]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/translate-a64.c
target/arm: Handle TBI for sve scalar + int memory ops
[mirror_qemu.git] / target / arm / translate-a64.c
1 /*
2 * AArch64 translation
3 *
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg-op.h"
24 #include "tcg/tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
30
31 #include "hw/semihosting/semihost.h"
32 #include "exec/gen-icount.h"
33
34 #include "exec/helper-proto.h"
35 #include "exec/helper-gen.h"
36 #include "exec/log.h"
37
38 #include "trace-tcg.h"
39 #include "translate-a64.h"
40 #include "qemu/atomic128.h"
41
42 static TCGv_i64 cpu_X[32];
43 static TCGv_i64 cpu_pc;
44
45 /* Load/store exclusive handling */
46 static TCGv_i64 cpu_exclusive_high;
47
48 static const char *regnames[] = {
49 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
50 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
51 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
52 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
53 };
54
55 enum a64_shift_type {
56 A64_SHIFT_TYPE_LSL = 0,
57 A64_SHIFT_TYPE_LSR = 1,
58 A64_SHIFT_TYPE_ASR = 2,
59 A64_SHIFT_TYPE_ROR = 3
60 };
61
62 /* Table based decoder typedefs - used when the relevant bits for decode
63 * are too awkwardly scattered across the instruction (eg SIMD).
64 */
65 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
66
67 typedef struct AArch64DecodeTable {
68 uint32_t pattern;
69 uint32_t mask;
70 AArch64DecodeFn *disas_fn;
71 } AArch64DecodeTable;
72
73 /* initialize TCG globals. */
74 void a64_translate_init(void)
75 {
76 int i;
77
78 cpu_pc = tcg_global_mem_new_i64(cpu_env,
79 offsetof(CPUARMState, pc),
80 "pc");
81 for (i = 0; i < 32; i++) {
82 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
83 offsetof(CPUARMState, xregs[i]),
84 regnames[i]);
85 }
86
87 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
88 offsetof(CPUARMState, exclusive_high), "exclusive_high");
89 }
90
91 /*
92 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
93 */
94 static int get_a64_user_mem_index(DisasContext *s)
95 {
96 /*
97 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
98 * which is the usual mmu_idx for this cpu state.
99 */
100 ARMMMUIdx useridx = s->mmu_idx;
101
102 if (s->unpriv) {
103 /*
104 * We have pre-computed the condition for AccType_UNPRIV.
105 * Therefore we should never get here with a mmu_idx for
106 * which we do not know the corresponding user mmu_idx.
107 */
108 switch (useridx) {
109 case ARMMMUIdx_E10_1:
110 case ARMMMUIdx_E10_1_PAN:
111 useridx = ARMMMUIdx_E10_0;
112 break;
113 case ARMMMUIdx_E20_2:
114 case ARMMMUIdx_E20_2_PAN:
115 useridx = ARMMMUIdx_E20_0;
116 break;
117 case ARMMMUIdx_SE10_1:
118 case ARMMMUIdx_SE10_1_PAN:
119 useridx = ARMMMUIdx_SE10_0;
120 break;
121 default:
122 g_assert_not_reached();
123 }
124 }
125 return arm_to_core_mmu_idx(useridx);
126 }
127
128 static void reset_btype(DisasContext *s)
129 {
130 if (s->btype != 0) {
131 TCGv_i32 zero = tcg_const_i32(0);
132 tcg_gen_st_i32(zero, cpu_env, offsetof(CPUARMState, btype));
133 tcg_temp_free_i32(zero);
134 s->btype = 0;
135 }
136 }
137
138 static void set_btype(DisasContext *s, int val)
139 {
140 TCGv_i32 tcg_val;
141
142 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
143 tcg_debug_assert(val >= 1 && val <= 3);
144
145 tcg_val = tcg_const_i32(val);
146 tcg_gen_st_i32(tcg_val, cpu_env, offsetof(CPUARMState, btype));
147 tcg_temp_free_i32(tcg_val);
148 s->btype = -1;
149 }
150
151 void gen_a64_set_pc_im(uint64_t val)
152 {
153 tcg_gen_movi_i64(cpu_pc, val);
154 }
155
156 /*
157 * Handle Top Byte Ignore (TBI) bits.
158 *
159 * If address tagging is enabled via the TCR TBI bits:
160 * + for EL2 and EL3 there is only one TBI bit, and if it is set
161 * then the address is zero-extended, clearing bits [63:56]
162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
163 * and TBI1 controls addressses with bit 55 == 1.
164 * If the appropriate TBI bit is set for the address then
165 * the address is sign-extended from bit 55 into bits [63:56]
166 *
167 * Here We have concatenated TBI{1,0} into tbi.
168 */
169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
170 TCGv_i64 src, int tbi)
171 {
172 if (tbi == 0) {
173 /* Load unmodified address */
174 tcg_gen_mov_i64(dst, src);
175 } else if (!regime_has_2_ranges(s->mmu_idx)) {
176 /* Force tag byte to all zero */
177 tcg_gen_extract_i64(dst, src, 0, 56);
178 } else {
179 /* Sign-extend from bit 55. */
180 tcg_gen_sextract_i64(dst, src, 0, 56);
181
182 if (tbi != 3) {
183 TCGv_i64 tcg_zero = tcg_const_i64(0);
184
185 /*
186 * The two TBI bits differ.
187 * If tbi0, then !tbi1: only use the extension if positive.
188 * if !tbi0, then tbi1: only use the extension if negative.
189 */
190 tcg_gen_movcond_i64(tbi == 1 ? TCG_COND_GE : TCG_COND_LT,
191 dst, dst, tcg_zero, dst, src);
192 tcg_temp_free_i64(tcg_zero);
193 }
194 }
195 }
196
197 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
198 {
199 /*
200 * If address tagging is enabled for instructions via the TCR TBI bits,
201 * then loading an address into the PC will clear out any tag.
202 */
203 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
204 }
205
206 /*
207 * Handle MTE and/or TBI.
208 *
209 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
210 * for the tag to be present in the FAR_ELx register. But for user-only
211 * mode we do not have a TLB with which to implement this, so we must
212 * remove the top byte now.
213 *
214 * Always return a fresh temporary that we can increment independently
215 * of the write-back address.
216 */
217
218 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
219 {
220 TCGv_i64 clean = new_tmp_a64(s);
221 #ifdef CONFIG_USER_ONLY
222 gen_top_byte_ignore(s, clean, addr, s->tbid);
223 #else
224 tcg_gen_mov_i64(clean, addr);
225 #endif
226 return clean;
227 }
228
229 /* Insert a zero tag into src, with the result at dst. */
230 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
231 {
232 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
233 }
234
235 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
236 MMUAccessType acc, int log2_size)
237 {
238 TCGv_i32 t_acc = tcg_const_i32(acc);
239 TCGv_i32 t_idx = tcg_const_i32(get_mem_index(s));
240 TCGv_i32 t_size = tcg_const_i32(1 << log2_size);
241
242 gen_helper_probe_access(cpu_env, ptr, t_acc, t_idx, t_size);
243 tcg_temp_free_i32(t_acc);
244 tcg_temp_free_i32(t_idx);
245 tcg_temp_free_i32(t_size);
246 }
247
248 /*
249 * For MTE, check a single logical or atomic access. This probes a single
250 * address, the exact one specified. The size and alignment of the access
251 * is not relevant to MTE, per se, but watchpoints do require the size,
252 * and we want to recognize those before making any other changes to state.
253 */
254 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
255 bool is_write, bool tag_checked,
256 int log2_size, bool is_unpriv,
257 int core_idx)
258 {
259 if (tag_checked && s->mte_active[is_unpriv]) {
260 TCGv_i32 tcg_desc;
261 TCGv_i64 ret;
262 int desc = 0;
263
264 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
265 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
266 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
267 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
268 desc = FIELD_DP32(desc, MTEDESC, ESIZE, 1 << log2_size);
269 tcg_desc = tcg_const_i32(desc);
270
271 ret = new_tmp_a64(s);
272 gen_helper_mte_check1(ret, cpu_env, tcg_desc, addr);
273 tcg_temp_free_i32(tcg_desc);
274
275 return ret;
276 }
277 return clean_data_tbi(s, addr);
278 }
279
280 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
281 bool tag_checked, int log2_size)
282 {
283 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size,
284 false, get_mem_index(s));
285 }
286
287 /*
288 * For MTE, check multiple logical sequential accesses.
289 */
290 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
291 bool tag_checked, int log2_esize, int total_size)
292 {
293 if (tag_checked && s->mte_active[0] && total_size != (1 << log2_esize)) {
294 TCGv_i32 tcg_desc;
295 TCGv_i64 ret;
296 int desc = 0;
297
298 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
299 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
300 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
301 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
302 desc = FIELD_DP32(desc, MTEDESC, ESIZE, 1 << log2_esize);
303 desc = FIELD_DP32(desc, MTEDESC, TSIZE, total_size);
304 tcg_desc = tcg_const_i32(desc);
305
306 ret = new_tmp_a64(s);
307 gen_helper_mte_checkN(ret, cpu_env, tcg_desc, addr);
308 tcg_temp_free_i32(tcg_desc);
309
310 return ret;
311 }
312 return gen_mte_check1(s, addr, is_write, tag_checked, log2_esize);
313 }
314
315 typedef struct DisasCompare64 {
316 TCGCond cond;
317 TCGv_i64 value;
318 } DisasCompare64;
319
320 static void a64_test_cc(DisasCompare64 *c64, int cc)
321 {
322 DisasCompare c32;
323
324 arm_test_cc(&c32, cc);
325
326 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
327 * properly. The NE/EQ comparisons are also fine with this choice. */
328 c64->cond = c32.cond;
329 c64->value = tcg_temp_new_i64();
330 tcg_gen_ext_i32_i64(c64->value, c32.value);
331
332 arm_free_cc(&c32);
333 }
334
335 static void a64_free_cc(DisasCompare64 *c64)
336 {
337 tcg_temp_free_i64(c64->value);
338 }
339
340 static void gen_exception_internal(int excp)
341 {
342 TCGv_i32 tcg_excp = tcg_const_i32(excp);
343
344 assert(excp_is_internal(excp));
345 gen_helper_exception_internal(cpu_env, tcg_excp);
346 tcg_temp_free_i32(tcg_excp);
347 }
348
349 static void gen_exception_internal_insn(DisasContext *s, uint64_t pc, int excp)
350 {
351 gen_a64_set_pc_im(pc);
352 gen_exception_internal(excp);
353 s->base.is_jmp = DISAS_NORETURN;
354 }
355
356 static void gen_exception_insn(DisasContext *s, uint64_t pc, int excp,
357 uint32_t syndrome, uint32_t target_el)
358 {
359 gen_a64_set_pc_im(pc);
360 gen_exception(excp, syndrome, target_el);
361 s->base.is_jmp = DISAS_NORETURN;
362 }
363
364 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
365 {
366 TCGv_i32 tcg_syn;
367
368 gen_a64_set_pc_im(s->pc_curr);
369 tcg_syn = tcg_const_i32(syndrome);
370 gen_helper_exception_bkpt_insn(cpu_env, tcg_syn);
371 tcg_temp_free_i32(tcg_syn);
372 s->base.is_jmp = DISAS_NORETURN;
373 }
374
375 static void gen_step_complete_exception(DisasContext *s)
376 {
377 /* We just completed step of an insn. Move from Active-not-pending
378 * to Active-pending, and then also take the swstep exception.
379 * This corresponds to making the (IMPDEF) choice to prioritize
380 * swstep exceptions over asynchronous exceptions taken to an exception
381 * level where debug is disabled. This choice has the advantage that
382 * we do not need to maintain internal state corresponding to the
383 * ISV/EX syndrome bits between completion of the step and generation
384 * of the exception, and our syndrome information is always correct.
385 */
386 gen_ss_advance(s);
387 gen_swstep_exception(s, 1, s->is_ldex);
388 s->base.is_jmp = DISAS_NORETURN;
389 }
390
391 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
392 {
393 /* No direct tb linking with singlestep (either QEMU's or the ARM
394 * debug architecture kind) or deterministic io
395 */
396 if (s->base.singlestep_enabled || s->ss_active ||
397 (tb_cflags(s->base.tb) & CF_LAST_IO)) {
398 return false;
399 }
400
401 #ifndef CONFIG_USER_ONLY
402 /* Only link tbs from inside the same guest page */
403 if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
404 return false;
405 }
406 #endif
407
408 return true;
409 }
410
411 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
412 {
413 TranslationBlock *tb;
414
415 tb = s->base.tb;
416 if (use_goto_tb(s, n, dest)) {
417 tcg_gen_goto_tb(n);
418 gen_a64_set_pc_im(dest);
419 tcg_gen_exit_tb(tb, n);
420 s->base.is_jmp = DISAS_NORETURN;
421 } else {
422 gen_a64_set_pc_im(dest);
423 if (s->ss_active) {
424 gen_step_complete_exception(s);
425 } else if (s->base.singlestep_enabled) {
426 gen_exception_internal(EXCP_DEBUG);
427 } else {
428 tcg_gen_lookup_and_goto_ptr();
429 s->base.is_jmp = DISAS_NORETURN;
430 }
431 }
432 }
433
434 void unallocated_encoding(DisasContext *s)
435 {
436 /* Unallocated and reserved encodings are uncategorized */
437 gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syn_uncategorized(),
438 default_exception_el(s));
439 }
440
441 static void init_tmp_a64_array(DisasContext *s)
442 {
443 #ifdef CONFIG_DEBUG_TCG
444 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
445 #endif
446 s->tmp_a64_count = 0;
447 }
448
449 static void free_tmp_a64(DisasContext *s)
450 {
451 int i;
452 for (i = 0; i < s->tmp_a64_count; i++) {
453 tcg_temp_free_i64(s->tmp_a64[i]);
454 }
455 init_tmp_a64_array(s);
456 }
457
458 TCGv_i64 new_tmp_a64(DisasContext *s)
459 {
460 assert(s->tmp_a64_count < TMP_A64_MAX);
461 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
462 }
463
464 TCGv_i64 new_tmp_a64_zero(DisasContext *s)
465 {
466 TCGv_i64 t = new_tmp_a64(s);
467 tcg_gen_movi_i64(t, 0);
468 return t;
469 }
470
471 /*
472 * Register access functions
473 *
474 * These functions are used for directly accessing a register in where
475 * changes to the final register value are likely to be made. If you
476 * need to use a register for temporary calculation (e.g. index type
477 * operations) use the read_* form.
478 *
479 * B1.2.1 Register mappings
480 *
481 * In instruction register encoding 31 can refer to ZR (zero register) or
482 * the SP (stack pointer) depending on context. In QEMU's case we map SP
483 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
484 * This is the point of the _sp forms.
485 */
486 TCGv_i64 cpu_reg(DisasContext *s, int reg)
487 {
488 if (reg == 31) {
489 return new_tmp_a64_zero(s);
490 } else {
491 return cpu_X[reg];
492 }
493 }
494
495 /* register access for when 31 == SP */
496 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
497 {
498 return cpu_X[reg];
499 }
500
501 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
502 * representing the register contents. This TCGv is an auto-freed
503 * temporary so it need not be explicitly freed, and may be modified.
504 */
505 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
506 {
507 TCGv_i64 v = new_tmp_a64(s);
508 if (reg != 31) {
509 if (sf) {
510 tcg_gen_mov_i64(v, cpu_X[reg]);
511 } else {
512 tcg_gen_ext32u_i64(v, cpu_X[reg]);
513 }
514 } else {
515 tcg_gen_movi_i64(v, 0);
516 }
517 return v;
518 }
519
520 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
521 {
522 TCGv_i64 v = new_tmp_a64(s);
523 if (sf) {
524 tcg_gen_mov_i64(v, cpu_X[reg]);
525 } else {
526 tcg_gen_ext32u_i64(v, cpu_X[reg]);
527 }
528 return v;
529 }
530
531 /* Return the offset into CPUARMState of a slice (from
532 * the least significant end) of FP register Qn (ie
533 * Dn, Sn, Hn or Bn).
534 * (Note that this is not the same mapping as for A32; see cpu.h)
535 */
536 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
537 {
538 return vec_reg_offset(s, regno, 0, size);
539 }
540
541 /* Offset of the high half of the 128 bit vector Qn */
542 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
543 {
544 return vec_reg_offset(s, regno, 1, MO_64);
545 }
546
547 /* Convenience accessors for reading and writing single and double
548 * FP registers. Writing clears the upper parts of the associated
549 * 128 bit vector register, as required by the architecture.
550 * Note that unlike the GP register accessors, the values returned
551 * by the read functions must be manually freed.
552 */
553 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
554 {
555 TCGv_i64 v = tcg_temp_new_i64();
556
557 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
558 return v;
559 }
560
561 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
562 {
563 TCGv_i32 v = tcg_temp_new_i32();
564
565 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
566 return v;
567 }
568
569 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
570 {
571 TCGv_i32 v = tcg_temp_new_i32();
572
573 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
574 return v;
575 }
576
577 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
578 * If SVE is not enabled, then there are only 128 bits in the vector.
579 */
580 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
581 {
582 unsigned ofs = fp_reg_offset(s, rd, MO_64);
583 unsigned vsz = vec_full_reg_size(s);
584
585 /* Nop move, with side effect of clearing the tail. */
586 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
587 }
588
589 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
590 {
591 unsigned ofs = fp_reg_offset(s, reg, MO_64);
592
593 tcg_gen_st_i64(v, cpu_env, ofs);
594 clear_vec_high(s, false, reg);
595 }
596
597 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
598 {
599 TCGv_i64 tmp = tcg_temp_new_i64();
600
601 tcg_gen_extu_i32_i64(tmp, v);
602 write_fp_dreg(s, reg, tmp);
603 tcg_temp_free_i64(tmp);
604 }
605
606 TCGv_ptr get_fpstatus_ptr(bool is_f16)
607 {
608 TCGv_ptr statusptr = tcg_temp_new_ptr();
609 int offset;
610
611 /* In A64 all instructions (both FP and Neon) use the FPCR; there
612 * is no equivalent of the A32 Neon "standard FPSCR value".
613 * However half-precision operations operate under a different
614 * FZ16 flag and use vfp.fp_status_f16 instead of vfp.fp_status.
615 */
616 if (is_f16) {
617 offset = offsetof(CPUARMState, vfp.fp_status_f16);
618 } else {
619 offset = offsetof(CPUARMState, vfp.fp_status);
620 }
621 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
622 return statusptr;
623 }
624
625 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
626 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
627 GVecGen2Fn *gvec_fn, int vece)
628 {
629 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
630 is_q ? 16 : 8, vec_full_reg_size(s));
631 }
632
633 /* Expand a 2-operand + immediate AdvSIMD vector operation using
634 * an expander function.
635 */
636 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
637 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
638 {
639 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
640 imm, is_q ? 16 : 8, vec_full_reg_size(s));
641 }
642
643 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
644 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
645 GVecGen3Fn *gvec_fn, int vece)
646 {
647 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
648 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
649 }
650
651 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
652 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
653 int rx, GVecGen4Fn *gvec_fn, int vece)
654 {
655 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
656 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
657 is_q ? 16 : 8, vec_full_reg_size(s));
658 }
659
660 /* Expand a 2-operand operation using an out-of-line helper. */
661 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
662 int rn, int data, gen_helper_gvec_2 *fn)
663 {
664 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
665 vec_full_reg_offset(s, rn),
666 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
667 }
668
669 /* Expand a 3-operand operation using an out-of-line helper. */
670 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
671 int rn, int rm, int data, gen_helper_gvec_3 *fn)
672 {
673 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
674 vec_full_reg_offset(s, rn),
675 vec_full_reg_offset(s, rm),
676 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
677 }
678
679 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
680 * an out-of-line helper.
681 */
682 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
683 int rm, bool is_fp16, int data,
684 gen_helper_gvec_3_ptr *fn)
685 {
686 TCGv_ptr fpst = get_fpstatus_ptr(is_fp16);
687 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
688 vec_full_reg_offset(s, rn),
689 vec_full_reg_offset(s, rm), fpst,
690 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
691 tcg_temp_free_ptr(fpst);
692 }
693
694 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
695 * than the 32 bit equivalent.
696 */
697 static inline void gen_set_NZ64(TCGv_i64 result)
698 {
699 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
700 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
701 }
702
703 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
704 static inline void gen_logic_CC(int sf, TCGv_i64 result)
705 {
706 if (sf) {
707 gen_set_NZ64(result);
708 } else {
709 tcg_gen_extrl_i64_i32(cpu_ZF, result);
710 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
711 }
712 tcg_gen_movi_i32(cpu_CF, 0);
713 tcg_gen_movi_i32(cpu_VF, 0);
714 }
715
716 /* dest = T0 + T1; compute C, N, V and Z flags */
717 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
718 {
719 if (sf) {
720 TCGv_i64 result, flag, tmp;
721 result = tcg_temp_new_i64();
722 flag = tcg_temp_new_i64();
723 tmp = tcg_temp_new_i64();
724
725 tcg_gen_movi_i64(tmp, 0);
726 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
727
728 tcg_gen_extrl_i64_i32(cpu_CF, flag);
729
730 gen_set_NZ64(result);
731
732 tcg_gen_xor_i64(flag, result, t0);
733 tcg_gen_xor_i64(tmp, t0, t1);
734 tcg_gen_andc_i64(flag, flag, tmp);
735 tcg_temp_free_i64(tmp);
736 tcg_gen_extrh_i64_i32(cpu_VF, flag);
737
738 tcg_gen_mov_i64(dest, result);
739 tcg_temp_free_i64(result);
740 tcg_temp_free_i64(flag);
741 } else {
742 /* 32 bit arithmetic */
743 TCGv_i32 t0_32 = tcg_temp_new_i32();
744 TCGv_i32 t1_32 = tcg_temp_new_i32();
745 TCGv_i32 tmp = tcg_temp_new_i32();
746
747 tcg_gen_movi_i32(tmp, 0);
748 tcg_gen_extrl_i64_i32(t0_32, t0);
749 tcg_gen_extrl_i64_i32(t1_32, t1);
750 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
751 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
752 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
753 tcg_gen_xor_i32(tmp, t0_32, t1_32);
754 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
755 tcg_gen_extu_i32_i64(dest, cpu_NF);
756
757 tcg_temp_free_i32(tmp);
758 tcg_temp_free_i32(t0_32);
759 tcg_temp_free_i32(t1_32);
760 }
761 }
762
763 /* dest = T0 - T1; compute C, N, V and Z flags */
764 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
765 {
766 if (sf) {
767 /* 64 bit arithmetic */
768 TCGv_i64 result, flag, tmp;
769
770 result = tcg_temp_new_i64();
771 flag = tcg_temp_new_i64();
772 tcg_gen_sub_i64(result, t0, t1);
773
774 gen_set_NZ64(result);
775
776 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
777 tcg_gen_extrl_i64_i32(cpu_CF, flag);
778
779 tcg_gen_xor_i64(flag, result, t0);
780 tmp = tcg_temp_new_i64();
781 tcg_gen_xor_i64(tmp, t0, t1);
782 tcg_gen_and_i64(flag, flag, tmp);
783 tcg_temp_free_i64(tmp);
784 tcg_gen_extrh_i64_i32(cpu_VF, flag);
785 tcg_gen_mov_i64(dest, result);
786 tcg_temp_free_i64(flag);
787 tcg_temp_free_i64(result);
788 } else {
789 /* 32 bit arithmetic */
790 TCGv_i32 t0_32 = tcg_temp_new_i32();
791 TCGv_i32 t1_32 = tcg_temp_new_i32();
792 TCGv_i32 tmp;
793
794 tcg_gen_extrl_i64_i32(t0_32, t0);
795 tcg_gen_extrl_i64_i32(t1_32, t1);
796 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
797 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
798 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
799 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
800 tmp = tcg_temp_new_i32();
801 tcg_gen_xor_i32(tmp, t0_32, t1_32);
802 tcg_temp_free_i32(t0_32);
803 tcg_temp_free_i32(t1_32);
804 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
805 tcg_temp_free_i32(tmp);
806 tcg_gen_extu_i32_i64(dest, cpu_NF);
807 }
808 }
809
810 /* dest = T0 + T1 + CF; do not compute flags. */
811 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
812 {
813 TCGv_i64 flag = tcg_temp_new_i64();
814 tcg_gen_extu_i32_i64(flag, cpu_CF);
815 tcg_gen_add_i64(dest, t0, t1);
816 tcg_gen_add_i64(dest, dest, flag);
817 tcg_temp_free_i64(flag);
818
819 if (!sf) {
820 tcg_gen_ext32u_i64(dest, dest);
821 }
822 }
823
824 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
825 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
826 {
827 if (sf) {
828 TCGv_i64 result, cf_64, vf_64, tmp;
829 result = tcg_temp_new_i64();
830 cf_64 = tcg_temp_new_i64();
831 vf_64 = tcg_temp_new_i64();
832 tmp = tcg_const_i64(0);
833
834 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
835 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
836 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
837 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
838 gen_set_NZ64(result);
839
840 tcg_gen_xor_i64(vf_64, result, t0);
841 tcg_gen_xor_i64(tmp, t0, t1);
842 tcg_gen_andc_i64(vf_64, vf_64, tmp);
843 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
844
845 tcg_gen_mov_i64(dest, result);
846
847 tcg_temp_free_i64(tmp);
848 tcg_temp_free_i64(vf_64);
849 tcg_temp_free_i64(cf_64);
850 tcg_temp_free_i64(result);
851 } else {
852 TCGv_i32 t0_32, t1_32, tmp;
853 t0_32 = tcg_temp_new_i32();
854 t1_32 = tcg_temp_new_i32();
855 tmp = tcg_const_i32(0);
856
857 tcg_gen_extrl_i64_i32(t0_32, t0);
858 tcg_gen_extrl_i64_i32(t1_32, t1);
859 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
860 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
861
862 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
863 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
864 tcg_gen_xor_i32(tmp, t0_32, t1_32);
865 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
866 tcg_gen_extu_i32_i64(dest, cpu_NF);
867
868 tcg_temp_free_i32(tmp);
869 tcg_temp_free_i32(t1_32);
870 tcg_temp_free_i32(t0_32);
871 }
872 }
873
874 /*
875 * Load/Store generators
876 */
877
878 /*
879 * Store from GPR register to memory.
880 */
881 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
882 TCGv_i64 tcg_addr, int size, int memidx,
883 bool iss_valid,
884 unsigned int iss_srt,
885 bool iss_sf, bool iss_ar)
886 {
887 g_assert(size <= 3);
888 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
889
890 if (iss_valid) {
891 uint32_t syn;
892
893 syn = syn_data_abort_with_iss(0,
894 size,
895 false,
896 iss_srt,
897 iss_sf,
898 iss_ar,
899 0, 0, 0, 0, 0, false);
900 disas_set_insn_syndrome(s, syn);
901 }
902 }
903
904 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
905 TCGv_i64 tcg_addr, int size,
906 bool iss_valid,
907 unsigned int iss_srt,
908 bool iss_sf, bool iss_ar)
909 {
910 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
911 iss_valid, iss_srt, iss_sf, iss_ar);
912 }
913
914 /*
915 * Load from memory to GPR register
916 */
917 static void do_gpr_ld_memidx(DisasContext *s,
918 TCGv_i64 dest, TCGv_i64 tcg_addr,
919 int size, bool is_signed,
920 bool extend, int memidx,
921 bool iss_valid, unsigned int iss_srt,
922 bool iss_sf, bool iss_ar)
923 {
924 MemOp memop = s->be_data + size;
925
926 g_assert(size <= 3);
927
928 if (is_signed) {
929 memop += MO_SIGN;
930 }
931
932 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
933
934 if (extend && is_signed) {
935 g_assert(size < 3);
936 tcg_gen_ext32u_i64(dest, dest);
937 }
938
939 if (iss_valid) {
940 uint32_t syn;
941
942 syn = syn_data_abort_with_iss(0,
943 size,
944 is_signed,
945 iss_srt,
946 iss_sf,
947 iss_ar,
948 0, 0, 0, 0, 0, false);
949 disas_set_insn_syndrome(s, syn);
950 }
951 }
952
953 static void do_gpr_ld(DisasContext *s,
954 TCGv_i64 dest, TCGv_i64 tcg_addr,
955 int size, bool is_signed, bool extend,
956 bool iss_valid, unsigned int iss_srt,
957 bool iss_sf, bool iss_ar)
958 {
959 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
960 get_mem_index(s),
961 iss_valid, iss_srt, iss_sf, iss_ar);
962 }
963
964 /*
965 * Store from FP register to memory
966 */
967 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
968 {
969 /* This writes the bottom N bits of a 128 bit wide vector to memory */
970 TCGv_i64 tmp = tcg_temp_new_i64();
971 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
972 if (size < 4) {
973 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
974 s->be_data + size);
975 } else {
976 bool be = s->be_data == MO_BE;
977 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
978
979 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
980 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
981 s->be_data | MO_Q);
982 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
983 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
984 s->be_data | MO_Q);
985 tcg_temp_free_i64(tcg_hiaddr);
986 }
987
988 tcg_temp_free_i64(tmp);
989 }
990
991 /*
992 * Load from memory to FP register
993 */
994 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
995 {
996 /* This always zero-extends and writes to a full 128 bit wide vector */
997 TCGv_i64 tmplo = tcg_temp_new_i64();
998 TCGv_i64 tmphi = NULL;
999
1000 if (size < 4) {
1001 MemOp memop = s->be_data + size;
1002 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
1003 } else {
1004 bool be = s->be_data == MO_BE;
1005 TCGv_i64 tcg_hiaddr;
1006
1007 tmphi = tcg_temp_new_i64();
1008 tcg_hiaddr = tcg_temp_new_i64();
1009
1010 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1011 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1012 s->be_data | MO_Q);
1013 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1014 s->be_data | MO_Q);
1015 tcg_temp_free_i64(tcg_hiaddr);
1016 }
1017
1018 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
1019 tcg_temp_free_i64(tmplo);
1020
1021 if (tmphi) {
1022 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
1023 tcg_temp_free_i64(tmphi);
1024 }
1025 clear_vec_high(s, tmphi != NULL, destidx);
1026 }
1027
1028 /*
1029 * Vector load/store helpers.
1030 *
1031 * The principal difference between this and a FP load is that we don't
1032 * zero extend as we are filling a partial chunk of the vector register.
1033 * These functions don't support 128 bit loads/stores, which would be
1034 * normal load/store operations.
1035 *
1036 * The _i32 versions are useful when operating on 32 bit quantities
1037 * (eg for floating point single or using Neon helper functions).
1038 */
1039
1040 /* Get value of an element within a vector register */
1041 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1042 int element, MemOp memop)
1043 {
1044 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1045 switch (memop) {
1046 case MO_8:
1047 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1048 break;
1049 case MO_16:
1050 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1051 break;
1052 case MO_32:
1053 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1054 break;
1055 case MO_8|MO_SIGN:
1056 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1057 break;
1058 case MO_16|MO_SIGN:
1059 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1060 break;
1061 case MO_32|MO_SIGN:
1062 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1063 break;
1064 case MO_64:
1065 case MO_64|MO_SIGN:
1066 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1067 break;
1068 default:
1069 g_assert_not_reached();
1070 }
1071 }
1072
1073 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1074 int element, MemOp memop)
1075 {
1076 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1077 switch (memop) {
1078 case MO_8:
1079 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1080 break;
1081 case MO_16:
1082 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1083 break;
1084 case MO_8|MO_SIGN:
1085 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1086 break;
1087 case MO_16|MO_SIGN:
1088 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1089 break;
1090 case MO_32:
1091 case MO_32|MO_SIGN:
1092 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1093 break;
1094 default:
1095 g_assert_not_reached();
1096 }
1097 }
1098
1099 /* Set value of an element within a vector register */
1100 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1101 int element, MemOp memop)
1102 {
1103 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1104 switch (memop) {
1105 case MO_8:
1106 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1107 break;
1108 case MO_16:
1109 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1110 break;
1111 case MO_32:
1112 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1113 break;
1114 case MO_64:
1115 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1116 break;
1117 default:
1118 g_assert_not_reached();
1119 }
1120 }
1121
1122 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1123 int destidx, int element, MemOp memop)
1124 {
1125 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1126 switch (memop) {
1127 case MO_8:
1128 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1129 break;
1130 case MO_16:
1131 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1132 break;
1133 case MO_32:
1134 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1135 break;
1136 default:
1137 g_assert_not_reached();
1138 }
1139 }
1140
1141 /* Store from vector register to memory */
1142 static void do_vec_st(DisasContext *s, int srcidx, int element,
1143 TCGv_i64 tcg_addr, int size, MemOp endian)
1144 {
1145 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1146
1147 read_vec_element(s, tcg_tmp, srcidx, element, size);
1148 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1149
1150 tcg_temp_free_i64(tcg_tmp);
1151 }
1152
1153 /* Load from memory to vector register */
1154 static void do_vec_ld(DisasContext *s, int destidx, int element,
1155 TCGv_i64 tcg_addr, int size, MemOp endian)
1156 {
1157 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1158
1159 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1160 write_vec_element(s, tcg_tmp, destidx, element, size);
1161
1162 tcg_temp_free_i64(tcg_tmp);
1163 }
1164
1165 /* Check that FP/Neon access is enabled. If it is, return
1166 * true. If not, emit code to generate an appropriate exception,
1167 * and return false; the caller should not emit any code for
1168 * the instruction. Note that this check must happen after all
1169 * unallocated-encoding checks (otherwise the syndrome information
1170 * for the resulting exception will be incorrect).
1171 */
1172 static inline bool fp_access_check(DisasContext *s)
1173 {
1174 assert(!s->fp_access_checked);
1175 s->fp_access_checked = true;
1176
1177 if (!s->fp_excp_el) {
1178 return true;
1179 }
1180
1181 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
1182 syn_fp_access_trap(1, 0xe, false), s->fp_excp_el);
1183 return false;
1184 }
1185
1186 /* Check that SVE access is enabled. If it is, return true.
1187 * If not, emit code to generate an appropriate exception and return false.
1188 */
1189 bool sve_access_check(DisasContext *s)
1190 {
1191 if (s->sve_excp_el) {
1192 gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syn_sve_access_trap(),
1193 s->sve_excp_el);
1194 return false;
1195 }
1196 return fp_access_check(s);
1197 }
1198
1199 /*
1200 * This utility function is for doing register extension with an
1201 * optional shift. You will likely want to pass a temporary for the
1202 * destination register. See DecodeRegExtend() in the ARM ARM.
1203 */
1204 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1205 int option, unsigned int shift)
1206 {
1207 int extsize = extract32(option, 0, 2);
1208 bool is_signed = extract32(option, 2, 1);
1209
1210 if (is_signed) {
1211 switch (extsize) {
1212 case 0:
1213 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1214 break;
1215 case 1:
1216 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1217 break;
1218 case 2:
1219 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1220 break;
1221 case 3:
1222 tcg_gen_mov_i64(tcg_out, tcg_in);
1223 break;
1224 }
1225 } else {
1226 switch (extsize) {
1227 case 0:
1228 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1229 break;
1230 case 1:
1231 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1232 break;
1233 case 2:
1234 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1235 break;
1236 case 3:
1237 tcg_gen_mov_i64(tcg_out, tcg_in);
1238 break;
1239 }
1240 }
1241
1242 if (shift) {
1243 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1244 }
1245 }
1246
1247 static inline void gen_check_sp_alignment(DisasContext *s)
1248 {
1249 /* The AArch64 architecture mandates that (if enabled via PSTATE
1250 * or SCTLR bits) there is a check that SP is 16-aligned on every
1251 * SP-relative load or store (with an exception generated if it is not).
1252 * In line with general QEMU practice regarding misaligned accesses,
1253 * we omit these checks for the sake of guest program performance.
1254 * This function is provided as a hook so we can more easily add these
1255 * checks in future (possibly as a "favour catching guest program bugs
1256 * over speed" user selectable option).
1257 */
1258 }
1259
1260 /*
1261 * This provides a simple table based table lookup decoder. It is
1262 * intended to be used when the relevant bits for decode are too
1263 * awkwardly placed and switch/if based logic would be confusing and
1264 * deeply nested. Since it's a linear search through the table, tables
1265 * should be kept small.
1266 *
1267 * It returns the first handler where insn & mask == pattern, or
1268 * NULL if there is no match.
1269 * The table is terminated by an empty mask (i.e. 0)
1270 */
1271 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1272 uint32_t insn)
1273 {
1274 const AArch64DecodeTable *tptr = table;
1275
1276 while (tptr->mask) {
1277 if ((insn & tptr->mask) == tptr->pattern) {
1278 return tptr->disas_fn;
1279 }
1280 tptr++;
1281 }
1282 return NULL;
1283 }
1284
1285 /*
1286 * The instruction disassembly implemented here matches
1287 * the instruction encoding classifications in chapter C4
1288 * of the ARM Architecture Reference Manual (DDI0487B_a);
1289 * classification names and decode diagrams here should generally
1290 * match up with those in the manual.
1291 */
1292
1293 /* Unconditional branch (immediate)
1294 * 31 30 26 25 0
1295 * +----+-----------+-------------------------------------+
1296 * | op | 0 0 1 0 1 | imm26 |
1297 * +----+-----------+-------------------------------------+
1298 */
1299 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1300 {
1301 uint64_t addr = s->pc_curr + sextract32(insn, 0, 26) * 4;
1302
1303 if (insn & (1U << 31)) {
1304 /* BL Branch with link */
1305 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
1306 }
1307
1308 /* B Branch / BL Branch with link */
1309 reset_btype(s);
1310 gen_goto_tb(s, 0, addr);
1311 }
1312
1313 /* Compare and branch (immediate)
1314 * 31 30 25 24 23 5 4 0
1315 * +----+-------------+----+---------------------+--------+
1316 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1317 * +----+-------------+----+---------------------+--------+
1318 */
1319 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1320 {
1321 unsigned int sf, op, rt;
1322 uint64_t addr;
1323 TCGLabel *label_match;
1324 TCGv_i64 tcg_cmp;
1325
1326 sf = extract32(insn, 31, 1);
1327 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1328 rt = extract32(insn, 0, 5);
1329 addr = s->pc_curr + sextract32(insn, 5, 19) * 4;
1330
1331 tcg_cmp = read_cpu_reg(s, rt, sf);
1332 label_match = gen_new_label();
1333
1334 reset_btype(s);
1335 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1336 tcg_cmp, 0, label_match);
1337
1338 gen_goto_tb(s, 0, s->base.pc_next);
1339 gen_set_label(label_match);
1340 gen_goto_tb(s, 1, addr);
1341 }
1342
1343 /* Test and branch (immediate)
1344 * 31 30 25 24 23 19 18 5 4 0
1345 * +----+-------------+----+-------+-------------+------+
1346 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1347 * +----+-------------+----+-------+-------------+------+
1348 */
1349 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1350 {
1351 unsigned int bit_pos, op, rt;
1352 uint64_t addr;
1353 TCGLabel *label_match;
1354 TCGv_i64 tcg_cmp;
1355
1356 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1357 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1358 addr = s->pc_curr + sextract32(insn, 5, 14) * 4;
1359 rt = extract32(insn, 0, 5);
1360
1361 tcg_cmp = tcg_temp_new_i64();
1362 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1363 label_match = gen_new_label();
1364
1365 reset_btype(s);
1366 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1367 tcg_cmp, 0, label_match);
1368 tcg_temp_free_i64(tcg_cmp);
1369 gen_goto_tb(s, 0, s->base.pc_next);
1370 gen_set_label(label_match);
1371 gen_goto_tb(s, 1, addr);
1372 }
1373
1374 /* Conditional branch (immediate)
1375 * 31 25 24 23 5 4 3 0
1376 * +---------------+----+---------------------+----+------+
1377 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1378 * +---------------+----+---------------------+----+------+
1379 */
1380 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1381 {
1382 unsigned int cond;
1383 uint64_t addr;
1384
1385 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1386 unallocated_encoding(s);
1387 return;
1388 }
1389 addr = s->pc_curr + sextract32(insn, 5, 19) * 4;
1390 cond = extract32(insn, 0, 4);
1391
1392 reset_btype(s);
1393 if (cond < 0x0e) {
1394 /* genuinely conditional branches */
1395 TCGLabel *label_match = gen_new_label();
1396 arm_gen_test_cc(cond, label_match);
1397 gen_goto_tb(s, 0, s->base.pc_next);
1398 gen_set_label(label_match);
1399 gen_goto_tb(s, 1, addr);
1400 } else {
1401 /* 0xe and 0xf are both "always" conditions */
1402 gen_goto_tb(s, 0, addr);
1403 }
1404 }
1405
1406 /* HINT instruction group, including various allocated HINTs */
1407 static void handle_hint(DisasContext *s, uint32_t insn,
1408 unsigned int op1, unsigned int op2, unsigned int crm)
1409 {
1410 unsigned int selector = crm << 3 | op2;
1411
1412 if (op1 != 3) {
1413 unallocated_encoding(s);
1414 return;
1415 }
1416
1417 switch (selector) {
1418 case 0b00000: /* NOP */
1419 break;
1420 case 0b00011: /* WFI */
1421 s->base.is_jmp = DISAS_WFI;
1422 break;
1423 case 0b00001: /* YIELD */
1424 /* When running in MTTCG we don't generate jumps to the yield and
1425 * WFE helpers as it won't affect the scheduling of other vCPUs.
1426 * If we wanted to more completely model WFE/SEV so we don't busy
1427 * spin unnecessarily we would need to do something more involved.
1428 */
1429 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1430 s->base.is_jmp = DISAS_YIELD;
1431 }
1432 break;
1433 case 0b00010: /* WFE */
1434 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1435 s->base.is_jmp = DISAS_WFE;
1436 }
1437 break;
1438 case 0b00100: /* SEV */
1439 case 0b00101: /* SEVL */
1440 /* we treat all as NOP at least for now */
1441 break;
1442 case 0b00111: /* XPACLRI */
1443 if (s->pauth_active) {
1444 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1445 }
1446 break;
1447 case 0b01000: /* PACIA1716 */
1448 if (s->pauth_active) {
1449 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1450 }
1451 break;
1452 case 0b01010: /* PACIB1716 */
1453 if (s->pauth_active) {
1454 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1455 }
1456 break;
1457 case 0b01100: /* AUTIA1716 */
1458 if (s->pauth_active) {
1459 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1460 }
1461 break;
1462 case 0b01110: /* AUTIB1716 */
1463 if (s->pauth_active) {
1464 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1465 }
1466 break;
1467 case 0b11000: /* PACIAZ */
1468 if (s->pauth_active) {
1469 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1470 new_tmp_a64_zero(s));
1471 }
1472 break;
1473 case 0b11001: /* PACIASP */
1474 if (s->pauth_active) {
1475 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1476 }
1477 break;
1478 case 0b11010: /* PACIBZ */
1479 if (s->pauth_active) {
1480 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1481 new_tmp_a64_zero(s));
1482 }
1483 break;
1484 case 0b11011: /* PACIBSP */
1485 if (s->pauth_active) {
1486 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1487 }
1488 break;
1489 case 0b11100: /* AUTIAZ */
1490 if (s->pauth_active) {
1491 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1492 new_tmp_a64_zero(s));
1493 }
1494 break;
1495 case 0b11101: /* AUTIASP */
1496 if (s->pauth_active) {
1497 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1498 }
1499 break;
1500 case 0b11110: /* AUTIBZ */
1501 if (s->pauth_active) {
1502 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1503 new_tmp_a64_zero(s));
1504 }
1505 break;
1506 case 0b11111: /* AUTIBSP */
1507 if (s->pauth_active) {
1508 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1509 }
1510 break;
1511 default:
1512 /* default specified as NOP equivalent */
1513 break;
1514 }
1515 }
1516
1517 static void gen_clrex(DisasContext *s, uint32_t insn)
1518 {
1519 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1520 }
1521
1522 /* CLREX, DSB, DMB, ISB */
1523 static void handle_sync(DisasContext *s, uint32_t insn,
1524 unsigned int op1, unsigned int op2, unsigned int crm)
1525 {
1526 TCGBar bar;
1527
1528 if (op1 != 3) {
1529 unallocated_encoding(s);
1530 return;
1531 }
1532
1533 switch (op2) {
1534 case 2: /* CLREX */
1535 gen_clrex(s, insn);
1536 return;
1537 case 4: /* DSB */
1538 case 5: /* DMB */
1539 switch (crm & 3) {
1540 case 1: /* MBReqTypes_Reads */
1541 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1542 break;
1543 case 2: /* MBReqTypes_Writes */
1544 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1545 break;
1546 default: /* MBReqTypes_All */
1547 bar = TCG_BAR_SC | TCG_MO_ALL;
1548 break;
1549 }
1550 tcg_gen_mb(bar);
1551 return;
1552 case 6: /* ISB */
1553 /* We need to break the TB after this insn to execute
1554 * a self-modified code correctly and also to take
1555 * any pending interrupts immediately.
1556 */
1557 reset_btype(s);
1558 gen_goto_tb(s, 0, s->base.pc_next);
1559 return;
1560
1561 case 7: /* SB */
1562 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1563 goto do_unallocated;
1564 }
1565 /*
1566 * TODO: There is no speculation barrier opcode for TCG;
1567 * MB and end the TB instead.
1568 */
1569 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1570 gen_goto_tb(s, 0, s->base.pc_next);
1571 return;
1572
1573 default:
1574 do_unallocated:
1575 unallocated_encoding(s);
1576 return;
1577 }
1578 }
1579
1580 static void gen_xaflag(void)
1581 {
1582 TCGv_i32 z = tcg_temp_new_i32();
1583
1584 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1585
1586 /*
1587 * (!C & !Z) << 31
1588 * (!(C | Z)) << 31
1589 * ~((C | Z) << 31)
1590 * ~-(C | Z)
1591 * (C | Z) - 1
1592 */
1593 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1594 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1595
1596 /* !(Z & C) */
1597 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1598 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1599
1600 /* (!C & Z) << 31 -> -(Z & ~C) */
1601 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1602 tcg_gen_neg_i32(cpu_VF, cpu_VF);
1603
1604 /* C | Z */
1605 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1606
1607 tcg_temp_free_i32(z);
1608 }
1609
1610 static void gen_axflag(void)
1611 {
1612 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
1613 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
1614
1615 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1616 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1617
1618 tcg_gen_movi_i32(cpu_NF, 0);
1619 tcg_gen_movi_i32(cpu_VF, 0);
1620 }
1621
1622 /* MSR (immediate) - move immediate to processor state field */
1623 static void handle_msr_i(DisasContext *s, uint32_t insn,
1624 unsigned int op1, unsigned int op2, unsigned int crm)
1625 {
1626 TCGv_i32 t1;
1627 int op = op1 << 3 | op2;
1628
1629 /* End the TB by default, chaining is ok. */
1630 s->base.is_jmp = DISAS_TOO_MANY;
1631
1632 switch (op) {
1633 case 0x00: /* CFINV */
1634 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) {
1635 goto do_unallocated;
1636 }
1637 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1638 s->base.is_jmp = DISAS_NEXT;
1639 break;
1640
1641 case 0x01: /* XAFlag */
1642 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1643 goto do_unallocated;
1644 }
1645 gen_xaflag();
1646 s->base.is_jmp = DISAS_NEXT;
1647 break;
1648
1649 case 0x02: /* AXFlag */
1650 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1651 goto do_unallocated;
1652 }
1653 gen_axflag();
1654 s->base.is_jmp = DISAS_NEXT;
1655 break;
1656
1657 case 0x03: /* UAO */
1658 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1659 goto do_unallocated;
1660 }
1661 if (crm & 1) {
1662 set_pstate_bits(PSTATE_UAO);
1663 } else {
1664 clear_pstate_bits(PSTATE_UAO);
1665 }
1666 t1 = tcg_const_i32(s->current_el);
1667 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1668 tcg_temp_free_i32(t1);
1669 break;
1670
1671 case 0x04: /* PAN */
1672 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1673 goto do_unallocated;
1674 }
1675 if (crm & 1) {
1676 set_pstate_bits(PSTATE_PAN);
1677 } else {
1678 clear_pstate_bits(PSTATE_PAN);
1679 }
1680 t1 = tcg_const_i32(s->current_el);
1681 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1682 tcg_temp_free_i32(t1);
1683 break;
1684
1685 case 0x05: /* SPSel */
1686 if (s->current_el == 0) {
1687 goto do_unallocated;
1688 }
1689 t1 = tcg_const_i32(crm & PSTATE_SP);
1690 gen_helper_msr_i_spsel(cpu_env, t1);
1691 tcg_temp_free_i32(t1);
1692 break;
1693
1694 case 0x1e: /* DAIFSet */
1695 t1 = tcg_const_i32(crm);
1696 gen_helper_msr_i_daifset(cpu_env, t1);
1697 tcg_temp_free_i32(t1);
1698 break;
1699
1700 case 0x1f: /* DAIFClear */
1701 t1 = tcg_const_i32(crm);
1702 gen_helper_msr_i_daifclear(cpu_env, t1);
1703 tcg_temp_free_i32(t1);
1704 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1705 s->base.is_jmp = DISAS_UPDATE_EXIT;
1706 break;
1707
1708 case 0x1c: /* TCO */
1709 if (dc_isar_feature(aa64_mte, s)) {
1710 /* Full MTE is enabled -- set the TCO bit as directed. */
1711 if (crm & 1) {
1712 set_pstate_bits(PSTATE_TCO);
1713 } else {
1714 clear_pstate_bits(PSTATE_TCO);
1715 }
1716 t1 = tcg_const_i32(s->current_el);
1717 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1718 tcg_temp_free_i32(t1);
1719 /* Many factors, including TCO, go into MTE_ACTIVE. */
1720 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1721 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
1722 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
1723 s->base.is_jmp = DISAS_NEXT;
1724 } else {
1725 goto do_unallocated;
1726 }
1727 break;
1728
1729 default:
1730 do_unallocated:
1731 unallocated_encoding(s);
1732 return;
1733 }
1734 }
1735
1736 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1737 {
1738 TCGv_i32 tmp = tcg_temp_new_i32();
1739 TCGv_i32 nzcv = tcg_temp_new_i32();
1740
1741 /* build bit 31, N */
1742 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1743 /* build bit 30, Z */
1744 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1745 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1746 /* build bit 29, C */
1747 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1748 /* build bit 28, V */
1749 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1750 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1751 /* generate result */
1752 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1753
1754 tcg_temp_free_i32(nzcv);
1755 tcg_temp_free_i32(tmp);
1756 }
1757
1758 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1759 {
1760 TCGv_i32 nzcv = tcg_temp_new_i32();
1761
1762 /* take NZCV from R[t] */
1763 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1764
1765 /* bit 31, N */
1766 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1767 /* bit 30, Z */
1768 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1769 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1770 /* bit 29, C */
1771 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1772 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1773 /* bit 28, V */
1774 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1775 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1776 tcg_temp_free_i32(nzcv);
1777 }
1778
1779 /* MRS - move from system register
1780 * MSR (register) - move to system register
1781 * SYS
1782 * SYSL
1783 * These are all essentially the same insn in 'read' and 'write'
1784 * versions, with varying op0 fields.
1785 */
1786 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1787 unsigned int op0, unsigned int op1, unsigned int op2,
1788 unsigned int crn, unsigned int crm, unsigned int rt)
1789 {
1790 const ARMCPRegInfo *ri;
1791 TCGv_i64 tcg_rt;
1792
1793 ri = get_arm_cp_reginfo(s->cp_regs,
1794 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1795 crn, crm, op0, op1, op2));
1796
1797 if (!ri) {
1798 /* Unknown register; this might be a guest error or a QEMU
1799 * unimplemented feature.
1800 */
1801 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1802 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1803 isread ? "read" : "write", op0, op1, crn, crm, op2);
1804 unallocated_encoding(s);
1805 return;
1806 }
1807
1808 /* Check access permissions */
1809 if (!cp_access_ok(s->current_el, ri, isread)) {
1810 unallocated_encoding(s);
1811 return;
1812 }
1813
1814 if (ri->accessfn) {
1815 /* Emit code to perform further access permissions checks at
1816 * runtime; this may result in an exception.
1817 */
1818 TCGv_ptr tmpptr;
1819 TCGv_i32 tcg_syn, tcg_isread;
1820 uint32_t syndrome;
1821
1822 gen_a64_set_pc_im(s->pc_curr);
1823 tmpptr = tcg_const_ptr(ri);
1824 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1825 tcg_syn = tcg_const_i32(syndrome);
1826 tcg_isread = tcg_const_i32(isread);
1827 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1828 tcg_temp_free_ptr(tmpptr);
1829 tcg_temp_free_i32(tcg_syn);
1830 tcg_temp_free_i32(tcg_isread);
1831 } else if (ri->type & ARM_CP_RAISES_EXC) {
1832 /*
1833 * The readfn or writefn might raise an exception;
1834 * synchronize the CPU state in case it does.
1835 */
1836 gen_a64_set_pc_im(s->pc_curr);
1837 }
1838
1839 /* Handle special cases first */
1840 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1841 case ARM_CP_NOP:
1842 return;
1843 case ARM_CP_NZCV:
1844 tcg_rt = cpu_reg(s, rt);
1845 if (isread) {
1846 gen_get_nzcv(tcg_rt);
1847 } else {
1848 gen_set_nzcv(tcg_rt);
1849 }
1850 return;
1851 case ARM_CP_CURRENTEL:
1852 /* Reads as current EL value from pstate, which is
1853 * guaranteed to be constant by the tb flags.
1854 */
1855 tcg_rt = cpu_reg(s, rt);
1856 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1857 return;
1858 case ARM_CP_DC_ZVA:
1859 /* Writes clear the aligned block of memory which rt points into. */
1860 if (s->mte_active[0]) {
1861 TCGv_i32 t_desc;
1862 int desc = 0;
1863
1864 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
1865 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
1866 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
1867 t_desc = tcg_const_i32(desc);
1868
1869 tcg_rt = new_tmp_a64(s);
1870 gen_helper_mte_check_zva(tcg_rt, cpu_env, t_desc, cpu_reg(s, rt));
1871 tcg_temp_free_i32(t_desc);
1872 } else {
1873 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
1874 }
1875 gen_helper_dc_zva(cpu_env, tcg_rt);
1876 return;
1877 default:
1878 break;
1879 }
1880 if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) {
1881 return;
1882 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
1883 return;
1884 }
1885
1886 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1887 gen_io_start();
1888 }
1889
1890 tcg_rt = cpu_reg(s, rt);
1891
1892 if (isread) {
1893 if (ri->type & ARM_CP_CONST) {
1894 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1895 } else if (ri->readfn) {
1896 TCGv_ptr tmpptr;
1897 tmpptr = tcg_const_ptr(ri);
1898 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1899 tcg_temp_free_ptr(tmpptr);
1900 } else {
1901 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1902 }
1903 } else {
1904 if (ri->type & ARM_CP_CONST) {
1905 /* If not forbidden by access permissions, treat as WI */
1906 return;
1907 } else if (ri->writefn) {
1908 TCGv_ptr tmpptr;
1909 tmpptr = tcg_const_ptr(ri);
1910 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1911 tcg_temp_free_ptr(tmpptr);
1912 } else {
1913 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1914 }
1915 }
1916
1917 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1918 /* I/O operations must end the TB here (whether read or write) */
1919 s->base.is_jmp = DISAS_UPDATE_EXIT;
1920 }
1921 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1922 /*
1923 * A write to any coprocessor regiser that ends a TB
1924 * must rebuild the hflags for the next TB.
1925 */
1926 TCGv_i32 tcg_el = tcg_const_i32(s->current_el);
1927 gen_helper_rebuild_hflags_a64(cpu_env, tcg_el);
1928 tcg_temp_free_i32(tcg_el);
1929 /*
1930 * We default to ending the TB on a coprocessor register write,
1931 * but allow this to be suppressed by the register definition
1932 * (usually only necessary to work around guest bugs).
1933 */
1934 s->base.is_jmp = DISAS_UPDATE_EXIT;
1935 }
1936 }
1937
1938 /* System
1939 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1940 * +---------------------+---+-----+-----+-------+-------+-----+------+
1941 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1942 * +---------------------+---+-----+-----+-------+-------+-----+------+
1943 */
1944 static void disas_system(DisasContext *s, uint32_t insn)
1945 {
1946 unsigned int l, op0, op1, crn, crm, op2, rt;
1947 l = extract32(insn, 21, 1);
1948 op0 = extract32(insn, 19, 2);
1949 op1 = extract32(insn, 16, 3);
1950 crn = extract32(insn, 12, 4);
1951 crm = extract32(insn, 8, 4);
1952 op2 = extract32(insn, 5, 3);
1953 rt = extract32(insn, 0, 5);
1954
1955 if (op0 == 0) {
1956 if (l || rt != 31) {
1957 unallocated_encoding(s);
1958 return;
1959 }
1960 switch (crn) {
1961 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
1962 handle_hint(s, insn, op1, op2, crm);
1963 break;
1964 case 3: /* CLREX, DSB, DMB, ISB */
1965 handle_sync(s, insn, op1, op2, crm);
1966 break;
1967 case 4: /* MSR (immediate) */
1968 handle_msr_i(s, insn, op1, op2, crm);
1969 break;
1970 default:
1971 unallocated_encoding(s);
1972 break;
1973 }
1974 return;
1975 }
1976 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1977 }
1978
1979 /* Exception generation
1980 *
1981 * 31 24 23 21 20 5 4 2 1 0
1982 * +-----------------+-----+------------------------+-----+----+
1983 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1984 * +-----------------------+------------------------+----------+
1985 */
1986 static void disas_exc(DisasContext *s, uint32_t insn)
1987 {
1988 int opc = extract32(insn, 21, 3);
1989 int op2_ll = extract32(insn, 0, 5);
1990 int imm16 = extract32(insn, 5, 16);
1991 TCGv_i32 tmp;
1992
1993 switch (opc) {
1994 case 0:
1995 /* For SVC, HVC and SMC we advance the single-step state
1996 * machine before taking the exception. This is architecturally
1997 * mandated, to ensure that single-stepping a system call
1998 * instruction works properly.
1999 */
2000 switch (op2_ll) {
2001 case 1: /* SVC */
2002 gen_ss_advance(s);
2003 gen_exception_insn(s, s->base.pc_next, EXCP_SWI,
2004 syn_aa64_svc(imm16), default_exception_el(s));
2005 break;
2006 case 2: /* HVC */
2007 if (s->current_el == 0) {
2008 unallocated_encoding(s);
2009 break;
2010 }
2011 /* The pre HVC helper handles cases when HVC gets trapped
2012 * as an undefined insn by runtime configuration.
2013 */
2014 gen_a64_set_pc_im(s->pc_curr);
2015 gen_helper_pre_hvc(cpu_env);
2016 gen_ss_advance(s);
2017 gen_exception_insn(s, s->base.pc_next, EXCP_HVC,
2018 syn_aa64_hvc(imm16), 2);
2019 break;
2020 case 3: /* SMC */
2021 if (s->current_el == 0) {
2022 unallocated_encoding(s);
2023 break;
2024 }
2025 gen_a64_set_pc_im(s->pc_curr);
2026 tmp = tcg_const_i32(syn_aa64_smc(imm16));
2027 gen_helper_pre_smc(cpu_env, tmp);
2028 tcg_temp_free_i32(tmp);
2029 gen_ss_advance(s);
2030 gen_exception_insn(s, s->base.pc_next, EXCP_SMC,
2031 syn_aa64_smc(imm16), 3);
2032 break;
2033 default:
2034 unallocated_encoding(s);
2035 break;
2036 }
2037 break;
2038 case 1:
2039 if (op2_ll != 0) {
2040 unallocated_encoding(s);
2041 break;
2042 }
2043 /* BRK */
2044 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16));
2045 break;
2046 case 2:
2047 if (op2_ll != 0) {
2048 unallocated_encoding(s);
2049 break;
2050 }
2051 /* HLT. This has two purposes.
2052 * Architecturally, it is an external halting debug instruction.
2053 * Since QEMU doesn't implement external debug, we treat this as
2054 * it is required for halting debug disabled: it will UNDEF.
2055 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2056 */
2057 if (semihosting_enabled() && imm16 == 0xf000) {
2058 #ifndef CONFIG_USER_ONLY
2059 /* In system mode, don't allow userspace access to semihosting,
2060 * to provide some semblance of security (and for consistency
2061 * with our 32-bit semihosting).
2062 */
2063 if (s->current_el == 0) {
2064 unsupported_encoding(s, insn);
2065 break;
2066 }
2067 #endif
2068 gen_exception_internal_insn(s, s->pc_curr, EXCP_SEMIHOST);
2069 } else {
2070 unsupported_encoding(s, insn);
2071 }
2072 break;
2073 case 5:
2074 if (op2_ll < 1 || op2_ll > 3) {
2075 unallocated_encoding(s);
2076 break;
2077 }
2078 /* DCPS1, DCPS2, DCPS3 */
2079 unsupported_encoding(s, insn);
2080 break;
2081 default:
2082 unallocated_encoding(s);
2083 break;
2084 }
2085 }
2086
2087 /* Unconditional branch (register)
2088 * 31 25 24 21 20 16 15 10 9 5 4 0
2089 * +---------------+-------+-------+-------+------+-------+
2090 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
2091 * +---------------+-------+-------+-------+------+-------+
2092 */
2093 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
2094 {
2095 unsigned int opc, op2, op3, rn, op4;
2096 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */
2097 TCGv_i64 dst;
2098 TCGv_i64 modifier;
2099
2100 opc = extract32(insn, 21, 4);
2101 op2 = extract32(insn, 16, 5);
2102 op3 = extract32(insn, 10, 6);
2103 rn = extract32(insn, 5, 5);
2104 op4 = extract32(insn, 0, 5);
2105
2106 if (op2 != 0x1f) {
2107 goto do_unallocated;
2108 }
2109
2110 switch (opc) {
2111 case 0: /* BR */
2112 case 1: /* BLR */
2113 case 2: /* RET */
2114 btype_mod = opc;
2115 switch (op3) {
2116 case 0:
2117 /* BR, BLR, RET */
2118 if (op4 != 0) {
2119 goto do_unallocated;
2120 }
2121 dst = cpu_reg(s, rn);
2122 break;
2123
2124 case 2:
2125 case 3:
2126 if (!dc_isar_feature(aa64_pauth, s)) {
2127 goto do_unallocated;
2128 }
2129 if (opc == 2) {
2130 /* RETAA, RETAB */
2131 if (rn != 0x1f || op4 != 0x1f) {
2132 goto do_unallocated;
2133 }
2134 rn = 30;
2135 modifier = cpu_X[31];
2136 } else {
2137 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */
2138 if (op4 != 0x1f) {
2139 goto do_unallocated;
2140 }
2141 modifier = new_tmp_a64_zero(s);
2142 }
2143 if (s->pauth_active) {
2144 dst = new_tmp_a64(s);
2145 if (op3 == 2) {
2146 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2147 } else {
2148 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2149 }
2150 } else {
2151 dst = cpu_reg(s, rn);
2152 }
2153 break;
2154
2155 default:
2156 goto do_unallocated;
2157 }
2158 gen_a64_set_pc(s, dst);
2159 /* BLR also needs to load return address */
2160 if (opc == 1) {
2161 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
2162 }
2163 break;
2164
2165 case 8: /* BRAA */
2166 case 9: /* BLRAA */
2167 if (!dc_isar_feature(aa64_pauth, s)) {
2168 goto do_unallocated;
2169 }
2170 if ((op3 & ~1) != 2) {
2171 goto do_unallocated;
2172 }
2173 btype_mod = opc & 1;
2174 if (s->pauth_active) {
2175 dst = new_tmp_a64(s);
2176 modifier = cpu_reg_sp(s, op4);
2177 if (op3 == 2) {
2178 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2179 } else {
2180 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2181 }
2182 } else {
2183 dst = cpu_reg(s, rn);
2184 }
2185 gen_a64_set_pc(s, dst);
2186 /* BLRAA also needs to load return address */
2187 if (opc == 9) {
2188 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
2189 }
2190 break;
2191
2192 case 4: /* ERET */
2193 if (s->current_el == 0) {
2194 goto do_unallocated;
2195 }
2196 switch (op3) {
2197 case 0: /* ERET */
2198 if (op4 != 0) {
2199 goto do_unallocated;
2200 }
2201 dst = tcg_temp_new_i64();
2202 tcg_gen_ld_i64(dst, cpu_env,
2203 offsetof(CPUARMState, elr_el[s->current_el]));
2204 break;
2205
2206 case 2: /* ERETAA */
2207 case 3: /* ERETAB */
2208 if (!dc_isar_feature(aa64_pauth, s)) {
2209 goto do_unallocated;
2210 }
2211 if (rn != 0x1f || op4 != 0x1f) {
2212 goto do_unallocated;
2213 }
2214 dst = tcg_temp_new_i64();
2215 tcg_gen_ld_i64(dst, cpu_env,
2216 offsetof(CPUARMState, elr_el[s->current_el]));
2217 if (s->pauth_active) {
2218 modifier = cpu_X[31];
2219 if (op3 == 2) {
2220 gen_helper_autia(dst, cpu_env, dst, modifier);
2221 } else {
2222 gen_helper_autib(dst, cpu_env, dst, modifier);
2223 }
2224 }
2225 break;
2226
2227 default:
2228 goto do_unallocated;
2229 }
2230 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2231 gen_io_start();
2232 }
2233
2234 gen_helper_exception_return(cpu_env, dst);
2235 tcg_temp_free_i64(dst);
2236 /* Must exit loop to check un-masked IRQs */
2237 s->base.is_jmp = DISAS_EXIT;
2238 return;
2239
2240 case 5: /* DRPS */
2241 if (op3 != 0 || op4 != 0 || rn != 0x1f) {
2242 goto do_unallocated;
2243 } else {
2244 unsupported_encoding(s, insn);
2245 }
2246 return;
2247
2248 default:
2249 do_unallocated:
2250 unallocated_encoding(s);
2251 return;
2252 }
2253
2254 switch (btype_mod) {
2255 case 0: /* BR */
2256 if (dc_isar_feature(aa64_bti, s)) {
2257 /* BR to {x16,x17} or !guard -> 1, else 3. */
2258 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
2259 }
2260 break;
2261
2262 case 1: /* BLR */
2263 if (dc_isar_feature(aa64_bti, s)) {
2264 /* BLR sets BTYPE to 2, regardless of source guarded page. */
2265 set_btype(s, 2);
2266 }
2267 break;
2268
2269 default: /* RET or none of the above. */
2270 /* BTYPE will be set to 0 by normal end-of-insn processing. */
2271 break;
2272 }
2273
2274 s->base.is_jmp = DISAS_JUMP;
2275 }
2276
2277 /* Branches, exception generating and system instructions */
2278 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2279 {
2280 switch (extract32(insn, 25, 7)) {
2281 case 0x0a: case 0x0b:
2282 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
2283 disas_uncond_b_imm(s, insn);
2284 break;
2285 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
2286 disas_comp_b_imm(s, insn);
2287 break;
2288 case 0x1b: case 0x5b: /* Test & branch (immediate) */
2289 disas_test_b_imm(s, insn);
2290 break;
2291 case 0x2a: /* Conditional branch (immediate) */
2292 disas_cond_b_imm(s, insn);
2293 break;
2294 case 0x6a: /* Exception generation / System */
2295 if (insn & (1 << 24)) {
2296 if (extract32(insn, 22, 2) == 0) {
2297 disas_system(s, insn);
2298 } else {
2299 unallocated_encoding(s);
2300 }
2301 } else {
2302 disas_exc(s, insn);
2303 }
2304 break;
2305 case 0x6b: /* Unconditional branch (register) */
2306 disas_uncond_b_reg(s, insn);
2307 break;
2308 default:
2309 unallocated_encoding(s);
2310 break;
2311 }
2312 }
2313
2314 /*
2315 * Load/Store exclusive instructions are implemented by remembering
2316 * the value/address loaded, and seeing if these are the same
2317 * when the store is performed. This is not actually the architecturally
2318 * mandated semantics, but it works for typical guest code sequences
2319 * and avoids having to monitor regular stores.
2320 *
2321 * The store exclusive uses the atomic cmpxchg primitives to avoid
2322 * races in multi-threaded linux-user and when MTTCG softmmu is
2323 * enabled.
2324 */
2325 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2326 TCGv_i64 addr, int size, bool is_pair)
2327 {
2328 int idx = get_mem_index(s);
2329 MemOp memop = s->be_data;
2330
2331 g_assert(size <= 3);
2332 if (is_pair) {
2333 g_assert(size >= 2);
2334 if (size == 2) {
2335 /* The pair must be single-copy atomic for the doubleword. */
2336 memop |= MO_64 | MO_ALIGN;
2337 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2338 if (s->be_data == MO_LE) {
2339 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2340 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2341 } else {
2342 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2343 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2344 }
2345 } else {
2346 /* The pair must be single-copy atomic for *each* doubleword, not
2347 the entire quadword, however it must be quadword aligned. */
2348 memop |= MO_64;
2349 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2350 memop | MO_ALIGN_16);
2351
2352 TCGv_i64 addr2 = tcg_temp_new_i64();
2353 tcg_gen_addi_i64(addr2, addr, 8);
2354 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2355 tcg_temp_free_i64(addr2);
2356
2357 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2358 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2359 }
2360 } else {
2361 memop |= size | MO_ALIGN;
2362 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2363 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2364 }
2365 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2366 }
2367
2368 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2369 TCGv_i64 addr, int size, int is_pair)
2370 {
2371 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2372 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2373 * [addr] = {Rt};
2374 * if (is_pair) {
2375 * [addr + datasize] = {Rt2};
2376 * }
2377 * {Rd} = 0;
2378 * } else {
2379 * {Rd} = 1;
2380 * }
2381 * env->exclusive_addr = -1;
2382 */
2383 TCGLabel *fail_label = gen_new_label();
2384 TCGLabel *done_label = gen_new_label();
2385 TCGv_i64 tmp;
2386
2387 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2388
2389 tmp = tcg_temp_new_i64();
2390 if (is_pair) {
2391 if (size == 2) {
2392 if (s->be_data == MO_LE) {
2393 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2394 } else {
2395 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2396 }
2397 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2398 cpu_exclusive_val, tmp,
2399 get_mem_index(s),
2400 MO_64 | MO_ALIGN | s->be_data);
2401 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2402 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2403 if (!HAVE_CMPXCHG128) {
2404 gen_helper_exit_atomic(cpu_env);
2405 s->base.is_jmp = DISAS_NORETURN;
2406 } else if (s->be_data == MO_LE) {
2407 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
2408 cpu_exclusive_addr,
2409 cpu_reg(s, rt),
2410 cpu_reg(s, rt2));
2411 } else {
2412 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
2413 cpu_exclusive_addr,
2414 cpu_reg(s, rt),
2415 cpu_reg(s, rt2));
2416 }
2417 } else if (s->be_data == MO_LE) {
2418 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
2419 cpu_reg(s, rt), cpu_reg(s, rt2));
2420 } else {
2421 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
2422 cpu_reg(s, rt), cpu_reg(s, rt2));
2423 }
2424 } else {
2425 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2426 cpu_reg(s, rt), get_mem_index(s),
2427 size | MO_ALIGN | s->be_data);
2428 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2429 }
2430 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2431 tcg_temp_free_i64(tmp);
2432 tcg_gen_br(done_label);
2433
2434 gen_set_label(fail_label);
2435 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2436 gen_set_label(done_label);
2437 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2438 }
2439
2440 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2441 int rn, int size)
2442 {
2443 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2444 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2445 int memidx = get_mem_index(s);
2446 TCGv_i64 clean_addr;
2447
2448 if (rn == 31) {
2449 gen_check_sp_alignment(s);
2450 }
2451 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size);
2452 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx,
2453 size | MO_ALIGN | s->be_data);
2454 }
2455
2456 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2457 int rn, int size)
2458 {
2459 TCGv_i64 s1 = cpu_reg(s, rs);
2460 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2461 TCGv_i64 t1 = cpu_reg(s, rt);
2462 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2463 TCGv_i64 clean_addr;
2464 int memidx = get_mem_index(s);
2465
2466 if (rn == 31) {
2467 gen_check_sp_alignment(s);
2468 }
2469
2470 /* This is a single atomic access, despite the "pair". */
2471 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1);
2472
2473 if (size == 2) {
2474 TCGv_i64 cmp = tcg_temp_new_i64();
2475 TCGv_i64 val = tcg_temp_new_i64();
2476
2477 if (s->be_data == MO_LE) {
2478 tcg_gen_concat32_i64(val, t1, t2);
2479 tcg_gen_concat32_i64(cmp, s1, s2);
2480 } else {
2481 tcg_gen_concat32_i64(val, t2, t1);
2482 tcg_gen_concat32_i64(cmp, s2, s1);
2483 }
2484
2485 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx,
2486 MO_64 | MO_ALIGN | s->be_data);
2487 tcg_temp_free_i64(val);
2488
2489 if (s->be_data == MO_LE) {
2490 tcg_gen_extr32_i64(s1, s2, cmp);
2491 } else {
2492 tcg_gen_extr32_i64(s2, s1, cmp);
2493 }
2494 tcg_temp_free_i64(cmp);
2495 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2496 if (HAVE_CMPXCHG128) {
2497 TCGv_i32 tcg_rs = tcg_const_i32(rs);
2498 if (s->be_data == MO_LE) {
2499 gen_helper_casp_le_parallel(cpu_env, tcg_rs,
2500 clean_addr, t1, t2);
2501 } else {
2502 gen_helper_casp_be_parallel(cpu_env, tcg_rs,
2503 clean_addr, t1, t2);
2504 }
2505 tcg_temp_free_i32(tcg_rs);
2506 } else {
2507 gen_helper_exit_atomic(cpu_env);
2508 s->base.is_jmp = DISAS_NORETURN;
2509 }
2510 } else {
2511 TCGv_i64 d1 = tcg_temp_new_i64();
2512 TCGv_i64 d2 = tcg_temp_new_i64();
2513 TCGv_i64 a2 = tcg_temp_new_i64();
2514 TCGv_i64 c1 = tcg_temp_new_i64();
2515 TCGv_i64 c2 = tcg_temp_new_i64();
2516 TCGv_i64 zero = tcg_const_i64(0);
2517
2518 /* Load the two words, in memory order. */
2519 tcg_gen_qemu_ld_i64(d1, clean_addr, memidx,
2520 MO_64 | MO_ALIGN_16 | s->be_data);
2521 tcg_gen_addi_i64(a2, clean_addr, 8);
2522 tcg_gen_qemu_ld_i64(d2, a2, memidx, MO_64 | s->be_data);
2523
2524 /* Compare the two words, also in memory order. */
2525 tcg_gen_setcond_i64(TCG_COND_EQ, c1, d1, s1);
2526 tcg_gen_setcond_i64(TCG_COND_EQ, c2, d2, s2);
2527 tcg_gen_and_i64(c2, c2, c1);
2528
2529 /* If compare equal, write back new data, else write back old data. */
2530 tcg_gen_movcond_i64(TCG_COND_NE, c1, c2, zero, t1, d1);
2531 tcg_gen_movcond_i64(TCG_COND_NE, c2, c2, zero, t2, d2);
2532 tcg_gen_qemu_st_i64(c1, clean_addr, memidx, MO_64 | s->be_data);
2533 tcg_gen_qemu_st_i64(c2, a2, memidx, MO_64 | s->be_data);
2534 tcg_temp_free_i64(a2);
2535 tcg_temp_free_i64(c1);
2536 tcg_temp_free_i64(c2);
2537 tcg_temp_free_i64(zero);
2538
2539 /* Write back the data from memory to Rs. */
2540 tcg_gen_mov_i64(s1, d1);
2541 tcg_gen_mov_i64(s2, d2);
2542 tcg_temp_free_i64(d1);
2543 tcg_temp_free_i64(d2);
2544 }
2545 }
2546
2547 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2548 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2549 */
2550 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2551 {
2552 int opc0 = extract32(opc, 0, 1);
2553 int regsize;
2554
2555 if (is_signed) {
2556 regsize = opc0 ? 32 : 64;
2557 } else {
2558 regsize = size == 3 ? 64 : 32;
2559 }
2560 return regsize == 64;
2561 }
2562
2563 /* Load/store exclusive
2564 *
2565 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2566 * +-----+-------------+----+---+----+------+----+-------+------+------+
2567 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2568 * +-----+-------------+----+---+----+------+----+-------+------+------+
2569 *
2570 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2571 * L: 0 -> store, 1 -> load
2572 * o2: 0 -> exclusive, 1 -> not
2573 * o1: 0 -> single register, 1 -> register pair
2574 * o0: 1 -> load-acquire/store-release, 0 -> not
2575 */
2576 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2577 {
2578 int rt = extract32(insn, 0, 5);
2579 int rn = extract32(insn, 5, 5);
2580 int rt2 = extract32(insn, 10, 5);
2581 int rs = extract32(insn, 16, 5);
2582 int is_lasr = extract32(insn, 15, 1);
2583 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2584 int size = extract32(insn, 30, 2);
2585 TCGv_i64 clean_addr;
2586
2587 switch (o2_L_o1_o0) {
2588 case 0x0: /* STXR */
2589 case 0x1: /* STLXR */
2590 if (rn == 31) {
2591 gen_check_sp_alignment(s);
2592 }
2593 if (is_lasr) {
2594 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2595 }
2596 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2597 true, rn != 31, size);
2598 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false);
2599 return;
2600
2601 case 0x4: /* LDXR */
2602 case 0x5: /* LDAXR */
2603 if (rn == 31) {
2604 gen_check_sp_alignment(s);
2605 }
2606 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2607 false, rn != 31, size);
2608 s->is_ldex = true;
2609 gen_load_exclusive(s, rt, rt2, clean_addr, size, false);
2610 if (is_lasr) {
2611 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2612 }
2613 return;
2614
2615 case 0x8: /* STLLR */
2616 if (!dc_isar_feature(aa64_lor, s)) {
2617 break;
2618 }
2619 /* StoreLORelease is the same as Store-Release for QEMU. */
2620 /* fall through */
2621 case 0x9: /* STLR */
2622 /* Generate ISS for non-exclusive accesses including LASR. */
2623 if (rn == 31) {
2624 gen_check_sp_alignment(s);
2625 }
2626 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2627 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2628 true, rn != 31, size);
2629 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size, true, rt,
2630 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2631 return;
2632
2633 case 0xc: /* LDLAR */
2634 if (!dc_isar_feature(aa64_lor, s)) {
2635 break;
2636 }
2637 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2638 /* fall through */
2639 case 0xd: /* LDAR */
2640 /* Generate ISS for non-exclusive accesses including LASR. */
2641 if (rn == 31) {
2642 gen_check_sp_alignment(s);
2643 }
2644 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2645 false, rn != 31, size);
2646 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, false, true, rt,
2647 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2648 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2649 return;
2650
2651 case 0x2: case 0x3: /* CASP / STXP */
2652 if (size & 2) { /* STXP / STLXP */
2653 if (rn == 31) {
2654 gen_check_sp_alignment(s);
2655 }
2656 if (is_lasr) {
2657 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2658 }
2659 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2660 true, rn != 31, size);
2661 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true);
2662 return;
2663 }
2664 if (rt2 == 31
2665 && ((rt | rs) & 1) == 0
2666 && dc_isar_feature(aa64_atomics, s)) {
2667 /* CASP / CASPL */
2668 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2669 return;
2670 }
2671 break;
2672
2673 case 0x6: case 0x7: /* CASPA / LDXP */
2674 if (size & 2) { /* LDXP / LDAXP */
2675 if (rn == 31) {
2676 gen_check_sp_alignment(s);
2677 }
2678 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2679 false, rn != 31, size);
2680 s->is_ldex = true;
2681 gen_load_exclusive(s, rt, rt2, clean_addr, size, true);
2682 if (is_lasr) {
2683 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2684 }
2685 return;
2686 }
2687 if (rt2 == 31
2688 && ((rt | rs) & 1) == 0
2689 && dc_isar_feature(aa64_atomics, s)) {
2690 /* CASPA / CASPAL */
2691 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2692 return;
2693 }
2694 break;
2695
2696 case 0xa: /* CAS */
2697 case 0xb: /* CASL */
2698 case 0xe: /* CASA */
2699 case 0xf: /* CASAL */
2700 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2701 gen_compare_and_swap(s, rs, rt, rn, size);
2702 return;
2703 }
2704 break;
2705 }
2706 unallocated_encoding(s);
2707 }
2708
2709 /*
2710 * Load register (literal)
2711 *
2712 * 31 30 29 27 26 25 24 23 5 4 0
2713 * +-----+-------+---+-----+-------------------+-------+
2714 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2715 * +-----+-------+---+-----+-------------------+-------+
2716 *
2717 * V: 1 -> vector (simd/fp)
2718 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2719 * 10-> 32 bit signed, 11 -> prefetch
2720 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2721 */
2722 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2723 {
2724 int rt = extract32(insn, 0, 5);
2725 int64_t imm = sextract32(insn, 5, 19) << 2;
2726 bool is_vector = extract32(insn, 26, 1);
2727 int opc = extract32(insn, 30, 2);
2728 bool is_signed = false;
2729 int size = 2;
2730 TCGv_i64 tcg_rt, clean_addr;
2731
2732 if (is_vector) {
2733 if (opc == 3) {
2734 unallocated_encoding(s);
2735 return;
2736 }
2737 size = 2 + opc;
2738 if (!fp_access_check(s)) {
2739 return;
2740 }
2741 } else {
2742 if (opc == 3) {
2743 /* PRFM (literal) : prefetch */
2744 return;
2745 }
2746 size = 2 + extract32(opc, 0, 1);
2747 is_signed = extract32(opc, 1, 1);
2748 }
2749
2750 tcg_rt = cpu_reg(s, rt);
2751
2752 clean_addr = tcg_const_i64(s->pc_curr + imm);
2753 if (is_vector) {
2754 do_fp_ld(s, rt, clean_addr, size);
2755 } else {
2756 /* Only unsigned 32bit loads target 32bit registers. */
2757 bool iss_sf = opc != 0;
2758
2759 do_gpr_ld(s, tcg_rt, clean_addr, size, is_signed, false,
2760 true, rt, iss_sf, false);
2761 }
2762 tcg_temp_free_i64(clean_addr);
2763 }
2764
2765 /*
2766 * LDNP (Load Pair - non-temporal hint)
2767 * LDP (Load Pair - non vector)
2768 * LDPSW (Load Pair Signed Word - non vector)
2769 * STNP (Store Pair - non-temporal hint)
2770 * STP (Store Pair - non vector)
2771 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2772 * LDP (Load Pair of SIMD&FP)
2773 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2774 * STP (Store Pair of SIMD&FP)
2775 *
2776 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2777 * +-----+-------+---+---+-------+---+-----------------------------+
2778 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2779 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2780 *
2781 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2782 * LDPSW/STGP 01
2783 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2784 * V: 0 -> GPR, 1 -> Vector
2785 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2786 * 10 -> signed offset, 11 -> pre-index
2787 * L: 0 -> Store 1 -> Load
2788 *
2789 * Rt, Rt2 = GPR or SIMD registers to be stored
2790 * Rn = general purpose register containing address
2791 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2792 */
2793 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2794 {
2795 int rt = extract32(insn, 0, 5);
2796 int rn = extract32(insn, 5, 5);
2797 int rt2 = extract32(insn, 10, 5);
2798 uint64_t offset = sextract64(insn, 15, 7);
2799 int index = extract32(insn, 23, 2);
2800 bool is_vector = extract32(insn, 26, 1);
2801 bool is_load = extract32(insn, 22, 1);
2802 int opc = extract32(insn, 30, 2);
2803
2804 bool is_signed = false;
2805 bool postindex = false;
2806 bool wback = false;
2807 bool set_tag = false;
2808
2809 TCGv_i64 clean_addr, dirty_addr;
2810
2811 int size;
2812
2813 if (opc == 3) {
2814 unallocated_encoding(s);
2815 return;
2816 }
2817
2818 if (is_vector) {
2819 size = 2 + opc;
2820 } else if (opc == 1 && !is_load) {
2821 /* STGP */
2822 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) {
2823 unallocated_encoding(s);
2824 return;
2825 }
2826 size = 3;
2827 set_tag = true;
2828 } else {
2829 size = 2 + extract32(opc, 1, 1);
2830 is_signed = extract32(opc, 0, 1);
2831 if (!is_load && is_signed) {
2832 unallocated_encoding(s);
2833 return;
2834 }
2835 }
2836
2837 switch (index) {
2838 case 1: /* post-index */
2839 postindex = true;
2840 wback = true;
2841 break;
2842 case 0:
2843 /* signed offset with "non-temporal" hint. Since we don't emulate
2844 * caches we don't care about hints to the cache system about
2845 * data access patterns, and handle this identically to plain
2846 * signed offset.
2847 */
2848 if (is_signed) {
2849 /* There is no non-temporal-hint version of LDPSW */
2850 unallocated_encoding(s);
2851 return;
2852 }
2853 postindex = false;
2854 break;
2855 case 2: /* signed offset, rn not updated */
2856 postindex = false;
2857 break;
2858 case 3: /* pre-index */
2859 postindex = false;
2860 wback = true;
2861 break;
2862 }
2863
2864 if (is_vector && !fp_access_check(s)) {
2865 return;
2866 }
2867
2868 offset <<= (set_tag ? LOG2_TAG_GRANULE : size);
2869
2870 if (rn == 31) {
2871 gen_check_sp_alignment(s);
2872 }
2873
2874 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2875 if (!postindex) {
2876 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2877 }
2878
2879 if (set_tag) {
2880 if (!s->ata) {
2881 /*
2882 * TODO: We could rely on the stores below, at least for
2883 * system mode, if we arrange to add MO_ALIGN_16.
2884 */
2885 gen_helper_stg_stub(cpu_env, dirty_addr);
2886 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2887 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr);
2888 } else {
2889 gen_helper_stg(cpu_env, dirty_addr, dirty_addr);
2890 }
2891 }
2892
2893 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load,
2894 (wback || rn != 31) && !set_tag,
2895 size, 2 << size);
2896
2897 if (is_vector) {
2898 if (is_load) {
2899 do_fp_ld(s, rt, clean_addr, size);
2900 } else {
2901 do_fp_st(s, rt, clean_addr, size);
2902 }
2903 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2904 if (is_load) {
2905 do_fp_ld(s, rt2, clean_addr, size);
2906 } else {
2907 do_fp_st(s, rt2, clean_addr, size);
2908 }
2909 } else {
2910 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2911 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2912
2913 if (is_load) {
2914 TCGv_i64 tmp = tcg_temp_new_i64();
2915
2916 /* Do not modify tcg_rt before recognizing any exception
2917 * from the second load.
2918 */
2919 do_gpr_ld(s, tmp, clean_addr, size, is_signed, false,
2920 false, 0, false, false);
2921 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2922 do_gpr_ld(s, tcg_rt2, clean_addr, size, is_signed, false,
2923 false, 0, false, false);
2924
2925 tcg_gen_mov_i64(tcg_rt, tmp);
2926 tcg_temp_free_i64(tmp);
2927 } else {
2928 do_gpr_st(s, tcg_rt, clean_addr, size,
2929 false, 0, false, false);
2930 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2931 do_gpr_st(s, tcg_rt2, clean_addr, size,
2932 false, 0, false, false);
2933 }
2934 }
2935
2936 if (wback) {
2937 if (postindex) {
2938 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2939 }
2940 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
2941 }
2942 }
2943
2944 /*
2945 * Load/store (immediate post-indexed)
2946 * Load/store (immediate pre-indexed)
2947 * Load/store (unscaled immediate)
2948 *
2949 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2950 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2951 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2952 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2953 *
2954 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2955 10 -> unprivileged
2956 * V = 0 -> non-vector
2957 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2958 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2959 */
2960 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2961 int opc,
2962 int size,
2963 int rt,
2964 bool is_vector)
2965 {
2966 int rn = extract32(insn, 5, 5);
2967 int imm9 = sextract32(insn, 12, 9);
2968 int idx = extract32(insn, 10, 2);
2969 bool is_signed = false;
2970 bool is_store = false;
2971 bool is_extended = false;
2972 bool is_unpriv = (idx == 2);
2973 bool iss_valid = !is_vector;
2974 bool post_index;
2975 bool writeback;
2976 int memidx;
2977
2978 TCGv_i64 clean_addr, dirty_addr;
2979
2980 if (is_vector) {
2981 size |= (opc & 2) << 1;
2982 if (size > 4 || is_unpriv) {
2983 unallocated_encoding(s);
2984 return;
2985 }
2986 is_store = ((opc & 1) == 0);
2987 if (!fp_access_check(s)) {
2988 return;
2989 }
2990 } else {
2991 if (size == 3 && opc == 2) {
2992 /* PRFM - prefetch */
2993 if (idx != 0) {
2994 unallocated_encoding(s);
2995 return;
2996 }
2997 return;
2998 }
2999 if (opc == 3 && size > 1) {
3000 unallocated_encoding(s);
3001 return;
3002 }
3003 is_store = (opc == 0);
3004 is_signed = extract32(opc, 1, 1);
3005 is_extended = (size < 3) && extract32(opc, 0, 1);
3006 }
3007
3008 switch (idx) {
3009 case 0:
3010 case 2:
3011 post_index = false;
3012 writeback = false;
3013 break;
3014 case 1:
3015 post_index = true;
3016 writeback = true;
3017 break;
3018 case 3:
3019 post_index = false;
3020 writeback = true;
3021 break;
3022 default:
3023 g_assert_not_reached();
3024 }
3025
3026 if (rn == 31) {
3027 gen_check_sp_alignment(s);
3028 }
3029
3030 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3031 if (!post_index) {
3032 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3033 }
3034
3035 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3036 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store,
3037 writeback || rn != 31,
3038 size, is_unpriv, memidx);
3039
3040 if (is_vector) {
3041 if (is_store) {
3042 do_fp_st(s, rt, clean_addr, size);
3043 } else {
3044 do_fp_ld(s, rt, clean_addr, size);
3045 }
3046 } else {
3047 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3048 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3049
3050 if (is_store) {
3051 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx,
3052 iss_valid, rt, iss_sf, false);
3053 } else {
3054 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size,
3055 is_signed, is_extended, memidx,
3056 iss_valid, rt, iss_sf, false);
3057 }
3058 }
3059
3060 if (writeback) {
3061 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3062 if (post_index) {
3063 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3064 }
3065 tcg_gen_mov_i64(tcg_rn, dirty_addr);
3066 }
3067 }
3068
3069 /*
3070 * Load/store (register offset)
3071 *
3072 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3073 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3074 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
3075 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3076 *
3077 * For non-vector:
3078 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3079 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3080 * For vector:
3081 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3082 * opc<0>: 0 -> store, 1 -> load
3083 * V: 1 -> vector/simd
3084 * opt: extend encoding (see DecodeRegExtend)
3085 * S: if S=1 then scale (essentially index by sizeof(size))
3086 * Rt: register to transfer into/out of
3087 * Rn: address register or SP for base
3088 * Rm: offset register or ZR for offset
3089 */
3090 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
3091 int opc,
3092 int size,
3093 int rt,
3094 bool is_vector)
3095 {
3096 int rn = extract32(insn, 5, 5);
3097 int shift = extract32(insn, 12, 1);
3098 int rm = extract32(insn, 16, 5);
3099 int opt = extract32(insn, 13, 3);
3100 bool is_signed = false;
3101 bool is_store = false;
3102 bool is_extended = false;
3103
3104 TCGv_i64 tcg_rm, clean_addr, dirty_addr;
3105
3106 if (extract32(opt, 1, 1) == 0) {
3107 unallocated_encoding(s);
3108 return;
3109 }
3110
3111 if (is_vector) {
3112 size |= (opc & 2) << 1;
3113 if (size > 4) {
3114 unallocated_encoding(s);
3115 return;
3116 }
3117 is_store = !extract32(opc, 0, 1);
3118 if (!fp_access_check(s)) {
3119 return;
3120 }
3121 } else {
3122 if (size == 3 && opc == 2) {
3123 /* PRFM - prefetch */
3124 return;
3125 }
3126 if (opc == 3 && size > 1) {
3127 unallocated_encoding(s);
3128 return;
3129 }
3130 is_store = (opc == 0);
3131 is_signed = extract32(opc, 1, 1);
3132 is_extended = (size < 3) && extract32(opc, 0, 1);
3133 }
3134
3135 if (rn == 31) {
3136 gen_check_sp_alignment(s);
3137 }
3138 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3139
3140 tcg_rm = read_cpu_reg(s, rm, 1);
3141 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3142
3143 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3144 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size);
3145
3146 if (is_vector) {
3147 if (is_store) {
3148 do_fp_st(s, rt, clean_addr, size);
3149 } else {
3150 do_fp_ld(s, rt, clean_addr, size);
3151 }
3152 } else {
3153 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3154 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3155 if (is_store) {
3156 do_gpr_st(s, tcg_rt, clean_addr, size,
3157 true, rt, iss_sf, false);
3158 } else {
3159 do_gpr_ld(s, tcg_rt, clean_addr, size,
3160 is_signed, is_extended,
3161 true, rt, iss_sf, false);
3162 }
3163 }
3164 }
3165
3166 /*
3167 * Load/store (unsigned immediate)
3168 *
3169 * 31 30 29 27 26 25 24 23 22 21 10 9 5
3170 * +----+-------+---+-----+-----+------------+-------+------+
3171 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
3172 * +----+-------+---+-----+-----+------------+-------+------+
3173 *
3174 * For non-vector:
3175 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3176 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3177 * For vector:
3178 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3179 * opc<0>: 0 -> store, 1 -> load
3180 * Rn: base address register (inc SP)
3181 * Rt: target register
3182 */
3183 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3184 int opc,
3185 int size,
3186 int rt,
3187 bool is_vector)
3188 {
3189 int rn = extract32(insn, 5, 5);
3190 unsigned int imm12 = extract32(insn, 10, 12);
3191 unsigned int offset;
3192
3193 TCGv_i64 clean_addr, dirty_addr;
3194
3195 bool is_store;
3196 bool is_signed = false;
3197 bool is_extended = false;
3198
3199 if (is_vector) {
3200 size |= (opc & 2) << 1;
3201 if (size > 4) {
3202 unallocated_encoding(s);
3203 return;
3204 }
3205 is_store = !extract32(opc, 0, 1);
3206 if (!fp_access_check(s)) {
3207 return;
3208 }
3209 } else {
3210 if (size == 3 && opc == 2) {
3211 /* PRFM - prefetch */
3212 return;
3213 }
3214 if (opc == 3 && size > 1) {
3215 unallocated_encoding(s);
3216 return;
3217 }
3218 is_store = (opc == 0);
3219 is_signed = extract32(opc, 1, 1);
3220 is_extended = (size < 3) && extract32(opc, 0, 1);
3221 }
3222
3223 if (rn == 31) {
3224 gen_check_sp_alignment(s);
3225 }
3226 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3227 offset = imm12 << size;
3228 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3229 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size);
3230
3231 if (is_vector) {
3232 if (is_store) {
3233 do_fp_st(s, rt, clean_addr, size);
3234 } else {
3235 do_fp_ld(s, rt, clean_addr, size);
3236 }
3237 } else {
3238 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3239 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3240 if (is_store) {
3241 do_gpr_st(s, tcg_rt, clean_addr, size,
3242 true, rt, iss_sf, false);
3243 } else {
3244 do_gpr_ld(s, tcg_rt, clean_addr, size, is_signed, is_extended,
3245 true, rt, iss_sf, false);
3246 }
3247 }
3248 }
3249
3250 /* Atomic memory operations
3251 *
3252 * 31 30 27 26 24 22 21 16 15 12 10 5 0
3253 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3254 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
3255 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3256 *
3257 * Rt: the result register
3258 * Rn: base address or SP
3259 * Rs: the source register for the operation
3260 * V: vector flag (always 0 as of v8.3)
3261 * A: acquire flag
3262 * R: release flag
3263 */
3264 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3265 int size, int rt, bool is_vector)
3266 {
3267 int rs = extract32(insn, 16, 5);
3268 int rn = extract32(insn, 5, 5);
3269 int o3_opc = extract32(insn, 12, 4);
3270 bool r = extract32(insn, 22, 1);
3271 bool a = extract32(insn, 23, 1);
3272 TCGv_i64 tcg_rs, clean_addr;
3273 AtomicThreeOpFn *fn;
3274
3275 if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3276 unallocated_encoding(s);
3277 return;
3278 }
3279 switch (o3_opc) {
3280 case 000: /* LDADD */
3281 fn = tcg_gen_atomic_fetch_add_i64;
3282 break;
3283 case 001: /* LDCLR */
3284 fn = tcg_gen_atomic_fetch_and_i64;
3285 break;
3286 case 002: /* LDEOR */
3287 fn = tcg_gen_atomic_fetch_xor_i64;
3288 break;
3289 case 003: /* LDSET */
3290 fn = tcg_gen_atomic_fetch_or_i64;
3291 break;
3292 case 004: /* LDSMAX */
3293 fn = tcg_gen_atomic_fetch_smax_i64;
3294 break;
3295 case 005: /* LDSMIN */
3296 fn = tcg_gen_atomic_fetch_smin_i64;
3297 break;
3298 case 006: /* LDUMAX */
3299 fn = tcg_gen_atomic_fetch_umax_i64;
3300 break;
3301 case 007: /* LDUMIN */
3302 fn = tcg_gen_atomic_fetch_umin_i64;
3303 break;
3304 case 010: /* SWP */
3305 fn = tcg_gen_atomic_xchg_i64;
3306 break;
3307 case 014: /* LDAPR, LDAPRH, LDAPRB */
3308 if (!dc_isar_feature(aa64_rcpc_8_3, s) ||
3309 rs != 31 || a != 1 || r != 0) {
3310 unallocated_encoding(s);
3311 return;
3312 }
3313 break;
3314 default:
3315 unallocated_encoding(s);
3316 return;
3317 }
3318
3319 if (rn == 31) {
3320 gen_check_sp_alignment(s);
3321 }
3322 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size);
3323
3324 if (o3_opc == 014) {
3325 /*
3326 * LDAPR* are a special case because they are a simple load, not a
3327 * fetch-and-do-something op.
3328 * The architectural consistency requirements here are weaker than
3329 * full load-acquire (we only need "load-acquire processor consistent"),
3330 * but we choose to implement them as full LDAQ.
3331 */
3332 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, false,
3333 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true);
3334 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3335 return;
3336 }
3337
3338 tcg_rs = read_cpu_reg(s, rs, true);
3339
3340 if (o3_opc == 1) { /* LDCLR */
3341 tcg_gen_not_i64(tcg_rs, tcg_rs);
3342 }
3343
3344 /* The tcg atomic primitives are all full barriers. Therefore we
3345 * can ignore the Acquire and Release bits of this instruction.
3346 */
3347 fn(cpu_reg(s, rt), clean_addr, tcg_rs, get_mem_index(s),
3348 s->be_data | size | MO_ALIGN);
3349 }
3350
3351 /*
3352 * PAC memory operations
3353 *
3354 * 31 30 27 26 24 22 21 12 11 10 5 0
3355 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3356 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt |
3357 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3358 *
3359 * Rt: the result register
3360 * Rn: base address or SP
3361 * V: vector flag (always 0 as of v8.3)
3362 * M: clear for key DA, set for key DB
3363 * W: pre-indexing flag
3364 * S: sign for imm9.
3365 */
3366 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3367 int size, int rt, bool is_vector)
3368 {
3369 int rn = extract32(insn, 5, 5);
3370 bool is_wback = extract32(insn, 11, 1);
3371 bool use_key_a = !extract32(insn, 23, 1);
3372 int offset;
3373 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3374
3375 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3376 unallocated_encoding(s);
3377 return;
3378 }
3379
3380 if (rn == 31) {
3381 gen_check_sp_alignment(s);
3382 }
3383 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3384
3385 if (s->pauth_active) {
3386 if (use_key_a) {
3387 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, cpu_X[31]);
3388 } else {
3389 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, cpu_X[31]);
3390 }
3391 }
3392
3393 /* Form the 10-bit signed, scaled offset. */
3394 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3395 offset = sextract32(offset << size, 0, 10 + size);
3396 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3397
3398 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3399 clean_addr = gen_mte_check1(s, dirty_addr, false,
3400 is_wback || rn != 31, size);
3401
3402 tcg_rt = cpu_reg(s, rt);
3403 do_gpr_ld(s, tcg_rt, clean_addr, size, /* is_signed */ false,
3404 /* extend */ false, /* iss_valid */ !is_wback,
3405 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3406
3407 if (is_wback) {
3408 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3409 }
3410 }
3411
3412 /*
3413 * LDAPR/STLR (unscaled immediate)
3414 *
3415 * 31 30 24 22 21 12 10 5 0
3416 * +------+-------------+-----+---+--------+-----+----+-----+
3417 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt |
3418 * +------+-------------+-----+---+--------+-----+----+-----+
3419 *
3420 * Rt: source or destination register
3421 * Rn: base register
3422 * imm9: unscaled immediate offset
3423 * opc: 00: STLUR*, 01/10/11: various LDAPUR*
3424 * size: size of load/store
3425 */
3426 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn)
3427 {
3428 int rt = extract32(insn, 0, 5);
3429 int rn = extract32(insn, 5, 5);
3430 int offset = sextract32(insn, 12, 9);
3431 int opc = extract32(insn, 22, 2);
3432 int size = extract32(insn, 30, 2);
3433 TCGv_i64 clean_addr, dirty_addr;
3434 bool is_store = false;
3435 bool is_signed = false;
3436 bool extend = false;
3437 bool iss_sf;
3438
3439 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3440 unallocated_encoding(s);
3441 return;
3442 }
3443
3444 switch (opc) {
3445 case 0: /* STLURB */
3446 is_store = true;
3447 break;
3448 case 1: /* LDAPUR* */
3449 break;
3450 case 2: /* LDAPURS* 64-bit variant */
3451 if (size == 3) {
3452 unallocated_encoding(s);
3453 return;
3454 }
3455 is_signed = true;
3456 break;
3457 case 3: /* LDAPURS* 32-bit variant */
3458 if (size > 1) {
3459 unallocated_encoding(s);
3460 return;
3461 }
3462 is_signed = true;
3463 extend = true; /* zero-extend 32->64 after signed load */
3464 break;
3465 default:
3466 g_assert_not_reached();
3467 }
3468
3469 iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3470
3471 if (rn == 31) {
3472 gen_check_sp_alignment(s);
3473 }
3474
3475 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3476 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3477 clean_addr = clean_data_tbi(s, dirty_addr);
3478
3479 if (is_store) {
3480 /* Store-Release semantics */
3481 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3482 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size, true, rt, iss_sf, true);
3483 } else {
3484 /*
3485 * Load-AcquirePC semantics; we implement as the slightly more
3486 * restrictive Load-Acquire.
3487 */
3488 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, is_signed, extend,
3489 true, rt, iss_sf, true);
3490 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3491 }
3492 }
3493
3494 /* Load/store register (all forms) */
3495 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3496 {
3497 int rt = extract32(insn, 0, 5);
3498 int opc = extract32(insn, 22, 2);
3499 bool is_vector = extract32(insn, 26, 1);
3500 int size = extract32(insn, 30, 2);
3501
3502 switch (extract32(insn, 24, 2)) {
3503 case 0:
3504 if (extract32(insn, 21, 1) == 0) {
3505 /* Load/store register (unscaled immediate)
3506 * Load/store immediate pre/post-indexed
3507 * Load/store register unprivileged
3508 */
3509 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3510 return;
3511 }
3512 switch (extract32(insn, 10, 2)) {
3513 case 0:
3514 disas_ldst_atomic(s, insn, size, rt, is_vector);
3515 return;
3516 case 2:
3517 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3518 return;
3519 default:
3520 disas_ldst_pac(s, insn, size, rt, is_vector);
3521 return;
3522 }
3523 break;
3524 case 1:
3525 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3526 return;
3527 }
3528 unallocated_encoding(s);
3529 }
3530
3531 /* AdvSIMD load/store multiple structures
3532 *
3533 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
3534 * +---+---+---------------+---+-------------+--------+------+------+------+
3535 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
3536 * +---+---+---------------+---+-------------+--------+------+------+------+
3537 *
3538 * AdvSIMD load/store multiple structures (post-indexed)
3539 *
3540 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
3541 * +---+---+---------------+---+---+---------+--------+------+------+------+
3542 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
3543 * +---+---+---------------+---+---+---------+--------+------+------+------+
3544 *
3545 * Rt: first (or only) SIMD&FP register to be transferred
3546 * Rn: base address or SP
3547 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3548 */
3549 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3550 {
3551 int rt = extract32(insn, 0, 5);
3552 int rn = extract32(insn, 5, 5);
3553 int rm = extract32(insn, 16, 5);
3554 int size = extract32(insn, 10, 2);
3555 int opcode = extract32(insn, 12, 4);
3556 bool is_store = !extract32(insn, 22, 1);
3557 bool is_postidx = extract32(insn, 23, 1);
3558 bool is_q = extract32(insn, 30, 1);
3559 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3560 MemOp endian = s->be_data;
3561
3562 int total; /* total bytes */
3563 int elements; /* elements per vector */
3564 int rpt; /* num iterations */
3565 int selem; /* structure elements */
3566 int r;
3567
3568 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3569 unallocated_encoding(s);
3570 return;
3571 }
3572
3573 if (!is_postidx && rm != 0) {
3574 unallocated_encoding(s);
3575 return;
3576 }
3577
3578 /* From the shared decode logic */
3579 switch (opcode) {
3580 case 0x0:
3581 rpt = 1;
3582 selem = 4;
3583 break;
3584 case 0x2:
3585 rpt = 4;
3586 selem = 1;
3587 break;
3588 case 0x4:
3589 rpt = 1;
3590 selem = 3;
3591 break;
3592 case 0x6:
3593 rpt = 3;
3594 selem = 1;
3595 break;
3596 case 0x7:
3597 rpt = 1;
3598 selem = 1;
3599 break;
3600 case 0x8:
3601 rpt = 1;
3602 selem = 2;
3603 break;
3604 case 0xa:
3605 rpt = 2;
3606 selem = 1;
3607 break;
3608 default:
3609 unallocated_encoding(s);
3610 return;
3611 }
3612
3613 if (size == 3 && !is_q && selem != 1) {
3614 /* reserved */
3615 unallocated_encoding(s);
3616 return;
3617 }
3618
3619 if (!fp_access_check(s)) {
3620 return;
3621 }
3622
3623 if (rn == 31) {
3624 gen_check_sp_alignment(s);
3625 }
3626
3627 /* For our purposes, bytes are always little-endian. */
3628 if (size == 0) {
3629 endian = MO_LE;
3630 }
3631
3632 total = rpt * selem * (is_q ? 16 : 8);
3633 tcg_rn = cpu_reg_sp(s, rn);
3634
3635 /*
3636 * Issue the MTE check vs the logical repeat count, before we
3637 * promote consecutive little-endian elements below.
3638 */
3639 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31,
3640 size, total);
3641
3642 /*
3643 * Consecutive little-endian elements from a single register
3644 * can be promoted to a larger little-endian operation.
3645 */
3646 if (selem == 1 && endian == MO_LE) {
3647 size = 3;
3648 }
3649 elements = (is_q ? 16 : 8) >> size;
3650
3651 tcg_ebytes = tcg_const_i64(1 << size);
3652 for (r = 0; r < rpt; r++) {
3653 int e;
3654 for (e = 0; e < elements; e++) {
3655 int xs;
3656 for (xs = 0; xs < selem; xs++) {
3657 int tt = (rt + r + xs) % 32;
3658 if (is_store) {
3659 do_vec_st(s, tt, e, clean_addr, size, endian);
3660 } else {
3661 do_vec_ld(s, tt, e, clean_addr, size, endian);
3662 }
3663 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3664 }
3665 }
3666 }
3667 tcg_temp_free_i64(tcg_ebytes);
3668
3669 if (!is_store) {
3670 /* For non-quad operations, setting a slice of the low
3671 * 64 bits of the register clears the high 64 bits (in
3672 * the ARM ARM pseudocode this is implicit in the fact
3673 * that 'rval' is a 64 bit wide variable).
3674 * For quad operations, we might still need to zero the
3675 * high bits of SVE.
3676 */
3677 for (r = 0; r < rpt * selem; r++) {
3678 int tt = (rt + r) % 32;
3679 clear_vec_high(s, is_q, tt);
3680 }
3681 }
3682
3683 if (is_postidx) {
3684 if (rm == 31) {
3685 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3686 } else {
3687 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3688 }
3689 }
3690 }
3691
3692 /* AdvSIMD load/store single structure
3693 *
3694 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3695 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3696 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3697 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3698 *
3699 * AdvSIMD load/store single structure (post-indexed)
3700 *
3701 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3702 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3703 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3704 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3705 *
3706 * Rt: first (or only) SIMD&FP register to be transferred
3707 * Rn: base address or SP
3708 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3709 * index = encoded in Q:S:size dependent on size
3710 *
3711 * lane_size = encoded in R, opc
3712 * transfer width = encoded in opc, S, size
3713 */
3714 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3715 {
3716 int rt = extract32(insn, 0, 5);
3717 int rn = extract32(insn, 5, 5);
3718 int rm = extract32(insn, 16, 5);
3719 int size = extract32(insn, 10, 2);
3720 int S = extract32(insn, 12, 1);
3721 int opc = extract32(insn, 13, 3);
3722 int R = extract32(insn, 21, 1);
3723 int is_load = extract32(insn, 22, 1);
3724 int is_postidx = extract32(insn, 23, 1);
3725 int is_q = extract32(insn, 30, 1);
3726
3727 int scale = extract32(opc, 1, 2);
3728 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3729 bool replicate = false;
3730 int index = is_q << 3 | S << 2 | size;
3731 int xs, total;
3732 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3733
3734 if (extract32(insn, 31, 1)) {
3735 unallocated_encoding(s);
3736 return;
3737 }
3738 if (!is_postidx && rm != 0) {
3739 unallocated_encoding(s);
3740 return;
3741 }
3742
3743 switch (scale) {
3744 case 3:
3745 if (!is_load || S) {
3746 unallocated_encoding(s);
3747 return;
3748 }
3749 scale = size;
3750 replicate = true;
3751 break;
3752 case 0:
3753 break;
3754 case 1:
3755 if (extract32(size, 0, 1)) {
3756 unallocated_encoding(s);
3757 return;
3758 }
3759 index >>= 1;
3760 break;
3761 case 2:
3762 if (extract32(size, 1, 1)) {
3763 unallocated_encoding(s);
3764 return;
3765 }
3766 if (!extract32(size, 0, 1)) {
3767 index >>= 2;
3768 } else {
3769 if (S) {
3770 unallocated_encoding(s);
3771 return;
3772 }
3773 index >>= 3;
3774 scale = 3;
3775 }
3776 break;
3777 default:
3778 g_assert_not_reached();
3779 }
3780
3781 if (!fp_access_check(s)) {
3782 return;
3783 }
3784
3785 if (rn == 31) {
3786 gen_check_sp_alignment(s);
3787 }
3788
3789 total = selem << scale;
3790 tcg_rn = cpu_reg_sp(s, rn);
3791
3792 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31,
3793 scale, total);
3794
3795 tcg_ebytes = tcg_const_i64(1 << scale);
3796 for (xs = 0; xs < selem; xs++) {
3797 if (replicate) {
3798 /* Load and replicate to all elements */
3799 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3800
3801 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr,
3802 get_mem_index(s), s->be_data + scale);
3803 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3804 (is_q + 1) * 8, vec_full_reg_size(s),
3805 tcg_tmp);
3806 tcg_temp_free_i64(tcg_tmp);
3807 } else {
3808 /* Load/store one element per register */
3809 if (is_load) {
3810 do_vec_ld(s, rt, index, clean_addr, scale, s->be_data);
3811 } else {
3812 do_vec_st(s, rt, index, clean_addr, scale, s->be_data);
3813 }
3814 }
3815 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3816 rt = (rt + 1) % 32;
3817 }
3818 tcg_temp_free_i64(tcg_ebytes);
3819
3820 if (is_postidx) {
3821 if (rm == 31) {
3822 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3823 } else {
3824 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3825 }
3826 }
3827 }
3828
3829 /*
3830 * Load/Store memory tags
3831 *
3832 * 31 30 29 24 22 21 12 10 5 0
3833 * +-----+-------------+-----+---+------+-----+------+------+
3834 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt |
3835 * +-----+-------------+-----+---+------+-----+------+------+
3836 */
3837 static void disas_ldst_tag(DisasContext *s, uint32_t insn)
3838 {
3839 int rt = extract32(insn, 0, 5);
3840 int rn = extract32(insn, 5, 5);
3841 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE;
3842 int op2 = extract32(insn, 10, 2);
3843 int op1 = extract32(insn, 22, 2);
3844 bool is_load = false, is_pair = false, is_zero = false, is_mult = false;
3845 int index = 0;
3846 TCGv_i64 addr, clean_addr, tcg_rt;
3847
3848 /* We checked insn bits [29:24,21] in the caller. */
3849 if (extract32(insn, 30, 2) != 3) {
3850 goto do_unallocated;
3851 }
3852
3853 /*
3854 * @index is a tri-state variable which has 3 states:
3855 * < 0 : post-index, writeback
3856 * = 0 : signed offset
3857 * > 0 : pre-index, writeback
3858 */
3859 switch (op1) {
3860 case 0:
3861 if (op2 != 0) {
3862 /* STG */
3863 index = op2 - 2;
3864 } else {
3865 /* STZGM */
3866 if (s->current_el == 0 || offset != 0) {
3867 goto do_unallocated;
3868 }
3869 is_mult = is_zero = true;
3870 }
3871 break;
3872 case 1:
3873 if (op2 != 0) {
3874 /* STZG */
3875 is_zero = true;
3876 index = op2 - 2;
3877 } else {
3878 /* LDG */
3879 is_load = true;
3880 }
3881 break;
3882 case 2:
3883 if (op2 != 0) {
3884 /* ST2G */
3885 is_pair = true;
3886 index = op2 - 2;
3887 } else {
3888 /* STGM */
3889 if (s->current_el == 0 || offset != 0) {
3890 goto do_unallocated;
3891 }
3892 is_mult = true;
3893 }
3894 break;
3895 case 3:
3896 if (op2 != 0) {
3897 /* STZ2G */
3898 is_pair = is_zero = true;
3899 index = op2 - 2;
3900 } else {
3901 /* LDGM */
3902 if (s->current_el == 0 || offset != 0) {
3903 goto do_unallocated;
3904 }
3905 is_mult = is_load = true;
3906 }
3907 break;
3908
3909 default:
3910 do_unallocated:
3911 unallocated_encoding(s);
3912 return;
3913 }
3914
3915 if (is_mult
3916 ? !dc_isar_feature(aa64_mte, s)
3917 : !dc_isar_feature(aa64_mte_insn_reg, s)) {
3918 goto do_unallocated;
3919 }
3920
3921 if (rn == 31) {
3922 gen_check_sp_alignment(s);
3923 }
3924
3925 addr = read_cpu_reg_sp(s, rn, true);
3926 if (index >= 0) {
3927 /* pre-index or signed offset */
3928 tcg_gen_addi_i64(addr, addr, offset);
3929 }
3930
3931 if (is_mult) {
3932 tcg_rt = cpu_reg(s, rt);
3933
3934 if (is_zero) {
3935 int size = 4 << s->dcz_blocksize;
3936
3937 if (s->ata) {
3938 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt);
3939 }
3940 /*
3941 * The non-tags portion of STZGM is mostly like DC_ZVA,
3942 * except the alignment happens before the access.
3943 */
3944 clean_addr = clean_data_tbi(s, addr);
3945 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3946 gen_helper_dc_zva(cpu_env, clean_addr);
3947 } else if (s->ata) {
3948 if (is_load) {
3949 gen_helper_ldgm(tcg_rt, cpu_env, addr);
3950 } else {
3951 gen_helper_stgm(cpu_env, addr, tcg_rt);
3952 }
3953 } else {
3954 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE;
3955 int size = 4 << GMID_EL1_BS;
3956
3957 clean_addr = clean_data_tbi(s, addr);
3958 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3959 gen_probe_access(s, clean_addr, acc, size);
3960
3961 if (is_load) {
3962 /* The result tags are zeros. */
3963 tcg_gen_movi_i64(tcg_rt, 0);
3964 }
3965 }
3966 return;
3967 }
3968
3969 if (is_load) {
3970 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
3971 tcg_rt = cpu_reg(s, rt);
3972 if (s->ata) {
3973 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt);
3974 } else {
3975 clean_addr = clean_data_tbi(s, addr);
3976 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
3977 gen_address_with_allocation_tag0(tcg_rt, addr);
3978 }
3979 } else {
3980 tcg_rt = cpu_reg_sp(s, rt);
3981 if (!s->ata) {
3982 /*
3983 * For STG and ST2G, we need to check alignment and probe memory.
3984 * TODO: For STZG and STZ2G, we could rely on the stores below,
3985 * at least for system mode; user-only won't enforce alignment.
3986 */
3987 if (is_pair) {
3988 gen_helper_st2g_stub(cpu_env, addr);
3989 } else {
3990 gen_helper_stg_stub(cpu_env, addr);
3991 }
3992 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3993 if (is_pair) {
3994 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt);
3995 } else {
3996 gen_helper_stg_parallel(cpu_env, addr, tcg_rt);
3997 }
3998 } else {
3999 if (is_pair) {
4000 gen_helper_st2g(cpu_env, addr, tcg_rt);
4001 } else {
4002 gen_helper_stg(cpu_env, addr, tcg_rt);
4003 }
4004 }
4005 }
4006
4007 if (is_zero) {
4008 TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4009 TCGv_i64 tcg_zero = tcg_const_i64(0);
4010 int mem_index = get_mem_index(s);
4011 int i, n = (1 + is_pair) << LOG2_TAG_GRANULE;
4012
4013 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index,
4014 MO_Q | MO_ALIGN_16);
4015 for (i = 8; i < n; i += 8) {
4016 tcg_gen_addi_i64(clean_addr, clean_addr, 8);
4017 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_Q);
4018 }
4019 tcg_temp_free_i64(tcg_zero);
4020 }
4021
4022 if (index != 0) {
4023 /* pre-index or post-index */
4024 if (index < 0) {
4025 /* post-index */
4026 tcg_gen_addi_i64(addr, addr, offset);
4027 }
4028 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr);
4029 }
4030 }
4031
4032 /* Loads and stores */
4033 static void disas_ldst(DisasContext *s, uint32_t insn)
4034 {
4035 switch (extract32(insn, 24, 6)) {
4036 case 0x08: /* Load/store exclusive */
4037 disas_ldst_excl(s, insn);
4038 break;
4039 case 0x18: case 0x1c: /* Load register (literal) */
4040 disas_ld_lit(s, insn);
4041 break;
4042 case 0x28: case 0x29:
4043 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
4044 disas_ldst_pair(s, insn);
4045 break;
4046 case 0x38: case 0x39:
4047 case 0x3c: case 0x3d: /* Load/store register (all forms) */
4048 disas_ldst_reg(s, insn);
4049 break;
4050 case 0x0c: /* AdvSIMD load/store multiple structures */
4051 disas_ldst_multiple_struct(s, insn);
4052 break;
4053 case 0x0d: /* AdvSIMD load/store single structure */
4054 disas_ldst_single_struct(s, insn);
4055 break;
4056 case 0x19:
4057 if (extract32(insn, 21, 1) != 0) {
4058 disas_ldst_tag(s, insn);
4059 } else if (extract32(insn, 10, 2) == 0) {
4060 disas_ldst_ldapr_stlr(s, insn);
4061 } else {
4062 unallocated_encoding(s);
4063 }
4064 break;
4065 default:
4066 unallocated_encoding(s);
4067 break;
4068 }
4069 }
4070
4071 /* PC-rel. addressing
4072 * 31 30 29 28 24 23 5 4 0
4073 * +----+-------+-----------+-------------------+------+
4074 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
4075 * +----+-------+-----------+-------------------+------+
4076 */
4077 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
4078 {
4079 unsigned int page, rd;
4080 uint64_t base;
4081 uint64_t offset;
4082
4083 page = extract32(insn, 31, 1);
4084 /* SignExtend(immhi:immlo) -> offset */
4085 offset = sextract64(insn, 5, 19);
4086 offset = offset << 2 | extract32(insn, 29, 2);
4087 rd = extract32(insn, 0, 5);
4088 base = s->pc_curr;
4089
4090 if (page) {
4091 /* ADRP (page based) */
4092 base &= ~0xfff;
4093 offset <<= 12;
4094 }
4095
4096 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
4097 }
4098
4099 /*
4100 * Add/subtract (immediate)
4101 *
4102 * 31 30 29 28 23 22 21 10 9 5 4 0
4103 * +--+--+--+-------------+--+-------------+-----+-----+
4104 * |sf|op| S| 1 0 0 0 1 0 |sh| imm12 | Rn | Rd |
4105 * +--+--+--+-------------+--+-------------+-----+-----+
4106 *
4107 * sf: 0 -> 32bit, 1 -> 64bit
4108 * op: 0 -> add , 1 -> sub
4109 * S: 1 -> set flags
4110 * sh: 1 -> LSL imm by 12
4111 */
4112 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
4113 {
4114 int rd = extract32(insn, 0, 5);
4115 int rn = extract32(insn, 5, 5);
4116 uint64_t imm = extract32(insn, 10, 12);
4117 bool shift = extract32(insn, 22, 1);
4118 bool setflags = extract32(insn, 29, 1);
4119 bool sub_op = extract32(insn, 30, 1);
4120 bool is_64bit = extract32(insn, 31, 1);
4121
4122 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
4123 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
4124 TCGv_i64 tcg_result;
4125
4126 if (shift) {
4127 imm <<= 12;
4128 }
4129
4130 tcg_result = tcg_temp_new_i64();
4131 if (!setflags) {
4132 if (sub_op) {
4133 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
4134 } else {
4135 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
4136 }
4137 } else {
4138 TCGv_i64 tcg_imm = tcg_const_i64(imm);
4139 if (sub_op) {
4140 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4141 } else {
4142 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4143 }
4144 tcg_temp_free_i64(tcg_imm);
4145 }
4146
4147 if (is_64bit) {
4148 tcg_gen_mov_i64(tcg_rd, tcg_result);
4149 } else {
4150 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4151 }
4152
4153 tcg_temp_free_i64(tcg_result);
4154 }
4155
4156 /*
4157 * Add/subtract (immediate, with tags)
4158 *
4159 * 31 30 29 28 23 22 21 16 14 10 9 5 4 0
4160 * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4161 * |sf|op| S| 1 0 0 0 1 1 |o2| uimm6 |o3| uimm4 | Rn | Rd |
4162 * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4163 *
4164 * op: 0 -> add, 1 -> sub
4165 */
4166 static void disas_add_sub_imm_with_tags(DisasContext *s, uint32_t insn)
4167 {
4168 int rd = extract32(insn, 0, 5);
4169 int rn = extract32(insn, 5, 5);
4170 int uimm4 = extract32(insn, 10, 4);
4171 int uimm6 = extract32(insn, 16, 6);
4172 bool sub_op = extract32(insn, 30, 1);
4173 TCGv_i64 tcg_rn, tcg_rd;
4174 int imm;
4175
4176 /* Test all of sf=1, S=0, o2=0, o3=0. */
4177 if ((insn & 0xa040c000u) != 0x80000000u ||
4178 !dc_isar_feature(aa64_mte_insn_reg, s)) {
4179 unallocated_encoding(s);
4180 return;
4181 }
4182
4183 imm = uimm6 << LOG2_TAG_GRANULE;
4184 if (sub_op) {
4185 imm = -imm;
4186 }
4187
4188 tcg_rn = cpu_reg_sp(s, rn);
4189 tcg_rd = cpu_reg_sp(s, rd);
4190
4191 if (s->ata) {
4192 TCGv_i32 offset = tcg_const_i32(imm);
4193 TCGv_i32 tag_offset = tcg_const_i32(uimm4);
4194
4195 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, offset, tag_offset);
4196 tcg_temp_free_i32(tag_offset);
4197 tcg_temp_free_i32(offset);
4198 } else {
4199 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4200 gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4201 }
4202 }
4203
4204 /* The input should be a value in the bottom e bits (with higher
4205 * bits zero); returns that value replicated into every element
4206 * of size e in a 64 bit integer.
4207 */
4208 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4209 {
4210 assert(e != 0);
4211 while (e < 64) {
4212 mask |= mask << e;
4213 e *= 2;
4214 }
4215 return mask;
4216 }
4217
4218 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
4219 static inline uint64_t bitmask64(unsigned int length)
4220 {
4221 assert(length > 0 && length <= 64);
4222 return ~0ULL >> (64 - length);
4223 }
4224
4225 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
4226 * only require the wmask. Returns false if the imms/immr/immn are a reserved
4227 * value (ie should cause a guest UNDEF exception), and true if they are
4228 * valid, in which case the decoded bit pattern is written to result.
4229 */
4230 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4231 unsigned int imms, unsigned int immr)
4232 {
4233 uint64_t mask;
4234 unsigned e, levels, s, r;
4235 int len;
4236
4237 assert(immn < 2 && imms < 64 && immr < 64);
4238
4239 /* The bit patterns we create here are 64 bit patterns which
4240 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4241 * 64 bits each. Each element contains the same value: a run
4242 * of between 1 and e-1 non-zero bits, rotated within the
4243 * element by between 0 and e-1 bits.
4244 *
4245 * The element size and run length are encoded into immn (1 bit)
4246 * and imms (6 bits) as follows:
4247 * 64 bit elements: immn = 1, imms = <length of run - 1>
4248 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4249 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4250 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4251 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4252 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4253 * Notice that immn = 0, imms = 11111x is the only combination
4254 * not covered by one of the above options; this is reserved.
4255 * Further, <length of run - 1> all-ones is a reserved pattern.
4256 *
4257 * In all cases the rotation is by immr % e (and immr is 6 bits).
4258 */
4259
4260 /* First determine the element size */
4261 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4262 if (len < 1) {
4263 /* This is the immn == 0, imms == 0x11111x case */
4264 return false;
4265 }
4266 e = 1 << len;
4267
4268 levels = e - 1;
4269 s = imms & levels;
4270 r = immr & levels;
4271
4272 if (s == levels) {
4273 /* <length of run - 1> mustn't be all-ones. */
4274 return false;
4275 }
4276
4277 /* Create the value of one element: s+1 set bits rotated
4278 * by r within the element (which is e bits wide)...
4279 */
4280 mask = bitmask64(s + 1);
4281 if (r) {
4282 mask = (mask >> r) | (mask << (e - r));
4283 mask &= bitmask64(e);
4284 }
4285 /* ...then replicate the element over the whole 64 bit value */
4286 mask = bitfield_replicate(mask, e);
4287 *result = mask;
4288 return true;
4289 }
4290
4291 /* Logical (immediate)
4292 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4293 * +----+-----+-------------+---+------+------+------+------+
4294 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
4295 * +----+-----+-------------+---+------+------+------+------+
4296 */
4297 static void disas_logic_imm(DisasContext *s, uint32_t insn)
4298 {
4299 unsigned int sf, opc, is_n, immr, imms, rn, rd;
4300 TCGv_i64 tcg_rd, tcg_rn;
4301 uint64_t wmask;
4302 bool is_and = false;
4303
4304 sf = extract32(insn, 31, 1);
4305 opc = extract32(insn, 29, 2);
4306 is_n = extract32(insn, 22, 1);
4307 immr = extract32(insn, 16, 6);
4308 imms = extract32(insn, 10, 6);
4309 rn = extract32(insn, 5, 5);
4310 rd = extract32(insn, 0, 5);
4311
4312 if (!sf && is_n) {
4313 unallocated_encoding(s);
4314 return;
4315 }
4316
4317 if (opc == 0x3) { /* ANDS */
4318 tcg_rd = cpu_reg(s, rd);
4319 } else {
4320 tcg_rd = cpu_reg_sp(s, rd);
4321 }
4322 tcg_rn = cpu_reg(s, rn);
4323
4324 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
4325 /* some immediate field values are reserved */
4326 unallocated_encoding(s);
4327 return;
4328 }
4329
4330 if (!sf) {
4331 wmask &= 0xffffffff;
4332 }
4333
4334 switch (opc) {
4335 case 0x3: /* ANDS */
4336 case 0x0: /* AND */
4337 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
4338 is_and = true;
4339 break;
4340 case 0x1: /* ORR */
4341 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
4342 break;
4343 case 0x2: /* EOR */
4344 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
4345 break;
4346 default:
4347 assert(FALSE); /* must handle all above */
4348 break;
4349 }
4350
4351 if (!sf && !is_and) {
4352 /* zero extend final result; we know we can skip this for AND
4353 * since the immediate had the high 32 bits clear.
4354 */
4355 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4356 }
4357
4358 if (opc == 3) { /* ANDS */
4359 gen_logic_CC(sf, tcg_rd);
4360 }
4361 }
4362
4363 /*
4364 * Move wide (immediate)
4365 *
4366 * 31 30 29 28 23 22 21 20 5 4 0
4367 * +--+-----+-------------+-----+----------------+------+
4368 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
4369 * +--+-----+-------------+-----+----------------+------+
4370 *
4371 * sf: 0 -> 32 bit, 1 -> 64 bit
4372 * opc: 00 -> N, 10 -> Z, 11 -> K
4373 * hw: shift/16 (0,16, and sf only 32, 48)
4374 */
4375 static void disas_movw_imm(DisasContext *s, uint32_t insn)
4376 {
4377 int rd = extract32(insn, 0, 5);
4378 uint64_t imm = extract32(insn, 5, 16);
4379 int sf = extract32(insn, 31, 1);
4380 int opc = extract32(insn, 29, 2);
4381 int pos = extract32(insn, 21, 2) << 4;
4382 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4383 TCGv_i64 tcg_imm;
4384
4385 if (!sf && (pos >= 32)) {
4386 unallocated_encoding(s);
4387 return;
4388 }
4389
4390 switch (opc) {
4391 case 0: /* MOVN */
4392 case 2: /* MOVZ */
4393 imm <<= pos;
4394 if (opc == 0) {
4395 imm = ~imm;
4396 }
4397 if (!sf) {
4398 imm &= 0xffffffffu;
4399 }
4400 tcg_gen_movi_i64(tcg_rd, imm);
4401 break;
4402 case 3: /* MOVK */
4403 tcg_imm = tcg_const_i64(imm);
4404 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
4405 tcg_temp_free_i64(tcg_imm);
4406 if (!sf) {
4407 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4408 }
4409 break;
4410 default:
4411 unallocated_encoding(s);
4412 break;
4413 }
4414 }
4415
4416 /* Bitfield
4417 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4418 * +----+-----+-------------+---+------+------+------+------+
4419 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
4420 * +----+-----+-------------+---+------+------+------+------+
4421 */
4422 static void disas_bitfield(DisasContext *s, uint32_t insn)
4423 {
4424 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
4425 TCGv_i64 tcg_rd, tcg_tmp;
4426
4427 sf = extract32(insn, 31, 1);
4428 opc = extract32(insn, 29, 2);
4429 n = extract32(insn, 22, 1);
4430 ri = extract32(insn, 16, 6);
4431 si = extract32(insn, 10, 6);
4432 rn = extract32(insn, 5, 5);
4433 rd = extract32(insn, 0, 5);
4434 bitsize = sf ? 64 : 32;
4435
4436 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
4437 unallocated_encoding(s);
4438 return;
4439 }
4440
4441 tcg_rd = cpu_reg(s, rd);
4442
4443 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
4444 to be smaller than bitsize, we'll never reference data outside the
4445 low 32-bits anyway. */
4446 tcg_tmp = read_cpu_reg(s, rn, 1);
4447
4448 /* Recognize simple(r) extractions. */
4449 if (si >= ri) {
4450 /* Wd<s-r:0> = Wn<s:r> */
4451 len = (si - ri) + 1;
4452 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
4453 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4454 goto done;
4455 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
4456 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4457 return;
4458 }
4459 /* opc == 1, BFXIL fall through to deposit */
4460 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4461 pos = 0;
4462 } else {
4463 /* Handle the ri > si case with a deposit
4464 * Wd<32+s-r,32-r> = Wn<s:0>
4465 */
4466 len = si + 1;
4467 pos = (bitsize - ri) & (bitsize - 1);
4468 }
4469
4470 if (opc == 0 && len < ri) {
4471 /* SBFM: sign extend the destination field from len to fill
4472 the balance of the word. Let the deposit below insert all
4473 of those sign bits. */
4474 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4475 len = ri;
4476 }
4477
4478 if (opc == 1) { /* BFM, BFXIL */
4479 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4480 } else {
4481 /* SBFM or UBFM: We start with zero, and we haven't modified
4482 any bits outside bitsize, therefore the zero-extension
4483 below is unneeded. */
4484 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4485 return;
4486 }
4487
4488 done:
4489 if (!sf) { /* zero extend final result */
4490 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4491 }
4492 }
4493
4494 /* Extract
4495 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
4496 * +----+------+-------------+---+----+------+--------+------+------+
4497 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
4498 * +----+------+-------------+---+----+------+--------+------+------+
4499 */
4500 static void disas_extract(DisasContext *s, uint32_t insn)
4501 {
4502 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
4503
4504 sf = extract32(insn, 31, 1);
4505 n = extract32(insn, 22, 1);
4506 rm = extract32(insn, 16, 5);
4507 imm = extract32(insn, 10, 6);
4508 rn = extract32(insn, 5, 5);
4509 rd = extract32(insn, 0, 5);
4510 op21 = extract32(insn, 29, 2);
4511 op0 = extract32(insn, 21, 1);
4512 bitsize = sf ? 64 : 32;
4513
4514 if (sf != n || op21 || op0 || imm >= bitsize) {
4515 unallocated_encoding(s);
4516 } else {
4517 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4518
4519 tcg_rd = cpu_reg(s, rd);
4520
4521 if (unlikely(imm == 0)) {
4522 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4523 * so an extract from bit 0 is a special case.
4524 */
4525 if (sf) {
4526 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
4527 } else {
4528 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
4529 }
4530 } else {
4531 tcg_rm = cpu_reg(s, rm);
4532 tcg_rn = cpu_reg(s, rn);
4533
4534 if (sf) {
4535 /* Specialization to ROR happens in EXTRACT2. */
4536 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, imm);
4537 } else {
4538 TCGv_i32 t0 = tcg_temp_new_i32();
4539
4540 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4541 if (rm == rn) {
4542 tcg_gen_rotri_i32(t0, t0, imm);
4543 } else {
4544 TCGv_i32 t1 = tcg_temp_new_i32();
4545 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4546 tcg_gen_extract2_i32(t0, t0, t1, imm);
4547 tcg_temp_free_i32(t1);
4548 }
4549 tcg_gen_extu_i32_i64(tcg_rd, t0);
4550 tcg_temp_free_i32(t0);
4551 }
4552 }
4553 }
4554 }
4555
4556 /* Data processing - immediate */
4557 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
4558 {
4559 switch (extract32(insn, 23, 6)) {
4560 case 0x20: case 0x21: /* PC-rel. addressing */
4561 disas_pc_rel_adr(s, insn);
4562 break;
4563 case 0x22: /* Add/subtract (immediate) */
4564 disas_add_sub_imm(s, insn);
4565 break;
4566 case 0x23: /* Add/subtract (immediate, with tags) */
4567 disas_add_sub_imm_with_tags(s, insn);
4568 break;
4569 case 0x24: /* Logical (immediate) */
4570 disas_logic_imm(s, insn);
4571 break;
4572 case 0x25: /* Move wide (immediate) */
4573 disas_movw_imm(s, insn);
4574 break;
4575 case 0x26: /* Bitfield */
4576 disas_bitfield(s, insn);
4577 break;
4578 case 0x27: /* Extract */
4579 disas_extract(s, insn);
4580 break;
4581 default:
4582 unallocated_encoding(s);
4583 break;
4584 }
4585 }
4586
4587 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4588 * Note that it is the caller's responsibility to ensure that the
4589 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4590 * mandated semantics for out of range shifts.
4591 */
4592 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4593 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4594 {
4595 switch (shift_type) {
4596 case A64_SHIFT_TYPE_LSL:
4597 tcg_gen_shl_i64(dst, src, shift_amount);
4598 break;
4599 case A64_SHIFT_TYPE_LSR:
4600 tcg_gen_shr_i64(dst, src, shift_amount);
4601 break;
4602 case A64_SHIFT_TYPE_ASR:
4603 if (!sf) {
4604 tcg_gen_ext32s_i64(dst, src);
4605 }
4606 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4607 break;
4608 case A64_SHIFT_TYPE_ROR:
4609 if (sf) {
4610 tcg_gen_rotr_i64(dst, src, shift_amount);
4611 } else {
4612 TCGv_i32 t0, t1;
4613 t0 = tcg_temp_new_i32();
4614 t1 = tcg_temp_new_i32();
4615 tcg_gen_extrl_i64_i32(t0, src);
4616 tcg_gen_extrl_i64_i32(t1, shift_amount);
4617 tcg_gen_rotr_i32(t0, t0, t1);
4618 tcg_gen_extu_i32_i64(dst, t0);
4619 tcg_temp_free_i32(t0);
4620 tcg_temp_free_i32(t1);
4621 }
4622 break;
4623 default:
4624 assert(FALSE); /* all shift types should be handled */
4625 break;
4626 }
4627
4628 if (!sf) { /* zero extend final result */
4629 tcg_gen_ext32u_i64(dst, dst);
4630 }
4631 }
4632
4633 /* Shift a TCGv src by immediate, put result in dst.
4634 * The shift amount must be in range (this should always be true as the
4635 * relevant instructions will UNDEF on bad shift immediates).
4636 */
4637 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4638 enum a64_shift_type shift_type, unsigned int shift_i)
4639 {
4640 assert(shift_i < (sf ? 64 : 32));
4641
4642 if (shift_i == 0) {
4643 tcg_gen_mov_i64(dst, src);
4644 } else {
4645 TCGv_i64 shift_const;
4646
4647 shift_const = tcg_const_i64(shift_i);
4648 shift_reg(dst, src, sf, shift_type, shift_const);
4649 tcg_temp_free_i64(shift_const);
4650 }
4651 }
4652
4653 /* Logical (shifted register)
4654 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4655 * +----+-----+-----------+-------+---+------+--------+------+------+
4656 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4657 * +----+-----+-----------+-------+---+------+--------+------+------+
4658 */
4659 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4660 {
4661 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4662 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4663
4664 sf = extract32(insn, 31, 1);
4665 opc = extract32(insn, 29, 2);
4666 shift_type = extract32(insn, 22, 2);
4667 invert = extract32(insn, 21, 1);
4668 rm = extract32(insn, 16, 5);
4669 shift_amount = extract32(insn, 10, 6);
4670 rn = extract32(insn, 5, 5);
4671 rd = extract32(insn, 0, 5);
4672
4673 if (!sf && (shift_amount & (1 << 5))) {
4674 unallocated_encoding(s);
4675 return;
4676 }
4677
4678 tcg_rd = cpu_reg(s, rd);
4679
4680 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4681 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4682 * register-register MOV and MVN, so it is worth special casing.
4683 */
4684 tcg_rm = cpu_reg(s, rm);
4685 if (invert) {
4686 tcg_gen_not_i64(tcg_rd, tcg_rm);
4687 if (!sf) {
4688 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4689 }
4690 } else {
4691 if (sf) {
4692 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4693 } else {
4694 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4695 }
4696 }
4697 return;
4698 }
4699
4700 tcg_rm = read_cpu_reg(s, rm, sf);
4701
4702 if (shift_amount) {
4703 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4704 }
4705
4706 tcg_rn = cpu_reg(s, rn);
4707
4708 switch (opc | (invert << 2)) {
4709 case 0: /* AND */
4710 case 3: /* ANDS */
4711 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4712 break;
4713 case 1: /* ORR */
4714 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4715 break;
4716 case 2: /* EOR */
4717 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4718 break;
4719 case 4: /* BIC */
4720 case 7: /* BICS */
4721 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4722 break;
4723 case 5: /* ORN */
4724 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4725 break;
4726 case 6: /* EON */
4727 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4728 break;
4729 default:
4730 assert(FALSE);
4731 break;
4732 }
4733
4734 if (!sf) {
4735 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4736 }
4737
4738 if (opc == 3) {
4739 gen_logic_CC(sf, tcg_rd);
4740 }
4741 }
4742
4743 /*
4744 * Add/subtract (extended register)
4745 *
4746 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4747 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4748 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4749 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4750 *
4751 * sf: 0 -> 32bit, 1 -> 64bit
4752 * op: 0 -> add , 1 -> sub
4753 * S: 1 -> set flags
4754 * opt: 00
4755 * option: extension type (see DecodeRegExtend)
4756 * imm3: optional shift to Rm
4757 *
4758 * Rd = Rn + LSL(extend(Rm), amount)
4759 */
4760 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4761 {
4762 int rd = extract32(insn, 0, 5);
4763 int rn = extract32(insn, 5, 5);
4764 int imm3 = extract32(insn, 10, 3);
4765 int option = extract32(insn, 13, 3);
4766 int rm = extract32(insn, 16, 5);
4767 int opt = extract32(insn, 22, 2);
4768 bool setflags = extract32(insn, 29, 1);
4769 bool sub_op = extract32(insn, 30, 1);
4770 bool sf = extract32(insn, 31, 1);
4771
4772 TCGv_i64 tcg_rm, tcg_rn; /* temps */
4773 TCGv_i64 tcg_rd;
4774 TCGv_i64 tcg_result;
4775
4776 if (imm3 > 4 || opt != 0) {
4777 unallocated_encoding(s);
4778 return;
4779 }
4780
4781 /* non-flag setting ops may use SP */
4782 if (!setflags) {
4783 tcg_rd = cpu_reg_sp(s, rd);
4784 } else {
4785 tcg_rd = cpu_reg(s, rd);
4786 }
4787 tcg_rn = read_cpu_reg_sp(s, rn, sf);
4788
4789 tcg_rm = read_cpu_reg(s, rm, sf);
4790 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4791
4792 tcg_result = tcg_temp_new_i64();
4793
4794 if (!setflags) {
4795 if (sub_op) {
4796 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4797 } else {
4798 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4799 }
4800 } else {
4801 if (sub_op) {
4802 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4803 } else {
4804 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4805 }
4806 }
4807
4808 if (sf) {
4809 tcg_gen_mov_i64(tcg_rd, tcg_result);
4810 } else {
4811 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4812 }
4813
4814 tcg_temp_free_i64(tcg_result);
4815 }
4816
4817 /*
4818 * Add/subtract (shifted register)
4819 *
4820 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4821 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4822 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4823 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4824 *
4825 * sf: 0 -> 32bit, 1 -> 64bit
4826 * op: 0 -> add , 1 -> sub
4827 * S: 1 -> set flags
4828 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4829 * imm6: Shift amount to apply to Rm before the add/sub
4830 */
4831 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4832 {
4833 int rd = extract32(insn, 0, 5);
4834 int rn = extract32(insn, 5, 5);
4835 int imm6 = extract32(insn, 10, 6);
4836 int rm = extract32(insn, 16, 5);
4837 int shift_type = extract32(insn, 22, 2);
4838 bool setflags = extract32(insn, 29, 1);
4839 bool sub_op = extract32(insn, 30, 1);
4840 bool sf = extract32(insn, 31, 1);
4841
4842 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4843 TCGv_i64 tcg_rn, tcg_rm;
4844 TCGv_i64 tcg_result;
4845
4846 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4847 unallocated_encoding(s);
4848 return;
4849 }
4850
4851 tcg_rn = read_cpu_reg(s, rn, sf);
4852 tcg_rm = read_cpu_reg(s, rm, sf);
4853
4854 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4855
4856 tcg_result = tcg_temp_new_i64();
4857
4858 if (!setflags) {
4859 if (sub_op) {
4860 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4861 } else {
4862 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4863 }
4864 } else {
4865 if (sub_op) {
4866 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4867 } else {
4868 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4869 }
4870 }
4871
4872 if (sf) {
4873 tcg_gen_mov_i64(tcg_rd, tcg_result);
4874 } else {
4875 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4876 }
4877
4878 tcg_temp_free_i64(tcg_result);
4879 }
4880
4881 /* Data-processing (3 source)
4882 *
4883 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4884 * +--+------+-----------+------+------+----+------+------+------+
4885 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4886 * +--+------+-----------+------+------+----+------+------+------+
4887 */
4888 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4889 {
4890 int rd = extract32(insn, 0, 5);
4891 int rn = extract32(insn, 5, 5);
4892 int ra = extract32(insn, 10, 5);
4893 int rm = extract32(insn, 16, 5);
4894 int op_id = (extract32(insn, 29, 3) << 4) |
4895 (extract32(insn, 21, 3) << 1) |
4896 extract32(insn, 15, 1);
4897 bool sf = extract32(insn, 31, 1);
4898 bool is_sub = extract32(op_id, 0, 1);
4899 bool is_high = extract32(op_id, 2, 1);
4900 bool is_signed = false;
4901 TCGv_i64 tcg_op1;
4902 TCGv_i64 tcg_op2;
4903 TCGv_i64 tcg_tmp;
4904
4905 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4906 switch (op_id) {
4907 case 0x42: /* SMADDL */
4908 case 0x43: /* SMSUBL */
4909 case 0x44: /* SMULH */
4910 is_signed = true;
4911 break;
4912 case 0x0: /* MADD (32bit) */
4913 case 0x1: /* MSUB (32bit) */
4914 case 0x40: /* MADD (64bit) */
4915 case 0x41: /* MSUB (64bit) */
4916 case 0x4a: /* UMADDL */
4917 case 0x4b: /* UMSUBL */
4918 case 0x4c: /* UMULH */
4919 break;
4920 default:
4921 unallocated_encoding(s);
4922 return;
4923 }
4924
4925 if (is_high) {
4926 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4927 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4928 TCGv_i64 tcg_rn = cpu_reg(s, rn);
4929 TCGv_i64 tcg_rm = cpu_reg(s, rm);
4930
4931 if (is_signed) {
4932 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4933 } else {
4934 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4935 }
4936
4937 tcg_temp_free_i64(low_bits);
4938 return;
4939 }
4940
4941 tcg_op1 = tcg_temp_new_i64();
4942 tcg_op2 = tcg_temp_new_i64();
4943 tcg_tmp = tcg_temp_new_i64();
4944
4945 if (op_id < 0x42) {
4946 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4947 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4948 } else {
4949 if (is_signed) {
4950 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4951 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4952 } else {
4953 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4954 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4955 }
4956 }
4957
4958 if (ra == 31 && !is_sub) {
4959 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4960 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4961 } else {
4962 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4963 if (is_sub) {
4964 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4965 } else {
4966 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4967 }
4968 }
4969
4970 if (!sf) {
4971 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4972 }
4973
4974 tcg_temp_free_i64(tcg_op1);
4975 tcg_temp_free_i64(tcg_op2);
4976 tcg_temp_free_i64(tcg_tmp);
4977 }
4978
4979 /* Add/subtract (with carry)
4980 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
4981 * +--+--+--+------------------------+------+-------------+------+-----+
4982 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
4983 * +--+--+--+------------------------+------+-------------+------+-----+
4984 */
4985
4986 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4987 {
4988 unsigned int sf, op, setflags, rm, rn, rd;
4989 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4990
4991 sf = extract32(insn, 31, 1);
4992 op = extract32(insn, 30, 1);
4993 setflags = extract32(insn, 29, 1);
4994 rm = extract32(insn, 16, 5);
4995 rn = extract32(insn, 5, 5);
4996 rd = extract32(insn, 0, 5);
4997
4998 tcg_rd = cpu_reg(s, rd);
4999 tcg_rn = cpu_reg(s, rn);
5000
5001 if (op) {
5002 tcg_y = new_tmp_a64(s);
5003 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5004 } else {
5005 tcg_y = cpu_reg(s, rm);
5006 }
5007
5008 if (setflags) {
5009 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5010 } else {
5011 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5012 }
5013 }
5014
5015 /*
5016 * Rotate right into flags
5017 * 31 30 29 21 15 10 5 4 0
5018 * +--+--+--+-----------------+--------+-----------+------+--+------+
5019 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
5020 * +--+--+--+-----------------+--------+-----------+------+--+------+
5021 */
5022 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5023 {
5024 int mask = extract32(insn, 0, 4);
5025 int o2 = extract32(insn, 4, 1);
5026 int rn = extract32(insn, 5, 5);
5027 int imm6 = extract32(insn, 15, 6);
5028 int sf_op_s = extract32(insn, 29, 3);
5029 TCGv_i64 tcg_rn;
5030 TCGv_i32 nzcv;
5031
5032 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5033 unallocated_encoding(s);
5034 return;
5035 }
5036
5037 tcg_rn = read_cpu_reg(s, rn, 1);
5038 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5039
5040 nzcv = tcg_temp_new_i32();
5041 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5042
5043 if (mask & 8) { /* N */
5044 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5045 }
5046 if (mask & 4) { /* Z */
5047 tcg_gen_not_i32(cpu_ZF, nzcv);
5048 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5049 }
5050 if (mask & 2) { /* C */
5051 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5052 }
5053 if (mask & 1) { /* V */
5054 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5055 }
5056
5057 tcg_temp_free_i32(nzcv);
5058 }
5059
5060 /*
5061 * Evaluate into flags
5062 * 31 30 29 21 15 14 10 5 4 0
5063 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5064 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
5065 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5066 */
5067 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5068 {
5069 int o3_mask = extract32(insn, 0, 5);
5070 int rn = extract32(insn, 5, 5);
5071 int o2 = extract32(insn, 15, 6);
5072 int sz = extract32(insn, 14, 1);
5073 int sf_op_s = extract32(insn, 29, 3);
5074 TCGv_i32 tmp;
5075 int shift;
5076
5077 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5078 !dc_isar_feature(aa64_condm_4, s)) {
5079 unallocated_encoding(s);
5080 return;
5081 }
5082 shift = sz ? 16 : 24; /* SETF16 or SETF8 */
5083
5084 tmp = tcg_temp_new_i32();
5085 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5086 tcg_gen_shli_i32(cpu_NF, tmp, shift);
5087 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5088 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5089 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5090 tcg_temp_free_i32(tmp);
5091 }
5092
5093 /* Conditional compare (immediate / register)
5094 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5095 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5096 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
5097 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5098 * [1] y [0] [0]
5099 */
5100 static void disas_cc(DisasContext *s, uint32_t insn)
5101 {
5102 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5103 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5104 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5105 DisasCompare c;
5106
5107 if (!extract32(insn, 29, 1)) {
5108 unallocated_encoding(s);
5109 return;
5110 }
5111 if (insn & (1 << 10 | 1 << 4)) {
5112 unallocated_encoding(s);
5113 return;
5114 }
5115 sf = extract32(insn, 31, 1);
5116 op = extract32(insn, 30, 1);
5117 is_imm = extract32(insn, 11, 1);
5118 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5119 cond = extract32(insn, 12, 4);
5120 rn = extract32(insn, 5, 5);
5121 nzcv = extract32(insn, 0, 4);
5122
5123 /* Set T0 = !COND. */
5124 tcg_t0 = tcg_temp_new_i32();
5125 arm_test_cc(&c, cond);
5126 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5127 arm_free_cc(&c);
5128
5129 /* Load the arguments for the new comparison. */
5130 if (is_imm) {
5131 tcg_y = new_tmp_a64(s);
5132 tcg_gen_movi_i64(tcg_y, y);
5133 } else {
5134 tcg_y = cpu_reg(s, y);
5135 }
5136 tcg_rn = cpu_reg(s, rn);
5137
5138 /* Set the flags for the new comparison. */
5139 tcg_tmp = tcg_temp_new_i64();
5140 if (op) {
5141 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5142 } else {
5143 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5144 }
5145 tcg_temp_free_i64(tcg_tmp);
5146
5147 /* If COND was false, force the flags to #nzcv. Compute two masks
5148 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5149 * For tcg hosts that support ANDC, we can make do with just T1.
5150 * In either case, allow the tcg optimizer to delete any unused mask.
5151 */
5152 tcg_t1 = tcg_temp_new_i32();
5153 tcg_t2 = tcg_temp_new_i32();
5154 tcg_gen_neg_i32(tcg_t1, tcg_t0);
5155 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5156
5157 if (nzcv & 8) { /* N */
5158 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5159 } else {
5160 if (TCG_TARGET_HAS_andc_i32) {
5161 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5162 } else {
5163 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5164 }
5165 }
5166 if (nzcv & 4) { /* Z */
5167 if (TCG_TARGET_HAS_andc_i32) {
5168 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5169 } else {
5170 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5171 }
5172 } else {
5173 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5174 }
5175 if (nzcv & 2) { /* C */
5176 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5177 } else {
5178 if (TCG_TARGET_HAS_andc_i32) {
5179 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5180 } else {
5181 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5182 }
5183 }
5184 if (nzcv & 1) { /* V */
5185 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5186 } else {
5187 if (TCG_TARGET_HAS_andc_i32) {
5188 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5189 } else {
5190 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5191 }
5192 }
5193 tcg_temp_free_i32(tcg_t0);
5194 tcg_temp_free_i32(tcg_t1);
5195 tcg_temp_free_i32(tcg_t2);
5196 }
5197
5198 /* Conditional select
5199 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
5200 * +----+----+---+-----------------+------+------+-----+------+------+
5201 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
5202 * +----+----+---+-----------------+------+------+-----+------+------+
5203 */
5204 static void disas_cond_select(DisasContext *s, uint32_t insn)
5205 {
5206 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5207 TCGv_i64 tcg_rd, zero;
5208 DisasCompare64 c;
5209
5210 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5211 /* S == 1 or op2<1> == 1 */
5212 unallocated_encoding(s);
5213 return;
5214 }
5215 sf = extract32(insn, 31, 1);
5216 else_inv = extract32(insn, 30, 1);
5217 rm = extract32(insn, 16, 5);
5218 cond = extract32(insn, 12, 4);
5219 else_inc = extract32(insn, 10, 1);
5220 rn = extract32(insn, 5, 5);
5221 rd = extract32(insn, 0, 5);
5222
5223 tcg_rd = cpu_reg(s, rd);
5224
5225 a64_test_cc(&c, cond);
5226 zero = tcg_const_i64(0);
5227
5228 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5229 /* CSET & CSETM. */
5230 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
5231 if (else_inv) {
5232 tcg_gen_neg_i64(tcg_rd, tcg_rd);
5233 }
5234 } else {
5235 TCGv_i64 t_true = cpu_reg(s, rn);
5236 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5237 if (else_inv && else_inc) {
5238 tcg_gen_neg_i64(t_false, t_false);
5239 } else if (else_inv) {
5240 tcg_gen_not_i64(t_false, t_false);
5241 } else if (else_inc) {
5242 tcg_gen_addi_i64(t_false, t_false, 1);
5243 }
5244 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5245 }
5246
5247 tcg_temp_free_i64(zero);
5248 a64_free_cc(&c);
5249
5250 if (!sf) {
5251 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5252 }
5253 }
5254
5255 static void handle_clz(DisasContext *s, unsigned int sf,
5256 unsigned int rn, unsigned int rd)
5257 {
5258 TCGv_i64 tcg_rd, tcg_rn;
5259 tcg_rd = cpu_reg(s, rd);
5260 tcg_rn = cpu_reg(s, rn);
5261
5262 if (sf) {
5263 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5264 } else {
5265 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5266 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5267 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5268 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5269 tcg_temp_free_i32(tcg_tmp32);
5270 }
5271 }
5272
5273 static void handle_cls(DisasContext *s, unsigned int sf,
5274 unsigned int rn, unsigned int rd)
5275 {
5276 TCGv_i64 tcg_rd, tcg_rn;
5277 tcg_rd = cpu_reg(s, rd);
5278 tcg_rn = cpu_reg(s, rn);
5279
5280 if (sf) {
5281 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5282 } else {
5283 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5284 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5285 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5286 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5287 tcg_temp_free_i32(tcg_tmp32);
5288 }
5289 }
5290
5291 static void handle_rbit(DisasContext *s, unsigned int sf,
5292 unsigned int rn, unsigned int rd)
5293 {
5294 TCGv_i64 tcg_rd, tcg_rn;
5295 tcg_rd = cpu_reg(s, rd);
5296 tcg_rn = cpu_reg(s, rn);
5297
5298 if (sf) {
5299 gen_helper_rbit64(tcg_rd, tcg_rn);
5300 } else {
5301 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5302 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5303 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5304 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5305 tcg_temp_free_i32(tcg_tmp32);
5306 }
5307 }
5308
5309 /* REV with sf==1, opcode==3 ("REV64") */
5310 static void handle_rev64(DisasContext *s, unsigned int sf,
5311 unsigned int rn, unsigned int rd)
5312 {
5313 if (!sf) {
5314 unallocated_encoding(s);
5315 return;
5316 }
5317 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5318 }
5319
5320 /* REV with sf==0, opcode==2
5321 * REV32 (sf==1, opcode==2)
5322 */
5323 static void handle_rev32(DisasContext *s, unsigned int sf,
5324 unsigned int rn, unsigned int rd)
5325 {
5326 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5327
5328 if (sf) {
5329 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5330 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5331
5332 /* bswap32_i64 requires zero high word */
5333 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
5334 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
5335 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
5336 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
5337 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
5338
5339 tcg_temp_free_i64(tcg_tmp);
5340 } else {
5341 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
5342 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
5343 }
5344 }
5345
5346 /* REV16 (opcode==1) */
5347 static void handle_rev16(DisasContext *s, unsigned int sf,
5348 unsigned int rn, unsigned int rd)
5349 {
5350 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5351 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5352 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5353 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5354
5355 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5356 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5357 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5358 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5359 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5360
5361 tcg_temp_free_i64(mask);
5362 tcg_temp_free_i64(tcg_tmp);
5363 }
5364
5365 /* Data-processing (1 source)
5366 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5367 * +----+---+---+-----------------+---------+--------+------+------+
5368 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
5369 * +----+---+---+-----------------+---------+--------+------+------+
5370 */
5371 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5372 {
5373 unsigned int sf, opcode, opcode2, rn, rd;
5374 TCGv_i64 tcg_rd;
5375
5376 if (extract32(insn, 29, 1)) {
5377 unallocated_encoding(s);
5378 return;
5379 }
5380
5381 sf = extract32(insn, 31, 1);
5382 opcode = extract32(insn, 10, 6);
5383 opcode2 = extract32(insn, 16, 5);
5384 rn = extract32(insn, 5, 5);
5385 rd = extract32(insn, 0, 5);
5386
5387 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5388
5389 switch (MAP(sf, opcode2, opcode)) {
5390 case MAP(0, 0x00, 0x00): /* RBIT */
5391 case MAP(1, 0x00, 0x00):
5392 handle_rbit(s, sf, rn, rd);
5393 break;
5394 case MAP(0, 0x00, 0x01): /* REV16 */
5395 case MAP(1, 0x00, 0x01):
5396 handle_rev16(s, sf, rn, rd);
5397 break;
5398 case MAP(0, 0x00, 0x02): /* REV/REV32 */
5399 case MAP(1, 0x00, 0x02):
5400 handle_rev32(s, sf, rn, rd);
5401 break;
5402 case MAP(1, 0x00, 0x03): /* REV64 */
5403 handle_rev64(s, sf, rn, rd);
5404 break;
5405 case MAP(0, 0x00, 0x04): /* CLZ */
5406 case MAP(1, 0x00, 0x04):
5407 handle_clz(s, sf, rn, rd);
5408 break;
5409 case MAP(0, 0x00, 0x05): /* CLS */
5410 case MAP(1, 0x00, 0x05):
5411 handle_cls(s, sf, rn, rd);
5412 break;
5413 case MAP(1, 0x01, 0x00): /* PACIA */
5414 if (s->pauth_active) {
5415 tcg_rd = cpu_reg(s, rd);
5416 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5417 } else if (!dc_isar_feature(aa64_pauth, s)) {
5418 goto do_unallocated;
5419 }
5420 break;
5421 case MAP(1, 0x01, 0x01): /* PACIB */
5422 if (s->pauth_active) {
5423 tcg_rd = cpu_reg(s, rd);
5424 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5425 } else if (!dc_isar_feature(aa64_pauth, s)) {
5426 goto do_unallocated;
5427 }
5428 break;
5429 case MAP(1, 0x01, 0x02): /* PACDA */
5430 if (s->pauth_active) {
5431 tcg_rd = cpu_reg(s, rd);
5432 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5433 } else if (!dc_isar_feature(aa64_pauth, s)) {
5434 goto do_unallocated;
5435 }
5436 break;
5437 case MAP(1, 0x01, 0x03): /* PACDB */
5438 if (s->pauth_active) {
5439 tcg_rd = cpu_reg(s, rd);
5440 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5441 } else if (!dc_isar_feature(aa64_pauth, s)) {
5442 goto do_unallocated;
5443 }
5444 break;
5445 case MAP(1, 0x01, 0x04): /* AUTIA */
5446 if (s->pauth_active) {
5447 tcg_rd = cpu_reg(s, rd);
5448 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5449 } else if (!dc_isar_feature(aa64_pauth, s)) {
5450 goto do_unallocated;
5451 }
5452 break;
5453 case MAP(1, 0x01, 0x05): /* AUTIB */
5454 if (s->pauth_active) {
5455 tcg_rd = cpu_reg(s, rd);
5456 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5457 } else if (!dc_isar_feature(aa64_pauth, s)) {
5458 goto do_unallocated;
5459 }
5460 break;
5461 case MAP(1, 0x01, 0x06): /* AUTDA */
5462 if (s->pauth_active) {
5463 tcg_rd = cpu_reg(s, rd);
5464 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5465 } else if (!dc_isar_feature(aa64_pauth, s)) {
5466 goto do_unallocated;
5467 }
5468 break;
5469 case MAP(1, 0x01, 0x07): /* AUTDB */
5470 if (s->pauth_active) {
5471 tcg_rd = cpu_reg(s, rd);
5472 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5473 } else if (!dc_isar_feature(aa64_pauth, s)) {
5474 goto do_unallocated;
5475 }
5476 break;
5477 case MAP(1, 0x01, 0x08): /* PACIZA */
5478 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5479 goto do_unallocated;
5480 } else if (s->pauth_active) {
5481 tcg_rd = cpu_reg(s, rd);
5482 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5483 }
5484 break;
5485 case MAP(1, 0x01, 0x09): /* PACIZB */
5486 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5487 goto do_unallocated;
5488 } else if (s->pauth_active) {
5489 tcg_rd = cpu_reg(s, rd);
5490 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5491 }
5492 break;
5493 case MAP(1, 0x01, 0x0a): /* PACDZA */
5494 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5495 goto do_unallocated;
5496 } else if (s->pauth_active) {
5497 tcg_rd = cpu_reg(s, rd);
5498 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5499 }
5500 break;
5501 case MAP(1, 0x01, 0x0b): /* PACDZB */
5502 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5503 goto do_unallocated;
5504 } else if (s->pauth_active) {
5505 tcg_rd = cpu_reg(s, rd);
5506 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5507 }
5508 break;
5509 case MAP(1, 0x01, 0x0c): /* AUTIZA */
5510 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5511 goto do_unallocated;
5512 } else if (s->pauth_active) {
5513 tcg_rd = cpu_reg(s, rd);
5514 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5515 }
5516 break;
5517 case MAP(1, 0x01, 0x0d): /* AUTIZB */
5518 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5519 goto do_unallocated;
5520 } else if (s->pauth_active) {
5521 tcg_rd = cpu_reg(s, rd);
5522 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5523 }
5524 break;
5525 case MAP(1, 0x01, 0x0e): /* AUTDZA */
5526 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5527 goto do_unallocated;
5528 } else if (s->pauth_active) {
5529 tcg_rd = cpu_reg(s, rd);
5530 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5531 }
5532 break;
5533 case MAP(1, 0x01, 0x0f): /* AUTDZB */
5534 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5535 goto do_unallocated;
5536 } else if (s->pauth_active) {
5537 tcg_rd = cpu_reg(s, rd);
5538 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5539 }
5540 break;
5541 case MAP(1, 0x01, 0x10): /* XPACI */
5542 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5543 goto do_unallocated;
5544 } else if (s->pauth_active) {
5545 tcg_rd = cpu_reg(s, rd);
5546 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5547 }
5548 break;
5549 case MAP(1, 0x01, 0x11): /* XPACD */
5550 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5551 goto do_unallocated;
5552 } else if (s->pauth_active) {
5553 tcg_rd = cpu_reg(s, rd);
5554 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5555 }
5556 break;
5557 default:
5558 do_unallocated:
5559 unallocated_encoding(s);
5560 break;
5561 }
5562
5563 #undef MAP
5564 }
5565
5566 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5567 unsigned int rm, unsigned int rn, unsigned int rd)
5568 {
5569 TCGv_i64 tcg_n, tcg_m, tcg_rd;
5570 tcg_rd = cpu_reg(s, rd);
5571
5572 if (!sf && is_signed) {
5573 tcg_n = new_tmp_a64(s);
5574 tcg_m = new_tmp_a64(s);
5575 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5576 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5577 } else {
5578 tcg_n = read_cpu_reg(s, rn, sf);
5579 tcg_m = read_cpu_reg(s, rm, sf);
5580 }
5581
5582 if (is_signed) {
5583 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5584 } else {
5585 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5586 }
5587
5588 if (!sf) { /* zero extend final result */
5589 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5590 }
5591 }
5592
5593 /* LSLV, LSRV, ASRV, RORV */
5594 static void handle_shift_reg(DisasContext *s,
5595 enum a64_shift_type shift_type, unsigned int sf,
5596 unsigned int rm, unsigned int rn, unsigned int rd)
5597 {
5598 TCGv_i64 tcg_shift = tcg_temp_new_i64();
5599 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5600 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5601
5602 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5603 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5604 tcg_temp_free_i64(tcg_shift);
5605 }
5606
5607 /* CRC32[BHWX], CRC32C[BHWX] */
5608 static void handle_crc32(DisasContext *s,
5609 unsigned int sf, unsigned int sz, bool crc32c,
5610 unsigned int rm, unsigned int rn, unsigned int rd)
5611 {
5612 TCGv_i64 tcg_acc, tcg_val;
5613 TCGv_i32 tcg_bytes;
5614
5615 if (!dc_isar_feature(aa64_crc32, s)
5616 || (sf == 1 && sz != 3)
5617 || (sf == 0 && sz == 3)) {
5618 unallocated_encoding(s);
5619 return;
5620 }
5621
5622 if (sz == 3) {
5623 tcg_val = cpu_reg(s, rm);
5624 } else {
5625 uint64_t mask;
5626 switch (sz) {
5627 case 0:
5628 mask = 0xFF;
5629 break;
5630 case 1:
5631 mask = 0xFFFF;
5632 break;
5633 case 2:
5634 mask = 0xFFFFFFFF;
5635 break;
5636 default:
5637 g_assert_not_reached();
5638 }
5639 tcg_val = new_tmp_a64(s);
5640 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5641 }
5642
5643 tcg_acc = cpu_reg(s, rn);
5644 tcg_bytes = tcg_const_i32(1 << sz);
5645
5646 if (crc32c) {
5647 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5648 } else {
5649 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5650 }
5651
5652 tcg_temp_free_i32(tcg_bytes);
5653 }
5654
5655 /* Data-processing (2 source)
5656 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5657 * +----+---+---+-----------------+------+--------+------+------+
5658 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5659 * +----+---+---+-----------------+------+--------+------+------+
5660 */
5661 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5662 {
5663 unsigned int sf, rm, opcode, rn, rd, setflag;
5664 sf = extract32(insn, 31, 1);
5665 setflag = extract32(insn, 29, 1);
5666 rm = extract32(insn, 16, 5);
5667 opcode = extract32(insn, 10, 6);
5668 rn = extract32(insn, 5, 5);
5669 rd = extract32(insn, 0, 5);
5670
5671 if (setflag && opcode != 0) {
5672 unallocated_encoding(s);
5673 return;
5674 }
5675
5676 switch (opcode) {
5677 case 0: /* SUBP(S) */
5678 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5679 goto do_unallocated;
5680 } else {
5681 TCGv_i64 tcg_n, tcg_m, tcg_d;
5682
5683 tcg_n = read_cpu_reg_sp(s, rn, true);
5684 tcg_m = read_cpu_reg_sp(s, rm, true);
5685 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5686 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5687 tcg_d = cpu_reg(s, rd);
5688
5689 if (setflag) {
5690 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5691 } else {
5692 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5693 }
5694 }
5695 break;
5696 case 2: /* UDIV */
5697 handle_div(s, false, sf, rm, rn, rd);
5698 break;
5699 case 3: /* SDIV */
5700 handle_div(s, true, sf, rm, rn, rd);
5701 break;
5702 case 4: /* IRG */
5703 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5704 goto do_unallocated;
5705 }
5706 if (s->ata) {
5707 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env,
5708 cpu_reg_sp(s, rn), cpu_reg(s, rm));
5709 } else {
5710 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5711 cpu_reg_sp(s, rn));
5712 }
5713 break;
5714 case 5: /* GMI */
5715 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5716 goto do_unallocated;
5717 } else {
5718 TCGv_i64 t1 = tcg_const_i64(1);
5719 TCGv_i64 t2 = tcg_temp_new_i64();
5720
5721 tcg_gen_extract_i64(t2, cpu_reg_sp(s, rn), 56, 4);
5722 tcg_gen_shl_i64(t1, t1, t2);
5723 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t1);
5724
5725 tcg_temp_free_i64(t1);
5726 tcg_temp_free_i64(t2);
5727 }
5728 break;
5729 case 8: /* LSLV */
5730 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5731 break;
5732 case 9: /* LSRV */
5733 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5734 break;
5735 case 10: /* ASRV */
5736 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5737 break;
5738 case 11: /* RORV */
5739 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5740 break;
5741 case 12: /* PACGA */
5742 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5743 goto do_unallocated;
5744 }
5745 gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5746 cpu_reg(s, rn), cpu_reg_sp(s, rm));
5747 break;
5748 case 16:
5749 case 17:
5750 case 18:
5751 case 19:
5752 case 20:
5753 case 21:
5754 case 22:
5755 case 23: /* CRC32 */
5756 {
5757 int sz = extract32(opcode, 0, 2);
5758 bool crc32c = extract32(opcode, 2, 1);
5759 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5760 break;
5761 }
5762 default:
5763 do_unallocated:
5764 unallocated_encoding(s);
5765 break;
5766 }
5767 }
5768
5769 /*
5770 * Data processing - register
5771 * 31 30 29 28 25 21 20 16 10 0
5772 * +--+---+--+---+-------+-----+-------+-------+---------+
5773 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
5774 * +--+---+--+---+-------+-----+-------+-------+---------+
5775 */
5776 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5777 {
5778 int op0 = extract32(insn, 30, 1);
5779 int op1 = extract32(insn, 28, 1);
5780 int op2 = extract32(insn, 21, 4);
5781 int op3 = extract32(insn, 10, 6);
5782
5783 if (!op1) {
5784 if (op2 & 8) {
5785 if (op2 & 1) {
5786 /* Add/sub (extended register) */
5787 disas_add_sub_ext_reg(s, insn);
5788 } else {
5789 /* Add/sub (shifted register) */
5790 disas_add_sub_reg(s, insn);
5791 }
5792 } else {
5793 /* Logical (shifted register) */
5794 disas_logic_reg(s, insn);
5795 }
5796 return;
5797 }
5798
5799 switch (op2) {
5800 case 0x0:
5801 switch (op3) {
5802 case 0x00: /* Add/subtract (with carry) */
5803 disas_adc_sbc(s, insn);
5804 break;
5805
5806 case 0x01: /* Rotate right into flags */
5807 case 0x21:
5808 disas_rotate_right_into_flags(s, insn);
5809 break;
5810
5811 case 0x02: /* Evaluate into flags */
5812 case 0x12:
5813 case 0x22:
5814 case 0x32:
5815 disas_evaluate_into_flags(s, insn);
5816 break;
5817
5818 default:
5819 goto do_unallocated;
5820 }
5821 break;
5822
5823 case 0x2: /* Conditional compare */
5824 disas_cc(s, insn); /* both imm and reg forms */
5825 break;
5826
5827 case 0x4: /* Conditional select */
5828 disas_cond_select(s, insn);
5829 break;
5830
5831 case 0x6: /* Data-processing */
5832 if (op0) { /* (1 source) */
5833 disas_data_proc_1src(s, insn);
5834 } else { /* (2 source) */
5835 disas_data_proc_2src(s, insn);
5836 }
5837 break;
5838 case 0x8 ... 0xf: /* (3 source) */
5839 disas_data_proc_3src(s, insn);
5840 break;
5841
5842 default:
5843 do_unallocated:
5844 unallocated_encoding(s);
5845 break;
5846 }
5847 }
5848
5849 static void handle_fp_compare(DisasContext *s, int size,
5850 unsigned int rn, unsigned int rm,
5851 bool cmp_with_zero, bool signal_all_nans)
5852 {
5853 TCGv_i64 tcg_flags = tcg_temp_new_i64();
5854 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
5855
5856 if (size == MO_64) {
5857 TCGv_i64 tcg_vn, tcg_vm;
5858
5859 tcg_vn = read_fp_dreg(s, rn);
5860 if (cmp_with_zero) {
5861 tcg_vm = tcg_const_i64(0);
5862 } else {
5863 tcg_vm = read_fp_dreg(s, rm);
5864 }
5865 if (signal_all_nans) {
5866 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5867 } else {
5868 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5869 }
5870 tcg_temp_free_i64(tcg_vn);
5871 tcg_temp_free_i64(tcg_vm);
5872 } else {
5873 TCGv_i32 tcg_vn = tcg_temp_new_i32();
5874 TCGv_i32 tcg_vm = tcg_temp_new_i32();
5875
5876 read_vec_element_i32(s, tcg_vn, rn, 0, size);
5877 if (cmp_with_zero) {
5878 tcg_gen_movi_i32(tcg_vm, 0);
5879 } else {
5880 read_vec_element_i32(s, tcg_vm, rm, 0, size);
5881 }
5882
5883 switch (size) {
5884 case MO_32:
5885 if (signal_all_nans) {
5886 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5887 } else {
5888 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5889 }
5890 break;
5891 case MO_16:
5892 if (signal_all_nans) {
5893 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5894 } else {
5895 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5896 }
5897 break;
5898 default:
5899 g_assert_not_reached();
5900 }
5901
5902 tcg_temp_free_i32(tcg_vn);
5903 tcg_temp_free_i32(tcg_vm);
5904 }
5905
5906 tcg_temp_free_ptr(fpst);
5907
5908 gen_set_nzcv(tcg_flags);
5909
5910 tcg_temp_free_i64(tcg_flags);
5911 }
5912
5913 /* Floating point compare
5914 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
5915 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5916 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
5917 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5918 */
5919 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5920 {
5921 unsigned int mos, type, rm, op, rn, opc, op2r;
5922 int size;
5923
5924 mos = extract32(insn, 29, 3);
5925 type = extract32(insn, 22, 2);
5926 rm = extract32(insn, 16, 5);
5927 op = extract32(insn, 14, 2);
5928 rn = extract32(insn, 5, 5);
5929 opc = extract32(insn, 3, 2);
5930 op2r = extract32(insn, 0, 3);
5931
5932 if (mos || op || op2r) {
5933 unallocated_encoding(s);
5934 return;
5935 }
5936
5937 switch (type) {
5938 case 0:
5939 size = MO_32;
5940 break;
5941 case 1:
5942 size = MO_64;
5943 break;
5944 case 3:
5945 size = MO_16;
5946 if (dc_isar_feature(aa64_fp16, s)) {
5947 break;
5948 }
5949 /* fallthru */
5950 default:
5951 unallocated_encoding(s);
5952 return;
5953 }
5954
5955 if (!fp_access_check(s)) {
5956 return;
5957 }
5958
5959 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5960 }
5961
5962 /* Floating point conditional compare
5963 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5964 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5965 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
5966 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5967 */
5968 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5969 {
5970 unsigned int mos, type, rm, cond, rn, op, nzcv;
5971 TCGv_i64 tcg_flags;
5972 TCGLabel *label_continue = NULL;
5973 int size;
5974
5975 mos = extract32(insn, 29, 3);
5976 type = extract32(insn, 22, 2);
5977 rm = extract32(insn, 16, 5);
5978 cond = extract32(insn, 12, 4);
5979 rn = extract32(insn, 5, 5);
5980 op = extract32(insn, 4, 1);
5981 nzcv = extract32(insn, 0, 4);
5982
5983 if (mos) {
5984 unallocated_encoding(s);
5985 return;
5986 }
5987
5988 switch (type) {
5989 case 0:
5990 size = MO_32;
5991 break;
5992 case 1:
5993 size = MO_64;
5994 break;
5995 case 3:
5996 size = MO_16;
5997 if (dc_isar_feature(aa64_fp16, s)) {
5998 break;
5999 }
6000 /* fallthru */
6001 default:
6002 unallocated_encoding(s);
6003 return;
6004 }
6005
6006 if (!fp_access_check(s)) {
6007 return;
6008 }
6009
6010 if (cond < 0x0e) { /* not always */
6011 TCGLabel *label_match = gen_new_label();
6012 label_continue = gen_new_label();
6013 arm_gen_test_cc(cond, label_match);
6014 /* nomatch: */
6015 tcg_flags = tcg_const_i64(nzcv << 28);
6016 gen_set_nzcv(tcg_flags);
6017 tcg_temp_free_i64(tcg_flags);
6018 tcg_gen_br(label_continue);
6019 gen_set_label(label_match);
6020 }
6021
6022 handle_fp_compare(s, size, rn, rm, false, op);
6023
6024 if (cond < 0x0e) {
6025 gen_set_label(label_continue);
6026 }
6027 }
6028
6029 /* Floating point conditional select
6030 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6031 * +---+---+---+-----------+------+---+------+------+-----+------+------+
6032 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
6033 * +---+---+---+-----------+------+---+------+------+-----+------+------+
6034 */
6035 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6036 {
6037 unsigned int mos, type, rm, cond, rn, rd;
6038 TCGv_i64 t_true, t_false, t_zero;
6039 DisasCompare64 c;
6040 MemOp sz;
6041
6042 mos = extract32(insn, 29, 3);
6043 type = extract32(insn, 22, 2);
6044 rm = extract32(insn, 16, 5);
6045 cond = extract32(insn, 12, 4);
6046 rn = extract32(insn, 5, 5);
6047 rd = extract32(insn, 0, 5);
6048
6049 if (mos) {
6050 unallocated_encoding(s);
6051 return;
6052 }
6053
6054 switch (type) {
6055 case 0:
6056 sz = MO_32;
6057 break;
6058 case 1:
6059 sz = MO_64;
6060 break;
6061 case 3:
6062 sz = MO_16;
6063 if (dc_isar_feature(aa64_fp16, s)) {
6064 break;
6065 }
6066 /* fallthru */
6067 default:
6068 unallocated_encoding(s);
6069 return;
6070 }
6071
6072 if (!fp_access_check(s)) {
6073 return;
6074 }
6075
6076 /* Zero extend sreg & hreg inputs to 64 bits now. */
6077 t_true = tcg_temp_new_i64();
6078 t_false = tcg_temp_new_i64();
6079 read_vec_element(s, t_true, rn, 0, sz);
6080 read_vec_element(s, t_false, rm, 0, sz);
6081
6082 a64_test_cc(&c, cond);
6083 t_zero = tcg_const_i64(0);
6084 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
6085 tcg_temp_free_i64(t_zero);
6086 tcg_temp_free_i64(t_false);
6087 a64_free_cc(&c);
6088
6089 /* Note that sregs & hregs write back zeros to the high bits,
6090 and we've already done the zero-extension. */
6091 write_fp_dreg(s, rd, t_true);
6092 tcg_temp_free_i64(t_true);
6093 }
6094
6095 /* Floating-point data-processing (1 source) - half precision */
6096 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6097 {
6098 TCGv_ptr fpst = NULL;
6099 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6100 TCGv_i32 tcg_res = tcg_temp_new_i32();
6101
6102 switch (opcode) {
6103 case 0x0: /* FMOV */
6104 tcg_gen_mov_i32(tcg_res, tcg_op);
6105 break;
6106 case 0x1: /* FABS */
6107 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
6108 break;
6109 case 0x2: /* FNEG */
6110 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
6111 break;
6112 case 0x3: /* FSQRT */
6113 fpst = get_fpstatus_ptr(true);
6114 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6115 break;
6116 case 0x8: /* FRINTN */
6117 case 0x9: /* FRINTP */
6118 case 0xa: /* FRINTM */
6119 case 0xb: /* FRINTZ */
6120 case 0xc: /* FRINTA */
6121 {
6122 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
6123 fpst = get_fpstatus_ptr(true);
6124
6125 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6126 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6127
6128 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6129 tcg_temp_free_i32(tcg_rmode);
6130 break;
6131 }
6132 case 0xe: /* FRINTX */
6133 fpst = get_fpstatus_ptr(true);
6134 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6135 break;
6136 case 0xf: /* FRINTI */
6137 fpst = get_fpstatus_ptr(true);
6138 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6139 break;
6140 default:
6141 abort();
6142 }
6143
6144 write_fp_sreg(s, rd, tcg_res);
6145
6146 if (fpst) {
6147 tcg_temp_free_ptr(fpst);
6148 }
6149 tcg_temp_free_i32(tcg_op);
6150 tcg_temp_free_i32(tcg_res);
6151 }
6152
6153 /* Floating-point data-processing (1 source) - single precision */
6154 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6155 {
6156 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6157 TCGv_i32 tcg_op, tcg_res;
6158 TCGv_ptr fpst;
6159 int rmode = -1;
6160
6161 tcg_op = read_fp_sreg(s, rn);
6162 tcg_res = tcg_temp_new_i32();
6163
6164 switch (opcode) {
6165 case 0x0: /* FMOV */
6166 tcg_gen_mov_i32(tcg_res, tcg_op);
6167 goto done;
6168 case 0x1: /* FABS */
6169 gen_helper_vfp_abss(tcg_res, tcg_op);
6170 goto done;
6171 case 0x2: /* FNEG */
6172 gen_helper_vfp_negs(tcg_res, tcg_op);
6173 goto done;
6174 case 0x3: /* FSQRT */
6175 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
6176 goto done;
6177 case 0x8: /* FRINTN */
6178 case 0x9: /* FRINTP */
6179 case 0xa: /* FRINTM */
6180 case 0xb: /* FRINTZ */
6181 case 0xc: /* FRINTA */
6182 rmode = arm_rmode_to_sf(opcode & 7);
6183 gen_fpst = gen_helper_rints;
6184 break;
6185 case 0xe: /* FRINTX */
6186 gen_fpst = gen_helper_rints_exact;
6187 break;
6188 case 0xf: /* FRINTI */
6189 gen_fpst = gen_helper_rints;
6190 break;
6191 case 0x10: /* FRINT32Z */
6192 rmode = float_round_to_zero;
6193 gen_fpst = gen_helper_frint32_s;
6194 break;
6195 case 0x11: /* FRINT32X */
6196 gen_fpst = gen_helper_frint32_s;
6197 break;
6198 case 0x12: /* FRINT64Z */
6199 rmode = float_round_to_zero;
6200 gen_fpst = gen_helper_frint64_s;
6201 break;
6202 case 0x13: /* FRINT64X */
6203 gen_fpst = gen_helper_frint64_s;
6204 break;
6205 default:
6206 g_assert_not_reached();
6207 }
6208
6209 fpst = get_fpstatus_ptr(false);
6210 if (rmode >= 0) {
6211 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
6212 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6213 gen_fpst(tcg_res, tcg_op, fpst);
6214 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6215 tcg_temp_free_i32(tcg_rmode);
6216 } else {
6217 gen_fpst(tcg_res, tcg_op, fpst);
6218 }
6219 tcg_temp_free_ptr(fpst);
6220
6221 done:
6222 write_fp_sreg(s, rd, tcg_res);
6223 tcg_temp_free_i32(tcg_op);
6224 tcg_temp_free_i32(tcg_res);
6225 }
6226
6227 /* Floating-point data-processing (1 source) - double precision */
6228 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6229 {
6230 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6231 TCGv_i64 tcg_op, tcg_res;
6232 TCGv_ptr fpst;
6233 int rmode = -1;
6234
6235 switch (opcode) {
6236 case 0x0: /* FMOV */
6237 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6238 return;
6239 }
6240
6241 tcg_op = read_fp_dreg(s, rn);
6242 tcg_res = tcg_temp_new_i64();
6243
6244 switch (opcode) {
6245 case 0x1: /* FABS */
6246 gen_helper_vfp_absd(tcg_res, tcg_op);
6247 goto done;
6248 case 0x2: /* FNEG */
6249 gen_helper_vfp_negd(tcg_res, tcg_op);
6250 goto done;
6251 case 0x3: /* FSQRT */
6252 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
6253 goto done;
6254 case 0x8: /* FRINTN */
6255 case 0x9: /* FRINTP */
6256 case 0xa: /* FRINTM */
6257 case 0xb: /* FRINTZ */
6258 case 0xc: /* FRINTA */
6259 rmode = arm_rmode_to_sf(opcode & 7);
6260 gen_fpst = gen_helper_rintd;
6261 break;
6262 case 0xe: /* FRINTX */
6263 gen_fpst = gen_helper_rintd_exact;
6264 break;
6265 case 0xf: /* FRINTI */
6266 gen_fpst = gen_helper_rintd;
6267 break;
6268 case 0x10: /* FRINT32Z */
6269 rmode = float_round_to_zero;
6270 gen_fpst = gen_helper_frint32_d;
6271 break;
6272 case 0x11: /* FRINT32X */
6273 gen_fpst = gen_helper_frint32_d;
6274 break;
6275 case 0x12: /* FRINT64Z */
6276 rmode = float_round_to_zero;
6277 gen_fpst = gen_helper_frint64_d;
6278 break;
6279 case 0x13: /* FRINT64X */
6280 gen_fpst = gen_helper_frint64_d;
6281 break;
6282 default:
6283 g_assert_not_reached();
6284 }
6285
6286 fpst = get_fpstatus_ptr(false);
6287 if (rmode >= 0) {
6288 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
6289 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6290 gen_fpst(tcg_res, tcg_op, fpst);
6291 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6292 tcg_temp_free_i32(tcg_rmode);
6293 } else {
6294 gen_fpst(tcg_res, tcg_op, fpst);
6295 }
6296 tcg_temp_free_ptr(fpst);
6297
6298 done:
6299 write_fp_dreg(s, rd, tcg_res);
6300 tcg_temp_free_i64(tcg_op);
6301 tcg_temp_free_i64(tcg_res);
6302 }
6303
6304 static void handle_fp_fcvt(DisasContext *s, int opcode,
6305 int rd, int rn, int dtype, int ntype)
6306 {
6307 switch (ntype) {
6308 case 0x0:
6309 {
6310 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6311 if (dtype == 1) {
6312 /* Single to double */
6313 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6314 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
6315 write_fp_dreg(s, rd, tcg_rd);
6316 tcg_temp_free_i64(tcg_rd);
6317 } else {
6318 /* Single to half */
6319 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6320 TCGv_i32 ahp = get_ahp_flag();
6321 TCGv_ptr fpst = get_fpstatus_ptr(false);
6322
6323 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6324 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6325 write_fp_sreg(s, rd, tcg_rd);
6326 tcg_temp_free_i32(tcg_rd);
6327 tcg_temp_free_i32(ahp);
6328 tcg_temp_free_ptr(fpst);
6329 }
6330 tcg_temp_free_i32(tcg_rn);
6331 break;
6332 }
6333 case 0x1:
6334 {
6335 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6336 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6337 if (dtype == 0) {
6338 /* Double to single */
6339 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
6340 } else {
6341 TCGv_ptr fpst = get_fpstatus_ptr(false);
6342 TCGv_i32 ahp = get_ahp_flag();
6343 /* Double to half */
6344 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6345 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6346 tcg_temp_free_ptr(fpst);
6347 tcg_temp_free_i32(ahp);
6348 }
6349 write_fp_sreg(s, rd, tcg_rd);
6350 tcg_temp_free_i32(tcg_rd);
6351 tcg_temp_free_i64(tcg_rn);
6352 break;
6353 }
6354 case 0x3:
6355 {
6356 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6357 TCGv_ptr tcg_fpst = get_fpstatus_ptr(false);
6358 TCGv_i32 tcg_ahp = get_ahp_flag();
6359 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6360 if (dtype == 0) {
6361 /* Half to single */
6362 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6363 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6364 write_fp_sreg(s, rd, tcg_rd);
6365 tcg_temp_free_i32(tcg_rd);
6366 } else {
6367 /* Half to double */
6368 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6369 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6370 write_fp_dreg(s, rd, tcg_rd);
6371 tcg_temp_free_i64(tcg_rd);
6372 }
6373 tcg_temp_free_i32(tcg_rn);
6374 tcg_temp_free_ptr(tcg_fpst);
6375 tcg_temp_free_i32(tcg_ahp);
6376 break;
6377 }
6378 default:
6379 abort();
6380 }
6381 }
6382
6383 /* Floating point data-processing (1 source)
6384 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
6385 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6386 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
6387 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6388 */
6389 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6390 {
6391 int mos = extract32(insn, 29, 3);
6392 int type = extract32(insn, 22, 2);
6393 int opcode = extract32(insn, 15, 6);
6394 int rn = extract32(insn, 5, 5);
6395 int rd = extract32(insn, 0, 5);
6396
6397 if (mos) {
6398 unallocated_encoding(s);
6399 return;
6400 }
6401
6402 switch (opcode) {
6403 case 0x4: case 0x5: case 0x7:
6404 {
6405 /* FCVT between half, single and double precision */
6406 int dtype = extract32(opcode, 0, 2);
6407 if (type == 2 || dtype == type) {
6408 unallocated_encoding(s);
6409 return;
6410 }
6411 if (!fp_access_check(s)) {
6412 return;
6413 }
6414
6415 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6416 break;
6417 }
6418
6419 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6420 if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6421 unallocated_encoding(s);
6422 return;
6423 }
6424 /* fall through */
6425 case 0x0 ... 0x3:
6426 case 0x8 ... 0xc:
6427 case 0xe ... 0xf:
6428 /* 32-to-32 and 64-to-64 ops */
6429 switch (type) {
6430 case 0:
6431 if (!fp_access_check(s)) {
6432 return;
6433 }
6434 handle_fp_1src_single(s, opcode, rd, rn);
6435 break;
6436 case 1:
6437 if (!fp_access_check(s)) {
6438 return;
6439 }
6440 handle_fp_1src_double(s, opcode, rd, rn);
6441 break;
6442 case 3:
6443 if (!dc_isar_feature(aa64_fp16, s)) {
6444 unallocated_encoding(s);
6445 return;
6446 }
6447
6448 if (!fp_access_check(s)) {
6449 return;
6450 }
6451 handle_fp_1src_half(s, opcode, rd, rn);
6452 break;
6453 default:
6454 unallocated_encoding(s);
6455 }
6456 break;
6457
6458 default:
6459 unallocated_encoding(s);
6460 break;
6461 }
6462 }
6463
6464 /* Floating-point data-processing (2 source) - single precision */
6465 static void handle_fp_2src_single(DisasContext *s, int opcode,
6466 int rd, int rn, int rm)
6467 {
6468 TCGv_i32 tcg_op1;
6469 TCGv_i32 tcg_op2;
6470 TCGv_i32 tcg_res;
6471 TCGv_ptr fpst;
6472
6473 tcg_res = tcg_temp_new_i32();
6474 fpst = get_fpstatus_ptr(false);
6475 tcg_op1 = read_fp_sreg(s, rn);
6476 tcg_op2 = read_fp_sreg(s, rm);
6477
6478 switch (opcode) {
6479 case 0x0: /* FMUL */
6480 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6481 break;
6482 case 0x1: /* FDIV */
6483 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6484 break;
6485 case 0x2: /* FADD */
6486 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6487 break;
6488 case 0x3: /* FSUB */
6489 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6490 break;
6491 case 0x4: /* FMAX */
6492 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6493 break;
6494 case 0x5: /* FMIN */
6495 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6496 break;
6497 case 0x6: /* FMAXNM */
6498 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6499 break;
6500 case 0x7: /* FMINNM */
6501 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6502 break;
6503 case 0x8: /* FNMUL */
6504 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6505 gen_helper_vfp_negs(tcg_res, tcg_res);
6506 break;
6507 }
6508
6509 write_fp_sreg(s, rd, tcg_res);
6510
6511 tcg_temp_free_ptr(fpst);
6512 tcg_temp_free_i32(tcg_op1);
6513 tcg_temp_free_i32(tcg_op2);
6514 tcg_temp_free_i32(tcg_res);
6515 }
6516
6517 /* Floating-point data-processing (2 source) - double precision */
6518 static void handle_fp_2src_double(DisasContext *s, int opcode,
6519 int rd, int rn, int rm)
6520 {
6521 TCGv_i64 tcg_op1;
6522 TCGv_i64 tcg_op2;
6523 TCGv_i64 tcg_res;
6524 TCGv_ptr fpst;
6525
6526 tcg_res = tcg_temp_new_i64();
6527 fpst = get_fpstatus_ptr(false);
6528 tcg_op1 = read_fp_dreg(s, rn);
6529 tcg_op2 = read_fp_dreg(s, rm);
6530
6531 switch (opcode) {
6532 case 0x0: /* FMUL */
6533 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6534 break;
6535 case 0x1: /* FDIV */
6536 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6537 break;
6538 case 0x2: /* FADD */
6539 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6540 break;
6541 case 0x3: /* FSUB */
6542 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6543 break;
6544 case 0x4: /* FMAX */
6545 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6546 break;
6547 case 0x5: /* FMIN */
6548 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6549 break;
6550 case 0x6: /* FMAXNM */
6551 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6552 break;
6553 case 0x7: /* FMINNM */
6554 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6555 break;
6556 case 0x8: /* FNMUL */
6557 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6558 gen_helper_vfp_negd(tcg_res, tcg_res);
6559 break;
6560 }
6561
6562 write_fp_dreg(s, rd, tcg_res);
6563
6564 tcg_temp_free_ptr(fpst);
6565 tcg_temp_free_i64(tcg_op1);
6566 tcg_temp_free_i64(tcg_op2);
6567 tcg_temp_free_i64(tcg_res);
6568 }
6569
6570 /* Floating-point data-processing (2 source) - half precision */
6571 static void handle_fp_2src_half(DisasContext *s, int opcode,
6572 int rd, int rn, int rm)
6573 {
6574 TCGv_i32 tcg_op1;
6575 TCGv_i32 tcg_op2;
6576 TCGv_i32 tcg_res;
6577 TCGv_ptr fpst;
6578
6579 tcg_res = tcg_temp_new_i32();
6580 fpst = get_fpstatus_ptr(true);
6581 tcg_op1 = read_fp_hreg(s, rn);
6582 tcg_op2 = read_fp_hreg(s, rm);
6583
6584 switch (opcode) {
6585 case 0x0: /* FMUL */
6586 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6587 break;
6588 case 0x1: /* FDIV */
6589 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6590 break;
6591 case 0x2: /* FADD */
6592 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6593 break;
6594 case 0x3: /* FSUB */
6595 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6596 break;
6597 case 0x4: /* FMAX */
6598 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6599 break;
6600 case 0x5: /* FMIN */
6601 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6602 break;
6603 case 0x6: /* FMAXNM */
6604 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6605 break;
6606 case 0x7: /* FMINNM */
6607 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6608 break;
6609 case 0x8: /* FNMUL */
6610 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6611 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6612 break;
6613 default:
6614 g_assert_not_reached();
6615 }
6616
6617 write_fp_sreg(s, rd, tcg_res);
6618
6619 tcg_temp_free_ptr(fpst);
6620 tcg_temp_free_i32(tcg_op1);
6621 tcg_temp_free_i32(tcg_op2);
6622 tcg_temp_free_i32(tcg_res);
6623 }
6624
6625 /* Floating point data-processing (2 source)
6626 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6627 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6628 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
6629 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6630 */
6631 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6632 {
6633 int mos = extract32(insn, 29, 3);
6634 int type = extract32(insn, 22, 2);
6635 int rd = extract32(insn, 0, 5);
6636 int rn = extract32(insn, 5, 5);
6637 int rm = extract32(insn, 16, 5);
6638 int opcode = extract32(insn, 12, 4);
6639
6640 if (opcode > 8 || mos) {
6641 unallocated_encoding(s);
6642 return;
6643 }
6644
6645 switch (type) {
6646 case 0:
6647 if (!fp_access_check(s)) {
6648 return;
6649 }
6650 handle_fp_2src_single(s, opcode, rd, rn, rm);
6651 break;
6652 case 1:
6653 if (!fp_access_check(s)) {
6654 return;
6655 }
6656 handle_fp_2src_double(s, opcode, rd, rn, rm);
6657 break;
6658 case 3:
6659 if (!dc_isar_feature(aa64_fp16, s)) {
6660 unallocated_encoding(s);
6661 return;
6662 }
6663 if (!fp_access_check(s)) {
6664 return;
6665 }
6666 handle_fp_2src_half(s, opcode, rd, rn, rm);
6667 break;
6668 default:
6669 unallocated_encoding(s);
6670 }
6671 }
6672
6673 /* Floating-point data-processing (3 source) - single precision */
6674 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6675 int rd, int rn, int rm, int ra)
6676 {
6677 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6678 TCGv_i32 tcg_res = tcg_temp_new_i32();
6679 TCGv_ptr fpst = get_fpstatus_ptr(false);
6680
6681 tcg_op1 = read_fp_sreg(s, rn);
6682 tcg_op2 = read_fp_sreg(s, rm);
6683 tcg_op3 = read_fp_sreg(s, ra);
6684
6685 /* These are fused multiply-add, and must be done as one
6686 * floating point operation with no rounding between the
6687 * multiplication and addition steps.
6688 * NB that doing the negations here as separate steps is
6689 * correct : an input NaN should come out with its sign bit
6690 * flipped if it is a negated-input.
6691 */
6692 if (o1 == true) {
6693 gen_helper_vfp_negs(tcg_op3, tcg_op3);
6694 }
6695
6696 if (o0 != o1) {
6697 gen_helper_vfp_negs(tcg_op1, tcg_op1);
6698 }
6699
6700 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6701
6702 write_fp_sreg(s, rd, tcg_res);
6703
6704 tcg_temp_free_ptr(fpst);
6705 tcg_temp_free_i32(tcg_op1);
6706 tcg_temp_free_i32(tcg_op2);
6707 tcg_temp_free_i32(tcg_op3);
6708 tcg_temp_free_i32(tcg_res);
6709 }
6710
6711 /* Floating-point data-processing (3 source) - double precision */
6712 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6713 int rd, int rn, int rm, int ra)
6714 {
6715 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6716 TCGv_i64 tcg_res = tcg_temp_new_i64();
6717 TCGv_ptr fpst = get_fpstatus_ptr(false);
6718
6719 tcg_op1 = read_fp_dreg(s, rn);
6720 tcg_op2 = read_fp_dreg(s, rm);
6721 tcg_op3 = read_fp_dreg(s, ra);
6722
6723 /* These are fused multiply-add, and must be done as one
6724 * floating point operation with no rounding between the
6725 * multiplication and addition steps.
6726 * NB that doing the negations here as separate steps is
6727 * correct : an input NaN should come out with its sign bit
6728 * flipped if it is a negated-input.
6729 */
6730 if (o1 == true) {
6731 gen_helper_vfp_negd(tcg_op3, tcg_op3);
6732 }
6733
6734 if (o0 != o1) {
6735 gen_helper_vfp_negd(tcg_op1, tcg_op1);
6736 }
6737
6738 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6739
6740 write_fp_dreg(s, rd, tcg_res);
6741
6742 tcg_temp_free_ptr(fpst);
6743 tcg_temp_free_i64(tcg_op1);
6744 tcg_temp_free_i64(tcg_op2);
6745 tcg_temp_free_i64(tcg_op3);
6746 tcg_temp_free_i64(tcg_res);
6747 }
6748
6749 /* Floating-point data-processing (3 source) - half precision */
6750 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6751 int rd, int rn, int rm, int ra)
6752 {
6753 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6754 TCGv_i32 tcg_res = tcg_temp_new_i32();
6755 TCGv_ptr fpst = get_fpstatus_ptr(true);
6756
6757 tcg_op1 = read_fp_hreg(s, rn);
6758 tcg_op2 = read_fp_hreg(s, rm);
6759 tcg_op3 = read_fp_hreg(s, ra);
6760
6761 /* These are fused multiply-add, and must be done as one
6762 * floating point operation with no rounding between the
6763 * multiplication and addition steps.
6764 * NB that doing the negations here as separate steps is
6765 * correct : an input NaN should come out with its sign bit
6766 * flipped if it is a negated-input.
6767 */
6768 if (o1 == true) {
6769 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6770 }
6771
6772 if (o0 != o1) {
6773 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6774 }
6775
6776 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6777
6778 write_fp_sreg(s, rd, tcg_res);
6779
6780 tcg_temp_free_ptr(fpst);
6781 tcg_temp_free_i32(tcg_op1);
6782 tcg_temp_free_i32(tcg_op2);
6783 tcg_temp_free_i32(tcg_op3);
6784 tcg_temp_free_i32(tcg_res);
6785 }
6786
6787 /* Floating point data-processing (3 source)
6788 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6789 * +---+---+---+-----------+------+----+------+----+------+------+------+
6790 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6791 * +---+---+---+-----------+------+----+------+----+------+------+------+
6792 */
6793 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6794 {
6795 int mos = extract32(insn, 29, 3);
6796 int type = extract32(insn, 22, 2);
6797 int rd = extract32(insn, 0, 5);
6798 int rn = extract32(insn, 5, 5);
6799 int ra = extract32(insn, 10, 5);
6800 int rm = extract32(insn, 16, 5);
6801 bool o0 = extract32(insn, 15, 1);
6802 bool o1 = extract32(insn, 21, 1);
6803
6804 if (mos) {
6805 unallocated_encoding(s);
6806 return;
6807 }
6808
6809 switch (type) {
6810 case 0:
6811 if (!fp_access_check(s)) {
6812 return;
6813 }
6814 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6815 break;
6816 case 1:
6817 if (!fp_access_check(s)) {
6818 return;
6819 }
6820 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6821 break;
6822 case 3:
6823 if (!dc_isar_feature(aa64_fp16, s)) {
6824 unallocated_encoding(s);
6825 return;
6826 }
6827 if (!fp_access_check(s)) {
6828 return;
6829 }
6830 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6831 break;
6832 default:
6833 unallocated_encoding(s);
6834 }
6835 }
6836
6837 /* Floating point immediate
6838 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
6839 * +---+---+---+-----------+------+---+------------+-------+------+------+
6840 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
6841 * +---+---+---+-----------+------+---+------------+-------+------+------+
6842 */
6843 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6844 {
6845 int rd = extract32(insn, 0, 5);
6846 int imm5 = extract32(insn, 5, 5);
6847 int imm8 = extract32(insn, 13, 8);
6848 int type = extract32(insn, 22, 2);
6849 int mos = extract32(insn, 29, 3);
6850 uint64_t imm;
6851 TCGv_i64 tcg_res;
6852 MemOp sz;
6853
6854 if (mos || imm5) {
6855 unallocated_encoding(s);
6856 return;
6857 }
6858
6859 switch (type) {
6860 case 0:
6861 sz = MO_32;
6862 break;
6863 case 1:
6864 sz = MO_64;
6865 break;
6866 case 3:
6867 sz = MO_16;
6868 if (dc_isar_feature(aa64_fp16, s)) {
6869 break;
6870 }
6871 /* fallthru */
6872 default:
6873 unallocated_encoding(s);
6874 return;
6875 }
6876
6877 if (!fp_access_check(s)) {
6878 return;
6879 }
6880
6881 imm = vfp_expand_imm(sz, imm8);
6882
6883 tcg_res = tcg_const_i64(imm);
6884 write_fp_dreg(s, rd, tcg_res);
6885 tcg_temp_free_i64(tcg_res);
6886 }
6887
6888 /* Handle floating point <=> fixed point conversions. Note that we can
6889 * also deal with fp <=> integer conversions as a special case (scale == 64)
6890 * OPTME: consider handling that special case specially or at least skipping
6891 * the call to scalbn in the helpers for zero shifts.
6892 */
6893 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6894 bool itof, int rmode, int scale, int sf, int type)
6895 {
6896 bool is_signed = !(opcode & 1);
6897 TCGv_ptr tcg_fpstatus;
6898 TCGv_i32 tcg_shift, tcg_single;
6899 TCGv_i64 tcg_double;
6900
6901 tcg_fpstatus = get_fpstatus_ptr(type == 3);
6902
6903 tcg_shift = tcg_const_i32(64 - scale);
6904
6905 if (itof) {
6906 TCGv_i64 tcg_int = cpu_reg(s, rn);
6907 if (!sf) {
6908 TCGv_i64 tcg_extend = new_tmp_a64(s);
6909
6910 if (is_signed) {
6911 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6912 } else {
6913 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6914 }
6915
6916 tcg_int = tcg_extend;
6917 }
6918
6919 switch (type) {
6920 case 1: /* float64 */
6921 tcg_double = tcg_temp_new_i64();
6922 if (is_signed) {
6923 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6924 tcg_shift, tcg_fpstatus);
6925 } else {
6926 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6927 tcg_shift, tcg_fpstatus);
6928 }
6929 write_fp_dreg(s, rd, tcg_double);
6930 tcg_temp_free_i64(tcg_double);
6931 break;
6932
6933 case 0: /* float32 */
6934 tcg_single = tcg_temp_new_i32();
6935 if (is_signed) {
6936 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6937 tcg_shift, tcg_fpstatus);
6938 } else {
6939 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6940 tcg_shift, tcg_fpstatus);
6941 }
6942 write_fp_sreg(s, rd, tcg_single);
6943 tcg_temp_free_i32(tcg_single);
6944 break;
6945
6946 case 3: /* float16 */
6947 tcg_single = tcg_temp_new_i32();
6948 if (is_signed) {
6949 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6950 tcg_shift, tcg_fpstatus);
6951 } else {
6952 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6953 tcg_shift, tcg_fpstatus);
6954 }
6955 write_fp_sreg(s, rd, tcg_single);
6956 tcg_temp_free_i32(tcg_single);
6957 break;
6958
6959 default:
6960 g_assert_not_reached();
6961 }
6962 } else {
6963 TCGv_i64 tcg_int = cpu_reg(s, rd);
6964 TCGv_i32 tcg_rmode;
6965
6966 if (extract32(opcode, 2, 1)) {
6967 /* There are too many rounding modes to all fit into rmode,
6968 * so FCVTA[US] is a special case.
6969 */
6970 rmode = FPROUNDING_TIEAWAY;
6971 }
6972
6973 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
6974
6975 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
6976
6977 switch (type) {
6978 case 1: /* float64 */
6979 tcg_double = read_fp_dreg(s, rn);
6980 if (is_signed) {
6981 if (!sf) {
6982 gen_helper_vfp_tosld(tcg_int, tcg_double,
6983 tcg_shift, tcg_fpstatus);
6984 } else {
6985 gen_helper_vfp_tosqd(tcg_int, tcg_double,
6986 tcg_shift, tcg_fpstatus);
6987 }
6988 } else {
6989 if (!sf) {
6990 gen_helper_vfp_tould(tcg_int, tcg_double,
6991 tcg_shift, tcg_fpstatus);
6992 } else {
6993 gen_helper_vfp_touqd(tcg_int, tcg_double,
6994 tcg_shift, tcg_fpstatus);
6995 }
6996 }
6997 if (!sf) {
6998 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6999 }
7000 tcg_temp_free_i64(tcg_double);
7001 break;
7002
7003 case 0: /* float32 */
7004 tcg_single = read_fp_sreg(s, rn);
7005 if (sf) {
7006 if (is_signed) {
7007 gen_helper_vfp_tosqs(tcg_int, tcg_single,
7008 tcg_shift, tcg_fpstatus);
7009 } else {
7010 gen_helper_vfp_touqs(tcg_int, tcg_single,
7011 tcg_shift, tcg_fpstatus);
7012 }
7013 } else {
7014 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7015 if (is_signed) {
7016 gen_helper_vfp_tosls(tcg_dest, tcg_single,
7017 tcg_shift, tcg_fpstatus);
7018 } else {
7019 gen_helper_vfp_touls(tcg_dest, tcg_single,
7020 tcg_shift, tcg_fpstatus);
7021 }
7022 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7023 tcg_temp_free_i32(tcg_dest);
7024 }
7025 tcg_temp_free_i32(tcg_single);
7026 break;
7027
7028 case 3: /* float16 */
7029 tcg_single = read_fp_sreg(s, rn);
7030 if (sf) {
7031 if (is_signed) {
7032 gen_helper_vfp_tosqh(tcg_int, tcg_single,
7033 tcg_shift, tcg_fpstatus);
7034 } else {
7035 gen_helper_vfp_touqh(tcg_int, tcg_single,
7036 tcg_shift, tcg_fpstatus);
7037 }
7038 } else {
7039 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7040 if (is_signed) {
7041 gen_helper_vfp_toslh(tcg_dest, tcg_single,
7042 tcg_shift, tcg_fpstatus);
7043 } else {
7044 gen_helper_vfp_toulh(tcg_dest, tcg_single,
7045 tcg_shift, tcg_fpstatus);
7046 }
7047 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7048 tcg_temp_free_i32(tcg_dest);
7049 }
7050 tcg_temp_free_i32(tcg_single);
7051 break;
7052
7053 default:
7054 g_assert_not_reached();
7055 }
7056
7057 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7058 tcg_temp_free_i32(tcg_rmode);
7059 }
7060
7061 tcg_temp_free_ptr(tcg_fpstatus);
7062 tcg_temp_free_i32(tcg_shift);
7063 }
7064
7065 /* Floating point <-> fixed point conversions
7066 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7067 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7068 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
7069 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7070 */
7071 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7072 {
7073 int rd = extract32(insn, 0, 5);
7074 int rn = extract32(insn, 5, 5);
7075 int scale = extract32(insn, 10, 6);
7076 int opcode = extract32(insn, 16, 3);
7077 int rmode = extract32(insn, 19, 2);
7078 int type = extract32(insn, 22, 2);
7079 bool sbit = extract32(insn, 29, 1);
7080 bool sf = extract32(insn, 31, 1);
7081 bool itof;
7082
7083 if (sbit || (!sf && scale < 32)) {
7084 unallocated_encoding(s);
7085 return;
7086 }
7087
7088 switch (type) {
7089 case 0: /* float32 */
7090 case 1: /* float64 */
7091 break;
7092 case 3: /* float16 */
7093 if (dc_isar_feature(aa64_fp16, s)) {
7094 break;
7095 }
7096 /* fallthru */
7097 default:
7098 unallocated_encoding(s);
7099 return;
7100 }
7101
7102 switch ((rmode << 3) | opcode) {
7103 case 0x2: /* SCVTF */
7104 case 0x3: /* UCVTF */
7105 itof = true;
7106 break;
7107 case 0x18: /* FCVTZS */
7108 case 0x19: /* FCVTZU */
7109 itof = false;
7110 break;
7111 default:
7112 unallocated_encoding(s);
7113 return;
7114 }
7115
7116 if (!fp_access_check(s)) {
7117 return;
7118 }
7119
7120 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7121 }
7122
7123 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7124 {
7125 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7126 * without conversion.
7127 */
7128
7129 if (itof) {
7130 TCGv_i64 tcg_rn = cpu_reg(s, rn);
7131 TCGv_i64 tmp;
7132
7133 switch (type) {
7134 case 0:
7135 /* 32 bit */
7136 tmp = tcg_temp_new_i64();
7137 tcg_gen_ext32u_i64(tmp, tcg_rn);
7138 write_fp_dreg(s, rd, tmp);
7139 tcg_temp_free_i64(tmp);
7140 break;
7141 case 1:
7142 /* 64 bit */
7143 write_fp_dreg(s, rd, tcg_rn);
7144 break;
7145 case 2:
7146 /* 64 bit to top half. */
7147 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
7148 clear_vec_high(s, true, rd);
7149 break;
7150 case 3:
7151 /* 16 bit */
7152 tmp = tcg_temp_new_i64();
7153 tcg_gen_ext16u_i64(tmp, tcg_rn);
7154 write_fp_dreg(s, rd, tmp);
7155 tcg_temp_free_i64(tmp);
7156 break;
7157 default:
7158 g_assert_not_reached();
7159 }
7160 } else {
7161 TCGv_i64 tcg_rd = cpu_reg(s, rd);
7162
7163 switch (type) {
7164 case 0:
7165 /* 32 bit */
7166 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
7167 break;
7168 case 1:
7169 /* 64 bit */
7170 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
7171 break;
7172 case 2:
7173 /* 64 bits from top half */
7174 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
7175 break;
7176 case 3:
7177 /* 16 bit */
7178 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
7179 break;
7180 default:
7181 g_assert_not_reached();
7182 }
7183 }
7184 }
7185
7186 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7187 {
7188 TCGv_i64 t = read_fp_dreg(s, rn);
7189 TCGv_ptr fpstatus = get_fpstatus_ptr(false);
7190
7191 gen_helper_fjcvtzs(t, t, fpstatus);
7192
7193 tcg_temp_free_ptr(fpstatus);
7194
7195 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7196 tcg_gen_extrh_i64_i32(cpu_ZF, t);
7197 tcg_gen_movi_i32(cpu_CF, 0);
7198 tcg_gen_movi_i32(cpu_NF, 0);
7199 tcg_gen_movi_i32(cpu_VF, 0);
7200
7201 tcg_temp_free_i64(t);
7202 }
7203
7204 /* Floating point <-> integer conversions
7205 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7206 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7207 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7208 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7209 */
7210 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7211 {
7212 int rd = extract32(insn, 0, 5);
7213 int rn = extract32(insn, 5, 5);
7214 int opcode = extract32(insn, 16, 3);
7215 int rmode = extract32(insn, 19, 2);
7216 int type = extract32(insn, 22, 2);
7217 bool sbit = extract32(insn, 29, 1);
7218 bool sf = extract32(insn, 31, 1);
7219 bool itof = false;
7220
7221 if (sbit) {
7222 goto do_unallocated;
7223 }
7224
7225 switch (opcode) {
7226 case 2: /* SCVTF */
7227 case 3: /* UCVTF */
7228 itof = true;
7229 /* fallthru */
7230 case 4: /* FCVTAS */
7231 case 5: /* FCVTAU */
7232 if (rmode != 0) {
7233 goto do_unallocated;
7234 }
7235 /* fallthru */
7236 case 0: /* FCVT[NPMZ]S */
7237 case 1: /* FCVT[NPMZ]U */
7238 switch (type) {
7239 case 0: /* float32 */
7240 case 1: /* float64 */
7241 break;
7242 case 3: /* float16 */
7243 if (!dc_isar_feature(aa64_fp16, s)) {
7244 goto do_unallocated;
7245 }
7246 break;
7247 default:
7248 goto do_unallocated;
7249 }
7250 if (!fp_access_check(s)) {
7251 return;
7252 }
7253 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7254 break;
7255
7256 default:
7257 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7258 case 0b01100110: /* FMOV half <-> 32-bit int */
7259 case 0b01100111:
7260 case 0b11100110: /* FMOV half <-> 64-bit int */
7261 case 0b11100111:
7262 if (!dc_isar_feature(aa64_fp16, s)) {
7263 goto do_unallocated;
7264 }
7265 /* fallthru */
7266 case 0b00000110: /* FMOV 32-bit */
7267 case 0b00000111:
7268 case 0b10100110: /* FMOV 64-bit */
7269 case 0b10100111:
7270 case 0b11001110: /* FMOV top half of 128-bit */
7271 case 0b11001111:
7272 if (!fp_access_check(s)) {
7273 return;
7274 }
7275 itof = opcode & 1;
7276 handle_fmov(s, rd, rn, type, itof);
7277 break;
7278
7279 case 0b00111110: /* FJCVTZS */
7280 if (!dc_isar_feature(aa64_jscvt, s)) {
7281 goto do_unallocated;
7282 } else if (fp_access_check(s)) {
7283 handle_fjcvtzs(s, rd, rn);
7284 }
7285 break;
7286
7287 default:
7288 do_unallocated:
7289 unallocated_encoding(s);
7290 return;
7291 }
7292 break;
7293 }
7294 }
7295
7296 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7297 * 31 30 29 28 25 24 0
7298 * +---+---+---+---------+-----------------------------+
7299 * | | 0 | | 1 1 1 1 | |
7300 * +---+---+---+---------+-----------------------------+
7301 */
7302 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7303 {
7304 if (extract32(insn, 24, 1)) {
7305 /* Floating point data-processing (3 source) */
7306 disas_fp_3src(s, insn);
7307 } else if (extract32(insn, 21, 1) == 0) {
7308 /* Floating point to fixed point conversions */
7309 disas_fp_fixed_conv(s, insn);
7310 } else {
7311 switch (extract32(insn, 10, 2)) {
7312 case 1:
7313 /* Floating point conditional compare */
7314 disas_fp_ccomp(s, insn);
7315 break;
7316 case 2:
7317 /* Floating point data-processing (2 source) */
7318 disas_fp_2src(s, insn);
7319 break;
7320 case 3:
7321 /* Floating point conditional select */
7322 disas_fp_csel(s, insn);
7323 break;
7324 case 0:
7325 switch (ctz32(extract32(insn, 12, 4))) {
7326 case 0: /* [15:12] == xxx1 */
7327 /* Floating point immediate */
7328 disas_fp_imm(s, insn);
7329 break;
7330 case 1: /* [15:12] == xx10 */
7331 /* Floating point compare */
7332 disas_fp_compare(s, insn);
7333 break;
7334 case 2: /* [15:12] == x100 */
7335 /* Floating point data-processing (1 source) */
7336 disas_fp_1src(s, insn);
7337 break;
7338 case 3: /* [15:12] == 1000 */
7339 unallocated_encoding(s);
7340 break;
7341 default: /* [15:12] == 0000 */
7342 /* Floating point <-> integer conversions */
7343 disas_fp_int_conv(s, insn);
7344 break;
7345 }
7346 break;
7347 }
7348 }
7349 }
7350
7351 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7352 int pos)
7353 {
7354 /* Extract 64 bits from the middle of two concatenated 64 bit
7355 * vector register slices left:right. The extracted bits start
7356 * at 'pos' bits into the right (least significant) side.
7357 * We return the result in tcg_right, and guarantee not to
7358 * trash tcg_left.
7359 */
7360 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7361 assert(pos > 0 && pos < 64);
7362
7363 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7364 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7365 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7366
7367 tcg_temp_free_i64(tcg_tmp);
7368 }
7369
7370 /* EXT
7371 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
7372 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7373 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
7374 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7375 */
7376 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7377 {
7378 int is_q = extract32(insn, 30, 1);
7379 int op2 = extract32(insn, 22, 2);
7380 int imm4 = extract32(insn, 11, 4);
7381 int rm = extract32(insn, 16, 5);
7382 int rn = extract32(insn, 5, 5);
7383 int rd = extract32(insn, 0, 5);
7384 int pos = imm4 << 3;
7385 TCGv_i64 tcg_resl, tcg_resh;
7386
7387 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7388 unallocated_encoding(s);
7389 return;
7390 }
7391
7392 if (!fp_access_check(s)) {
7393 return;
7394 }
7395
7396 tcg_resh = tcg_temp_new_i64();
7397 tcg_resl = tcg_temp_new_i64();
7398
7399 /* Vd gets bits starting at pos bits into Vm:Vn. This is
7400 * either extracting 128 bits from a 128:128 concatenation, or
7401 * extracting 64 bits from a 64:64 concatenation.
7402 */
7403 if (!is_q) {
7404 read_vec_element(s, tcg_resl, rn, 0, MO_64);
7405 if (pos != 0) {
7406 read_vec_element(s, tcg_resh, rm, 0, MO_64);
7407 do_ext64(s, tcg_resh, tcg_resl, pos);
7408 }
7409 } else {
7410 TCGv_i64 tcg_hh;
7411 typedef struct {
7412 int reg;
7413 int elt;
7414 } EltPosns;
7415 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7416 EltPosns *elt = eltposns;
7417
7418 if (pos >= 64) {
7419 elt++;
7420 pos -= 64;
7421 }
7422
7423 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7424 elt++;
7425 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7426 elt++;
7427 if (pos != 0) {
7428 do_ext64(s, tcg_resh, tcg_resl, pos);
7429 tcg_hh = tcg_temp_new_i64();
7430 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7431 do_ext64(s, tcg_hh, tcg_resh, pos);
7432 tcg_temp_free_i64(tcg_hh);
7433 }
7434 }
7435
7436 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7437 tcg_temp_free_i64(tcg_resl);
7438 if (is_q) {
7439 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7440 }
7441 tcg_temp_free_i64(tcg_resh);
7442 clear_vec_high(s, is_q, rd);
7443 }
7444
7445 /* TBL/TBX
7446 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
7447 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7448 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
7449 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7450 */
7451 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7452 {
7453 int op2 = extract32(insn, 22, 2);
7454 int is_q = extract32(insn, 30, 1);
7455 int rm = extract32(insn, 16, 5);
7456 int rn = extract32(insn, 5, 5);
7457 int rd = extract32(insn, 0, 5);
7458 int is_tblx = extract32(insn, 12, 1);
7459 int len = extract32(insn, 13, 2);
7460 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
7461 TCGv_i32 tcg_regno, tcg_numregs;
7462
7463 if (op2 != 0) {
7464 unallocated_encoding(s);
7465 return;
7466 }
7467
7468 if (!fp_access_check(s)) {
7469 return;
7470 }
7471
7472 /* This does a table lookup: for every byte element in the input
7473 * we index into a table formed from up to four vector registers,
7474 * and then the output is the result of the lookups. Our helper
7475 * function does the lookup operation for a single 64 bit part of
7476 * the input.
7477 */
7478 tcg_resl = tcg_temp_new_i64();
7479 tcg_resh = NULL;
7480
7481 if (is_tblx) {
7482 read_vec_element(s, tcg_resl, rd, 0, MO_64);
7483 } else {
7484 tcg_gen_movi_i64(tcg_resl, 0);
7485 }
7486
7487 if (is_q) {
7488 tcg_resh = tcg_temp_new_i64();
7489 if (is_tblx) {
7490 read_vec_element(s, tcg_resh, rd, 1, MO_64);
7491 } else {
7492 tcg_gen_movi_i64(tcg_resh, 0);
7493 }
7494 }
7495
7496 tcg_idx = tcg_temp_new_i64();
7497 tcg_regno = tcg_const_i32(rn);
7498 tcg_numregs = tcg_const_i32(len + 1);
7499 read_vec_element(s, tcg_idx, rm, 0, MO_64);
7500 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
7501 tcg_regno, tcg_numregs);
7502 if (is_q) {
7503 read_vec_element(s, tcg_idx, rm, 1, MO_64);
7504 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
7505 tcg_regno, tcg_numregs);
7506 }
7507 tcg_temp_free_i64(tcg_idx);
7508 tcg_temp_free_i32(tcg_regno);
7509 tcg_temp_free_i32(tcg_numregs);
7510
7511 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7512 tcg_temp_free_i64(tcg_resl);
7513
7514 if (is_q) {
7515 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7516 tcg_temp_free_i64(tcg_resh);
7517 }
7518 clear_vec_high(s, is_q, rd);
7519 }
7520
7521 /* ZIP/UZP/TRN
7522 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
7523 * +---+---+-------------+------+---+------+---+------------------+------+
7524 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
7525 * +---+---+-------------+------+---+------+---+------------------+------+
7526 */
7527 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7528 {
7529 int rd = extract32(insn, 0, 5);
7530 int rn = extract32(insn, 5, 5);
7531 int rm = extract32(insn, 16, 5);
7532 int size = extract32(insn, 22, 2);
7533 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7534 * bit 2 indicates 1 vs 2 variant of the insn.
7535 */
7536 int opcode = extract32(insn, 12, 2);
7537 bool part = extract32(insn, 14, 1);
7538 bool is_q = extract32(insn, 30, 1);
7539 int esize = 8 << size;
7540 int i, ofs;
7541 int datasize = is_q ? 128 : 64;
7542 int elements = datasize / esize;
7543 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
7544
7545 if (opcode == 0 || (size == 3 && !is_q)) {
7546 unallocated_encoding(s);
7547 return;
7548 }
7549
7550 if (!fp_access_check(s)) {
7551 return;
7552 }
7553
7554 tcg_resl = tcg_const_i64(0);
7555 tcg_resh = is_q ? tcg_const_i64(0) : NULL;
7556 tcg_res = tcg_temp_new_i64();
7557
7558 for (i = 0; i < elements; i++) {
7559 switch (opcode) {
7560 case 1: /* UZP1/2 */
7561 {
7562 int midpoint = elements / 2;
7563 if (i < midpoint) {
7564 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
7565 } else {
7566 read_vec_element(s, tcg_res, rm,
7567 2 * (i - midpoint) + part, size);
7568 }
7569 break;
7570 }
7571 case 2: /* TRN1/2 */
7572 if (i & 1) {
7573 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
7574 } else {
7575 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
7576 }
7577 break;
7578 case 3: /* ZIP1/2 */
7579 {
7580 int base = part * elements / 2;
7581 if (i & 1) {
7582 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
7583 } else {
7584 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
7585 }
7586 break;
7587 }
7588 default:
7589 g_assert_not_reached();
7590 }
7591
7592 ofs = i * esize;
7593 if (ofs < 64) {
7594 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
7595 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
7596 } else {
7597 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
7598 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
7599 }
7600 }
7601
7602 tcg_temp_free_i64(tcg_res);
7603
7604 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7605 tcg_temp_free_i64(tcg_resl);
7606
7607 if (is_q) {
7608 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7609 tcg_temp_free_i64(tcg_resh);
7610 }
7611 clear_vec_high(s, is_q, rd);
7612 }
7613
7614 /*
7615 * do_reduction_op helper
7616 *
7617 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7618 * important for correct NaN propagation that we do these
7619 * operations in exactly the order specified by the pseudocode.
7620 *
7621 * This is a recursive function, TCG temps should be freed by the
7622 * calling function once it is done with the values.
7623 */
7624 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7625 int esize, int size, int vmap, TCGv_ptr fpst)
7626 {
7627 if (esize == size) {
7628 int element;
7629 MemOp msize = esize == 16 ? MO_16 : MO_32;
7630 TCGv_i32 tcg_elem;
7631
7632 /* We should have one register left here */
7633 assert(ctpop8(vmap) == 1);
7634 element = ctz32(vmap);
7635 assert(element < 8);
7636
7637 tcg_elem = tcg_temp_new_i32();
7638 read_vec_element_i32(s, tcg_elem, rn, element, msize);
7639 return tcg_elem;
7640 } else {
7641 int bits = size / 2;
7642 int shift = ctpop8(vmap) / 2;
7643 int vmap_lo = (vmap >> shift) & vmap;
7644 int vmap_hi = (vmap & ~vmap_lo);
7645 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7646
7647 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7648 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7649 tcg_res = tcg_temp_new_i32();
7650
7651 switch (fpopcode) {
7652 case 0x0c: /* fmaxnmv half-precision */
7653 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7654 break;
7655 case 0x0f: /* fmaxv half-precision */
7656 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7657 break;
7658 case 0x1c: /* fminnmv half-precision */
7659 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7660 break;
7661 case 0x1f: /* fminv half-precision */
7662 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7663 break;
7664 case 0x2c: /* fmaxnmv */
7665 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7666 break;
7667 case 0x2f: /* fmaxv */
7668 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7669 break;
7670 case 0x3c: /* fminnmv */
7671 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7672 break;
7673 case 0x3f: /* fminv */
7674 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7675 break;
7676 default:
7677 g_assert_not_reached();
7678 }
7679
7680 tcg_temp_free_i32(tcg_hi);
7681 tcg_temp_free_i32(tcg_lo);
7682 return tcg_res;
7683 }
7684 }
7685
7686 /* AdvSIMD across lanes
7687 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7688 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7689 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7690 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7691 */
7692 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7693 {
7694 int rd = extract32(insn, 0, 5);
7695 int rn = extract32(insn, 5, 5);
7696 int size = extract32(insn, 22, 2);
7697 int opcode = extract32(insn, 12, 5);
7698 bool is_q = extract32(insn, 30, 1);
7699 bool is_u = extract32(insn, 29, 1);
7700 bool is_fp = false;
7701 bool is_min = false;
7702 int esize;
7703 int elements;
7704 int i;
7705 TCGv_i64 tcg_res, tcg_elt;
7706
7707 switch (opcode) {
7708 case 0x1b: /* ADDV */
7709 if (is_u) {
7710 unallocated_encoding(s);
7711 return;
7712 }
7713 /* fall through */
7714 case 0x3: /* SADDLV, UADDLV */
7715 case 0xa: /* SMAXV, UMAXV */
7716 case 0x1a: /* SMINV, UMINV */
7717 if (size == 3 || (size == 2 && !is_q)) {
7718 unallocated_encoding(s);
7719 return;
7720 }
7721 break;
7722 case 0xc: /* FMAXNMV, FMINNMV */
7723 case 0xf: /* FMAXV, FMINV */
7724 /* Bit 1 of size field encodes min vs max and the actual size
7725 * depends on the encoding of the U bit. If not set (and FP16
7726 * enabled) then we do half-precision float instead of single
7727 * precision.
7728 */
7729 is_min = extract32(size, 1, 1);
7730 is_fp = true;
7731 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7732 size = 1;
7733 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7734 unallocated_encoding(s);
7735 return;
7736 } else {
7737 size = 2;
7738 }
7739 break;
7740 default:
7741 unallocated_encoding(s);
7742 return;
7743 }
7744
7745 if (!fp_access_check(s)) {
7746 return;
7747 }
7748
7749 esize = 8 << size;
7750 elements = (is_q ? 128 : 64) / esize;
7751
7752 tcg_res = tcg_temp_new_i64();
7753 tcg_elt = tcg_temp_new_i64();
7754
7755 /* These instructions operate across all lanes of a vector
7756 * to produce a single result. We can guarantee that a 64
7757 * bit intermediate is sufficient:
7758 * + for [US]ADDLV the maximum element size is 32 bits, and
7759 * the result type is 64 bits
7760 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7761 * same as the element size, which is 32 bits at most
7762 * For the integer operations we can choose to work at 64
7763 * or 32 bits and truncate at the end; for simplicity
7764 * we use 64 bits always. The floating point
7765 * ops do require 32 bit intermediates, though.
7766 */
7767 if (!is_fp) {
7768 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7769
7770 for (i = 1; i < elements; i++) {
7771 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7772
7773 switch (opcode) {
7774 case 0x03: /* SADDLV / UADDLV */
7775 case 0x1b: /* ADDV */
7776 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7777 break;
7778 case 0x0a: /* SMAXV / UMAXV */
7779 if (is_u) {
7780 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7781 } else {
7782 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7783 }
7784 break;
7785 case 0x1a: /* SMINV / UMINV */
7786 if (is_u) {
7787 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7788 } else {
7789 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7790 }
7791 break;
7792 default:
7793 g_assert_not_reached();
7794 }
7795
7796 }
7797 } else {
7798 /* Floating point vector reduction ops which work across 32
7799 * bit (single) or 16 bit (half-precision) intermediates.
7800 * Note that correct NaN propagation requires that we do these
7801 * operations in exactly the order specified by the pseudocode.
7802 */
7803 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
7804 int fpopcode = opcode | is_min << 4 | is_u << 5;
7805 int vmap = (1 << elements) - 1;
7806 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7807 (is_q ? 128 : 64), vmap, fpst);
7808 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7809 tcg_temp_free_i32(tcg_res32);
7810 tcg_temp_free_ptr(fpst);
7811 }
7812
7813 tcg_temp_free_i64(tcg_elt);
7814
7815 /* Now truncate the result to the width required for the final output */
7816 if (opcode == 0x03) {
7817 /* SADDLV, UADDLV: result is 2*esize */
7818 size++;
7819 }
7820
7821 switch (size) {
7822 case 0:
7823 tcg_gen_ext8u_i64(tcg_res, tcg_res);
7824 break;
7825 case 1:
7826 tcg_gen_ext16u_i64(tcg_res, tcg_res);
7827 break;
7828 case 2:
7829 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7830 break;
7831 case 3:
7832 break;
7833 default:
7834 g_assert_not_reached();
7835 }
7836
7837 write_fp_dreg(s, rd, tcg_res);
7838 tcg_temp_free_i64(tcg_res);
7839 }
7840
7841 /* DUP (Element, Vector)
7842 *
7843 * 31 30 29 21 20 16 15 10 9 5 4 0
7844 * +---+---+-------------------+--------+-------------+------+------+
7845 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7846 * +---+---+-------------------+--------+-------------+------+------+
7847 *
7848 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7849 */
7850 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7851 int imm5)
7852 {
7853 int size = ctz32(imm5);
7854 int index;
7855
7856 if (size > 3 || (size == 3 && !is_q)) {
7857 unallocated_encoding(s);
7858 return;
7859 }
7860
7861 if (!fp_access_check(s)) {
7862 return;
7863 }
7864
7865 index = imm5 >> (size + 1);
7866 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7867 vec_reg_offset(s, rn, index, size),
7868 is_q ? 16 : 8, vec_full_reg_size(s));
7869 }
7870
7871 /* DUP (element, scalar)
7872 * 31 21 20 16 15 10 9 5 4 0
7873 * +-----------------------+--------+-------------+------+------+
7874 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7875 * +-----------------------+--------+-------------+------+------+
7876 */
7877 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7878 int imm5)
7879 {
7880 int size = ctz32(imm5);
7881 int index;
7882 TCGv_i64 tmp;
7883
7884 if (size > 3) {
7885 unallocated_encoding(s);
7886 return;
7887 }
7888
7889 if (!fp_access_check(s)) {
7890 return;
7891 }
7892
7893 index = imm5 >> (size + 1);
7894
7895 /* This instruction just extracts the specified element and
7896 * zero-extends it into the bottom of the destination register.
7897 */
7898 tmp = tcg_temp_new_i64();
7899 read_vec_element(s, tmp, rn, index, size);
7900 write_fp_dreg(s, rd, tmp);
7901 tcg_temp_free_i64(tmp);
7902 }
7903
7904 /* DUP (General)
7905 *
7906 * 31 30 29 21 20 16 15 10 9 5 4 0
7907 * +---+---+-------------------+--------+-------------+------+------+
7908 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
7909 * +---+---+-------------------+--------+-------------+------+------+
7910 *
7911 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7912 */
7913 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7914 int imm5)
7915 {
7916 int size = ctz32(imm5);
7917 uint32_t dofs, oprsz, maxsz;
7918
7919 if (size > 3 || ((size == 3) && !is_q)) {
7920 unallocated_encoding(s);
7921 return;
7922 }
7923
7924 if (!fp_access_check(s)) {
7925 return;
7926 }
7927
7928 dofs = vec_full_reg_offset(s, rd);
7929 oprsz = is_q ? 16 : 8;
7930 maxsz = vec_full_reg_size(s);
7931
7932 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7933 }
7934
7935 /* INS (Element)
7936 *
7937 * 31 21 20 16 15 14 11 10 9 5 4 0
7938 * +-----------------------+--------+------------+---+------+------+
7939 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7940 * +-----------------------+--------+------------+---+------+------+
7941 *
7942 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7943 * index: encoded in imm5<4:size+1>
7944 */
7945 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7946 int imm4, int imm5)
7947 {
7948 int size = ctz32(imm5);
7949 int src_index, dst_index;
7950 TCGv_i64 tmp;
7951
7952 if (size > 3) {
7953 unallocated_encoding(s);
7954 return;
7955 }
7956
7957 if (!fp_access_check(s)) {
7958 return;
7959 }
7960
7961 dst_index = extract32(imm5, 1+size, 5);
7962 src_index = extract32(imm4, size, 4);
7963
7964 tmp = tcg_temp_new_i64();
7965
7966 read_vec_element(s, tmp, rn, src_index, size);
7967 write_vec_element(s, tmp, rd, dst_index, size);
7968
7969 tcg_temp_free_i64(tmp);
7970
7971 /* INS is considered a 128-bit write for SVE. */
7972 clear_vec_high(s, true, rd);
7973 }
7974
7975
7976 /* INS (General)
7977 *
7978 * 31 21 20 16 15 10 9 5 4 0
7979 * +-----------------------+--------+-------------+------+------+
7980 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
7981 * +-----------------------+--------+-------------+------+------+
7982 *
7983 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7984 * index: encoded in imm5<4:size+1>
7985 */
7986 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7987 {
7988 int size = ctz32(imm5);
7989 int idx;
7990
7991 if (size > 3) {
7992 unallocated_encoding(s);
7993 return;
7994 }
7995
7996 if (!fp_access_check(s)) {
7997 return;
7998 }
7999
8000 idx = extract32(imm5, 1 + size, 4 - size);
8001 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
8002
8003 /* INS is considered a 128-bit write for SVE. */
8004 clear_vec_high(s, true, rd);
8005 }
8006
8007 /*
8008 * UMOV (General)
8009 * SMOV (General)
8010 *
8011 * 31 30 29 21 20 16 15 12 10 9 5 4 0
8012 * +---+---+-------------------+--------+-------------+------+------+
8013 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
8014 * +---+---+-------------------+--------+-------------+------+------+
8015 *
8016 * U: unsigned when set
8017 * size: encoded in imm5 (see ARM ARM LowestSetBit())
8018 */
8019 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
8020 int rn, int rd, int imm5)
8021 {
8022 int size = ctz32(imm5);
8023 int element;
8024 TCGv_i64 tcg_rd;
8025
8026 /* Check for UnallocatedEncodings */
8027 if (is_signed) {
8028 if (size > 2 || (size == 2 && !is_q)) {
8029 unallocated_encoding(s);
8030 return;
8031 }
8032 } else {
8033 if (size > 3
8034 || (size < 3 && is_q)
8035 || (size == 3 && !is_q)) {
8036 unallocated_encoding(s);
8037 return;
8038 }
8039 }
8040
8041 if (!fp_access_check(s)) {
8042 return;
8043 }
8044
8045 element = extract32(imm5, 1+size, 4);
8046
8047 tcg_rd = cpu_reg(s, rd);
8048 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
8049 if (is_signed && !is_q) {
8050 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8051 }
8052 }
8053
8054 /* AdvSIMD copy
8055 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
8056 * +---+---+----+-----------------+------+---+------+---+------+------+
8057 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
8058 * +---+---+----+-----------------+------+---+------+---+------+------+
8059 */
8060 static void disas_simd_copy(DisasContext *s, uint32_t insn)
8061 {
8062 int rd = extract32(insn, 0, 5);
8063 int rn = extract32(insn, 5, 5);
8064 int imm4 = extract32(insn, 11, 4);
8065 int op = extract32(insn, 29, 1);
8066 int is_q = extract32(insn, 30, 1);
8067 int imm5 = extract32(insn, 16, 5);
8068
8069 if (op) {
8070 if (is_q) {
8071 /* INS (element) */
8072 handle_simd_inse(s, rd, rn, imm4, imm5);
8073 } else {
8074 unallocated_encoding(s);
8075 }
8076 } else {
8077 switch (imm4) {
8078 case 0:
8079 /* DUP (element - vector) */
8080 handle_simd_dupe(s, is_q, rd, rn, imm5);
8081 break;
8082 case 1:
8083 /* DUP (general) */
8084 handle_simd_dupg(s, is_q, rd, rn, imm5);
8085 break;
8086 case 3:
8087 if (is_q) {
8088 /* INS (general) */
8089 handle_simd_insg(s, rd, rn, imm5);
8090 } else {
8091 unallocated_encoding(s);
8092 }
8093 break;
8094 case 5:
8095 case 7:
8096 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
8097 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
8098 break;
8099 default:
8100 unallocated_encoding(s);
8101 break;
8102 }
8103 }
8104 }
8105
8106 /* AdvSIMD modified immediate
8107 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
8108 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8109 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
8110 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8111 *
8112 * There are a number of operations that can be carried out here:
8113 * MOVI - move (shifted) imm into register
8114 * MVNI - move inverted (shifted) imm into register
8115 * ORR - bitwise OR of (shifted) imm with register
8116 * BIC - bitwise clear of (shifted) imm with register
8117 * With ARMv8.2 we also have:
8118 * FMOV half-precision
8119 */
8120 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8121 {
8122 int rd = extract32(insn, 0, 5);
8123 int cmode = extract32(insn, 12, 4);
8124 int cmode_3_1 = extract32(cmode, 1, 3);
8125 int cmode_0 = extract32(cmode, 0, 1);
8126 int o2 = extract32(insn, 11, 1);
8127 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8128 bool is_neg = extract32(insn, 29, 1);
8129 bool is_q = extract32(insn, 30, 1);
8130 uint64_t imm = 0;
8131
8132 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
8133 /* Check for FMOV (vector, immediate) - half-precision */
8134 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
8135 unallocated_encoding(s);
8136 return;
8137 }
8138 }
8139
8140 if (!fp_access_check(s)) {
8141 return;
8142 }
8143
8144 /* See AdvSIMDExpandImm() in ARM ARM */
8145 switch (cmode_3_1) {
8146 case 0: /* Replicate(Zeros(24):imm8, 2) */
8147 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
8148 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
8149 case 3: /* Replicate(imm8:Zeros(24), 2) */
8150 {
8151 int shift = cmode_3_1 * 8;
8152 imm = bitfield_replicate(abcdefgh << shift, 32);
8153 break;
8154 }
8155 case 4: /* Replicate(Zeros(8):imm8, 4) */
8156 case 5: /* Replicate(imm8:Zeros(8), 4) */
8157 {
8158 int shift = (cmode_3_1 & 0x1) * 8;
8159 imm = bitfield_replicate(abcdefgh << shift, 16);
8160 break;
8161 }
8162 case 6:
8163 if (cmode_0) {
8164 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
8165 imm = (abcdefgh << 16) | 0xffff;
8166 } else {
8167 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
8168 imm = (abcdefgh << 8) | 0xff;
8169 }
8170 imm = bitfield_replicate(imm, 32);
8171 break;
8172 case 7:
8173 if (!cmode_0 && !is_neg) {
8174 imm = bitfield_replicate(abcdefgh, 8);
8175 } else if (!cmode_0 && is_neg) {
8176 int i;
8177 imm = 0;
8178 for (i = 0; i < 8; i++) {
8179 if ((abcdefgh) & (1 << i)) {
8180 imm |= 0xffULL << (i * 8);
8181 }
8182 }
8183 } else if (cmode_0) {
8184 if (is_neg) {
8185 imm = (abcdefgh & 0x3f) << 48;
8186 if (abcdefgh & 0x80) {
8187 imm |= 0x8000000000000000ULL;
8188 }
8189 if (abcdefgh & 0x40) {
8190 imm |= 0x3fc0000000000000ULL;
8191 } else {
8192 imm |= 0x4000000000000000ULL;
8193 }
8194 } else {
8195 if (o2) {
8196 /* FMOV (vector, immediate) - half-precision */
8197 imm = vfp_expand_imm(MO_16, abcdefgh);
8198 /* now duplicate across the lanes */
8199 imm = bitfield_replicate(imm, 16);
8200 } else {
8201 imm = (abcdefgh & 0x3f) << 19;
8202 if (abcdefgh & 0x80) {
8203 imm |= 0x80000000;
8204 }
8205 if (abcdefgh & 0x40) {
8206 imm |= 0x3e000000;
8207 } else {
8208 imm |= 0x40000000;
8209 }
8210 imm |= (imm << 32);
8211 }
8212 }
8213 }
8214 break;
8215 default:
8216 fprintf(stderr, "%s: cmode_3_1: %x\n", __func__, cmode_3_1);
8217 g_assert_not_reached();
8218 }
8219
8220 if (cmode_3_1 != 7 && is_neg) {
8221 imm = ~imm;
8222 }
8223
8224 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8225 /* MOVI or MVNI, with MVNI negation handled above. */
8226 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8227 vec_full_reg_size(s), imm);
8228 } else {
8229 /* ORR or BIC, with BIC negation to AND handled above. */
8230 if (is_neg) {
8231 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8232 } else {
8233 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8234 }
8235 }
8236 }
8237
8238 /* AdvSIMD scalar copy
8239 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
8240 * +-----+----+-----------------+------+---+------+---+------+------+
8241 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
8242 * +-----+----+-----------------+------+---+------+---+------+------+
8243 */
8244 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
8245 {
8246 int rd = extract32(insn, 0, 5);
8247 int rn = extract32(insn, 5, 5);
8248 int imm4 = extract32(insn, 11, 4);
8249 int imm5 = extract32(insn, 16, 5);
8250 int op = extract32(insn, 29, 1);
8251
8252 if (op != 0 || imm4 != 0) {
8253 unallocated_encoding(s);
8254 return;
8255 }
8256
8257 /* DUP (element, scalar) */
8258 handle_simd_dupes(s, rd, rn, imm5);
8259 }
8260
8261 /* AdvSIMD scalar pairwise
8262 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
8263 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8264 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
8265 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8266 */
8267 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
8268 {
8269 int u = extract32(insn, 29, 1);
8270 int size = extract32(insn, 22, 2);
8271 int opcode = extract32(insn, 12, 5);
8272 int rn = extract32(insn, 5, 5);
8273 int rd = extract32(insn, 0, 5);
8274 TCGv_ptr fpst;
8275
8276 /* For some ops (the FP ones), size[1] is part of the encoding.
8277 * For ADDP strictly it is not but size[1] is always 1 for valid
8278 * encodings.
8279 */
8280 opcode |= (extract32(size, 1, 1) << 5);
8281
8282 switch (opcode) {
8283 case 0x3b: /* ADDP */
8284 if (u || size != 3) {
8285 unallocated_encoding(s);
8286 return;
8287 }
8288 if (!fp_access_check(s)) {
8289 return;
8290 }
8291
8292 fpst = NULL;
8293 break;
8294 case 0xc: /* FMAXNMP */
8295 case 0xd: /* FADDP */
8296 case 0xf: /* FMAXP */
8297 case 0x2c: /* FMINNMP */
8298 case 0x2f: /* FMINP */
8299 /* FP op, size[0] is 32 or 64 bit*/
8300 if (!u) {
8301 if (!dc_isar_feature(aa64_fp16, s)) {
8302 unallocated_encoding(s);
8303 return;
8304 } else {
8305 size = MO_16;
8306 }
8307 } else {
8308 size = extract32(size, 0, 1) ? MO_64 : MO_32;
8309 }
8310
8311 if (!fp_access_check(s)) {
8312 return;
8313 }
8314
8315 fpst = get_fpstatus_ptr(size == MO_16);
8316 break;
8317 default:
8318 unallocated_encoding(s);
8319 return;
8320 }
8321
8322 if (size == MO_64) {
8323 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8324 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8325 TCGv_i64 tcg_res = tcg_temp_new_i64();
8326
8327 read_vec_element(s, tcg_op1, rn, 0, MO_64);
8328 read_vec_element(s, tcg_op2, rn, 1, MO_64);
8329
8330 switch (opcode) {
8331 case 0x3b: /* ADDP */
8332 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8333 break;
8334 case 0xc: /* FMAXNMP */
8335 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8336 break;
8337 case 0xd: /* FADDP */
8338 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8339 break;
8340 case 0xf: /* FMAXP */
8341 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8342 break;
8343 case 0x2c: /* FMINNMP */
8344 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8345 break;
8346 case 0x2f: /* FMINP */
8347 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8348 break;
8349 default:
8350 g_assert_not_reached();
8351 }
8352
8353 write_fp_dreg(s, rd, tcg_res);
8354
8355 tcg_temp_free_i64(tcg_op1);
8356 tcg_temp_free_i64(tcg_op2);
8357 tcg_temp_free_i64(tcg_res);
8358 } else {
8359 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8360 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8361 TCGv_i32 tcg_res = tcg_temp_new_i32();
8362
8363 read_vec_element_i32(s, tcg_op1, rn, 0, size);
8364 read_vec_element_i32(s, tcg_op2, rn, 1, size);
8365
8366 if (size == MO_16) {
8367 switch (opcode) {
8368 case 0xc: /* FMAXNMP */
8369 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8370 break;
8371 case 0xd: /* FADDP */
8372 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8373 break;
8374 case 0xf: /* FMAXP */
8375 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8376 break;
8377 case 0x2c: /* FMINNMP */
8378 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8379 break;
8380 case 0x2f: /* FMINP */
8381 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8382 break;
8383 default:
8384 g_assert_not_reached();
8385 }
8386 } else {
8387 switch (opcode) {
8388 case 0xc: /* FMAXNMP */
8389 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8390 break;
8391 case 0xd: /* FADDP */
8392 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8393 break;
8394 case 0xf: /* FMAXP */
8395 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8396 break;
8397 case 0x2c: /* FMINNMP */
8398 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8399 break;
8400 case 0x2f: /* FMINP */
8401 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8402 break;
8403 default:
8404 g_assert_not_reached();
8405 }
8406 }
8407
8408 write_fp_sreg(s, rd, tcg_res);
8409
8410 tcg_temp_free_i32(tcg_op1);
8411 tcg_temp_free_i32(tcg_op2);
8412 tcg_temp_free_i32(tcg_res);
8413 }
8414
8415 if (fpst) {
8416 tcg_temp_free_ptr(fpst);
8417 }
8418 }
8419
8420 /*
8421 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8422 *
8423 * This code is handles the common shifting code and is used by both
8424 * the vector and scalar code.
8425 */
8426 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8427 TCGv_i64 tcg_rnd, bool accumulate,
8428 bool is_u, int size, int shift)
8429 {
8430 bool extended_result = false;
8431 bool round = tcg_rnd != NULL;
8432 int ext_lshift = 0;
8433 TCGv_i64 tcg_src_hi;
8434
8435 if (round && size == 3) {
8436 extended_result = true;
8437 ext_lshift = 64 - shift;
8438 tcg_src_hi = tcg_temp_new_i64();
8439 } else if (shift == 64) {
8440 if (!accumulate && is_u) {
8441 /* result is zero */
8442 tcg_gen_movi_i64(tcg_res, 0);
8443 return;
8444 }
8445 }
8446
8447 /* Deal with the rounding step */
8448 if (round) {
8449 if (extended_result) {
8450 TCGv_i64 tcg_zero = tcg_const_i64(0);
8451 if (!is_u) {
8452 /* take care of sign extending tcg_res */
8453 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8454 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8455 tcg_src, tcg_src_hi,
8456 tcg_rnd, tcg_zero);
8457 } else {
8458 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8459 tcg_src, tcg_zero,
8460 tcg_rnd, tcg_zero);
8461 }
8462 tcg_temp_free_i64(tcg_zero);
8463 } else {
8464 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8465 }
8466 }
8467
8468 /* Now do the shift right */
8469 if (round && extended_result) {
8470 /* extended case, >64 bit precision required */
8471 if (ext_lshift == 0) {
8472 /* special case, only high bits matter */
8473 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8474 } else {
8475 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8476 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8477 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8478 }
8479 } else {
8480 if (is_u) {
8481 if (shift == 64) {
8482 /* essentially shifting in 64 zeros */
8483 tcg_gen_movi_i64(tcg_src, 0);
8484 } else {
8485 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8486 }
8487 } else {
8488 if (shift == 64) {
8489 /* effectively extending the sign-bit */
8490 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8491 } else {
8492 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8493 }
8494 }
8495 }
8496
8497 if (accumulate) {
8498 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8499 } else {
8500 tcg_gen_mov_i64(tcg_res, tcg_src);
8501 }
8502
8503 if (extended_result) {
8504 tcg_temp_free_i64(tcg_src_hi);
8505 }
8506 }
8507
8508 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8509 static void handle_scalar_simd_shri(DisasContext *s,
8510 bool is_u, int immh, int immb,
8511 int opcode, int rn, int rd)
8512 {
8513 const int size = 3;
8514 int immhb = immh << 3 | immb;
8515 int shift = 2 * (8 << size) - immhb;
8516 bool accumulate = false;
8517 bool round = false;
8518 bool insert = false;
8519 TCGv_i64 tcg_rn;
8520 TCGv_i64 tcg_rd;
8521 TCGv_i64 tcg_round;
8522
8523 if (!extract32(immh, 3, 1)) {
8524 unallocated_encoding(s);
8525 return;
8526 }
8527
8528 if (!fp_access_check(s)) {
8529 return;
8530 }
8531
8532 switch (opcode) {
8533 case 0x02: /* SSRA / USRA (accumulate) */
8534 accumulate = true;
8535 break;
8536 case 0x04: /* SRSHR / URSHR (rounding) */
8537 round = true;
8538 break;
8539 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8540 accumulate = round = true;
8541 break;
8542 case 0x08: /* SRI */
8543 insert = true;
8544 break;
8545 }
8546
8547 if (round) {
8548 uint64_t round_const = 1ULL << (shift - 1);
8549 tcg_round = tcg_const_i64(round_const);
8550 } else {
8551 tcg_round = NULL;
8552 }
8553
8554 tcg_rn = read_fp_dreg(s, rn);
8555 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8556
8557 if (insert) {
8558 /* shift count same as element size is valid but does nothing;
8559 * special case to avoid potential shift by 64.
8560 */
8561 int esize = 8 << size;
8562 if (shift != esize) {
8563 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8564 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8565 }
8566 } else {
8567 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8568 accumulate, is_u, size, shift);
8569 }
8570
8571 write_fp_dreg(s, rd, tcg_rd);
8572
8573 tcg_temp_free_i64(tcg_rn);
8574 tcg_temp_free_i64(tcg_rd);
8575 if (round) {
8576 tcg_temp_free_i64(tcg_round);
8577 }
8578 }
8579
8580 /* SHL/SLI - Scalar shift left */
8581 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8582 int immh, int immb, int opcode,
8583 int rn, int rd)
8584 {
8585 int size = 32 - clz32(immh) - 1;
8586 int immhb = immh << 3 | immb;
8587 int shift = immhb - (8 << size);
8588 TCGv_i64 tcg_rn = new_tmp_a64(s);
8589 TCGv_i64 tcg_rd = new_tmp_a64(s);
8590
8591 if (!extract32(immh, 3, 1)) {
8592 unallocated_encoding(s);
8593 return;
8594 }
8595
8596 if (!fp_access_check(s)) {
8597 return;
8598 }
8599
8600 tcg_rn = read_fp_dreg(s, rn);
8601 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8602
8603 if (insert) {
8604 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8605 } else {
8606 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8607 }
8608
8609 write_fp_dreg(s, rd, tcg_rd);
8610
8611 tcg_temp_free_i64(tcg_rn);
8612 tcg_temp_free_i64(tcg_rd);
8613 }
8614
8615 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8616 * (signed/unsigned) narrowing */
8617 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8618 bool is_u_shift, bool is_u_narrow,
8619 int immh, int immb, int opcode,
8620 int rn, int rd)
8621 {
8622 int immhb = immh << 3 | immb;
8623 int size = 32 - clz32(immh) - 1;
8624 int esize = 8 << size;
8625 int shift = (2 * esize) - immhb;
8626 int elements = is_scalar ? 1 : (64 / esize);
8627 bool round = extract32(opcode, 0, 1);
8628 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8629 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8630 TCGv_i32 tcg_rd_narrowed;
8631 TCGv_i64 tcg_final;
8632
8633 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8634 { gen_helper_neon_narrow_sat_s8,
8635 gen_helper_neon_unarrow_sat8 },
8636 { gen_helper_neon_narrow_sat_s16,
8637 gen_helper_neon_unarrow_sat16 },
8638 { gen_helper_neon_narrow_sat_s32,
8639 gen_helper_neon_unarrow_sat32 },
8640 { NULL, NULL },
8641 };
8642 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8643 gen_helper_neon_narrow_sat_u8,
8644 gen_helper_neon_narrow_sat_u16,
8645 gen_helper_neon_narrow_sat_u32,
8646 NULL
8647 };
8648 NeonGenNarrowEnvFn *narrowfn;
8649
8650 int i;
8651
8652 assert(size < 4);
8653
8654 if (extract32(immh, 3, 1)) {
8655 unallocated_encoding(s);
8656 return;
8657 }
8658
8659 if (!fp_access_check(s)) {
8660 return;
8661 }
8662
8663 if (is_u_shift) {
8664 narrowfn = unsigned_narrow_fns[size];
8665 } else {
8666 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8667 }
8668
8669 tcg_rn = tcg_temp_new_i64();
8670 tcg_rd = tcg_temp_new_i64();
8671 tcg_rd_narrowed = tcg_temp_new_i32();
8672 tcg_final = tcg_const_i64(0);
8673
8674 if (round) {
8675 uint64_t round_const = 1ULL << (shift - 1);
8676 tcg_round = tcg_const_i64(round_const);
8677 } else {
8678 tcg_round = NULL;
8679 }
8680
8681 for (i = 0; i < elements; i++) {
8682 read_vec_element(s, tcg_rn, rn, i, ldop);
8683 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8684 false, is_u_shift, size+1, shift);
8685 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8686 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8687 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8688 }
8689
8690 if (!is_q) {
8691 write_vec_element(s, tcg_final, rd, 0, MO_64);
8692 } else {
8693 write_vec_element(s, tcg_final, rd, 1, MO_64);
8694 }
8695
8696 if (round) {
8697 tcg_temp_free_i64(tcg_round);
8698 }
8699 tcg_temp_free_i64(tcg_rn);
8700 tcg_temp_free_i64(tcg_rd);
8701 tcg_temp_free_i32(tcg_rd_narrowed);
8702 tcg_temp_free_i64(tcg_final);
8703
8704 clear_vec_high(s, is_q, rd);
8705 }
8706
8707 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8708 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8709 bool src_unsigned, bool dst_unsigned,
8710 int immh, int immb, int rn, int rd)
8711 {
8712 int immhb = immh << 3 | immb;
8713 int size = 32 - clz32(immh) - 1;
8714 int shift = immhb - (8 << size);
8715 int pass;
8716
8717 assert(immh != 0);
8718 assert(!(scalar && is_q));
8719
8720 if (!scalar) {
8721 if (!is_q && extract32(immh, 3, 1)) {
8722 unallocated_encoding(s);
8723 return;
8724 }
8725
8726 /* Since we use the variable-shift helpers we must
8727 * replicate the shift count into each element of
8728 * the tcg_shift value.
8729 */
8730 switch (size) {
8731 case 0:
8732 shift |= shift << 8;
8733 /* fall through */
8734 case 1:
8735 shift |= shift << 16;
8736 break;
8737 case 2:
8738 case 3:
8739 break;
8740 default:
8741 g_assert_not_reached();
8742 }
8743 }
8744
8745 if (!fp_access_check(s)) {
8746 return;
8747 }
8748
8749 if (size == 3) {
8750 TCGv_i64 tcg_shift = tcg_const_i64(shift);
8751 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8752 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8753 { NULL, gen_helper_neon_qshl_u64 },
8754 };
8755 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8756 int maxpass = is_q ? 2 : 1;
8757
8758 for (pass = 0; pass < maxpass; pass++) {
8759 TCGv_i64 tcg_op = tcg_temp_new_i64();
8760
8761 read_vec_element(s, tcg_op, rn, pass, MO_64);
8762 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8763 write_vec_element(s, tcg_op, rd, pass, MO_64);
8764
8765 tcg_temp_free_i64(tcg_op);
8766 }
8767 tcg_temp_free_i64(tcg_shift);
8768 clear_vec_high(s, is_q, rd);
8769 } else {
8770 TCGv_i32 tcg_shift = tcg_const_i32(shift);
8771 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8772 {
8773 { gen_helper_neon_qshl_s8,
8774 gen_helper_neon_qshl_s16,
8775 gen_helper_neon_qshl_s32 },
8776 { gen_helper_neon_qshlu_s8,
8777 gen_helper_neon_qshlu_s16,
8778 gen_helper_neon_qshlu_s32 }
8779 }, {
8780 { NULL, NULL, NULL },
8781 { gen_helper_neon_qshl_u8,
8782 gen_helper_neon_qshl_u16,
8783 gen_helper_neon_qshl_u32 }
8784 }
8785 };
8786 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8787 MemOp memop = scalar ? size : MO_32;
8788 int maxpass = scalar ? 1 : is_q ? 4 : 2;
8789
8790 for (pass = 0; pass < maxpass; pass++) {
8791 TCGv_i32 tcg_op = tcg_temp_new_i32();
8792
8793 read_vec_element_i32(s, tcg_op, rn, pass, memop);
8794 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8795 if (scalar) {
8796 switch (size) {
8797 case 0:
8798 tcg_gen_ext8u_i32(tcg_op, tcg_op);
8799 break;
8800 case 1:
8801 tcg_gen_ext16u_i32(tcg_op, tcg_op);
8802 break;
8803 case 2:
8804 break;
8805 default:
8806 g_assert_not_reached();
8807 }
8808 write_fp_sreg(s, rd, tcg_op);
8809 } else {
8810 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8811 }
8812
8813 tcg_temp_free_i32(tcg_op);
8814 }
8815 tcg_temp_free_i32(tcg_shift);
8816
8817 if (!scalar) {
8818 clear_vec_high(s, is_q, rd);
8819 }
8820 }
8821 }
8822
8823 /* Common vector code for handling integer to FP conversion */
8824 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8825 int elements, int is_signed,
8826 int fracbits, int size)
8827 {
8828 TCGv_ptr tcg_fpst = get_fpstatus_ptr(size == MO_16);
8829 TCGv_i32 tcg_shift = NULL;
8830
8831 MemOp mop = size | (is_signed ? MO_SIGN : 0);
8832 int pass;
8833
8834 if (fracbits || size == MO_64) {
8835 tcg_shift = tcg_const_i32(fracbits);
8836 }
8837
8838 if (size == MO_64) {
8839 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8840 TCGv_i64 tcg_double = tcg_temp_new_i64();
8841
8842 for (pass = 0; pass < elements; pass++) {
8843 read_vec_element(s, tcg_int64, rn, pass, mop);
8844
8845 if (is_signed) {
8846 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8847 tcg_shift, tcg_fpst);
8848 } else {
8849 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8850 tcg_shift, tcg_fpst);
8851 }
8852 if (elements == 1) {
8853 write_fp_dreg(s, rd, tcg_double);
8854 } else {
8855 write_vec_element(s, tcg_double, rd, pass, MO_64);
8856 }
8857 }
8858
8859 tcg_temp_free_i64(tcg_int64);
8860 tcg_temp_free_i64(tcg_double);
8861
8862 } else {
8863 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8864 TCGv_i32 tcg_float = tcg_temp_new_i32();
8865
8866 for (pass = 0; pass < elements; pass++) {
8867 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8868
8869 switch (size) {
8870 case MO_32:
8871 if (fracbits) {
8872 if (is_signed) {
8873 gen_helper_vfp_sltos(tcg_float, tcg_int32,
8874 tcg_shift, tcg_fpst);
8875 } else {
8876 gen_helper_vfp_ultos(tcg_float, tcg_int32,
8877 tcg_shift, tcg_fpst);
8878 }
8879 } else {
8880 if (is_signed) {
8881 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8882 } else {
8883 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8884 }
8885 }
8886 break;
8887 case MO_16:
8888 if (fracbits) {
8889 if (is_signed) {
8890 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8891 tcg_shift, tcg_fpst);
8892 } else {
8893 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8894 tcg_shift, tcg_fpst);
8895 }
8896 } else {
8897 if (is_signed) {
8898 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8899 } else {
8900 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8901 }
8902 }
8903 break;
8904 default:
8905 g_assert_not_reached();
8906 }
8907
8908 if (elements == 1) {
8909 write_fp_sreg(s, rd, tcg_float);
8910 } else {
8911 write_vec_element_i32(s, tcg_float, rd, pass, size);
8912 }
8913 }
8914
8915 tcg_temp_free_i32(tcg_int32);
8916 tcg_temp_free_i32(tcg_float);
8917 }
8918
8919 tcg_temp_free_ptr(tcg_fpst);
8920 if (tcg_shift) {
8921 tcg_temp_free_i32(tcg_shift);
8922 }
8923
8924 clear_vec_high(s, elements << size == 16, rd);
8925 }
8926
8927 /* UCVTF/SCVTF - Integer to FP conversion */
8928 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8929 bool is_q, bool is_u,
8930 int immh, int immb, int opcode,
8931 int rn, int rd)
8932 {
8933 int size, elements, fracbits;
8934 int immhb = immh << 3 | immb;
8935
8936 if (immh & 8) {
8937 size = MO_64;
8938 if (!is_scalar && !is_q) {
8939 unallocated_encoding(s);
8940 return;
8941 }
8942 } else if (immh & 4) {
8943 size = MO_32;
8944 } else if (immh & 2) {
8945 size = MO_16;
8946 if (!dc_isar_feature(aa64_fp16, s)) {
8947 unallocated_encoding(s);
8948 return;
8949 }
8950 } else {
8951 /* immh == 0 would be a failure of the decode logic */
8952 g_assert(immh == 1);
8953 unallocated_encoding(s);
8954 return;
8955 }
8956
8957 if (is_scalar) {
8958 elements = 1;
8959 } else {
8960 elements = (8 << is_q) >> size;
8961 }
8962 fracbits = (16 << size) - immhb;
8963
8964 if (!fp_access_check(s)) {
8965 return;
8966 }
8967
8968 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8969 }
8970
8971 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8972 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8973 bool is_q, bool is_u,
8974 int immh, int immb, int rn, int rd)
8975 {
8976 int immhb = immh << 3 | immb;
8977 int pass, size, fracbits;
8978 TCGv_ptr tcg_fpstatus;
8979 TCGv_i32 tcg_rmode, tcg_shift;
8980
8981 if (immh & 0x8) {
8982 size = MO_64;
8983 if (!is_scalar && !is_q) {
8984 unallocated_encoding(s);
8985 return;
8986 }
8987 } else if (immh & 0x4) {
8988 size = MO_32;
8989 } else if (immh & 0x2) {
8990 size = MO_16;
8991 if (!dc_isar_feature(aa64_fp16, s)) {
8992 unallocated_encoding(s);
8993 return;
8994 }
8995 } else {
8996 /* Should have split out AdvSIMD modified immediate earlier. */
8997 assert(immh == 1);
8998 unallocated_encoding(s);
8999 return;
9000 }
9001
9002 if (!fp_access_check(s)) {
9003 return;
9004 }
9005
9006 assert(!(is_scalar && is_q));
9007
9008 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
9009 tcg_fpstatus = get_fpstatus_ptr(size == MO_16);
9010 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9011 fracbits = (16 << size) - immhb;
9012 tcg_shift = tcg_const_i32(fracbits);
9013
9014 if (size == MO_64) {
9015 int maxpass = is_scalar ? 1 : 2;
9016
9017 for (pass = 0; pass < maxpass; pass++) {
9018 TCGv_i64 tcg_op = tcg_temp_new_i64();
9019
9020 read_vec_element(s, tcg_op, rn, pass, MO_64);
9021 if (is_u) {
9022 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9023 } else {
9024 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9025 }
9026 write_vec_element(s, tcg_op, rd, pass, MO_64);
9027 tcg_temp_free_i64(tcg_op);
9028 }
9029 clear_vec_high(s, is_q, rd);
9030 } else {
9031 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9032 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9033
9034 switch (size) {
9035 case MO_16:
9036 if (is_u) {
9037 fn = gen_helper_vfp_touhh;
9038 } else {
9039 fn = gen_helper_vfp_toshh;
9040 }
9041 break;
9042 case MO_32:
9043 if (is_u) {
9044 fn = gen_helper_vfp_touls;
9045 } else {
9046 fn = gen_helper_vfp_tosls;
9047 }
9048 break;
9049 default:
9050 g_assert_not_reached();
9051 }
9052
9053 for (pass = 0; pass < maxpass; pass++) {
9054 TCGv_i32 tcg_op = tcg_temp_new_i32();
9055
9056 read_vec_element_i32(s, tcg_op, rn, pass, size);
9057 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9058 if (is_scalar) {
9059 write_fp_sreg(s, rd, tcg_op);
9060 } else {
9061 write_vec_element_i32(s, tcg_op, rd, pass, size);
9062 }
9063 tcg_temp_free_i32(tcg_op);
9064 }
9065 if (!is_scalar) {
9066 clear_vec_high(s, is_q, rd);
9067 }
9068 }
9069
9070 tcg_temp_free_ptr(tcg_fpstatus);
9071 tcg_temp_free_i32(tcg_shift);
9072 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9073 tcg_temp_free_i32(tcg_rmode);
9074 }
9075
9076 /* AdvSIMD scalar shift by immediate
9077 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
9078 * +-----+---+-------------+------+------+--------+---+------+------+
9079 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
9080 * +-----+---+-------------+------+------+--------+---+------+------+
9081 *
9082 * This is the scalar version so it works on a fixed sized registers
9083 */
9084 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9085 {
9086 int rd = extract32(insn, 0, 5);
9087 int rn = extract32(insn, 5, 5);
9088 int opcode = extract32(insn, 11, 5);
9089 int immb = extract32(insn, 16, 3);
9090 int immh = extract32(insn, 19, 4);
9091 bool is_u = extract32(insn, 29, 1);
9092
9093 if (immh == 0) {
9094 unallocated_encoding(s);
9095 return;
9096 }
9097
9098 switch (opcode) {
9099 case 0x08: /* SRI */
9100 if (!is_u) {
9101 unallocated_encoding(s);
9102 return;
9103 }
9104 /* fall through */
9105 case 0x00: /* SSHR / USHR */
9106 case 0x02: /* SSRA / USRA */
9107 case 0x04: /* SRSHR / URSHR */
9108 case 0x06: /* SRSRA / URSRA */
9109 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9110 break;
9111 case 0x0a: /* SHL / SLI */
9112 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9113 break;
9114 case 0x1c: /* SCVTF, UCVTF */
9115 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9116 opcode, rn, rd);
9117 break;
9118 case 0x10: /* SQSHRUN, SQSHRUN2 */
9119 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9120 if (!is_u) {
9121 unallocated_encoding(s);
9122 return;
9123 }
9124 handle_vec_simd_sqshrn(s, true, false, false, true,
9125 immh, immb, opcode, rn, rd);
9126 break;
9127 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9128 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9129 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9130 immh, immb, opcode, rn, rd);
9131 break;
9132 case 0xc: /* SQSHLU */
9133 if (!is_u) {
9134 unallocated_encoding(s);
9135 return;
9136 }
9137 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9138 break;
9139 case 0xe: /* SQSHL, UQSHL */
9140 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9141 break;
9142 case 0x1f: /* FCVTZS, FCVTZU */
9143 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9144 break;
9145 default:
9146 unallocated_encoding(s);
9147 break;
9148 }
9149 }
9150
9151 /* AdvSIMD scalar three different
9152 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
9153 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9154 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
9155 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9156 */
9157 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9158 {
9159 bool is_u = extract32(insn, 29, 1);
9160 int size = extract32(insn, 22, 2);
9161 int opcode = extract32(insn, 12, 4);
9162 int rm = extract32(insn, 16, 5);
9163 int rn = extract32(insn, 5, 5);
9164 int rd = extract32(insn, 0, 5);
9165
9166 if (is_u) {
9167 unallocated_encoding(s);
9168 return;
9169 }
9170
9171 switch (opcode) {
9172 case 0x9: /* SQDMLAL, SQDMLAL2 */
9173 case 0xb: /* SQDMLSL, SQDMLSL2 */
9174 case 0xd: /* SQDMULL, SQDMULL2 */
9175 if (size == 0 || size == 3) {
9176 unallocated_encoding(s);
9177 return;
9178 }
9179 break;
9180 default:
9181 unallocated_encoding(s);
9182 return;
9183 }
9184
9185 if (!fp_access_check(s)) {
9186 return;
9187 }
9188
9189 if (size == 2) {
9190 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9191 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9192 TCGv_i64 tcg_res = tcg_temp_new_i64();
9193
9194 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9195 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9196
9197 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9198 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
9199
9200 switch (opcode) {
9201 case 0xd: /* SQDMULL, SQDMULL2 */
9202 break;
9203 case 0xb: /* SQDMLSL, SQDMLSL2 */
9204 tcg_gen_neg_i64(tcg_res, tcg_res);
9205 /* fall through */
9206 case 0x9: /* SQDMLAL, SQDMLAL2 */
9207 read_vec_element(s, tcg_op1, rd, 0, MO_64);
9208 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
9209 tcg_res, tcg_op1);
9210 break;
9211 default:
9212 g_assert_not_reached();
9213 }
9214
9215 write_fp_dreg(s, rd, tcg_res);
9216
9217 tcg_temp_free_i64(tcg_op1);
9218 tcg_temp_free_i64(tcg_op2);
9219 tcg_temp_free_i64(tcg_res);
9220 } else {
9221 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9222 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9223 TCGv_i64 tcg_res = tcg_temp_new_i64();
9224
9225 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9226 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
9227
9228 switch (opcode) {
9229 case 0xd: /* SQDMULL, SQDMULL2 */
9230 break;
9231 case 0xb: /* SQDMLSL, SQDMLSL2 */
9232 gen_helper_neon_negl_u32(tcg_res, tcg_res);
9233 /* fall through */
9234 case 0x9: /* SQDMLAL, SQDMLAL2 */
9235 {
9236 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9237 read_vec_element(s, tcg_op3, rd, 0, MO_32);
9238 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
9239 tcg_res, tcg_op3);
9240 tcg_temp_free_i64(tcg_op3);
9241 break;
9242 }
9243 default:
9244 g_assert_not_reached();
9245 }
9246
9247 tcg_gen_ext32u_i64(tcg_res, tcg_res);
9248 write_fp_dreg(s, rd, tcg_res);
9249
9250 tcg_temp_free_i32(tcg_op1);
9251 tcg_temp_free_i32(tcg_op2);
9252 tcg_temp_free_i64(tcg_res);
9253 }
9254 }
9255
9256 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9257 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9258 {
9259 /* Handle 64x64->64 opcodes which are shared between the scalar
9260 * and vector 3-same groups. We cover every opcode where size == 3
9261 * is valid in either the three-reg-same (integer, not pairwise)
9262 * or scalar-three-reg-same groups.
9263 */
9264 TCGCond cond;
9265
9266 switch (opcode) {
9267 case 0x1: /* SQADD */
9268 if (u) {
9269 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9270 } else {
9271 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9272 }
9273 break;
9274 case 0x5: /* SQSUB */
9275 if (u) {
9276 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9277 } else {
9278 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9279 }
9280 break;
9281 case 0x6: /* CMGT, CMHI */
9282 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
9283 * We implement this using setcond (test) and then negating.
9284 */
9285 cond = u ? TCG_COND_GTU : TCG_COND_GT;
9286 do_cmop:
9287 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9288 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9289 break;
9290 case 0x7: /* CMGE, CMHS */
9291 cond = u ? TCG_COND_GEU : TCG_COND_GE;
9292 goto do_cmop;
9293 case 0x11: /* CMTST, CMEQ */
9294 if (u) {
9295 cond = TCG_COND_EQ;
9296 goto do_cmop;
9297 }
9298 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9299 break;
9300 case 0x8: /* SSHL, USHL */
9301 if (u) {
9302 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9303 } else {
9304 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9305 }
9306 break;
9307 case 0x9: /* SQSHL, UQSHL */
9308 if (u) {
9309 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9310 } else {
9311 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9312 }
9313 break;
9314 case 0xa: /* SRSHL, URSHL */
9315 if (u) {
9316 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9317 } else {
9318 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9319 }
9320 break;
9321 case 0xb: /* SQRSHL, UQRSHL */
9322 if (u) {
9323 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9324 } else {
9325 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9326 }
9327 break;
9328 case 0x10: /* ADD, SUB */
9329 if (u) {
9330 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9331 } else {
9332 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9333 }
9334 break;
9335 default:
9336 g_assert_not_reached();
9337 }
9338 }
9339
9340 /* Handle the 3-same-operands float operations; shared by the scalar
9341 * and vector encodings. The caller must filter out any encodings
9342 * not allocated for the encoding it is dealing with.
9343 */
9344 static void handle_3same_float(DisasContext *s, int size, int elements,
9345 int fpopcode, int rd, int rn, int rm)
9346 {
9347 int pass;
9348 TCGv_ptr fpst = get_fpstatus_ptr(false);
9349
9350 for (pass = 0; pass < elements; pass++) {
9351 if (size) {
9352 /* Double */
9353 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9354 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9355 TCGv_i64 tcg_res = tcg_temp_new_i64();
9356
9357 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9358 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9359
9360 switch (fpopcode) {
9361 case 0x39: /* FMLS */
9362 /* As usual for ARM, separate negation for fused multiply-add */
9363 gen_helper_vfp_negd(tcg_op1, tcg_op1);
9364 /* fall through */
9365 case 0x19: /* FMLA */
9366 read_vec_element(s, tcg_res, rd, pass, MO_64);
9367 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
9368 tcg_res, fpst);
9369 break;
9370 case 0x18: /* FMAXNM */
9371 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9372 break;
9373 case 0x1a: /* FADD */
9374 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
9375 break;
9376 case 0x1b: /* FMULX */
9377 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
9378 break;
9379 case 0x1c: /* FCMEQ */
9380 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9381 break;
9382 case 0x1e: /* FMAX */
9383 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
9384 break;
9385 case 0x1f: /* FRECPS */
9386 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9387 break;
9388 case 0x38: /* FMINNM */
9389 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9390 break;
9391 case 0x3a: /* FSUB */
9392 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9393 break;
9394 case 0x3e: /* FMIN */
9395 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
9396 break;
9397 case 0x3f: /* FRSQRTS */
9398 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9399 break;
9400 case 0x5b: /* FMUL */
9401 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
9402 break;
9403 case 0x5c: /* FCMGE */
9404 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9405 break;
9406 case 0x5d: /* FACGE */
9407 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9408 break;
9409 case 0x5f: /* FDIV */
9410 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
9411 break;
9412 case 0x7a: /* FABD */
9413 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9414 gen_helper_vfp_absd(tcg_res, tcg_res);
9415 break;
9416 case 0x7c: /* FCMGT */
9417 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9418 break;
9419 case 0x7d: /* FACGT */
9420 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9421 break;
9422 default:
9423 g_assert_not_reached();
9424 }
9425
9426 write_vec_element(s, tcg_res, rd, pass, MO_64);
9427
9428 tcg_temp_free_i64(tcg_res);
9429 tcg_temp_free_i64(tcg_op1);
9430 tcg_temp_free_i64(tcg_op2);
9431 } else {
9432 /* Single */
9433 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9434 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9435 TCGv_i32 tcg_res = tcg_temp_new_i32();
9436
9437 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9438 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9439
9440 switch (fpopcode) {
9441 case 0x39: /* FMLS */
9442 /* As usual for ARM, separate negation for fused multiply-add */
9443 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9444 /* fall through */
9445 case 0x19: /* FMLA */
9446 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9447 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9448 tcg_res, fpst);
9449 break;
9450 case 0x1a: /* FADD */
9451 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9452 break;
9453 case 0x1b: /* FMULX */
9454 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9455 break;
9456 case 0x1c: /* FCMEQ */
9457 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9458 break;
9459 case 0x1e: /* FMAX */
9460 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9461 break;
9462 case 0x1f: /* FRECPS */
9463 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9464 break;
9465 case 0x18: /* FMAXNM */
9466 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9467 break;
9468 case 0x38: /* FMINNM */
9469 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9470 break;
9471 case 0x3a: /* FSUB */
9472 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9473 break;
9474 case 0x3e: /* FMIN */
9475 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9476 break;
9477 case 0x3f: /* FRSQRTS */
9478 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9479 break;
9480 case 0x5b: /* FMUL */
9481 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9482 break;
9483 case 0x5c: /* FCMGE */
9484 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9485 break;
9486 case 0x5d: /* FACGE */
9487 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9488 break;
9489 case 0x5f: /* FDIV */
9490 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9491 break;
9492 case 0x7a: /* FABD */
9493 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9494 gen_helper_vfp_abss(tcg_res, tcg_res);
9495 break;
9496 case 0x7c: /* FCMGT */
9497 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9498 break;
9499 case 0x7d: /* FACGT */
9500 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9501 break;
9502 default:
9503 g_assert_not_reached();
9504 }
9505
9506 if (elements == 1) {
9507 /* scalar single so clear high part */
9508 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9509
9510 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9511 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9512 tcg_temp_free_i64(tcg_tmp);
9513 } else {
9514 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9515 }
9516
9517 tcg_temp_free_i32(tcg_res);
9518 tcg_temp_free_i32(tcg_op1);
9519 tcg_temp_free_i32(tcg_op2);
9520 }
9521 }
9522
9523 tcg_temp_free_ptr(fpst);
9524
9525 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9526 }
9527
9528 /* AdvSIMD scalar three same
9529 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9530 * +-----+---+-----------+------+---+------+--------+---+------+------+
9531 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9532 * +-----+---+-----------+------+---+------+--------+---+------+------+
9533 */
9534 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9535 {
9536 int rd = extract32(insn, 0, 5);
9537 int rn = extract32(insn, 5, 5);
9538 int opcode = extract32(insn, 11, 5);
9539 int rm = extract32(insn, 16, 5);
9540 int size = extract32(insn, 22, 2);
9541 bool u = extract32(insn, 29, 1);
9542 TCGv_i64 tcg_rd;
9543
9544 if (opcode >= 0x18) {
9545 /* Floating point: U, size[1] and opcode indicate operation */
9546 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9547 switch (fpopcode) {
9548 case 0x1b: /* FMULX */
9549 case 0x1f: /* FRECPS */
9550 case 0x3f: /* FRSQRTS */
9551 case 0x5d: /* FACGE */
9552 case 0x7d: /* FACGT */
9553 case 0x1c: /* FCMEQ */
9554 case 0x5c: /* FCMGE */
9555 case 0x7c: /* FCMGT */
9556 case 0x7a: /* FABD */
9557 break;
9558 default:
9559 unallocated_encoding(s);
9560 return;
9561 }
9562
9563 if (!fp_access_check(s)) {
9564 return;
9565 }
9566
9567 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9568 return;
9569 }
9570
9571 switch (opcode) {
9572 case 0x1: /* SQADD, UQADD */
9573 case 0x5: /* SQSUB, UQSUB */
9574 case 0x9: /* SQSHL, UQSHL */
9575 case 0xb: /* SQRSHL, UQRSHL */
9576 break;
9577 case 0x8: /* SSHL, USHL */
9578 case 0xa: /* SRSHL, URSHL */
9579 case 0x6: /* CMGT, CMHI */
9580 case 0x7: /* CMGE, CMHS */
9581 case 0x11: /* CMTST, CMEQ */
9582 case 0x10: /* ADD, SUB (vector) */
9583 if (size != 3) {
9584 unallocated_encoding(s);
9585 return;
9586 }
9587 break;
9588 case 0x16: /* SQDMULH, SQRDMULH (vector) */
9589 if (size != 1 && size != 2) {
9590 unallocated_encoding(s);
9591 return;
9592 }
9593 break;
9594 default:
9595 unallocated_encoding(s);
9596 return;
9597 }
9598
9599 if (!fp_access_check(s)) {
9600 return;
9601 }
9602
9603 tcg_rd = tcg_temp_new_i64();
9604
9605 if (size == 3) {
9606 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9607 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9608
9609 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9610 tcg_temp_free_i64(tcg_rn);
9611 tcg_temp_free_i64(tcg_rm);
9612 } else {
9613 /* Do a single operation on the lowest element in the vector.
9614 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9615 * no side effects for all these operations.
9616 * OPTME: special-purpose helpers would avoid doing some
9617 * unnecessary work in the helper for the 8 and 16 bit cases.
9618 */
9619 NeonGenTwoOpEnvFn *genenvfn;
9620 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9621 TCGv_i32 tcg_rm = tcg_temp_new_i32();
9622 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9623
9624 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9625 read_vec_element_i32(s, tcg_rm, rm, 0, size);
9626
9627 switch (opcode) {
9628 case 0x1: /* SQADD, UQADD */
9629 {
9630 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9631 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9632 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9633 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9634 };
9635 genenvfn = fns[size][u];
9636 break;
9637 }
9638 case 0x5: /* SQSUB, UQSUB */
9639 {
9640 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9641 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9642 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9643 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9644 };
9645 genenvfn = fns[size][u];
9646 break;
9647 }
9648 case 0x9: /* SQSHL, UQSHL */
9649 {
9650 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9651 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9652 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9653 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9654 };
9655 genenvfn = fns[size][u];
9656 break;
9657 }
9658 case 0xb: /* SQRSHL, UQRSHL */
9659 {
9660 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9661 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9662 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9663 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9664 };
9665 genenvfn = fns[size][u];
9666 break;
9667 }
9668 case 0x16: /* SQDMULH, SQRDMULH */
9669 {
9670 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9671 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9672 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9673 };
9674 assert(size == 1 || size == 2);
9675 genenvfn = fns[size - 1][u];
9676 break;
9677 }
9678 default:
9679 g_assert_not_reached();
9680 }
9681
9682 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9683 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9684 tcg_temp_free_i32(tcg_rd32);
9685 tcg_temp_free_i32(tcg_rn);
9686 tcg_temp_free_i32(tcg_rm);
9687 }
9688
9689 write_fp_dreg(s, rd, tcg_rd);
9690
9691 tcg_temp_free_i64(tcg_rd);
9692 }
9693
9694 /* AdvSIMD scalar three same FP16
9695 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
9696 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9697 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
9698 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9699 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9700 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9701 */
9702 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9703 uint32_t insn)
9704 {
9705 int rd = extract32(insn, 0, 5);
9706 int rn = extract32(insn, 5, 5);
9707 int opcode = extract32(insn, 11, 3);
9708 int rm = extract32(insn, 16, 5);
9709 bool u = extract32(insn, 29, 1);
9710 bool a = extract32(insn, 23, 1);
9711 int fpopcode = opcode | (a << 3) | (u << 4);
9712 TCGv_ptr fpst;
9713 TCGv_i32 tcg_op1;
9714 TCGv_i32 tcg_op2;
9715 TCGv_i32 tcg_res;
9716
9717 switch (fpopcode) {
9718 case 0x03: /* FMULX */
9719 case 0x04: /* FCMEQ (reg) */
9720 case 0x07: /* FRECPS */
9721 case 0x0f: /* FRSQRTS */
9722 case 0x14: /* FCMGE (reg) */
9723 case 0x15: /* FACGE */
9724 case 0x1a: /* FABD */
9725 case 0x1c: /* FCMGT (reg) */
9726 case 0x1d: /* FACGT */
9727 break;
9728 default:
9729 unallocated_encoding(s);
9730 return;
9731 }
9732
9733 if (!dc_isar_feature(aa64_fp16, s)) {
9734 unallocated_encoding(s);
9735 }
9736
9737 if (!fp_access_check(s)) {
9738 return;
9739 }
9740
9741 fpst = get_fpstatus_ptr(true);
9742
9743 tcg_op1 = read_fp_hreg(s, rn);
9744 tcg_op2 = read_fp_hreg(s, rm);
9745 tcg_res = tcg_temp_new_i32();
9746
9747 switch (fpopcode) {
9748 case 0x03: /* FMULX */
9749 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9750 break;
9751 case 0x04: /* FCMEQ (reg) */
9752 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9753 break;
9754 case 0x07: /* FRECPS */
9755 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9756 break;
9757 case 0x0f: /* FRSQRTS */
9758 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9759 break;
9760 case 0x14: /* FCMGE (reg) */
9761 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9762 break;
9763 case 0x15: /* FACGE */
9764 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9765 break;
9766 case 0x1a: /* FABD */
9767 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9768 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9769 break;
9770 case 0x1c: /* FCMGT (reg) */
9771 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9772 break;
9773 case 0x1d: /* FACGT */
9774 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9775 break;
9776 default:
9777 g_assert_not_reached();
9778 }
9779
9780 write_fp_sreg(s, rd, tcg_res);
9781
9782
9783 tcg_temp_free_i32(tcg_res);
9784 tcg_temp_free_i32(tcg_op1);
9785 tcg_temp_free_i32(tcg_op2);
9786 tcg_temp_free_ptr(fpst);
9787 }
9788
9789 /* AdvSIMD scalar three same extra
9790 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9791 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9792 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9793 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9794 */
9795 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9796 uint32_t insn)
9797 {
9798 int rd = extract32(insn, 0, 5);
9799 int rn = extract32(insn, 5, 5);
9800 int opcode = extract32(insn, 11, 4);
9801 int rm = extract32(insn, 16, 5);
9802 int size = extract32(insn, 22, 2);
9803 bool u = extract32(insn, 29, 1);
9804 TCGv_i32 ele1, ele2, ele3;
9805 TCGv_i64 res;
9806 bool feature;
9807
9808 switch (u * 16 + opcode) {
9809 case 0x10: /* SQRDMLAH (vector) */
9810 case 0x11: /* SQRDMLSH (vector) */
9811 if (size != 1 && size != 2) {
9812 unallocated_encoding(s);
9813 return;
9814 }
9815 feature = dc_isar_feature(aa64_rdm, s);
9816 break;
9817 default:
9818 unallocated_encoding(s);
9819 return;
9820 }
9821 if (!feature) {
9822 unallocated_encoding(s);
9823 return;
9824 }
9825 if (!fp_access_check(s)) {
9826 return;
9827 }
9828
9829 /* Do a single operation on the lowest element in the vector.
9830 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9831 * with no side effects for all these operations.
9832 * OPTME: special-purpose helpers would avoid doing some
9833 * unnecessary work in the helper for the 16 bit cases.
9834 */
9835 ele1 = tcg_temp_new_i32();
9836 ele2 = tcg_temp_new_i32();
9837 ele3 = tcg_temp_new_i32();
9838
9839 read_vec_element_i32(s, ele1, rn, 0, size);
9840 read_vec_element_i32(s, ele2, rm, 0, size);
9841 read_vec_element_i32(s, ele3, rd, 0, size);
9842
9843 switch (opcode) {
9844 case 0x0: /* SQRDMLAH */
9845 if (size == 1) {
9846 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9847 } else {
9848 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9849 }
9850 break;
9851 case 0x1: /* SQRDMLSH */
9852 if (size == 1) {
9853 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9854 } else {
9855 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9856 }
9857 break;
9858 default:
9859 g_assert_not_reached();
9860 }
9861 tcg_temp_free_i32(ele1);
9862 tcg_temp_free_i32(ele2);
9863
9864 res = tcg_temp_new_i64();
9865 tcg_gen_extu_i32_i64(res, ele3);
9866 tcg_temp_free_i32(ele3);
9867
9868 write_fp_dreg(s, rd, res);
9869 tcg_temp_free_i64(res);
9870 }
9871
9872 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9873 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9874 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9875 {
9876 /* Handle 64->64 opcodes which are shared between the scalar and
9877 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9878 * is valid in either group and also the double-precision fp ops.
9879 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9880 * requires them.
9881 */
9882 TCGCond cond;
9883
9884 switch (opcode) {
9885 case 0x4: /* CLS, CLZ */
9886 if (u) {
9887 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9888 } else {
9889 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9890 }
9891 break;
9892 case 0x5: /* NOT */
9893 /* This opcode is shared with CNT and RBIT but we have earlier
9894 * enforced that size == 3 if and only if this is the NOT insn.
9895 */
9896 tcg_gen_not_i64(tcg_rd, tcg_rn);
9897 break;
9898 case 0x7: /* SQABS, SQNEG */
9899 if (u) {
9900 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9901 } else {
9902 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9903 }
9904 break;
9905 case 0xa: /* CMLT */
9906 /* 64 bit integer comparison against zero, result is
9907 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9908 * subtracting 1.
9909 */
9910 cond = TCG_COND_LT;
9911 do_cmop:
9912 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9913 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9914 break;
9915 case 0x8: /* CMGT, CMGE */
9916 cond = u ? TCG_COND_GE : TCG_COND_GT;
9917 goto do_cmop;
9918 case 0x9: /* CMEQ, CMLE */
9919 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9920 goto do_cmop;
9921 case 0xb: /* ABS, NEG */
9922 if (u) {
9923 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9924 } else {
9925 tcg_gen_abs_i64(tcg_rd, tcg_rn);
9926 }
9927 break;
9928 case 0x2f: /* FABS */
9929 gen_helper_vfp_absd(tcg_rd, tcg_rn);
9930 break;
9931 case 0x6f: /* FNEG */
9932 gen_helper_vfp_negd(tcg_rd, tcg_rn);
9933 break;
9934 case 0x7f: /* FSQRT */
9935 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9936 break;
9937 case 0x1a: /* FCVTNS */
9938 case 0x1b: /* FCVTMS */
9939 case 0x1c: /* FCVTAS */
9940 case 0x3a: /* FCVTPS */
9941 case 0x3b: /* FCVTZS */
9942 {
9943 TCGv_i32 tcg_shift = tcg_const_i32(0);
9944 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9945 tcg_temp_free_i32(tcg_shift);
9946 break;
9947 }
9948 case 0x5a: /* FCVTNU */
9949 case 0x5b: /* FCVTMU */
9950 case 0x5c: /* FCVTAU */
9951 case 0x7a: /* FCVTPU */
9952 case 0x7b: /* FCVTZU */
9953 {
9954 TCGv_i32 tcg_shift = tcg_const_i32(0);
9955 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9956 tcg_temp_free_i32(tcg_shift);
9957 break;
9958 }
9959 case 0x18: /* FRINTN */
9960 case 0x19: /* FRINTM */
9961 case 0x38: /* FRINTP */
9962 case 0x39: /* FRINTZ */
9963 case 0x58: /* FRINTA */
9964 case 0x79: /* FRINTI */
9965 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9966 break;
9967 case 0x59: /* FRINTX */
9968 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9969 break;
9970 case 0x1e: /* FRINT32Z */
9971 case 0x5e: /* FRINT32X */
9972 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9973 break;
9974 case 0x1f: /* FRINT64Z */
9975 case 0x5f: /* FRINT64X */
9976 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9977 break;
9978 default:
9979 g_assert_not_reached();
9980 }
9981 }
9982
9983 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9984 bool is_scalar, bool is_u, bool is_q,
9985 int size, int rn, int rd)
9986 {
9987 bool is_double = (size == MO_64);
9988 TCGv_ptr fpst;
9989
9990 if (!fp_access_check(s)) {
9991 return;
9992 }
9993
9994 fpst = get_fpstatus_ptr(size == MO_16);
9995
9996 if (is_double) {
9997 TCGv_i64 tcg_op = tcg_temp_new_i64();
9998 TCGv_i64 tcg_zero = tcg_const_i64(0);
9999 TCGv_i64 tcg_res = tcg_temp_new_i64();
10000 NeonGenTwoDoubleOpFn *genfn;
10001 bool swap = false;
10002 int pass;
10003
10004 switch (opcode) {
10005 case 0x2e: /* FCMLT (zero) */
10006 swap = true;
10007 /* fallthrough */
10008 case 0x2c: /* FCMGT (zero) */
10009 genfn = gen_helper_neon_cgt_f64;
10010 break;
10011 case 0x2d: /* FCMEQ (zero) */
10012 genfn = gen_helper_neon_ceq_f64;
10013 break;
10014 case 0x6d: /* FCMLE (zero) */
10015 swap = true;
10016 /* fall through */
10017 case 0x6c: /* FCMGE (zero) */
10018 genfn = gen_helper_neon_cge_f64;
10019 break;
10020 default:
10021 g_assert_not_reached();
10022 }
10023
10024 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10025 read_vec_element(s, tcg_op, rn, pass, MO_64);
10026 if (swap) {
10027 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10028 } else {
10029 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10030 }
10031 write_vec_element(s, tcg_res, rd, pass, MO_64);
10032 }
10033 tcg_temp_free_i64(tcg_res);
10034 tcg_temp_free_i64(tcg_zero);
10035 tcg_temp_free_i64(tcg_op);
10036
10037 clear_vec_high(s, !is_scalar, rd);
10038 } else {
10039 TCGv_i32 tcg_op = tcg_temp_new_i32();
10040 TCGv_i32 tcg_zero = tcg_const_i32(0);
10041 TCGv_i32 tcg_res = tcg_temp_new_i32();
10042 NeonGenTwoSingleOpFn *genfn;
10043 bool swap = false;
10044 int pass, maxpasses;
10045
10046 if (size == MO_16) {
10047 switch (opcode) {
10048 case 0x2e: /* FCMLT (zero) */
10049 swap = true;
10050 /* fall through */
10051 case 0x2c: /* FCMGT (zero) */
10052 genfn = gen_helper_advsimd_cgt_f16;
10053 break;
10054 case 0x2d: /* FCMEQ (zero) */
10055 genfn = gen_helper_advsimd_ceq_f16;
10056 break;
10057 case 0x6d: /* FCMLE (zero) */
10058 swap = true;
10059 /* fall through */
10060 case 0x6c: /* FCMGE (zero) */
10061 genfn = gen_helper_advsimd_cge_f16;
10062 break;
10063 default:
10064 g_assert_not_reached();
10065 }
10066 } else {
10067 switch (opcode) {
10068 case 0x2e: /* FCMLT (zero) */
10069 swap = true;
10070 /* fall through */
10071 case 0x2c: /* FCMGT (zero) */
10072 genfn = gen_helper_neon_cgt_f32;
10073 break;
10074 case 0x2d: /* FCMEQ (zero) */
10075 genfn = gen_helper_neon_ceq_f32;
10076 break;
10077 case 0x6d: /* FCMLE (zero) */
10078 swap = true;
10079 /* fall through */
10080 case 0x6c: /* FCMGE (zero) */
10081 genfn = gen_helper_neon_cge_f32;
10082 break;
10083 default:
10084 g_assert_not_reached();
10085 }
10086 }
10087
10088 if (is_scalar) {
10089 maxpasses = 1;
10090 } else {
10091 int vector_size = 8 << is_q;
10092 maxpasses = vector_size >> size;
10093 }
10094
10095 for (pass = 0; pass < maxpasses; pass++) {
10096 read_vec_element_i32(s, tcg_op, rn, pass, size);
10097 if (swap) {
10098 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10099 } else {
10100 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10101 }
10102 if (is_scalar) {
10103 write_fp_sreg(s, rd, tcg_res);
10104 } else {
10105 write_vec_element_i32(s, tcg_res, rd, pass, size);
10106 }
10107 }
10108 tcg_temp_free_i32(tcg_res);
10109 tcg_temp_free_i32(tcg_zero);
10110 tcg_temp_free_i32(tcg_op);
10111 if (!is_scalar) {
10112 clear_vec_high(s, is_q, rd);
10113 }
10114 }
10115
10116 tcg_temp_free_ptr(fpst);
10117 }
10118
10119 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
10120 bool is_scalar, bool is_u, bool is_q,
10121 int size, int rn, int rd)
10122 {
10123 bool is_double = (size == 3);
10124 TCGv_ptr fpst = get_fpstatus_ptr(false);
10125
10126 if (is_double) {
10127 TCGv_i64 tcg_op = tcg_temp_new_i64();
10128 TCGv_i64 tcg_res = tcg_temp_new_i64();
10129 int pass;
10130
10131 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10132 read_vec_element(s, tcg_op, rn, pass, MO_64);
10133 switch (opcode) {
10134 case 0x3d: /* FRECPE */
10135 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
10136 break;
10137 case 0x3f: /* FRECPX */
10138 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
10139 break;
10140 case 0x7d: /* FRSQRTE */
10141 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
10142 break;
10143 default:
10144 g_assert_not_reached();
10145 }
10146 write_vec_element(s, tcg_res, rd, pass, MO_64);
10147 }
10148 tcg_temp_free_i64(tcg_res);
10149 tcg_temp_free_i64(tcg_op);
10150 clear_vec_high(s, !is_scalar, rd);
10151 } else {
10152 TCGv_i32 tcg_op = tcg_temp_new_i32();
10153 TCGv_i32 tcg_res = tcg_temp_new_i32();
10154 int pass, maxpasses;
10155
10156 if (is_scalar) {
10157 maxpasses = 1;
10158 } else {
10159 maxpasses = is_q ? 4 : 2;
10160 }
10161
10162 for (pass = 0; pass < maxpasses; pass++) {
10163 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10164
10165 switch (opcode) {
10166 case 0x3c: /* URECPE */
10167 gen_helper_recpe_u32(tcg_res, tcg_op);
10168 break;
10169 case 0x3d: /* FRECPE */
10170 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
10171 break;
10172 case 0x3f: /* FRECPX */
10173 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
10174 break;
10175 case 0x7d: /* FRSQRTE */
10176 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
10177 break;
10178 default:
10179 g_assert_not_reached();
10180 }
10181
10182 if (is_scalar) {
10183 write_fp_sreg(s, rd, tcg_res);
10184 } else {
10185 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10186 }
10187 }
10188 tcg_temp_free_i32(tcg_res);
10189 tcg_temp_free_i32(tcg_op);
10190 if (!is_scalar) {
10191 clear_vec_high(s, is_q, rd);
10192 }
10193 }
10194 tcg_temp_free_ptr(fpst);
10195 }
10196
10197 static void handle_2misc_narrow(DisasContext *s, bool scalar,
10198 int opcode, bool u, bool is_q,
10199 int size, int rn, int rd)
10200 {
10201 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
10202 * in the source becomes a size element in the destination).
10203 */
10204 int pass;
10205 TCGv_i32 tcg_res[2];
10206 int destelt = is_q ? 2 : 0;
10207 int passes = scalar ? 1 : 2;
10208
10209 if (scalar) {
10210 tcg_res[1] = tcg_const_i32(0);
10211 }
10212
10213 for (pass = 0; pass < passes; pass++) {
10214 TCGv_i64 tcg_op = tcg_temp_new_i64();
10215 NeonGenNarrowFn *genfn = NULL;
10216 NeonGenNarrowEnvFn *genenvfn = NULL;
10217
10218 if (scalar) {
10219 read_vec_element(s, tcg_op, rn, pass, size + 1);
10220 } else {
10221 read_vec_element(s, tcg_op, rn, pass, MO_64);
10222 }
10223 tcg_res[pass] = tcg_temp_new_i32();
10224
10225 switch (opcode) {
10226 case 0x12: /* XTN, SQXTUN */
10227 {
10228 static NeonGenNarrowFn * const xtnfns[3] = {
10229 gen_helper_neon_narrow_u8,
10230 gen_helper_neon_narrow_u16,
10231 tcg_gen_extrl_i64_i32,
10232 };
10233 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
10234 gen_helper_neon_unarrow_sat8,
10235 gen_helper_neon_unarrow_sat16,
10236 gen_helper_neon_unarrow_sat32,
10237 };
10238 if (u) {
10239 genenvfn = sqxtunfns[size];
10240 } else {
10241 genfn = xtnfns[size];
10242 }
10243 break;
10244 }
10245 case 0x14: /* SQXTN, UQXTN */
10246 {
10247 static NeonGenNarrowEnvFn * const fns[3][2] = {
10248 { gen_helper_neon_narrow_sat_s8,
10249 gen_helper_neon_narrow_sat_u8 },
10250 { gen_helper_neon_narrow_sat_s16,
10251 gen_helper_neon_narrow_sat_u16 },
10252 { gen_helper_neon_narrow_sat_s32,
10253 gen_helper_neon_narrow_sat_u32 },
10254 };
10255 genenvfn = fns[size][u];
10256 break;
10257 }
10258 case 0x16: /* FCVTN, FCVTN2 */
10259 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10260 if (size == 2) {
10261 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
10262 } else {
10263 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10264 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10265 TCGv_ptr fpst = get_fpstatus_ptr(false);
10266 TCGv_i32 ahp = get_ahp_flag();
10267
10268 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10269 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10270 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10271 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10272 tcg_temp_free_i32(tcg_lo);
10273 tcg_temp_free_i32(tcg_hi);
10274 tcg_temp_free_ptr(fpst);
10275 tcg_temp_free_i32(ahp);
10276 }
10277 break;
10278 case 0x56: /* FCVTXN, FCVTXN2 */
10279 /* 64 bit to 32 bit float conversion
10280 * with von Neumann rounding (round to odd)
10281 */
10282 assert(size == 2);
10283 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
10284 break;
10285 default:
10286 g_assert_not_reached();
10287 }
10288
10289 if (genfn) {
10290 genfn(tcg_res[pass], tcg_op);
10291 } else if (genenvfn) {
10292 genenvfn(tcg_res[pass], cpu_env, tcg_op);
10293 }
10294
10295 tcg_temp_free_i64(tcg_op);
10296 }
10297
10298 for (pass = 0; pass < 2; pass++) {
10299 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10300 tcg_temp_free_i32(tcg_res[pass]);
10301 }
10302 clear_vec_high(s, is_q, rd);
10303 }
10304
10305 /* Remaining saturating accumulating ops */
10306 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
10307 bool is_q, int size, int rn, int rd)
10308 {
10309 bool is_double = (size == 3);
10310
10311 if (is_double) {
10312 TCGv_i64 tcg_rn = tcg_temp_new_i64();
10313 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10314 int pass;
10315
10316 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10317 read_vec_element(s, tcg_rn, rn, pass, MO_64);
10318 read_vec_element(s, tcg_rd, rd, pass, MO_64);
10319
10320 if (is_u) { /* USQADD */
10321 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10322 } else { /* SUQADD */
10323 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10324 }
10325 write_vec_element(s, tcg_rd, rd, pass, MO_64);
10326 }
10327 tcg_temp_free_i64(tcg_rd);
10328 tcg_temp_free_i64(tcg_rn);
10329 clear_vec_high(s, !is_scalar, rd);
10330 } else {
10331 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10332 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10333 int pass, maxpasses;
10334
10335 if (is_scalar) {
10336 maxpasses = 1;
10337 } else {
10338 maxpasses = is_q ? 4 : 2;
10339 }
10340
10341 for (pass = 0; pass < maxpasses; pass++) {
10342 if (is_scalar) {
10343 read_vec_element_i32(s, tcg_rn, rn, pass, size);
10344 read_vec_element_i32(s, tcg_rd, rd, pass, size);
10345 } else {
10346 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
10347 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10348 }
10349
10350 if (is_u) { /* USQADD */
10351 switch (size) {
10352 case 0:
10353 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10354 break;
10355 case 1:
10356 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10357 break;
10358 case 2:
10359 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10360 break;
10361 default:
10362 g_assert_not_reached();
10363 }
10364 } else { /* SUQADD */
10365 switch (size) {
10366 case 0:
10367 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10368 break;
10369 case 1:
10370 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10371 break;
10372 case 2:
10373 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10374 break;
10375 default:
10376 g_assert_not_reached();
10377 }
10378 }
10379
10380 if (is_scalar) {
10381 TCGv_i64 tcg_zero = tcg_const_i64(0);
10382 write_vec_element(s, tcg_zero, rd, 0, MO_64);
10383 tcg_temp_free_i64(tcg_zero);
10384 }
10385 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10386 }
10387 tcg_temp_free_i32(tcg_rd);
10388 tcg_temp_free_i32(tcg_rn);
10389 clear_vec_high(s, is_q, rd);
10390 }
10391 }
10392
10393 /* AdvSIMD scalar two reg misc
10394 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
10395 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10396 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
10397 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10398 */
10399 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10400 {
10401 int rd = extract32(insn, 0, 5);
10402 int rn = extract32(insn, 5, 5);
10403 int opcode = extract32(insn, 12, 5);
10404 int size = extract32(insn, 22, 2);
10405 bool u = extract32(insn, 29, 1);
10406 bool is_fcvt = false;
10407 int rmode;
10408 TCGv_i32 tcg_rmode;
10409 TCGv_ptr tcg_fpstatus;
10410
10411 switch (opcode) {
10412 case 0x3: /* USQADD / SUQADD*/
10413 if (!fp_access_check(s)) {
10414 return;
10415 }
10416 handle_2misc_satacc(s, true, u, false, size, rn, rd);
10417 return;
10418 case 0x7: /* SQABS / SQNEG */
10419 break;
10420 case 0xa: /* CMLT */
10421 if (u) {
10422 unallocated_encoding(s);
10423 return;
10424 }
10425 /* fall through */
10426 case 0x8: /* CMGT, CMGE */
10427 case 0x9: /* CMEQ, CMLE */
10428 case 0xb: /* ABS, NEG */
10429 if (size != 3) {
10430 unallocated_encoding(s);
10431 return;
10432 }
10433 break;
10434 case 0x12: /* SQXTUN */
10435 if (!u) {
10436 unallocated_encoding(s);
10437 return;
10438 }
10439 /* fall through */
10440 case 0x14: /* SQXTN, UQXTN */
10441 if (size == 3) {
10442 unallocated_encoding(s);
10443 return;
10444 }
10445 if (!fp_access_check(s)) {
10446 return;
10447 }
10448 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10449 return;
10450 case 0xc ... 0xf:
10451 case 0x16 ... 0x1d:
10452 case 0x1f:
10453 /* Floating point: U, size[1] and opcode indicate operation;
10454 * size[0] indicates single or double precision.
10455 */
10456 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10457 size = extract32(size, 0, 1) ? 3 : 2;
10458 switch (opcode) {
10459 case 0x2c: /* FCMGT (zero) */
10460 case 0x2d: /* FCMEQ (zero) */
10461 case 0x2e: /* FCMLT (zero) */
10462 case 0x6c: /* FCMGE (zero) */
10463 case 0x6d: /* FCMLE (zero) */
10464 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10465 return;
10466 case 0x1d: /* SCVTF */
10467 case 0x5d: /* UCVTF */
10468 {
10469 bool is_signed = (opcode == 0x1d);
10470 if (!fp_access_check(s)) {
10471 return;
10472 }
10473 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10474 return;
10475 }
10476 case 0x3d: /* FRECPE */
10477 case 0x3f: /* FRECPX */
10478 case 0x7d: /* FRSQRTE */
10479 if (!fp_access_check(s)) {
10480 return;
10481 }
10482 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10483 return;
10484 case 0x1a: /* FCVTNS */
10485 case 0x1b: /* FCVTMS */
10486 case 0x3a: /* FCVTPS */
10487 case 0x3b: /* FCVTZS */
10488 case 0x5a: /* FCVTNU */
10489 case 0x5b: /* FCVTMU */
10490 case 0x7a: /* FCVTPU */
10491 case 0x7b: /* FCVTZU */
10492 is_fcvt = true;
10493 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10494 break;
10495 case 0x1c: /* FCVTAS */
10496 case 0x5c: /* FCVTAU */
10497 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10498 is_fcvt = true;
10499 rmode = FPROUNDING_TIEAWAY;
10500 break;
10501 case 0x56: /* FCVTXN, FCVTXN2 */
10502 if (size == 2) {
10503 unallocated_encoding(s);
10504 return;
10505 }
10506 if (!fp_access_check(s)) {
10507 return;
10508 }
10509 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10510 return;
10511 default:
10512 unallocated_encoding(s);
10513 return;
10514 }
10515 break;
10516 default:
10517 unallocated_encoding(s);
10518 return;
10519 }
10520
10521 if (!fp_access_check(s)) {
10522 return;
10523 }
10524
10525 if (is_fcvt) {
10526 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10527 tcg_fpstatus = get_fpstatus_ptr(false);
10528 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10529 } else {
10530 tcg_rmode = NULL;
10531 tcg_fpstatus = NULL;
10532 }
10533
10534 if (size == 3) {
10535 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10536 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10537
10538 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10539 write_fp_dreg(s, rd, tcg_rd);
10540 tcg_temp_free_i64(tcg_rd);
10541 tcg_temp_free_i64(tcg_rn);
10542 } else {
10543 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10544 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10545
10546 read_vec_element_i32(s, tcg_rn, rn, 0, size);
10547
10548 switch (opcode) {
10549 case 0x7: /* SQABS, SQNEG */
10550 {
10551 NeonGenOneOpEnvFn *genfn;
10552 static NeonGenOneOpEnvFn * const fns[3][2] = {
10553 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10554 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10555 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10556 };
10557 genfn = fns[size][u];
10558 genfn(tcg_rd, cpu_env, tcg_rn);
10559 break;
10560 }
10561 case 0x1a: /* FCVTNS */
10562 case 0x1b: /* FCVTMS */
10563 case 0x1c: /* FCVTAS */
10564 case 0x3a: /* FCVTPS */
10565 case 0x3b: /* FCVTZS */
10566 {
10567 TCGv_i32 tcg_shift = tcg_const_i32(0);
10568 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
10569 tcg_temp_free_i32(tcg_shift);
10570 break;
10571 }
10572 case 0x5a: /* FCVTNU */
10573 case 0x5b: /* FCVTMU */
10574 case 0x5c: /* FCVTAU */
10575 case 0x7a: /* FCVTPU */
10576 case 0x7b: /* FCVTZU */
10577 {
10578 TCGv_i32 tcg_shift = tcg_const_i32(0);
10579 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
10580 tcg_temp_free_i32(tcg_shift);
10581 break;
10582 }
10583 default:
10584 g_assert_not_reached();
10585 }
10586
10587 write_fp_sreg(s, rd, tcg_rd);
10588 tcg_temp_free_i32(tcg_rd);
10589 tcg_temp_free_i32(tcg_rn);
10590 }
10591
10592 if (is_fcvt) {
10593 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10594 tcg_temp_free_i32(tcg_rmode);
10595 tcg_temp_free_ptr(tcg_fpstatus);
10596 }
10597 }
10598
10599 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10600 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10601 int immh, int immb, int opcode, int rn, int rd)
10602 {
10603 int size = 32 - clz32(immh) - 1;
10604 int immhb = immh << 3 | immb;
10605 int shift = 2 * (8 << size) - immhb;
10606 GVecGen2iFn *gvec_fn;
10607
10608 if (extract32(immh, 3, 1) && !is_q) {
10609 unallocated_encoding(s);
10610 return;
10611 }
10612 tcg_debug_assert(size <= 3);
10613
10614 if (!fp_access_check(s)) {
10615 return;
10616 }
10617
10618 switch (opcode) {
10619 case 0x02: /* SSRA / USRA (accumulate) */
10620 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10621 break;
10622
10623 case 0x08: /* SRI */
10624 gvec_fn = gen_gvec_sri;
10625 break;
10626
10627 case 0x00: /* SSHR / USHR */
10628 if (is_u) {
10629 if (shift == 8 << size) {
10630 /* Shift count the same size as element size produces zero. */
10631 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10632 is_q ? 16 : 8, vec_full_reg_size(s), 0);
10633 return;
10634 }
10635 gvec_fn = tcg_gen_gvec_shri;
10636 } else {
10637 /* Shift count the same size as element size produces all sign. */
10638 if (shift == 8 << size) {
10639 shift -= 1;
10640 }
10641 gvec_fn = tcg_gen_gvec_sari;
10642 }
10643 break;
10644
10645 case 0x04: /* SRSHR / URSHR (rounding) */
10646 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10647 break;
10648
10649 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10650 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10651 break;
10652
10653 default:
10654 g_assert_not_reached();
10655 }
10656
10657 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10658 }
10659
10660 /* SHL/SLI - Vector shift left */
10661 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10662 int immh, int immb, int opcode, int rn, int rd)
10663 {
10664 int size = 32 - clz32(immh) - 1;
10665 int immhb = immh << 3 | immb;
10666 int shift = immhb - (8 << size);
10667
10668 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10669 assert(size >= 0 && size <= 3);
10670
10671 if (extract32(immh, 3, 1) && !is_q) {
10672 unallocated_encoding(s);
10673 return;
10674 }
10675
10676 if (!fp_access_check(s)) {
10677 return;
10678 }
10679
10680 if (insert) {
10681 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10682 } else {
10683 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10684 }
10685 }
10686
10687 /* USHLL/SHLL - Vector shift left with widening */
10688 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10689 int immh, int immb, int opcode, int rn, int rd)
10690 {
10691 int size = 32 - clz32(immh) - 1;
10692 int immhb = immh << 3 | immb;
10693 int shift = immhb - (8 << size);
10694 int dsize = 64;
10695 int esize = 8 << size;
10696 int elements = dsize/esize;
10697 TCGv_i64 tcg_rn = new_tmp_a64(s);
10698 TCGv_i64 tcg_rd = new_tmp_a64(s);
10699 int i;
10700
10701 if (size >= 3) {
10702 unallocated_encoding(s);
10703 return;
10704 }
10705
10706 if (!fp_access_check(s)) {
10707 return;
10708 }
10709
10710 /* For the LL variants the store is larger than the load,
10711 * so if rd == rn we would overwrite parts of our input.
10712 * So load everything right now and use shifts in the main loop.
10713 */
10714 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10715
10716 for (i = 0; i < elements; i++) {
10717 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10718 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10719 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10720 write_vec_element(s, tcg_rd, rd, i, size + 1);
10721 }
10722 }
10723
10724 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10725 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10726 int immh, int immb, int opcode, int rn, int rd)
10727 {
10728 int immhb = immh << 3 | immb;
10729 int size = 32 - clz32(immh) - 1;
10730 int dsize = 64;
10731 int esize = 8 << size;
10732 int elements = dsize/esize;
10733 int shift = (2 * esize) - immhb;
10734 bool round = extract32(opcode, 0, 1);
10735 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10736 TCGv_i64 tcg_round;
10737 int i;
10738
10739 if (extract32(immh, 3, 1)) {
10740 unallocated_encoding(s);
10741 return;
10742 }
10743
10744 if (!fp_access_check(s)) {
10745 return;
10746 }
10747
10748 tcg_rn = tcg_temp_new_i64();
10749 tcg_rd = tcg_temp_new_i64();
10750 tcg_final = tcg_temp_new_i64();
10751 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10752
10753 if (round) {
10754 uint64_t round_const = 1ULL << (shift - 1);
10755 tcg_round = tcg_const_i64(round_const);
10756 } else {
10757 tcg_round = NULL;
10758 }
10759
10760 for (i = 0; i < elements; i++) {
10761 read_vec_element(s, tcg_rn, rn, i, size+1);
10762 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10763 false, true, size+1, shift);
10764
10765 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10766 }
10767
10768 if (!is_q) {
10769 write_vec_element(s, tcg_final, rd, 0, MO_64);
10770 } else {
10771 write_vec_element(s, tcg_final, rd, 1, MO_64);
10772 }
10773 if (round) {
10774 tcg_temp_free_i64(tcg_round);
10775 }
10776 tcg_temp_free_i64(tcg_rn);
10777 tcg_temp_free_i64(tcg_rd);
10778 tcg_temp_free_i64(tcg_final);
10779
10780 clear_vec_high(s, is_q, rd);
10781 }
10782
10783
10784 /* AdvSIMD shift by immediate
10785 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10786 * +---+---+---+-------------+------+------+--------+---+------+------+
10787 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10788 * +---+---+---+-------------+------+------+--------+---+------+------+
10789 */
10790 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10791 {
10792 int rd = extract32(insn, 0, 5);
10793 int rn = extract32(insn, 5, 5);
10794 int opcode = extract32(insn, 11, 5);
10795 int immb = extract32(insn, 16, 3);
10796 int immh = extract32(insn, 19, 4);
10797 bool is_u = extract32(insn, 29, 1);
10798 bool is_q = extract32(insn, 30, 1);
10799
10800 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10801 assert(immh != 0);
10802
10803 switch (opcode) {
10804 case 0x08: /* SRI */
10805 if (!is_u) {
10806 unallocated_encoding(s);
10807 return;
10808 }
10809 /* fall through */
10810 case 0x00: /* SSHR / USHR */
10811 case 0x02: /* SSRA / USRA (accumulate) */
10812 case 0x04: /* SRSHR / URSHR (rounding) */
10813 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10814 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10815 break;
10816 case 0x0a: /* SHL / SLI */
10817 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10818 break;
10819 case 0x10: /* SHRN */
10820 case 0x11: /* RSHRN / SQRSHRUN */
10821 if (is_u) {
10822 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10823 opcode, rn, rd);
10824 } else {
10825 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10826 }
10827 break;
10828 case 0x12: /* SQSHRN / UQSHRN */
10829 case 0x13: /* SQRSHRN / UQRSHRN */
10830 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10831 opcode, rn, rd);
10832 break;
10833 case 0x14: /* SSHLL / USHLL */
10834 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10835 break;
10836 case 0x1c: /* SCVTF / UCVTF */
10837 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10838 opcode, rn, rd);
10839 break;
10840 case 0xc: /* SQSHLU */
10841 if (!is_u) {
10842 unallocated_encoding(s);
10843 return;
10844 }
10845 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10846 break;
10847 case 0xe: /* SQSHL, UQSHL */
10848 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10849 break;
10850 case 0x1f: /* FCVTZS/ FCVTZU */
10851 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10852 return;
10853 default:
10854 unallocated_encoding(s);
10855 return;
10856 }
10857 }
10858
10859 /* Generate code to do a "long" addition or subtraction, ie one done in
10860 * TCGv_i64 on vector lanes twice the width specified by size.
10861 */
10862 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10863 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10864 {
10865 static NeonGenTwo64OpFn * const fns[3][2] = {
10866 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10867 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10868 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10869 };
10870 NeonGenTwo64OpFn *genfn;
10871 assert(size < 3);
10872
10873 genfn = fns[size][is_sub];
10874 genfn(tcg_res, tcg_op1, tcg_op2);
10875 }
10876
10877 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10878 int opcode, int rd, int rn, int rm)
10879 {
10880 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10881 TCGv_i64 tcg_res[2];
10882 int pass, accop;
10883
10884 tcg_res[0] = tcg_temp_new_i64();
10885 tcg_res[1] = tcg_temp_new_i64();
10886
10887 /* Does this op do an adding accumulate, a subtracting accumulate,
10888 * or no accumulate at all?
10889 */
10890 switch (opcode) {
10891 case 5:
10892 case 8:
10893 case 9:
10894 accop = 1;
10895 break;
10896 case 10:
10897 case 11:
10898 accop = -1;
10899 break;
10900 default:
10901 accop = 0;
10902 break;
10903 }
10904
10905 if (accop != 0) {
10906 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10907 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10908 }
10909
10910 /* size == 2 means two 32x32->64 operations; this is worth special
10911 * casing because we can generally handle it inline.
10912 */
10913 if (size == 2) {
10914 for (pass = 0; pass < 2; pass++) {
10915 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10916 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10917 TCGv_i64 tcg_passres;
10918 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10919
10920 int elt = pass + is_q * 2;
10921
10922 read_vec_element(s, tcg_op1, rn, elt, memop);
10923 read_vec_element(s, tcg_op2, rm, elt, memop);
10924
10925 if (accop == 0) {
10926 tcg_passres = tcg_res[pass];
10927 } else {
10928 tcg_passres = tcg_temp_new_i64();
10929 }
10930
10931 switch (opcode) {
10932 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10933 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10934 break;
10935 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10936 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10937 break;
10938 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10939 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10940 {
10941 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10942 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10943
10944 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10945 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10946 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10947 tcg_passres,
10948 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10949 tcg_temp_free_i64(tcg_tmp1);
10950 tcg_temp_free_i64(tcg_tmp2);
10951 break;
10952 }
10953 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10954 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10955 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10956 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10957 break;
10958 case 9: /* SQDMLAL, SQDMLAL2 */
10959 case 11: /* SQDMLSL, SQDMLSL2 */
10960 case 13: /* SQDMULL, SQDMULL2 */
10961 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10962 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10963 tcg_passres, tcg_passres);
10964 break;
10965 default:
10966 g_assert_not_reached();
10967 }
10968
10969 if (opcode == 9 || opcode == 11) {
10970 /* saturating accumulate ops */
10971 if (accop < 0) {
10972 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10973 }
10974 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10975 tcg_res[pass], tcg_passres);
10976 } else if (accop > 0) {
10977 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10978 } else if (accop < 0) {
10979 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10980 }
10981
10982 if (accop != 0) {
10983 tcg_temp_free_i64(tcg_passres);
10984 }
10985
10986 tcg_temp_free_i64(tcg_op1);
10987 tcg_temp_free_i64(tcg_op2);
10988 }
10989 } else {
10990 /* size 0 or 1, generally helper functions */
10991 for (pass = 0; pass < 2; pass++) {
10992 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10993 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10994 TCGv_i64 tcg_passres;
10995 int elt = pass + is_q * 2;
10996
10997 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10998 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10999
11000 if (accop == 0) {
11001 tcg_passres = tcg_res[pass];
11002 } else {
11003 tcg_passres = tcg_temp_new_i64();
11004 }
11005
11006 switch (opcode) {
11007 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
11008 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
11009 {
11010 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
11011 static NeonGenWidenFn * const widenfns[2][2] = {
11012 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
11013 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
11014 };
11015 NeonGenWidenFn *widenfn = widenfns[size][is_u];
11016
11017 widenfn(tcg_op2_64, tcg_op2);
11018 widenfn(tcg_passres, tcg_op1);
11019 gen_neon_addl(size, (opcode == 2), tcg_passres,
11020 tcg_passres, tcg_op2_64);
11021 tcg_temp_free_i64(tcg_op2_64);
11022 break;
11023 }
11024 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11025 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11026 if (size == 0) {
11027 if (is_u) {
11028 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
11029 } else {
11030 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
11031 }
11032 } else {
11033 if (is_u) {
11034 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
11035 } else {
11036 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
11037 }
11038 }
11039 break;
11040 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11041 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11042 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
11043 if (size == 0) {
11044 if (is_u) {
11045 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
11046 } else {
11047 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
11048 }
11049 } else {
11050 if (is_u) {
11051 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
11052 } else {
11053 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
11054 }
11055 }
11056 break;
11057 case 9: /* SQDMLAL, SQDMLAL2 */
11058 case 11: /* SQDMLSL, SQDMLSL2 */
11059 case 13: /* SQDMULL, SQDMULL2 */
11060 assert(size == 1);
11061 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
11062 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
11063 tcg_passres, tcg_passres);
11064 break;
11065 default:
11066 g_assert_not_reached();
11067 }
11068 tcg_temp_free_i32(tcg_op1);
11069 tcg_temp_free_i32(tcg_op2);
11070
11071 if (accop != 0) {
11072 if (opcode == 9 || opcode == 11) {
11073 /* saturating accumulate ops */
11074 if (accop < 0) {
11075 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
11076 }
11077 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
11078 tcg_res[pass],
11079 tcg_passres);
11080 } else {
11081 gen_neon_addl(size, (accop < 0), tcg_res[pass],
11082 tcg_res[pass], tcg_passres);
11083 }
11084 tcg_temp_free_i64(tcg_passres);
11085 }
11086 }
11087 }
11088
11089 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
11090 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
11091 tcg_temp_free_i64(tcg_res[0]);
11092 tcg_temp_free_i64(tcg_res[1]);
11093 }
11094
11095 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
11096 int opcode, int rd, int rn, int rm)
11097 {
11098 TCGv_i64 tcg_res[2];
11099 int part = is_q ? 2 : 0;
11100 int pass;
11101
11102 for (pass = 0; pass < 2; pass++) {
11103 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11104 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11105 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
11106 static NeonGenWidenFn * const widenfns[3][2] = {
11107 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
11108 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
11109 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
11110 };
11111 NeonGenWidenFn *widenfn = widenfns[size][is_u];
11112
11113 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11114 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
11115 widenfn(tcg_op2_wide, tcg_op2);
11116 tcg_temp_free_i32(tcg_op2);
11117 tcg_res[pass] = tcg_temp_new_i64();
11118 gen_neon_addl(size, (opcode == 3),
11119 tcg_res[pass], tcg_op1, tcg_op2_wide);
11120 tcg_temp_free_i64(tcg_op1);
11121 tcg_temp_free_i64(tcg_op2_wide);
11122 }
11123
11124 for (pass = 0; pass < 2; pass++) {
11125 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11126 tcg_temp_free_i64(tcg_res[pass]);
11127 }
11128 }
11129
11130 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
11131 {
11132 tcg_gen_addi_i64(in, in, 1U << 31);
11133 tcg_gen_extrh_i64_i32(res, in);
11134 }
11135
11136 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
11137 int opcode, int rd, int rn, int rm)
11138 {
11139 TCGv_i32 tcg_res[2];
11140 int part = is_q ? 2 : 0;
11141 int pass;
11142
11143 for (pass = 0; pass < 2; pass++) {
11144 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11145 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11146 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
11147 static NeonGenNarrowFn * const narrowfns[3][2] = {
11148 { gen_helper_neon_narrow_high_u8,
11149 gen_helper_neon_narrow_round_high_u8 },
11150 { gen_helper_neon_narrow_high_u16,
11151 gen_helper_neon_narrow_round_high_u16 },
11152 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
11153 };
11154 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
11155
11156 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11157 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11158
11159 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
11160
11161 tcg_temp_free_i64(tcg_op1);
11162 tcg_temp_free_i64(tcg_op2);
11163
11164 tcg_res[pass] = tcg_temp_new_i32();
11165 gennarrow(tcg_res[pass], tcg_wideres);
11166 tcg_temp_free_i64(tcg_wideres);
11167 }
11168
11169 for (pass = 0; pass < 2; pass++) {
11170 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
11171 tcg_temp_free_i32(tcg_res[pass]);
11172 }
11173 clear_vec_high(s, is_q, rd);
11174 }
11175
11176 /* AdvSIMD three different
11177 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
11178 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
11179 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
11180 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
11181 */
11182 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
11183 {
11184 /* Instructions in this group fall into three basic classes
11185 * (in each case with the operation working on each element in
11186 * the input vectors):
11187 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
11188 * 128 bit input)
11189 * (2) wide 64 x 128 -> 128
11190 * (3) narrowing 128 x 128 -> 64
11191 * Here we do initial decode, catch unallocated cases and
11192 * dispatch to separate functions for each class.
11193 */
11194 int is_q = extract32(insn, 30, 1);
11195 int is_u = extract32(insn, 29, 1);
11196 int size = extract32(insn, 22, 2);
11197 int opcode = extract32(insn, 12, 4);
11198 int rm = extract32(insn, 16, 5);
11199 int rn = extract32(insn, 5, 5);
11200 int rd = extract32(insn, 0, 5);
11201
11202 switch (opcode) {
11203 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
11204 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
11205 /* 64 x 128 -> 128 */
11206 if (size == 3) {
11207 unallocated_encoding(s);
11208 return;
11209 }
11210 if (!fp_access_check(s)) {
11211 return;
11212 }
11213 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
11214 break;
11215 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
11216 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
11217 /* 128 x 128 -> 64 */
11218 if (size == 3) {
11219 unallocated_encoding(s);
11220 return;
11221 }
11222 if (!fp_access_check(s)) {
11223 return;
11224 }
11225 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
11226 break;
11227 case 14: /* PMULL, PMULL2 */
11228 if (is_u) {
11229 unallocated_encoding(s);
11230 return;
11231 }
11232 switch (size) {
11233 case 0: /* PMULL.P8 */
11234 if (!fp_access_check(s)) {
11235 return;
11236 }
11237 /* The Q field specifies lo/hi half input for this insn. */
11238 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
11239 gen_helper_neon_pmull_h);
11240 break;
11241
11242 case 3: /* PMULL.P64 */
11243 if (!dc_isar_feature(aa64_pmull, s)) {
11244 unallocated_encoding(s);
11245 return;
11246 }
11247 if (!fp_access_check(s)) {
11248 return;
11249 }
11250 /* The Q field specifies lo/hi half input for this insn. */
11251 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
11252 gen_helper_gvec_pmull_q);
11253 break;
11254
11255 default:
11256 unallocated_encoding(s);
11257 break;
11258 }
11259 return;
11260 case 9: /* SQDMLAL, SQDMLAL2 */
11261 case 11: /* SQDMLSL, SQDMLSL2 */
11262 case 13: /* SQDMULL, SQDMULL2 */
11263 if (is_u || size == 0) {
11264 unallocated_encoding(s);
11265 return;
11266 }
11267 /* fall through */
11268 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
11269 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
11270 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11271 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11272 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11273 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11274 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
11275 /* 64 x 64 -> 128 */
11276 if (size == 3) {
11277 unallocated_encoding(s);
11278 return;
11279 }
11280 if (!fp_access_check(s)) {
11281 return;
11282 }
11283
11284 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
11285 break;
11286 default:
11287 /* opcode 15 not allocated */
11288 unallocated_encoding(s);
11289 break;
11290 }
11291 }
11292
11293 /* Logic op (opcode == 3) subgroup of C3.6.16. */
11294 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
11295 {
11296 int rd = extract32(insn, 0, 5);
11297 int rn = extract32(insn, 5, 5);
11298 int rm = extract32(insn, 16, 5);
11299 int size = extract32(insn, 22, 2);
11300 bool is_u = extract32(insn, 29, 1);
11301 bool is_q = extract32(insn, 30, 1);
11302
11303 if (!fp_access_check(s)) {
11304 return;
11305 }
11306
11307 switch (size + 4 * is_u) {
11308 case 0: /* AND */
11309 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
11310 return;
11311 case 1: /* BIC */
11312 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
11313 return;
11314 case 2: /* ORR */
11315 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
11316 return;
11317 case 3: /* ORN */
11318 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
11319 return;
11320 case 4: /* EOR */
11321 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
11322 return;
11323
11324 case 5: /* BSL bitwise select */
11325 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
11326 return;
11327 case 6: /* BIT, bitwise insert if true */
11328 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
11329 return;
11330 case 7: /* BIF, bitwise insert if false */
11331 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
11332 return;
11333
11334 default:
11335 g_assert_not_reached();
11336 }
11337 }
11338
11339 /* Pairwise op subgroup of C3.6.16.
11340 *
11341 * This is called directly or via the handle_3same_float for float pairwise
11342 * operations where the opcode and size are calculated differently.
11343 */
11344 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
11345 int size, int rn, int rm, int rd)
11346 {
11347 TCGv_ptr fpst;
11348 int pass;
11349
11350 /* Floating point operations need fpst */
11351 if (opcode >= 0x58) {
11352 fpst = get_fpstatus_ptr(false);
11353 } else {
11354 fpst = NULL;
11355 }
11356
11357 if (!fp_access_check(s)) {
11358 return;
11359 }
11360
11361 /* These operations work on the concatenated rm:rn, with each pair of
11362 * adjacent elements being operated on to produce an element in the result.
11363 */
11364 if (size == 3) {
11365 TCGv_i64 tcg_res[2];
11366
11367 for (pass = 0; pass < 2; pass++) {
11368 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11369 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11370 int passreg = (pass == 0) ? rn : rm;
11371
11372 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
11373 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
11374 tcg_res[pass] = tcg_temp_new_i64();
11375
11376 switch (opcode) {
11377 case 0x17: /* ADDP */
11378 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11379 break;
11380 case 0x58: /* FMAXNMP */
11381 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11382 break;
11383 case 0x5a: /* FADDP */
11384 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11385 break;
11386 case 0x5e: /* FMAXP */
11387 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11388 break;
11389 case 0x78: /* FMINNMP */
11390 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11391 break;
11392 case 0x7e: /* FMINP */
11393 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11394 break;
11395 default:
11396 g_assert_not_reached();
11397 }
11398
11399 tcg_temp_free_i64(tcg_op1);
11400 tcg_temp_free_i64(tcg_op2);
11401 }
11402
11403 for (pass = 0; pass < 2; pass++) {
11404 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11405 tcg_temp_free_i64(tcg_res[pass]);
11406 }
11407 } else {
11408 int maxpass = is_q ? 4 : 2;
11409 TCGv_i32 tcg_res[4];
11410
11411 for (pass = 0; pass < maxpass; pass++) {
11412 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11413 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11414 NeonGenTwoOpFn *genfn = NULL;
11415 int passreg = pass < (maxpass / 2) ? rn : rm;
11416 int passelt = (is_q && (pass & 1)) ? 2 : 0;
11417
11418 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11419 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11420 tcg_res[pass] = tcg_temp_new_i32();
11421
11422 switch (opcode) {
11423 case 0x17: /* ADDP */
11424 {
11425 static NeonGenTwoOpFn * const fns[3] = {
11426 gen_helper_neon_padd_u8,
11427 gen_helper_neon_padd_u16,
11428 tcg_gen_add_i32,
11429 };
11430 genfn = fns[size];
11431 break;
11432 }
11433 case 0x14: /* SMAXP, UMAXP */
11434 {
11435 static NeonGenTwoOpFn * const fns[3][2] = {
11436 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11437 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11438 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11439 };
11440 genfn = fns[size][u];
11441 break;
11442 }
11443 case 0x15: /* SMINP, UMINP */
11444 {
11445 static NeonGenTwoOpFn * const fns[3][2] = {
11446 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11447 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11448 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11449 };
11450 genfn = fns[size][u];
11451 break;
11452 }
11453 /* The FP operations are all on single floats (32 bit) */
11454 case 0x58: /* FMAXNMP */
11455 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11456 break;
11457 case 0x5a: /* FADDP */
11458 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11459 break;
11460 case 0x5e: /* FMAXP */
11461 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11462 break;
11463 case 0x78: /* FMINNMP */
11464 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11465 break;
11466 case 0x7e: /* FMINP */
11467 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11468 break;
11469 default:
11470 g_assert_not_reached();
11471 }
11472
11473 /* FP ops called directly, otherwise call now */
11474 if (genfn) {
11475 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11476 }
11477
11478 tcg_temp_free_i32(tcg_op1);
11479 tcg_temp_free_i32(tcg_op2);
11480 }
11481
11482 for (pass = 0; pass < maxpass; pass++) {
11483 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11484 tcg_temp_free_i32(tcg_res[pass]);
11485 }
11486 clear_vec_high(s, is_q, rd);
11487 }
11488
11489 if (fpst) {
11490 tcg_temp_free_ptr(fpst);
11491 }
11492 }
11493
11494 /* Floating point op subgroup of C3.6.16. */
11495 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11496 {
11497 /* For floating point ops, the U, size[1] and opcode bits
11498 * together indicate the operation. size[0] indicates single
11499 * or double.
11500 */
11501 int fpopcode = extract32(insn, 11, 5)
11502 | (extract32(insn, 23, 1) << 5)
11503 | (extract32(insn, 29, 1) << 6);
11504 int is_q = extract32(insn, 30, 1);
11505 int size = extract32(insn, 22, 1);
11506 int rm = extract32(insn, 16, 5);
11507 int rn = extract32(insn, 5, 5);
11508 int rd = extract32(insn, 0, 5);
11509
11510 int datasize = is_q ? 128 : 64;
11511 int esize = 32 << size;
11512 int elements = datasize / esize;
11513
11514 if (size == 1 && !is_q) {
11515 unallocated_encoding(s);
11516 return;
11517 }
11518
11519 switch (fpopcode) {
11520 case 0x58: /* FMAXNMP */
11521 case 0x5a: /* FADDP */
11522 case 0x5e: /* FMAXP */
11523 case 0x78: /* FMINNMP */
11524 case 0x7e: /* FMINP */
11525 if (size && !is_q) {
11526 unallocated_encoding(s);
11527 return;
11528 }
11529 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11530 rn, rm, rd);
11531 return;
11532 case 0x1b: /* FMULX */
11533 case 0x1f: /* FRECPS */
11534 case 0x3f: /* FRSQRTS */
11535 case 0x5d: /* FACGE */
11536 case 0x7d: /* FACGT */
11537 case 0x19: /* FMLA */
11538 case 0x39: /* FMLS */
11539 case 0x18: /* FMAXNM */
11540 case 0x1a: /* FADD */
11541 case 0x1c: /* FCMEQ */
11542 case 0x1e: /* FMAX */
11543 case 0x38: /* FMINNM */
11544 case 0x3a: /* FSUB */
11545 case 0x3e: /* FMIN */
11546 case 0x5b: /* FMUL */
11547 case 0x5c: /* FCMGE */
11548 case 0x5f: /* FDIV */
11549 case 0x7a: /* FABD */
11550 case 0x7c: /* FCMGT */
11551 if (!fp_access_check(s)) {
11552 return;
11553 }
11554 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11555 return;
11556
11557 case 0x1d: /* FMLAL */
11558 case 0x3d: /* FMLSL */
11559 case 0x59: /* FMLAL2 */
11560 case 0x79: /* FMLSL2 */
11561 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11562 unallocated_encoding(s);
11563 return;
11564 }
11565 if (fp_access_check(s)) {
11566 int is_s = extract32(insn, 23, 1);
11567 int is_2 = extract32(insn, 29, 1);
11568 int data = (is_2 << 1) | is_s;
11569 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11570 vec_full_reg_offset(s, rn),
11571 vec_full_reg_offset(s, rm), cpu_env,
11572 is_q ? 16 : 8, vec_full_reg_size(s),
11573 data, gen_helper_gvec_fmlal_a64);
11574 }
11575 return;
11576
11577 default:
11578 unallocated_encoding(s);
11579 return;
11580 }
11581 }
11582
11583 /* Integer op subgroup of C3.6.16. */
11584 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11585 {
11586 int is_q = extract32(insn, 30, 1);
11587 int u = extract32(insn, 29, 1);
11588 int size = extract32(insn, 22, 2);
11589 int opcode = extract32(insn, 11, 5);
11590 int rm = extract32(insn, 16, 5);
11591 int rn = extract32(insn, 5, 5);
11592 int rd = extract32(insn, 0, 5);
11593 int pass;
11594 TCGCond cond;
11595
11596 switch (opcode) {
11597 case 0x13: /* MUL, PMUL */
11598 if (u && size != 0) {
11599 unallocated_encoding(s);
11600 return;
11601 }
11602 /* fall through */
11603 case 0x0: /* SHADD, UHADD */
11604 case 0x2: /* SRHADD, URHADD */
11605 case 0x4: /* SHSUB, UHSUB */
11606 case 0xc: /* SMAX, UMAX */
11607 case 0xd: /* SMIN, UMIN */
11608 case 0xe: /* SABD, UABD */
11609 case 0xf: /* SABA, UABA */
11610 case 0x12: /* MLA, MLS */
11611 if (size == 3) {
11612 unallocated_encoding(s);
11613 return;
11614 }
11615 break;
11616 case 0x16: /* SQDMULH, SQRDMULH */
11617 if (size == 0 || size == 3) {
11618 unallocated_encoding(s);
11619 return;
11620 }
11621 break;
11622 default:
11623 if (size == 3 && !is_q) {
11624 unallocated_encoding(s);
11625 return;
11626 }
11627 break;
11628 }
11629
11630 if (!fp_access_check(s)) {
11631 return;
11632 }
11633
11634 switch (opcode) {
11635 case 0x01: /* SQADD, UQADD */
11636 if (u) {
11637 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11638 } else {
11639 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11640 }
11641 return;
11642 case 0x05: /* SQSUB, UQSUB */
11643 if (u) {
11644 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11645 } else {
11646 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11647 }
11648 return;
11649 case 0x08: /* SSHL, USHL */
11650 if (u) {
11651 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11652 } else {
11653 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11654 }
11655 return;
11656 case 0x0c: /* SMAX, UMAX */
11657 if (u) {
11658 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11659 } else {
11660 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11661 }
11662 return;
11663 case 0x0d: /* SMIN, UMIN */
11664 if (u) {
11665 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11666 } else {
11667 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11668 }
11669 return;
11670 case 0xe: /* SABD, UABD */
11671 if (u) {
11672 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11673 } else {
11674 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11675 }
11676 return;
11677 case 0xf: /* SABA, UABA */
11678 if (u) {
11679 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11680 } else {
11681 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11682 }
11683 return;
11684 case 0x10: /* ADD, SUB */
11685 if (u) {
11686 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11687 } else {
11688 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11689 }
11690 return;
11691 case 0x13: /* MUL, PMUL */
11692 if (!u) { /* MUL */
11693 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11694 } else { /* PMUL */
11695 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11696 }
11697 return;
11698 case 0x12: /* MLA, MLS */
11699 if (u) {
11700 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11701 } else {
11702 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11703 }
11704 return;
11705 case 0x11:
11706 if (!u) { /* CMTST */
11707 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11708 return;
11709 }
11710 /* else CMEQ */
11711 cond = TCG_COND_EQ;
11712 goto do_gvec_cmp;
11713 case 0x06: /* CMGT, CMHI */
11714 cond = u ? TCG_COND_GTU : TCG_COND_GT;
11715 goto do_gvec_cmp;
11716 case 0x07: /* CMGE, CMHS */
11717 cond = u ? TCG_COND_GEU : TCG_COND_GE;
11718 do_gvec_cmp:
11719 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11720 vec_full_reg_offset(s, rn),
11721 vec_full_reg_offset(s, rm),
11722 is_q ? 16 : 8, vec_full_reg_size(s));
11723 return;
11724 }
11725
11726 if (size == 3) {
11727 assert(is_q);
11728 for (pass = 0; pass < 2; pass++) {
11729 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11730 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11731 TCGv_i64 tcg_res = tcg_temp_new_i64();
11732
11733 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11734 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11735
11736 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11737
11738 write_vec_element(s, tcg_res, rd, pass, MO_64);
11739
11740 tcg_temp_free_i64(tcg_res);
11741 tcg_temp_free_i64(tcg_op1);
11742 tcg_temp_free_i64(tcg_op2);
11743 }
11744 } else {
11745 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11746 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11747 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11748 TCGv_i32 tcg_res = tcg_temp_new_i32();
11749 NeonGenTwoOpFn *genfn = NULL;
11750 NeonGenTwoOpEnvFn *genenvfn = NULL;
11751
11752 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11753 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11754
11755 switch (opcode) {
11756 case 0x0: /* SHADD, UHADD */
11757 {
11758 static NeonGenTwoOpFn * const fns[3][2] = {
11759 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11760 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11761 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11762 };
11763 genfn = fns[size][u];
11764 break;
11765 }
11766 case 0x2: /* SRHADD, URHADD */
11767 {
11768 static NeonGenTwoOpFn * const fns[3][2] = {
11769 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11770 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11771 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11772 };
11773 genfn = fns[size][u];
11774 break;
11775 }
11776 case 0x4: /* SHSUB, UHSUB */
11777 {
11778 static NeonGenTwoOpFn * const fns[3][2] = {
11779 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11780 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11781 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11782 };
11783 genfn = fns[size][u];
11784 break;
11785 }
11786 case 0x9: /* SQSHL, UQSHL */
11787 {
11788 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11789 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11790 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11791 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11792 };
11793 genenvfn = fns[size][u];
11794 break;
11795 }
11796 case 0xa: /* SRSHL, URSHL */
11797 {
11798 static NeonGenTwoOpFn * const fns[3][2] = {
11799 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11800 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11801 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11802 };
11803 genfn = fns[size][u];
11804 break;
11805 }
11806 case 0xb: /* SQRSHL, UQRSHL */
11807 {
11808 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11809 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11810 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11811 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11812 };
11813 genenvfn = fns[size][u];
11814 break;
11815 }
11816 case 0x16: /* SQDMULH, SQRDMULH */
11817 {
11818 static NeonGenTwoOpEnvFn * const fns[2][2] = {
11819 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
11820 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
11821 };
11822 assert(size == 1 || size == 2);
11823 genenvfn = fns[size - 1][u];
11824 break;
11825 }
11826 default:
11827 g_assert_not_reached();
11828 }
11829
11830 if (genenvfn) {
11831 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11832 } else {
11833 genfn(tcg_res, tcg_op1, tcg_op2);
11834 }
11835
11836 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11837
11838 tcg_temp_free_i32(tcg_res);
11839 tcg_temp_free_i32(tcg_op1);
11840 tcg_temp_free_i32(tcg_op2);
11841 }
11842 }
11843 clear_vec_high(s, is_q, rd);
11844 }
11845
11846 /* AdvSIMD three same
11847 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11848 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11849 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11850 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11851 */
11852 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11853 {
11854 int opcode = extract32(insn, 11, 5);
11855
11856 switch (opcode) {
11857 case 0x3: /* logic ops */
11858 disas_simd_3same_logic(s, insn);
11859 break;
11860 case 0x17: /* ADDP */
11861 case 0x14: /* SMAXP, UMAXP */
11862 case 0x15: /* SMINP, UMINP */
11863 {
11864 /* Pairwise operations */
11865 int is_q = extract32(insn, 30, 1);
11866 int u = extract32(insn, 29, 1);
11867 int size = extract32(insn, 22, 2);
11868 int rm = extract32(insn, 16, 5);
11869 int rn = extract32(insn, 5, 5);
11870 int rd = extract32(insn, 0, 5);
11871 if (opcode == 0x17) {
11872 if (u || (size == 3 && !is_q)) {
11873 unallocated_encoding(s);
11874 return;
11875 }
11876 } else {
11877 if (size == 3) {
11878 unallocated_encoding(s);
11879 return;
11880 }
11881 }
11882 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11883 break;
11884 }
11885 case 0x18 ... 0x31:
11886 /* floating point ops, sz[1] and U are part of opcode */
11887 disas_simd_3same_float(s, insn);
11888 break;
11889 default:
11890 disas_simd_3same_int(s, insn);
11891 break;
11892 }
11893 }
11894
11895 /*
11896 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11897 *
11898 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11899 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11900 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11901 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11902 *
11903 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11904 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11905 *
11906 */
11907 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11908 {
11909 int opcode, fpopcode;
11910 int is_q, u, a, rm, rn, rd;
11911 int datasize, elements;
11912 int pass;
11913 TCGv_ptr fpst;
11914 bool pairwise = false;
11915
11916 if (!dc_isar_feature(aa64_fp16, s)) {
11917 unallocated_encoding(s);
11918 return;
11919 }
11920
11921 if (!fp_access_check(s)) {
11922 return;
11923 }
11924
11925 /* For these floating point ops, the U, a and opcode bits
11926 * together indicate the operation.
11927 */
11928 opcode = extract32(insn, 11, 3);
11929 u = extract32(insn, 29, 1);
11930 a = extract32(insn, 23, 1);
11931 is_q = extract32(insn, 30, 1);
11932 rm = extract32(insn, 16, 5);
11933 rn = extract32(insn, 5, 5);
11934 rd = extract32(insn, 0, 5);
11935
11936 fpopcode = opcode | (a << 3) | (u << 4);
11937 datasize = is_q ? 128 : 64;
11938 elements = datasize / 16;
11939
11940 switch (fpopcode) {
11941 case 0x10: /* FMAXNMP */
11942 case 0x12: /* FADDP */
11943 case 0x16: /* FMAXP */
11944 case 0x18: /* FMINNMP */
11945 case 0x1e: /* FMINP */
11946 pairwise = true;
11947 break;
11948 }
11949
11950 fpst = get_fpstatus_ptr(true);
11951
11952 if (pairwise) {
11953 int maxpass = is_q ? 8 : 4;
11954 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11955 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11956 TCGv_i32 tcg_res[8];
11957
11958 for (pass = 0; pass < maxpass; pass++) {
11959 int passreg = pass < (maxpass / 2) ? rn : rm;
11960 int passelt = (pass << 1) & (maxpass - 1);
11961
11962 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11963 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11964 tcg_res[pass] = tcg_temp_new_i32();
11965
11966 switch (fpopcode) {
11967 case 0x10: /* FMAXNMP */
11968 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11969 fpst);
11970 break;
11971 case 0x12: /* FADDP */
11972 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11973 break;
11974 case 0x16: /* FMAXP */
11975 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11976 break;
11977 case 0x18: /* FMINNMP */
11978 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11979 fpst);
11980 break;
11981 case 0x1e: /* FMINP */
11982 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11983 break;
11984 default:
11985 g_assert_not_reached();
11986 }
11987 }
11988
11989 for (pass = 0; pass < maxpass; pass++) {
11990 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11991 tcg_temp_free_i32(tcg_res[pass]);
11992 }
11993
11994 tcg_temp_free_i32(tcg_op1);
11995 tcg_temp_free_i32(tcg_op2);
11996
11997 } else {
11998 for (pass = 0; pass < elements; pass++) {
11999 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
12000 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
12001 TCGv_i32 tcg_res = tcg_temp_new_i32();
12002
12003 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
12004 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
12005
12006 switch (fpopcode) {
12007 case 0x0: /* FMAXNM */
12008 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
12009 break;
12010 case 0x1: /* FMLA */
12011 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12012 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
12013 fpst);
12014 break;
12015 case 0x2: /* FADD */
12016 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
12017 break;
12018 case 0x3: /* FMULX */
12019 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
12020 break;
12021 case 0x4: /* FCMEQ */
12022 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12023 break;
12024 case 0x6: /* FMAX */
12025 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
12026 break;
12027 case 0x7: /* FRECPS */
12028 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12029 break;
12030 case 0x8: /* FMINNM */
12031 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
12032 break;
12033 case 0x9: /* FMLS */
12034 /* As usual for ARM, separate negation for fused multiply-add */
12035 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
12036 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12037 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
12038 fpst);
12039 break;
12040 case 0xa: /* FSUB */
12041 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
12042 break;
12043 case 0xe: /* FMIN */
12044 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
12045 break;
12046 case 0xf: /* FRSQRTS */
12047 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12048 break;
12049 case 0x13: /* FMUL */
12050 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
12051 break;
12052 case 0x14: /* FCMGE */
12053 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12054 break;
12055 case 0x15: /* FACGE */
12056 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12057 break;
12058 case 0x17: /* FDIV */
12059 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
12060 break;
12061 case 0x1a: /* FABD */
12062 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
12063 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
12064 break;
12065 case 0x1c: /* FCMGT */
12066 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12067 break;
12068 case 0x1d: /* FACGT */
12069 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12070 break;
12071 default:
12072 fprintf(stderr, "%s: insn %#04x, fpop %#2x @ %#" PRIx64 "\n",
12073 __func__, insn, fpopcode, s->pc_curr);
12074 g_assert_not_reached();
12075 }
12076
12077 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12078 tcg_temp_free_i32(tcg_res);
12079 tcg_temp_free_i32(tcg_op1);
12080 tcg_temp_free_i32(tcg_op2);
12081 }
12082 }
12083
12084 tcg_temp_free_ptr(fpst);
12085
12086 clear_vec_high(s, is_q, rd);
12087 }
12088
12089 /* AdvSIMD three same extra
12090 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
12091 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
12092 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
12093 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
12094 */
12095 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
12096 {
12097 int rd = extract32(insn, 0, 5);
12098 int rn = extract32(insn, 5, 5);
12099 int opcode = extract32(insn, 11, 4);
12100 int rm = extract32(insn, 16, 5);
12101 int size = extract32(insn, 22, 2);
12102 bool u = extract32(insn, 29, 1);
12103 bool is_q = extract32(insn, 30, 1);
12104 bool feature;
12105 int rot;
12106
12107 switch (u * 16 + opcode) {
12108 case 0x10: /* SQRDMLAH (vector) */
12109 case 0x11: /* SQRDMLSH (vector) */
12110 if (size != 1 && size != 2) {
12111 unallocated_encoding(s);
12112 return;
12113 }
12114 feature = dc_isar_feature(aa64_rdm, s);
12115 break;
12116 case 0x02: /* SDOT (vector) */
12117 case 0x12: /* UDOT (vector) */
12118 if (size != MO_32) {
12119 unallocated_encoding(s);
12120 return;
12121 }
12122 feature = dc_isar_feature(aa64_dp, s);
12123 break;
12124 case 0x18: /* FCMLA, #0 */
12125 case 0x19: /* FCMLA, #90 */
12126 case 0x1a: /* FCMLA, #180 */
12127 case 0x1b: /* FCMLA, #270 */
12128 case 0x1c: /* FCADD, #90 */
12129 case 0x1e: /* FCADD, #270 */
12130 if (size == 0
12131 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
12132 || (size == 3 && !is_q)) {
12133 unallocated_encoding(s);
12134 return;
12135 }
12136 feature = dc_isar_feature(aa64_fcma, s);
12137 break;
12138 default:
12139 unallocated_encoding(s);
12140 return;
12141 }
12142 if (!feature) {
12143 unallocated_encoding(s);
12144 return;
12145 }
12146 if (!fp_access_check(s)) {
12147 return;
12148 }
12149
12150 switch (opcode) {
12151 case 0x0: /* SQRDMLAH (vector) */
12152 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
12153 return;
12154
12155 case 0x1: /* SQRDMLSH (vector) */
12156 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
12157 return;
12158
12159 case 0x2: /* SDOT / UDOT */
12160 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0,
12161 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
12162 return;
12163
12164 case 0x8: /* FCMLA, #0 */
12165 case 0x9: /* FCMLA, #90 */
12166 case 0xa: /* FCMLA, #180 */
12167 case 0xb: /* FCMLA, #270 */
12168 rot = extract32(opcode, 0, 2);
12169 switch (size) {
12170 case 1:
12171 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, true, rot,
12172 gen_helper_gvec_fcmlah);
12173 break;
12174 case 2:
12175 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
12176 gen_helper_gvec_fcmlas);
12177 break;
12178 case 3:
12179 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
12180 gen_helper_gvec_fcmlad);
12181 break;
12182 default:
12183 g_assert_not_reached();
12184 }
12185 return;
12186
12187 case 0xc: /* FCADD, #90 */
12188 case 0xe: /* FCADD, #270 */
12189 rot = extract32(opcode, 1, 1);
12190 switch (size) {
12191 case 1:
12192 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12193 gen_helper_gvec_fcaddh);
12194 break;
12195 case 2:
12196 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12197 gen_helper_gvec_fcadds);
12198 break;
12199 case 3:
12200 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12201 gen_helper_gvec_fcaddd);
12202 break;
12203 default:
12204 g_assert_not_reached();
12205 }
12206 return;
12207
12208 default:
12209 g_assert_not_reached();
12210 }
12211 }
12212
12213 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
12214 int size, int rn, int rd)
12215 {
12216 /* Handle 2-reg-misc ops which are widening (so each size element
12217 * in the source becomes a 2*size element in the destination.
12218 * The only instruction like this is FCVTL.
12219 */
12220 int pass;
12221
12222 if (size == 3) {
12223 /* 32 -> 64 bit fp conversion */
12224 TCGv_i64 tcg_res[2];
12225 int srcelt = is_q ? 2 : 0;
12226
12227 for (pass = 0; pass < 2; pass++) {
12228 TCGv_i32 tcg_op = tcg_temp_new_i32();
12229 tcg_res[pass] = tcg_temp_new_i64();
12230
12231 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
12232 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
12233 tcg_temp_free_i32(tcg_op);
12234 }
12235 for (pass = 0; pass < 2; pass++) {
12236 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12237 tcg_temp_free_i64(tcg_res[pass]);
12238 }
12239 } else {
12240 /* 16 -> 32 bit fp conversion */
12241 int srcelt = is_q ? 4 : 0;
12242 TCGv_i32 tcg_res[4];
12243 TCGv_ptr fpst = get_fpstatus_ptr(false);
12244 TCGv_i32 ahp = get_ahp_flag();
12245
12246 for (pass = 0; pass < 4; pass++) {
12247 tcg_res[pass] = tcg_temp_new_i32();
12248
12249 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
12250 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
12251 fpst, ahp);
12252 }
12253 for (pass = 0; pass < 4; pass++) {
12254 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
12255 tcg_temp_free_i32(tcg_res[pass]);
12256 }
12257
12258 tcg_temp_free_ptr(fpst);
12259 tcg_temp_free_i32(ahp);
12260 }
12261 }
12262
12263 static void handle_rev(DisasContext *s, int opcode, bool u,
12264 bool is_q, int size, int rn, int rd)
12265 {
12266 int op = (opcode << 1) | u;
12267 int opsz = op + size;
12268 int grp_size = 3 - opsz;
12269 int dsize = is_q ? 128 : 64;
12270 int i;
12271
12272 if (opsz >= 3) {
12273 unallocated_encoding(s);
12274 return;
12275 }
12276
12277 if (!fp_access_check(s)) {
12278 return;
12279 }
12280
12281 if (size == 0) {
12282 /* Special case bytes, use bswap op on each group of elements */
12283 int groups = dsize / (8 << grp_size);
12284
12285 for (i = 0; i < groups; i++) {
12286 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
12287
12288 read_vec_element(s, tcg_tmp, rn, i, grp_size);
12289 switch (grp_size) {
12290 case MO_16:
12291 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
12292 break;
12293 case MO_32:
12294 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
12295 break;
12296 case MO_64:
12297 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
12298 break;
12299 default:
12300 g_assert_not_reached();
12301 }
12302 write_vec_element(s, tcg_tmp, rd, i, grp_size);
12303 tcg_temp_free_i64(tcg_tmp);
12304 }
12305 clear_vec_high(s, is_q, rd);
12306 } else {
12307 int revmask = (1 << grp_size) - 1;
12308 int esize = 8 << size;
12309 int elements = dsize / esize;
12310 TCGv_i64 tcg_rn = tcg_temp_new_i64();
12311 TCGv_i64 tcg_rd = tcg_const_i64(0);
12312 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
12313
12314 for (i = 0; i < elements; i++) {
12315 int e_rev = (i & 0xf) ^ revmask;
12316 int off = e_rev * esize;
12317 read_vec_element(s, tcg_rn, rn, i, size);
12318 if (off >= 64) {
12319 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
12320 tcg_rn, off - 64, esize);
12321 } else {
12322 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
12323 }
12324 }
12325 write_vec_element(s, tcg_rd, rd, 0, MO_64);
12326 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
12327
12328 tcg_temp_free_i64(tcg_rd_hi);
12329 tcg_temp_free_i64(tcg_rd);
12330 tcg_temp_free_i64(tcg_rn);
12331 }
12332 }
12333
12334 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
12335 bool is_q, int size, int rn, int rd)
12336 {
12337 /* Implement the pairwise operations from 2-misc:
12338 * SADDLP, UADDLP, SADALP, UADALP.
12339 * These all add pairs of elements in the input to produce a
12340 * double-width result element in the output (possibly accumulating).
12341 */
12342 bool accum = (opcode == 0x6);
12343 int maxpass = is_q ? 2 : 1;
12344 int pass;
12345 TCGv_i64 tcg_res[2];
12346
12347 if (size == 2) {
12348 /* 32 + 32 -> 64 op */
12349 MemOp memop = size + (u ? 0 : MO_SIGN);
12350
12351 for (pass = 0; pass < maxpass; pass++) {
12352 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
12353 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
12354
12355 tcg_res[pass] = tcg_temp_new_i64();
12356
12357 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
12358 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
12359 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
12360 if (accum) {
12361 read_vec_element(s, tcg_op1, rd, pass, MO_64);
12362 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12363 }
12364
12365 tcg_temp_free_i64(tcg_op1);
12366 tcg_temp_free_i64(tcg_op2);
12367 }
12368 } else {
12369 for (pass = 0; pass < maxpass; pass++) {
12370 TCGv_i64 tcg_op = tcg_temp_new_i64();
12371 NeonGenOne64OpFn *genfn;
12372 static NeonGenOne64OpFn * const fns[2][2] = {
12373 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
12374 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
12375 };
12376
12377 genfn = fns[size][u];
12378
12379 tcg_res[pass] = tcg_temp_new_i64();
12380
12381 read_vec_element(s, tcg_op, rn, pass, MO_64);
12382 genfn(tcg_res[pass], tcg_op);
12383
12384 if (accum) {
12385 read_vec_element(s, tcg_op, rd, pass, MO_64);
12386 if (size == 0) {
12387 gen_helper_neon_addl_u16(tcg_res[pass],
12388 tcg_res[pass], tcg_op);
12389 } else {
12390 gen_helper_neon_addl_u32(tcg_res[pass],
12391 tcg_res[pass], tcg_op);
12392 }
12393 }
12394 tcg_temp_free_i64(tcg_op);
12395 }
12396 }
12397 if (!is_q) {
12398 tcg_res[1] = tcg_const_i64(0);
12399 }
12400 for (pass = 0; pass < 2; pass++) {
12401 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12402 tcg_temp_free_i64(tcg_res[pass]);
12403 }
12404 }
12405
12406 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12407 {
12408 /* Implement SHLL and SHLL2 */
12409 int pass;
12410 int part = is_q ? 2 : 0;
12411 TCGv_i64 tcg_res[2];
12412
12413 for (pass = 0; pass < 2; pass++) {
12414 static NeonGenWidenFn * const widenfns[3] = {
12415 gen_helper_neon_widen_u8,
12416 gen_helper_neon_widen_u16,
12417 tcg_gen_extu_i32_i64,
12418 };
12419 NeonGenWidenFn *widenfn = widenfns[size];
12420 TCGv_i32 tcg_op = tcg_temp_new_i32();
12421
12422 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12423 tcg_res[pass] = tcg_temp_new_i64();
12424 widenfn(tcg_res[pass], tcg_op);
12425 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12426
12427 tcg_temp_free_i32(tcg_op);
12428 }
12429
12430 for (pass = 0; pass < 2; pass++) {
12431 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12432 tcg_temp_free_i64(tcg_res[pass]);
12433 }
12434 }
12435
12436 /* AdvSIMD two reg misc
12437 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
12438 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12439 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
12440 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12441 */
12442 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12443 {
12444 int size = extract32(insn, 22, 2);
12445 int opcode = extract32(insn, 12, 5);
12446 bool u = extract32(insn, 29, 1);
12447 bool is_q = extract32(insn, 30, 1);
12448 int rn = extract32(insn, 5, 5);
12449 int rd = extract32(insn, 0, 5);
12450 bool need_fpstatus = false;
12451 bool need_rmode = false;
12452 int rmode = -1;
12453 TCGv_i32 tcg_rmode;
12454 TCGv_ptr tcg_fpstatus;
12455
12456 switch (opcode) {
12457 case 0x0: /* REV64, REV32 */
12458 case 0x1: /* REV16 */
12459 handle_rev(s, opcode, u, is_q, size, rn, rd);
12460 return;
12461 case 0x5: /* CNT, NOT, RBIT */
12462 if (u && size == 0) {
12463 /* NOT */
12464 break;
12465 } else if (u && size == 1) {
12466 /* RBIT */
12467 break;
12468 } else if (!u && size == 0) {
12469 /* CNT */
12470 break;
12471 }
12472 unallocated_encoding(s);
12473 return;
12474 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12475 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12476 if (size == 3) {
12477 unallocated_encoding(s);
12478 return;
12479 }
12480 if (!fp_access_check(s)) {
12481 return;
12482 }
12483
12484 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12485 return;
12486 case 0x4: /* CLS, CLZ */
12487 if (size == 3) {
12488 unallocated_encoding(s);
12489 return;
12490 }
12491 break;
12492 case 0x2: /* SADDLP, UADDLP */
12493 case 0x6: /* SADALP, UADALP */
12494 if (size == 3) {
12495 unallocated_encoding(s);
12496 return;
12497 }
12498 if (!fp_access_check(s)) {
12499 return;
12500 }
12501 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12502 return;
12503 case 0x13: /* SHLL, SHLL2 */
12504 if (u == 0 || size == 3) {
12505 unallocated_encoding(s);
12506 return;
12507 }
12508 if (!fp_access_check(s)) {
12509 return;
12510 }
12511 handle_shll(s, is_q, size, rn, rd);
12512 return;
12513 case 0xa: /* CMLT */
12514 if (u == 1) {
12515 unallocated_encoding(s);
12516 return;
12517 }
12518 /* fall through */
12519 case 0x8: /* CMGT, CMGE */
12520 case 0x9: /* CMEQ, CMLE */
12521 case 0xb: /* ABS, NEG */
12522 if (size == 3 && !is_q) {
12523 unallocated_encoding(s);
12524 return;
12525 }
12526 break;
12527 case 0x3: /* SUQADD, USQADD */
12528 if (size == 3 && !is_q) {
12529 unallocated_encoding(s);
12530 return;
12531 }
12532 if (!fp_access_check(s)) {
12533 return;
12534 }
12535 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12536 return;
12537 case 0x7: /* SQABS, SQNEG */
12538 if (size == 3 && !is_q) {
12539 unallocated_encoding(s);
12540 return;
12541 }
12542 break;
12543 case 0xc ... 0xf:
12544 case 0x16 ... 0x1f:
12545 {
12546 /* Floating point: U, size[1] and opcode indicate operation;
12547 * size[0] indicates single or double precision.
12548 */
12549 int is_double = extract32(size, 0, 1);
12550 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12551 size = is_double ? 3 : 2;
12552 switch (opcode) {
12553 case 0x2f: /* FABS */
12554 case 0x6f: /* FNEG */
12555 if (size == 3 && !is_q) {
12556 unallocated_encoding(s);
12557 return;
12558 }
12559 break;
12560 case 0x1d: /* SCVTF */
12561 case 0x5d: /* UCVTF */
12562 {
12563 bool is_signed = (opcode == 0x1d) ? true : false;
12564 int elements = is_double ? 2 : is_q ? 4 : 2;
12565 if (is_double && !is_q) {
12566 unallocated_encoding(s);
12567 return;
12568 }
12569 if (!fp_access_check(s)) {
12570 return;
12571 }
12572 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12573 return;
12574 }
12575 case 0x2c: /* FCMGT (zero) */
12576 case 0x2d: /* FCMEQ (zero) */
12577 case 0x2e: /* FCMLT (zero) */
12578 case 0x6c: /* FCMGE (zero) */
12579 case 0x6d: /* FCMLE (zero) */
12580 if (size == 3 && !is_q) {
12581 unallocated_encoding(s);
12582 return;
12583 }
12584 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12585 return;
12586 case 0x7f: /* FSQRT */
12587 if (size == 3 && !is_q) {
12588 unallocated_encoding(s);
12589 return;
12590 }
12591 break;
12592 case 0x1a: /* FCVTNS */
12593 case 0x1b: /* FCVTMS */
12594 case 0x3a: /* FCVTPS */
12595 case 0x3b: /* FCVTZS */
12596 case 0x5a: /* FCVTNU */
12597 case 0x5b: /* FCVTMU */
12598 case 0x7a: /* FCVTPU */
12599 case 0x7b: /* FCVTZU */
12600 need_fpstatus = true;
12601 need_rmode = true;
12602 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12603 if (size == 3 && !is_q) {
12604 unallocated_encoding(s);
12605 return;
12606 }
12607 break;
12608 case 0x5c: /* FCVTAU */
12609 case 0x1c: /* FCVTAS */
12610 need_fpstatus = true;
12611 need_rmode = true;
12612 rmode = FPROUNDING_TIEAWAY;
12613 if (size == 3 && !is_q) {
12614 unallocated_encoding(s);
12615 return;
12616 }
12617 break;
12618 case 0x3c: /* URECPE */
12619 if (size == 3) {
12620 unallocated_encoding(s);
12621 return;
12622 }
12623 /* fall through */
12624 case 0x3d: /* FRECPE */
12625 case 0x7d: /* FRSQRTE */
12626 if (size == 3 && !is_q) {
12627 unallocated_encoding(s);
12628 return;
12629 }
12630 if (!fp_access_check(s)) {
12631 return;
12632 }
12633 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12634 return;
12635 case 0x56: /* FCVTXN, FCVTXN2 */
12636 if (size == 2) {
12637 unallocated_encoding(s);
12638 return;
12639 }
12640 /* fall through */
12641 case 0x16: /* FCVTN, FCVTN2 */
12642 /* handle_2misc_narrow does a 2*size -> size operation, but these
12643 * instructions encode the source size rather than dest size.
12644 */
12645 if (!fp_access_check(s)) {
12646 return;
12647 }
12648 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12649 return;
12650 case 0x17: /* FCVTL, FCVTL2 */
12651 if (!fp_access_check(s)) {
12652 return;
12653 }
12654 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12655 return;
12656 case 0x18: /* FRINTN */
12657 case 0x19: /* FRINTM */
12658 case 0x38: /* FRINTP */
12659 case 0x39: /* FRINTZ */
12660 need_rmode = true;
12661 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12662 /* fall through */
12663 case 0x59: /* FRINTX */
12664 case 0x79: /* FRINTI */
12665 need_fpstatus = true;
12666 if (size == 3 && !is_q) {
12667 unallocated_encoding(s);
12668 return;
12669 }
12670 break;
12671 case 0x58: /* FRINTA */
12672 need_rmode = true;
12673 rmode = FPROUNDING_TIEAWAY;
12674 need_fpstatus = true;
12675 if (size == 3 && !is_q) {
12676 unallocated_encoding(s);
12677 return;
12678 }
12679 break;
12680 case 0x7c: /* URSQRTE */
12681 if (size == 3) {
12682 unallocated_encoding(s);
12683 return;
12684 }
12685 break;
12686 case 0x1e: /* FRINT32Z */
12687 case 0x1f: /* FRINT64Z */
12688 need_rmode = true;
12689 rmode = FPROUNDING_ZERO;
12690 /* fall through */
12691 case 0x5e: /* FRINT32X */
12692 case 0x5f: /* FRINT64X */
12693 need_fpstatus = true;
12694 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12695 unallocated_encoding(s);
12696 return;
12697 }
12698 break;
12699 default:
12700 unallocated_encoding(s);
12701 return;
12702 }
12703 break;
12704 }
12705 default:
12706 unallocated_encoding(s);
12707 return;
12708 }
12709
12710 if (!fp_access_check(s)) {
12711 return;
12712 }
12713
12714 if (need_fpstatus || need_rmode) {
12715 tcg_fpstatus = get_fpstatus_ptr(false);
12716 } else {
12717 tcg_fpstatus = NULL;
12718 }
12719 if (need_rmode) {
12720 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12721 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12722 } else {
12723 tcg_rmode = NULL;
12724 }
12725
12726 switch (opcode) {
12727 case 0x5:
12728 if (u && size == 0) { /* NOT */
12729 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12730 return;
12731 }
12732 break;
12733 case 0x8: /* CMGT, CMGE */
12734 if (u) {
12735 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12736 } else {
12737 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12738 }
12739 return;
12740 case 0x9: /* CMEQ, CMLE */
12741 if (u) {
12742 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12743 } else {
12744 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12745 }
12746 return;
12747 case 0xa: /* CMLT */
12748 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12749 return;
12750 case 0xb:
12751 if (u) { /* ABS, NEG */
12752 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12753 } else {
12754 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12755 }
12756 return;
12757 }
12758
12759 if (size == 3) {
12760 /* All 64-bit element operations can be shared with scalar 2misc */
12761 int pass;
12762
12763 /* Coverity claims (size == 3 && !is_q) has been eliminated
12764 * from all paths leading to here.
12765 */
12766 tcg_debug_assert(is_q);
12767 for (pass = 0; pass < 2; pass++) {
12768 TCGv_i64 tcg_op = tcg_temp_new_i64();
12769 TCGv_i64 tcg_res = tcg_temp_new_i64();
12770
12771 read_vec_element(s, tcg_op, rn, pass, MO_64);
12772
12773 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12774 tcg_rmode, tcg_fpstatus);
12775
12776 write_vec_element(s, tcg_res, rd, pass, MO_64);
12777
12778 tcg_temp_free_i64(tcg_res);
12779 tcg_temp_free_i64(tcg_op);
12780 }
12781 } else {
12782 int pass;
12783
12784 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12785 TCGv_i32 tcg_op = tcg_temp_new_i32();
12786 TCGv_i32 tcg_res = tcg_temp_new_i32();
12787
12788 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12789
12790 if (size == 2) {
12791 /* Special cases for 32 bit elements */
12792 switch (opcode) {
12793 case 0x4: /* CLS */
12794 if (u) {
12795 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12796 } else {
12797 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12798 }
12799 break;
12800 case 0x7: /* SQABS, SQNEG */
12801 if (u) {
12802 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12803 } else {
12804 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12805 }
12806 break;
12807 case 0x2f: /* FABS */
12808 gen_helper_vfp_abss(tcg_res, tcg_op);
12809 break;
12810 case 0x6f: /* FNEG */
12811 gen_helper_vfp_negs(tcg_res, tcg_op);
12812 break;
12813 case 0x7f: /* FSQRT */
12814 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12815 break;
12816 case 0x1a: /* FCVTNS */
12817 case 0x1b: /* FCVTMS */
12818 case 0x1c: /* FCVTAS */
12819 case 0x3a: /* FCVTPS */
12820 case 0x3b: /* FCVTZS */
12821 {
12822 TCGv_i32 tcg_shift = tcg_const_i32(0);
12823 gen_helper_vfp_tosls(tcg_res, tcg_op,
12824 tcg_shift, tcg_fpstatus);
12825 tcg_temp_free_i32(tcg_shift);
12826 break;
12827 }
12828 case 0x5a: /* FCVTNU */
12829 case 0x5b: /* FCVTMU */
12830 case 0x5c: /* FCVTAU */
12831 case 0x7a: /* FCVTPU */
12832 case 0x7b: /* FCVTZU */
12833 {
12834 TCGv_i32 tcg_shift = tcg_const_i32(0);
12835 gen_helper_vfp_touls(tcg_res, tcg_op,
12836 tcg_shift, tcg_fpstatus);
12837 tcg_temp_free_i32(tcg_shift);
12838 break;
12839 }
12840 case 0x18: /* FRINTN */
12841 case 0x19: /* FRINTM */
12842 case 0x38: /* FRINTP */
12843 case 0x39: /* FRINTZ */
12844 case 0x58: /* FRINTA */
12845 case 0x79: /* FRINTI */
12846 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12847 break;
12848 case 0x59: /* FRINTX */
12849 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12850 break;
12851 case 0x7c: /* URSQRTE */
12852 gen_helper_rsqrte_u32(tcg_res, tcg_op);
12853 break;
12854 case 0x1e: /* FRINT32Z */
12855 case 0x5e: /* FRINT32X */
12856 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12857 break;
12858 case 0x1f: /* FRINT64Z */
12859 case 0x5f: /* FRINT64X */
12860 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12861 break;
12862 default:
12863 g_assert_not_reached();
12864 }
12865 } else {
12866 /* Use helpers for 8 and 16 bit elements */
12867 switch (opcode) {
12868 case 0x5: /* CNT, RBIT */
12869 /* For these two insns size is part of the opcode specifier
12870 * (handled earlier); they always operate on byte elements.
12871 */
12872 if (u) {
12873 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12874 } else {
12875 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12876 }
12877 break;
12878 case 0x7: /* SQABS, SQNEG */
12879 {
12880 NeonGenOneOpEnvFn *genfn;
12881 static NeonGenOneOpEnvFn * const fns[2][2] = {
12882 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12883 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12884 };
12885 genfn = fns[size][u];
12886 genfn(tcg_res, cpu_env, tcg_op);
12887 break;
12888 }
12889 case 0x4: /* CLS, CLZ */
12890 if (u) {
12891 if (size == 0) {
12892 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12893 } else {
12894 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12895 }
12896 } else {
12897 if (size == 0) {
12898 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12899 } else {
12900 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12901 }
12902 }
12903 break;
12904 default:
12905 g_assert_not_reached();
12906 }
12907 }
12908
12909 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12910
12911 tcg_temp_free_i32(tcg_res);
12912 tcg_temp_free_i32(tcg_op);
12913 }
12914 }
12915 clear_vec_high(s, is_q, rd);
12916
12917 if (need_rmode) {
12918 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12919 tcg_temp_free_i32(tcg_rmode);
12920 }
12921 if (need_fpstatus) {
12922 tcg_temp_free_ptr(tcg_fpstatus);
12923 }
12924 }
12925
12926 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12927 *
12928 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
12929 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12930 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
12931 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12932 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12933 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12934 *
12935 * This actually covers two groups where scalar access is governed by
12936 * bit 28. A bunch of the instructions (float to integral) only exist
12937 * in the vector form and are un-allocated for the scalar decode. Also
12938 * in the scalar decode Q is always 1.
12939 */
12940 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12941 {
12942 int fpop, opcode, a, u;
12943 int rn, rd;
12944 bool is_q;
12945 bool is_scalar;
12946 bool only_in_vector = false;
12947
12948 int pass;
12949 TCGv_i32 tcg_rmode = NULL;
12950 TCGv_ptr tcg_fpstatus = NULL;
12951 bool need_rmode = false;
12952 bool need_fpst = true;
12953 int rmode;
12954
12955 if (!dc_isar_feature(aa64_fp16, s)) {
12956 unallocated_encoding(s);
12957 return;
12958 }
12959
12960 rd = extract32(insn, 0, 5);
12961 rn = extract32(insn, 5, 5);
12962
12963 a = extract32(insn, 23, 1);
12964 u = extract32(insn, 29, 1);
12965 is_scalar = extract32(insn, 28, 1);
12966 is_q = extract32(insn, 30, 1);
12967
12968 opcode = extract32(insn, 12, 5);
12969 fpop = deposit32(opcode, 5, 1, a);
12970 fpop = deposit32(fpop, 6, 1, u);
12971
12972 rd = extract32(insn, 0, 5);
12973 rn = extract32(insn, 5, 5);
12974
12975 switch (fpop) {
12976 case 0x1d: /* SCVTF */
12977 case 0x5d: /* UCVTF */
12978 {
12979 int elements;
12980
12981 if (is_scalar) {
12982 elements = 1;
12983 } else {
12984 elements = (is_q ? 8 : 4);
12985 }
12986
12987 if (!fp_access_check(s)) {
12988 return;
12989 }
12990 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12991 return;
12992 }
12993 break;
12994 case 0x2c: /* FCMGT (zero) */
12995 case 0x2d: /* FCMEQ (zero) */
12996 case 0x2e: /* FCMLT (zero) */
12997 case 0x6c: /* FCMGE (zero) */
12998 case 0x6d: /* FCMLE (zero) */
12999 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
13000 return;
13001 case 0x3d: /* FRECPE */
13002 case 0x3f: /* FRECPX */
13003 break;
13004 case 0x18: /* FRINTN */
13005 need_rmode = true;
13006 only_in_vector = true;
13007 rmode = FPROUNDING_TIEEVEN;
13008 break;
13009 case 0x19: /* FRINTM */
13010 need_rmode = true;
13011 only_in_vector = true;
13012 rmode = FPROUNDING_NEGINF;
13013 break;
13014 case 0x38: /* FRINTP */
13015 need_rmode = true;
13016 only_in_vector = true;
13017 rmode = FPROUNDING_POSINF;
13018 break;
13019 case 0x39: /* FRINTZ */
13020 need_rmode = true;
13021 only_in_vector = true;
13022 rmode = FPROUNDING_ZERO;
13023 break;
13024 case 0x58: /* FRINTA */
13025 need_rmode = true;
13026 only_in_vector = true;
13027 rmode = FPROUNDING_TIEAWAY;
13028 break;
13029 case 0x59: /* FRINTX */
13030 case 0x79: /* FRINTI */
13031 only_in_vector = true;
13032 /* current rounding mode */
13033 break;
13034 case 0x1a: /* FCVTNS */
13035 need_rmode = true;
13036 rmode = FPROUNDING_TIEEVEN;
13037 break;
13038 case 0x1b: /* FCVTMS */
13039 need_rmode = true;
13040 rmode = FPROUNDING_NEGINF;
13041 break;
13042 case 0x1c: /* FCVTAS */
13043 need_rmode = true;
13044 rmode = FPROUNDING_TIEAWAY;
13045 break;
13046 case 0x3a: /* FCVTPS */
13047 need_rmode = true;
13048 rmode = FPROUNDING_POSINF;
13049 break;
13050 case 0x3b: /* FCVTZS */
13051 need_rmode = true;
13052 rmode = FPROUNDING_ZERO;
13053 break;
13054 case 0x5a: /* FCVTNU */
13055 need_rmode = true;
13056 rmode = FPROUNDING_TIEEVEN;
13057 break;
13058 case 0x5b: /* FCVTMU */
13059 need_rmode = true;
13060 rmode = FPROUNDING_NEGINF;
13061 break;
13062 case 0x5c: /* FCVTAU */
13063 need_rmode = true;
13064 rmode = FPROUNDING_TIEAWAY;
13065 break;
13066 case 0x7a: /* FCVTPU */
13067 need_rmode = true;
13068 rmode = FPROUNDING_POSINF;
13069 break;
13070 case 0x7b: /* FCVTZU */
13071 need_rmode = true;
13072 rmode = FPROUNDING_ZERO;
13073 break;
13074 case 0x2f: /* FABS */
13075 case 0x6f: /* FNEG */
13076 need_fpst = false;
13077 break;
13078 case 0x7d: /* FRSQRTE */
13079 case 0x7f: /* FSQRT (vector) */
13080 break;
13081 default:
13082 fprintf(stderr, "%s: insn %#04x fpop %#2x\n", __func__, insn, fpop);
13083 g_assert_not_reached();
13084 }
13085
13086
13087 /* Check additional constraints for the scalar encoding */
13088 if (is_scalar) {
13089 if (!is_q) {
13090 unallocated_encoding(s);
13091 return;
13092 }
13093 /* FRINTxx is only in the vector form */
13094 if (only_in_vector) {
13095 unallocated_encoding(s);
13096 return;
13097 }
13098 }
13099
13100 if (!fp_access_check(s)) {
13101 return;
13102 }
13103
13104 if (need_rmode || need_fpst) {
13105 tcg_fpstatus = get_fpstatus_ptr(true);
13106 }
13107
13108 if (need_rmode) {
13109 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
13110 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13111 }
13112
13113 if (is_scalar) {
13114 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
13115 TCGv_i32 tcg_res = tcg_temp_new_i32();
13116
13117 switch (fpop) {
13118 case 0x1a: /* FCVTNS */
13119 case 0x1b: /* FCVTMS */
13120 case 0x1c: /* FCVTAS */
13121 case 0x3a: /* FCVTPS */
13122 case 0x3b: /* FCVTZS */
13123 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
13124 break;
13125 case 0x3d: /* FRECPE */
13126 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
13127 break;
13128 case 0x3f: /* FRECPX */
13129 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
13130 break;
13131 case 0x5a: /* FCVTNU */
13132 case 0x5b: /* FCVTMU */
13133 case 0x5c: /* FCVTAU */
13134 case 0x7a: /* FCVTPU */
13135 case 0x7b: /* FCVTZU */
13136 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
13137 break;
13138 case 0x6f: /* FNEG */
13139 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
13140 break;
13141 case 0x7d: /* FRSQRTE */
13142 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
13143 break;
13144 default:
13145 g_assert_not_reached();
13146 }
13147
13148 /* limit any sign extension going on */
13149 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
13150 write_fp_sreg(s, rd, tcg_res);
13151
13152 tcg_temp_free_i32(tcg_res);
13153 tcg_temp_free_i32(tcg_op);
13154 } else {
13155 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
13156 TCGv_i32 tcg_op = tcg_temp_new_i32();
13157 TCGv_i32 tcg_res = tcg_temp_new_i32();
13158
13159 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
13160
13161 switch (fpop) {
13162 case 0x1a: /* FCVTNS */
13163 case 0x1b: /* FCVTMS */
13164 case 0x1c: /* FCVTAS */
13165 case 0x3a: /* FCVTPS */
13166 case 0x3b: /* FCVTZS */
13167 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
13168 break;
13169 case 0x3d: /* FRECPE */
13170 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
13171 break;
13172 case 0x5a: /* FCVTNU */
13173 case 0x5b: /* FCVTMU */
13174 case 0x5c: /* FCVTAU */
13175 case 0x7a: /* FCVTPU */
13176 case 0x7b: /* FCVTZU */
13177 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
13178 break;
13179 case 0x18: /* FRINTN */
13180 case 0x19: /* FRINTM */
13181 case 0x38: /* FRINTP */
13182 case 0x39: /* FRINTZ */
13183 case 0x58: /* FRINTA */
13184 case 0x79: /* FRINTI */
13185 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
13186 break;
13187 case 0x59: /* FRINTX */
13188 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
13189 break;
13190 case 0x2f: /* FABS */
13191 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
13192 break;
13193 case 0x6f: /* FNEG */
13194 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
13195 break;
13196 case 0x7d: /* FRSQRTE */
13197 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
13198 break;
13199 case 0x7f: /* FSQRT */
13200 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
13201 break;
13202 default:
13203 g_assert_not_reached();
13204 }
13205
13206 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
13207
13208 tcg_temp_free_i32(tcg_res);
13209 tcg_temp_free_i32(tcg_op);
13210 }
13211
13212 clear_vec_high(s, is_q, rd);
13213 }
13214
13215 if (tcg_rmode) {
13216 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13217 tcg_temp_free_i32(tcg_rmode);
13218 }
13219
13220 if (tcg_fpstatus) {
13221 tcg_temp_free_ptr(tcg_fpstatus);
13222 }
13223 }
13224
13225 /* AdvSIMD scalar x indexed element
13226 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
13227 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
13228 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
13229 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
13230 * AdvSIMD vector x indexed element
13231 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
13232 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
13233 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
13234 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
13235 */
13236 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
13237 {
13238 /* This encoding has two kinds of instruction:
13239 * normal, where we perform elt x idxelt => elt for each
13240 * element in the vector
13241 * long, where we perform elt x idxelt and generate a result of
13242 * double the width of the input element
13243 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
13244 */
13245 bool is_scalar = extract32(insn, 28, 1);
13246 bool is_q = extract32(insn, 30, 1);
13247 bool u = extract32(insn, 29, 1);
13248 int size = extract32(insn, 22, 2);
13249 int l = extract32(insn, 21, 1);
13250 int m = extract32(insn, 20, 1);
13251 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
13252 int rm = extract32(insn, 16, 4);
13253 int opcode = extract32(insn, 12, 4);
13254 int h = extract32(insn, 11, 1);
13255 int rn = extract32(insn, 5, 5);
13256 int rd = extract32(insn, 0, 5);
13257 bool is_long = false;
13258 int is_fp = 0;
13259 bool is_fp16 = false;
13260 int index;
13261 TCGv_ptr fpst;
13262
13263 switch (16 * u + opcode) {
13264 case 0x08: /* MUL */
13265 case 0x10: /* MLA */
13266 case 0x14: /* MLS */
13267 if (is_scalar) {
13268 unallocated_encoding(s);
13269 return;
13270 }
13271 break;
13272 case 0x02: /* SMLAL, SMLAL2 */
13273 case 0x12: /* UMLAL, UMLAL2 */
13274 case 0x06: /* SMLSL, SMLSL2 */
13275 case 0x16: /* UMLSL, UMLSL2 */
13276 case 0x0a: /* SMULL, SMULL2 */
13277 case 0x1a: /* UMULL, UMULL2 */
13278 if (is_scalar) {
13279 unallocated_encoding(s);
13280 return;
13281 }
13282 is_long = true;
13283 break;
13284 case 0x03: /* SQDMLAL, SQDMLAL2 */
13285 case 0x07: /* SQDMLSL, SQDMLSL2 */
13286 case 0x0b: /* SQDMULL, SQDMULL2 */
13287 is_long = true;
13288 break;
13289 case 0x0c: /* SQDMULH */
13290 case 0x0d: /* SQRDMULH */
13291 break;
13292 case 0x01: /* FMLA */
13293 case 0x05: /* FMLS */
13294 case 0x09: /* FMUL */
13295 case 0x19: /* FMULX */
13296 is_fp = 1;
13297 break;
13298 case 0x1d: /* SQRDMLAH */
13299 case 0x1f: /* SQRDMLSH */
13300 if (!dc_isar_feature(aa64_rdm, s)) {
13301 unallocated_encoding(s);
13302 return;
13303 }
13304 break;
13305 case 0x0e: /* SDOT */
13306 case 0x1e: /* UDOT */
13307 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
13308 unallocated_encoding(s);
13309 return;
13310 }
13311 break;
13312 case 0x11: /* FCMLA #0 */
13313 case 0x13: /* FCMLA #90 */
13314 case 0x15: /* FCMLA #180 */
13315 case 0x17: /* FCMLA #270 */
13316 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
13317 unallocated_encoding(s);
13318 return;
13319 }
13320 is_fp = 2;
13321 break;
13322 case 0x00: /* FMLAL */
13323 case 0x04: /* FMLSL */
13324 case 0x18: /* FMLAL2 */
13325 case 0x1c: /* FMLSL2 */
13326 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
13327 unallocated_encoding(s);
13328 return;
13329 }
13330 size = MO_16;
13331 /* is_fp, but we pass cpu_env not fp_status. */
13332 break;
13333 default:
13334 unallocated_encoding(s);
13335 return;
13336 }
13337
13338 switch (is_fp) {
13339 case 1: /* normal fp */
13340 /* convert insn encoded size to MemOp size */
13341 switch (size) {
13342 case 0: /* half-precision */
13343 size = MO_16;
13344 is_fp16 = true;
13345 break;
13346 case MO_32: /* single precision */
13347 case MO_64: /* double precision */
13348 break;
13349 default:
13350 unallocated_encoding(s);
13351 return;
13352 }
13353 break;
13354
13355 case 2: /* complex fp */
13356 /* Each indexable element is a complex pair. */
13357 size += 1;
13358 switch (size) {
13359 case MO_32:
13360 if (h && !is_q) {
13361 unallocated_encoding(s);
13362 return;
13363 }
13364 is_fp16 = true;
13365 break;
13366 case MO_64:
13367 break;
13368 default:
13369 unallocated_encoding(s);
13370 return;
13371 }
13372 break;
13373
13374 default: /* integer */
13375 switch (size) {
13376 case MO_8:
13377 case MO_64:
13378 unallocated_encoding(s);
13379 return;
13380 }
13381 break;
13382 }
13383 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
13384 unallocated_encoding(s);
13385 return;
13386 }
13387
13388 /* Given MemOp size, adjust register and indexing. */
13389 switch (size) {
13390 case MO_16:
13391 index = h << 2 | l << 1 | m;
13392 break;
13393 case MO_32:
13394 index = h << 1 | l;
13395 rm |= m << 4;
13396 break;
13397 case MO_64:
13398 if (l || !is_q) {
13399 unallocated_encoding(s);
13400 return;
13401 }
13402 index = h;
13403 rm |= m << 4;
13404 break;
13405 default:
13406 g_assert_not_reached();
13407 }
13408
13409 if (!fp_access_check(s)) {
13410 return;
13411 }
13412
13413 if (is_fp) {
13414 fpst = get_fpstatus_ptr(is_fp16);
13415 } else {
13416 fpst = NULL;
13417 }
13418
13419 switch (16 * u + opcode) {
13420 case 0x0e: /* SDOT */
13421 case 0x1e: /* UDOT */
13422 gen_gvec_op3_ool(s, is_q, rd, rn, rm, index,
13423 u ? gen_helper_gvec_udot_idx_b
13424 : gen_helper_gvec_sdot_idx_b);
13425 return;
13426 case 0x11: /* FCMLA #0 */
13427 case 0x13: /* FCMLA #90 */
13428 case 0x15: /* FCMLA #180 */
13429 case 0x17: /* FCMLA #270 */
13430 {
13431 int rot = extract32(insn, 13, 2);
13432 int data = (index << 2) | rot;
13433 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13434 vec_full_reg_offset(s, rn),
13435 vec_full_reg_offset(s, rm), fpst,
13436 is_q ? 16 : 8, vec_full_reg_size(s), data,
13437 size == MO_64
13438 ? gen_helper_gvec_fcmlas_idx
13439 : gen_helper_gvec_fcmlah_idx);
13440 tcg_temp_free_ptr(fpst);
13441 }
13442 return;
13443
13444 case 0x00: /* FMLAL */
13445 case 0x04: /* FMLSL */
13446 case 0x18: /* FMLAL2 */
13447 case 0x1c: /* FMLSL2 */
13448 {
13449 int is_s = extract32(opcode, 2, 1);
13450 int is_2 = u;
13451 int data = (index << 2) | (is_2 << 1) | is_s;
13452 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13453 vec_full_reg_offset(s, rn),
13454 vec_full_reg_offset(s, rm), cpu_env,
13455 is_q ? 16 : 8, vec_full_reg_size(s),
13456 data, gen_helper_gvec_fmlal_idx_a64);
13457 }
13458 return;
13459 }
13460
13461 if (size == 3) {
13462 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13463 int pass;
13464
13465 assert(is_fp && is_q && !is_long);
13466
13467 read_vec_element(s, tcg_idx, rm, index, MO_64);
13468
13469 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13470 TCGv_i64 tcg_op = tcg_temp_new_i64();
13471 TCGv_i64 tcg_res = tcg_temp_new_i64();
13472
13473 read_vec_element(s, tcg_op, rn, pass, MO_64);
13474
13475 switch (16 * u + opcode) {
13476 case 0x05: /* FMLS */
13477 /* As usual for ARM, separate negation for fused multiply-add */
13478 gen_helper_vfp_negd(tcg_op, tcg_op);
13479 /* fall through */
13480 case 0x01: /* FMLA */
13481 read_vec_element(s, tcg_res, rd, pass, MO_64);
13482 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13483 break;
13484 case 0x09: /* FMUL */
13485 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13486 break;
13487 case 0x19: /* FMULX */
13488 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13489 break;
13490 default:
13491 g_assert_not_reached();
13492 }
13493
13494 write_vec_element(s, tcg_res, rd, pass, MO_64);
13495 tcg_temp_free_i64(tcg_op);
13496 tcg_temp_free_i64(tcg_res);
13497 }
13498
13499 tcg_temp_free_i64(tcg_idx);
13500 clear_vec_high(s, !is_scalar, rd);
13501 } else if (!is_long) {
13502 /* 32 bit floating point, or 16 or 32 bit integer.
13503 * For the 16 bit scalar case we use the usual Neon helpers and
13504 * rely on the fact that 0 op 0 == 0 with no side effects.
13505 */
13506 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13507 int pass, maxpasses;
13508
13509 if (is_scalar) {
13510 maxpasses = 1;
13511 } else {
13512 maxpasses = is_q ? 4 : 2;
13513 }
13514
13515 read_vec_element_i32(s, tcg_idx, rm, index, size);
13516
13517 if (size == 1 && !is_scalar) {
13518 /* The simplest way to handle the 16x16 indexed ops is to duplicate
13519 * the index into both halves of the 32 bit tcg_idx and then use
13520 * the usual Neon helpers.
13521 */
13522 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13523 }
13524
13525 for (pass = 0; pass < maxpasses; pass++) {
13526 TCGv_i32 tcg_op = tcg_temp_new_i32();
13527 TCGv_i32 tcg_res = tcg_temp_new_i32();
13528
13529 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13530
13531 switch (16 * u + opcode) {
13532 case 0x08: /* MUL */
13533 case 0x10: /* MLA */
13534 case 0x14: /* MLS */
13535 {
13536 static NeonGenTwoOpFn * const fns[2][2] = {
13537 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13538 { tcg_gen_add_i32, tcg_gen_sub_i32 },
13539 };
13540 NeonGenTwoOpFn *genfn;
13541 bool is_sub = opcode == 0x4;
13542
13543 if (size == 1) {
13544 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13545 } else {
13546 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13547 }
13548 if (opcode == 0x8) {
13549 break;
13550 }
13551 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13552 genfn = fns[size - 1][is_sub];
13553 genfn(tcg_res, tcg_op, tcg_res);
13554 break;
13555 }
13556 case 0x05: /* FMLS */
13557 case 0x01: /* FMLA */
13558 read_vec_element_i32(s, tcg_res, rd, pass,
13559 is_scalar ? size : MO_32);
13560 switch (size) {
13561 case 1:
13562 if (opcode == 0x5) {
13563 /* As usual for ARM, separate negation for fused
13564 * multiply-add */
13565 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13566 }
13567 if (is_scalar) {
13568 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13569 tcg_res, fpst);
13570 } else {
13571 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13572 tcg_res, fpst);
13573 }
13574 break;
13575 case 2:
13576 if (opcode == 0x5) {
13577 /* As usual for ARM, separate negation for
13578 * fused multiply-add */
13579 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13580 }
13581 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13582 tcg_res, fpst);
13583 break;
13584 default:
13585 g_assert_not_reached();
13586 }
13587 break;
13588 case 0x09: /* FMUL */
13589 switch (size) {
13590 case 1:
13591 if (is_scalar) {
13592 gen_helper_advsimd_mulh(tcg_res, tcg_op,
13593 tcg_idx, fpst);
13594 } else {
13595 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13596 tcg_idx, fpst);
13597 }
13598 break;
13599 case 2:
13600 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13601 break;
13602 default:
13603 g_assert_not_reached();
13604 }
13605 break;
13606 case 0x19: /* FMULX */
13607 switch (size) {
13608 case 1:
13609 if (is_scalar) {
13610 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13611 tcg_idx, fpst);
13612 } else {
13613 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13614 tcg_idx, fpst);
13615 }
13616 break;
13617 case 2:
13618 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13619 break;
13620 default:
13621 g_assert_not_reached();
13622 }
13623 break;
13624 case 0x0c: /* SQDMULH */
13625 if (size == 1) {
13626 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13627 tcg_op, tcg_idx);
13628 } else {
13629 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13630 tcg_op, tcg_idx);
13631 }
13632 break;
13633 case 0x0d: /* SQRDMULH */
13634 if (size == 1) {
13635 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13636 tcg_op, tcg_idx);
13637 } else {
13638 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13639 tcg_op, tcg_idx);
13640 }
13641 break;
13642 case 0x1d: /* SQRDMLAH */
13643 read_vec_element_i32(s, tcg_res, rd, pass,
13644 is_scalar ? size : MO_32);
13645 if (size == 1) {
13646 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13647 tcg_op, tcg_idx, tcg_res);
13648 } else {
13649 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13650 tcg_op, tcg_idx, tcg_res);
13651 }
13652 break;
13653 case 0x1f: /* SQRDMLSH */
13654 read_vec_element_i32(s, tcg_res, rd, pass,
13655 is_scalar ? size : MO_32);
13656 if (size == 1) {
13657 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13658 tcg_op, tcg_idx, tcg_res);
13659 } else {
13660 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13661 tcg_op, tcg_idx, tcg_res);
13662 }
13663 break;
13664 default:
13665 g_assert_not_reached();
13666 }
13667
13668 if (is_scalar) {
13669 write_fp_sreg(s, rd, tcg_res);
13670 } else {
13671 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13672 }
13673
13674 tcg_temp_free_i32(tcg_op);
13675 tcg_temp_free_i32(tcg_res);
13676 }
13677
13678 tcg_temp_free_i32(tcg_idx);
13679 clear_vec_high(s, is_q, rd);
13680 } else {
13681 /* long ops: 16x16->32 or 32x32->64 */
13682 TCGv_i64 tcg_res[2];
13683 int pass;
13684 bool satop = extract32(opcode, 0, 1);
13685 MemOp memop = MO_32;
13686
13687 if (satop || !u) {
13688 memop |= MO_SIGN;
13689 }
13690
13691 if (size == 2) {
13692 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13693
13694 read_vec_element(s, tcg_idx, rm, index, memop);
13695
13696 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13697 TCGv_i64 tcg_op = tcg_temp_new_i64();
13698 TCGv_i64 tcg_passres;
13699 int passelt;
13700
13701 if (is_scalar) {
13702 passelt = 0;
13703 } else {
13704 passelt = pass + (is_q * 2);
13705 }
13706
13707 read_vec_element(s, tcg_op, rn, passelt, memop);
13708
13709 tcg_res[pass] = tcg_temp_new_i64();
13710
13711 if (opcode == 0xa || opcode == 0xb) {
13712 /* Non-accumulating ops */
13713 tcg_passres = tcg_res[pass];
13714 } else {
13715 tcg_passres = tcg_temp_new_i64();
13716 }
13717
13718 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13719 tcg_temp_free_i64(tcg_op);
13720
13721 if (satop) {
13722 /* saturating, doubling */
13723 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13724 tcg_passres, tcg_passres);
13725 }
13726
13727 if (opcode == 0xa || opcode == 0xb) {
13728 continue;
13729 }
13730
13731 /* Accumulating op: handle accumulate step */
13732 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13733
13734 switch (opcode) {
13735 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13736 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13737 break;
13738 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13739 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13740 break;
13741 case 0x7: /* SQDMLSL, SQDMLSL2 */
13742 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13743 /* fall through */
13744 case 0x3: /* SQDMLAL, SQDMLAL2 */
13745 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13746 tcg_res[pass],
13747 tcg_passres);
13748 break;
13749 default:
13750 g_assert_not_reached();
13751 }
13752 tcg_temp_free_i64(tcg_passres);
13753 }
13754 tcg_temp_free_i64(tcg_idx);
13755
13756 clear_vec_high(s, !is_scalar, rd);
13757 } else {
13758 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13759
13760 assert(size == 1);
13761 read_vec_element_i32(s, tcg_idx, rm, index, size);
13762
13763 if (!is_scalar) {
13764 /* The simplest way to handle the 16x16 indexed ops is to
13765 * duplicate the index into both halves of the 32 bit tcg_idx
13766 * and then use the usual Neon helpers.
13767 */
13768 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13769 }
13770
13771 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13772 TCGv_i32 tcg_op = tcg_temp_new_i32();
13773 TCGv_i64 tcg_passres;
13774
13775 if (is_scalar) {
13776 read_vec_element_i32(s, tcg_op, rn, pass, size);
13777 } else {
13778 read_vec_element_i32(s, tcg_op, rn,
13779 pass + (is_q * 2), MO_32);
13780 }
13781
13782 tcg_res[pass] = tcg_temp_new_i64();
13783
13784 if (opcode == 0xa || opcode == 0xb) {
13785 /* Non-accumulating ops */
13786 tcg_passres = tcg_res[pass];
13787 } else {
13788 tcg_passres = tcg_temp_new_i64();
13789 }
13790
13791 if (memop & MO_SIGN) {
13792 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13793 } else {
13794 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13795 }
13796 if (satop) {
13797 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13798 tcg_passres, tcg_passres);
13799 }
13800 tcg_temp_free_i32(tcg_op);
13801
13802 if (opcode == 0xa || opcode == 0xb) {
13803 continue;
13804 }
13805
13806 /* Accumulating op: handle accumulate step */
13807 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13808
13809 switch (opcode) {
13810 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13811 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13812 tcg_passres);
13813 break;
13814 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13815 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13816 tcg_passres);
13817 break;
13818 case 0x7: /* SQDMLSL, SQDMLSL2 */
13819 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13820 /* fall through */
13821 case 0x3: /* SQDMLAL, SQDMLAL2 */
13822 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13823 tcg_res[pass],
13824 tcg_passres);
13825 break;
13826 default:
13827 g_assert_not_reached();
13828 }
13829 tcg_temp_free_i64(tcg_passres);
13830 }
13831 tcg_temp_free_i32(tcg_idx);
13832
13833 if (is_scalar) {
13834 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13835 }
13836 }
13837
13838 if (is_scalar) {
13839 tcg_res[1] = tcg_const_i64(0);
13840 }
13841
13842 for (pass = 0; pass < 2; pass++) {
13843 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13844 tcg_temp_free_i64(tcg_res[pass]);
13845 }
13846 }
13847
13848 if (fpst) {
13849 tcg_temp_free_ptr(fpst);
13850 }
13851 }
13852
13853 /* Crypto AES
13854 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13855 * +-----------------+------+-----------+--------+-----+------+------+
13856 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13857 * +-----------------+------+-----------+--------+-----+------+------+
13858 */
13859 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13860 {
13861 int size = extract32(insn, 22, 2);
13862 int opcode = extract32(insn, 12, 5);
13863 int rn = extract32(insn, 5, 5);
13864 int rd = extract32(insn, 0, 5);
13865 int decrypt;
13866 gen_helper_gvec_2 *genfn2 = NULL;
13867 gen_helper_gvec_3 *genfn3 = NULL;
13868
13869 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13870 unallocated_encoding(s);
13871 return;
13872 }
13873
13874 switch (opcode) {
13875 case 0x4: /* AESE */
13876 decrypt = 0;
13877 genfn3 = gen_helper_crypto_aese;
13878 break;
13879 case 0x6: /* AESMC */
13880 decrypt = 0;
13881 genfn2 = gen_helper_crypto_aesmc;
13882 break;
13883 case 0x5: /* AESD */
13884 decrypt = 1;
13885 genfn3 = gen_helper_crypto_aese;
13886 break;
13887 case 0x7: /* AESIMC */
13888 decrypt = 1;
13889 genfn2 = gen_helper_crypto_aesmc;
13890 break;
13891 default:
13892 unallocated_encoding(s);
13893 return;
13894 }
13895
13896 if (!fp_access_check(s)) {
13897 return;
13898 }
13899 if (genfn2) {
13900 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2);
13901 } else {
13902 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3);
13903 }
13904 }
13905
13906 /* Crypto three-reg SHA
13907 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
13908 * +-----------------+------+---+------+---+--------+-----+------+------+
13909 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
13910 * +-----------------+------+---+------+---+--------+-----+------+------+
13911 */
13912 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13913 {
13914 int size = extract32(insn, 22, 2);
13915 int opcode = extract32(insn, 12, 3);
13916 int rm = extract32(insn, 16, 5);
13917 int rn = extract32(insn, 5, 5);
13918 int rd = extract32(insn, 0, 5);
13919 gen_helper_gvec_3 *genfn;
13920 bool feature;
13921
13922 if (size != 0) {
13923 unallocated_encoding(s);
13924 return;
13925 }
13926
13927 switch (opcode) {
13928 case 0: /* SHA1C */
13929 genfn = gen_helper_crypto_sha1c;
13930 feature = dc_isar_feature(aa64_sha1, s);
13931 break;
13932 case 1: /* SHA1P */
13933 genfn = gen_helper_crypto_sha1p;
13934 feature = dc_isar_feature(aa64_sha1, s);
13935 break;
13936 case 2: /* SHA1M */
13937 genfn = gen_helper_crypto_sha1m;
13938 feature = dc_isar_feature(aa64_sha1, s);
13939 break;
13940 case 3: /* SHA1SU0 */
13941 genfn = gen_helper_crypto_sha1su0;
13942 feature = dc_isar_feature(aa64_sha1, s);
13943 break;
13944 case 4: /* SHA256H */
13945 genfn = gen_helper_crypto_sha256h;
13946 feature = dc_isar_feature(aa64_sha256, s);
13947 break;
13948 case 5: /* SHA256H2 */
13949 genfn = gen_helper_crypto_sha256h2;
13950 feature = dc_isar_feature(aa64_sha256, s);
13951 break;
13952 case 6: /* SHA256SU1 */
13953 genfn = gen_helper_crypto_sha256su1;
13954 feature = dc_isar_feature(aa64_sha256, s);
13955 break;
13956 default:
13957 unallocated_encoding(s);
13958 return;
13959 }
13960
13961 if (!feature) {
13962 unallocated_encoding(s);
13963 return;
13964 }
13965
13966 if (!fp_access_check(s)) {
13967 return;
13968 }
13969 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
13970 }
13971
13972 /* Crypto two-reg SHA
13973 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13974 * +-----------------+------+-----------+--------+-----+------+------+
13975 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13976 * +-----------------+------+-----------+--------+-----+------+------+
13977 */
13978 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13979 {
13980 int size = extract32(insn, 22, 2);
13981 int opcode = extract32(insn, 12, 5);
13982 int rn = extract32(insn, 5, 5);
13983 int rd = extract32(insn, 0, 5);
13984 gen_helper_gvec_2 *genfn;
13985 bool feature;
13986
13987 if (size != 0) {
13988 unallocated_encoding(s);
13989 return;
13990 }
13991
13992 switch (opcode) {
13993 case 0: /* SHA1H */
13994 feature = dc_isar_feature(aa64_sha1, s);
13995 genfn = gen_helper_crypto_sha1h;
13996 break;
13997 case 1: /* SHA1SU1 */
13998 feature = dc_isar_feature(aa64_sha1, s);
13999 genfn = gen_helper_crypto_sha1su1;
14000 break;
14001 case 2: /* SHA256SU0 */
14002 feature = dc_isar_feature(aa64_sha256, s);
14003 genfn = gen_helper_crypto_sha256su0;
14004 break;
14005 default:
14006 unallocated_encoding(s);
14007 return;
14008 }
14009
14010 if (!feature) {
14011 unallocated_encoding(s);
14012 return;
14013 }
14014
14015 if (!fp_access_check(s)) {
14016 return;
14017 }
14018 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
14019 }
14020
14021 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
14022 {
14023 tcg_gen_rotli_i64(d, m, 1);
14024 tcg_gen_xor_i64(d, d, n);
14025 }
14026
14027 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
14028 {
14029 tcg_gen_rotli_vec(vece, d, m, 1);
14030 tcg_gen_xor_vec(vece, d, d, n);
14031 }
14032
14033 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
14034 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
14035 {
14036 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
14037 static const GVecGen3 op = {
14038 .fni8 = gen_rax1_i64,
14039 .fniv = gen_rax1_vec,
14040 .opt_opc = vecop_list,
14041 .fno = gen_helper_crypto_rax1,
14042 .vece = MO_64,
14043 };
14044 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
14045 }
14046
14047 /* Crypto three-reg SHA512
14048 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
14049 * +-----------------------+------+---+---+-----+--------+------+------+
14050 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
14051 * +-----------------------+------+---+---+-----+--------+------+------+
14052 */
14053 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
14054 {
14055 int opcode = extract32(insn, 10, 2);
14056 int o = extract32(insn, 14, 1);
14057 int rm = extract32(insn, 16, 5);
14058 int rn = extract32(insn, 5, 5);
14059 int rd = extract32(insn, 0, 5);
14060 bool feature;
14061 gen_helper_gvec_3 *oolfn = NULL;
14062 GVecGen3Fn *gvecfn = NULL;
14063
14064 if (o == 0) {
14065 switch (opcode) {
14066 case 0: /* SHA512H */
14067 feature = dc_isar_feature(aa64_sha512, s);
14068 oolfn = gen_helper_crypto_sha512h;
14069 break;
14070 case 1: /* SHA512H2 */
14071 feature = dc_isar_feature(aa64_sha512, s);
14072 oolfn = gen_helper_crypto_sha512h2;
14073 break;
14074 case 2: /* SHA512SU1 */
14075 feature = dc_isar_feature(aa64_sha512, s);
14076 oolfn = gen_helper_crypto_sha512su1;
14077 break;
14078 case 3: /* RAX1 */
14079 feature = dc_isar_feature(aa64_sha3, s);
14080 gvecfn = gen_gvec_rax1;
14081 break;
14082 default:
14083 g_assert_not_reached();
14084 }
14085 } else {
14086 switch (opcode) {
14087 case 0: /* SM3PARTW1 */
14088 feature = dc_isar_feature(aa64_sm3, s);
14089 oolfn = gen_helper_crypto_sm3partw1;
14090 break;
14091 case 1: /* SM3PARTW2 */
14092 feature = dc_isar_feature(aa64_sm3, s);
14093 oolfn = gen_helper_crypto_sm3partw2;
14094 break;
14095 case 2: /* SM4EKEY */
14096 feature = dc_isar_feature(aa64_sm4, s);
14097 oolfn = gen_helper_crypto_sm4ekey;
14098 break;
14099 default:
14100 unallocated_encoding(s);
14101 return;
14102 }
14103 }
14104
14105 if (!feature) {
14106 unallocated_encoding(s);
14107 return;
14108 }
14109
14110 if (!fp_access_check(s)) {
14111 return;
14112 }
14113
14114 if (oolfn) {
14115 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
14116 } else {
14117 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
14118 }
14119 }
14120
14121 /* Crypto two-reg SHA512
14122 * 31 12 11 10 9 5 4 0
14123 * +-----------------------------------------+--------+------+------+
14124 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
14125 * +-----------------------------------------+--------+------+------+
14126 */
14127 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
14128 {
14129 int opcode = extract32(insn, 10, 2);
14130 int rn = extract32(insn, 5, 5);
14131 int rd = extract32(insn, 0, 5);
14132 bool feature;
14133
14134 switch (opcode) {
14135 case 0: /* SHA512SU0 */
14136 feature = dc_isar_feature(aa64_sha512, s);
14137 break;
14138 case 1: /* SM4E */
14139 feature = dc_isar_feature(aa64_sm4, s);
14140 break;
14141 default:
14142 unallocated_encoding(s);
14143 return;
14144 }
14145
14146 if (!feature) {
14147 unallocated_encoding(s);
14148 return;
14149 }
14150
14151 if (!fp_access_check(s)) {
14152 return;
14153 }
14154
14155 switch (opcode) {
14156 case 0: /* SHA512SU0 */
14157 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
14158 break;
14159 case 1: /* SM4E */
14160 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
14161 break;
14162 default:
14163 g_assert_not_reached();
14164 }
14165 }
14166
14167 /* Crypto four-register
14168 * 31 23 22 21 20 16 15 14 10 9 5 4 0
14169 * +-------------------+-----+------+---+------+------+------+
14170 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
14171 * +-------------------+-----+------+---+------+------+------+
14172 */
14173 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
14174 {
14175 int op0 = extract32(insn, 21, 2);
14176 int rm = extract32(insn, 16, 5);
14177 int ra = extract32(insn, 10, 5);
14178 int rn = extract32(insn, 5, 5);
14179 int rd = extract32(insn, 0, 5);
14180 bool feature;
14181
14182 switch (op0) {
14183 case 0: /* EOR3 */
14184 case 1: /* BCAX */
14185 feature = dc_isar_feature(aa64_sha3, s);
14186 break;
14187 case 2: /* SM3SS1 */
14188 feature = dc_isar_feature(aa64_sm3, s);
14189 break;
14190 default:
14191 unallocated_encoding(s);
14192 return;
14193 }
14194
14195 if (!feature) {
14196 unallocated_encoding(s);
14197 return;
14198 }
14199
14200 if (!fp_access_check(s)) {
14201 return;
14202 }
14203
14204 if (op0 < 2) {
14205 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
14206 int pass;
14207
14208 tcg_op1 = tcg_temp_new_i64();
14209 tcg_op2 = tcg_temp_new_i64();
14210 tcg_op3 = tcg_temp_new_i64();
14211 tcg_res[0] = tcg_temp_new_i64();
14212 tcg_res[1] = tcg_temp_new_i64();
14213
14214 for (pass = 0; pass < 2; pass++) {
14215 read_vec_element(s, tcg_op1, rn, pass, MO_64);
14216 read_vec_element(s, tcg_op2, rm, pass, MO_64);
14217 read_vec_element(s, tcg_op3, ra, pass, MO_64);
14218
14219 if (op0 == 0) {
14220 /* EOR3 */
14221 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
14222 } else {
14223 /* BCAX */
14224 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
14225 }
14226 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
14227 }
14228 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
14229 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
14230
14231 tcg_temp_free_i64(tcg_op1);
14232 tcg_temp_free_i64(tcg_op2);
14233 tcg_temp_free_i64(tcg_op3);
14234 tcg_temp_free_i64(tcg_res[0]);
14235 tcg_temp_free_i64(tcg_res[1]);
14236 } else {
14237 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
14238
14239 tcg_op1 = tcg_temp_new_i32();
14240 tcg_op2 = tcg_temp_new_i32();
14241 tcg_op3 = tcg_temp_new_i32();
14242 tcg_res = tcg_temp_new_i32();
14243 tcg_zero = tcg_const_i32(0);
14244
14245 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
14246 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
14247 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
14248
14249 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
14250 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
14251 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
14252 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
14253
14254 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
14255 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
14256 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
14257 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
14258
14259 tcg_temp_free_i32(tcg_op1);
14260 tcg_temp_free_i32(tcg_op2);
14261 tcg_temp_free_i32(tcg_op3);
14262 tcg_temp_free_i32(tcg_res);
14263 tcg_temp_free_i32(tcg_zero);
14264 }
14265 }
14266
14267 /* Crypto XAR
14268 * 31 21 20 16 15 10 9 5 4 0
14269 * +-----------------------+------+--------+------+------+
14270 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
14271 * +-----------------------+------+--------+------+------+
14272 */
14273 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
14274 {
14275 int rm = extract32(insn, 16, 5);
14276 int imm6 = extract32(insn, 10, 6);
14277 int rn = extract32(insn, 5, 5);
14278 int rd = extract32(insn, 0, 5);
14279 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
14280 int pass;
14281
14282 if (!dc_isar_feature(aa64_sha3, s)) {
14283 unallocated_encoding(s);
14284 return;
14285 }
14286
14287 if (!fp_access_check(s)) {
14288 return;
14289 }
14290
14291 tcg_op1 = tcg_temp_new_i64();
14292 tcg_op2 = tcg_temp_new_i64();
14293 tcg_res[0] = tcg_temp_new_i64();
14294 tcg_res[1] = tcg_temp_new_i64();
14295
14296 for (pass = 0; pass < 2; pass++) {
14297 read_vec_element(s, tcg_op1, rn, pass, MO_64);
14298 read_vec_element(s, tcg_op2, rm, pass, MO_64);
14299
14300 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
14301 tcg_gen_rotri_i64(tcg_res[pass], tcg_res[pass], imm6);
14302 }
14303 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
14304 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
14305
14306 tcg_temp_free_i64(tcg_op1);
14307 tcg_temp_free_i64(tcg_op2);
14308 tcg_temp_free_i64(tcg_res[0]);
14309 tcg_temp_free_i64(tcg_res[1]);
14310 }
14311
14312 /* Crypto three-reg imm2
14313 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
14314 * +-----------------------+------+-----+------+--------+------+------+
14315 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
14316 * +-----------------------+------+-----+------+--------+------+------+
14317 */
14318 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
14319 {
14320 static gen_helper_gvec_3 * const fns[4] = {
14321 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
14322 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
14323 };
14324 int opcode = extract32(insn, 10, 2);
14325 int imm2 = extract32(insn, 12, 2);
14326 int rm = extract32(insn, 16, 5);
14327 int rn = extract32(insn, 5, 5);
14328 int rd = extract32(insn, 0, 5);
14329
14330 if (!dc_isar_feature(aa64_sm3, s)) {
14331 unallocated_encoding(s);
14332 return;
14333 }
14334
14335 if (!fp_access_check(s)) {
14336 return;
14337 }
14338
14339 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
14340 }
14341
14342 /* C3.6 Data processing - SIMD, inc Crypto
14343 *
14344 * As the decode gets a little complex we are using a table based
14345 * approach for this part of the decode.
14346 */
14347 static const AArch64DecodeTable data_proc_simd[] = {
14348 /* pattern , mask , fn */
14349 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
14350 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
14351 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
14352 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
14353 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
14354 { 0x0e000400, 0x9fe08400, disas_simd_copy },
14355 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
14356 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
14357 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
14358 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
14359 { 0x0e000000, 0xbf208c00, disas_simd_tb },
14360 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
14361 { 0x2e000000, 0xbf208400, disas_simd_ext },
14362 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
14363 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
14364 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
14365 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
14366 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
14367 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
14368 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
14369 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
14370 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
14371 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
14372 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
14373 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
14374 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
14375 { 0xce000000, 0xff808000, disas_crypto_four_reg },
14376 { 0xce800000, 0xffe00000, disas_crypto_xar },
14377 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
14378 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
14379 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
14380 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
14381 { 0x00000000, 0x00000000, NULL }
14382 };
14383
14384 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
14385 {
14386 /* Note that this is called with all non-FP cases from
14387 * table C3-6 so it must UNDEF for entries not specifically
14388 * allocated to instructions in that table.
14389 */
14390 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
14391 if (fn) {
14392 fn(s, insn);
14393 } else {
14394 unallocated_encoding(s);
14395 }
14396 }
14397
14398 /* C3.6 Data processing - SIMD and floating point */
14399 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
14400 {
14401 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
14402 disas_data_proc_fp(s, insn);
14403 } else {
14404 /* SIMD, including crypto */
14405 disas_data_proc_simd(s, insn);
14406 }
14407 }
14408
14409 /**
14410 * is_guarded_page:
14411 * @env: The cpu environment
14412 * @s: The DisasContext
14413 *
14414 * Return true if the page is guarded.
14415 */
14416 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
14417 {
14418 #ifdef CONFIG_USER_ONLY
14419 return false; /* FIXME */
14420 #else
14421 uint64_t addr = s->base.pc_first;
14422 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
14423 unsigned int index = tlb_index(env, mmu_idx, addr);
14424 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
14425
14426 /*
14427 * We test this immediately after reading an insn, which means
14428 * that any normal page must be in the TLB. The only exception
14429 * would be for executing from flash or device memory, which
14430 * does not retain the TLB entry.
14431 *
14432 * FIXME: Assume false for those, for now. We could use
14433 * arm_cpu_get_phys_page_attrs_debug to re-read the page
14434 * table entry even for that case.
14435 */
14436 return (tlb_hit(entry->addr_code, addr) &&
14437 arm_tlb_bti_gp(&env_tlb(env)->d[mmu_idx].iotlb[index].attrs));
14438 #endif
14439 }
14440
14441 /**
14442 * btype_destination_ok:
14443 * @insn: The instruction at the branch destination
14444 * @bt: SCTLR_ELx.BT
14445 * @btype: PSTATE.BTYPE, and is non-zero
14446 *
14447 * On a guarded page, there are a limited number of insns
14448 * that may be present at the branch target:
14449 * - branch target identifiers,
14450 * - paciasp, pacibsp,
14451 * - BRK insn
14452 * - HLT insn
14453 * Anything else causes a Branch Target Exception.
14454 *
14455 * Return true if the branch is compatible, false to raise BTITRAP.
14456 */
14457 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14458 {
14459 if ((insn & 0xfffff01fu) == 0xd503201fu) {
14460 /* HINT space */
14461 switch (extract32(insn, 5, 7)) {
14462 case 0b011001: /* PACIASP */
14463 case 0b011011: /* PACIBSP */
14464 /*
14465 * If SCTLR_ELx.BT, then PACI*SP are not compatible
14466 * with btype == 3. Otherwise all btype are ok.
14467 */
14468 return !bt || btype != 3;
14469 case 0b100000: /* BTI */
14470 /* Not compatible with any btype. */
14471 return false;
14472 case 0b100010: /* BTI c */
14473 /* Not compatible with btype == 3 */
14474 return btype != 3;
14475 case 0b100100: /* BTI j */
14476 /* Not compatible with btype == 2 */
14477 return btype != 2;
14478 case 0b100110: /* BTI jc */
14479 /* Compatible with any btype. */
14480 return true;
14481 }
14482 } else {
14483 switch (insn & 0xffe0001fu) {
14484 case 0xd4200000u: /* BRK */
14485 case 0xd4400000u: /* HLT */
14486 /* Give priority to the breakpoint exception. */
14487 return true;
14488 }
14489 }
14490 return false;
14491 }
14492
14493 /* C3.1 A64 instruction index by encoding */
14494 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
14495 {
14496 uint32_t insn;
14497
14498 s->pc_curr = s->base.pc_next;
14499 insn = arm_ldl_code(env, s->base.pc_next, s->sctlr_b);
14500 s->insn = insn;
14501 s->base.pc_next += 4;
14502
14503 s->fp_access_checked = false;
14504
14505 if (dc_isar_feature(aa64_bti, s)) {
14506 if (s->base.num_insns == 1) {
14507 /*
14508 * At the first insn of the TB, compute s->guarded_page.
14509 * We delayed computing this until successfully reading
14510 * the first insn of the TB, above. This (mostly) ensures
14511 * that the softmmu tlb entry has been populated, and the
14512 * page table GP bit is available.
14513 *
14514 * Note that we need to compute this even if btype == 0,
14515 * because this value is used for BR instructions later
14516 * where ENV is not available.
14517 */
14518 s->guarded_page = is_guarded_page(env, s);
14519
14520 /* First insn can have btype set to non-zero. */
14521 tcg_debug_assert(s->btype >= 0);
14522
14523 /*
14524 * Note that the Branch Target Exception has fairly high
14525 * priority -- below debugging exceptions but above most
14526 * everything else. This allows us to handle this now
14527 * instead of waiting until the insn is otherwise decoded.
14528 */
14529 if (s->btype != 0
14530 && s->guarded_page
14531 && !btype_destination_ok(insn, s->bt, s->btype)) {
14532 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
14533 syn_btitrap(s->btype),
14534 default_exception_el(s));
14535 return;
14536 }
14537 } else {
14538 /* Not the first insn: btype must be 0. */
14539 tcg_debug_assert(s->btype == 0);
14540 }
14541 }
14542
14543 switch (extract32(insn, 25, 4)) {
14544 case 0x0: case 0x1: case 0x3: /* UNALLOCATED */
14545 unallocated_encoding(s);
14546 break;
14547 case 0x2:
14548 if (!dc_isar_feature(aa64_sve, s) || !disas_sve(s, insn)) {
14549 unallocated_encoding(s);
14550 }
14551 break;
14552 case 0x8: case 0x9: /* Data processing - immediate */
14553 disas_data_proc_imm(s, insn);
14554 break;
14555 case 0xa: case 0xb: /* Branch, exception generation and system insns */
14556 disas_b_exc_sys(s, insn);
14557 break;
14558 case 0x4:
14559 case 0x6:
14560 case 0xc:
14561 case 0xe: /* Loads and stores */
14562 disas_ldst(s, insn);
14563 break;
14564 case 0x5:
14565 case 0xd: /* Data processing - register */
14566 disas_data_proc_reg(s, insn);
14567 break;
14568 case 0x7:
14569 case 0xf: /* Data processing - SIMD and floating point */
14570 disas_data_proc_simd_fp(s, insn);
14571 break;
14572 default:
14573 assert(FALSE); /* all 15 cases should be handled above */
14574 break;
14575 }
14576
14577 /* if we allocated any temporaries, free them here */
14578 free_tmp_a64(s);
14579
14580 /*
14581 * After execution of most insns, btype is reset to 0.
14582 * Note that we set btype == -1 when the insn sets btype.
14583 */
14584 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14585 reset_btype(s);
14586 }
14587 }
14588
14589 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14590 CPUState *cpu)
14591 {
14592 DisasContext *dc = container_of(dcbase, DisasContext, base);
14593 CPUARMState *env = cpu->env_ptr;
14594 ARMCPU *arm_cpu = env_archcpu(env);
14595 uint32_t tb_flags = dc->base.tb->flags;
14596 int bound, core_mmu_idx;
14597
14598 dc->isar = &arm_cpu->isar;
14599 dc->condjmp = 0;
14600
14601 dc->aarch64 = 1;
14602 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
14603 * there is no secure EL1, so we route exceptions to EL3.
14604 */
14605 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
14606 !arm_el_is_aa64(env, 3);
14607 dc->thumb = 0;
14608 dc->sctlr_b = 0;
14609 dc->be_data = FIELD_EX32(tb_flags, TBFLAG_ANY, BE_DATA) ? MO_BE : MO_LE;
14610 dc->condexec_mask = 0;
14611 dc->condexec_cond = 0;
14612 core_mmu_idx = FIELD_EX32(tb_flags, TBFLAG_ANY, MMUIDX);
14613 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14614 dc->tbii = FIELD_EX32(tb_flags, TBFLAG_A64, TBII);
14615 dc->tbid = FIELD_EX32(tb_flags, TBFLAG_A64, TBID);
14616 dc->tcma = FIELD_EX32(tb_flags, TBFLAG_A64, TCMA);
14617 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14618 #if !defined(CONFIG_USER_ONLY)
14619 dc->user = (dc->current_el == 0);
14620 #endif
14621 dc->fp_excp_el = FIELD_EX32(tb_flags, TBFLAG_ANY, FPEXC_EL);
14622 dc->sve_excp_el = FIELD_EX32(tb_flags, TBFLAG_A64, SVEEXC_EL);
14623 dc->sve_len = (FIELD_EX32(tb_flags, TBFLAG_A64, ZCR_LEN) + 1) * 16;
14624 dc->pauth_active = FIELD_EX32(tb_flags, TBFLAG_A64, PAUTH_ACTIVE);
14625 dc->bt = FIELD_EX32(tb_flags, TBFLAG_A64, BT);
14626 dc->btype = FIELD_EX32(tb_flags, TBFLAG_A64, BTYPE);
14627 dc->unpriv = FIELD_EX32(tb_flags, TBFLAG_A64, UNPRIV);
14628 dc->ata = FIELD_EX32(tb_flags, TBFLAG_A64, ATA);
14629 dc->mte_active[0] = FIELD_EX32(tb_flags, TBFLAG_A64, MTE_ACTIVE);
14630 dc->mte_active[1] = FIELD_EX32(tb_flags, TBFLAG_A64, MTE0_ACTIVE);
14631 dc->vec_len = 0;
14632 dc->vec_stride = 0;
14633 dc->cp_regs = arm_cpu->cp_regs;
14634 dc->features = env->features;
14635 dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14636
14637 /* Single step state. The code-generation logic here is:
14638 * SS_ACTIVE == 0:
14639 * generate code with no special handling for single-stepping (except
14640 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14641 * this happens anyway because those changes are all system register or
14642 * PSTATE writes).
14643 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14644 * emit code for one insn
14645 * emit code to clear PSTATE.SS
14646 * emit code to generate software step exception for completed step
14647 * end TB (as usual for having generated an exception)
14648 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14649 * emit code to generate a software step exception
14650 * end the TB
14651 */
14652 dc->ss_active = FIELD_EX32(tb_flags, TBFLAG_ANY, SS_ACTIVE);
14653 dc->pstate_ss = FIELD_EX32(tb_flags, TBFLAG_ANY, PSTATE_SS);
14654 dc->is_ldex = false;
14655 dc->debug_target_el = FIELD_EX32(tb_flags, TBFLAG_ANY, DEBUG_TARGET_EL);
14656
14657 /* Bound the number of insns to execute to those left on the page. */
14658 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14659
14660 /* If architectural single step active, limit to 1. */
14661 if (dc->ss_active) {
14662 bound = 1;
14663 }
14664 dc->base.max_insns = MIN(dc->base.max_insns, bound);
14665
14666 init_tmp_a64_array(dc);
14667 }
14668
14669 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14670 {
14671 }
14672
14673 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14674 {
14675 DisasContext *dc = container_of(dcbase, DisasContext, base);
14676
14677 tcg_gen_insn_start(dc->base.pc_next, 0, 0);
14678 dc->insn_start = tcg_last_op();
14679 }
14680
14681 static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
14682 const CPUBreakpoint *bp)
14683 {
14684 DisasContext *dc = container_of(dcbase, DisasContext, base);
14685
14686 if (bp->flags & BP_CPU) {
14687 gen_a64_set_pc_im(dc->base.pc_next);
14688 gen_helper_check_breakpoints(cpu_env);
14689 /* End the TB early; it likely won't be executed */
14690 dc->base.is_jmp = DISAS_TOO_MANY;
14691 } else {
14692 gen_exception_internal_insn(dc, dc->base.pc_next, EXCP_DEBUG);
14693 /* The address covered by the breakpoint must be
14694 included in [tb->pc, tb->pc + tb->size) in order
14695 to for it to be properly cleared -- thus we
14696 increment the PC here so that the logic setting
14697 tb->size below does the right thing. */
14698 dc->base.pc_next += 4;
14699 dc->base.is_jmp = DISAS_NORETURN;
14700 }
14701
14702 return true;
14703 }
14704
14705 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14706 {
14707 DisasContext *dc = container_of(dcbase, DisasContext, base);
14708 CPUARMState *env = cpu->env_ptr;
14709
14710 if (dc->ss_active && !dc->pstate_ss) {
14711 /* Singlestep state is Active-pending.
14712 * If we're in this state at the start of a TB then either
14713 * a) we just took an exception to an EL which is being debugged
14714 * and this is the first insn in the exception handler
14715 * b) debug exceptions were masked and we just unmasked them
14716 * without changing EL (eg by clearing PSTATE.D)
14717 * In either case we're going to take a swstep exception in the
14718 * "did not step an insn" case, and so the syndrome ISV and EX
14719 * bits should be zero.
14720 */
14721 assert(dc->base.num_insns == 1);
14722 gen_swstep_exception(dc, 0, 0);
14723 dc->base.is_jmp = DISAS_NORETURN;
14724 } else {
14725 disas_a64_insn(env, dc);
14726 }
14727
14728 translator_loop_temp_check(&dc->base);
14729 }
14730
14731 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14732 {
14733 DisasContext *dc = container_of(dcbase, DisasContext, base);
14734
14735 if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
14736 /* Note that this means single stepping WFI doesn't halt the CPU.
14737 * For conditional branch insns this is harmless unreachable code as
14738 * gen_goto_tb() has already handled emitting the debug exception
14739 * (and thus a tb-jump is not possible when singlestepping).
14740 */
14741 switch (dc->base.is_jmp) {
14742 default:
14743 gen_a64_set_pc_im(dc->base.pc_next);
14744 /* fall through */
14745 case DISAS_EXIT:
14746 case DISAS_JUMP:
14747 if (dc->base.singlestep_enabled) {
14748 gen_exception_internal(EXCP_DEBUG);
14749 } else {
14750 gen_step_complete_exception(dc);
14751 }
14752 break;
14753 case DISAS_NORETURN:
14754 break;
14755 }
14756 } else {
14757 switch (dc->base.is_jmp) {
14758 case DISAS_NEXT:
14759 case DISAS_TOO_MANY:
14760 gen_goto_tb(dc, 1, dc->base.pc_next);
14761 break;
14762 default:
14763 case DISAS_UPDATE_EXIT:
14764 gen_a64_set_pc_im(dc->base.pc_next);
14765 /* fall through */
14766 case DISAS_EXIT:
14767 tcg_gen_exit_tb(NULL, 0);
14768 break;
14769 case DISAS_UPDATE_NOCHAIN:
14770 gen_a64_set_pc_im(dc->base.pc_next);
14771 /* fall through */
14772 case DISAS_JUMP:
14773 tcg_gen_lookup_and_goto_ptr();
14774 break;
14775 case DISAS_NORETURN:
14776 case DISAS_SWI:
14777 break;
14778 case DISAS_WFE:
14779 gen_a64_set_pc_im(dc->base.pc_next);
14780 gen_helper_wfe(cpu_env);
14781 break;
14782 case DISAS_YIELD:
14783 gen_a64_set_pc_im(dc->base.pc_next);
14784 gen_helper_yield(cpu_env);
14785 break;
14786 case DISAS_WFI:
14787 {
14788 /* This is a special case because we don't want to just halt the CPU
14789 * if trying to debug across a WFI.
14790 */
14791 TCGv_i32 tmp = tcg_const_i32(4);
14792
14793 gen_a64_set_pc_im(dc->base.pc_next);
14794 gen_helper_wfi(cpu_env, tmp);
14795 tcg_temp_free_i32(tmp);
14796 /* The helper doesn't necessarily throw an exception, but we
14797 * must go back to the main loop to check for interrupts anyway.
14798 */
14799 tcg_gen_exit_tb(NULL, 0);
14800 break;
14801 }
14802 }
14803 }
14804 }
14805
14806 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14807 CPUState *cpu)
14808 {
14809 DisasContext *dc = container_of(dcbase, DisasContext, base);
14810
14811 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
14812 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
14813 }
14814
14815 const TranslatorOps aarch64_translator_ops = {
14816 .init_disas_context = aarch64_tr_init_disas_context,
14817 .tb_start = aarch64_tr_tb_start,
14818 .insn_start = aarch64_tr_insn_start,
14819 .breakpoint_check = aarch64_tr_breakpoint_check,
14820 .translate_insn = aarch64_tr_translate_insn,
14821 .tb_stop = aarch64_tr_tb_stop,
14822 .disas_log = aarch64_tr_disas_log,
14823 };