maxsz = vec_full_reg_size(s);
7334
7335 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7336 }
7337
7338 /* INS (Element)
7339 *
7340 * 31 21 20 16 15 14 11 10 9 5 4 0
7341 * +-----------------------+--------+------------+---+------+------+
7342 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7343 * +-----------------------+--------+------------+---+------+------+
7344 *
7345 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7346 * index: encoded in imm5<4:size+1>
7347 */
7348 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7349 int imm4, int imm5)
7350 {
7351 int size = ctz32(imm5);
7352 int src_index, dst_index;
7353 TCGv_i64 tmp;
7354
7355 if (size > 3) {
7356 unallocated_encoding(s);
7357 return;
7358 }
7359
7360 if (!fp_access_check(s)) {
7361 return;
7362 }
7363
7364 dst_index = extract32(imm5, 1+size, 5);
7365 src_index = extract32(imm4, size, 4);
7366
7367 tmp = tcg_temp_new_i64();
7368
7369 read_vec_element(s, tmp, rn, src_index, size);
7370 write_vec_element(s, tmp, rd, dst_index, size);
7371
7372 tcg_temp_free_i64(tmp);
7373 }
7374
7375
7376 /* INS (General)
7377 *
7378 * 31 21 20 16 15 10 9 5 4 0
7379 * +-----------------------+--------+-------------+------+------+
7380 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
7381 * +-----------------------+--------+-------------+------+------+
7382 *
7383 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7384 * index: encoded in imm5<4:size+1>
7385 */
7386 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7387 {
7388 int size = ctz32(imm5);
7389 int idx;
7390
7391 if (size > 3) {
7392 unallocated_encoding(s);
7393 return;
7394 }
7395
7396 if (!fp_access_check(s)) {
7397 return;
7398 }
7399
7400 idx = extract32(imm5, 1 + size, 4 - size);
7401 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7402 }
7403
7404 /*
7405 * UMOV (General)
7406 * SMOV (General)
7407 *
7408 * 31 30 29 21 20 16 15 12 10 9 5 4 0
7409 * +---+---+-------------------+--------+-------------+------+------+
7410 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
7411 * +---+---+-------------------+--------+-------------+------+------+
7412 *
7413 * U: unsigned when set
7414 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7415 */
7416 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7417 int rn, int rd, int imm5)
7418 {
7419 int size = ctz32(imm5);
7420 int element;
7421 TCGv_i64 tcg_rd;
7422
7423 /* Check for UnallocatedEncodings */
7424 if (is_signed) {
7425 if (size > 2 || (size == 2 && !is_q)) {
7426 unallocated_encoding(s);
7427 return;
7428 }
7429 } else {
7430 if (size > 3
7431 || (size < 3 && is_q)
7432 || (size == 3 && !is_q)) {
7433 unallocated_encoding(s);
7434 return;
7435 }
7436 }
7437
7438 if (!fp_access_check(s)) {
7439 return;
7440 }
7441
7442 element = extract32(imm5, 1+size, 4);
7443
7444 tcg_rd = cpu_reg(s, rd);
7445 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7446 if (is_signed && !is_q) {
7447 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7448 }
7449 }
7450
7451 /* AdvSIMD copy
7452 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7453 * +---+---+----+-----------------+------+---+------+---+------+------+
7454 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7455 * +---+---+----+-----------------+------+---+------+---+------+------+
7456 */
7457 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7458 {
7459 int rd = extract32(insn, 0, 5);
7460 int rn = extract32(insn, 5, 5);
7461 int imm4 = extract32(insn, 11, 4);
7462 int op = extract32(insn, 29, 1);
7463 int is_q = extract32(insn, 30, 1);
7464 int imm5 = extract32(insn, 16, 5);
7465
7466 if (op) {
7467 if (is_q) {
7468 /* INS (element) */
7469 handle_simd_inse(s, rd, rn, imm4, imm5);
7470 } else {
7471 unallocated_encoding(s);
7472 }
7473 } else {
7474 switch (imm4) {
7475 case 0:
7476 /* DUP (element - vector) */
7477 handle_simd_dupe(s, is_q, rd, rn, imm5);
7478 break;
7479 case 1:
7480 /* DUP (general) */
7481 handle_simd_dupg(s, is_q, rd, rn, imm5);
7482 break;
7483 case 3:
7484 if (is_q) {
7485 /* INS (general) */
7486 handle_simd_insg(s, rd, rn, imm5);
7487 } else {
7488 unallocated_encoding(s);
7489 }
7490 break;
7491 case 5:
7492 case 7:
7493 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7494 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7495 break;
7496 default:
7497 unallocated_encoding(s);
7498 break;
7499 }
7500 }
7501 }
7502
7503 /* AdvSIMD modified immediate
7504 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
7505 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7506 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
7507 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7508 *
7509 * There are a number of operations that can be carried out here:
7510 * MOVI - move (shifted) imm into register
7511 * MVNI - move inverted (shifted) imm into register
7512 * ORR - bitwise OR of (shifted) imm with register
7513 * BIC - bitwise clear of (shifted) imm with register
7514 * With ARMv8.2 we also have:
7515 * FMOV half-precision
7516 */
7517 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7518 {
7519 int rd = extract32(insn, 0, 5);
7520 int cmode = extract32(insn, 12, 4);
7521 int cmode_3_1 = extract32(cmode, 1, 3);
7522 int cmode_0 = extract32(cmode, 0, 1);
7523 int o2 = extract32(insn, 11, 1);
7524 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7525 bool is_neg = extract32(insn, 29, 1);
7526 bool is_q = extract32(insn, 30, 1);
7527 uint64_t imm = 0;
7528
7529 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7530 /* Check for FMOV (vector, immediate) - half-precision */
7531 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7532 unallocated_encoding(s);
7533 return;
7534 }
7535 }
7536
7537 if (!fp_access_check(s)) {
7538 return;
7539 }
7540
7541 /* See AdvSIMDExpandImm() in ARM ARM */
7542 switch (cmode_3_1) {
7543 case 0: /* Replicate(Zeros(24):imm8, 2) */
7544 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
7545 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
7546 case 3: /* Replicate(imm8:Zeros(24), 2) */
7547 {
7548 int shift = cmode_3_1 * 8;
7549 imm = bitfield_replicate(abcdefgh << shift, 32);
7550 break;
7551 }
7552 case 4: /* Replicate(Zeros(8):imm8, 4) */
7553 case 5: /* Replicate(imm8:Zeros(8), 4) */
7554 {
7555 int shift = (cmode_3_1 & 0x1) * 8;
7556 imm = bitfield_replicate(abcdefgh << shift, 16);
7557 break;
7558 }
7559 case 6:
7560 if (cmode_0) {
7561 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
7562 imm = (abcdefgh << 16) | 0xffff;
7563 } else {
7564 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
7565 imm = (abcdefgh << 8) | 0xff;
7566 }
7567 imm = bitfield_replicate(imm, 32);
7568 break;
7569 case 7:
7570 if (!cmode_0 && !is_neg) {
7571 imm = bitfield_replicate(abcdefgh, 8);
7572 } else if (!cmode_0 && is_neg) {
7573 int i;
7574 imm = 0;
7575 for (i = 0; i < 8; i++) {
7576 if ((abcdefgh) & (1 << i)) {
7577 imm |= 0xffULL << (i * 8);
7578 }
7579 }
7580 } else if (cmode_0) {
7581 if (is_neg) {
7582 imm = (abcdefgh & 0x3f) << 48;
7583 if (abcdefgh & 0x80) {
7584 imm |= 0x8000000000000000ULL;
7585 }
7586 if (abcdefgh & 0x40) {
7587 imm |= 0x3fc0000000000000ULL;
7588 } else {
7589 imm |= 0x4000000000000000ULL;
7590 }
7591 } else {
7592 if (o2) {
7593 /* FMOV (vector, immediate) - half-precision */
7594 imm = vfp_expand_imm(MO_16, abcdefgh);
7595 /* now duplicate across the lanes */
7596 imm = bitfield_replicate(imm, 16);
7597 } else {
7598 imm = (abcdefgh & 0x3f) << 19;
7599 if (abcdefgh & 0x80) {
7600 imm |= 0x80000000;
7601 }
7602 if (abcdefgh & 0x40) {
7603 imm |= 0x3e000000;
7604 } else {
7605 imm |= 0x40000000;
7606 }
7607 imm |= (imm << 32);
7608 }
7609 }
7610 }
7611 break;
7612 default:
7613 fprintf(stderr, "%s: cmode_3_1: %x\n", __func__, cmode_3_1);
7614 g_assert_not_reached();
7615 }
7616
7617 if (cmode_3_1 != 7 && is_neg) {
7618 imm = ~imm;
7619 }
7620
7621 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7622 /* MOVI or MVNI, with MVNI negation handled above. */
7623 tcg_gen_gvec_dup64i(vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7624 vec_full_reg_size(s), imm);
7625 } else {
7626 /* ORR or BIC, with BIC negation to AND handled above. */
7627 if (is_neg) {
7628 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7629 } else {
7630 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7631 }
7632 }
7633 }
7634
7635 /* AdvSIMD scalar copy
7636 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7637 * +-----+----+-----------------+------+---+------+---+------+------+
7638 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7639 * +-----+----+-----------------+------+---+------+---+------+------+
7640 */
7641 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7642 {
7643 int rd = extract32(insn, 0, 5);
7644 int rn = extract32(insn, 5, 5);
7645 int imm4 = extract32(insn, 11, 4);
7646 int imm5 = extract32(insn, 16, 5);
7647 int op = extract32(insn, 29, 1);
7648
7649 if (op != 0 || imm4 != 0) {
7650 unallocated_encoding(s);
7651 return;
7652 }
7653
7654 /* DUP (element, scalar) */
7655 handle_simd_dupes(s, rd, rn, imm5);
7656 }
7657
7658 /* AdvSIMD scalar pairwise
7659 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7660 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7661 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7662 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7663 */
7664 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7665 {
7666 int u = extract32(insn, 29, 1);
7667 int size = extract32(insn, 22, 2);
7668 int opcode = extract32(insn, 12, 5);
7669 int rn = extract32(insn, 5, 5);
7670 int rd = extract32(insn, 0, 5);
7671 TCGv_ptr fpst;
7672
7673 /* For some ops (the FP ones), size[1] is part of the encoding.
7674 * For ADDP strictly it is not but size[1] is always 1 for valid
7675 * encodings.
7676 */
7677 opcode |= (extract32(size, 1, 1) << 5);
7678
7679 switch (opcode) {
7680 case 0x3b: /* ADDP */
7681 if (u || size != 3) {
7682 unallocated_encoding(s);
7683 return;
7684 }
7685 if (!fp_access_check(s)) {
7686 return;
7687 }
7688
7689 fpst = NULL;
7690 break;
7691 case 0xc: /* FMAXNMP */
7692 case 0xd: /* FADDP */
7693 case 0xf: /* FMAXP */
7694 case 0x2c: /* FMINNMP */
7695 case 0x2f: /* FMINP */
7696 /* FP op, size[0] is 32 or 64 bit*/
7697 if (!u) {
7698 if (!dc_isar_feature(aa64_fp16, s)) {
7699 unallocated_encoding(s);
7700 return;
7701 } else {
7702 size = MO_16;
7703 }
7704 } else {
7705 size = extract32(size, 0, 1) ? MO_64 : MO_32;
7706 }
7707
7708 if (!fp_access_check(s)) {
7709 return;
7710 }
7711
7712 fpst = get_fpstatus_ptr(size == MO_16);
7713 break;
7714 default:
7715 unallocated_encoding(s);
7716 return;
7717 }
7718
7719 if (size == MO_64) {
7720 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7721 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7722 TCGv_i64 tcg_res = tcg_temp_new_i64();
7723
7724 read_vec_element(s, tcg_op1, rn, 0, MO_64);
7725 read_vec_element(s, tcg_op2, rn, 1, MO_64);
7726
7727 switch (opcode) {
7728 case 0x3b: /* ADDP */
7729 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
7730 break;
7731 case 0xc: /* FMAXNMP */
7732 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7733 break;
7734 case 0xd: /* FADDP */
7735 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7736 break;
7737 case 0xf: /* FMAXP */
7738 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7739 break;
7740 case 0x2c: /* FMINNMP */
7741 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7742 break;
7743 case 0x2f: /* FMINP */
7744 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7745 break;
7746 default:
7747 g_assert_not_reached();
7748 }
7749
7750 write_fp_dreg(s, rd, tcg_res);
7751
7752 tcg_temp_free_i64(tcg_op1);
7753 tcg_temp_free_i64(tcg_op2);
7754 tcg_temp_free_i64(tcg_res);
7755 } else {
7756 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7757 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7758 TCGv_i32 tcg_res = tcg_temp_new_i32();
7759
7760 read_vec_element_i32(s, tcg_op1, rn, 0, size);
7761 read_vec_element_i32(s, tcg_op2, rn, 1, size);
7762
7763 if (size == MO_16) {
7764 switch (opcode) {
7765 case 0xc: /* FMAXNMP */
7766 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7767 break;
7768 case 0xd: /* FADDP */
7769 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
7770 break;
7771 case 0xf: /* FMAXP */
7772 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
7773 break;
7774 case 0x2c: /* FMINNMP */
7775 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7776 break;
7777 case 0x2f: /* FMINP */
7778 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
7779 break;
7780 default:
7781 g_assert_not_reached();
7782 }
7783 } else {
7784 switch (opcode) {
7785 case 0xc: /* FMAXNMP */
7786 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7787 break;
7788 case 0xd: /* FADDP */
7789 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7790 break;
7791 case 0xf: /* FMAXP */
7792 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7793 break;
7794 case 0x2c: /* FMINNMP */
7795 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7796 break;
7797 case 0x2f: /* FMINP */
7798 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7799 break;
7800 default:
7801 g_assert_not_reached();
7802 }
7803 }
7804
7805 write_fp_sreg(s, rd, tcg_res);
7806
7807 tcg_temp_free_i32(tcg_op1);
7808 tcg_temp_free_i32(tcg_op2);
7809 tcg_temp_free_i32(tcg_res);
7810 }
7811
7812 if (fpst) {
7813 tcg_temp_free_ptr(fpst);
7814 }
7815 }
7816
7817 /*
7818 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
7819 *
7820 * This code is handles the common shifting code and is used by both
7821 * the vector and scalar code.
7822 */
7823 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
7824 TCGv_i64 tcg_rnd, bool accumulate,
7825 bool is_u, int size, int shift)
7826 {
7827 bool extended_result = false;
7828 bool round = tcg_rnd != NULL;
7829 int ext_lshift = 0;
7830 TCGv_i64 tcg_src_hi;
7831
7832 if (round && size == 3) {
7833 extended_result = true;
7834 ext_lshift = 64 - shift;
7835 tcg_src_hi = tcg_temp_new_i64();
7836 } else if (shift == 64) {
7837 if (!accumulate && is_u) {
7838 /* result is zero */
7839 tcg_gen_movi_i64(tcg_res, 0);
7840 return;
7841 }
7842 }
7843
7844 /* Deal with the rounding step */
7845 if (round) {
7846 if (extended_result) {
7847 TCGv_i64 tcg_zero = tcg_const_i64(0);
7848 if (!is_u) {
7849 /* take care of sign extending tcg_res */
7850 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
7851 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
7852 tcg_src, tcg_src_hi,
7853 tcg_rnd, tcg_zero);
7854 } else {
7855 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
7856 tcg_src, tcg_zero,
7857 tcg_rnd, tcg_zero);
7858 }
7859 tcg_temp_free_i64(tcg_zero);
7860 } else {
7861 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
7862 }
7863 }
7864
7865 /* Now do the shift right */
7866 if (round && extended_result) {
7867 /* extended case, >64 bit precision required */
7868 if (ext_lshift == 0) {
7869 /* special case, only high bits matter */
7870 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
7871 } else {
7872 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
7873 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
7874 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
7875 }
7876 } else {
7877 if (is_u) {
7878 if (shift == 64) {
7879 /* essentially shifting in 64 zeros */
7880 tcg_gen_movi_i64(tcg_src, 0);
7881 } else {
7882 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
7883 }
7884 } else {
7885 if (shift == 64) {
7886 /* effectively extending the sign-bit */
7887 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
7888 } else {
7889 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
7890 }
7891 }
7892 }
7893
7894 if (accumulate) {
7895 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
7896 } else {
7897 tcg_gen_mov_i64(tcg_res, tcg_src);
7898 }
7899
7900 if (extended_result) {
7901 tcg_temp_free_i64(tcg_src_hi);
7902 }
7903 }
7904
7905 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
7906 static void handle_scalar_simd_shri(DisasContext *s,
7907 bool is_u, int immh, int immb,
7908 int opcode, int rn, int rd)
7909 {
7910 const int size = 3;
7911 int immhb = immh << 3 | immb;
7912 int shift = 2 * (8 << size) - immhb;
7913 bool accumulate = false;
7914 bool round = false;
7915 bool insert = false;
7916 TCGv_i64 tcg_rn;
7917 TCGv_i64 tcg_rd;
7918 TCGv_i64 tcg_round;
7919
7920 if (!extract32(immh, 3, 1)) {
7921 unallocated_encoding(s);
7922 return;
7923 }
7924
7925 if (!fp_access_check(s)) {
7926 return;
7927 }
7928
7929 switch (opcode) {
7930 case 0x02: /* SSRA / USRA (accumulate) */
7931 accumulate = true;
7932 break;
7933 case 0x04: /* SRSHR / URSHR (rounding) */
7934 round = true;
7935 break;
7936 case 0x06: /* SRSRA / URSRA (accum + rounding) */
7937 accumulate = round = true;
7938 break;
7939 case 0x08: /* SRI */
7940 insert = true;
7941 break;
7942 }
7943
7944 if (round) {
7945 uint64_t round_const = 1ULL << (shift - 1);
7946 tcg_round = tcg_const_i64(round_const);
7947 } else {
7948 tcg_round = NULL;
7949 }
7950
7951 tcg_rn = read_fp_dreg(s, rn);
7952 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
7953
7954 if (insert) {
7955 /* shift count same as element size is valid but does nothing;
7956 * special case to avoid potential shift by 64.
7957 */
7958 int esize = 8 << size;
7959 if (shift != esize) {
7960 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
7961 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
7962 }
7963 } else {
7964 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
7965 accumulate, is_u, size, shift);
7966 }
7967
7968 write_fp_dreg(s, rd, tcg_rd);
7969
7970 tcg_temp_free_i64(tcg_rn);
7971 tcg_temp_free_i64(tcg_rd);
7972 if (round) {
7973 tcg_temp_free_i64(tcg_round);
7974 }
7975 }
7976
7977 /* SHL/SLI - Scalar shift left */
7978 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
7979 int immh, int immb, int opcode,
7980 int rn, int rd)
7981 {
7982 int size = 32 - clz32(immh) - 1;
7983 int immhb = immh << 3 | immb;
7984 int shift = immhb - (8 << size);
7985 TCGv_i64 tcg_rn = new_tmp_a64(s);
7986 TCGv_i64 tcg_rd = new_tmp_a64(s);
7987
7988 if (!extract32(immh, 3, 1)) {
7989 unallocated_encoding(s);
7990 return;
7991 }
7992
7993 if (!fp_access_check(s)) {
7994 return;
7995 }
7996
7997 tcg_rn = read_fp_dreg(s, rn);
7998 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
7999
8000 if (insert) {
8001 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8002 } else {
8003 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8004 }
8005
8006 write_fp_dreg(s, rd, tcg_rd);
8007
8008 tcg_temp_free_i64(tcg_rn);
8009 tcg_temp_free_i64(tcg_rd);
8010 }
8011
8012 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8013 * (signed/unsigned) narrowing */
8014 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8015 bool is_u_shift, bool is_u_narrow,
8016 int immh, int immb, int opcode,
8017 int rn, int rd)
8018 {
8019 int immhb = immh << 3 | immb;
8020 int size = 32 - clz32(immh) - 1;
8021 int esize = 8 << size;
8022 int shift = (2 * esize) - immhb;
8023 int elements = is_scalar ? 1 : (64 / esize);
8024 bool round = extract32(opcode, 0, 1);
8025 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8026 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8027 TCGv_i32 tcg_rd_narrowed;
8028 TCGv_i64 tcg_final;
8029
8030 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8031 { gen_helper_neon_narrow_sat_s8,
8032 gen_helper_neon_unarrow_sat8 },
8033 { gen_helper_neon_narrow_sat_s16,
8034 gen_helper_neon_unarrow_sat16 },
8035 { gen_helper_neon_narrow_sat_s32,
8036 gen_helper_neon_unarrow_sat32 },
8037 { NULL, NULL },
8038 };
8039 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8040 gen_helper_neon_narrow_sat_u8,
8041 gen_helper_neon_narrow_sat_u16,
8042 gen_helper_neon_narrow_sat_u32,
8043 NULL
8044 };
8045 NeonGenNarrowEnvFn *narrowfn;
8046
8047 int i;
8048
8049 assert(size < 4);
8050
8051 if (extract32(immh, 3, 1)) {
8052 unallocated_encoding(s);
8053 return;
8054 }
8055
8056 if (!fp_access_check(s)) {
8057 return;
8058 }
8059
8060 if (is_u_shift) {
8061 narrowfn = unsigned_narrow_fns[size];
8062 } else {
8063 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8064 }
8065
8066 tcg_rn = tcg_temp_new_i64();
8067 tcg_rd = tcg_temp_new_i64();
8068 tcg_rd_narrowed = tcg_temp_new_i32();
8069 tcg_final = tcg_const_i64(0);
8070
8071 if (round) {
8072 uint64_t round_const = 1ULL << (shift - 1);
8073 tcg_round = tcg_const_i64(round_const);
8074 } else {
8075 tcg_round = NULL;
8076 }
8077
8078 for (i = 0; i < elements; i++) {
8079 read_vec_element(s, tcg_rn, rn, i, ldop);
8080 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8081 false, is_u_shift, size+1, shift);
8082 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8083 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8084 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8085 }
8086
8087 if (!is_q) {
8088 write_vec_element(s, tcg_final, rd, 0, MO_64);
8089 } else {
8090 write_vec_element(s, tcg_final, rd, 1, MO_64);
8091 }
8092
8093 if (round) {
8094 tcg_temp_free_i64(tcg_round);
8095 }
8096 tcg_temp_free_i64(tcg_rn);
8097 tcg_temp_free_i64(tcg_rd);
8098 tcg_temp_free_i32(tcg_rd_narrowed);
8099 tcg_temp_free_i64(tcg_final);
8100
8101 clear_vec_high(s, is_q, rd);
8102 }
8103
8104 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8105 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8106 bool src_unsigned, bool dst_unsigned,
8107 int immh, int immb, int rn, int rd)
8108 {
8109 int immhb = immh << 3 | immb;
8110 int size = 32 - clz32(immh) - 1;
8111 int shift = immhb - (8 << size);
8112 int pass;
8113
8114 assert(immh != 0);
8115 assert(!(scalar && is_q));
8116
8117 if (!scalar) {
8118 if (!is_q && extract32(immh, 3, 1)) {
8119 unallocated_encoding(s);
8120 return;
8121 }
8122
8123 /* Since we use the variable-shift helpers we must
8124 * replicate the shift count into each element of
8125 * the tcg_shift value.
8126 */
8127 switch (size) {
8128 case 0:
8129 shift |= shift << 8;
8130 /* fall through */
8131 case 1:
8132 shift |= shift << 16;
8133 break;
8134 case 2:
8135 case 3:
8136 break;
8137 default:
8138 g_assert_not_reached();
8139 }
8140 }
8141
8142 if (!fp_access_check(s)) {
8143 return;
8144 }
8145
8146 if (size == 3) {
8147 TCGv_i64 tcg_shift = tcg_const_i64(shift);
8148 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8149 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8150 { NULL, gen_helper_neon_qshl_u64 },
8151 };
8152 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8153 int maxpass = is_q ? 2 : 1;
8154
8155 for (pass = 0; pass < maxpass; pass++) {
8156 TCGv_i64 tcg_op = tcg_temp_new_i64();
8157
8158 read_vec_element(s, tcg_op, rn, pass, MO_64);
8159 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8160 write_vec_element(s, tcg_op, rd, pass, MO_64);
8161
8162 tcg_temp_free_i64(tcg_op);
8163 }
8164 tcg_temp_free_i64(tcg_shift);
8165 clear_vec_high(s, is_q, rd);
8166 } else {
8167 TCGv_i32 tcg_shift = tcg_const_i32(shift);
8168 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8169 {
8170 { gen_helper_neon_qshl_s8,
8171 gen_helper_neon_qshl_s16,
8172 gen_helper_neon_qshl_s32 },
8173 { gen_helper_neon_qshlu_s8,
8174 gen_helper_neon_qshlu_s16,
8175 gen_helper_neon_qshlu_s32 }
8176 }, {
8177 { NULL, NULL, NULL },
8178 { gen_helper_neon_qshl_u8,
8179 gen_helper_neon_qshl_u16,
8180 gen_helper_neon_qshl_u32 }
8181 }
8182 };
8183 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8184 TCGMemOp memop = scalar ? size : MO_32;
8185 int maxpass = scalar ? 1 : is_q ? 4 : 2;
8186
8187 for (pass = 0; pass < maxpass; pass++) {
8188 TCGv_i32 tcg_op = tcg_temp_new_i32();
8189
8190 read_vec_element_i32(s, tcg_op, rn, pass, memop);
8191 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8192 if (scalar) {
8193 switch (size) {
8194 case 0:
8195 tcg_gen_ext8u_i32(tcg_op, tcg_op);
8196 break;
8197 case 1:
8198 tcg_gen_ext16u_i32(tcg_op, tcg_op);
8199 break;
8200 case 2:
8201 break;
8202 default:
8203 g_assert_not_reached();
8204 }
8205 write_fp_sreg(s, rd, tcg_op);
8206 } else {
8207 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8208 }
8209
8210 tcg_temp_free_i32(tcg_op);
8211 }
8212 tcg_temp_free_i32(tcg_shift);
8213
8214 if (!scalar) {
8215 clear_vec_high(s, is_q, rd);
8216 }
8217 }
8218 }
8219
8220 /* Common vector code for handling integer to FP conversion */
8221 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8222 int elements, int is_signed,
8223 int fracbits, int size)
8224 {
8225 TCGv_ptr tcg_fpst = get_fpstatus_ptr(size == MO_16);
8226 TCGv_i32 tcg_shift = NULL;
8227
8228 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
8229 int pass;
8230
8231 if (fracbits || size == MO_64) {
8232 tcg_shift = tcg_const_i32(fracbits);
8233 }
8234
8235 if (size == MO_64) {
8236 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8237 TCGv_i64 tcg_double = tcg_temp_new_i64();
8238
8239 for (pass = 0; pass < elements; pass++) {
8240 read_vec_element(s, tcg_int64, rn, pass, mop);
8241
8242 if (is_signed) {
8243 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8244 tcg_shift, tcg_fpst);
8245 } else {
8246 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8247 tcg_shift, tcg_fpst);
8248 }
8249 if (elements == 1) {
8250 write_fp_dreg(s, rd, tcg_double);
8251 } else {
8252 write_vec_element(s, tcg_double, rd, pass, MO_64);
8253 }
8254 }
8255
8256 tcg_temp_free_i64(tcg_int64);
8257 tcg_temp_free_i64(tcg_double);
8258
8259 } else {
8260 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8261 TCGv_i32 tcg_float = tcg_temp_new_i32();
8262
8263 for (pass = 0; pass < elements; pass++) {
8264 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8265
8266 switch (size) {
8267 case MO_32:
8268 if (fracbits) {
8269 if (is_signed) {
8270 gen_helper_vfp_sltos(tcg_float, tcg_int32,
8271 tcg_shift, tcg_fpst);
8272 } else {
8273 gen_helper_vfp_ultos(tcg_float, tcg_int32,
8274 tcg_shift, tcg_fpst);
8275 }
8276 } else {
8277 if (is_signed) {
8278 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8279 } else {
8280 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8281 }
8282 }
8283 break;
8284 case MO_16:
8285 if (fracbits) {
8286 if (is_signed) {
8287 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8288 tcg_shift, tcg_fpst);
8289 } else {
8290 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8291 tcg_shift, tcg_fpst);
8292 }
8293 } else {
8294 if (is_signed) {
8295 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8296 } else {
8297 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8298 }
8299 }
8300 break;
8301 default:
8302 g_assert_not_reached();
8303 }
8304
8305 if (elements == 1) {
8306 write_fp_sreg(s, rd, tcg_float);
8307 } else {
8308 write_vec_element_i32(s, tcg_float, rd, pass, size);
8309 }
8310 }
8311
8312 tcg_temp_free_i32(tcg_int32);
8313 tcg_temp_free_i32(tcg_float);
8314 }
8315
8316 tcg_temp_free_ptr(tcg_fpst);
8317 if (tcg_shift) {
8318 tcg_temp_free_i32(tcg_shift);
8319 }
8320
8321 clear_vec_high(s, elements << size == 16, rd);
8322 }
8323
8324 /* UCVTF/SCVTF - Integer to FP conversion */
8325 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8326 bool is_q, bool is_u,
8327 int immh, int immb, int opcode,
8328 int rn, int rd)
8329 {
8330 int size, elements, fracbits;
8331 int immhb = immh << 3 | immb;
8332
8333 if (immh & 8) {
8334 size = MO_64;
8335 if (!is_scalar && !is_q) {
8336 unallocated_encoding(s);
8337 return;
8338 }
8339 } else if (immh & 4) {
8340 size = MO_32;
8341 } else if (immh & 2) {
8342 size = MO_16;
8343 if (!dc_isar_feature(aa64_fp16, s)) {
8344 unallocated_encoding(s);
8345 return;
8346 }
8347 } else {
8348 /* immh == 0 would be a failure of the decode logic */
8349 g_assert(immh == 1);
8350 unallocated_encoding(s);
8351 return;
8352 }
8353
8354 if (is_scalar) {
8355 elements = 1;
8356 } else {
8357 elements = (8 << is_q) >> size;
8358 }
8359 fracbits = (16 << size) - immhb;
8360
8361 if (!fp_access_check(s)) {
8362 return;
8363 }
8364
8365 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8366 }
8367
8368 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8369 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8370 bool is_q, bool is_u,
8371 int immh, int immb, int rn, int rd)
8372 {
8373 int immhb = immh << 3 | immb;
8374 int pass, size, fracbits;
8375 TCGv_ptr tcg_fpstatus;
8376 TCGv_i32 tcg_rmode, tcg_shift;
8377
8378 if (immh & 0x8) {
8379 size = MO_64;
8380 if (!is_scalar && !is_q) {
8381 unallocated_encoding(s);
8382 return;
8383 }
8384 } else if (immh & 0x4) {
8385 size = MO_32;
8386 } else if (immh & 0x2) {
8387 size = MO_16;
8388 if (!dc_isar_feature(aa64_fp16, s)) {
8389 unallocated_encoding(s);
8390 return;
8391 }
8392 } else {
8393 /* Should have split out AdvSIMD modified immediate earlier. */
8394 assert(immh == 1);
8395 unallocated_encoding(s);
8396 return;
8397 }
8398
8399 if (!fp_access_check(s)) {
8400 return;
8401 }
8402
8403 assert(!(is_scalar && is_q));
8404
8405 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
8406 tcg_fpstatus = get_fpstatus_ptr(size == MO_16);
8407 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8408 fracbits = (16 << size) - immhb;
8409 tcg_shift = tcg_const_i32(fracbits);
8410
8411 if (size == MO_64) {
8412 int maxpass = is_scalar ? 1 : 2;
8413
8414 for (pass = 0; pass < maxpass; pass++) {
8415 TCGv_i64 tcg_op = tcg_temp_new_i64();
8416
8417 read_vec_element(s, tcg_op, rn, pass, MO_64);
8418 if (is_u) {
8419 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8420 } else {
8421 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8422 }
8423 write_vec_element(s, tcg_op, rd, pass, MO_64);
8424 tcg_temp_free_i64(tcg_op);
8425 }
8426 clear_vec_high(s, is_q, rd);
8427 } else {
8428 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8429 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8430
8431 switch (size) {
8432 case MO_16:
8433 if (is_u) {
8434 fn = gen_helper_vfp_touhh;
8435 } else {
8436 fn = gen_helper_vfp_toshh;
8437 }
8438 break;
8439 case MO_32:
8440 if (is_u) {
8441 fn = gen_helper_vfp_touls;
8442 } else {
8443 fn = gen_helper_vfp_tosls;
8444 }
8445 break;
8446 default:
8447 g_assert_not_reached();
8448 }
8449
8450 for (pass = 0; pass < maxpass; pass++) {
8451 TCGv_i32 tcg_op = tcg_temp_new_i32();
8452
8453 read_vec_element_i32(s, tcg_op, rn, pass, size);
8454 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8455 if (is_scalar) {
8456 write_fp_sreg(s, rd, tcg_op);
8457 } else {
8458 write_vec_element_i32(s, tcg_op, rd, pass, size);
8459 }
8460 tcg_temp_free_i32(tcg_op);
8461 }
8462 if (!is_scalar) {
8463 clear_vec_high(s, is_q, rd);
8464 }
8465 }
8466
8467 tcg_temp_free_ptr(tcg_fpstatus);
8468 tcg_temp_free_i32(tcg_shift);
8469 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8470 tcg_temp_free_i32(tcg_rmode);
8471 }
8472
8473 /* AdvSIMD scalar shift by immediate
8474 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8475 * +-----+---+-------------+------+------+--------+---+------+------+
8476 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8477 * +-----+---+-------------+------+------+--------+---+------+------+
8478 *
8479 * This is the scalar version so it works on a fixed sized registers
8480 */
8481 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8482 {
8483 int rd = extract32(insn, 0, 5);
8484 int rn = extract32(insn, 5, 5);
8485 int opcode = extract32(insn, 11, 5);
8486 int immb = extract32(insn, 16, 3);
8487 int immh = extract32(insn, 19, 4);
8488 bool is_u = extract32(insn, 29, 1);
8489
8490 if (immh == 0) {
8491 unallocated_encoding(s);
8492 return;
8493 }
8494
8495 switch (opcode) {
8496 case 0x08: /* SRI */
8497 if (!is_u) {
8498 unallocated_encoding(s);
8499 return;
8500 }
8501 /* fall through */
8502 case 0x00: /* SSHR / USHR */
8503 case 0x02: /* SSRA / USRA */
8504 case 0x04: /* SRSHR / URSHR */
8505 case 0x06: /* SRSRA / URSRA */
8506 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8507 break;
8508 case 0x0a: /* SHL / SLI */
8509 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8510 break;
8511 case 0x1c: /* SCVTF, UCVTF */
8512 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8513 opcode, rn, rd);
8514 break;
8515 case 0x10: /* SQSHRUN, SQSHRUN2 */
8516 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8517 if (!is_u) {
8518 unallocated_encoding(s);
8519 return;
8520 }
8521 handle_vec_simd_sqshrn(s, true, false, false, true,
8522 immh, immb, opcode, rn, rd);
8523 break;
8524 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8525 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8526 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8527 immh, immb, opcode, rn, rd);
8528 break;
8529 case 0xc: /* SQSHLU */
8530 if (!is_u) {
8531 unallocated_encoding(s);
8532 return;
8533 }
8534 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8535 break;
8536 case 0xe: /* SQSHL, UQSHL */
8537 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8538 break;
8539 case 0x1f: /* FCVTZS, FCVTZU */
8540 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8541 break;
8542 default:
8543 unallocated_encoding(s);
8544 break;
8545 }
8546 }
8547
8548 /* AdvSIMD scalar three different
8549 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8550 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8551 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8552 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8553 */
8554 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8555 {
8556 bool is_u = extract32(insn, 29, 1);
8557 int size = extract32(insn, 22, 2);
8558 int opcode = extract32(insn, 12, 4);
8559 int rm = extract32(insn, 16, 5);
8560 int rn = extract32(insn, 5, 5);
8561 int rd = extract32(insn, 0, 5);
8562
8563 if (is_u) {
8564 unallocated_encoding(s);
8565 return;
8566 }
8567
8568 switch (opcode) {
8569 case 0x9: /* SQDMLAL, SQDMLAL2 */
8570 case 0xb: /* SQDMLSL, SQDMLSL2 */
8571 case 0xd: /* SQDMULL, SQDMULL2 */
8572 if (size == 0 || size == 3) {
8573 unallocated_encoding(s);
8574 return;
8575 }
8576 break;
8577 default:
8578 unallocated_encoding(s);
8579 return;
8580 }
8581
8582 if (!fp_access_check(s)) {
8583 return;
8584 }
8585
8586 if (size == 2) {
8587 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8588 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8589 TCGv_i64 tcg_res = tcg_temp_new_i64();
8590
8591 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8592 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8593
8594 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8595 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
8596
8597 switch (opcode) {
8598 case 0xd: /* SQDMULL, SQDMULL2 */
8599 break;
8600 case 0xb: /* SQDMLSL, SQDMLSL2 */
8601 tcg_gen_neg_i64(tcg_res, tcg_res);
8602 /* fall through */
8603 case 0x9: /* SQDMLAL, SQDMLAL2 */
8604 read_vec_element(s, tcg_op1, rd, 0, MO_64);
8605 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
8606 tcg_res, tcg_op1);
8607 break;
8608 default:
8609 g_assert_not_reached();
8610 }
8611
8612 write_fp_dreg(s, rd, tcg_res);
8613
8614 tcg_temp_free_i64(tcg_op1);
8615 tcg_temp_free_i64(tcg_op2);
8616 tcg_temp_free_i64(tcg_res);
8617 } else {
8618 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8619 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8620 TCGv_i64 tcg_res = tcg_temp_new_i64();
8621
8622 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8623 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
8624
8625 switch (opcode) {
8626 case 0xd: /* SQDMULL, SQDMULL2 */
8627 break;
8628 case 0xb: /* SQDMLSL, SQDMLSL2 */
8629 gen_helper_neon_negl_u32(tcg_res, tcg_res);
8630 /* fall through */
8631 case 0x9: /* SQDMLAL, SQDMLAL2 */
8632 {
8633 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8634 read_vec_element(s, tcg_op3, rd, 0, MO_32);
8635 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
8636 tcg_res, tcg_op3);
8637 tcg_temp_free_i64(tcg_op3);
8638 break;
8639 }
8640 default:
8641 g_assert_not_reached();
8642 }
8643
8644 tcg_gen_ext32u_i64(tcg_res, tcg_res);
8645 write_fp_dreg(s, rd, tcg_res);
8646
8647 tcg_temp_free_i32(tcg_op1);
8648 tcg_temp_free_i32(tcg_op2);
8649 tcg_temp_free_i64(tcg_res);
8650 }
8651 }
8652
8653 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8654 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8655 {
8656 /* Handle 64x64->64 opcodes which are shared between the scalar
8657 * and vector 3-same groups. We cover every opcode where size == 3
8658 * is valid in either the three-reg-same (integer, not pairwise)
8659 * or scalar-three-reg-same groups.
8660 */
8661 TCGCond cond;
8662
8663 switch (opcode) {
8664 case 0x1: /* SQADD */
8665 if (u) {
8666 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8667 } else {
8668 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8669 }
8670 break;
8671 case 0x5: /* SQSUB */
8672 if (u) {
8673 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8674 } else {
8675 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8676 }
8677 break;
8678 case 0x6: /* CMGT, CMHI */
8679 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
8680 * We implement this using setcond (test) and then negating.
8681 */
8682 cond = u ? TCG_COND_GTU : TCG_COND_GT;
8683 do_cmop:
8684 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8685 tcg_gen_neg_i64(tcg_rd, tcg_rd);
8686 break;
8687 case 0x7: /* CMGE, CMHS */
8688 cond = u ? TCG_COND_GEU : TCG_COND_GE;
8689 goto do_cmop;
8690 case 0x11: /* CMTST, CMEQ */
8691 if (u) {
8692 cond = TCG_COND_EQ;
8693 goto do_cmop;
8694 }
8695 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8696 break;
8697 case 0x8: /* SSHL, USHL */
8698 if (u) {
8699 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
8700 } else {
8701 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
8702 }
8703 break;
8704 case 0x9: /* SQSHL, UQSHL */
8705 if (u) {
8706 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8707 } else {
8708 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8709 }
8710 break;
8711 case 0xa: /* SRSHL, URSHL */
8712 if (u) {
8713 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8714 } else {
8715 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8716 }
8717 break;
8718 case 0xb: /* SQRSHL, UQRSHL */
8719 if (u) {
8720 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8721 } else {
8722 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8723 }
8724 break;
8725 case 0x10: /* ADD, SUB */
8726 if (u) {
8727 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8728 } else {
8729 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8730 }
8731 break;
8732 default:
8733 g_assert_not_reached();
8734 }
8735 }
8736
8737 /* Handle the 3-same-operands float operations; shared by the scalar
8738 * and vector encodings. The caller must filter out any encodings
8739 * not allocated for the encoding it is dealing with.
8740 */
8741 static void handle_3same_float(DisasContext *s, int size, int elements,
8742 int fpopcode, int rd, int rn, int rm)
8743 {
8744 int pass;
8745 TCGv_ptr fpst = get_fpstatus_ptr(false);
8746
8747 for (pass = 0; pass < elements; pass++) {
8748 if (size) {
8749 /* Double */
8750 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8751 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8752 TCGv_i64 tcg_res = tcg_temp_new_i64();
8753
8754 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8755 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8756
8757 switch (fpopcode) {
8758 case 0x39: /* FMLS */
8759 /* As usual for ARM, separate negation for fused multiply-add */
8760 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8761 /* fall through */
8762 case 0x19: /* FMLA */
8763 read_vec_element(s, tcg_res, rd, pass, MO_64);
8764 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8765 tcg_res, fpst);
8766 break;
8767 case 0x18: /* FMAXNM */
8768 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8769 break;
8770 case 0x1a: /* FADD */
8771 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8772 break;
8773 case 0x1b: /* FMULX */
8774 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8775 break;
8776 case 0x1c: /* FCMEQ */
8777 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8778 break;
8779 case 0x1e: /* FMAX */
8780 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8781 break;
8782 case 0x1f: /* FRECPS */
8783 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8784 break;
8785 case 0x38: /* FMINNM */
8786 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8787 break;
8788 case 0x3a: /* FSUB */
8789 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8790 break;
8791 case 0x3e: /* FMIN */
8792 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8793 break;
8794 case 0x3f: /* FRSQRTS */
8795 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8796 break;
8797 case 0x5b: /* FMUL */
8798 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
8799 break;
8800 case 0x5c: /* FCMGE */
8801 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8802 break;
8803 case 0x5d: /* FACGE */
8804 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8805 break;
8806 case 0x5f: /* FDIV */
8807 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
8808 break;
8809 case 0x7a: /* FABD */
8810 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8811 gen_helper_vfp_absd(tcg_res, tcg_res);
8812 break;
8813 case 0x7c: /* FCMGT */
8814 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8815 break;
8816 case 0x7d: /* FACGT */
8817 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8818 break;
8819 default:
8820 g_assert_not_reached();
8821 }
8822
8823 write_vec_element(s, tcg_res, rd, pass, MO_64);
8824
8825 tcg_temp_free_i64(tcg_res);
8826 tcg_temp_free_i64(tcg_op1);
8827 tcg_temp_free_i64(tcg_op2);
8828 } else {
8829 /* Single */
8830 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8831 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8832 TCGv_i32 tcg_res = tcg_temp_new_i32();
8833
8834 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
8835 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
8836
8837 switch (fpopcode) {
8838 case 0x39: /* FMLS */
8839 /* As usual for ARM, separate negation for fused multiply-add */
8840 gen_helper_vfp_negs(tcg_op1, tcg_op1);
8841 /* fall through */
8842 case 0x19: /* FMLA */
8843 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8844 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
8845 tcg_res, fpst);
8846 break;
8847 case 0x1a: /* FADD */
8848 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8849 break;
8850 case 0x1b: /* FMULX */
8851 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
8852 break;
8853 case 0x1c: /* FCMEQ */
8854 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8855 break;
8856 case 0x1e: /* FMAX */
8857 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8858 break;
8859 case 0x1f: /* FRECPS */
8860 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8861 break;
8862 case 0x18: /* FMAXNM */
8863 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8864 break;
8865 case 0x38: /* FMINNM */
8866 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8867 break;
8868 case 0x3a: /* FSUB */
8869 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8870 break;
8871 case 0x3e: /* FMIN */
8872 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8873 break;
8874 case 0x3f: /* FRSQRTS */
8875 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8876 break;
8877 case 0x5b: /* FMUL */
8878 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
8879 break;
8880 case 0x5c: /* FCMGE */
8881 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8882 break;
8883 case 0x5d: /* FACGE */
8884 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8885 break;
8886 case 0x5f: /* FDIV */
8887 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
8888 break;
8889 case 0x7a: /* FABD */
8890 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8891 gen_helper_vfp_abss(tcg_res, tcg_res);
8892 break;
8893 case 0x7c: /* FCMGT */
8894 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8895 break;
8896 case 0x7d: /* FACGT */
8897 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8898 break;
8899 default:
8900 g_assert_not_reached();
8901 }
8902
8903 if (elements == 1) {
8904 /* scalar single so clear high part */
8905 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8906
8907 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
8908 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
8909 tcg_temp_free_i64(tcg_tmp);
8910 } else {
8911 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8912 }
8913
8914 tcg_temp_free_i32(tcg_res);
8915 tcg_temp_free_i32(tcg_op1);
8916 tcg_temp_free_i32(tcg_op2);
8917 }
8918 }
8919
8920 tcg_temp_free_ptr(fpst);
8921
8922 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
8923 }
8924
8925 /* AdvSIMD scalar three same
8926 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
8927 * +-----+---+-----------+------+---+------+--------+---+------+------+
8928 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
8929 * +-----+---+-----------+------+---+------+--------+---+------+------+
8930 */
8931 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
8932 {
8933 int rd = extract32(insn, 0, 5);
8934 int rn = extract32(insn, 5, 5);
8935 int opcode = extract32(insn, 11, 5);
8936 int rm = extract32(insn, 16, 5);
8937 int size = extract32(insn, 22, 2);
8938 bool u = extract32(insn, 29, 1);
8939 TCGv_i64 tcg_rd;
8940
8941 if (opcode >= 0x18) {
8942 /* Floating point: U, size[1] and opcode indicate operation */
8943 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
8944 switch (fpopcode) {
8945 case 0x1b: /* FMULX */
8946 case 0x1f: /* FRECPS */
8947 case 0x3f: /* FRSQRTS */
8948 case 0x5d: /* FACGE */
8949 case 0x7d: /* FACGT */
8950 case 0x1c: /* FCMEQ */
8951 case 0x5c: /* FCMGE */
8952 case 0x7c: /* FCMGT */
8953 case 0x7a: /* FABD */
8954 break;
8955 default:
8956 unallocated_encoding(s);
8957 return;
8958 }
8959
8960 if (!fp_access_check(s)) {
8961 return;
8962 }
8963
8964 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
8965 return;
8966 }
8967
8968 switch (opcode) {
8969 case 0x1: /* SQADD, UQADD */
8970 case 0x5: /* SQSUB, UQSUB */
8971 case 0x9: /* SQSHL, UQSHL */
8972 case 0xb: /* SQRSHL, UQRSHL */
8973 break;
8974 case 0x8: /* SSHL, USHL */
8975 case 0xa: /* SRSHL, URSHL */
8976 case 0x6: /* CMGT, CMHI */
8977 case 0x7: /* CMGE, CMHS */
8978 case 0x11: /* CMTST, CMEQ */
8979 case 0x10: /* ADD, SUB (vector) */
8980 if (size != 3) {
8981 unallocated_encoding(s);
8982 return;
8983 }
8984 break;
8985 case 0x16: /* SQDMULH, SQRDMULH (vector) */
8986 if (size != 1 && size != 2) {
8987 unallocated_encoding(s);
8988 return;
8989 }
8990 break;
8991 default:
8992 unallocated_encoding(s);
8993 return;
8994 }
8995
8996 if (!fp_access_check(s)) {
8997 return;
8998 }
8999
9000 tcg_rd = tcg_temp_new_i64();
9001
9002 if (size == 3) {
9003 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9004 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9005
9006 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9007 tcg_temp_free_i64(tcg_rn);
9008 tcg_temp_free_i64(tcg_rm);
9009 } else {
9010 /* Do a single operation on the lowest element in the vector.
9011 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9012 * no side effects for all these operations.
9013 * OPTME: special-purpose helpers would avoid doing some
9014 * unnecessary work in the helper for the 8 and 16 bit cases.
9015 */
9016 NeonGenTwoOpEnvFn *genenvfn;
9017 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9018 TCGv_i32 tcg_rm = tcg_temp_new_i32();
9019 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9020
9021 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9022 read_vec_element_i32(s, tcg_rm, rm, 0, size);
9023
9024 switch (opcode) {
9025 case 0x1: /* SQADD, UQADD */
9026 {
9027 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9028 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9029 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9030 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9031 };
9032 genenvfn = fns[size][u];
9033 break;
9034 }
9035 case 0x5: /* SQSUB, UQSUB */
9036 {
9037 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9038 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9039 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9040 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9041 };
9042 genenvfn = fns[size][u];
9043 break;
9044 }
9045 case 0x9: /* SQSHL, UQSHL */
9046 {
9047 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9048 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9049 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9050 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9051 };
9052 genenvfn = fns[size][u];
9053 break;
9054 }
9055 case 0xb: /* SQRSHL, UQRSHL */
9056 {
9057 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9058 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9059 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9060 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9061 };
9062 genenvfn = fns[size][u];
9063 break;
9064 }
9065 case 0x16: /* SQDMULH, SQRDMULH */
9066 {
9067 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9068 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9069 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9070 };
9071 assert(size == 1 || size == 2);
9072 genenvfn = fns[size - 1][u];
9073 break;
9074 }
9075 default:
9076 g_assert_not_reached();
9077 }
9078
9079 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9080 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9081 tcg_temp_free_i32(tcg_rd32);
9082 tcg_temp_free_i32(tcg_rn);
9083 tcg_temp_free_i32(tcg_rm);
9084 }
9085
9086 write_fp_dreg(s, rd, tcg_rd);
9087
9088 tcg_temp_free_i64(tcg_rd);
9089 }
9090
9091 /* AdvSIMD scalar three same FP16
9092 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
9093 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9094 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
9095 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9096 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9097 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9098 */
9099 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9100 uint32_t insn)
9101 {
9102 int rd = extract32(insn, 0, 5);
9103 int rn = extract32(insn, 5, 5);
9104 int opcode = extract32(insn, 11, 3);
9105 int rm = extract32(insn, 16, 5);
9106 bool u = extract32(insn, 29, 1);
9107 bool a = extract32(insn, 23, 1);
9108 int fpopcode = opcode | (a << 3) | (u << 4);
9109 TCGv_ptr fpst;
9110 TCGv_i32 tcg_op1;
9111 TCGv_i32 tcg_op2;
9112 TCGv_i32 tcg_res;
9113
9114 switch (fpopcode) {
9115 case 0x03: /* FMULX */
9116 case 0x04: /* FCMEQ (reg) */
9117 case 0x07: /* FRECPS */
9118 case 0x0f: /* FRSQRTS */
9119 case 0x14: /* FCMGE (reg) */
9120 case 0x15: /* FACGE */
9121 case 0x1a: /* FABD */
9122 case 0x1c: /* FCMGT (reg) */
9123 case 0x1d: /* FACGT */
9124 break;
9125 default:
9126 unallocated_encoding(s);
9127 return;
9128 }
9129
9130 if (!dc_isar_feature(aa64_fp16, s)) {
9131 unallocated_encoding(s);
9132 }
9133
9134 if (!fp_access_check(s)) {
9135 return;
9136 }
9137
9138 fpst = get_fpstatus_ptr(true);
9139
9140 tcg_op1 = read_fp_hreg(s, rn);
9141 tcg_op2 = read_fp_hreg(s, rm);
9142 tcg_res = tcg_temp_new_i32();
9143
9144 switch (fpopcode) {
9145 case 0x03: /* FMULX */
9146 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9147 break;
9148 case 0x04: /* FCMEQ (reg) */
9149 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9150 break;
9151 case 0x07: /* FRECPS */
9152 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9153 break;
9154 case 0x0f: /* FRSQRTS */
9155 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9156 break;
9157 case 0x14: /* FCMGE (reg) */
9158 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9159 break;
9160 case 0x15: /* FACGE */
9161 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9162 break;
9163 case 0x1a: /* FABD */
9164 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9165 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9166 break;
9167 case 0x1c: /* FCMGT (reg) */
9168 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9169 break;
9170 case 0x1d: /* FACGT */
9171 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9172 break;
9173 default:
9174 g_assert_not_reached();
9175 }
9176
9177 write_fp_sreg(s, rd, tcg_res);
9178
9179
9180 tcg_temp_free_i32(tcg_res);
9181 tcg_temp_free_i32(tcg_op1);
9182 tcg_temp_free_i32(tcg_op2);
9183 tcg_temp_free_ptr(fpst);
9184 }
9185
9186 /* AdvSIMD scalar three same extra
9187 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9188 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9189 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9190 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9191 */
9192 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9193 uint32_t insn)
9194 {
9195 int rd = extract32(insn, 0, 5);
9196 int rn = extract32(insn, 5, 5);
9197 int opcode = extract32(insn, 11, 4);
9198 int rm = extract32(insn, 16, 5);
9199 int size = extract32(insn, 22, 2);
9200 bool u = extract32(insn, 29, 1);
9201 TCGv_i32 ele1, ele2, ele3;
9202 TCGv_i64 res;
9203 bool feature;
9204
9205 switch (u * 16 + opcode) {
9206 case 0x10: /* SQRDMLAH (vector) */
9207 case 0x11: /* SQRDMLSH (vector) */
9208 if (size != 1 && size != 2) {
9209 unallocated_encoding(s);
9210 return;
9211 }
9212 feature = dc_isar_feature(aa64_rdm, s);
9213 break;
9214 default:
9215 unallocated_encoding(s);
9216 return;
9217 }
9218 if (!feature) {
9219 unallocated_encoding(s);
9220 return;
9221 }
9222 if (!fp_access_check(s)) {
9223 return;
9224 }
9225
9226 /* Do a single operation on the lowest element in the vector.
9227 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9228 * with no side effects for all these operations.
9229 * OPTME: special-purpose helpers would avoid doing some
9230 * unnecessary work in the helper for the 16 bit cases.
9231 */
9232 ele1 = tcg_temp_new_i32();
9233 ele2 = tcg_temp_new_i32();
9234 ele3 = tcg_temp_new_i32();
9235
9236 read_vec_element_i32(s, ele1, rn, 0, size);
9237 read_vec_element_i32(s, ele2, rm, 0, size);
9238 read_vec_element_i32(s, ele3, rd, 0, size);
9239
9240 switch (opcode) {
9241 case 0x0: /* SQRDMLAH */
9242 if (size == 1) {
9243 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9244 } else {
9245 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9246 }
9247 break;
9248 case 0x1: /* SQRDMLSH */
9249 if (size == 1) {
9250 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9251 } else {
9252 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9253 }
9254 break;
9255 default:
9256 g_assert_not_reached();
9257 }
9258 tcg_temp_free_i32(ele1);
9259 tcg_temp_free_i32(ele2);
9260
9261 res = tcg_temp_new_i64();
9262 tcg_gen_extu_i32_i64(res, ele3);
9263 tcg_temp_free_i32(ele3);
9264
9265 write_fp_dreg(s, rd, res);
9266 tcg_temp_free_i64(res);
9267 }
9268
9269 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9270 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9271 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9272 {
9273 /* Handle 64->64 opcodes which are shared between the scalar and
9274 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9275 * is valid in either group and also the double-precision fp ops.
9276 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9277 * requires them.
9278 */
9279 TCGCond cond;
9280
9281 switch (opcode) {
9282 case 0x4: /* CLS, CLZ */
9283 if (u) {
9284 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9285 } else {
9286 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9287 }
9288 break;
9289 case 0x5: /* NOT */
9290 /* This opcode is shared with CNT and RBIT but we have earlier
9291 * enforced that size == 3 if and only if this is the NOT insn.
9292 */
9293 tcg_gen_not_i64(tcg_rd, tcg_rn);
9294 break;
9295 case 0x7: /* SQABS, SQNEG */
9296 if (u) {
9297 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9298 } else {
9299 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9300 }
9301 break;
9302 case 0xa: /* CMLT */
9303 /* 64 bit integer comparison against zero, result is
9304 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9305 * subtracting 1.
9306 */
9307 cond = TCG_COND_LT;
9308 do_cmop:
9309 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9310 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9311 break;
9312 case 0x8: /* CMGT, CMGE */
9313 cond = u ? TCG_COND_GE : TCG_COND_GT;
9314 goto do_cmop;
9315 case 0x9: /* CMEQ, CMLE */
9316 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9317 goto do_cmop;
9318 case 0xb: /* ABS, NEG */
9319 if (u) {
9320 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9321 } else {
9322 tcg_gen_abs_i64(tcg_rd, tcg_rn);
9323 }
9324 break;
9325 case 0x2f: /* FABS */
9326 gen_helper_vfp_absd(tcg_rd, tcg_rn);
9327 break;
9328 case 0x6f: /* FNEG */
9329 gen_helper_vfp_negd(tcg_rd, tcg_rn);
9330 break;
9331 case 0x7f: /* FSQRT */
9332 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9333 break;
9334 case 0x1a: /* FCVTNS */
9335 case 0x1b: /* FCVTMS */
9336 case 0x1c: /* FCVTAS */
9337 case 0x3a: /* FCVTPS */
9338 case 0x3b: /* FCVTZS */
9339 {
9340 TCGv_i32 tcg_shift = tcg_const_i32(0);
9341 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9342 tcg_temp_free_i32(tcg_shift);
9343 break;
9344 }
9345 case 0x5a: /* FCVTNU */
9346 case 0x5b: /* FCVTMU */
9347 case 0x5c: /* FCVTAU */
9348 case 0x7a: /* FCVTPU */
9349 case 0x7b: /* FCVTZU */
9350 {
9351 TCGv_i32 tcg_shift = tcg_const_i32(0);
9352 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9353 tcg_temp_free_i32(tcg_shift);
9354 break;
9355 }
9356 case 0x18: /* FRINTN */
9357 case 0x19: /* FRINTM */
9358 case 0x38: /* FRINTP */
9359 case 0x39: /* FRINTZ */
9360 case 0x58: /* FRINTA */
9361 case 0x79: /* FRINTI */
9362 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9363 break;
9364 case 0x59: /* FRINTX */
9365 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9366 break;
9367 case 0x1e: /* FRINT32Z */
9368 case 0x5e: /* FRINT32X */
9369 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9370 break;
9371 case 0x1f: /* FRINT64Z */
9372 case 0x5f: /* FRINT64X */
9373 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9374 break;
9375 default:
9376 g_assert_not_reached();
9377 }
9378 }
9379
9380 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9381 bool is_scalar, bool is_u, bool is_q,
9382 int size, int rn, int rd)
9383 {
9384 bool is_double = (size == MO_64);
9385 TCGv_ptr fpst;
9386
9387 if (!fp_access_check(s)) {
9388 return;
9389 }
9390
9391 fpst = get_fpstatus_ptr(size == MO_16);
9392
9393 if (is_double) {
9394 TCGv_i64 tcg_op = tcg_temp_new_i64();
9395 TCGv_i64 tcg_zero = tcg_const_i64(0);
9396 TCGv_i64 tcg_res = tcg_temp_new_i64();
9397 NeonGenTwoDoubleOPFn *genfn;
9398 bool swap = false;
9399 int pass;
9400
9401 switch (opcode) {
9402 case 0x2e: /* FCMLT (zero) */
9403 swap = true;
9404 /* fallthrough */
9405 case 0x2c: /* FCMGT (zero) */
9406 genfn = gen_helper_neon_cgt_f64;
9407 break;
9408 case 0x2d: /* FCMEQ (zero) */
9409 genfn = gen_helper_neon_ceq_f64;
9410 break;
9411 case 0x6d: /* FCMLE (zero) */
9412 swap = true;
9413 /* fall through */
9414 case 0x6c: /* FCMGE (zero) */
9415 genfn = gen_helper_neon_cge_f64;
9416 break;
9417 default:
9418 g_assert_not_reached();
9419 }
9420
9421 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9422 read_vec_element(s, tcg_op, rn, pass, MO_64);
9423 if (swap) {
9424 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9425 } else {
9426 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9427 }
9428 write_vec_element(s, tcg_res, rd, pass, MO_64);
9429 }
9430 tcg_temp_free_i64(tcg_res);
9431 tcg_temp_free_i64(tcg_zero);
9432 tcg_temp_free_i64(tcg_op);
9433
9434 clear_vec_high(s, !is_scalar, rd);
9435 } else {
9436 TCGv_i32 tcg_op = tcg_temp_new_i32();
9437 TCGv_i32 tcg_zero = tcg_const_i32(0);
9438 TCGv_i32 tcg_res = tcg_temp_new_i32();
9439 NeonGenTwoSingleOPFn *genfn;
9440 bool swap = false;
9441 int pass, maxpasses;
9442
9443 if (size == MO_16) {
9444 switch (opcode) {
9445 case 0x2e: /* FCMLT (zero) */
9446 swap = true;
9447 /* fall through */
9448 case 0x2c: /* FCMGT (zero) */
9449 genfn = gen_helper_advsimd_cgt_f16;
9450 break;
9451 case 0x2d: /* FCMEQ (zero) */
9452 genfn = gen_helper_advsimd_ceq_f16;
9453 break;
9454 case 0x6d: /* FCMLE (zero) */
9455 swap = true;
9456 /* fall through */
9457 case 0x6c: /* FCMGE (zero) */
9458 genfn = gen_helper_advsimd_cge_f16;
9459 break;
9460 default:
9461 g_assert_not_reached();
9462 }
9463 } else {
9464 switch (opcode) {
9465 case 0x2e: /* FCMLT (zero) */
9466 swap = true;
9467 /* fall through */
9468 case 0x2c: /* FCMGT (zero) */
9469 genfn = gen_helper_neon_cgt_f32;
9470 break;
9471 case 0x2d: /* FCMEQ (zero) */
9472 genfn = gen_helper_neon_ceq_f32;
9473 break;
9474 case 0x6d: /* FCMLE (zero) */
9475 swap = true;
9476 /* fall through */
9477 case 0x6c: /* FCMGE (zero) */
9478 genfn = gen_helper_neon_cge_f32;
9479 break;
9480 default:
9481 g_assert_not_reached();
9482 }
9483 }
9484
9485 if (is_scalar) {
9486 maxpasses = 1;
9487 } else {
9488 int vector_size = 8 << is_q;
9489 maxpasses = vector_size >> size;
9490 }
9491
9492 for (pass = 0; pass < maxpasses; pass++) {
9493 read_vec_element_i32(s, tcg_op, rn, pass, size);
9494 if (swap) {
9495 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9496 } else {
9497 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9498 }
9499 if (is_scalar) {
9500 write_fp_sreg(s, rd, tcg_res);
9501 } else {
9502 write_vec_element_i32(s, tcg_res, rd, pass, size);
9503 }
9504 }
9505 tcg_temp_free_i32(tcg_res);
9506 tcg_temp_free_i32(tcg_zero);
9507 tcg_temp_free_i32(tcg_op);
9508 if (!is_scalar) {
9509 clear_vec_high(s, is_q, rd);
9510 }
9511 }
9512
9513 tcg_temp_free_ptr(fpst);
9514 }
9515
9516 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9517 bool is_scalar, bool is_u, bool is_q,
9518 int size, int rn, int rd)
9519 {
9520 bool is_double = (size == 3);
9521 TCGv_ptr fpst = get_fpstatus_ptr(false);
9522
9523 if (is_double) {
9524 TCGv_i64 tcg_op = tcg_temp_new_i64();
9525 TCGv_i64 tcg_res = tcg_temp_new_i64();
9526 int pass;
9527
9528 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9529 read_vec_element(s, tcg_op, rn, pass, MO_64);
9530 switch (opcode) {
9531 case 0x3d: /* FRECPE */
9532 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9533 break;
9534 case 0x3f: /* FRECPX */
9535 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9536 break;
9537 case 0x7d: /* FRSQRTE */
9538 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9539 break;
9540 default:
9541 g_assert_not_reached();
9542 }
9543 write_vec_element(s, tcg_res, rd, pass, MO_64);
9544 }
9545 tcg_temp_free_i64(tcg_res);
9546 tcg_temp_free_i64(tcg_op);
9547 clear_vec_high(s, !is_scalar, rd);
9548 } else {
9549 TCGv_i32 tcg_op = tcg_temp_new_i32();
9550 TCGv_i32 tcg_res = tcg_temp_new_i32();
9551 int pass, maxpasses;
9552
9553 if (is_scalar) {
9554 maxpasses = 1;
9555 } else {
9556 maxpasses = is_q ? 4 : 2;
9557 }
9558
9559 for (pass = 0; pass < maxpasses; pass++) {
9560 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9561
9562 switch (opcode) {
9563 case 0x3c: /* URECPE */
9564 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
9565 break;
9566 case 0x3d: /* FRECPE */
9567 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9568 break;
9569 case 0x3f: /* FRECPX */
9570 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9571 break;
9572 case 0x7d: /* FRSQRTE */
9573 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9574 break;
9575 default:
9576 g_assert_not_reached();
9577 }
9578
9579 if (is_scalar) {
9580 write_fp_sreg(s, rd, tcg_res);
9581 } else {
9582 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9583 }
9584 }
9585 tcg_temp_free_i32(tcg_res);
9586 tcg_temp_free_i32(tcg_op);
9587 if (!is_scalar) {
9588 clear_vec_high(s, is_q, rd);
9589 }
9590 }
9591 tcg_temp_free_ptr(fpst);
9592 }
9593
9594 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9595 int opcode, bool u, bool is_q,
9596 int size, int rn, int rd)
9597 {
9598 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9599 * in the source becomes a size element in the destination).
9600 */
9601 int pass;
9602 TCGv_i32 tcg_res[2];
9603 int destelt = is_q ? 2 : 0;
9604 int passes = scalar ? 1 : 2;
9605
9606 if (scalar) {
9607 tcg_res[1] = tcg_const_i32(0);
9608 }
9609
9610 for (pass = 0; pass < passes; pass++) {
9611 TCGv_i64 tcg_op = tcg_temp_new_i64();
9612 NeonGenNarrowFn *genfn = NULL;
9613 NeonGenNarrowEnvFn *genenvfn = NULL;
9614
9615 if (scalar) {
9616 read_vec_element(s, tcg_op, rn, pass, size + 1);
9617 } else {
9618 read_vec_element(s, tcg_op, rn, pass, MO_64);
9619 }
9620 tcg_res[pass] = tcg_temp_new_i32();
9621
9622 switch (opcode) {
9623 case 0x12: /* XTN, SQXTUN */
9624 {
9625 static NeonGenNarrowFn * const xtnfns[3] = {
9626 gen_helper_neon_narrow_u8,
9627 gen_helper_neon_narrow_u16,
9628 tcg_gen_extrl_i64_i32,
9629 };
9630 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9631 gen_helper_neon_unarrow_sat8,
9632 gen_helper_neon_unarrow_sat16,
9633 gen_helper_neon_unarrow_sat32,
9634 };
9635 if (u) {
9636 genenvfn = sqxtunfns[size];
9637 } else {
9638 genfn = xtnfns[size];
9639 }
9640 break;
9641 }
9642 case 0x14: /* SQXTN, UQXTN */
9643 {
9644 static NeonGenNarrowEnvFn * const fns[3][2] = {
9645 { gen_helper_neon_narrow_sat_s8,
9646 gen_helper_neon_narrow_sat_u8 },
9647 { gen_helper_neon_narrow_sat_s16,
9648 gen_helper_neon_narrow_sat_u16 },
9649 { gen_helper_neon_narrow_sat_s32,
9650 gen_helper_neon_narrow_sat_u32 },
9651 };
9652 genenvfn = fns[size][u];
9653 break;
9654 }
9655 case 0x16: /* FCVTN, FCVTN2 */
9656 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9657 if (size == 2) {
9658 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
9659 } else {
9660 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9661 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9662 TCGv_ptr fpst = get_fpstatus_ptr(false);
9663 TCGv_i32 ahp = get_ahp_flag();
9664
9665 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9666 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9667 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9668 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9669 tcg_temp_free_i32(tcg_lo);
9670 tcg_temp_free_i32(tcg_hi);
9671 tcg_temp_free_ptr(fpst);
9672 tcg_temp_free_i32(ahp);
9673 }
9674 break;
9675 case 0x56: /* FCVTXN, FCVTXN2 */
9676 /* 64 bit to 32 bit float conversion
9677 * with von Neumann rounding (round to odd)
9678 */
9679 assert(size == 2);
9680 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
9681 break;
9682 default:
9683 g_assert_not_reached();
9684 }
9685
9686 if (genfn) {
9687 genfn(tcg_res[pass], tcg_op);
9688 } else if (genenvfn) {
9689 genenvfn(tcg_res[pass], cpu_env, tcg_op);
9690 }
9691
9692 tcg_temp_free_i64(tcg_op);
9693 }
9694
9695 for (pass = 0; pass < 2; pass++) {
9696 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9697 tcg_temp_free_i32(tcg_res[pass]);
9698 }
9699 clear_vec_high(s, is_q, rd);
9700 }
9701
9702 /* Remaining saturating accumulating ops */
9703 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9704 bool is_q, int size, int rn, int rd)
9705 {
9706 bool is_double = (size == 3);
9707
9708 if (is_double) {
9709 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9710 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9711 int pass;
9712
9713 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9714 read_vec_element(s, tcg_rn, rn, pass, MO_64);
9715 read_vec_element(s, tcg_rd, rd, pass, MO_64);
9716
9717 if (is_u) { /* USQADD */
9718 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9719 } else { /* SUQADD */
9720 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9721 }
9722 write_vec_element(s, tcg_rd, rd, pass, MO_64);
9723 }
9724 tcg_temp_free_i64(tcg_rd);
9725 tcg_temp_free_i64(tcg_rn);
9726 clear_vec_high(s, !is_scalar, rd);
9727 } else {
9728 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9729 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9730 int pass, maxpasses;
9731
9732 if (is_scalar) {
9733 maxpasses = 1;
9734 } else {
9735 maxpasses = is_q ? 4 : 2;
9736 }
9737
9738 for (pass = 0; pass < maxpasses; pass++) {
9739 if (is_scalar) {
9740 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9741 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9742 } else {
9743 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9744 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9745 }
9746
9747 if (is_u) { /* USQADD */
9748 switch (size) {
9749 case 0:
9750 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9751 break;
9752 case 1:
9753 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9754 break;
9755 case 2:
9756 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9757 break;
9758 default:
9759 g_assert_not_reached();
9760 }
9761 } else { /* SUQADD */
9762 switch (size) {
9763 case 0:
9764 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9765 break;
9766 case 1:
9767 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9768 break;
9769 case 2:
9770 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9771 break;
9772 default:
9773 g_assert_not_reached();
9774 }
9775 }
9776
9777 if (is_scalar) {
9778 TCGv_i64 tcg_zero = tcg_const_i64(0);
9779 write_vec_element(s, tcg_zero, rd, 0, MO_64);
9780 tcg_temp_free_i64(tcg_zero);
9781 }
9782 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9783 }
9784 tcg_temp_free_i32(tcg_rd);
9785 tcg_temp_free_i32(tcg_rn);
9786 clear_vec_high(s, is_q, rd);
9787 }
9788 }
9789
9790 /* AdvSIMD scalar two reg misc
9791 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9792 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9793 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9794 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9795 */
9796 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9797 {
9798 int rd = extract32(insn, 0, 5);
9799 int rn = extract32(insn, 5, 5);
9800 int opcode = extract32(insn, 12, 5);
9801 int size = extract32(insn, 22, 2);
9802 bool u = extract32(insn, 29, 1);
9803 bool is_fcvt = false;
9804 int rmode;
9805 TCGv_i32 tcg_rmode;
9806 TCGv_ptr tcg_fpstatus;
9807
9808 switch (opcode) {
9809 case 0x3: /* USQADD / SUQADD*/
9810 if (!fp_access_check(s)) {
9811 return;
9812 }
9813 handle_2misc_satacc(s, true, u, false, size, rn, rd);
9814 return;
9815 case 0x7: /* SQABS / SQNEG */
9816 break;
9817 case 0xa: /* CMLT */
9818 if (u) {
9819 unallocated_encoding(s);
9820 return;
9821 }
9822 /* fall through */
9823 case 0x8: /* CMGT, CMGE */
9824 case 0x9: /* CMEQ, CMLE */
9825 case 0xb: /* ABS, NEG */
9826 if (size != 3) {
9827 unallocated_encoding(s);
9828 return;
9829 }
9830 break;
9831 case 0x12: /* SQXTUN */
9832 if (!u) {
9833 unallocated_encoding(s);
9834 return;
9835 }
9836 /* fall through */
9837 case 0x14: /* SQXTN, UQXTN */
9838 if (size == 3) {
9839 unallocated_encoding(s);
9840 return;
9841 }
9842 if (!fp_access_check(s)) {
9843 return;
9844 }
9845 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
9846 return;
9847 case 0xc ... 0xf:
9848 case 0x16 ... 0x1d:
9849 case 0x1f:
9850 /* Floating point: U, size[1] and opcode indicate operation;
9851 * size[0] indicates single or double precision.
9852 */
9853 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
9854 size = extract32(size, 0, 1) ? 3 : 2;
9855 switch (opcode) {
9856 case 0x2c: /* FCMGT (zero) */
9857 case 0x2d: /* FCMEQ (zero) */
9858 case 0x2e: /* FCMLT (zero) */
9859 case 0x6c: /* FCMGE (zero) */
9860 case 0x6d: /* FCMLE (zero) */
9861 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
9862 return;
9863 case 0x1d: /* SCVTF */
9864 case 0x5d: /* UCVTF */
9865 {
9866 bool is_signed = (opcode == 0x1d);
9867 if (!fp_access_check(s)) {
9868 return;
9869 }
9870 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
9871 return;
9872 }
9873 case 0x3d: /* FRECPE */
9874 case 0x3f: /* FRECPX */
9875 case 0x7d: /* FRSQRTE */
9876 if (!fp_access_check(s)) {
9877 return;
9878 }
9879 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
9880 return;
9881 case 0x1a: /* FCVTNS */
9882 case 0x1b: /* FCVTMS */
9883 case 0x3a: /* FCVTPS */
9884 case 0x3b: /* FCVTZS */
9885 case 0x5a: /* FCVTNU */
9886 case 0x5b: /* FCVTMU */
9887 case 0x7a: /* FCVTPU */
9888 case 0x7b: /* FCVTZU */
9889 is_fcvt = true;
9890 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9891 break;
9892 case 0x1c: /* FCVTAS */
9893 case 0x5c: /* FCVTAU */
9894 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
9895 is_fcvt = true;
9896 rmode = FPROUNDING_TIEAWAY;
9897 break;
9898 case 0x56: /* FCVTXN, FCVTXN2 */
9899 if (size == 2) {
9900 unallocated_encoding(s);
9901 return;
9902 }
9903 if (!fp_access_check(s)) {
9904 return;
9905 }
9906 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
9907 return;
9908 default:
9909 unallocated_encoding(s);
9910 return;
9911 }
9912 break;
9913 default:
9914 unallocated_encoding(s);
9915 return;
9916 }
9917
9918 if (!fp_access_check(s)) {
9919 return;
9920 }
9921
9922 if (is_fcvt) {
9923 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
9924 tcg_fpstatus = get_fpstatus_ptr(false);
9925 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9926 } else {
9927 tcg_rmode = NULL;
9928 tcg_fpstatus = NULL;
9929 }
9930
9931 if (size == 3) {
9932 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9933 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9934
9935 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
9936 write_fp_dreg(s, rd, tcg_rd);
9937 tcg_temp_free_i64(tcg_rd);
9938 tcg_temp_free_i64(tcg_rn);
9939 } else {
9940 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9941 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9942
9943 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9944
9945 switch (opcode) {
9946 case 0x7: /* SQABS, SQNEG */
9947 {
9948 NeonGenOneOpEnvFn *genfn;
9949 static NeonGenOneOpEnvFn * const fns[3][2] = {
9950 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
9951 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
9952 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
9953 };
9954 genfn = fns[size][u];
9955 genfn(tcg_rd, cpu_env, tcg_rn);
9956 break;
9957 }
9958 case 0x1a: /* FCVTNS */
9959 case 0x1b: /* FCVTMS */
9960 case 0x1c: /* FCVTAS */
9961 case 0x3a: /* FCVTPS */
9962 case 0x3b: /* FCVTZS */
9963 {
9964 TCGv_i32 tcg_shift = tcg_const_i32(0);
9965 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9966 tcg_temp_free_i32(tcg_shift);
9967 break;
9968 }
9969 case 0x5a: /* FCVTNU */
9970 case 0x5b: /* FCVTMU */
9971 case 0x5c: /* FCVTAU */
9972 case 0x7a: /* FCVTPU */
9973 case 0x7b: /* FCVTZU */
9974 {
9975 TCGv_i32 tcg_shift = tcg_const_i32(0);
9976 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9977 tcg_temp_free_i32(tcg_shift);
9978 break;
9979 }
9980 default:
9981 g_assert_not_reached();
9982 }
9983
9984 write_fp_sreg(s, rd, tcg_rd);
9985 tcg_temp_free_i32(tcg_rd);
9986 tcg_temp_free_i32(tcg_rn);
9987 }
9988
9989 if (is_fcvt) {
9990 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9991 tcg_temp_free_i32(tcg_rmode);
9992 tcg_temp_free_ptr(tcg_fpstatus);
9993 }
9994 }
9995
9996 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
9997 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
9998 int immh, int immb, int opcode, int rn, int rd)
9999 {
10000 int size = 32 - clz32(immh) - 1;
10001 int immhb = immh << 3 | immb;
10002 int shift = 2 * (8 << size) - immhb;
10003 bool accumulate = false;
10004 int dsize = is_q ? 128 : 64;
10005 int esize = 8 << size;
10006 int elements = dsize/esize;
10007 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
10008 TCGv_i64 tcg_rn = new_tmp_a64(s);
10009 TCGv_i64 tcg_rd = new_tmp_a64(s);
10010 TCGv_i64 tcg_round;
10011 uint64_t round_const;
10012 int i;
10013
10014 if (extract32(immh, 3, 1) && !is_q) {
10015 unallocated_encoding(s);
10016 return;
10017 }
10018 tcg_debug_assert(size <= 3);
10019
10020 if (!fp_access_check(s)) {
10021 return;
10022 }
10023
10024 switch (opcode) {
10025 case 0x02: /* SSRA / USRA (accumulate) */
10026 if (is_u) {
10027 /* Shift count same as element size produces zero to add. */
10028 if (shift == 8 << size) {
10029 goto done;
10030 }
10031 gen_gvec_op2i(s, is_q, rd, rn, shift, &usra_op[size]);
10032 } else {
10033 /* Shift count same as element size produces all sign to add. */
10034 if (shift == 8 << size) {
10035 shift -= 1;
10036 }
10037 gen_gvec_op2i(s, is_q, rd, rn, shift, &ssra_op[size]);
10038 }
10039 return;
10040 case 0x08: /* SRI */
10041 /* Shift count same as element size is valid but does nothing. */
10042 if (shift == 8 << size) {
10043 goto done;
10044 }
10045 gen_gvec_op2i(s, is_q, rd, rn, shift, &sri_op[size]);
10046 return;
10047
10048 case 0x00: /* SSHR / USHR */
10049 if (is_u) {
10050 if (shift == 8 << size) {
10051 /* Shift count the same size as element size produces zero. */
10052 tcg_gen_gvec_dup8i(vec_full_reg_offset(s, rd),
10053 is_q ? 16 : 8, vec_full_reg_size(s), 0);
10054 } else {
10055 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shri, size);
10056 }
10057 } else {
10058 /* Shift count the same size as element size produces all sign. */
10059 if (shift == 8 << size) {
10060 shift -= 1;
10061 }
10062 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_sari, size);
10063 }
10064 return;
10065
10066 case 0x04: /* SRSHR / URSHR (rounding) */
10067 break;
10068 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10069 accumulate = true;
10070 break;
10071 default:
10072 g_assert_not_reached();
10073 }
10074
10075 round_const = 1ULL << (shift - 1);
10076 tcg_round = tcg_const_i64(round_const);
10077
10078 for (i = 0; i < elements; i++) {
10079 read_vec_element(s, tcg_rn, rn, i, memop);
10080 if (accumulate) {
10081 read_vec_element(s, tcg_rd, rd, i, memop);
10082 }
10083
10084 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10085 accumulate, is_u, size, shift);
10086
10087 write_vec_element(s, tcg_rd, rd, i, size);
10088 }
10089 tcg_temp_free_i64(tcg_round);
10090
10091 done:
10092 clear_vec_high(s, is_q, rd);
10093 }
10094
10095 /* SHL/SLI - Vector shift left */
10096 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10097 int immh, int immb, int opcode, int rn, int rd)
10098 {
10099 int size = 32 - clz32(immh) - 1;
10100 int immhb = immh << 3 | immb;
10101 int shift = immhb - (8 << size);
10102
10103 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10104 assert(size >= 0 && size <= 3);
10105
10106 if (extract32(immh, 3, 1) && !is_q) {
10107 unallocated_encoding(s);
10108 return;
10109 }
10110
10111 if (!fp_access_check(s)) {
10112 return;
10113 }
10114
10115 if (insert) {
10116 gen_gvec_op2i(s, is_q, rd, rn, shift, &sli_op[size]);
10117 } else {
10118 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10119 }
10120 }
10121
10122 /* USHLL/SHLL - Vector shift left with widening */
10123 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10124 int immh, int immb, int opcode, int rn, int rd)
10125 {
10126 int size = 32 - clz32(immh) - 1;
10127 int immhb = immh << 3 | immb;
10128 int shift = immhb - (8 << size);
10129 int dsize = 64;
10130 int esize = 8 << size;
10131 int elements = dsize/esize;
10132 TCGv_i64 tcg_rn = new_tmp_a64(s);
10133 TCGv_i64 tcg_rd = new_tmp_a64(s);
10134 int i;
10135
10136 if (size >= 3) {
10137 unallocated_encoding(s);
10138 return;
10139 }
10140
10141 if (!fp_access_check(s)) {
10142 return;
10143 }
10144
10145 /* For the LL variants the store is larger than the load,
10146 * so if rd == rn we would overwrite parts of our input.
10147 * So load everything right now and use shifts in the main loop.
10148 */
10149 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10150
10151 for (i = 0; i < elements; i++) {
10152 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10153 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10154 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10155 write_vec_element(s, tcg_rd, rd, i, size + 1);
10156 }
10157 }
10158
10159 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10160 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10161 int immh, int immb, int opcode, int rn, int rd)
10162 {
10163 int immhb = immh << 3 | immb;
10164 int size = 32 - clz32(immh) - 1;
10165 int dsize = 64;
10166 int esize = 8 << size;
10167 int elements = dsize/esize;
10168 int shift = (2 * esize) - immhb;
10169 bool round = extract32(opcode, 0, 1);
10170 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10171 TCGv_i64 tcg_round;
10172 int i;
10173
10174 if (extract32(immh, 3, 1)) {
10175 unallocated_encoding(s);
10176 return;
10177 }
10178
10179 if (!fp_access_check(s)) {
10180 return;
10181 }
10182
10183 tcg_rn = tcg_temp_new_i64();
10184 tcg_rd = tcg_temp_new_i64();
10185 tcg_final = tcg_temp_new_i64();
10186 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10187
10188 if (round) {
10189 uint64_t round_const = 1ULL << (shift - 1);
10190 tcg_round = tcg_const_i64(round_const);
10191 } else {
10192 tcg_round = NULL;
10193 }
10194
10195 for (i = 0; i < elements; i++) {
10196 read_vec_element(s, tcg_rn, rn, i, size+1);
10197 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10198 false, true, size+1, shift);
10199
10200 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10201 }
10202
10203 if (!is_q) {
10204 write_vec_element(s, tcg_final, rd, 0, MO_64);
10205 } else {
10206 write_vec_element(s, tcg_final, rd, 1, MO_64);
10207 }
10208 if (round) {
10209 tcg_temp_free_i64(tcg_round);
10210 }
10211 tcg_temp_free_i64(tcg_rn);
10212 tcg_temp_free_i64(tcg_rd);
10213 tcg_temp_free_i64(tcg_final);
10214
10215 clear_vec_high(s, is_q, rd);
10216 }
10217
10218
10219 /* AdvSIMD shift by immediate
10220 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10221 * +---+---+---+-------------+------+------+--------+---+------+------+
10222 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10223 * +---+---+---+-------------+------+------+--------+---+------+------+
10224 */
10225 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10226 {
10227 int rd = extract32(insn, 0, 5);
10228 int rn = extract32(insn, 5, 5);
10229 int opcode = extract32(insn, 11, 5);
10230 int immb = extract32(insn, 16, 3);
10231 int immh = extract32(insn, 19, 4);
10232 bool is_u = extract32(insn, 29, 1);
10233 bool is_q = extract32(insn, 30, 1);
10234
10235 switch (opcode) {
10236 case 0x08: /* SRI */
10237 if (!is_u) {
10238 unallocated_encoding(s);
10239 return;
10240 }
10241 /* fall through */
10242 case 0x00: /* SSHR / USHR */
10243 case 0x02: /* SSRA / USRA (accumulate) */
10244 case 0x04: /* SRSHR / URSHR (rounding) */
10245 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10246 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10247 break;
10248 case 0x0a: /* SHL / SLI */
10249 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10250 break;
10251 case 0x10: /* SHRN */
10252 case 0x11: /* RSHRN / SQRSHRUN */
10253 if (is_u) {
10254 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10255 opcode, rn, rd);
10256 } else {
10257 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10258 }
10259 break;
10260 case 0x12: /* SQSHRN / UQSHRN */
10261 case 0x13: /* SQRSHRN / UQRSHRN */
10262 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10263 opcode, rn, rd);
10264 break;
10265 case 0x14: /* SSHLL / USHLL */
10266 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10267 break;
10268 case 0x1c: /* SCVTF / UCVTF */
10269 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10270 opcode, rn, rd);
10271 break;
10272 case 0xc: /* SQSHLU */
10273 if (!is_u) {
10274 unallocated_encoding(s);
10275 return;
10276 }
10277 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10278 break;
10279 case 0xe: /* SQSHL, UQSHL */
10280 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10281 break;
10282 case 0x1f: /* FCVTZS/ FCVTZU */
10283 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10284 return;
10285 default:
10286 unallocated_encoding(s);
10287 return;
10288 }
10289 }
10290
10291 /* Generate code to do a "long" addition or subtraction, ie one done in
10292 * TCGv_i64 on vector lanes twice the width specified by size.
10293 */
10294 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10295 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10296 {
10297 static NeonGenTwo64OpFn * const fns[3][2] = {
10298 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10299 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10300 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10301 };
10302 NeonGenTwo64OpFn *genfn;
10303 assert(size < 3);
10304
10305 genfn = fns[size][is_sub];
10306 genfn(tcg_res, tcg_op1, tcg_op2);
10307 }
10308
10309 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10310 int opcode, int rd, int rn, int rm)
10311 {
10312 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10313 TCGv_i64 tcg_res[2];
10314 int pass, accop;
10315
10316 tcg_res[0] = tcg_temp_new_i64();
10317 tcg_res[1] = tcg_temp_new_i64();
10318
10319 /* Does this op do an adding accumulate, a subtracting accumulate,
10320 * or no accumulate at all?
10321 */
10322 switch (opcode) {
10323 case 5:
10324 case 8:
10325 case 9:
10326 accop = 1;
10327 break;
10328 case 10:
10329 case 11:
10330 accop = -1;
10331 break;
10332 default:
10333 accop = 0;
10334 break;
10335 }
10336
10337 if (accop != 0) {
10338 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10339 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10340 }
10341
10342 /* size == 2 means two 32x32->64 operations; this is worth special
10343 * casing because we can generally handle it inline.
10344 */
10345 if (size == 2) {
10346 for (pass = 0; pass < 2; pass++) {
10347 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10348 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10349 TCGv_i64 tcg_passres;
10350 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10351
10352 int elt = pass + is_q * 2;
10353
10354 read_vec_element(s, tcg_op1, rn, elt, memop);
10355 read_vec_element(s, tcg_op2, rm, elt, memop);
10356
10357 if (accop == 0) {
10358 tcg_passres = tcg_res[pass];
10359 } else {
10360 tcg_passres = tcg_temp_new_i64();
10361 }
10362
10363 switch (opcode) {
10364 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10365 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10366 break;
10367 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10368 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10369 break;
10370 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10371 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10372 {
10373 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10374 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10375
10376 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10377 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10378 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10379 tcg_passres,
10380 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10381 tcg_temp_free_i64(tcg_tmp1);
10382 tcg_temp_free_i64(tcg_tmp2);
10383 break;
10384 }
10385 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10386 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10387 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10388 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10389 break;
10390 case 9: /* SQDMLAL, SQDMLAL2 */
10391 case 11: /* SQDMLSL, SQDMLSL2 */
10392 case 13: /* SQDMULL, SQDMULL2 */
10393 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10394 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10395 tcg_passres, tcg_passres);
10396 break;
10397 default:
10398 g_assert_not_reached();
10399 }
10400
10401 if (opcode == 9 || opcode == 11) {
10402 /* saturating accumulate ops */
10403 if (accop < 0) {
10404 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10405 }
10406 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10407 tcg_res[pass], tcg_passres);
10408 } else if (accop > 0) {
10409 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10410 } else if (accop < 0) {
10411 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10412 }
10413
10414 if (accop != 0) {
10415 tcg_temp_free_i64(tcg_passres);
10416 }
10417
10418 tcg_temp_free_i64(tcg_op1);
10419 tcg_temp_free_i64(tcg_op2);
10420 }
10421 } else {
10422 /* size 0 or 1, generally helper functions */
10423 for (pass = 0; pass < 2; pass++) {
10424 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10425 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10426 TCGv_i64 tcg_passres;
10427 int elt = pass + is_q * 2;
10428
10429 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10430 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10431
10432 if (accop == 0) {
10433 tcg_passres = tcg_res[pass];
10434 } else {
10435 tcg_passres = tcg_temp_new_i64();
10436 }
10437
10438 switch (opcode) {
10439 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10440 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10441 {
10442 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10443 static NeonGenWidenFn * const widenfns[2][2] = {
10444 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10445 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10446 };
10447 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10448
10449 widenfn(tcg_op2_64, tcg_op2);
10450 widenfn(tcg_passres, tcg_op1);
10451 gen_neon_addl(size, (opcode == 2), tcg_passres,
10452 tcg_passres, tcg_op2_64);
10453 tcg_temp_free_i64(tcg_op2_64);
10454 break;
10455 }
10456 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10457 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10458 if (size == 0) {
10459 if (is_u) {
10460 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10461 } else {
10462 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10463 }
10464 } else {
10465 if (is_u) {
10466 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10467 } else {
10468 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10469 }
10470 }
10471 break;
10472 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10473 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10474 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10475 if (size == 0) {
10476 if (is_u) {
10477 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10478 } else {
10479 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10480 }
10481 } else {
10482 if (is_u) {
10483 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10484 } else {
10485 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10486 }
10487 }
10488 break;
10489 case 9: /* SQDMLAL, SQDMLAL2 */
10490 case 11: /* SQDMLSL, SQDMLSL2 */
10491 case 13: /* SQDMULL, SQDMULL2 */
10492 assert(size == 1);
10493 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10494 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10495 tcg_passres, tcg_passres);
10496 break;
10497 case 14: /* PMULL */
10498 assert(size == 0);
10499 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
10500 break;
10501 default:
10502 g_assert_not_reached();
10503 }
10504 tcg_temp_free_i32(tcg_op1);
10505 tcg_temp_free_i32(tcg_op2);
10506
10507 if (accop != 0) {
10508 if (opcode == 9 || opcode == 11) {
10509 /* saturating accumulate ops */
10510 if (accop < 0) {
10511 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10512 }
10513 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10514 tcg_res[pass],
10515 tcg_passres);
10516 } else {
10517 gen_neon_addl(size, (accop < 0), tcg_res[pass],
10518 tcg_res[pass], tcg_passres);
10519 }
10520 tcg_temp_free_i64(tcg_passres);
10521 }
10522 }
10523 }
10524
10525 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10526 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10527 tcg_temp_free_i64(tcg_res[0]);
10528 tcg_temp_free_i64(tcg_res[1]);
10529 }
10530
10531 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10532 int opcode, int rd, int rn, int rm)
10533 {
10534 TCGv_i64 tcg_res[2];
10535 int part = is_q ? 2 : 0;
10536 int pass;
10537
10538 for (pass = 0; pass < 2; pass++) {
10539 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10540 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10541 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10542 static NeonGenWidenFn * const widenfns[3][2] = {
10543 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10544 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10545 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10546 };
10547 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10548
10549 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10550 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10551 widenfn(tcg_op2_wide, tcg_op2);
10552 tcg_temp_free_i32(tcg_op2);
10553 tcg_res[pass] = tcg_temp_new_i64();
10554 gen_neon_addl(size, (opcode == 3),
10555 tcg_res[pass], tcg_op1, tcg_op2_wide);
10556 tcg_temp_free_i64(tcg_op1);
10557 tcg_temp_free_i64(tcg_op2_wide);
10558 }
10559
10560 for (pass = 0; pass < 2; pass++) {
10561 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10562 tcg_temp_free_i64(tcg_res[pass]);
10563 }
10564 }
10565
10566 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10567 {
10568 tcg_gen_addi_i64(in, in, 1U << 31);
10569 tcg_gen_extrh_i64_i32(res, in);
10570 }
10571
10572 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10573 int opcode, int rd, int rn, int rm)
10574 {
10575 TCGv_i32 tcg_res[2];
10576 int part = is_q ? 2 : 0;
10577 int pass;
10578
10579 for (pass = 0; pass < 2; pass++) {
10580 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10581 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10582 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10583 static NeonGenNarrowFn * const narrowfns[3][2] = {
10584 { gen_helper_neon_narrow_high_u8,
10585 gen_helper_neon_narrow_round_high_u8 },
10586 { gen_helper_neon_narrow_high_u16,
10587 gen_helper_neon_narrow_round_high_u16 },
10588 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10589 };
10590 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10591
10592 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10593 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10594
10595 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10596
10597 tcg_temp_free_i64(tcg_op1);
10598 tcg_temp_free_i64(tcg_op2);
10599
10600 tcg_res[pass] = tcg_temp_new_i32();
10601 gennarrow(tcg_res[pass], tcg_wideres);
10602 tcg_temp_free_i64(tcg_wideres);
10603 }
10604
10605 for (pass = 0; pass < 2; pass++) {
10606 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10607 tcg_temp_free_i32(tcg_res[pass]);
10608 }
10609 clear_vec_high(s, is_q, rd);
10610 }
10611
10612 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
10613 {
10614 /* PMULL of 64 x 64 -> 128 is an odd special case because it
10615 * is the only three-reg-diff instruction which produces a
10616 * 128-bit wide result from a single operation. However since
10617 * it's possible to calculate the two halves more or less
10618 * separately we just use two helper calls.
10619 */
10620 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10621 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10622 TCGv_i64 tcg_res = tcg_temp_new_i64();
10623
10624 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
10625 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
10626 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
10627 write_vec_element(s, tcg_res, rd, 0, MO_64);
10628 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
10629 write_vec_element(s, tcg_res, rd, 1, MO_64);
10630
10631 tcg_temp_free_i64(tcg_op1);
10632 tcg_temp_free_i64(tcg_op2);
10633 tcg_temp_free_i64(tcg_res);
10634 }
10635
10636 /* AdvSIMD three different
10637 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
10638 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10639 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
10640 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10641 */
10642 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10643 {
10644 /* Instructions in this group fall into three basic classes
10645 * (in each case with the operation working on each element in
10646 * the input vectors):
10647 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10648 * 128 bit input)
10649 * (2) wide 64 x 128 -> 128
10650 * (3) narrowing 128 x 128 -> 64
10651 * Here we do initial decode, catch unallocated cases and
10652 * dispatch to separate functions for each class.
10653 */
10654 int is_q = extract32(insn, 30, 1);
10655 int is_u = extract32(insn, 29, 1);
10656 int size = extract32(insn, 22, 2);
10657 int opcode = extract32(insn, 12, 4);
10658 int rm = extract32(insn, 16, 5);
10659 int rn = extract32(insn, 5, 5);
10660 int rd = extract32(insn, 0, 5);
10661
10662 switch (opcode) {
10663 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10664 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10665 /* 64 x 128 -> 128 */
10666 if (size == 3) {
10667 unallocated_encoding(s);
10668 return;
10669 }
10670 if (!fp_access_check(s)) {
10671 return;
10672 }
10673 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10674 break;
10675 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10676 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10677 /* 128 x 128 -> 64 */
10678 if (size == 3) {
10679 unallocated_encoding(s);
10680 return;
10681 }
10682 if (!fp_access_check(s)) {
10683 return;
10684 }
10685 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10686 break;
10687 case 14: /* PMULL, PMULL2 */
10688 if (is_u || size == 1 || size == 2) {
10689 unallocated_encoding(s);
10690 return;
10691 }
10692 if (size == 3) {
10693 if (!dc_isar_feature(aa64_pmull, s)) {
10694 unallocated_encoding(s);
10695 return;
10696 }
10697 if (!fp_access_check(s)) {
10698 return;
10699 }
10700 handle_pmull_64(s, is_q, rd, rn, rm);
10701 return;
10702 }
10703 goto is_widening;
10704 case 9: /* SQDMLAL, SQDMLAL2 */
10705 case 11: /* SQDMLSL, SQDMLSL2 */
10706 case 13: /* SQDMULL, SQDMULL2 */
10707 if (is_u || size == 0) {
10708 unallocated_encoding(s);
10709 return;
10710 }
10711 /* fall through */
10712 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10713 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10714 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10715 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10716 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10717 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10718 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10719 /* 64 x 64 -> 128 */
10720 if (size == 3) {
10721 unallocated_encoding(s);
10722 return;
10723 }
10724 is_widening:
10725 if (!fp_access_check(s)) {
10726 return;
10727 }
10728
10729 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10730 break;
10731 default:
10732 /* opcode 15 not allocated */
10733 unallocated_encoding(s);
10734 break;
10735 }
10736 }
10737
10738 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10739 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10740 {
10741 int rd = extract32(insn, 0, 5);
10742 int rn = extract32(insn, 5, 5);
10743 int rm = extract32(insn, 16, 5);
10744 int size = extract32(insn, 22, 2);
10745 bool is_u = extract32(insn, 29, 1);
10746 bool is_q = extract32(insn, 30, 1);
10747
10748 if (!fp_access_check(s)) {
10749 return;
10750 }
10751
10752 switch (size + 4 * is_u) {
10753 case 0: /* AND */
10754 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10755 return;
10756 case 1: /* BIC */
10757 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10758 return;
10759 case 2: /* ORR */
10760 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10761 return;
10762 case 3: /* ORN */
10763 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10764 return;
10765 case 4: /* EOR */
10766 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10767 return;
10768
10769 case 5: /* BSL bitwise select */
10770 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10771 return;
10772 case 6: /* BIT, bitwise insert if true */
10773 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10774 return;
10775 case 7: /* BIF, bitwise insert if false */
10776 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10777 return;
10778
10779 default:
10780 g_assert_not_reached();
10781 }
10782 }
10783
10784 /* Pairwise op subgroup of C3.6.16.
10785 *
10786 * This is called directly or via the handle_3same_float for float pairwise
10787 * operations where the opcode and size are calculated differently.
10788 */
10789 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10790 int size, int rn, int rm, int rd)
10791 {
10792 TCGv_ptr fpst;
10793 int pass;
10794
10795 /* Floating point operations need fpst */
10796 if (opcode >= 0x58) {
10797 fpst = get_fpstatus_ptr(false);
10798 } else {
10799 fpst = NULL;
10800 }
10801
10802 if (!fp_access_check(s)) {
10803 return;
10804 }
10805
10806 /* These operations work on the concatenated rm:rn, with each pair of
10807 * adjacent elements being operated on to produce an element in the result.
10808 */
10809 if (size == 3) {
10810 TCGv_i64 tcg_res[2];
10811
10812 for (pass = 0; pass < 2; pass++) {
10813 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10814 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10815 int passreg = (pass == 0) ? rn : rm;
10816
10817 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10818 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10819 tcg_res[pass] = tcg_temp_new_i64();
10820
10821 switch (opcode) {
10822 case 0x17: /* ADDP */
10823 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10824 break;
10825 case 0x58: /* FMAXNMP */
10826 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10827 break;
10828 case 0x5a: /* FADDP */
10829 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10830 break;
10831 case 0x5e: /* FMAXP */
10832 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10833 break;
10834 case 0x78: /* FMINNMP */
10835 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10836 break;
10837 case 0x7e: /* FMINP */
10838 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10839 break;
10840 default:
10841 g_assert_not_reached();
10842 }
10843
10844 tcg_temp_free_i64(tcg_op1);
10845 tcg_temp_free_i64(tcg_op2);
10846 }
10847
10848 for (pass = 0; pass < 2; pass++) {
10849 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10850 tcg_temp_free_i64(tcg_res[pass]);
10851 }
10852 } else {
10853 int maxpass = is_q ? 4 : 2;
10854 TCGv_i32 tcg_res[4];
10855
10856 for (pass = 0; pass < maxpass; pass++) {
10857 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10858 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10859 NeonGenTwoOpFn *genfn = NULL;
10860 int passreg = pass < (maxpass / 2) ? rn : rm;
10861 int passelt = (is_q && (pass & 1)) ? 2 : 0;
10862
10863 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10864 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10865 tcg_res[pass] = tcg_temp_new_i32();
10866
10867 switch (opcode) {
10868 case 0x17: /* ADDP */
10869 {
10870 static NeonGenTwoOpFn * const fns[3] = {
10871 gen_helper_neon_padd_u8,
10872 gen_helper_neon_padd_u16,
10873 tcg_gen_add_i32,
10874 };
10875 genfn = fns[size];
10876 break;
10877 }
10878 case 0x14: /* SMAXP, UMAXP */
10879 {
10880 static NeonGenTwoOpFn * const fns[3][2] = {
10881 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10882 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10883 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10884 };
10885 genfn = fns[size][u];
10886 break;
10887 }
10888 case 0x15: /* SMINP, UMINP */
10889 {
10890 static NeonGenTwoOpFn * const fns[3][2] = {
10891 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10892 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10893 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
10894 };
10895 genfn = fns[size][u];
10896 break;
10897 }
10898 /* The FP operations are all on single floats (32 bit) */
10899 case 0x58: /* FMAXNMP */
10900 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10901 break;
10902 case 0x5a: /* FADDP */
10903 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10904 break;
10905 case 0x5e: /* FMAXP */
10906 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10907 break;
10908 case 0x78: /* FMINNMP */
10909 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10910 break;
10911 case 0x7e: /* FMINP */
10912 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10913 break;
10914 default:
10915 g_assert_not_reached();
10916 }
10917
10918 /* FP ops called directly, otherwise call now */
10919 if (genfn) {
10920 genfn(tcg_res[pass], tcg_op1, tcg_op2);
10921 }
10922
10923 tcg_temp_free_i32(tcg_op1);
10924 tcg_temp_free_i32(tcg_op2);
10925 }
10926
10927 for (pass = 0; pass < maxpass; pass++) {
10928 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10929 tcg_temp_free_i32(tcg_res[pass]);
10930 }
10931 clear_vec_high(s, is_q, rd);
10932 }
10933
10934 if (fpst) {
10935 tcg_temp_free_ptr(fpst);
10936 }
10937 }
10938
10939 /* Floating point op subgroup of C3.6.16. */
10940 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10941 {
10942 /* For floating point ops, the U, size[1] and opcode bits
10943 * together indicate the operation. size[0] indicates single
10944 * or double.
10945 */
10946 int fpopcode = extract32(insn, 11, 5)
10947 | (extract32(insn, 23, 1) << 5)
10948 | (extract32(insn, 29, 1) << 6);
10949 int is_q = extract32(insn, 30, 1);
10950 int size = extract32(insn, 22, 1);
10951 int rm = extract32(insn, 16, 5);
10952 int rn = extract32(insn, 5, 5);
10953 int rd = extract32(insn, 0, 5);
10954
10955 int datasize = is_q ? 128 : 64;
10956 int esize = 32 << size;
10957 int elements = datasize / esize;
10958
10959 if (size == 1 && !is_q) {
10960 unallocated_encoding(s);
10961 return;
10962 }
10963
10964 switch (fpopcode) {
10965 case 0x58: /* FMAXNMP */
10966 case 0x5a: /* FADDP */
10967 case 0x5e: /* FMAXP */
10968 case 0x78: /* FMINNMP */
10969 case 0x7e: /* FMINP */
10970 if (size && !is_q) {
10971 unallocated_encoding(s);
10972 return;
10973 }
10974 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
10975 rn, rm, rd);
10976 return;
10977 case 0x1b: /* FMULX */
10978 case 0x1f: /* FRECPS */
10979 case 0x3f: /* FRSQRTS */
10980 case 0x5d: /* FACGE */
10981 case 0x7d: /* FACGT */
10982 case 0x19: /* FMLA */
10983 case 0x39: /* FMLS */
10984 case 0x18: /* FMAXNM */
10985 case 0x1a: /* FADD */
10986 case 0x1c: /* FCMEQ */
10987 case 0x1e: /* FMAX */
10988 case 0x38: /* FMINNM */
10989 case 0x3a: /* FSUB */
10990 case 0x3e: /* FMIN */
10991 case 0x5b: /* FMUL */
10992 case 0x5c: /* FCMGE */
10993 case 0x5f: /* FDIV */
10994 case 0x7a: /* FABD */
10995 case 0x7c: /* FCMGT */
10996 if (!fp_access_check(s)) {
10997 return;
10998 }
10999 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11000 return;
11001
11002 case 0x1d: /* FMLAL */
11003 case 0x3d: /* FMLSL */
11004 case 0x59: /* FMLAL2 */
11005 case 0x79: /* FMLSL2 */
11006 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11007 unallocated_encoding(s);
11008 return;
11009 }
11010 if (fp_access_check(s)) {
11011 int is_s = extract32(insn, 23, 1);
11012 int is_2 = extract32(insn, 29, 1);
11013 int data = (is_2 << 1) | is_s;
11014 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11015 vec_full_reg_offset(s, rn),
11016 vec_full_reg_offset(s, rm), cpu_env,
11017 is_q ? 16 : 8, vec_full_reg_size(s),
11018 data, gen_helper_gvec_fmlal_a64);
11019 }
11020 return;
11021
11022 default:
11023 unallocated_encoding(s);
11024 return;
11025 }
11026 }
11027
11028 /* Integer op subgroup of C3.6.16. */
11029 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11030 {
11031 int is_q = extract32(insn, 30, 1);
11032 int u = extract32(insn, 29, 1);
11033 int size = extract32(insn, 22, 2);
11034 int opcode = extract32(insn, 11, 5);
11035 int rm = extract32(insn, 16, 5);
11036 int rn = extract32(insn, 5, 5);
11037 int rd = extract32(insn, 0, 5);
11038 int pass;
11039 TCGCond cond;
11040
11041 switch (opcode) {
11042 case 0x13: /* MUL, PMUL */
11043 if (u && size != 0) {
11044 unallocated_encoding(s);
11045 return;
11046 }
11047 /* fall through */
11048 case 0x0: /* SHADD, UHADD */
11049 case 0x2: /* SRHADD, URHADD */
11050 case 0x4: /* SHSUB, UHSUB */
11051 case 0xc: /* SMAX, UMAX */
11052 case 0xd: /* SMIN, UMIN */
11053 case 0xe: /* SABD, UABD */
11054 case 0xf: /* SABA, UABA */
11055 case 0x12: /* MLA, MLS */
11056 if (size == 3) {
11057 unallocated_encoding(s);
11058 return;
11059 }
11060 break;
11061 case 0x16: /* SQDMULH, SQRDMULH */
11062 if (size == 0 || size == 3) {
11063 unallocated_encoding(s);
11064 return;
11065 }
11066 break;
11067 default:
11068 if (size == 3 && !is_q) {
11069 unallocated_encoding(s);
11070 return;
11071 }
11072 break;
11073 }
11074
11075 if (!fp_access_check(s)) {
11076 return;
11077 }
11078
11079 switch (opcode) {
11080 case 0x01: /* SQADD, UQADD */
11081 tcg_gen_gvec_4(vec_full_reg_offset(s, rd),
11082 offsetof(CPUARMState, vfp.qc),
11083 vec_full_reg_offset(s, rn),
11084 vec_full_reg_offset(s, rm),
11085 is_q ? 16 : 8, vec_full_reg_size(s),
11086 (u ? uqadd_op : sqadd_op) + size);
11087 return;
11088 case 0x05: /* SQSUB, UQSUB */
11089 tcg_gen_gvec_4(vec_full_reg_offset(s, rd),
11090 offsetof(CPUARMState, vfp.qc),
11091 vec_full_reg_offset(s, rn),
11092 vec_full_reg_offset(s, rm),
11093 is_q ? 16 : 8, vec_full_reg_size(s),
11094 (u ? uqsub_op : sqsub_op) + size);
11095 return;
11096 case 0x0c: /* SMAX, UMAX */
11097 if (u) {
11098 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11099 } else {
11100 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11101 }
11102 return;
11103 case 0x0d: /* SMIN, UMIN */
11104 if (u) {
11105 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11106 } else {
11107 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11108 }
11109 return;
11110 case 0x10: /* ADD, SUB */
11111 if (u) {
11112 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11113 } else {
11114 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11115 }
11116 return;
11117 case 0x13: /* MUL, PMUL */
11118 if (!u) { /* MUL */
11119 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11120 return;
11121 }
11122 break;
11123 case 0x12: /* MLA, MLS */
11124 if (u) {
11125 gen_gvec_op3(s, is_q, rd, rn, rm, &mls_op[size]);
11126 } else {
11127 gen_gvec_op3(s, is_q, rd, rn, rm, &mla_op[size]);
11128 }
11129 return;
11130 case 0x11:
11131 if (!u) { /* CMTST */
11132 gen_gvec_op3(s, is_q, rd, rn, rm, &cmtst_op[size]);
11133 return;
11134 }
11135 /* else CMEQ */
11136 cond = TCG_COND_EQ;
11137 goto do_gvec_cmp;
11138 case 0x06: /* CMGT, CMHI */
11139 cond = u ? TCG_COND_GTU : TCG_COND_GT;
11140 goto do_gvec_cmp;
11141 case 0x07: /* CMGE, CMHS */
11142 cond = u ? TCG_COND_GEU : TCG_COND_GE;
11143 do_gvec_cmp:
11144 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11145 vec_full_reg_offset(s, rn),
11146 vec_full_reg_offset(s, rm),
11147 is_q ? 16 : 8, vec_full_reg_size(s));
11148 return;
11149 }
11150
11151 if (size == 3) {
11152 assert(is_q);
11153 for (pass = 0; pass < 2; pass++) {
11154 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11155 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11156 TCGv_i64 tcg_res = tcg_temp_new_i64();
11157
11158 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11159 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11160
11161 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11162
11163 write_vec_element(s, tcg_res, rd, pass, MO_64);
11164
11165 tcg_temp_free_i64(tcg_res);
11166 tcg_temp_free_i64(tcg_op1);
11167 tcg_temp_free_i64(tcg_op2);
11168 }
11169 } else {
11170 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11171 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11172 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11173 TCGv_i32 tcg_res = tcg_temp_new_i32();
11174 NeonGenTwoOpFn *genfn = NULL;
11175 NeonGenTwoOpEnvFn *genenvfn = NULL;
11176
11177 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11178 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11179
11180 switch (opcode) {
11181 case 0x0: /* SHADD, UHADD */
11182 {
11183 static NeonGenTwoOpFn * const fns[3][2] = {
11184 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11185 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11186 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11187 };
11188 genfn = fns[size][u];
11189 break;
11190 }
11191 case 0x2: /* SRHADD, URHADD */
11192 {
11193 static NeonGenTwoOpFn * const fns[3][2] = {
11194 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11195 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11196 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11197 };
11198 genfn = fns[size][u];
11199 break;
11200 }
11201 case 0x4: /* SHSUB, UHSUB */
11202 {
11203 static NeonGenTwoOpFn * const fns[3][2] = {
11204 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11205 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11206 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11207 };
11208 genfn = fns[size][u];
11209 break;
11210 }
11211 case 0x8: /* SSHL, USHL */
11212 {
11213 static NeonGenTwoOpFn * const fns[3][2] = {
11214 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
11215 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
11216 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
11217 };
11218 genfn = fns[size][u];
11219 break;
11220 }
11221 case 0x9: /* SQSHL, UQSHL */
11222 {
11223 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11224 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11225 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11226 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11227 };
11228 genenvfn = fns[size][u];
11229 break;
11230 }
11231 case 0xa: /* SRSHL, URSHL */
11232 {
11233 static NeonGenTwoOpFn * const fns[3][2] = {
11234 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11235 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11236 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11237 };
11238 genfn = fns[size][u];
11239 break;
11240 }
11241 case 0xb: /* SQRSHL, UQRSHL */
11242 {
11243 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11244 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11245 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11246 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11247 };
11248 genenvfn = fns[size][u];
11249 break;
11250 }
11251 case 0xe: /* SABD, UABD */
11252 case 0xf: /* SABA, UABA */
11253 {
11254 static NeonGenTwoOpFn * const fns[3][2] = {
11255 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
11256 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
11257 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
11258 };
11259 genfn = fns[size][u];
11260 break;
11261 }
11262 case 0x13: /* MUL, PMUL */
11263 assert(u); /* PMUL */
11264 assert(size == 0);
11265 genfn = gen_helper_neon_mul_p8;
11266 break;
11267 case 0x16: /* SQDMULH, SQRDMULH */
11268 {
11269 static NeonGenTwoOpEnvFn * const fns[2][2] = {
11270 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
11271 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
11272 };
11273 assert(size == 1 || size == 2);
11274 genenvfn = fns[size - 1][u];
11275 break;
11276 }
11277 default:
11278 g_assert_not_reached();
11279 }
11280
11281 if (genenvfn) {
11282 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11283 } else {
11284 genfn(tcg_res, tcg_op1, tcg_op2);
11285 }
11286
11287 if (opcode == 0xf) {
11288 /* SABA, UABA: accumulating ops */
11289 static NeonGenTwoOpFn * const fns[3] = {
11290 gen_helper_neon_add_u8,
11291 gen_helper_neon_add_u16,
11292 tcg_gen_add_i32,
11293 };
11294
11295 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
11296 fns[size](tcg_res, tcg_op1, tcg_res);
11297 }
11298
11299 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11300
11301 tcg_temp_free_i32(tcg_res);
11302 tcg_temp_free_i32(tcg_op1);
11303 tcg_temp_free_i32(tcg_op2);
11304 }
11305 }
11306 clear_vec_high(s, is_q, rd);
11307 }
11308
11309 /* AdvSIMD three same
11310 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11311 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11312 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11313 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11314 */
11315 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11316 {
11317 int opcode = extract32(insn, 11, 5);
11318
11319 switch (opcode) {
11320 case 0x3: /* logic ops */
11321 disas_simd_3same_logic(s, insn);
11322 break;
11323 case 0x17: /* ADDP */
11324 case 0x14: /* SMAXP, UMAXP */
11325 case 0x15: /* SMINP, UMINP */
11326 {
11327 /* Pairwise operations */
11328 int is_q = extract32(insn, 30, 1);
11329 int u = extract32(insn, 29, 1);
11330 int size = extract32(insn, 22, 2);
11331 int rm = extract32(insn, 16, 5);
11332 int rn = extract32(insn, 5, 5);
11333 int rd = extract32(insn, 0, 5);
11334 if (opcode == 0x17) {
11335 if (u || (size == 3 && !is_q)) {
11336 unallocated_encoding(s);
11337 return;
11338 }
11339 } else {
11340 if (size == 3) {
11341 unallocated_encoding(s);
11342 return;
11343 }
11344 }
11345 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11346 break;
11347 }
11348 case 0x18 ... 0x31:
11349 /* floating point ops, sz[1] and U are part of opcode */
11350 disas_simd_3same_float(s, insn);
11351 break;
11352 default:
11353 disas_simd_3same_int(s, insn);
11354 break;
11355 }
11356 }
11357
11358 /*
11359 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11360 *
11361 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11362 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11363 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11364 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11365 *
11366 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11367 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11368 *
11369 */
11370 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11371 {
11372 int opcode, fpopcode;
11373 int is_q, u, a, rm, rn, rd;
11374 int datasize, elements;
11375 int pass;
11376 TCGv_ptr fpst;
11377 bool pairwise = false;
11378
11379 if (!dc_isar_feature(aa64_fp16, s)) {
11380 unallocated_encoding(s);
11381 return;
11382 }
11383
11384 if (!fp_access_check(s)) {
11385 return;
11386 }
11387
11388 /* For these floating point ops, the U, a and opcode bits
11389 * together indicate the operation.
11390 */
11391 opcode = extract32(insn, 11, 3);
11392 u = extract32(insn, 29, 1);
11393 a = extract32(insn, 23, 1);
11394 is_q = extract32(insn, 30, 1);
11395 rm = extract32(insn, 16, 5);
11396 rn = extract32(insn, 5, 5);
11397 rd = extract32(insn, 0, 5);
11398
11399 fpopcode = opcode | (a << 3) | (u << 4);
11400 datasize = is_q ? 128 : 64;
11401 elements = datasize / 16;
11402
11403 switch (fpopcode) {
11404 case 0x10: /* FMAXNMP */
11405 case 0x12: /* FADDP */
11406 case 0x16: /* FMAXP */
11407 case 0x18: /* FMINNMP */
11408 case 0x1e: /* FMINP */
11409 pairwise = true;
11410 break;
11411 }
11412
11413 fpst = get_fpstatus_ptr(true);
11414
11415 if (pairwise) {
11416 int maxpass = is_q ? 8 : 4;
11417 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11418 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11419 TCGv_i32 tcg_res[8];
11420
11421 for (pass = 0; pass < maxpass; pass++) {
11422 int passreg = pass < (maxpass / 2) ? rn : rm;
11423 int passelt = (pass << 1) & (maxpass - 1);
11424
11425 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11426 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11427 tcg_res[pass] = tcg_temp_new_i32();
11428
11429 switch (fpopcode) {
11430 case 0x10: /* FMAXNMP */
11431 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11432 fpst);
11433 break;
11434 case 0x12: /* FADDP */
11435 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11436 break;
11437 case 0x16: /* FMAXP */
11438 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11439 break;
11440 case 0x18: /* FMINNMP */
11441 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11442 fpst);
11443 break;
11444 case 0x1e: /* FMINP */
11445 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11446 break;
11447 default:
11448 g_assert_not_reached();
11449 }
11450 }
11451
11452 for (pass = 0; pass < maxpass; pass++) {
11453 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11454 tcg_temp_free_i32(tcg_res[pass]);
11455 }
11456
11457 tcg_temp_free_i32(tcg_op1);
11458 tcg_temp_free_i32(tcg_op2);
11459
11460 } else {
11461 for (pass = 0; pass < elements; pass++) {
11462 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11463 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11464 TCGv_i32 tcg_res = tcg_temp_new_i32();
11465
11466 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11467 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11468
11469 switch (fpopcode) {
11470 case 0x0: /* FMAXNM */
11471 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11472 break;
11473 case 0x1: /* FMLA */
11474 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11475 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11476 fpst);
11477 break;
11478 case 0x2: /* FADD */
11479 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11480 break;
11481 case 0x3: /* FMULX */
11482 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11483 break;
11484 case 0x4: /* FCMEQ */
11485 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11486 break;
11487 case 0x6: /* FMAX */
11488 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11489 break;
11490 case 0x7: /* FRECPS */
11491 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11492 break;
11493 case 0x8: /* FMINNM */
11494 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11495 break;
11496 case 0x9: /* FMLS */
11497 /* As usual for ARM, separate negation for fused multiply-add */
11498 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11499 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11500 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11501 fpst);
11502 break;
11503 case 0xa: /* FSUB */
11504 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11505 break;
11506 case 0xe: /* FMIN */
11507 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11508 break;
11509 case 0xf: /* FRSQRTS */
11510 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11511 break;
11512 case 0x13: /* FMUL */
11513 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11514 break;
11515 case 0x14: /* FCMGE */
11516 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11517 break;
11518 case 0x15: /* FACGE */
11519 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11520 break;
11521 case 0x17: /* FDIV */
11522 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11523 break;
11524 case 0x1a: /* FABD */
11525 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11526 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11527 break;
11528 case 0x1c: /* FCMGT */
11529 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11530 break;
11531 case 0x1d: /* FACGT */
11532 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11533 break;
11534 default:
11535 fprintf(stderr, "%s: insn %#04x, fpop %#2x @ %#" PRIx64 "\n",
11536 __func__, insn, fpopcode, s->pc);
11537 g_assert_not_reached();
11538 }
11539
11540 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11541 tcg_temp_free_i32(tcg_res);
11542 tcg_temp_free_i32(tcg_op1);
11543 tcg_temp_free_i32(tcg_op2);
11544 }
11545 }
11546
11547 tcg_temp_free_ptr(fpst);
11548
11549 clear_vec_high(s, is_q, rd);
11550 }
11551
11552 /* AdvSIMD three same extra
11553 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
11554 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11555 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
11556 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11557 */
11558 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11559 {
11560 int rd = extract32(insn, 0, 5);
11561 int rn = extract32(insn, 5, 5);
11562 int opcode = extract32(insn, 11, 4);
11563 int rm = extract32(insn, 16, 5);
11564 int size = extract32(insn, 22, 2);
11565 bool u = extract32(insn, 29, 1);
11566 bool is_q = extract32(insn, 30, 1);
11567 bool feature;
11568 int rot;
11569
11570 switch (u * 16 + opcode) {
11571 case 0x10: /* SQRDMLAH (vector) */
11572 case 0x11: /* SQRDMLSH (vector) */
11573 if (size != 1 && size != 2) {
11574 unallocated_encoding(s);
11575 return;
11576 }
11577 feature = dc_isar_feature(aa64_rdm, s);
11578 break;
11579 case 0x02: /* SDOT (vector) */
11580 case 0x12: /* UDOT (vector) */
11581 if (size != MO_32) {
11582 unallocated_encoding(s);
11583 return;
11584 }
11585 feature = dc_isar_feature(aa64_dp, s);
11586 break;
11587 case 0x18: /* FCMLA, #0 */
11588 case 0x19: /* FCMLA, #90 */
11589 case 0x1a: /* FCMLA, #180 */
11590 case 0x1b: /* FCMLA, #270 */
11591 case 0x1c: /* FCADD, #90 */
11592 case 0x1e: /* FCADD, #270 */
11593 if (size == 0
11594 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11595 || (size == 3 && !is_q)) {
11596 unallocated_encoding(s);
11597 return;
11598 }
11599 feature = dc_isar_feature(aa64_fcma, s);
11600 break;
11601 default:
11602 unallocated_encoding(s);
11603 return;
11604 }
11605 if (!feature) {
11606 unallocated_encoding(s);
11607 return;
11608 }
11609 if (!fp_access_check(s)) {
11610 return;
11611 }
11612
11613 switch (opcode) {
11614 case 0x0: /* SQRDMLAH (vector) */
11615 switch (size) {
11616 case 1:
11617 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s16);
11618 break;
11619 case 2:
11620 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s32);
11621 break;
11622 default:
11623 g_assert_not_reached();
11624 }
11625 return;
11626
11627 case 0x1: /* SQRDMLSH (vector) */
11628 switch (size) {
11629 case 1:
11630 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s16);
11631 break;
11632 case 2:
11633 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s32);
11634 break;
11635 default:
11636 g_assert_not_reached();
11637 }
11638 return;
11639
11640 case 0x2: /* SDOT / UDOT */
11641 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0,
11642 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11643 return;
11644
11645 case 0x8: /* FCMLA, #0 */
11646 case 0x9: /* FCMLA, #90 */
11647 case 0xa: /* FCMLA, #180 */
11648 case 0xb: /* FCMLA, #270 */
11649 rot = extract32(opcode, 0, 2);
11650 switch (size) {
11651 case 1:
11652 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, true, rot,
11653 gen_helper_gvec_fcmlah);
11654 break;
11655 case 2:
11656 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11657 gen_helper_gvec_fcmlas);
11658 break;
11659 case 3:
11660 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11661 gen_helper_gvec_fcmlad);
11662 break;
11663 default:
11664 g_assert_not_reached();
11665 }
11666 return;
11667
11668 case 0xc: /* FCADD, #90 */
11669 case 0xe: /* FCADD, #270 */
11670 rot = extract32(opcode, 1, 1);
11671 switch (size) {
11672 case 1:
11673 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11674 gen_helper_gvec_fcaddh);
11675 break;
11676 case 2:
11677 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11678 gen_helper_gvec_fcadds);
11679 break;
11680 case 3:
11681 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11682 gen_helper_gvec_fcaddd);
11683 break;
11684 default:
11685 g_assert_not_reached();
11686 }
11687 return;
11688
11689 default:
11690 g_assert_not_reached();
11691 }
11692 }
11693
11694 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11695 int size, int rn, int rd)
11696 {
11697 /* Handle 2-reg-misc ops which are widening (so each size element
11698 * in the source becomes a 2*size element in the destination.
11699 * The only instruction like this is FCVTL.
11700 */
11701 int pass;
11702
11703 if (size == 3) {
11704 /* 32 -> 64 bit fp conversion */
11705 TCGv_i64 tcg_res[2];
11706 int srcelt = is_q ? 2 : 0;
11707
11708 for (pass = 0; pass < 2; pass++) {
11709 TCGv_i32 tcg_op = tcg_temp_new_i32();
11710 tcg_res[pass] = tcg_temp_new_i64();
11711
11712 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11713 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11714 tcg_temp_free_i32(tcg_op);
11715 }
11716 for (pass = 0; pass < 2; pass++) {
11717 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11718 tcg_temp_free_i64(tcg_res[pass]);
11719 }
11720 } else {
11721 /* 16 -> 32 bit fp conversion */
11722 int srcelt = is_q ? 4 : 0;
11723 TCGv_i32 tcg_res[4];
11724 TCGv_ptr fpst = get_fpstatus_ptr(false);
11725 TCGv_i32 ahp = get_ahp_flag();
11726
11727 for (pass = 0; pass < 4; pass++) {
11728 tcg_res[pass] = tcg_temp_new_i32();
11729
11730 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11731 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11732 fpst, ahp);
11733 }
11734 for (pass = 0; pass < 4; pass++) {
11735 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11736 tcg_temp_free_i32(tcg_res[pass]);
11737 }
11738
11739 tcg_temp_free_ptr(fpst);
11740 tcg_temp_free_i32(ahp);
11741 }
11742 }
11743
11744 static void handle_rev(DisasContext *s, int opcode, bool u,
11745 bool is_q, int size, int rn, int rd)
11746 {
11747 int op = (opcode << 1) | u;
11748 int opsz = op + size;
11749 int grp_size = 3 - opsz;
11750 int dsize = is_q ? 128 : 64;
11751 int i;
11752
11753 if (opsz >= 3) {
11754 unallocated_encoding(s);
11755 return;
11756 }
11757
11758 if (!fp_access_check(s)) {
11759 return;
11760 }
11761
11762 if (size == 0) {
11763 /* Special case bytes, use bswap op on each group of elements */
11764 int groups = dsize / (8 << grp_size);
11765
11766 for (i = 0; i < groups; i++) {
11767 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11768
11769 read_vec_element(s, tcg_tmp, rn, i, grp_size);
11770 switch (grp_size) {
11771 case MO_16:
11772 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
11773 break;
11774 case MO_32:
11775 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
11776 break;
11777 case MO_64:
11778 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11779 break;
11780 default:
11781 g_assert_not_reached();
11782 }
11783 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11784 tcg_temp_free_i64(tcg_tmp);
11785 }
11786 clear_vec_high(s, is_q, rd);
11787 } else {
11788 int revmask = (1 << grp_size) - 1;
11789 int esize = 8 << size;
11790 int elements = dsize / esize;
11791 TCGv_i64 tcg_rn = tcg_temp_new_i64();
11792 TCGv_i64 tcg_rd = tcg_const_i64(0);
11793 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
11794
11795 for (i = 0; i < elements; i++) {
11796 int e_rev = (i & 0xf) ^ revmask;
11797 int off = e_rev * esize;
11798 read_vec_element(s, tcg_rn, rn, i, size);
11799 if (off >= 64) {
11800 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
11801 tcg_rn, off - 64, esize);
11802 } else {
11803 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
11804 }
11805 }
11806 write_vec_element(s, tcg_rd, rd, 0, MO_64);
11807 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
11808
11809 tcg_temp_free_i64(tcg_rd_hi);
11810 tcg_temp_free_i64(tcg_rd);
11811 tcg_temp_free_i64(tcg_rn);
11812 }
11813 }
11814
11815 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11816 bool is_q, int size, int rn, int rd)
11817 {
11818 /* Implement the pairwise operations from 2-misc:
11819 * SADDLP, UADDLP, SADALP, UADALP.
11820 * These all add pairs of elements in the input to produce a
11821 * double-width result element in the output (possibly accumulating).
11822 */
11823 bool accum = (opcode == 0x6);
11824 int maxpass = is_q ? 2 : 1;
11825 int pass;
11826 TCGv_i64 tcg_res[2];
11827
11828 if (size == 2) {
11829 /* 32 + 32 -> 64 op */
11830 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
11831
11832 for (pass = 0; pass < maxpass; pass++) {
11833 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11834 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11835
11836 tcg_res[pass] = tcg_temp_new_i64();
11837
11838 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11839 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11840 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11841 if (accum) {
11842 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11843 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11844 }
11845
11846 tcg_temp_free_i64(tcg_op1);
11847 tcg_temp_free_i64(tcg_op2);
11848 }
11849 } else {
11850 for (pass = 0; pass < maxpass; pass++) {
11851 TCGv_i64 tcg_op = tcg_temp_new_i64();
11852 NeonGenOneOpFn *genfn;
11853 static NeonGenOneOpFn * const fns[2][2] = {
11854 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
11855 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
11856 };
11857
11858 genfn = fns[size][u];
11859
11860 tcg_res[pass] = tcg_temp_new_i64();
11861
11862 read_vec_element(s, tcg_op, rn, pass, MO_64);
11863 genfn(tcg_res[pass], tcg_op);
11864
11865 if (accum) {
11866 read_vec_element(s, tcg_op, rd, pass, MO_64);
11867 if (size == 0) {
11868 gen_helper_neon_addl_u16(tcg_res[pass],
11869 tcg_res[pass], tcg_op);
11870 } else {
11871 gen_helper_neon_addl_u32(tcg_res[pass],
11872 tcg_res[pass], tcg_op);
11873 }
11874 }
11875 tcg_temp_free_i64(tcg_op);
11876 }
11877 }
11878 if (!is_q) {
11879 tcg_res[1] = tcg_const_i64(0);
11880 }
11881 for (pass = 0; pass < 2; pass++) {
11882 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11883 tcg_temp_free_i64(tcg_res[pass]);
11884 }
11885 }
11886
11887 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11888 {
11889 /* Implement SHLL and SHLL2 */
11890 int pass;
11891 int part = is_q ? 2 : 0;
11892 TCGv_i64 tcg_res[2];
11893
11894 for (pass = 0; pass < 2; pass++) {
11895 static NeonGenWidenFn * const widenfns[3] = {
11896 gen_helper_neon_widen_u8,
11897 gen_helper_neon_widen_u16,
11898 tcg_gen_extu_i32_i64,
11899 };
11900 NeonGenWidenFn *widenfn = widenfns[size];
11901 TCGv_i32 tcg_op = tcg_temp_new_i32();
11902
11903 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11904 tcg_res[pass] = tcg_temp_new_i64();
11905 widenfn(tcg_res[pass], tcg_op);
11906 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11907
11908 tcg_temp_free_i32(tcg_op);
11909 }
11910
11911 for (pass = 0; pass < 2; pass++) {
11912 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11913 tcg_temp_free_i64(tcg_res[pass]);
11914 }
11915 }
11916
11917 /* AdvSIMD two reg misc
11918 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
11919 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11920 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
11921 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11922 */
11923 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11924 {
11925 int size = extract32(insn, 22, 2);
11926 int opcode = extract32(insn, 12, 5);
11927 bool u = extract32(insn, 29, 1);
11928 bool is_q = extract32(insn, 30, 1);
11929 int rn = extract32(insn, 5, 5);
11930 int rd = extract32(insn, 0, 5);
11931 bool need_fpstatus = false;
11932 bool need_rmode = false;
11933 int rmode = -1;
11934 TCGv_i32 tcg_rmode;
11935 TCGv_ptr tcg_fpstatus;
11936
11937 switch (opcode) {
11938 case 0x0: /* REV64, REV32 */
11939 case 0x1: /* REV16 */
11940 handle_rev(s, opcode, u, is_q, size, rn, rd);
11941 return;
11942 case 0x5: /* CNT, NOT, RBIT */
11943 if (u && size == 0) {
11944 /* NOT */
11945 break;
11946 } else if (u && size == 1) {
11947 /* RBIT */
11948 break;
11949 } else if (!u && size == 0) {
11950 /* CNT */
11951 break;
11952 }
11953 unallocated_encoding(s);
11954 return;
11955 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11956 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11957 if (size == 3) {
11958 unallocated_encoding(s);
11959 return;
11960 }
11961 if (!fp_access_check(s)) {
11962 return;
11963 }
11964
11965 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11966 return;
11967 case 0x4: /* CLS, CLZ */
11968 if (size == 3) {
11969 unallocated_encoding(s);
11970 return;
11971 }
11972 break;
11973 case 0x2: /* SADDLP, UADDLP */
11974 case 0x6: /* SADALP, UADALP */
11975 if (size == 3) {
11976 unallocated_encoding(s);
11977 return;
11978 }
11979 if (!fp_access_check(s)) {
11980 return;
11981 }
11982 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11983 return;
11984 case 0x13: /* SHLL, SHLL2 */
11985 if (u == 0 || size == 3) {
11986 unallocated_encoding(s);
11987 return;
11988 }
11989 if (!fp_access_check(s)) {
11990 return;
11991 }
11992 handle_shll(s, is_q, size, rn, rd);
11993 return;
11994 case 0xa: /* CMLT */
11995 if (u == 1) {
11996 unallocated_encoding(s);
11997 return;
11998 }
11999 /* fall through */
12000 case 0x8: /* CMGT, CMGE */
12001 case 0x9: /* CMEQ, CMLE */
12002 case 0xb: /* ABS, NEG */
12003 if (size == 3 && !is_q) {
12004 unallocated_encoding(s);
12005 return;
12006 }
12007 break;
12008 case 0x3: /* SUQADD, USQADD */
12009 if (size == 3 && !is_q) {
12010 unallocated_encoding(s);
12011 return;
12012 }
12013 if (!fp_access_check(s)) {
12014 return;
12015 }
12016 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12017 return;
12018 case 0x7: /* SQABS, SQNEG */
12019 if (size == 3 && !is_q) {
12020 unallocated_encoding(s);
12021 return;
12022 }
12023 break;
12024 case 0xc ... 0xf:
12025 case 0x16 ... 0x1f:
12026 {
12027 /* Floating point: U, size[1] and opcode indicate operation;
12028 * size[0] indicates single or double precision.
12029 */
12030 int is_double = extract32(size, 0, 1);
12031 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12032 size = is_double ? 3 : 2;
12033 switch (opcode) {
12034 case 0x2f: /* FABS */
12035 case 0x6f: /* FNEG */
12036 if (size == 3 && !is_q) {
12037 unallocated_encoding(s);
12038 return;
12039 }
12040 break;
12041 case 0x1d: /* SCVTF */
12042 case 0x5d: /* UCVTF */
12043 {
12044 bool is_signed = (opcode == 0x1d) ? true : false;
12045 int elements = is_double ? 2 : is_q ? 4 : 2;
12046 if (is_double && !is_q) {
12047 unallocated_encoding(s);
12048 return;
12049 }
12050 if (!fp_access_check(s)) {
12051 return;
12052 }
12053 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12054 return;
12055 }
12056 case 0x2c: /* FCMGT (zero) */
12057 case 0x2d: /* FCMEQ (zero) */
12058 case 0x2e: /* FCMLT (zero) */
12059 case 0x6c: /* FCMGE (zero) */
12060 case 0x6d: /* FCMLE (zero) */
12061 if (size == 3 && !is_q) {
12062 unallocated_encoding(s);
12063 return;
12064 }
12065 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12066 return;
12067 case 0x7f: /* FSQRT */
12068 if (size == 3 && !is_q) {
12069 unallocated_encoding(s);
12070 return;
12071 }
12072 break;
12073 case 0x1a: /* FCVTNS */
12074 case 0x1b: /* FCVTMS */
12075 case 0x3a: /* FCVTPS */
12076 case 0x3b: /* FCVTZS */
12077 case 0x5a: /* FCVTNU */
12078 case 0x5b: /* FCVTMU */
12079 case 0x7a: /* FCVTPU */
12080 case 0x7b: /* FCVTZU */
12081 need_fpstatus = true;
12082 need_rmode = true;
12083 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12084 if (size == 3 && !is_q) {
12085 unallocated_encoding(s);
12086 return;
12087 }
12088 break;
12089 case 0x5c: /* FCVTAU */
12090 case 0x1c: /* FCVTAS */
12091 need_fpstatus = true;
12092 need_rmode = true;
12093 rmode = FPROUNDING_TIEAWAY;
12094 if (size == 3 && !is_q) {
12095 unallocated_encoding(s);
12096 return;
12097 }
12098 break;
12099 case 0x3c: /* URECPE */
12100 if (size == 3) {
12101 unallocated_encoding(s);
12102 return;
12103 }
12104 /* fall through */
12105 case 0x3d: /* FRECPE */
12106 case 0x7d: /* FRSQRTE */
12107 if (size == 3 && !is_q) {
12108 unallocated_encoding(s);
12109 return;
12110 }
12111 if (!fp_access_check(s)) {
12112 return;
12113 }
12114 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12115 return;
12116 case 0x56: /* FCVTXN, FCVTXN2 */
12117 if (size == 2) {
12118 unallocated_encoding(s);
12119 return;
12120 }
12121 /* fall through */
12122 case 0x16: /* FCVTN, FCVTN2 */
12123 /* handle_2misc_narrow does a 2*size -> size operation, but these
12124 * instructions encode the source size rather than dest size.
12125 */
12126 if (!fp_access_check(s)) {
12127 return;
12128 }
12129 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12130 return;
12131 case 0x17: /* FCVTL, FCVTL2 */
12132 if (!fp_access_check(s)) {
12133 return;
12134 }
12135 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12136 return;
12137 case 0x18: /* FRINTN */
12138 case 0x19: /* FRINTM */
12139 case 0x38: /* FRINTP */
12140 case 0x39: /* FRINTZ */
12141 need_rmode = true;
12142 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12143 /* fall through */
12144 case 0x59: /* FRINTX */
12145 case 0x79: /* FRINTI */
12146 need_fpstatus = true;
12147 if (size == 3 && !is_q) {
12148 unallocated_encoding(s);
12149 return;
12150 }
12151 break;
12152 case 0x58: /* FRINTA */
12153 need_rmode = true;
12154 rmode = FPROUNDING_TIEAWAY;
12155 need_fpstatus = true;
12156 if (size == 3 && !is_q) {
12157 unallocated_encoding(s);
12158 return;
12159 }
12160 break;
12161 case 0x7c: /* URSQRTE */
12162 if (size == 3) {
12163 unallocated_encoding(s);
12164 return;
12165 }
12166 need_fpstatus = true;
12167 break;
12168 case 0x1e: /* FRINT32Z */
12169 case 0x1f: /* FRINT64Z */
12170 need_rmode = true;
12171 rmode = FPROUNDING_ZERO;
12172 /* fall through */
12173 case 0x5e: /* FRINT32X */
12174 case 0x5f: /* FRINT64X */
12175 need_fpstatus = true;
12176 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12177 unallocated_encoding(s);
12178 return;
12179 }
12180 break;
12181 default:
12182 unallocated_encoding(s);
12183 return;
12184 }
12185 break;
12186 }
12187 default:
12188 unallocated_encoding(s);
12189 return;
12190 }
12191
12192 if (!fp_access_check(s)) {
12193 return;
12194 }
12195
12196 if (need_fpstatus || need_rmode) {
12197 tcg_fpstatus = get_fpstatus_ptr(false);
12198 } else {
12199 tcg_fpstatus = NULL;
12200 }
12201 if (need_rmode) {
12202 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12203 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12204 } else {
12205 tcg_rmode = NULL;
12206 }
12207
12208 switch (opcode) {
12209 case 0x5:
12210 if (u && size == 0) { /* NOT */
12211 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12212 return;
12213 }
12214 break;
12215 case 0xb:
12216 if (u) { /* ABS, NEG */
12217 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12218 } else {
12219 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12220 }
12221 return;
12222 }
12223
12224 if (size == 3) {
12225 /* All 64-bit element operations can be shared with scalar 2misc */
12226 int pass;
12227
12228 /* Coverity claims (size == 3 && !is_q) has been eliminated
12229 * from all paths leading to here.
12230 */
12231 tcg_debug_assert(is_q);
12232 for (pass = 0; pass < 2; pass++) {
12233 TCGv_i64 tcg_op = tcg_temp_new_i64();
12234 TCGv_i64 tcg_res = tcg_temp_new_i64();
12235
12236 read_vec_element(s, tcg_op, rn, pass, MO_64);
12237
12238 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12239 tcg_rmode, tcg_fpstatus);
12240
12241 write_vec_element(s, tcg_res, rd, pass, MO_64);
12242
12243 tcg_temp_free_i64(tcg_res);
12244 tcg_temp_free_i64(tcg_op);
12245 }
12246 } else {
12247 int pass;
12248
12249 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12250 TCGv_i32 tcg_op = tcg_temp_new_i32();
12251 TCGv_i32 tcg_res = tcg_temp_new_i32();
12252 TCGCond cond;
12253
12254 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12255
12256 if (size == 2) {
12257 /* Special cases for 32 bit elements */
12258 switch (opcode) {
12259 case 0xa: /* CMLT */
12260 /* 32 bit integer comparison against zero, result is
12261 * test ? (2^32 - 1) : 0. We implement via setcond(test)
12262 * and inverting.
12263 */
12264 cond = TCG_COND_LT;
12265 do_cmop:
12266 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
12267 tcg_gen_neg_i32(tcg_res, tcg_res);
12268 break;
12269 case 0x8: /* CMGT, CMGE */
12270 cond = u ? TCG_COND_GE : TCG_COND_GT;
12271 goto do_cmop;
12272 case 0x9: /* CMEQ, CMLE */
12273 cond = u ? TCG_COND_LE : TCG_COND_EQ;
12274 goto do_cmop;
12275 case 0x4: /* CLS */
12276 if (u) {
12277 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12278 } else {
12279 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12280 }
12281 break;
12282 case 0x7: /* SQABS, SQNEG */
12283 if (u) {
12284 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12285 } else {
12286 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12287 }
12288 break;
12289 case 0x2f: /* FABS */
12290 gen_helper_vfp_abss(tcg_res, tcg_op);
12291 break;
12292 case 0x6f: /* FNEG */
12293 gen_helper_vfp_negs(tcg_res, tcg_op);
12294 break;
12295 case 0x7f: /* FSQRT */
12296 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12297 break;
12298 case 0x1a: /* FCVTNS */
12299 case 0x1b: /* FCVTMS */
12300 case 0x1c: /* FCVTAS */
12301 case 0x3a: /* FCVTPS */
12302 case 0x3b: /* FCVTZS */
12303 {
12304 TCGv_i32 tcg_shift = tcg_const_i32(0);
12305 gen_helper_vfp_tosls(tcg_res, tcg_op,
12306 tcg_shift, tcg_fpstatus);
12307 tcg_temp_free_i32(tcg_shift);
12308 break;
12309 }
12310 case 0x5a: /* FCVTNU */
12311 case 0x5b: /* FCVTMU */
12312 case 0x5c: /* FCVTAU */
12313 case 0x7a: /* FCVTPU */
12314 case 0x7b: /* FCVTZU */
12315 {
12316 TCGv_i32 tcg_shift = tcg_const_i32(0);
12317 gen_helper_vfp_touls(tcg_res, tcg_op,
12318 tcg_shift, tcg_fpstatus);
12319 tcg_temp_free_i32(tcg_shift);
12320 break;
12321 }
12322 case 0x18: /* FRINTN */
12323 case 0x19: /* FRINTM */
12324 case 0x38: /* FRINTP */
12325 case 0x39: /* FRINTZ */
12326 case 0x58: /* FRINTA */
12327 case 0x79: /* FRINTI */
12328 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12329 break;
12330 case 0x59: /* FRINTX */
12331 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12332 break;
12333 case 0x7c: /* URSQRTE */
12334 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
12335 break;
12336 case 0x1e: /* FRINT32Z */
12337 case 0x5e: /* FRINT32X */
12338 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12339 break;
12340 case 0x1f: /* FRINT64Z */
12341 case 0x5f: /* FRINT64X */
12342 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12343 break;
12344 default:
12345 g_assert_not_reached();
12346 }
12347 } else {
12348 /* Use helpers for 8 and 16 bit elements */
12349 switch (opcode) {
12350 case 0x5: /* CNT, RBIT */
12351 /* For these two insns size is part of the opcode specifier
12352 * (handled earlier); they always operate on byte elements.
12353 */
12354 if (u) {
12355 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12356 } else {
12357 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12358 }
12359 break;
12360 case 0x7: /* SQABS, SQNEG */
12361 {
12362 NeonGenOneOpEnvFn *genfn;
12363 static NeonGenOneOpEnvFn * const fns[2][2] = {
12364 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12365 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12366 };
12367 genfn = fns[size][u];
12368 genfn(tcg_res, cpu_env, tcg_op);
12369 break;
12370 }
12371 case 0x8: /* CMGT, CMGE */
12372 case 0x9: /* CMEQ, CMLE */
12373 case 0xa: /* CMLT */
12374 {
12375 static NeonGenTwoOpFn * const fns[3][2] = {
12376 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
12377 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
12378 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
12379 };
12380 NeonGenTwoOpFn *genfn;
12381 int comp;
12382 bool reverse;
12383 TCGv_i32 tcg_zero = tcg_const_i32(0);
12384
12385 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
12386 comp = (opcode - 0x8) * 2 + u;
12387 /* ...but LE, LT are implemented as reverse GE, GT */
12388 reverse = (comp > 2);
12389 if (reverse) {
12390 comp = 4 - comp;
12391 }
12392 genfn = fns[comp][size];
12393 if (reverse) {
12394 genfn(tcg_res, tcg_zero, tcg_op);
12395 } else {
12396 genfn(tcg_res, tcg_op, tcg_zero);
12397 }
12398 tcg_temp_free_i32(tcg_zero);
12399 break;
12400 }
12401 case 0x4: /* CLS, CLZ */
12402 if (u) {
12403 if (size == 0) {
12404 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12405 } else {
12406 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12407 }
12408 } else {
12409 if (size == 0) {
12410 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12411 } else {
12412 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12413 }
12414 }
12415 break;
12416 default:
12417 g_assert_not_reached();
12418 }
12419 }
12420
12421 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12422
12423 tcg_temp_free_i32(tcg_res);
12424 tcg_temp_free_i32(tcg_op);
12425 }
12426 }
12427 clear_vec_high(s, is_q, rd);
12428
12429 if (need_rmode) {
12430 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12431 tcg_temp_free_i32(tcg_rmode);
12432 }
12433 if (need_fpstatus) {
12434 tcg_temp_free_ptr(tcg_fpstatus);
12435 }
12436 }
12437
12438 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12439 *
12440 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
12441 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12442 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
12443 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12444 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12445 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12446 *
12447 * This actually covers two groups where scalar access is governed by
12448 * bit 28. A bunch of the instructions (float to integral) only exist
12449 * in the vector form and are un-allocated for the scalar decode. Also
12450 * in the scalar decode Q is always 1.
12451 */
12452 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12453 {
12454 int fpop, opcode, a, u;
12455 int rn, rd;
12456 bool is_q;
12457 bool is_scalar;
12458 bool only_in_vector = false;
12459
12460 int pass;
12461 TCGv_i32 tcg_rmode = NULL;
12462 TCGv_ptr tcg_fpstatus = NULL;
12463 bool need_rmode = false;
12464 bool need_fpst = true;
12465 int rmode;
12466
12467 if (!dc_isar_feature(aa64_fp16, s)) {
12468 unallocated_encoding(s);
12469 return;
12470 }
12471
12472 rd = extract32(insn, 0, 5);
12473 rn = extract32(insn, 5, 5);
12474
12475 a = extract32(insn, 23, 1);
12476 u = extract32(insn, 29, 1);
12477 is_scalar = extract32(insn, 28, 1);
12478 is_q = extract32(insn, 30, 1);
12479
12480 opcode = extract32(insn, 12, 5);
12481 fpop = deposit32(opcode, 5, 1, a);
12482 fpop = deposit32(fpop, 6, 1, u);
12483
12484 rd = extract32(insn, 0, 5);
12485 rn = extract32(insn, 5, 5);
12486
12487 switch (fpop) {
12488 case 0x1d: /* SCVTF */
12489 case 0x5d: /* UCVTF */
12490 {
12491 int elements;
12492
12493 if (is_scalar) {
12494 elements = 1;
12495 } else {
12496 elements = (is_q ? 8 : 4);
12497 }
12498
12499 if (!fp_access_check(s)) {
12500 return;
12501 }
12502 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12503 return;
12504 }
12505 break;
12506 case 0x2c: /* FCMGT (zero) */
12507 case 0x2d: /* FCMEQ (zero) */
12508 case 0x2e: /* FCMLT (zero) */
12509 case 0x6c: /* FCMGE (zero) */
12510 case 0x6d: /* FCMLE (zero) */
12511 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12512 return;
12513 case 0x3d: /* FRECPE */
12514 case 0x3f: /* FRECPX */
12515 break;
12516 case 0x18: /* FRINTN */
12517 need_rmode = true;
12518 only_in_vector = true;
12519 rmode = FPROUNDING_TIEEVEN;
12520 break;
12521 case 0x19: /* FRINTM */
12522 need_rmode = true;
12523 only_in_vector = true;
12524 rmode = FPROUNDING_NEGINF;
12525 break;
12526 case 0x38: /* FRINTP */
12527 need_rmode = true;
12528 only_in_vector = true;
12529 rmode = FPROUNDING_POSINF;
12530 break;
12531 case 0x39: /* FRINTZ */
12532 need_rmode = true;
12533 only_in_vector = true;
12534 rmode = FPROUNDING_ZERO;
12535 break;
12536 case 0x58: /* FRINTA */
12537 need_rmode = true;
12538 only_in_vector = true;
12539 rmode = FPROUNDING_TIEAWAY;
12540 break;
12541 case 0x59: /* FRINTX */
12542 case 0x79: /* FRINTI */
12543 only_in_vector = true;
12544 /* current rounding mode */
12545 break;
12546 case 0x1a: /* FCVTNS */
12547 need_rmode = true;
12548 rmode = FPROUNDING_TIEEVEN;
12549 break;
12550 case 0x1b: /* FCVTMS */
12551 need_rmode = true;
12552 rmode = FPROUNDING_NEGINF;
12553 break;
12554 case 0x1c: /* FCVTAS */
12555 need_rmode = true;
12556 rmode = FPROUNDING_TIEAWAY;
12557 break;
12558 case 0x3a: /* FCVTPS */
12559 need_rmode = true;
12560 rmode = FPROUNDING_POSINF;
12561 break;
12562 case 0x3b: /* FCVTZS */
12563 need_rmode = true;
12564 rmode = FPROUNDING_ZERO;
12565 break;
12566 case 0x5a: /* FCVTNU */
12567 need_rmode = true;
12568 rmode = FPROUNDING_TIEEVEN;
12569 break;
12570 case 0x5b: /* FCVTMU */
12571 need_rmode = true;
12572 rmode = FPROUNDING_NEGINF;
12573 break;
12574 case 0x5c: /* FCVTAU */
12575 need_rmode = true;
12576 rmode = FPROUNDING_TIEAWAY;
12577 break;
12578 case 0x7a: /* FCVTPU */
12579 need_rmode = true;
12580 rmode = FPROUNDING_POSINF;
12581 break;
12582 case 0x7b: /* FCVTZU */
12583 need_rmode = true;
12584 rmode = FPROUNDING_ZERO;
12585 break;
12586 case 0x2f: /* FABS */
12587 case 0x6f: /* FNEG */
12588 need_fpst = false;
12589 break;
12590 case 0x7d: /* FRSQRTE */
12591 case 0x7f: /* FSQRT (vector) */
12592 break;
12593 default:
12594 fprintf(stderr, "%s: insn %#04x fpop %#2x\n", __func__, insn, fpop);
12595 g_assert_not_reached();
12596 }
12597
12598
12599 /* Check additional constraints for the scalar encoding */
12600 if (is_scalar) {
12601 if (!is_q) {
12602 unallocated_encoding(s);
12603 return;
12604 }
12605 /* FRINTxx is only in the vector form */
12606 if (only_in_vector) {
12607 unallocated_encoding(s);
12608 return;
12609 }
12610 }
12611
12612 if (!fp_access_check(s)) {
12613 return;
12614 }
12615
12616 if (need_rmode || need_fpst) {
12617 tcg_fpstatus = get_fpstatus_ptr(true);
12618 }
12619
12620 if (need_rmode) {
12621 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12622 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12623 }
12624
12625 if (is_scalar) {
12626 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12627 TCGv_i32 tcg_res = tcg_temp_new_i32();
12628
12629 switch (fpop) {
12630 case 0x1a: /* FCVTNS */
12631 case 0x1b: /* FCVTMS */
12632 case 0x1c: /* FCVTAS */
12633 case 0x3a: /* FCVTPS */
12634 case 0x3b: /* FCVTZS */
12635 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12636 break;
12637 case 0x3d: /* FRECPE */
12638 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12639 break;
12640 case 0x3f: /* FRECPX */
12641 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12642 break;
12643 case 0x5a: /* FCVTNU */
12644 case 0x5b: /* FCVTMU */
12645 case 0x5c: /* FCVTAU */
12646 case 0x7a: /* FCVTPU */
12647 case 0x7b: /* FCVTZU */
12648 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12649 break;
12650 case 0x6f: /* FNEG */
12651 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12652 break;
12653 case 0x7d: /* FRSQRTE */
12654 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12655 break;
12656 default:
12657 g_assert_not_reached();
12658 }
12659
12660 /* limit any sign extension going on */
12661 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12662 write_fp_sreg(s, rd, tcg_res);
12663
12664 tcg_temp_free_i32(tcg_res);
12665 tcg_temp_free_i32(tcg_op);
12666 } else {
12667 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12668 TCGv_i32 tcg_op = tcg_temp_new_i32();
12669 TCGv_i32 tcg_res = tcg_temp_new_i32();
12670
12671 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12672
12673 switch (fpop) {
12674 case 0x1a: /* FCVTNS */
12675 case 0x1b: /* FCVTMS */
12676 case 0x1c: /* FCVTAS */
12677 case 0x3a: /* FCVTPS */
12678 case 0x3b: /* FCVTZS */
12679 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12680 break;
12681 case 0x3d: /* FRECPE */
12682 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12683 break;
12684 case 0x5a: /* FCVTNU */
12685 case 0x5b: /* FCVTMU */
12686 case 0x5c: /* FCVTAU */
12687 case 0x7a: /* FCVTPU */
12688 case 0x7b: /* FCVTZU */
12689 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12690 break;
12691 case 0x18: /* FRINTN */
12692 case 0x19: /* FRINTM */
12693 case 0x38: /* FRINTP */
12694 case 0x39: /* FRINTZ */
12695 case 0x58: /* FRINTA */
12696 case 0x79: /* FRINTI */
12697 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12698 break;
12699 case 0x59: /* FRINTX */
12700 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12701 break;
12702 case 0x2f: /* FABS */
12703 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12704 break;
12705 case 0x6f: /* FNEG */
12706 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12707 break;
12708 case 0x7d: /* FRSQRTE */
12709 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12710 break;
12711 case 0x7f: /* FSQRT */
12712 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12713 break;
12714 default:
12715 g_assert_not_reached();
12716 }
12717
12718 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12719
12720 tcg_temp_free_i32(tcg_res);
12721 tcg_temp_free_i32(tcg_op);
12722 }
12723
12724 clear_vec_high(s, is_q, rd);
12725 }
12726
12727 if (tcg_rmode) {
12728 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12729 tcg_temp_free_i32(tcg_rmode);
12730 }
12731
12732 if (tcg_fpstatus) {
12733 tcg_temp_free_ptr(tcg_fpstatus);
12734 }
12735 }
12736
12737 /* AdvSIMD scalar x indexed element
12738 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12739 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12740 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12741 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12742 * AdvSIMD vector x indexed element
12743 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12744 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12745 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12746 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12747 */
12748 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12749 {
12750 /* This encoding has two kinds of instruction:
12751 * normal, where we perform elt x idxelt => elt for each
12752 * element in the vector
12753 * long, where we perform elt x idxelt and generate a result of
12754 * double the width of the input element
12755 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12756 */
12757 bool is_scalar = extract32(insn, 28, 1);
12758 bool is_q = extract32(insn, 30, 1);
12759 bool u = extract32(insn, 29, 1);
12760 int size = extract32(insn, 22, 2);
12761 int l = extract32(insn, 21, 1);
12762 int m = extract32(insn, 20, 1);
12763 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12764 int rm = extract32(insn, 16, 4);
12765 int opcode = extract32(insn, 12, 4);
12766 int h = extract32(insn, 11, 1);
12767 int rn = extract32(insn, 5, 5);
12768 int rd = extract32(insn, 0, 5);
12769 bool is_long = false;
12770 int is_fp = 0;
12771 bool is_fp16 = false;
12772 int index;
12773 TCGv_ptr fpst;
12774
12775 switch (16 * u + opcode) {
12776 case 0x08: /* MUL */
12777 case 0x10: /* MLA */
12778 case 0x14: /* MLS */
12779 if (is_scalar) {
12780 unallocated_encoding(s);
12781 return;
12782 }
12783 break;
12784 case 0x02: /* SMLAL, SMLAL2 */
12785 case 0x12: /* UMLAL, UMLAL2 */
12786 case 0x06: /* SMLSL, SMLSL2 */
12787 case 0x16: /* UMLSL, UMLSL2 */
12788 case 0x0a: /* SMULL, SMULL2 */
12789 case 0x1a: /* UMULL, UMULL2 */
12790 if (is_scalar) {
12791 unallocated_encoding(s);
12792 return;
12793 }
12794 is_long = true;
12795 break;
12796 case 0x03: /* SQDMLAL, SQDMLAL2 */
12797 case 0x07: /* SQDMLSL, SQDMLSL2 */
12798 case 0x0b: /* SQDMULL, SQDMULL2 */
12799 is_long = true;
12800 break;
12801 case 0x0c: /* SQDMULH */
12802 case 0x0d: /* SQRDMULH */
12803 break;
12804 case 0x01: /* FMLA */
12805 case 0x05: /* FMLS */
12806 case 0x09: /* FMUL */
12807 case 0x19: /* FMULX */
12808 is_fp = 1;
12809 break;
12810 case 0x1d: /* SQRDMLAH */
12811 case 0x1f: /* SQRDMLSH */
12812 if (!dc_isar_feature(aa64_rdm, s)) {
12813 unallocated_encoding(s);
12814 return;
12815 }
12816 break;
12817 case 0x0e: /* SDOT */
12818 case 0x1e: /* UDOT */
12819 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12820 unallocated_encoding(s);
12821 return;
12822 }
12823 break;
12824 case 0x11: /* FCMLA #0 */
12825 case 0x13: /* FCMLA #90 */
12826 case 0x15: /* FCMLA #180 */
12827 case 0x17: /* FCMLA #270 */
12828 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12829 unallocated_encoding(s);
12830 return;
12831 }
12832 is_fp = 2;
12833 break;
12834 case 0x00: /* FMLAL */
12835 case 0x04: /* FMLSL */
12836 case 0x18: /* FMLAL2 */
12837 case 0x1c: /* FMLSL2 */
12838 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12839 unallocated_encoding(s);
12840 return;
12841 }
12842 size = MO_16;
12843 /* is_fp, but we pass cpu_env not fp_status. */
12844 break;
12845 default:
12846 unallocated_encoding(s);
12847 return;
12848 }
12849
12850 switch (is_fp) {
12851 case 1: /* normal fp */
12852 /* convert insn encoded size to TCGMemOp size */
12853 switch (size) {
12854 case 0: /* half-precision */
12855 size = MO_16;
12856 is_fp16 = true;
12857 break;
12858 case MO_32: /* single precision */
12859 case MO_64: /* double precision */
12860 break;
12861 default:
12862 unallocated_encoding(s);
12863 return;
12864 }
12865 break;
12866
12867 case 2: /* complex fp */
12868 /* Each indexable element is a complex pair. */
12869 size += 1;
12870 switch (size) {
12871 case MO_32:
12872 if (h && !is_q) {
12873 unallocated_encoding(s);
12874 return;
12875 }
12876 is_fp16 = true;
12877 break;
12878 case MO_64:
12879 break;
12880 default:
12881 unallocated_encoding(s);
12882 return;
12883 }
12884 break;
12885
12886 default: /* integer */
12887 switch (size) {
12888 case MO_8:
12889 case MO_64:
12890 unallocated_encoding(s);
12891 return;
12892 }
12893 break;
12894 }
12895 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12896 unallocated_encoding(s);
12897 return;
12898 }
12899
12900 /* Given TCGMemOp size, adjust register and indexing. */
12901 switch (size) {
12902 case MO_16:
12903 index = h << 2 | l << 1 | m;
12904 break;
12905 case MO_32:
12906 index = h << 1 | l;
12907 rm |= m << 4;
12908 break;
12909 case MO_64:
12910 if (l || !is_q) {
12911 unallocated_encoding(s);
12912 return;
12913 }
12914 index = h;
12915 rm |= m << 4;
12916 break;
12917 default:
12918 g_assert_not_reached();
12919 }
12920
12921 if (!fp_access_check(s)) {
12922 return;
12923 }
12924
12925 if (is_fp) {
12926 fpst = get_fpstatus_ptr(is_fp16);
12927 } else {
12928 fpst = NULL;
12929 }
12930
12931 switch (16 * u + opcode) {
12932 case 0x0e: /* SDOT */
12933 case 0x1e: /* UDOT */
12934 gen_gvec_op3_ool(s, is_q, rd, rn, rm, index,
12935 u ? gen_helper_gvec_udot_idx_b
12936 : gen_helper_gvec_sdot_idx_b);
12937 return;
12938 case 0x11: /* FCMLA #0 */
12939 case 0x13: /* FCMLA #90 */
12940 case 0x15: /* FCMLA #180 */
12941 case 0x17: /* FCMLA #270 */
12942 {
12943 int rot = extract32(insn, 13, 2);
12944 int data = (index << 2) | rot;
12945 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12946 vec_full_reg_offset(s, rn),
12947 vec_full_reg_offset(s, rm), fpst,
12948 is_q ? 16 : 8, vec_full_reg_size(s), data,
12949 size == MO_64
12950 ? gen_helper_gvec_fcmlas_idx
12951 : gen_helper_gvec_fcmlah_idx);
12952 tcg_temp_free_ptr(fpst);
12953 }
12954 return;
12955
12956 case 0x00: /* FMLAL */
12957 case 0x04: /* FMLSL */
12958 case 0x18: /* FMLAL2 */
12959 case 0x1c: /* FMLSL2 */
12960 {
12961 int is_s = extract32(opcode, 2, 1);
12962 int is_2 = u;
12963 int data = (index << 2) | (is_2 << 1) | is_s;
12964 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12965 vec_full_reg_offset(s, rn),
12966 vec_full_reg_offset(s, rm), cpu_env,
12967 is_q ? 16 : 8, vec_full_reg_size(s),
12968 data, gen_helper_gvec_fmlal_idx_a64);
12969 }
12970 return;
12971 }
12972
12973 if (size == 3) {
12974 TCGv_i64 tcg_idx = tcg_temp_new_i64();
12975 int pass;
12976
12977 assert(is_fp && is_q && !is_long);
12978
12979 read_vec_element(s, tcg_idx, rm, index, MO_64);
12980
12981 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12982 TCGv_i64 tcg_op = tcg_temp_new_i64();
12983 TCGv_i64 tcg_res = tcg_temp_new_i64();
12984
12985 read_vec_element(s, tcg_op, rn, pass, MO_64);
12986
12987 switch (16 * u + opcode) {
12988 case 0x05: /* FMLS */
12989 /* As usual for ARM, separate negation for fused multiply-add */
12990 gen_helper_vfp_negd(tcg_op, tcg_op);
12991 /* fall through */
12992 case 0x01: /* FMLA */
12993 read_vec_element(s, tcg_res, rd, pass, MO_64);
12994 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
12995 break;
12996 case 0x09: /* FMUL */
12997 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
12998 break;
12999 case 0x19: /* FMULX */
13000 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13001 break;
13002 default:
13003 g_assert_not_reached();
13004 }
13005
13006 write_vec_element(s, tcg_res, rd, pass, MO_64);
13007 tcg_temp_free_i64(tcg_op);
13008 tcg_temp_free_i64(tcg_res);
13009 }
13010
13011 tcg_temp_free_i64(tcg_idx);
13012 clear_vec_high(s, !is_scalar, rd);
13013 } else if (!is_long) {
13014 /* 32 bit floating point, or 16 or 32 bit integer.
13015 * For the 16 bit scalar case we use the usual Neon helpers and
13016 * rely on the fact that 0 op 0 == 0 with no side effects.
13017 */
13018 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13019 int pass, maxpasses;
13020
13021 if (is_scalar) {
13022 maxpasses = 1;
13023 } else {
13024 maxpasses = is_q ? 4 : 2;
13025 }
13026
13027 read_vec_element_i32(s, tcg_idx, rm, index, size);
13028
13029 if (size == 1 && !is_scalar) {
13030 /* The simplest way to handle the 16x16 indexed ops is to duplicate
13031 * the index into both halves of the 32 bit tcg_idx and then use
13032 * the usual Neon helpers.
13033 */
13034 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13035 }
13036
13037 for (pass = 0; pass < maxpasses; pass++) {
13038 TCGv_i32 tcg_op = tcg_temp_new_i32();
13039 TCGv_i32 tcg_res = tcg_temp_new_i32();
13040
13041 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13042
13043 switch (16 * u + opcode) {
13044 case 0x08: /* MUL */
13045 case 0x10: /* MLA */
13046 case 0x14: /* MLS */
13047 {
13048 static NeonGenTwoOpFn * const fns[2][2] = {
13049 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13050 { tcg_gen_add_i32, tcg_gen_sub_i32 },
13051 };
13052 NeonGenTwoOpFn *genfn;
13053 bool is_sub = opcode == 0x4;
13054
13055 if (size == 1) {
13056 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13057 } else {
13058 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13059 }
13060 if (opcode == 0x8) {
13061 break;
13062 }
13063 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13064 genfn = fns[size - 1][is_sub];
13065 genfn(tcg_res, tcg_op, tcg_res);
13066 break;
13067 }
13068 case 0x05: /* FMLS */
13069 case 0x01: /* FMLA */
13070 read_vec_element_i32(s, tcg_res, rd, pass,
13071 is_scalar ? size : MO_32);
13072 switch (size) {
13073 case 1:
13074 if (opcode == 0x5) {
13075 /* As usual for ARM, separate negation for fused
13076 * multiply-add */
13077 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13078 }
13079 if (is_scalar) {
13080 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13081 tcg_res, fpst);
13082 } else {
13083 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13084 tcg_res, fpst);
13085 }
13086 break;
13087 case 2:
13088 if (opcode == 0x5) {
13089 /* As usual for ARM, separate negation for
13090 * fused multiply-add */
13091 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13092 }
13093 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13094 tcg_res, fpst);
13095 break;
13096 default:
13097 g_assert_not_reached();
13098 }
13099 break;
13100 case 0x09: /* FMUL */
13101 switch (size) {
13102 case 1:
13103 if (is_scalar) {
13104 gen_helper_advsimd_mulh(tcg_res, tcg_op,
13105 tcg_idx, fpst);
13106 } else {
13107 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13108 tcg_idx, fpst);
13109 }
13110 break;
13111 case 2:
13112 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13113 break;
13114 default:
13115 g_assert_not_reached();
13116 }
13117 break;
13118 case 0x19: /* FMULX */
13119 switch (size) {
13120 case 1:
13121 if (is_scalar) {
13122 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13123 tcg_idx, fpst);
13124 } else {
13125 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13126 tcg_idx, fpst);
13127 }
13128 break;
13129 case 2:
13130 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13131 break;
13132 default:
13133 g_assert_not_reached();
13134 }
13135 break;
13136 case 0x0c: /* SQDMULH */
13137 if (size == 1) {
13138 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13139 tcg_op, tcg_idx);
13140 } else {
13141 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13142 tcg_op, tcg_idx);
13143 }
13144 break;
13145 case 0x0d: /* SQRDMULH */
13146 if (size == 1) {
13147 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13148 tcg_op, tcg_idx);
13149 } else {
13150 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13151 tcg_op, tcg_idx);
13152 }
13153 break;
13154 case 0x1d: /* SQRDMLAH */
13155 read_vec_element_i32(s, tcg_res, rd, pass,
13156 is_scalar ? size : MO_32);
13157 if (size == 1) {
13158 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13159 tcg_op, tcg_idx, tcg_res);
13160 } else {
13161 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13162 tcg_op, tcg_idx, tcg_res);
13163 }
13164 break;
13165 case 0x1f: /* SQRDMLSH */
13166 read_vec_element_i32(s, tcg_res, rd, pass,
13167 is_scalar ? size : MO_32);
13168 if (size == 1) {
13169 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13170 tcg_op, tcg_idx, tcg_res);
13171 } else {
13172 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13173 tcg_op, tcg_idx, tcg_res);
13174 }
13175 break;
13176 default:
13177 g_assert_not_reached();
13178 }
13179
13180 if (is_scalar) {
13181 write_fp_sreg(s, rd, tcg_res);
13182 } else {
13183 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13184 }
13185
13186 tcg_temp_free_i32(tcg_op);
13187 tcg_temp_free_i32(tcg_res);
13188 }
13189
13190 tcg_temp_free_i32(tcg_idx);
13191 clear_vec_high(s, is_q, rd);
13192 } else {
13193 /* long ops: 16x16->32 or 32x32->64 */
13194 TCGv_i64 tcg_res[2];
13195 int pass;
13196 bool satop = extract32(opcode, 0, 1);
13197 TCGMemOp memop = MO_32;
13198
13199 if (satop || !u) {
13200 memop |= MO_SIGN;
13201 }
13202
13203 if (size == 2) {
13204 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13205
13206 read_vec_element(s, tcg_idx, rm, index, memop);
13207
13208 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13209 TCGv_i64 tcg_op = tcg_temp_new_i64();
13210 TCGv_i64 tcg_passres;
13211 int passelt;
13212
13213 if (is_scalar) {
13214 passelt = 0;
13215 } else {
13216 passelt = pass + (is_q * 2);
13217 }
13218
13219 read_vec_element(s, tcg_op, rn, passelt, memop);
13220
13221 tcg_res[pass] = tcg_temp_new_i64();
13222
13223 if (opcode == 0xa || opcode == 0xb) {
13224 /* Non-accumulating ops */
13225 tcg_passres = tcg_res[pass];
13226 } else {
13227 tcg_passres = tcg_temp_new_i64();
13228 }
13229
13230 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13231 tcg_temp_free_i64(tcg_op);
13232
13233 if (satop) {
13234 /* saturating, doubling */
13235 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13236 tcg_passres, tcg_passres);
13237 }
13238
13239 if (opcode == 0xa || opcode == 0xb) {
13240 continue;
13241 }
13242
13243 /* Accumulating op: handle accumulate step */
13244 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13245
13246 switch (opcode) {
13247 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13248 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13249 break;
13250 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13251 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13252 break;
13253 case 0x7: /* SQDMLSL, SQDMLSL2 */
13254 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13255 /* fall through */
13256 case 0x3: /* SQDMLAL, SQDMLAL2 */
13257 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13258 tcg_res[pass],
13259 tcg_passres);
13260 break;
13261 default:
13262 g_assert_not_reached();
13263 }
13264 tcg_temp_free_i64(tcg_passres);
13265 }
13266 tcg_temp_free_i64(tcg_idx);
13267
13268 clear_vec_high(s, !is_scalar, rd);
13269 } else {
13270 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13271
13272 assert(size == 1);
13273 read_vec_element_i32(s, tcg_idx, rm, index, size);
13274
13275 if (!is_scalar) {
13276 /* The simplest way to handle the 16x16 indexed ops is to
13277 * duplicate the index into both halves of the 32 bit tcg_idx
13278 * and then use the usual Neon helpers.
13279 */
13280 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13281 }
13282
13283 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13284 TCGv_i32 tcg_op = tcg_temp_new_i32();
13285 TCGv_i64 tcg_passres;
13286
13287 if (is_scalar) {
13288 read_vec_element_i32(s, tcg_op, rn, pass, size);
13289 } else {
13290 read_vec_element_i32(s, tcg_op, rn,
13291 pass + (is_q * 2), MO_32);
13292 }
13293
13294 tcg_res[pass] = tcg_temp_new_i64();
13295
13296 if (opcode == 0xa || opcode == 0xb) {
13297 /* Non-accumulating ops */
13298 tcg_passres = tcg_res[pass];
13299 } else {
13300 tcg_passres = tcg_temp_new_i64();
13301 }
13302
13303 if (memop & MO_SIGN) {
13304 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13305 } else {
13306 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13307 }
13308 if (satop) {
13309 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13310 tcg_passres, tcg_passres);
13311 }
13312 tcg_temp_free_i32(tcg_op);
13313
13314 if (opcode == 0xa || opcode == 0xb) {
13315 continue;
13316 }
13317
13318 /* Accumulating op: handle accumulate step */
13319 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13320
13321 switch (opcode) {
13322 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13323 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13324 tcg_passres);
13325 break;
13326 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13327 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13328 tcg_passres);
13329 break;
13330 case 0x7: /* SQDMLSL, SQDMLSL2 */
13331 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13332 /* fall through */
13333 case 0x3: /* SQDMLAL, SQDMLAL2 */
13334 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13335 tcg_res[pass],
13336 tcg_passres);
13337 break;
13338 default:
13339 g_assert_not_reached();
13340 }
13341 tcg_temp_free_i64(tcg_passres);
13342 }
13343 tcg_temp_free_i32(tcg_idx);
13344
13345 if (is_scalar) {
13346 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13347 }
13348 }
13349
13350 if (is_scalar) {
13351 tcg_res[1] = tcg_const_i64(0);
13352 }
13353
13354 for (pass = 0; pass < 2; pass++) {
13355 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13356 tcg_temp_free_i64(tcg_res[pass]);
13357 }
13358 }
13359
13360 if (fpst) {
13361 tcg_temp_free_ptr(fpst);
13362 }
13363 }
13364
13365 /* Crypto AES
13366 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13367 * +-----------------+------+-----------+--------+-----+------+------+
13368 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13369 * +-----------------+------+-----------+--------+-----+------+------+
13370 */
13371 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13372 {
13373 int size = extract32(insn, 22, 2);
13374 int opcode = extract32(insn, 12, 5);
13375 int rn = extract32(insn, 5, 5);
13376 int rd = extract32(insn, 0, 5);
13377 int decrypt;
13378 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13379 TCGv_i32 tcg_decrypt;
13380 CryptoThreeOpIntFn *genfn;
13381
13382 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13383 unallocated_encoding(s);
13384 return;
13385 }
13386
13387 switch (opcode) {
13388 case 0x4: /* AESE */
13389 decrypt = 0;
13390 genfn = gen_helper_crypto_aese;
13391 break;
13392 case 0x6: /* AESMC */
13393 decrypt = 0;
13394 genfn = gen_helper_crypto_aesmc;
13395 break;
13396 case 0x5: /* AESD */
13397 decrypt = 1;
13398 genfn = gen_helper_crypto_aese;
13399 break;
13400 case 0x7: /* AESIMC */
13401 decrypt = 1;
13402 genfn = gen_helper_crypto_aesmc;
13403 break;
13404 default:
13405 unallocated_encoding(s);
13406 return;
13407 }
13408
13409 if (!fp_access_check(s)) {
13410 return;
13411 }
13412
13413 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13414 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13415 tcg_decrypt = tcg_const_i32(decrypt);
13416
13417 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_decrypt);
13418
13419 tcg_temp_free_ptr(tcg_rd_ptr);
13420 tcg_temp_free_ptr(tcg_rn_ptr);
13421 tcg_temp_free_i32(tcg_decrypt);
13422 }
13423
13424 /* Crypto three-reg SHA
13425 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
13426 * +-----------------+------+---+------+---+--------+-----+------+------+
13427 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
13428 * +-----------------+------+---+------+---+--------+-----+------+------+
13429 */
13430 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13431 {
13432 int size = extract32(insn, 22, 2);
13433 int opcode = extract32(insn, 12, 3);
13434 int rm = extract32(insn, 16, 5);
13435 int rn = extract32(insn, 5, 5);
13436 int rd = extract32(insn, 0, 5);
13437 CryptoThreeOpFn *genfn;
13438 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13439 bool feature;
13440
13441 if (size != 0) {
13442 unallocated_encoding(s);
13443 return;
13444 }
13445
13446 switch (opcode) {
13447 case 0: /* SHA1C */
13448 case 1: /* SHA1P */
13449 case 2: /* SHA1M */
13450 case 3: /* SHA1SU0 */
13451 genfn = NULL;
13452 feature = dc_isar_feature(aa64_sha1, s);
13453 break;
13454 case 4: /* SHA256H */
13455 genfn = gen_helper_crypto_sha256h;
13456 feature = dc_isar_feature(aa64_sha256, s);
13457 break;
13458 case 5: /* SHA256H2 */
13459 genfn = gen_helper_crypto_sha256h2;
13460 feature = dc_isar_feature(aa64_sha256, s);
13461 break;
13462 case 6: /* SHA256SU1 */
13463 genfn = gen_helper_crypto_sha256su1;
13464 feature = dc_isar_feature(aa64_sha256, s);
13465 break;
13466 default:
13467 unallocated_encoding(s);
13468 return;
13469 }
13470
13471 if (!feature) {
13472 unallocated_encoding(s);
13473 return;
13474 }
13475
13476 if (!fp_access_check(s)) {
13477 return;
13478 }
13479
13480 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13481 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13482 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13483
13484 if (genfn) {
13485 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13486 } else {
13487 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
13488
13489 gen_helper_crypto_sha1_3reg(tcg_rd_ptr, tcg_rn_ptr,
13490 tcg_rm_ptr, tcg_opcode);
13491 tcg_temp_free_i32(tcg_opcode);
13492 }
13493
13494 tcg_temp_free_ptr(tcg_rd_ptr);
13495 tcg_temp_free_ptr(tcg_rn_ptr);
13496 tcg_temp_free_ptr(tcg_rm_ptr);
13497 }
13498
13499 /* Crypto two-reg SHA
13500 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13501 * +-----------------+------+-----------+--------+-----+------+------+
13502 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13503 * +-----------------+------+-----------+--------+-----+------+------+
13504 */
13505 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13506 {
13507 int size = extract32(insn, 22, 2);
13508 int opcode = extract32(insn, 12, 5);
13509 int rn = extract32(insn, 5, 5);
13510 int rd = extract32(insn, 0, 5);
13511 CryptoTwoOpFn *genfn;
13512 bool feature;
13513 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13514
13515 if (size != 0) {
13516 unallocated_encoding(s);
13517 return;
13518 }
13519
13520 switch (opcode) {
13521 case 0: /* SHA1H */
13522 feature = dc_isar_feature(aa64_sha1, s);
13523 genfn = gen_helper_crypto_sha1h;
13524 break;
13525 case 1: /* SHA1SU1 */
13526 feature = dc_isar_feature(aa64_sha1, s);
13527 genfn = gen_helper_crypto_sha1su1;
13528 break;
13529 case 2: /* SHA256SU0 */
13530 feature = dc_isar_feature(aa64_sha256, s);
13531 genfn = gen_helper_crypto_sha256su0;
13532 break;
13533 default:
13534 unallocated_encoding(s);
13535 return;
13536 }
13537
13538 if (!feature) {
13539 unallocated_encoding(s);
13540 return;
13541 }
13542
13543 if (!fp_access_check(s)) {
13544 return;
13545 }
13546
13547 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13548 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13549
13550 genfn(tcg_rd_ptr, tcg_rn_ptr);
13551
13552 tcg_temp_free_ptr(tcg_rd_ptr);
13553 tcg_temp_free_ptr(tcg_rn_ptr);
13554 }
13555
13556 /* Crypto three-reg SHA512
13557 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13558 * +-----------------------+------+---+---+-----+--------+------+------+
13559 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
13560 * +-----------------------+------+---+---+-----+--------+------+------+
13561 */
13562 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13563 {
13564 int opcode = extract32(insn, 10, 2);
13565 int o = extract32(insn, 14, 1);
13566 int rm = extract32(insn, 16, 5);
13567 int rn = extract32(insn, 5, 5);
13568 int rd = extract32(insn, 0, 5);
13569 bool feature;
13570 CryptoThreeOpFn *genfn;
13571
13572 if (o == 0) {
13573 switch (opcode) {
13574 case 0: /* SHA512H */
13575 feature = dc_isar_feature(aa64_sha512, s);
13576 genfn = gen_helper_crypto_sha512h;
13577 break;
13578 case 1: /* SHA512H2 */
13579 feature = dc_isar_feature(aa64_sha512, s);
13580 genfn = gen_helper_crypto_sha512h2;
13581 break;
13582 case 2: /* SHA512SU1 */
13583 feature = dc_isar_feature(aa64_sha512, s);
13584 genfn = gen_helper_crypto_sha512su1;
13585 break;
13586 case 3: /* RAX1 */
13587 feature = dc_isar_feature(aa64_sha3, s);
13588 genfn = NULL;
13589 break;
13590 }
13591 } else {
13592 switch (opcode) {
13593 case 0: /* SM3PARTW1 */
13594 feature = dc_isar_feature(aa64_sm3, s);
13595 genfn = gen_helper_crypto_sm3partw1;
13596 break;
13597 case 1: /* SM3PARTW2 */
13598 feature = dc_isar_feature(aa64_sm3, s);
13599 genfn = gen_helper_crypto_sm3partw2;
13600 break;
13601 case 2: /* SM4EKEY */
13602 feature = dc_isar_feature(aa64_sm4, s);
13603 genfn = gen_helper_crypto_sm4ekey;
13604 break;
13605 default:
13606 unallocated_encoding(s);
13607 return;
13608 }
13609 }
13610
13611 if (!feature) {
13612 unallocated_encoding(s);
13613 return;
13614 }
13615
13616 if (!fp_access_check(s)) {
13617 return;
13618 }
13619
13620 if (genfn) {
13621 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13622
13623 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13624 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13625 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13626
13627 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13628
13629 tcg_temp_free_ptr(tcg_rd_ptr);
13630 tcg_temp_free_ptr(tcg_rn_ptr);
13631 tcg_temp_free_ptr(tcg_rm_ptr);
13632 } else {
13633 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13634 int pass;
13635
13636 tcg_op1 = tcg_temp_new_i64();
13637 tcg_op2 = tcg_temp_new_i64();
13638 tcg_res[0] = tcg_temp_new_i64();
13639 tcg_res[1] = tcg_temp_new_i64();
13640
13641 for (pass = 0; pass < 2; pass++) {
13642 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13643 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13644
13645 tcg_gen_rotli_i64(tcg_res[pass], tcg_op2, 1);
13646 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13647 }
13648 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13649 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13650
13651 tcg_temp_free_i64(tcg_op1);
13652 tcg_temp_free_i64(tcg_op2);
13653 tcg_temp_free_i64(tcg_res[0]);
13654 tcg_temp_free_i64(tcg_res[1]);
13655 }
13656 }
13657
13658 /* Crypto two-reg SHA512
13659 * 31 12 11 10 9 5 4 0
13660 * +-----------------------------------------+--------+------+------+
13661 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
13662 * +-----------------------------------------+--------+------+------+
13663 */
13664 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13665 {
13666 int opcode = extract32(insn, 10, 2);
13667 int rn = extract32(insn, 5, 5);
13668 int rd = extract32(insn, 0, 5);
13669 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13670 bool feature;
13671 CryptoTwoOpFn *genfn;
13672
13673 switch (opcode) {
13674 case 0: /* SHA512SU0 */
13675 feature = dc_isar_feature(aa64_sha512, s);
13676 genfn = gen_helper_crypto_sha512su0;
13677 break;
13678 case 1: /* SM4E */
13679 feature = dc_isar_feature(aa64_sm4, s);
13680 genfn = gen_helper_crypto_sm4e;
13681 break;
13682 default:
13683 unallocated_encoding(s);
13684 return;
13685 }
13686
13687 if (!feature) {
13688 unallocated_encoding(s);
13689 return;
13690 }
13691
13692 if (!fp_access_check(s)) {
13693 return;
13694 }
13695
13696 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13697 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13698
13699 genfn(tcg_rd_ptr, tcg_rn_ptr);
13700
13701 tcg_temp_free_ptr(tcg_rd_ptr);
13702 tcg_temp_free_ptr(tcg_rn_ptr);
13703 }
13704
13705 /* Crypto four-register
13706 * 31 23 22 21 20 16 15 14 10 9 5 4 0
13707 * +-------------------+-----+------+---+------+------+------+
13708 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
13709 * +-------------------+-----+------+---+------+------+------+
13710 */
13711 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13712 {
13713 int op0 = extract32(insn, 21, 2);
13714 int rm = extract32(insn, 16, 5);
13715 int ra = extract32(insn, 10, 5);
13716 int rn = extract32(insn, 5, 5);
13717 int rd = extract32(insn, 0, 5);
13718 bool feature;
13719
13720 switch (op0) {
13721 case 0: /* EOR3 */
13722 case 1: /* BCAX */
13723 feature = dc_isar_feature(aa64_sha3, s);
13724 break;
13725 case 2: /* SM3SS1 */
13726 feature = dc_isar_feature(aa64_sm3, s);
13727 break;
13728 default:
13729 unallocated_encoding(s);
13730 return;
13731 }
13732
13733 if (!feature) {
13734 unallocated_encoding(s);
13735 return;
13736 }
13737
13738 if (!fp_access_check(s)) {
13739 return;
13740 }
13741
13742 if (op0 < 2) {
13743 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13744 int pass;
13745
13746 tcg_op1 = tcg_temp_new_i64();
13747 tcg_op2 = tcg_temp_new_i64();
13748 tcg_op3 = tcg_temp_new_i64();
13749 tcg_res[0] = tcg_temp_new_i64();
13750 tcg_res[1] = tcg_temp_new_i64();
13751
13752 for (pass = 0; pass < 2; pass++) {
13753 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13754 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13755 read_vec_element(s, tcg_op3, ra, pass, MO_64);
13756
13757 if (op0 == 0) {
13758 /* EOR3 */
13759 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13760 } else {
13761 /* BCAX */
13762 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13763 }
13764 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13765 }
13766 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13767 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13768
13769 tcg_temp_free_i64(tcg_op1);
13770 tcg_temp_free_i64(tcg_op2);
13771 tcg_temp_free_i64(tcg_op3);
13772 tcg_temp_free_i64(tcg_res[0]);
13773 tcg_temp_free_i64(tcg_res[1]);
13774 } else {
13775 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13776
13777 tcg_op1 = tcg_temp_new_i32();
13778 tcg_op2 = tcg_temp_new_i32();
13779 tcg_op3 = tcg_temp_new_i32();
13780 tcg_res = tcg_temp_new_i32();
13781 tcg_zero = tcg_const_i32(0);
13782
13783 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13784 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13785 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13786
13787 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13788 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13789 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13790 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13791
13792 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13793 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13794 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13795 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13796
13797 tcg_temp_free_i32(tcg_op1);
13798 tcg_temp_free_i32(tcg_op2);
13799 tcg_temp_free_i32(tcg_op3);
13800 tcg_temp_free_i32(tcg_res);
13801 tcg_temp_free_i32(tcg_zero);
13802 }
13803 }
13804
13805 /* Crypto XAR
13806 * 31 21 20 16 15 10 9 5 4 0
13807 * +-----------------------+------+--------+------+------+
13808 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
13809 * +-----------------------+------+--------+------+------+
13810 */
13811 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13812 {
13813 int rm = extract32(insn, 16, 5);
13814 int imm6 = extract32(insn, 10, 6);
13815 int rn = extract32(insn, 5, 5);
13816 int rd = extract32(insn, 0, 5);
13817 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13818 int pass;
13819
13820 if (!dc_isar_feature(aa64_sha3, s)) {
13821 unallocated_encoding(s);
13822 return;
13823 }
13824
13825 if (!fp_access_check(s)) {
13826 return;
13827 }
13828
13829 tcg_op1 = tcg_temp_new_i64();
13830 tcg_op2 = tcg_temp_new_i64();
13831 tcg_res[0] = tcg_temp_new_i64();
13832 tcg_res[1] = tcg_temp_new_i64();
13833
13834 for (pass = 0; pass < 2; pass++) {
13835 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13836 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13837
13838 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
13839 tcg_gen_rotri_i64(tcg_res[pass], tcg_res[pass], imm6);
13840 }
13841 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13842 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13843
13844 tcg_temp_free_i64(tcg_op1);
13845 tcg_temp_free_i64(tcg_op2);
13846 tcg_temp_free_i64(tcg_res[0]);
13847 tcg_temp_free_i64(tcg_res[1]);
13848 }
13849
13850 /* Crypto three-reg imm2
13851 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13852 * +-----------------------+------+-----+------+--------+------+------+
13853 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
13854 * +-----------------------+------+-----+------+--------+------+------+
13855 */
13856 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13857 {
13858 int opcode = extract32(insn, 10, 2);
13859 int imm2 = extract32(insn, 12, 2);
13860 int rm = extract32(insn, 16, 5);
13861 int rn = extract32(insn, 5, 5);
13862 int rd = extract32(insn, 0, 5);
13863 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13864 TCGv_i32 tcg_imm2, tcg_opcode;
13865
13866 if (!dc_isar_feature(aa64_sm3, s)) {
13867 unallocated_encoding(s);
13868 return;
13869 }
13870
13871 if (!fp_access_check(s)) {
13872 return;
13873 }
13874
13875 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13876 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13877 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13878 tcg_imm2 = tcg_const_i32(imm2);
13879 tcg_opcode = tcg_const_i32(opcode);
13880
13881 gen_helper_crypto_sm3tt(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr, tcg_imm2,
13882 tcg_opcode);
13883
13884 tcg_temp_free_ptr(tcg_rd_ptr);
13885 tcg_temp_free_ptr(tcg_rn_ptr);
13886 tcg_temp_free_ptr(tcg_rm_ptr);
13887 tcg_temp_free_i32(tcg_imm2);
13888 tcg_temp_free_i32(tcg_opcode);
13889 }
13890
13891 /* C3.6 Data processing - SIMD, inc Crypto
13892 *
13893 * As the decode gets a little complex we are using a table based
13894 * approach for this part of the decode.
13895 */
13896 static const AArch64DecodeTable data_proc_simd[] = {
13897 /* pattern , mask , fn */
13898 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13899 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13900 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13901 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13902 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13903 { 0x0e000400, 0x9fe08400, disas_simd_copy },
13904 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13905 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13906 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13907 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13908 { 0x0e000000, 0xbf208c00, disas_simd_tb },
13909 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13910 { 0x2e000000, 0xbf208400, disas_simd_ext },
13911 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13912 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13913 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13914 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13915 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13916 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13917 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13918 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13919 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13920 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13921 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13922 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13923 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13924 { 0xce000000, 0xff808000, disas_crypto_four_reg },
13925 { 0xce800000, 0xffe00000, disas_crypto_xar },
13926 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13927 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13928 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13929 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13930 { 0x00000000, 0x00000000, NULL }
13931 };
13932
13933 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13934 {
13935 /* Note that this is called with all non-FP cases from
13936 * table C3-6 so it must UNDEF for entries not specifically
13937 * allocated to instructions in that table.
13938 */
13939 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13940 if (fn) {
13941 fn(s, insn);
13942 } else {
13943 unallocated_encoding(s);
13944 }
13945 }
13946
13947 /* C3.6 Data processing - SIMD and floating point */
13948 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13949 {
13950 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13951 disas_data_proc_fp(s, insn);
13952 } else {
13953 /* SIMD, including crypto */
13954 disas_data_proc_simd(s, insn);
13955 }
13956 }
13957
13958 /**
13959 * is_guarded_page:
13960 * @env: The cpu environment
13961 * @s: The DisasContext
13962 *
13963 * Return true if the page is guarded.
13964 */
13965 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13966 {
13967 #ifdef CONFIG_USER_ONLY
13968 return false; /* FIXME */
13969 #else
13970 uint64_t addr = s->base.pc_first;
13971 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13972 unsigned int index = tlb_index(env, mmu_idx, addr);
13973 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
13974
13975 /*
13976 * We test this immediately after reading an insn, which means
13977 * that any normal page must be in the TLB. The only exception
13978 * would be for executing from flash or device memory, which
13979 * does not retain the TLB entry.
13980 *
13981 * FIXME: Assume false for those, for now. We could use
13982 * arm_cpu_get_phys_page_attrs_debug to re-read the page
13983 * table entry even for that case.
13984 */
13985 return (tlb_hit(entry->addr_code, addr) &&
13986 env_tlb(env)->d[mmu_idx].iotlb[index].attrs.target_tlb_bit0);
13987 #endif
13988 }
13989
13990 /**
13991 * btype_destination_ok:
13992 * @insn: The instruction at the branch destination
13993 * @bt: SCTLR_ELx.BT
13994 * @btype: PSTATE.BTYPE, and is non-zero
13995 *
13996 * On a guarded page, there are a limited number of insns
13997 * that may be present at the branch target:
13998 * - branch target identifiers,
13999 * - paciasp, pacibsp,
14000 * - BRK insn
14001 * - HLT insn
14002 * Anything else causes a Branch Target Exception.
14003 *
14004 * Return true if the branch is compatible, false to raise BTITRAP.
14005 */
14006 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14007 {
14008 if ((insn & 0xfffff01fu) == 0xd503201fu) {
14009 /* HINT space */
14010 switch (extract32(insn, 5, 7)) {
14011 case 0b011001: /* PACIASP */
14012 case 0b011011: /* PACIBSP */
14013 /*
14014 * If SCTLR_ELx.BT, then PACI*SP are not compatible
14015 * with btype == 3. Otherwise all btype are ok.
14016 */
14017 return !bt || btype != 3;
14018 case 0b100000: /* BTI */
14019 /* Not compatible with any btype. */
14020 return false;
14021 case 0b100010: /* BTI c */
14022 /* Not compatible with btype == 3 */
14023 return btype != 3;
14024 case 0b100100: /* BTI j */
14025 /* Not compatible with btype == 2 */
14026 return btype != 2;
14027 case 0b100110: /* BTI jc */
14028 /* Compatible with any btype. */
14029 return true;
14030 }
14031 } else {
14032 switch (insn & 0xffe0001fu) {
14033 case 0xd4200000u: /* BRK */
14034 case 0xd4400000u: /* HLT */
14035 /* Give priority to the breakpoint exception. */
14036 return true;
14037 }
14038 }
14039 return false;
14040 }
14041
14042 /* C3.1 A64 instruction index by encoding */
14043 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
14044 {
14045 uint32_t insn;
14046
14047 insn = arm_ldl_code(env, s->pc, s->sctlr_b);
14048 s->insn = insn;
14049 s->pc += 4;
14050
14051 s->fp_access_checked = false;
14052
14053 if (dc_isar_feature(aa64_bti, s)) {
14054 if (s->base.num_insns == 1) {
14055 /*
14056 * At the first insn of the TB, compute s->guarded_page.
14057 * We delayed computing this until successfully reading
14058 * the first insn of the TB, above. This (mostly) ensures
14059 * that the softmmu tlb entry has been populated, and the
14060 * page table GP bit is available.
14061 *
14062 * Note that we need to compute this even if btype == 0,
14063 * because this value is used for BR instructions later
14064 * where ENV is not available.
14065 */
14066 s->guarded_page = is_guarded_page(env, s);
14067
14068 /* First insn can have btype set to non-zero. */
14069 tcg_debug_assert(s->btype >= 0);
14070
14071 /*
14072 * Note that the Branch Target Exception has fairly high
14073 * priority -- below debugging exceptions but above most
14074 * everything else. This allows us to handle this now
14075 * instead of waiting until the insn is otherwise decoded.
14076 */
14077 if (s->btype != 0
14078 && s->guarded_page
14079 && !btype_destination_ok(insn, s->bt, s->btype)) {
14080 gen_exception_insn(s, 4, EXCP_UDEF, syn_btitrap(s->btype),
14081 default_exception_el(s));
14082 return;
14083 }
14084 } else {
14085 /* Not the first insn: btype must be 0. */
14086 tcg_debug_assert(s->btype == 0);
14087 }
14088 }
14089
14090 switch (extract32(insn, 25, 4)) {
14091 case 0x0: case 0x1: case 0x3: /* UNALLOCATED */
14092 unallocated_encoding(s);
14093 break;
14094 case 0x2:
14095 if (!dc_isar_feature(aa64_sve, s) || !disas_sve(s, insn)) {
14096 unallocated_encoding(s);
14097 }
14098 break;
14099 case 0x8: case 0x9: /* Data processing - immediate */
14100 disas_data_proc_imm(s, insn);
14101 break;
14102 case 0xa: case 0xb: /* Branch, exception generation and system insns */
14103 disas_b_exc_sys(s, insn);
14104 break;
14105 case 0x4:
14106 case 0x6:
14107 case 0xc:
14108 case 0xe: /* Loads and stores */
14109 disas_ldst(s, insn);
14110 break;
14111 case 0x5:
14112 case 0xd: /* Data processing - register */
14113 disas_data_proc_reg(s, insn);
14114 break;
14115 case 0x7:
14116 case 0xf: /* Data processing - SIMD and floating point */
14117 disas_data_proc_simd_fp(s, insn);
14118 break;
14119 default:
14120 assert(FALSE); /* all 15 cases should be handled above */
14121 break;
14122 }
14123
14124 /* if we allocated any temporaries, free them here */
14125 free_tmp_a64(s);
14126
14127 /*
14128 * After execution of most insns, btype is reset to 0.
14129 * Note that we set btype == -1 when the insn sets btype.
14130 */
14131 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14132 reset_btype(s);
14133 }
14134 }
14135
14136 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14137 CPUState *cpu)
14138 {
14139 DisasContext *dc = container_of(dcbase, DisasContext, base);
14140 CPUARMState *env = cpu->env_ptr;
14141 ARMCPU *arm_cpu = env_archcpu(env);
14142 uint32_t tb_flags = dc->base.tb->flags;
14143 int bound, core_mmu_idx;
14144
14145 dc->isar = &arm_cpu->isar;
14146 dc->pc = dc->base.pc_first;
14147 dc->condjmp = 0;
14148
14149 dc->aarch64 = 1;
14150 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
14151 * there is no secure EL1, so we route exceptions to EL3.
14152 */
14153 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
14154 !arm_el_is_aa64(env, 3);
14155 dc->thumb = 0;
14156 dc->sctlr_b = 0;
14157 dc->be_data = FIELD_EX32(tb_flags, TBFLAG_ANY, BE_DATA) ? MO_BE : MO_LE;
14158 dc->condexec_mask = 0;
14159 dc->condexec_cond = 0;
14160 core_mmu_idx = FIELD_EX32(tb_flags, TBFLAG_ANY, MMUIDX);
14161 dc->mmu_idx = core_to_arm_mmu_idx(env, core_mmu_idx);
14162 dc->tbii = FIELD_EX32(tb_flags, TBFLAG_A64, TBII);
14163 dc->tbid = FIELD_EX32(tb_flags, TBFLAG_A64, TBID);
14164 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14165 #if !defined(CONFIG_USER_ONLY)
14166 dc->user = (dc->current_el == 0);
14167 #endif
14168 dc->fp_excp_el = FIELD_EX32(tb_flags, TBFLAG_ANY, FPEXC_EL);
14169 dc->sve_excp_el = FIELD_EX32(tb_flags, TBFLAG_A64, SVEEXC_EL);
14170 dc->sve_len = (FIELD_EX32(tb_flags, TBFLAG_A64, ZCR_LEN) + 1) * 16;
14171 dc->pauth_active = FIELD_EX32(tb_flags, TBFLAG_A64, PAUTH_ACTIVE);
14172 dc->bt = FIELD_EX32(tb_flags, TBFLAG_A64, BT);
14173 dc->btype = FIELD_EX32(tb_flags, TBFLAG_A64, BTYPE);
14174 dc->vec_len = 0;
14175 dc->vec_stride = 0;
14176 dc->cp_regs = arm_cpu->cp_regs;
14177 dc->features = env->features;
14178
14179 /* Single step state. The code-generation logic here is:
14180 * SS_ACTIVE == 0:
14181 * generate code with no special handling for single-stepping (except
14182 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14183 * this happens anyway because those changes are all system register or
14184 * PSTATE writes).
14185 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14186 * emit code for one insn
14187 * emit code to clear PSTATE.SS
14188 * emit code to generate software step exception for completed step
14189 * end TB (as usual for having generated an exception)
14190 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14191 * emit code to generate a software step exception
14192 * end the TB
14193 */
14194 dc->ss_active = FIELD_EX32(tb_flags, TBFLAG_ANY, SS_ACTIVE);
14195 dc->pstate_ss = FIELD_EX32(tb_flags, TBFLAG_ANY, PSTATE_SS);
14196 dc->is_ldex = false;
14197 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
14198
14199 /* Bound the number of insns to execute to those left on the page. */
14200 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14201
14202 /* If architectural single step active, limit to 1. */
14203 if (dc->ss_active) {
14204 bound = 1;
14205 }
14206 dc->base.max_insns = MIN(dc->base.max_insns, bound);
14207
14208 init_tmp_a64_array(dc);
14209 }
14210
14211 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14212 {
14213 }
14214
14215 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14216 {
14217 DisasContext *dc = container_of(dcbase, DisasContext, base);
14218
14219 tcg_gen_insn_start(dc->pc, 0, 0);
14220 dc->insn_start = tcg_last_op();
14221 }
14222
14223 static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
14224 const CPUBreakpoint *bp)
14225 {
14226 DisasContext *dc = container_of(dcbase, DisasContext, base);
14227
14228 if (bp->flags & BP_CPU) {
14229 gen_a64_set_pc_im(dc->pc);
14230 gen_helper_check_breakpoints(cpu_env);
14231 /* End the TB early; it likely won't be executed */
14232 dc->base.is_jmp = DISAS_TOO_MANY;
14233 } else {
14234 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
14235 /* The address covered by the breakpoint must be
14236 included in [tb->pc, tb->pc + tb->size) in order
14237 to for it to be properly cleared -- thus we
14238 increment the PC here so that the logic setting
14239 tb->size below does the right thing. */
14240 dc->pc += 4;
14241 dc->base.is_jmp = DISAS_NORETURN;
14242 }
14243
14244 return true;
14245 }
14246
14247 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14248 {
14249 DisasContext *dc = container_of(dcbase, DisasContext, base);
14250 CPUARMState *env = cpu->env_ptr;
14251
14252 if (dc->ss_active && !dc->pstate_ss) {
14253 /* Singlestep state is Active-pending.
14254 * If we're in this state at the start of a TB then either
14255 * a) we just took an exception to an EL which is being debugged
14256 * and this is the first insn in the exception handler
14257 * b) debug exceptions were masked and we just unmasked them
14258 * without changing EL (eg by clearing PSTATE.D)
14259 * In either case we're going to take a swstep exception in the
14260 * "did not step an insn" case, and so the syndrome ISV and EX
14261 * bits should be zero.
14262 */
14263 assert(dc->base.num_insns == 1);
14264 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
14265 default_exception_el(dc));
14266 dc->base.is_jmp = DISAS_NORETURN;
14267 } else {
14268 disas_a64_insn(env, dc);
14269 }
14270
14271 dc->base.pc_next = dc->pc;
14272 translator_loop_temp_check(&dc->base);
14273 }
14274
14275 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14276 {
14277 DisasContext *dc = container_of(dcbase, DisasContext, base);
14278
14279 if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
14280 /* Note that this means single stepping WFI doesn't halt the CPU.
14281 * For conditional branch insns this is harmless unreachable code as
14282 * gen_goto_tb() has already handled emitting the debug exception
14283 * (and thus a tb-jump is not possible when singlestepping).
14284 */
14285 switch (dc->base.is_jmp) {
14286 default:
14287 gen_a64_set_pc_im(dc->pc);
14288 /* fall through */
14289 case DISAS_EXIT:
14290 case DISAS_JUMP:
14291 if (dc->base.singlestep_enabled) {
14292 gen_exception_internal(EXCP_DEBUG);
14293 } else {
14294 gen_step_complete_exception(dc);
14295 }
14296 break;
14297 case DISAS_NORETURN:
14298 break;
14299 }
14300 } else {
14301 switch (dc->base.is_jmp) {
14302 case DISAS_NEXT:
14303 case DISAS_TOO_MANY:
14304 gen_goto_tb(dc, 1, dc->pc);
14305 break;
14306 default:
14307 case DISAS_UPDATE:
14308 gen_a64_set_pc_im(dc->pc);
14309 /* fall through */
14310 case DISAS_EXIT:
14311 tcg_gen_exit_tb(NULL, 0);
14312 break;
14313 case DISAS_JUMP:
14314 tcg_gen_lookup_and_goto_ptr();
14315 break;
14316 case DISAS_NORETURN:
14317 case DISAS_SWI:
14318 break;
14319 case DISAS_WFE:
14320 gen_a64_set_pc_im(dc->pc);
14321 gen_helper_wfe(cpu_env);
14322 break;
14323 case DISAS_YIELD:
14324 gen_a64_set_pc_im(dc->pc);
14325 gen_helper_yield(cpu_env);
14326 break;
14327 case DISAS_WFI:
14328 {
14329 /* This is a special case because we don't want to just halt the CPU
14330 * if trying to debug across a WFI.
14331 */
14332 TCGv_i32 tmp = tcg_const_i32(4);
14333
14334 gen_a64_set_pc_im(dc->pc);
14335 gen_helper_wfi(cpu_env, tmp);
14336 tcg_temp_free_i32(tmp);
14337 /* The helper doesn't necessarily throw an exception, but we
14338 * must go back to the main loop to check for interrupts anyway.
14339 */
14340 tcg_gen_exit_tb(NULL, 0);
14341 break;
14342 }
14343 }
14344 }
14345
14346 /* Functions above can change dc->pc, so re-align db->pc_next */
14347 dc->base.pc_next = dc->pc;
14348 }
14349
14350 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14351 CPUState *cpu)
14352 {
14353 DisasContext *dc = container_of(dcbase, DisasContext, base);
14354
14355 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
14356 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
14357 }
14358
14359 const TranslatorOps aarch64_translator_ops = {
14360 .init_disas_context = aarch64_tr_init_disas_context,
14361 .tb_start = aarch64_tr_tb_start,
14362 .insn_start = aarch64_tr_insn_start,
14363 .breakpoint_check = aarch64_tr_breakpoint_check,
14364 .translate_insn = aarch64_tr_translate_insn,
14365 .tb_stop = aarch64_tr_tb_stop,
14366 .disas_log = aarch64_tr_disas_log,
14367 };