]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/translate-a64.c
Merge remote-tracking branch 'remotes/mcayland/tags/qemu-openbios-20190215' into...
[mirror_qemu.git] / target / arm / translate-a64.c
1 /*
2 * AArch64 translation
3 *
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg-op.h"
24 #include "tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
30
31 #include "exec/semihost.h"
32 #include "exec/gen-icount.h"
33
34 #include "exec/helper-proto.h"
35 #include "exec/helper-gen.h"
36 #include "exec/log.h"
37
38 #include "trace-tcg.h"
39 #include "translate-a64.h"
40 #include "qemu/atomic128.h"
41
42 static TCGv_i64 cpu_X[32];
43 static TCGv_i64 cpu_pc;
44
45 /* Load/store exclusive handling */
46 static TCGv_i64 cpu_exclusive_high;
47
48 static const char *regnames[] = {
49 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
50 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
51 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
52 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
53 };
54
55 enum a64_shift_type {
56 A64_SHIFT_TYPE_LSL = 0,
57 A64_SHIFT_TYPE_LSR = 1,
58 A64_SHIFT_TYPE_ASR = 2,
59 A64_SHIFT_TYPE_ROR = 3
60 };
61
62 /* Table based decoder typedefs - used when the relevant bits for decode
63 * are too awkwardly scattered across the instruction (eg SIMD).
64 */
65 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
66
67 typedef struct AArch64DecodeTable {
68 uint32_t pattern;
69 uint32_t mask;
70 AArch64DecodeFn *disas_fn;
71 } AArch64DecodeTable;
72
73 /* Function prototype for gen_ functions for calling Neon helpers */
74 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
75 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
76 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
77 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
78 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
79 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
80 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
81 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
82 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
83 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
84 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
85 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
86 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
87 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
88 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, TCGMemOp);
89
90 /* initialize TCG globals. */
91 void a64_translate_init(void)
92 {
93 int i;
94
95 cpu_pc = tcg_global_mem_new_i64(cpu_env,
96 offsetof(CPUARMState, pc),
97 "pc");
98 for (i = 0; i < 32; i++) {
99 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
100 offsetof(CPUARMState, xregs[i]),
101 regnames[i]);
102 }
103
104 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
105 offsetof(CPUARMState, exclusive_high), "exclusive_high");
106 }
107
108 static inline int get_a64_user_mem_index(DisasContext *s)
109 {
110 /* Return the core mmu_idx to use for A64 "unprivileged load/store" insns:
111 * if EL1, access as if EL0; otherwise access at current EL
112 */
113 ARMMMUIdx useridx;
114
115 switch (s->mmu_idx) {
116 case ARMMMUIdx_S12NSE1:
117 useridx = ARMMMUIdx_S12NSE0;
118 break;
119 case ARMMMUIdx_S1SE1:
120 useridx = ARMMMUIdx_S1SE0;
121 break;
122 case ARMMMUIdx_S2NS:
123 g_assert_not_reached();
124 default:
125 useridx = s->mmu_idx;
126 break;
127 }
128 return arm_to_core_mmu_idx(useridx);
129 }
130
131 static void reset_btype(DisasContext *s)
132 {
133 if (s->btype != 0) {
134 TCGv_i32 zero = tcg_const_i32(0);
135 tcg_gen_st_i32(zero, cpu_env, offsetof(CPUARMState, btype));
136 tcg_temp_free_i32(zero);
137 s->btype = 0;
138 }
139 }
140
141 static void set_btype(DisasContext *s, int val)
142 {
143 TCGv_i32 tcg_val;
144
145 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
146 tcg_debug_assert(val >= 1 && val <= 3);
147
148 tcg_val = tcg_const_i32(val);
149 tcg_gen_st_i32(tcg_val, cpu_env, offsetof(CPUARMState, btype));
150 tcg_temp_free_i32(tcg_val);
151 s->btype = -1;
152 }
153
154 void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
155 fprintf_function cpu_fprintf, int flags)
156 {
157 ARMCPU *cpu = ARM_CPU(cs);
158 CPUARMState *env = &cpu->env;
159 uint32_t psr = pstate_read(env);
160 int i;
161 int el = arm_current_el(env);
162 const char *ns_status;
163
164 cpu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
165 for (i = 0; i < 32; i++) {
166 if (i == 31) {
167 cpu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
168 } else {
169 cpu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
170 (i + 2) % 3 ? " " : "\n");
171 }
172 }
173
174 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
175 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
176 } else {
177 ns_status = "";
178 }
179 cpu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
180 psr,
181 psr & PSTATE_N ? 'N' : '-',
182 psr & PSTATE_Z ? 'Z' : '-',
183 psr & PSTATE_C ? 'C' : '-',
184 psr & PSTATE_V ? 'V' : '-',
185 ns_status,
186 el,
187 psr & PSTATE_SP ? 'h' : 't');
188
189 if (cpu_isar_feature(aa64_bti, cpu)) {
190 cpu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
191 }
192 if (!(flags & CPU_DUMP_FPU)) {
193 cpu_fprintf(f, "\n");
194 return;
195 }
196 if (fp_exception_el(env, el) != 0) {
197 cpu_fprintf(f, " FPU disabled\n");
198 return;
199 }
200 cpu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
201 vfp_get_fpcr(env), vfp_get_fpsr(env));
202
203 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
204 int j, zcr_len = sve_zcr_len_for_el(env, el);
205
206 for (i = 0; i <= FFR_PRED_NUM; i++) {
207 bool eol;
208 if (i == FFR_PRED_NUM) {
209 cpu_fprintf(f, "FFR=");
210 /* It's last, so end the line. */
211 eol = true;
212 } else {
213 cpu_fprintf(f, "P%02d=", i);
214 switch (zcr_len) {
215 case 0:
216 eol = i % 8 == 7;
217 break;
218 case 1:
219 eol = i % 6 == 5;
220 break;
221 case 2:
222 case 3:
223 eol = i % 3 == 2;
224 break;
225 default:
226 /* More than one quadword per predicate. */
227 eol = true;
228 break;
229 }
230 }
231 for (j = zcr_len / 4; j >= 0; j--) {
232 int digits;
233 if (j * 4 + 4 <= zcr_len + 1) {
234 digits = 16;
235 } else {
236 digits = (zcr_len % 4 + 1) * 4;
237 }
238 cpu_fprintf(f, "%0*" PRIx64 "%s", digits,
239 env->vfp.pregs[i].p[j],
240 j ? ":" : eol ? "\n" : " ");
241 }
242 }
243
244 for (i = 0; i < 32; i++) {
245 if (zcr_len == 0) {
246 cpu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
247 i, env->vfp.zregs[i].d[1],
248 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
249 } else if (zcr_len == 1) {
250 cpu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
251 ":%016" PRIx64 ":%016" PRIx64 "\n",
252 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
253 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
254 } else {
255 for (j = zcr_len; j >= 0; j--) {
256 bool odd = (zcr_len - j) % 2 != 0;
257 if (j == zcr_len) {
258 cpu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
259 } else if (!odd) {
260 if (j > 0) {
261 cpu_fprintf(f, " [%x-%x]=", j, j - 1);
262 } else {
263 cpu_fprintf(f, " [%x]=", j);
264 }
265 }
266 cpu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
267 env->vfp.zregs[i].d[j * 2 + 1],
268 env->vfp.zregs[i].d[j * 2],
269 odd || j == 0 ? "\n" : ":");
270 }
271 }
272 }
273 } else {
274 for (i = 0; i < 32; i++) {
275 uint64_t *q = aa64_vfp_qreg(env, i);
276 cpu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
277 i, q[1], q[0], (i & 1 ? "\n" : " "));
278 }
279 }
280 }
281
282 void gen_a64_set_pc_im(uint64_t val)
283 {
284 tcg_gen_movi_i64(cpu_pc, val);
285 }
286
287 /*
288 * Handle Top Byte Ignore (TBI) bits.
289 *
290 * If address tagging is enabled via the TCR TBI bits:
291 * + for EL2 and EL3 there is only one TBI bit, and if it is set
292 * then the address is zero-extended, clearing bits [63:56]
293 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
294 * and TBI1 controls addressses with bit 55 == 1.
295 * If the appropriate TBI bit is set for the address then
296 * the address is sign-extended from bit 55 into bits [63:56]
297 *
298 * Here We have concatenated TBI{1,0} into tbi.
299 */
300 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
301 TCGv_i64 src, int tbi)
302 {
303 if (tbi == 0) {
304 /* Load unmodified address */
305 tcg_gen_mov_i64(dst, src);
306 } else if (s->current_el >= 2) {
307 /* FIXME: ARMv8.1-VHE S2 translation regime. */
308 /* Force tag byte to all zero */
309 tcg_gen_extract_i64(dst, src, 0, 56);
310 } else {
311 /* Sign-extend from bit 55. */
312 tcg_gen_sextract_i64(dst, src, 0, 56);
313
314 if (tbi != 3) {
315 TCGv_i64 tcg_zero = tcg_const_i64(0);
316
317 /*
318 * The two TBI bits differ.
319 * If tbi0, then !tbi1: only use the extension if positive.
320 * if !tbi0, then tbi1: only use the extension if negative.
321 */
322 tcg_gen_movcond_i64(tbi == 1 ? TCG_COND_GE : TCG_COND_LT,
323 dst, dst, tcg_zero, dst, src);
324 tcg_temp_free_i64(tcg_zero);
325 }
326 }
327 }
328
329 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
330 {
331 /*
332 * If address tagging is enabled for instructions via the TCR TBI bits,
333 * then loading an address into the PC will clear out any tag.
334 */
335 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
336 }
337
338 /*
339 * Return a "clean" address for ADDR according to TBID.
340 * This is always a fresh temporary, as we need to be able to
341 * increment this independently of a dirty write-back address.
342 */
343 static TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
344 {
345 TCGv_i64 clean = new_tmp_a64(s);
346 gen_top_byte_ignore(s, clean, addr, s->tbid);
347 return clean;
348 }
349
350 typedef struct DisasCompare64 {
351 TCGCond cond;
352 TCGv_i64 value;
353 } DisasCompare64;
354
355 static void a64_test_cc(DisasCompare64 *c64, int cc)
356 {
357 DisasCompare c32;
358
359 arm_test_cc(&c32, cc);
360
361 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
362 * properly. The NE/EQ comparisons are also fine with this choice. */
363 c64->cond = c32.cond;
364 c64->value = tcg_temp_new_i64();
365 tcg_gen_ext_i32_i64(c64->value, c32.value);
366
367 arm_free_cc(&c32);
368 }
369
370 static void a64_free_cc(DisasCompare64 *c64)
371 {
372 tcg_temp_free_i64(c64->value);
373 }
374
375 static void gen_exception_internal(int excp)
376 {
377 TCGv_i32 tcg_excp = tcg_const_i32(excp);
378
379 assert(excp_is_internal(excp));
380 gen_helper_exception_internal(cpu_env, tcg_excp);
381 tcg_temp_free_i32(tcg_excp);
382 }
383
384 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
385 {
386 TCGv_i32 tcg_excp = tcg_const_i32(excp);
387 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
388 TCGv_i32 tcg_el = tcg_const_i32(target_el);
389
390 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
391 tcg_syn, tcg_el);
392 tcg_temp_free_i32(tcg_el);
393 tcg_temp_free_i32(tcg_syn);
394 tcg_temp_free_i32(tcg_excp);
395 }
396
397 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
398 {
399 gen_a64_set_pc_im(s->pc - offset);
400 gen_exception_internal(excp);
401 s->base.is_jmp = DISAS_NORETURN;
402 }
403
404 static void gen_exception_insn(DisasContext *s, int offset, int excp,
405 uint32_t syndrome, uint32_t target_el)
406 {
407 gen_a64_set_pc_im(s->pc - offset);
408 gen_exception(excp, syndrome, target_el);
409 s->base.is_jmp = DISAS_NORETURN;
410 }
411
412 static void gen_exception_bkpt_insn(DisasContext *s, int offset,
413 uint32_t syndrome)
414 {
415 TCGv_i32 tcg_syn;
416
417 gen_a64_set_pc_im(s->pc - offset);
418 tcg_syn = tcg_const_i32(syndrome);
419 gen_helper_exception_bkpt_insn(cpu_env, tcg_syn);
420 tcg_temp_free_i32(tcg_syn);
421 s->base.is_jmp = DISAS_NORETURN;
422 }
423
424 static void gen_ss_advance(DisasContext *s)
425 {
426 /* If the singlestep state is Active-not-pending, advance to
427 * Active-pending.
428 */
429 if (s->ss_active) {
430 s->pstate_ss = 0;
431 gen_helper_clear_pstate_ss(cpu_env);
432 }
433 }
434
435 static void gen_step_complete_exception(DisasContext *s)
436 {
437 /* We just completed step of an insn. Move from Active-not-pending
438 * to Active-pending, and then also take the swstep exception.
439 * This corresponds to making the (IMPDEF) choice to prioritize
440 * swstep exceptions over asynchronous exceptions taken to an exception
441 * level where debug is disabled. This choice has the advantage that
442 * we do not need to maintain internal state corresponding to the
443 * ISV/EX syndrome bits between completion of the step and generation
444 * of the exception, and our syndrome information is always correct.
445 */
446 gen_ss_advance(s);
447 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
448 default_exception_el(s));
449 s->base.is_jmp = DISAS_NORETURN;
450 }
451
452 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
453 {
454 /* No direct tb linking with singlestep (either QEMU's or the ARM
455 * debug architecture kind) or deterministic io
456 */
457 if (s->base.singlestep_enabled || s->ss_active ||
458 (tb_cflags(s->base.tb) & CF_LAST_IO)) {
459 return false;
460 }
461
462 #ifndef CONFIG_USER_ONLY
463 /* Only link tbs from inside the same guest page */
464 if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
465 return false;
466 }
467 #endif
468
469 return true;
470 }
471
472 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
473 {
474 TranslationBlock *tb;
475
476 tb = s->base.tb;
477 if (use_goto_tb(s, n, dest)) {
478 tcg_gen_goto_tb(n);
479 gen_a64_set_pc_im(dest);
480 tcg_gen_exit_tb(tb, n);
481 s->base.is_jmp = DISAS_NORETURN;
482 } else {
483 gen_a64_set_pc_im(dest);
484 if (s->ss_active) {
485 gen_step_complete_exception(s);
486 } else if (s->base.singlestep_enabled) {
487 gen_exception_internal(EXCP_DEBUG);
488 } else {
489 tcg_gen_lookup_and_goto_ptr();
490 s->base.is_jmp = DISAS_NORETURN;
491 }
492 }
493 }
494
495 void unallocated_encoding(DisasContext *s)
496 {
497 /* Unallocated and reserved encodings are uncategorized */
498 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
499 default_exception_el(s));
500 }
501
502 static void init_tmp_a64_array(DisasContext *s)
503 {
504 #ifdef CONFIG_DEBUG_TCG
505 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
506 #endif
507 s->tmp_a64_count = 0;
508 }
509
510 static void free_tmp_a64(DisasContext *s)
511 {
512 int i;
513 for (i = 0; i < s->tmp_a64_count; i++) {
514 tcg_temp_free_i64(s->tmp_a64[i]);
515 }
516 init_tmp_a64_array(s);
517 }
518
519 TCGv_i64 new_tmp_a64(DisasContext *s)
520 {
521 assert(s->tmp_a64_count < TMP_A64_MAX);
522 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
523 }
524
525 TCGv_i64 new_tmp_a64_zero(DisasContext *s)
526 {
527 TCGv_i64 t = new_tmp_a64(s);
528 tcg_gen_movi_i64(t, 0);
529 return t;
530 }
531
532 /*
533 * Register access functions
534 *
535 * These functions are used for directly accessing a register in where
536 * changes to the final register value are likely to be made. If you
537 * need to use a register for temporary calculation (e.g. index type
538 * operations) use the read_* form.
539 *
540 * B1.2.1 Register mappings
541 *
542 * In instruction register encoding 31 can refer to ZR (zero register) or
543 * the SP (stack pointer) depending on context. In QEMU's case we map SP
544 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
545 * This is the point of the _sp forms.
546 */
547 TCGv_i64 cpu_reg(DisasContext *s, int reg)
548 {
549 if (reg == 31) {
550 return new_tmp_a64_zero(s);
551 } else {
552 return cpu_X[reg];
553 }
554 }
555
556 /* register access for when 31 == SP */
557 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
558 {
559 return cpu_X[reg];
560 }
561
562 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
563 * representing the register contents. This TCGv is an auto-freed
564 * temporary so it need not be explicitly freed, and may be modified.
565 */
566 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
567 {
568 TCGv_i64 v = new_tmp_a64(s);
569 if (reg != 31) {
570 if (sf) {
571 tcg_gen_mov_i64(v, cpu_X[reg]);
572 } else {
573 tcg_gen_ext32u_i64(v, cpu_X[reg]);
574 }
575 } else {
576 tcg_gen_movi_i64(v, 0);
577 }
578 return v;
579 }
580
581 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
582 {
583 TCGv_i64 v = new_tmp_a64(s);
584 if (sf) {
585 tcg_gen_mov_i64(v, cpu_X[reg]);
586 } else {
587 tcg_gen_ext32u_i64(v, cpu_X[reg]);
588 }
589 return v;
590 }
591
592 /* Return the offset into CPUARMState of a slice (from
593 * the least significant end) of FP register Qn (ie
594 * Dn, Sn, Hn or Bn).
595 * (Note that this is not the same mapping as for A32; see cpu.h)
596 */
597 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
598 {
599 return vec_reg_offset(s, regno, 0, size);
600 }
601
602 /* Offset of the high half of the 128 bit vector Qn */
603 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
604 {
605 return vec_reg_offset(s, regno, 1, MO_64);
606 }
607
608 /* Convenience accessors for reading and writing single and double
609 * FP registers. Writing clears the upper parts of the associated
610 * 128 bit vector register, as required by the architecture.
611 * Note that unlike the GP register accessors, the values returned
612 * by the read functions must be manually freed.
613 */
614 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
615 {
616 TCGv_i64 v = tcg_temp_new_i64();
617
618 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
619 return v;
620 }
621
622 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
623 {
624 TCGv_i32 v = tcg_temp_new_i32();
625
626 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
627 return v;
628 }
629
630 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
631 {
632 TCGv_i32 v = tcg_temp_new_i32();
633
634 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
635 return v;
636 }
637
638 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
639 * If SVE is not enabled, then there are only 128 bits in the vector.
640 */
641 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
642 {
643 unsigned ofs = fp_reg_offset(s, rd, MO_64);
644 unsigned vsz = vec_full_reg_size(s);
645
646 if (!is_q) {
647 TCGv_i64 tcg_zero = tcg_const_i64(0);
648 tcg_gen_st_i64(tcg_zero, cpu_env, ofs + 8);
649 tcg_temp_free_i64(tcg_zero);
650 }
651 if (vsz > 16) {
652 tcg_gen_gvec_dup8i(ofs + 16, vsz - 16, vsz - 16, 0);
653 }
654 }
655
656 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
657 {
658 unsigned ofs = fp_reg_offset(s, reg, MO_64);
659
660 tcg_gen_st_i64(v, cpu_env, ofs);
661 clear_vec_high(s, false, reg);
662 }
663
664 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
665 {
666 TCGv_i64 tmp = tcg_temp_new_i64();
667
668 tcg_gen_extu_i32_i64(tmp, v);
669 write_fp_dreg(s, reg, tmp);
670 tcg_temp_free_i64(tmp);
671 }
672
673 TCGv_ptr get_fpstatus_ptr(bool is_f16)
674 {
675 TCGv_ptr statusptr = tcg_temp_new_ptr();
676 int offset;
677
678 /* In A64 all instructions (both FP and Neon) use the FPCR; there
679 * is no equivalent of the A32 Neon "standard FPSCR value".
680 * However half-precision operations operate under a different
681 * FZ16 flag and use vfp.fp_status_f16 instead of vfp.fp_status.
682 */
683 if (is_f16) {
684 offset = offsetof(CPUARMState, vfp.fp_status_f16);
685 } else {
686 offset = offsetof(CPUARMState, vfp.fp_status);
687 }
688 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
689 return statusptr;
690 }
691
692 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
693 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
694 GVecGen2Fn *gvec_fn, int vece)
695 {
696 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
697 is_q ? 16 : 8, vec_full_reg_size(s));
698 }
699
700 /* Expand a 2-operand + immediate AdvSIMD vector operation using
701 * an expander function.
702 */
703 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
704 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
705 {
706 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
707 imm, is_q ? 16 : 8, vec_full_reg_size(s));
708 }
709
710 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
711 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
712 GVecGen3Fn *gvec_fn, int vece)
713 {
714 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
715 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
716 }
717
718 /* Expand a 2-operand + immediate AdvSIMD vector operation using
719 * an op descriptor.
720 */
721 static void gen_gvec_op2i(DisasContext *s, bool is_q, int rd,
722 int rn, int64_t imm, const GVecGen2i *gvec_op)
723 {
724 tcg_gen_gvec_2i(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
725 is_q ? 16 : 8, vec_full_reg_size(s), imm, gvec_op);
726 }
727
728 /* Expand a 3-operand AdvSIMD vector operation using an op descriptor. */
729 static void gen_gvec_op3(DisasContext *s, bool is_q, int rd,
730 int rn, int rm, const GVecGen3 *gvec_op)
731 {
732 tcg_gen_gvec_3(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
733 vec_full_reg_offset(s, rm), is_q ? 16 : 8,
734 vec_full_reg_size(s), gvec_op);
735 }
736
737 /* Expand a 3-operand operation using an out-of-line helper. */
738 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
739 int rn, int rm, int data, gen_helper_gvec_3 *fn)
740 {
741 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
742 vec_full_reg_offset(s, rn),
743 vec_full_reg_offset(s, rm),
744 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
745 }
746
747 /* Expand a 3-operand + env pointer operation using
748 * an out-of-line helper.
749 */
750 static void gen_gvec_op3_env(DisasContext *s, bool is_q, int rd,
751 int rn, int rm, gen_helper_gvec_3_ptr *fn)
752 {
753 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
754 vec_full_reg_offset(s, rn),
755 vec_full_reg_offset(s, rm), cpu_env,
756 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
757 }
758
759 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
760 * an out-of-line helper.
761 */
762 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
763 int rm, bool is_fp16, int data,
764 gen_helper_gvec_3_ptr *fn)
765 {
766 TCGv_ptr fpst = get_fpstatus_ptr(is_fp16);
767 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
768 vec_full_reg_offset(s, rn),
769 vec_full_reg_offset(s, rm), fpst,
770 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
771 tcg_temp_free_ptr(fpst);
772 }
773
774 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
775 * than the 32 bit equivalent.
776 */
777 static inline void gen_set_NZ64(TCGv_i64 result)
778 {
779 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
780 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
781 }
782
783 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
784 static inline void gen_logic_CC(int sf, TCGv_i64 result)
785 {
786 if (sf) {
787 gen_set_NZ64(result);
788 } else {
789 tcg_gen_extrl_i64_i32(cpu_ZF, result);
790 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
791 }
792 tcg_gen_movi_i32(cpu_CF, 0);
793 tcg_gen_movi_i32(cpu_VF, 0);
794 }
795
796 /* dest = T0 + T1; compute C, N, V and Z flags */
797 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
798 {
799 if (sf) {
800 TCGv_i64 result, flag, tmp;
801 result = tcg_temp_new_i64();
802 flag = tcg_temp_new_i64();
803 tmp = tcg_temp_new_i64();
804
805 tcg_gen_movi_i64(tmp, 0);
806 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
807
808 tcg_gen_extrl_i64_i32(cpu_CF, flag);
809
810 gen_set_NZ64(result);
811
812 tcg_gen_xor_i64(flag, result, t0);
813 tcg_gen_xor_i64(tmp, t0, t1);
814 tcg_gen_andc_i64(flag, flag, tmp);
815 tcg_temp_free_i64(tmp);
816 tcg_gen_extrh_i64_i32(cpu_VF, flag);
817
818 tcg_gen_mov_i64(dest, result);
819 tcg_temp_free_i64(result);
820 tcg_temp_free_i64(flag);
821 } else {
822 /* 32 bit arithmetic */
823 TCGv_i32 t0_32 = tcg_temp_new_i32();
824 TCGv_i32 t1_32 = tcg_temp_new_i32();
825 TCGv_i32 tmp = tcg_temp_new_i32();
826
827 tcg_gen_movi_i32(tmp, 0);
828 tcg_gen_extrl_i64_i32(t0_32, t0);
829 tcg_gen_extrl_i64_i32(t1_32, t1);
830 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
831 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
832 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
833 tcg_gen_xor_i32(tmp, t0_32, t1_32);
834 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
835 tcg_gen_extu_i32_i64(dest, cpu_NF);
836
837 tcg_temp_free_i32(tmp);
838 tcg_temp_free_i32(t0_32);
839 tcg_temp_free_i32(t1_32);
840 }
841 }
842
843 /* dest = T0 - T1; compute C, N, V and Z flags */
844 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
845 {
846 if (sf) {
847 /* 64 bit arithmetic */
848 TCGv_i64 result, flag, tmp;
849
850 result = tcg_temp_new_i64();
851 flag = tcg_temp_new_i64();
852 tcg_gen_sub_i64(result, t0, t1);
853
854 gen_set_NZ64(result);
855
856 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
857 tcg_gen_extrl_i64_i32(cpu_CF, flag);
858
859 tcg_gen_xor_i64(flag, result, t0);
860 tmp = tcg_temp_new_i64();
861 tcg_gen_xor_i64(tmp, t0, t1);
862 tcg_gen_and_i64(flag, flag, tmp);
863 tcg_temp_free_i64(tmp);
864 tcg_gen_extrh_i64_i32(cpu_VF, flag);
865 tcg_gen_mov_i64(dest, result);
866 tcg_temp_free_i64(flag);
867 tcg_temp_free_i64(result);
868 } else {
869 /* 32 bit arithmetic */
870 TCGv_i32 t0_32 = tcg_temp_new_i32();
871 TCGv_i32 t1_32 = tcg_temp_new_i32();
872 TCGv_i32 tmp;
873
874 tcg_gen_extrl_i64_i32(t0_32, t0);
875 tcg_gen_extrl_i64_i32(t1_32, t1);
876 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
877 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
878 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
879 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
880 tmp = tcg_temp_new_i32();
881 tcg_gen_xor_i32(tmp, t0_32, t1_32);
882 tcg_temp_free_i32(t0_32);
883 tcg_temp_free_i32(t1_32);
884 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
885 tcg_temp_free_i32(tmp);
886 tcg_gen_extu_i32_i64(dest, cpu_NF);
887 }
888 }
889
890 /* dest = T0 + T1 + CF; do not compute flags. */
891 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
892 {
893 TCGv_i64 flag = tcg_temp_new_i64();
894 tcg_gen_extu_i32_i64(flag, cpu_CF);
895 tcg_gen_add_i64(dest, t0, t1);
896 tcg_gen_add_i64(dest, dest, flag);
897 tcg_temp_free_i64(flag);
898
899 if (!sf) {
900 tcg_gen_ext32u_i64(dest, dest);
901 }
902 }
903
904 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
905 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
906 {
907 if (sf) {
908 TCGv_i64 result, cf_64, vf_64, tmp;
909 result = tcg_temp_new_i64();
910 cf_64 = tcg_temp_new_i64();
911 vf_64 = tcg_temp_new_i64();
912 tmp = tcg_const_i64(0);
913
914 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
915 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
916 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
917 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
918 gen_set_NZ64(result);
919
920 tcg_gen_xor_i64(vf_64, result, t0);
921 tcg_gen_xor_i64(tmp, t0, t1);
922 tcg_gen_andc_i64(vf_64, vf_64, tmp);
923 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
924
925 tcg_gen_mov_i64(dest, result);
926
927 tcg_temp_free_i64(tmp);
928 tcg_temp_free_i64(vf_64);
929 tcg_temp_free_i64(cf_64);
930 tcg_temp_free_i64(result);
931 } else {
932 TCGv_i32 t0_32, t1_32, tmp;
933 t0_32 = tcg_temp_new_i32();
934 t1_32 = tcg_temp_new_i32();
935 tmp = tcg_const_i32(0);
936
937 tcg_gen_extrl_i64_i32(t0_32, t0);
938 tcg_gen_extrl_i64_i32(t1_32, t1);
939 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
940 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
941
942 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
943 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
944 tcg_gen_xor_i32(tmp, t0_32, t1_32);
945 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
946 tcg_gen_extu_i32_i64(dest, cpu_NF);
947
948 tcg_temp_free_i32(tmp);
949 tcg_temp_free_i32(t1_32);
950 tcg_temp_free_i32(t0_32);
951 }
952 }
953
954 /*
955 * Load/Store generators
956 */
957
958 /*
959 * Store from GPR register to memory.
960 */
961 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
962 TCGv_i64 tcg_addr, int size, int memidx,
963 bool iss_valid,
964 unsigned int iss_srt,
965 bool iss_sf, bool iss_ar)
966 {
967 g_assert(size <= 3);
968 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
969
970 if (iss_valid) {
971 uint32_t syn;
972
973 syn = syn_data_abort_with_iss(0,
974 size,
975 false,
976 iss_srt,
977 iss_sf,
978 iss_ar,
979 0, 0, 0, 0, 0, false);
980 disas_set_insn_syndrome(s, syn);
981 }
982 }
983
984 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
985 TCGv_i64 tcg_addr, int size,
986 bool iss_valid,
987 unsigned int iss_srt,
988 bool iss_sf, bool iss_ar)
989 {
990 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
991 iss_valid, iss_srt, iss_sf, iss_ar);
992 }
993
994 /*
995 * Load from memory to GPR register
996 */
997 static void do_gpr_ld_memidx(DisasContext *s,
998 TCGv_i64 dest, TCGv_i64 tcg_addr,
999 int size, bool is_signed,
1000 bool extend, int memidx,
1001 bool iss_valid, unsigned int iss_srt,
1002 bool iss_sf, bool iss_ar)
1003 {
1004 TCGMemOp memop = s->be_data + size;
1005
1006 g_assert(size <= 3);
1007
1008 if (is_signed) {
1009 memop += MO_SIGN;
1010 }
1011
1012 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
1013
1014 if (extend && is_signed) {
1015 g_assert(size < 3);
1016 tcg_gen_ext32u_i64(dest, dest);
1017 }
1018
1019 if (iss_valid) {
1020 uint32_t syn;
1021
1022 syn = syn_data_abort_with_iss(0,
1023 size,
1024 is_signed,
1025 iss_srt,
1026 iss_sf,
1027 iss_ar,
1028 0, 0, 0, 0, 0, false);
1029 disas_set_insn_syndrome(s, syn);
1030 }
1031 }
1032
1033 static void do_gpr_ld(DisasContext *s,
1034 TCGv_i64 dest, TCGv_i64 tcg_addr,
1035 int size, bool is_signed, bool extend,
1036 bool iss_valid, unsigned int iss_srt,
1037 bool iss_sf, bool iss_ar)
1038 {
1039 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
1040 get_mem_index(s),
1041 iss_valid, iss_srt, iss_sf, iss_ar);
1042 }
1043
1044 /*
1045 * Store from FP register to memory
1046 */
1047 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
1048 {
1049 /* This writes the bottom N bits of a 128 bit wide vector to memory */
1050 TCGv_i64 tmp = tcg_temp_new_i64();
1051 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
1052 if (size < 4) {
1053 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
1054 s->be_data + size);
1055 } else {
1056 bool be = s->be_data == MO_BE;
1057 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
1058
1059 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1060 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1061 s->be_data | MO_Q);
1062 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
1063 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1064 s->be_data | MO_Q);
1065 tcg_temp_free_i64(tcg_hiaddr);
1066 }
1067
1068 tcg_temp_free_i64(tmp);
1069 }
1070
1071 /*
1072 * Load from memory to FP register
1073 */
1074 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
1075 {
1076 /* This always zero-extends and writes to a full 128 bit wide vector */
1077 TCGv_i64 tmplo = tcg_temp_new_i64();
1078 TCGv_i64 tmphi;
1079
1080 if (size < 4) {
1081 TCGMemOp memop = s->be_data + size;
1082 tmphi = tcg_const_i64(0);
1083 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
1084 } else {
1085 bool be = s->be_data == MO_BE;
1086 TCGv_i64 tcg_hiaddr;
1087
1088 tmphi = tcg_temp_new_i64();
1089 tcg_hiaddr = tcg_temp_new_i64();
1090
1091 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1092 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1093 s->be_data | MO_Q);
1094 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1095 s->be_data | MO_Q);
1096 tcg_temp_free_i64(tcg_hiaddr);
1097 }
1098
1099 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
1100 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
1101
1102 tcg_temp_free_i64(tmplo);
1103 tcg_temp_free_i64(tmphi);
1104
1105 clear_vec_high(s, true, destidx);
1106 }
1107
1108 /*
1109 * Vector load/store helpers.
1110 *
1111 * The principal difference between this and a FP load is that we don't
1112 * zero extend as we are filling a partial chunk of the vector register.
1113 * These functions don't support 128 bit loads/stores, which would be
1114 * normal load/store operations.
1115 *
1116 * The _i32 versions are useful when operating on 32 bit quantities
1117 * (eg for floating point single or using Neon helper functions).
1118 */
1119
1120 /* Get value of an element within a vector register */
1121 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1122 int element, TCGMemOp memop)
1123 {
1124 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1125 switch (memop) {
1126 case MO_8:
1127 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1128 break;
1129 case MO_16:
1130 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1131 break;
1132 case MO_32:
1133 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1134 break;
1135 case MO_8|MO_SIGN:
1136 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1137 break;
1138 case MO_16|MO_SIGN:
1139 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1140 break;
1141 case MO_32|MO_SIGN:
1142 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1143 break;
1144 case MO_64:
1145 case MO_64|MO_SIGN:
1146 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1147 break;
1148 default:
1149 g_assert_not_reached();
1150 }
1151 }
1152
1153 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1154 int element, TCGMemOp memop)
1155 {
1156 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1157 switch (memop) {
1158 case MO_8:
1159 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1160 break;
1161 case MO_16:
1162 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1163 break;
1164 case MO_8|MO_SIGN:
1165 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1166 break;
1167 case MO_16|MO_SIGN:
1168 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1169 break;
1170 case MO_32:
1171 case MO_32|MO_SIGN:
1172 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1173 break;
1174 default:
1175 g_assert_not_reached();
1176 }
1177 }
1178
1179 /* Set value of an element within a vector register */
1180 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1181 int element, TCGMemOp memop)
1182 {
1183 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1184 switch (memop) {
1185 case MO_8:
1186 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1187 break;
1188 case MO_16:
1189 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1190 break;
1191 case MO_32:
1192 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1193 break;
1194 case MO_64:
1195 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1196 break;
1197 default:
1198 g_assert_not_reached();
1199 }
1200 }
1201
1202 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1203 int destidx, int element, TCGMemOp memop)
1204 {
1205 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1206 switch (memop) {
1207 case MO_8:
1208 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1209 break;
1210 case MO_16:
1211 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1212 break;
1213 case MO_32:
1214 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1215 break;
1216 default:
1217 g_assert_not_reached();
1218 }
1219 }
1220
1221 /* Store from vector register to memory */
1222 static void do_vec_st(DisasContext *s, int srcidx, int element,
1223 TCGv_i64 tcg_addr, int size, TCGMemOp endian)
1224 {
1225 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1226
1227 read_vec_element(s, tcg_tmp, srcidx, element, size);
1228 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1229
1230 tcg_temp_free_i64(tcg_tmp);
1231 }
1232
1233 /* Load from memory to vector register */
1234 static void do_vec_ld(DisasContext *s, int destidx, int element,
1235 TCGv_i64 tcg_addr, int size, TCGMemOp endian)
1236 {
1237 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1238
1239 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1240 write_vec_element(s, tcg_tmp, destidx, element, size);
1241
1242 tcg_temp_free_i64(tcg_tmp);
1243 }
1244
1245 /* Check that FP/Neon access is enabled. If it is, return
1246 * true. If not, emit code to generate an appropriate exception,
1247 * and return false; the caller should not emit any code for
1248 * the instruction. Note that this check must happen after all
1249 * unallocated-encoding checks (otherwise the syndrome information
1250 * for the resulting exception will be incorrect).
1251 */
1252 static inline bool fp_access_check(DisasContext *s)
1253 {
1254 assert(!s->fp_access_checked);
1255 s->fp_access_checked = true;
1256
1257 if (!s->fp_excp_el) {
1258 return true;
1259 }
1260
1261 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
1262 s->fp_excp_el);
1263 return false;
1264 }
1265
1266 /* Check that SVE access is enabled. If it is, return true.
1267 * If not, emit code to generate an appropriate exception and return false.
1268 */
1269 bool sve_access_check(DisasContext *s)
1270 {
1271 if (s->sve_excp_el) {
1272 gen_exception_insn(s, 4, EXCP_UDEF, syn_sve_access_trap(),
1273 s->sve_excp_el);
1274 return false;
1275 }
1276 return fp_access_check(s);
1277 }
1278
1279 /*
1280 * This utility function is for doing register extension with an
1281 * optional shift. You will likely want to pass a temporary for the
1282 * destination register. See DecodeRegExtend() in the ARM ARM.
1283 */
1284 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1285 int option, unsigned int shift)
1286 {
1287 int extsize = extract32(option, 0, 2);
1288 bool is_signed = extract32(option, 2, 1);
1289
1290 if (is_signed) {
1291 switch (extsize) {
1292 case 0:
1293 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1294 break;
1295 case 1:
1296 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1297 break;
1298 case 2:
1299 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1300 break;
1301 case 3:
1302 tcg_gen_mov_i64(tcg_out, tcg_in);
1303 break;
1304 }
1305 } else {
1306 switch (extsize) {
1307 case 0:
1308 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1309 break;
1310 case 1:
1311 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1312 break;
1313 case 2:
1314 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1315 break;
1316 case 3:
1317 tcg_gen_mov_i64(tcg_out, tcg_in);
1318 break;
1319 }
1320 }
1321
1322 if (shift) {
1323 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1324 }
1325 }
1326
1327 static inline void gen_check_sp_alignment(DisasContext *s)
1328 {
1329 /* The AArch64 architecture mandates that (if enabled via PSTATE
1330 * or SCTLR bits) there is a check that SP is 16-aligned on every
1331 * SP-relative load or store (with an exception generated if it is not).
1332 * In line with general QEMU practice regarding misaligned accesses,
1333 * we omit these checks for the sake of guest program performance.
1334 * This function is provided as a hook so we can more easily add these
1335 * checks in future (possibly as a "favour catching guest program bugs
1336 * over speed" user selectable option).
1337 */
1338 }
1339
1340 /*
1341 * This provides a simple table based table lookup decoder. It is
1342 * intended to be used when the relevant bits for decode are too
1343 * awkwardly placed and switch/if based logic would be confusing and
1344 * deeply nested. Since it's a linear search through the table, tables
1345 * should be kept small.
1346 *
1347 * It returns the first handler where insn & mask == pattern, or
1348 * NULL if there is no match.
1349 * The table is terminated by an empty mask (i.e. 0)
1350 */
1351 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1352 uint32_t insn)
1353 {
1354 const AArch64DecodeTable *tptr = table;
1355
1356 while (tptr->mask) {
1357 if ((insn & tptr->mask) == tptr->pattern) {
1358 return tptr->disas_fn;
1359 }
1360 tptr++;
1361 }
1362 return NULL;
1363 }
1364
1365 /*
1366 * The instruction disassembly implemented here matches
1367 * the instruction encoding classifications in chapter C4
1368 * of the ARM Architecture Reference Manual (DDI0487B_a);
1369 * classification names and decode diagrams here should generally
1370 * match up with those in the manual.
1371 */
1372
1373 /* Unconditional branch (immediate)
1374 * 31 30 26 25 0
1375 * +----+-----------+-------------------------------------+
1376 * | op | 0 0 1 0 1 | imm26 |
1377 * +----+-----------+-------------------------------------+
1378 */
1379 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1380 {
1381 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1382
1383 if (insn & (1U << 31)) {
1384 /* BL Branch with link */
1385 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1386 }
1387
1388 /* B Branch / BL Branch with link */
1389 reset_btype(s);
1390 gen_goto_tb(s, 0, addr);
1391 }
1392
1393 /* Compare and branch (immediate)
1394 * 31 30 25 24 23 5 4 0
1395 * +----+-------------+----+---------------------+--------+
1396 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1397 * +----+-------------+----+---------------------+--------+
1398 */
1399 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1400 {
1401 unsigned int sf, op, rt;
1402 uint64_t addr;
1403 TCGLabel *label_match;
1404 TCGv_i64 tcg_cmp;
1405
1406 sf = extract32(insn, 31, 1);
1407 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1408 rt = extract32(insn, 0, 5);
1409 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1410
1411 tcg_cmp = read_cpu_reg(s, rt, sf);
1412 label_match = gen_new_label();
1413
1414 reset_btype(s);
1415 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1416 tcg_cmp, 0, label_match);
1417
1418 gen_goto_tb(s, 0, s->pc);
1419 gen_set_label(label_match);
1420 gen_goto_tb(s, 1, addr);
1421 }
1422
1423 /* Test and branch (immediate)
1424 * 31 30 25 24 23 19 18 5 4 0
1425 * +----+-------------+----+-------+-------------+------+
1426 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1427 * +----+-------------+----+-------+-------------+------+
1428 */
1429 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1430 {
1431 unsigned int bit_pos, op, rt;
1432 uint64_t addr;
1433 TCGLabel *label_match;
1434 TCGv_i64 tcg_cmp;
1435
1436 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1437 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1438 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1439 rt = extract32(insn, 0, 5);
1440
1441 tcg_cmp = tcg_temp_new_i64();
1442 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1443 label_match = gen_new_label();
1444
1445 reset_btype(s);
1446 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1447 tcg_cmp, 0, label_match);
1448 tcg_temp_free_i64(tcg_cmp);
1449 gen_goto_tb(s, 0, s->pc);
1450 gen_set_label(label_match);
1451 gen_goto_tb(s, 1, addr);
1452 }
1453
1454 /* Conditional branch (immediate)
1455 * 31 25 24 23 5 4 3 0
1456 * +---------------+----+---------------------+----+------+
1457 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1458 * +---------------+----+---------------------+----+------+
1459 */
1460 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1461 {
1462 unsigned int cond;
1463 uint64_t addr;
1464
1465 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1466 unallocated_encoding(s);
1467 return;
1468 }
1469 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1470 cond = extract32(insn, 0, 4);
1471
1472 reset_btype(s);
1473 if (cond < 0x0e) {
1474 /* genuinely conditional branches */
1475 TCGLabel *label_match = gen_new_label();
1476 arm_gen_test_cc(cond, label_match);
1477 gen_goto_tb(s, 0, s->pc);
1478 gen_set_label(label_match);
1479 gen_goto_tb(s, 1, addr);
1480 } else {
1481 /* 0xe and 0xf are both "always" conditions */
1482 gen_goto_tb(s, 0, addr);
1483 }
1484 }
1485
1486 /* HINT instruction group, including various allocated HINTs */
1487 static void handle_hint(DisasContext *s, uint32_t insn,
1488 unsigned int op1, unsigned int op2, unsigned int crm)
1489 {
1490 unsigned int selector = crm << 3 | op2;
1491
1492 if (op1 != 3) {
1493 unallocated_encoding(s);
1494 return;
1495 }
1496
1497 switch (selector) {
1498 case 0b00000: /* NOP */
1499 break;
1500 case 0b00011: /* WFI */
1501 s->base.is_jmp = DISAS_WFI;
1502 break;
1503 case 0b00001: /* YIELD */
1504 /* When running in MTTCG we don't generate jumps to the yield and
1505 * WFE helpers as it won't affect the scheduling of other vCPUs.
1506 * If we wanted to more completely model WFE/SEV so we don't busy
1507 * spin unnecessarily we would need to do something more involved.
1508 */
1509 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1510 s->base.is_jmp = DISAS_YIELD;
1511 }
1512 break;
1513 case 0b00010: /* WFE */
1514 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1515 s->base.is_jmp = DISAS_WFE;
1516 }
1517 break;
1518 case 0b00100: /* SEV */
1519 case 0b00101: /* SEVL */
1520 /* we treat all as NOP at least for now */
1521 break;
1522 case 0b00111: /* XPACLRI */
1523 if (s->pauth_active) {
1524 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1525 }
1526 break;
1527 case 0b01000: /* PACIA1716 */
1528 if (s->pauth_active) {
1529 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1530 }
1531 break;
1532 case 0b01010: /* PACIB1716 */
1533 if (s->pauth_active) {
1534 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1535 }
1536 break;
1537 case 0b01100: /* AUTIA1716 */
1538 if (s->pauth_active) {
1539 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1540 }
1541 break;
1542 case 0b01110: /* AUTIB1716 */
1543 if (s->pauth_active) {
1544 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1545 }
1546 break;
1547 case 0b11000: /* PACIAZ */
1548 if (s->pauth_active) {
1549 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1550 new_tmp_a64_zero(s));
1551 }
1552 break;
1553 case 0b11001: /* PACIASP */
1554 if (s->pauth_active) {
1555 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1556 }
1557 break;
1558 case 0b11010: /* PACIBZ */
1559 if (s->pauth_active) {
1560 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1561 new_tmp_a64_zero(s));
1562 }
1563 break;
1564 case 0b11011: /* PACIBSP */
1565 if (s->pauth_active) {
1566 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1567 }
1568 break;
1569 case 0b11100: /* AUTIAZ */
1570 if (s->pauth_active) {
1571 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1572 new_tmp_a64_zero(s));
1573 }
1574 break;
1575 case 0b11101: /* AUTIASP */
1576 if (s->pauth_active) {
1577 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1578 }
1579 break;
1580 case 0b11110: /* AUTIBZ */
1581 if (s->pauth_active) {
1582 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1583 new_tmp_a64_zero(s));
1584 }
1585 break;
1586 case 0b11111: /* AUTIBSP */
1587 if (s->pauth_active) {
1588 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1589 }
1590 break;
1591 default:
1592 /* default specified as NOP equivalent */
1593 break;
1594 }
1595 }
1596
1597 static void gen_clrex(DisasContext *s, uint32_t insn)
1598 {
1599 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1600 }
1601
1602 /* CLREX, DSB, DMB, ISB */
1603 static void handle_sync(DisasContext *s, uint32_t insn,
1604 unsigned int op1, unsigned int op2, unsigned int crm)
1605 {
1606 TCGBar bar;
1607
1608 if (op1 != 3) {
1609 unallocated_encoding(s);
1610 return;
1611 }
1612
1613 switch (op2) {
1614 case 2: /* CLREX */
1615 gen_clrex(s, insn);
1616 return;
1617 case 4: /* DSB */
1618 case 5: /* DMB */
1619 switch (crm & 3) {
1620 case 1: /* MBReqTypes_Reads */
1621 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1622 break;
1623 case 2: /* MBReqTypes_Writes */
1624 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1625 break;
1626 default: /* MBReqTypes_All */
1627 bar = TCG_BAR_SC | TCG_MO_ALL;
1628 break;
1629 }
1630 tcg_gen_mb(bar);
1631 return;
1632 case 6: /* ISB */
1633 /* We need to break the TB after this insn to execute
1634 * a self-modified code correctly and also to take
1635 * any pending interrupts immediately.
1636 */
1637 reset_btype(s);
1638 gen_goto_tb(s, 0, s->pc);
1639 return;
1640 default:
1641 unallocated_encoding(s);
1642 return;
1643 }
1644 }
1645
1646 /* MSR (immediate) - move immediate to processor state field */
1647 static void handle_msr_i(DisasContext *s, uint32_t insn,
1648 unsigned int op1, unsigned int op2, unsigned int crm)
1649 {
1650 int op = op1 << 3 | op2;
1651 switch (op) {
1652 case 0x05: /* SPSel */
1653 if (s->current_el == 0) {
1654 unallocated_encoding(s);
1655 return;
1656 }
1657 /* fall through */
1658 case 0x1e: /* DAIFSet */
1659 case 0x1f: /* DAIFClear */
1660 {
1661 TCGv_i32 tcg_imm = tcg_const_i32(crm);
1662 TCGv_i32 tcg_op = tcg_const_i32(op);
1663 gen_a64_set_pc_im(s->pc - 4);
1664 gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
1665 tcg_temp_free_i32(tcg_imm);
1666 tcg_temp_free_i32(tcg_op);
1667 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1668 gen_a64_set_pc_im(s->pc);
1669 s->base.is_jmp = (op == 0x1f ? DISAS_EXIT : DISAS_JUMP);
1670 break;
1671 }
1672 default:
1673 unallocated_encoding(s);
1674 return;
1675 }
1676 }
1677
1678 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1679 {
1680 TCGv_i32 tmp = tcg_temp_new_i32();
1681 TCGv_i32 nzcv = tcg_temp_new_i32();
1682
1683 /* build bit 31, N */
1684 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1685 /* build bit 30, Z */
1686 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1687 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1688 /* build bit 29, C */
1689 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1690 /* build bit 28, V */
1691 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1692 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1693 /* generate result */
1694 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1695
1696 tcg_temp_free_i32(nzcv);
1697 tcg_temp_free_i32(tmp);
1698 }
1699
1700 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1701
1702 {
1703 TCGv_i32 nzcv = tcg_temp_new_i32();
1704
1705 /* take NZCV from R[t] */
1706 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1707
1708 /* bit 31, N */
1709 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1710 /* bit 30, Z */
1711 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1712 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1713 /* bit 29, C */
1714 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1715 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1716 /* bit 28, V */
1717 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1718 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1719 tcg_temp_free_i32(nzcv);
1720 }
1721
1722 /* MRS - move from system register
1723 * MSR (register) - move to system register
1724 * SYS
1725 * SYSL
1726 * These are all essentially the same insn in 'read' and 'write'
1727 * versions, with varying op0 fields.
1728 */
1729 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1730 unsigned int op0, unsigned int op1, unsigned int op2,
1731 unsigned int crn, unsigned int crm, unsigned int rt)
1732 {
1733 const ARMCPRegInfo *ri;
1734 TCGv_i64 tcg_rt;
1735
1736 ri = get_arm_cp_reginfo(s->cp_regs,
1737 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1738 crn, crm, op0, op1, op2));
1739
1740 if (!ri) {
1741 /* Unknown register; this might be a guest error or a QEMU
1742 * unimplemented feature.
1743 */
1744 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1745 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1746 isread ? "read" : "write", op0, op1, crn, crm, op2);
1747 unallocated_encoding(s);
1748 return;
1749 }
1750
1751 /* Check access permissions */
1752 if (!cp_access_ok(s->current_el, ri, isread)) {
1753 unallocated_encoding(s);
1754 return;
1755 }
1756
1757 if (ri->accessfn) {
1758 /* Emit code to perform further access permissions checks at
1759 * runtime; this may result in an exception.
1760 */
1761 TCGv_ptr tmpptr;
1762 TCGv_i32 tcg_syn, tcg_isread;
1763 uint32_t syndrome;
1764
1765 gen_a64_set_pc_im(s->pc - 4);
1766 tmpptr = tcg_const_ptr(ri);
1767 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1768 tcg_syn = tcg_const_i32(syndrome);
1769 tcg_isread = tcg_const_i32(isread);
1770 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1771 tcg_temp_free_ptr(tmpptr);
1772 tcg_temp_free_i32(tcg_syn);
1773 tcg_temp_free_i32(tcg_isread);
1774 }
1775
1776 /* Handle special cases first */
1777 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1778 case ARM_CP_NOP:
1779 return;
1780 case ARM_CP_NZCV:
1781 tcg_rt = cpu_reg(s, rt);
1782 if (isread) {
1783 gen_get_nzcv(tcg_rt);
1784 } else {
1785 gen_set_nzcv(tcg_rt);
1786 }
1787 return;
1788 case ARM_CP_CURRENTEL:
1789 /* Reads as current EL value from pstate, which is
1790 * guaranteed to be constant by the tb flags.
1791 */
1792 tcg_rt = cpu_reg(s, rt);
1793 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1794 return;
1795 case ARM_CP_DC_ZVA:
1796 /* Writes clear the aligned block of memory which rt points into. */
1797 tcg_rt = cpu_reg(s, rt);
1798 gen_helper_dc_zva(cpu_env, tcg_rt);
1799 return;
1800 default:
1801 break;
1802 }
1803 if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) {
1804 return;
1805 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
1806 return;
1807 }
1808
1809 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1810 gen_io_start();
1811 }
1812
1813 tcg_rt = cpu_reg(s, rt);
1814
1815 if (isread) {
1816 if (ri->type & ARM_CP_CONST) {
1817 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1818 } else if (ri->readfn) {
1819 TCGv_ptr tmpptr;
1820 tmpptr = tcg_const_ptr(ri);
1821 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1822 tcg_temp_free_ptr(tmpptr);
1823 } else {
1824 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1825 }
1826 } else {
1827 if (ri->type & ARM_CP_CONST) {
1828 /* If not forbidden by access permissions, treat as WI */
1829 return;
1830 } else if (ri->writefn) {
1831 TCGv_ptr tmpptr;
1832 tmpptr = tcg_const_ptr(ri);
1833 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1834 tcg_temp_free_ptr(tmpptr);
1835 } else {
1836 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1837 }
1838 }
1839
1840 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1841 /* I/O operations must end the TB here (whether read or write) */
1842 gen_io_end();
1843 s->base.is_jmp = DISAS_UPDATE;
1844 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1845 /* We default to ending the TB on a coprocessor register write,
1846 * but allow this to be suppressed by the register definition
1847 * (usually only necessary to work around guest bugs).
1848 */
1849 s->base.is_jmp = DISAS_UPDATE;
1850 }
1851 }
1852
1853 /* System
1854 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1855 * +---------------------+---+-----+-----+-------+-------+-----+------+
1856 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1857 * +---------------------+---+-----+-----+-------+-------+-----+------+
1858 */
1859 static void disas_system(DisasContext *s, uint32_t insn)
1860 {
1861 unsigned int l, op0, op1, crn, crm, op2, rt;
1862 l = extract32(insn, 21, 1);
1863 op0 = extract32(insn, 19, 2);
1864 op1 = extract32(insn, 16, 3);
1865 crn = extract32(insn, 12, 4);
1866 crm = extract32(insn, 8, 4);
1867 op2 = extract32(insn, 5, 3);
1868 rt = extract32(insn, 0, 5);
1869
1870 if (op0 == 0) {
1871 if (l || rt != 31) {
1872 unallocated_encoding(s);
1873 return;
1874 }
1875 switch (crn) {
1876 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
1877 handle_hint(s, insn, op1, op2, crm);
1878 break;
1879 case 3: /* CLREX, DSB, DMB, ISB */
1880 handle_sync(s, insn, op1, op2, crm);
1881 break;
1882 case 4: /* MSR (immediate) */
1883 handle_msr_i(s, insn, op1, op2, crm);
1884 break;
1885 default:
1886 unallocated_encoding(s);
1887 break;
1888 }
1889 return;
1890 }
1891 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1892 }
1893
1894 /* Exception generation
1895 *
1896 * 31 24 23 21 20 5 4 2 1 0
1897 * +-----------------+-----+------------------------+-----+----+
1898 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1899 * +-----------------------+------------------------+----------+
1900 */
1901 static void disas_exc(DisasContext *s, uint32_t insn)
1902 {
1903 int opc = extract32(insn, 21, 3);
1904 int op2_ll = extract32(insn, 0, 5);
1905 int imm16 = extract32(insn, 5, 16);
1906 TCGv_i32 tmp;
1907
1908 switch (opc) {
1909 case 0:
1910 /* For SVC, HVC and SMC we advance the single-step state
1911 * machine before taking the exception. This is architecturally
1912 * mandated, to ensure that single-stepping a system call
1913 * instruction works properly.
1914 */
1915 switch (op2_ll) {
1916 case 1: /* SVC */
1917 gen_ss_advance(s);
1918 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1919 default_exception_el(s));
1920 break;
1921 case 2: /* HVC */
1922 if (s->current_el == 0) {
1923 unallocated_encoding(s);
1924 break;
1925 }
1926 /* The pre HVC helper handles cases when HVC gets trapped
1927 * as an undefined insn by runtime configuration.
1928 */
1929 gen_a64_set_pc_im(s->pc - 4);
1930 gen_helper_pre_hvc(cpu_env);
1931 gen_ss_advance(s);
1932 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
1933 break;
1934 case 3: /* SMC */
1935 if (s->current_el == 0) {
1936 unallocated_encoding(s);
1937 break;
1938 }
1939 gen_a64_set_pc_im(s->pc - 4);
1940 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1941 gen_helper_pre_smc(cpu_env, tmp);
1942 tcg_temp_free_i32(tmp);
1943 gen_ss_advance(s);
1944 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
1945 break;
1946 default:
1947 unallocated_encoding(s);
1948 break;
1949 }
1950 break;
1951 case 1:
1952 if (op2_ll != 0) {
1953 unallocated_encoding(s);
1954 break;
1955 }
1956 /* BRK */
1957 gen_exception_bkpt_insn(s, 4, syn_aa64_bkpt(imm16));
1958 break;
1959 case 2:
1960 if (op2_ll != 0) {
1961 unallocated_encoding(s);
1962 break;
1963 }
1964 /* HLT. This has two purposes.
1965 * Architecturally, it is an external halting debug instruction.
1966 * Since QEMU doesn't implement external debug, we treat this as
1967 * it is required for halting debug disabled: it will UNDEF.
1968 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1969 */
1970 if (semihosting_enabled() && imm16 == 0xf000) {
1971 #ifndef CONFIG_USER_ONLY
1972 /* In system mode, don't allow userspace access to semihosting,
1973 * to provide some semblance of security (and for consistency
1974 * with our 32-bit semihosting).
1975 */
1976 if (s->current_el == 0) {
1977 unsupported_encoding(s, insn);
1978 break;
1979 }
1980 #endif
1981 gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
1982 } else {
1983 unsupported_encoding(s, insn);
1984 }
1985 break;
1986 case 5:
1987 if (op2_ll < 1 || op2_ll > 3) {
1988 unallocated_encoding(s);
1989 break;
1990 }
1991 /* DCPS1, DCPS2, DCPS3 */
1992 unsupported_encoding(s, insn);
1993 break;
1994 default:
1995 unallocated_encoding(s);
1996 break;
1997 }
1998 }
1999
2000 /* Unconditional branch (register)
2001 * 31 25 24 21 20 16 15 10 9 5 4 0
2002 * +---------------+-------+-------+-------+------+-------+
2003 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
2004 * +---------------+-------+-------+-------+------+-------+
2005 */
2006 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
2007 {
2008 unsigned int opc, op2, op3, rn, op4;
2009 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */
2010 TCGv_i64 dst;
2011 TCGv_i64 modifier;
2012
2013 opc = extract32(insn, 21, 4);
2014 op2 = extract32(insn, 16, 5);
2015 op3 = extract32(insn, 10, 6);
2016 rn = extract32(insn, 5, 5);
2017 op4 = extract32(insn, 0, 5);
2018
2019 if (op2 != 0x1f) {
2020 goto do_unallocated;
2021 }
2022
2023 switch (opc) {
2024 case 0: /* BR */
2025 case 1: /* BLR */
2026 case 2: /* RET */
2027 btype_mod = opc;
2028 switch (op3) {
2029 case 0:
2030 /* BR, BLR, RET */
2031 if (op4 != 0) {
2032 goto do_unallocated;
2033 }
2034 dst = cpu_reg(s, rn);
2035 break;
2036
2037 case 2:
2038 case 3:
2039 if (!dc_isar_feature(aa64_pauth, s)) {
2040 goto do_unallocated;
2041 }
2042 if (opc == 2) {
2043 /* RETAA, RETAB */
2044 if (rn != 0x1f || op4 != 0x1f) {
2045 goto do_unallocated;
2046 }
2047 rn = 30;
2048 modifier = cpu_X[31];
2049 } else {
2050 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */
2051 if (op4 != 0x1f) {
2052 goto do_unallocated;
2053 }
2054 modifier = new_tmp_a64_zero(s);
2055 }
2056 if (s->pauth_active) {
2057 dst = new_tmp_a64(s);
2058 if (op3 == 2) {
2059 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2060 } else {
2061 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2062 }
2063 } else {
2064 dst = cpu_reg(s, rn);
2065 }
2066 break;
2067
2068 default:
2069 goto do_unallocated;
2070 }
2071 gen_a64_set_pc(s, dst);
2072 /* BLR also needs to load return address */
2073 if (opc == 1) {
2074 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
2075 }
2076 break;
2077
2078 case 8: /* BRAA */
2079 case 9: /* BLRAA */
2080 if (!dc_isar_feature(aa64_pauth, s)) {
2081 goto do_unallocated;
2082 }
2083 if ((op3 & ~1) != 2) {
2084 goto do_unallocated;
2085 }
2086 btype_mod = opc & 1;
2087 if (s->pauth_active) {
2088 dst = new_tmp_a64(s);
2089 modifier = cpu_reg_sp(s, op4);
2090 if (op3 == 2) {
2091 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2092 } else {
2093 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2094 }
2095 } else {
2096 dst = cpu_reg(s, rn);
2097 }
2098 gen_a64_set_pc(s, dst);
2099 /* BLRAA also needs to load return address */
2100 if (opc == 9) {
2101 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
2102 }
2103 break;
2104
2105 case 4: /* ERET */
2106 if (s->current_el == 0) {
2107 goto do_unallocated;
2108 }
2109 switch (op3) {
2110 case 0: /* ERET */
2111 if (op4 != 0) {
2112 goto do_unallocated;
2113 }
2114 dst = tcg_temp_new_i64();
2115 tcg_gen_ld_i64(dst, cpu_env,
2116 offsetof(CPUARMState, elr_el[s->current_el]));
2117 break;
2118
2119 case 2: /* ERETAA */
2120 case 3: /* ERETAB */
2121 if (!dc_isar_feature(aa64_pauth, s)) {
2122 goto do_unallocated;
2123 }
2124 if (rn != 0x1f || op4 != 0x1f) {
2125 goto do_unallocated;
2126 }
2127 dst = tcg_temp_new_i64();
2128 tcg_gen_ld_i64(dst, cpu_env,
2129 offsetof(CPUARMState, elr_el[s->current_el]));
2130 if (s->pauth_active) {
2131 modifier = cpu_X[31];
2132 if (op3 == 2) {
2133 gen_helper_autia(dst, cpu_env, dst, modifier);
2134 } else {
2135 gen_helper_autib(dst, cpu_env, dst, modifier);
2136 }
2137 }
2138 break;
2139
2140 default:
2141 goto do_unallocated;
2142 }
2143 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2144 gen_io_start();
2145 }
2146
2147 gen_helper_exception_return(cpu_env, dst);
2148 tcg_temp_free_i64(dst);
2149 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2150 gen_io_end();
2151 }
2152 /* Must exit loop to check un-masked IRQs */
2153 s->base.is_jmp = DISAS_EXIT;
2154 return;
2155
2156 case 5: /* DRPS */
2157 if (op3 != 0 || op4 != 0 || rn != 0x1f) {
2158 goto do_unallocated;
2159 } else {
2160 unsupported_encoding(s, insn);
2161 }
2162 return;
2163
2164 default:
2165 do_unallocated:
2166 unallocated_encoding(s);
2167 return;
2168 }
2169
2170 switch (btype_mod) {
2171 case 0: /* BR */
2172 if (dc_isar_feature(aa64_bti, s)) {
2173 /* BR to {x16,x17} or !guard -> 1, else 3. */
2174 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
2175 }
2176 break;
2177
2178 case 1: /* BLR */
2179 if (dc_isar_feature(aa64_bti, s)) {
2180 /* BLR sets BTYPE to 2, regardless of source guarded page. */
2181 set_btype(s, 2);
2182 }
2183 break;
2184
2185 default: /* RET or none of the above. */
2186 /* BTYPE will be set to 0 by normal end-of-insn processing. */
2187 break;
2188 }
2189
2190 s->base.is_jmp = DISAS_JUMP;
2191 }
2192
2193 /* Branches, exception generating and system instructions */
2194 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2195 {
2196 switch (extract32(insn, 25, 7)) {
2197 case 0x0a: case 0x0b:
2198 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
2199 disas_uncond_b_imm(s, insn);
2200 break;
2201 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
2202 disas_comp_b_imm(s, insn);
2203 break;
2204 case 0x1b: case 0x5b: /* Test & branch (immediate) */
2205 disas_test_b_imm(s, insn);
2206 break;
2207 case 0x2a: /* Conditional branch (immediate) */
2208 disas_cond_b_imm(s, insn);
2209 break;
2210 case 0x6a: /* Exception generation / System */
2211 if (insn & (1 << 24)) {
2212 if (extract32(insn, 22, 2) == 0) {
2213 disas_system(s, insn);
2214 } else {
2215 unallocated_encoding(s);
2216 }
2217 } else {
2218 disas_exc(s, insn);
2219 }
2220 break;
2221 case 0x6b: /* Unconditional branch (register) */
2222 disas_uncond_b_reg(s, insn);
2223 break;
2224 default:
2225 unallocated_encoding(s);
2226 break;
2227 }
2228 }
2229
2230 /*
2231 * Load/Store exclusive instructions are implemented by remembering
2232 * the value/address loaded, and seeing if these are the same
2233 * when the store is performed. This is not actually the architecturally
2234 * mandated semantics, but it works for typical guest code sequences
2235 * and avoids having to monitor regular stores.
2236 *
2237 * The store exclusive uses the atomic cmpxchg primitives to avoid
2238 * races in multi-threaded linux-user and when MTTCG softmmu is
2239 * enabled.
2240 */
2241 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2242 TCGv_i64 addr, int size, bool is_pair)
2243 {
2244 int idx = get_mem_index(s);
2245 TCGMemOp memop = s->be_data;
2246
2247 g_assert(size <= 3);
2248 if (is_pair) {
2249 g_assert(size >= 2);
2250 if (size == 2) {
2251 /* The pair must be single-copy atomic for the doubleword. */
2252 memop |= MO_64 | MO_ALIGN;
2253 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2254 if (s->be_data == MO_LE) {
2255 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2256 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2257 } else {
2258 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2259 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2260 }
2261 } else {
2262 /* The pair must be single-copy atomic for *each* doubleword, not
2263 the entire quadword, however it must be quadword aligned. */
2264 memop |= MO_64;
2265 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2266 memop | MO_ALIGN_16);
2267
2268 TCGv_i64 addr2 = tcg_temp_new_i64();
2269 tcg_gen_addi_i64(addr2, addr, 8);
2270 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2271 tcg_temp_free_i64(addr2);
2272
2273 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2274 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2275 }
2276 } else {
2277 memop |= size | MO_ALIGN;
2278 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2279 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2280 }
2281 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2282 }
2283
2284 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2285 TCGv_i64 addr, int size, int is_pair)
2286 {
2287 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2288 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2289 * [addr] = {Rt};
2290 * if (is_pair) {
2291 * [addr + datasize] = {Rt2};
2292 * }
2293 * {Rd} = 0;
2294 * } else {
2295 * {Rd} = 1;
2296 * }
2297 * env->exclusive_addr = -1;
2298 */
2299 TCGLabel *fail_label = gen_new_label();
2300 TCGLabel *done_label = gen_new_label();
2301 TCGv_i64 tmp;
2302
2303 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2304
2305 tmp = tcg_temp_new_i64();
2306 if (is_pair) {
2307 if (size == 2) {
2308 if (s->be_data == MO_LE) {
2309 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2310 } else {
2311 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2312 }
2313 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2314 cpu_exclusive_val, tmp,
2315 get_mem_index(s),
2316 MO_64 | MO_ALIGN | s->be_data);
2317 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2318 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2319 if (!HAVE_CMPXCHG128) {
2320 gen_helper_exit_atomic(cpu_env);
2321 s->base.is_jmp = DISAS_NORETURN;
2322 } else if (s->be_data == MO_LE) {
2323 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
2324 cpu_exclusive_addr,
2325 cpu_reg(s, rt),
2326 cpu_reg(s, rt2));
2327 } else {
2328 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
2329 cpu_exclusive_addr,
2330 cpu_reg(s, rt),
2331 cpu_reg(s, rt2));
2332 }
2333 } else if (s->be_data == MO_LE) {
2334 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
2335 cpu_reg(s, rt), cpu_reg(s, rt2));
2336 } else {
2337 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
2338 cpu_reg(s, rt), cpu_reg(s, rt2));
2339 }
2340 } else {
2341 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2342 cpu_reg(s, rt), get_mem_index(s),
2343 size | MO_ALIGN | s->be_data);
2344 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2345 }
2346 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2347 tcg_temp_free_i64(tmp);
2348 tcg_gen_br(done_label);
2349
2350 gen_set_label(fail_label);
2351 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2352 gen_set_label(done_label);
2353 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2354 }
2355
2356 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2357 int rn, int size)
2358 {
2359 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2360 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2361 int memidx = get_mem_index(s);
2362 TCGv_i64 clean_addr;
2363
2364 if (rn == 31) {
2365 gen_check_sp_alignment(s);
2366 }
2367 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2368 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx,
2369 size | MO_ALIGN | s->be_data);
2370 }
2371
2372 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2373 int rn, int size)
2374 {
2375 TCGv_i64 s1 = cpu_reg(s, rs);
2376 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2377 TCGv_i64 t1 = cpu_reg(s, rt);
2378 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2379 TCGv_i64 clean_addr;
2380 int memidx = get_mem_index(s);
2381
2382 if (rn == 31) {
2383 gen_check_sp_alignment(s);
2384 }
2385 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2386
2387 if (size == 2) {
2388 TCGv_i64 cmp = tcg_temp_new_i64();
2389 TCGv_i64 val = tcg_temp_new_i64();
2390
2391 if (s->be_data == MO_LE) {
2392 tcg_gen_concat32_i64(val, t1, t2);
2393 tcg_gen_concat32_i64(cmp, s1, s2);
2394 } else {
2395 tcg_gen_concat32_i64(val, t2, t1);
2396 tcg_gen_concat32_i64(cmp, s2, s1);
2397 }
2398
2399 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx,
2400 MO_64 | MO_ALIGN | s->be_data);
2401 tcg_temp_free_i64(val);
2402
2403 if (s->be_data == MO_LE) {
2404 tcg_gen_extr32_i64(s1, s2, cmp);
2405 } else {
2406 tcg_gen_extr32_i64(s2, s1, cmp);
2407 }
2408 tcg_temp_free_i64(cmp);
2409 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2410 if (HAVE_CMPXCHG128) {
2411 TCGv_i32 tcg_rs = tcg_const_i32(rs);
2412 if (s->be_data == MO_LE) {
2413 gen_helper_casp_le_parallel(cpu_env, tcg_rs,
2414 clean_addr, t1, t2);
2415 } else {
2416 gen_helper_casp_be_parallel(cpu_env, tcg_rs,
2417 clean_addr, t1, t2);
2418 }
2419 tcg_temp_free_i32(tcg_rs);
2420 } else {
2421 gen_helper_exit_atomic(cpu_env);
2422 s->base.is_jmp = DISAS_NORETURN;
2423 }
2424 } else {
2425 TCGv_i64 d1 = tcg_temp_new_i64();
2426 TCGv_i64 d2 = tcg_temp_new_i64();
2427 TCGv_i64 a2 = tcg_temp_new_i64();
2428 TCGv_i64 c1 = tcg_temp_new_i64();
2429 TCGv_i64 c2 = tcg_temp_new_i64();
2430 TCGv_i64 zero = tcg_const_i64(0);
2431
2432 /* Load the two words, in memory order. */
2433 tcg_gen_qemu_ld_i64(d1, clean_addr, memidx,
2434 MO_64 | MO_ALIGN_16 | s->be_data);
2435 tcg_gen_addi_i64(a2, clean_addr, 8);
2436 tcg_gen_qemu_ld_i64(d2, clean_addr, memidx, MO_64 | s->be_data);
2437
2438 /* Compare the two words, also in memory order. */
2439 tcg_gen_setcond_i64(TCG_COND_EQ, c1, d1, s1);
2440 tcg_gen_setcond_i64(TCG_COND_EQ, c2, d2, s2);
2441 tcg_gen_and_i64(c2, c2, c1);
2442
2443 /* If compare equal, write back new data, else write back old data. */
2444 tcg_gen_movcond_i64(TCG_COND_NE, c1, c2, zero, t1, d1);
2445 tcg_gen_movcond_i64(TCG_COND_NE, c2, c2, zero, t2, d2);
2446 tcg_gen_qemu_st_i64(c1, clean_addr, memidx, MO_64 | s->be_data);
2447 tcg_gen_qemu_st_i64(c2, a2, memidx, MO_64 | s->be_data);
2448 tcg_temp_free_i64(a2);
2449 tcg_temp_free_i64(c1);
2450 tcg_temp_free_i64(c2);
2451 tcg_temp_free_i64(zero);
2452
2453 /* Write back the data from memory to Rs. */
2454 tcg_gen_mov_i64(s1, d1);
2455 tcg_gen_mov_i64(s2, d2);
2456 tcg_temp_free_i64(d1);
2457 tcg_temp_free_i64(d2);
2458 }
2459 }
2460
2461 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2462 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2463 */
2464 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2465 {
2466 int opc0 = extract32(opc, 0, 1);
2467 int regsize;
2468
2469 if (is_signed) {
2470 regsize = opc0 ? 32 : 64;
2471 } else {
2472 regsize = size == 3 ? 64 : 32;
2473 }
2474 return regsize == 64;
2475 }
2476
2477 /* Load/store exclusive
2478 *
2479 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2480 * +-----+-------------+----+---+----+------+----+-------+------+------+
2481 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2482 * +-----+-------------+----+---+----+------+----+-------+------+------+
2483 *
2484 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2485 * L: 0 -> store, 1 -> load
2486 * o2: 0 -> exclusive, 1 -> not
2487 * o1: 0 -> single register, 1 -> register pair
2488 * o0: 1 -> load-acquire/store-release, 0 -> not
2489 */
2490 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2491 {
2492 int rt = extract32(insn, 0, 5);
2493 int rn = extract32(insn, 5, 5);
2494 int rt2 = extract32(insn, 10, 5);
2495 int rs = extract32(insn, 16, 5);
2496 int is_lasr = extract32(insn, 15, 1);
2497 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2498 int size = extract32(insn, 30, 2);
2499 TCGv_i64 clean_addr;
2500
2501 switch (o2_L_o1_o0) {
2502 case 0x0: /* STXR */
2503 case 0x1: /* STLXR */
2504 if (rn == 31) {
2505 gen_check_sp_alignment(s);
2506 }
2507 if (is_lasr) {
2508 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2509 }
2510 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2511 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false);
2512 return;
2513
2514 case 0x4: /* LDXR */
2515 case 0x5: /* LDAXR */
2516 if (rn == 31) {
2517 gen_check_sp_alignment(s);
2518 }
2519 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2520 s->is_ldex = true;
2521 gen_load_exclusive(s, rt, rt2, clean_addr, size, false);
2522 if (is_lasr) {
2523 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2524 }
2525 return;
2526
2527 case 0x8: /* STLLR */
2528 if (!dc_isar_feature(aa64_lor, s)) {
2529 break;
2530 }
2531 /* StoreLORelease is the same as Store-Release for QEMU. */
2532 /* fall through */
2533 case 0x9: /* STLR */
2534 /* Generate ISS for non-exclusive accesses including LASR. */
2535 if (rn == 31) {
2536 gen_check_sp_alignment(s);
2537 }
2538 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2539 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2540 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size, true, rt,
2541 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2542 return;
2543
2544 case 0xc: /* LDLAR */
2545 if (!dc_isar_feature(aa64_lor, s)) {
2546 break;
2547 }
2548 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2549 /* fall through */
2550 case 0xd: /* LDAR */
2551 /* Generate ISS for non-exclusive accesses including LASR. */
2552 if (rn == 31) {
2553 gen_check_sp_alignment(s);
2554 }
2555 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2556 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, false, true, rt,
2557 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2558 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2559 return;
2560
2561 case 0x2: case 0x3: /* CASP / STXP */
2562 if (size & 2) { /* STXP / STLXP */
2563 if (rn == 31) {
2564 gen_check_sp_alignment(s);
2565 }
2566 if (is_lasr) {
2567 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2568 }
2569 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2570 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true);
2571 return;
2572 }
2573 if (rt2 == 31
2574 && ((rt | rs) & 1) == 0
2575 && dc_isar_feature(aa64_atomics, s)) {
2576 /* CASP / CASPL */
2577 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2578 return;
2579 }
2580 break;
2581
2582 case 0x6: case 0x7: /* CASPA / LDXP */
2583 if (size & 2) { /* LDXP / LDAXP */
2584 if (rn == 31) {
2585 gen_check_sp_alignment(s);
2586 }
2587 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2588 s->is_ldex = true;
2589 gen_load_exclusive(s, rt, rt2, clean_addr, size, true);
2590 if (is_lasr) {
2591 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2592 }
2593 return;
2594 }
2595 if (rt2 == 31
2596 && ((rt | rs) & 1) == 0
2597 && dc_isar_feature(aa64_atomics, s)) {
2598 /* CASPA / CASPAL */
2599 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2600 return;
2601 }
2602 break;
2603
2604 case 0xa: /* CAS */
2605 case 0xb: /* CASL */
2606 case 0xe: /* CASA */
2607 case 0xf: /* CASAL */
2608 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2609 gen_compare_and_swap(s, rs, rt, rn, size);
2610 return;
2611 }
2612 break;
2613 }
2614 unallocated_encoding(s);
2615 }
2616
2617 /*
2618 * Load register (literal)
2619 *
2620 * 31 30 29 27 26 25 24 23 5 4 0
2621 * +-----+-------+---+-----+-------------------+-------+
2622 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2623 * +-----+-------+---+-----+-------------------+-------+
2624 *
2625 * V: 1 -> vector (simd/fp)
2626 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2627 * 10-> 32 bit signed, 11 -> prefetch
2628 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2629 */
2630 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2631 {
2632 int rt = extract32(insn, 0, 5);
2633 int64_t imm = sextract32(insn, 5, 19) << 2;
2634 bool is_vector = extract32(insn, 26, 1);
2635 int opc = extract32(insn, 30, 2);
2636 bool is_signed = false;
2637 int size = 2;
2638 TCGv_i64 tcg_rt, clean_addr;
2639
2640 if (is_vector) {
2641 if (opc == 3) {
2642 unallocated_encoding(s);
2643 return;
2644 }
2645 size = 2 + opc;
2646 if (!fp_access_check(s)) {
2647 return;
2648 }
2649 } else {
2650 if (opc == 3) {
2651 /* PRFM (literal) : prefetch */
2652 return;
2653 }
2654 size = 2 + extract32(opc, 0, 1);
2655 is_signed = extract32(opc, 1, 1);
2656 }
2657
2658 tcg_rt = cpu_reg(s, rt);
2659
2660 clean_addr = tcg_const_i64((s->pc - 4) + imm);
2661 if (is_vector) {
2662 do_fp_ld(s, rt, clean_addr, size);
2663 } else {
2664 /* Only unsigned 32bit loads target 32bit registers. */
2665 bool iss_sf = opc != 0;
2666
2667 do_gpr_ld(s, tcg_rt, clean_addr, size, is_signed, false,
2668 true, rt, iss_sf, false);
2669 }
2670 tcg_temp_free_i64(clean_addr);
2671 }
2672
2673 /*
2674 * LDNP (Load Pair - non-temporal hint)
2675 * LDP (Load Pair - non vector)
2676 * LDPSW (Load Pair Signed Word - non vector)
2677 * STNP (Store Pair - non-temporal hint)
2678 * STP (Store Pair - non vector)
2679 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2680 * LDP (Load Pair of SIMD&FP)
2681 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2682 * STP (Store Pair of SIMD&FP)
2683 *
2684 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2685 * +-----+-------+---+---+-------+---+-----------------------------+
2686 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2687 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2688 *
2689 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2690 * LDPSW 01
2691 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2692 * V: 0 -> GPR, 1 -> Vector
2693 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2694 * 10 -> signed offset, 11 -> pre-index
2695 * L: 0 -> Store 1 -> Load
2696 *
2697 * Rt, Rt2 = GPR or SIMD registers to be stored
2698 * Rn = general purpose register containing address
2699 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2700 */
2701 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2702 {
2703 int rt = extract32(insn, 0, 5);
2704 int rn = extract32(insn, 5, 5);
2705 int rt2 = extract32(insn, 10, 5);
2706 uint64_t offset = sextract64(insn, 15, 7);
2707 int index = extract32(insn, 23, 2);
2708 bool is_vector = extract32(insn, 26, 1);
2709 bool is_load = extract32(insn, 22, 1);
2710 int opc = extract32(insn, 30, 2);
2711
2712 bool is_signed = false;
2713 bool postindex = false;
2714 bool wback = false;
2715
2716 TCGv_i64 clean_addr, dirty_addr;
2717
2718 int size;
2719
2720 if (opc == 3) {
2721 unallocated_encoding(s);
2722 return;
2723 }
2724
2725 if (is_vector) {
2726 size = 2 + opc;
2727 } else {
2728 size = 2 + extract32(opc, 1, 1);
2729 is_signed = extract32(opc, 0, 1);
2730 if (!is_load && is_signed) {
2731 unallocated_encoding(s);
2732 return;
2733 }
2734 }
2735
2736 switch (index) {
2737 case 1: /* post-index */
2738 postindex = true;
2739 wback = true;
2740 break;
2741 case 0:
2742 /* signed offset with "non-temporal" hint. Since we don't emulate
2743 * caches we don't care about hints to the cache system about
2744 * data access patterns, and handle this identically to plain
2745 * signed offset.
2746 */
2747 if (is_signed) {
2748 /* There is no non-temporal-hint version of LDPSW */
2749 unallocated_encoding(s);
2750 return;
2751 }
2752 postindex = false;
2753 break;
2754 case 2: /* signed offset, rn not updated */
2755 postindex = false;
2756 break;
2757 case 3: /* pre-index */
2758 postindex = false;
2759 wback = true;
2760 break;
2761 }
2762
2763 if (is_vector && !fp_access_check(s)) {
2764 return;
2765 }
2766
2767 offset <<= size;
2768
2769 if (rn == 31) {
2770 gen_check_sp_alignment(s);
2771 }
2772
2773 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2774 if (!postindex) {
2775 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2776 }
2777 clean_addr = clean_data_tbi(s, dirty_addr);
2778
2779 if (is_vector) {
2780 if (is_load) {
2781 do_fp_ld(s, rt, clean_addr, size);
2782 } else {
2783 do_fp_st(s, rt, clean_addr, size);
2784 }
2785 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2786 if (is_load) {
2787 do_fp_ld(s, rt2, clean_addr, size);
2788 } else {
2789 do_fp_st(s, rt2, clean_addr, size);
2790 }
2791 } else {
2792 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2793 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2794
2795 if (is_load) {
2796 TCGv_i64 tmp = tcg_temp_new_i64();
2797
2798 /* Do not modify tcg_rt before recognizing any exception
2799 * from the second load.
2800 */
2801 do_gpr_ld(s, tmp, clean_addr, size, is_signed, false,
2802 false, 0, false, false);
2803 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2804 do_gpr_ld(s, tcg_rt2, clean_addr, size, is_signed, false,
2805 false, 0, false, false);
2806
2807 tcg_gen_mov_i64(tcg_rt, tmp);
2808 tcg_temp_free_i64(tmp);
2809 } else {
2810 do_gpr_st(s, tcg_rt, clean_addr, size,
2811 false, 0, false, false);
2812 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2813 do_gpr_st(s, tcg_rt2, clean_addr, size,
2814 false, 0, false, false);
2815 }
2816 }
2817
2818 if (wback) {
2819 if (postindex) {
2820 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2821 }
2822 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
2823 }
2824 }
2825
2826 /*
2827 * Load/store (immediate post-indexed)
2828 * Load/store (immediate pre-indexed)
2829 * Load/store (unscaled immediate)
2830 *
2831 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2832 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2833 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2834 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2835 *
2836 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2837 10 -> unprivileged
2838 * V = 0 -> non-vector
2839 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2840 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2841 */
2842 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2843 int opc,
2844 int size,
2845 int rt,
2846 bool is_vector)
2847 {
2848 int rn = extract32(insn, 5, 5);
2849 int imm9 = sextract32(insn, 12, 9);
2850 int idx = extract32(insn, 10, 2);
2851 bool is_signed = false;
2852 bool is_store = false;
2853 bool is_extended = false;
2854 bool is_unpriv = (idx == 2);
2855 bool iss_valid = !is_vector;
2856 bool post_index;
2857 bool writeback;
2858
2859 TCGv_i64 clean_addr, dirty_addr;
2860
2861 if (is_vector) {
2862 size |= (opc & 2) << 1;
2863 if (size > 4 || is_unpriv) {
2864 unallocated_encoding(s);
2865 return;
2866 }
2867 is_store = ((opc & 1) == 0);
2868 if (!fp_access_check(s)) {
2869 return;
2870 }
2871 } else {
2872 if (size == 3 && opc == 2) {
2873 /* PRFM - prefetch */
2874 if (idx != 0) {
2875 unallocated_encoding(s);
2876 return;
2877 }
2878 return;
2879 }
2880 if (opc == 3 && size > 1) {
2881 unallocated_encoding(s);
2882 return;
2883 }
2884 is_store = (opc == 0);
2885 is_signed = extract32(opc, 1, 1);
2886 is_extended = (size < 3) && extract32(opc, 0, 1);
2887 }
2888
2889 switch (idx) {
2890 case 0:
2891 case 2:
2892 post_index = false;
2893 writeback = false;
2894 break;
2895 case 1:
2896 post_index = true;
2897 writeback = true;
2898 break;
2899 case 3:
2900 post_index = false;
2901 writeback = true;
2902 break;
2903 default:
2904 g_assert_not_reached();
2905 }
2906
2907 if (rn == 31) {
2908 gen_check_sp_alignment(s);
2909 }
2910
2911 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2912 if (!post_index) {
2913 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
2914 }
2915 clean_addr = clean_data_tbi(s, dirty_addr);
2916
2917 if (is_vector) {
2918 if (is_store) {
2919 do_fp_st(s, rt, clean_addr, size);
2920 } else {
2921 do_fp_ld(s, rt, clean_addr, size);
2922 }
2923 } else {
2924 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2925 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2926 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2927
2928 if (is_store) {
2929 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx,
2930 iss_valid, rt, iss_sf, false);
2931 } else {
2932 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size,
2933 is_signed, is_extended, memidx,
2934 iss_valid, rt, iss_sf, false);
2935 }
2936 }
2937
2938 if (writeback) {
2939 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2940 if (post_index) {
2941 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
2942 }
2943 tcg_gen_mov_i64(tcg_rn, dirty_addr);
2944 }
2945 }
2946
2947 /*
2948 * Load/store (register offset)
2949 *
2950 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2951 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2952 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2953 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2954 *
2955 * For non-vector:
2956 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2957 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2958 * For vector:
2959 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2960 * opc<0>: 0 -> store, 1 -> load
2961 * V: 1 -> vector/simd
2962 * opt: extend encoding (see DecodeRegExtend)
2963 * S: if S=1 then scale (essentially index by sizeof(size))
2964 * Rt: register to transfer into/out of
2965 * Rn: address register or SP for base
2966 * Rm: offset register or ZR for offset
2967 */
2968 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
2969 int opc,
2970 int size,
2971 int rt,
2972 bool is_vector)
2973 {
2974 int rn = extract32(insn, 5, 5);
2975 int shift = extract32(insn, 12, 1);
2976 int rm = extract32(insn, 16, 5);
2977 int opt = extract32(insn, 13, 3);
2978 bool is_signed = false;
2979 bool is_store = false;
2980 bool is_extended = false;
2981
2982 TCGv_i64 tcg_rm, clean_addr, dirty_addr;
2983
2984 if (extract32(opt, 1, 1) == 0) {
2985 unallocated_encoding(s);
2986 return;
2987 }
2988
2989 if (is_vector) {
2990 size |= (opc & 2) << 1;
2991 if (size > 4) {
2992 unallocated_encoding(s);
2993 return;
2994 }
2995 is_store = !extract32(opc, 0, 1);
2996 if (!fp_access_check(s)) {
2997 return;
2998 }
2999 } else {
3000 if (size == 3 && opc == 2) {
3001 /* PRFM - prefetch */
3002 return;
3003 }
3004 if (opc == 3 && size > 1) {
3005 unallocated_encoding(s);
3006 return;
3007 }
3008 is_store = (opc == 0);
3009 is_signed = extract32(opc, 1, 1);
3010 is_extended = (size < 3) && extract32(opc, 0, 1);
3011 }
3012
3013 if (rn == 31) {
3014 gen_check_sp_alignment(s);
3015 }
3016 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3017
3018 tcg_rm = read_cpu_reg(s, rm, 1);
3019 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3020
3021 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3022 clean_addr = clean_data_tbi(s, dirty_addr);
3023
3024 if (is_vector) {
3025 if (is_store) {
3026 do_fp_st(s, rt, clean_addr, size);
3027 } else {
3028 do_fp_ld(s, rt, clean_addr, size);
3029 }
3030 } else {
3031 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3032 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3033 if (is_store) {
3034 do_gpr_st(s, tcg_rt, clean_addr, size,
3035 true, rt, iss_sf, false);
3036 } else {
3037 do_gpr_ld(s, tcg_rt, clean_addr, size,
3038 is_signed, is_extended,
3039 true, rt, iss_sf, false);
3040 }
3041 }
3042 }
3043
3044 /*
3045 * Load/store (unsigned immediate)
3046 *
3047 * 31 30 29 27 26 25 24 23 22 21 10 9 5
3048 * +----+-------+---+-----+-----+------------+-------+------+
3049 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
3050 * +----+-------+---+-----+-----+------------+-------+------+
3051 *
3052 * For non-vector:
3053 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3054 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3055 * For vector:
3056 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3057 * opc<0>: 0 -> store, 1 -> load
3058 * Rn: base address register (inc SP)
3059 * Rt: target register
3060 */
3061 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3062 int opc,
3063 int size,
3064 int rt,
3065 bool is_vector)
3066 {
3067 int rn = extract32(insn, 5, 5);
3068 unsigned int imm12 = extract32(insn, 10, 12);
3069 unsigned int offset;
3070
3071 TCGv_i64 clean_addr, dirty_addr;
3072
3073 bool is_store;
3074 bool is_signed = false;
3075 bool is_extended = false;
3076
3077 if (is_vector) {
3078 size |= (opc & 2) << 1;
3079 if (size > 4) {
3080 unallocated_encoding(s);
3081 return;
3082 }
3083 is_store = !extract32(opc, 0, 1);
3084 if (!fp_access_check(s)) {
3085 return;
3086 }
3087 } else {
3088 if (size == 3 && opc == 2) {
3089 /* PRFM - prefetch */
3090 return;
3091 }
3092 if (opc == 3 && size > 1) {
3093 unallocated_encoding(s);
3094 return;
3095 }
3096 is_store = (opc == 0);
3097 is_signed = extract32(opc, 1, 1);
3098 is_extended = (size < 3) && extract32(opc, 0, 1);
3099 }
3100
3101 if (rn == 31) {
3102 gen_check_sp_alignment(s);
3103 }
3104 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3105 offset = imm12 << size;
3106 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3107 clean_addr = clean_data_tbi(s, dirty_addr);
3108
3109 if (is_vector) {
3110 if (is_store) {
3111 do_fp_st(s, rt, clean_addr, size);
3112 } else {
3113 do_fp_ld(s, rt, clean_addr, size);
3114 }
3115 } else {
3116 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3117 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3118 if (is_store) {
3119 do_gpr_st(s, tcg_rt, clean_addr, size,
3120 true, rt, iss_sf, false);
3121 } else {
3122 do_gpr_ld(s, tcg_rt, clean_addr, size, is_signed, is_extended,
3123 true, rt, iss_sf, false);
3124 }
3125 }
3126 }
3127
3128 /* Atomic memory operations
3129 *
3130 * 31 30 27 26 24 22 21 16 15 12 10 5 0
3131 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3132 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
3133 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3134 *
3135 * Rt: the result register
3136 * Rn: base address or SP
3137 * Rs: the source register for the operation
3138 * V: vector flag (always 0 as of v8.3)
3139 * A: acquire flag
3140 * R: release flag
3141 */
3142 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3143 int size, int rt, bool is_vector)
3144 {
3145 int rs = extract32(insn, 16, 5);
3146 int rn = extract32(insn, 5, 5);
3147 int o3_opc = extract32(insn, 12, 4);
3148 TCGv_i64 tcg_rs, clean_addr;
3149 AtomicThreeOpFn *fn;
3150
3151 if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3152 unallocated_encoding(s);
3153 return;
3154 }
3155 switch (o3_opc) {
3156 case 000: /* LDADD */
3157 fn = tcg_gen_atomic_fetch_add_i64;
3158 break;
3159 case 001: /* LDCLR */
3160 fn = tcg_gen_atomic_fetch_and_i64;
3161 break;
3162 case 002: /* LDEOR */
3163 fn = tcg_gen_atomic_fetch_xor_i64;
3164 break;
3165 case 003: /* LDSET */
3166 fn = tcg_gen_atomic_fetch_or_i64;
3167 break;
3168 case 004: /* LDSMAX */
3169 fn = tcg_gen_atomic_fetch_smax_i64;
3170 break;
3171 case 005: /* LDSMIN */
3172 fn = tcg_gen_atomic_fetch_smin_i64;
3173 break;
3174 case 006: /* LDUMAX */
3175 fn = tcg_gen_atomic_fetch_umax_i64;
3176 break;
3177 case 007: /* LDUMIN */
3178 fn = tcg_gen_atomic_fetch_umin_i64;
3179 break;
3180 case 010: /* SWP */
3181 fn = tcg_gen_atomic_xchg_i64;
3182 break;
3183 default:
3184 unallocated_encoding(s);
3185 return;
3186 }
3187
3188 if (rn == 31) {
3189 gen_check_sp_alignment(s);
3190 }
3191 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
3192 tcg_rs = read_cpu_reg(s, rs, true);
3193
3194 if (o3_opc == 1) { /* LDCLR */
3195 tcg_gen_not_i64(tcg_rs, tcg_rs);
3196 }
3197
3198 /* The tcg atomic primitives are all full barriers. Therefore we
3199 * can ignore the Acquire and Release bits of this instruction.
3200 */
3201 fn(cpu_reg(s, rt), clean_addr, tcg_rs, get_mem_index(s),
3202 s->be_data | size | MO_ALIGN);
3203 }
3204
3205 /*
3206 * PAC memory operations
3207 *
3208 * 31 30 27 26 24 22 21 12 11 10 5 0
3209 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3210 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt |
3211 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3212 *
3213 * Rt: the result register
3214 * Rn: base address or SP
3215 * V: vector flag (always 0 as of v8.3)
3216 * M: clear for key DA, set for key DB
3217 * W: pre-indexing flag
3218 * S: sign for imm9.
3219 */
3220 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3221 int size, int rt, bool is_vector)
3222 {
3223 int rn = extract32(insn, 5, 5);
3224 bool is_wback = extract32(insn, 11, 1);
3225 bool use_key_a = !extract32(insn, 23, 1);
3226 int offset;
3227 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3228
3229 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3230 unallocated_encoding(s);
3231 return;
3232 }
3233
3234 if (rn == 31) {
3235 gen_check_sp_alignment(s);
3236 }
3237 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3238
3239 if (s->pauth_active) {
3240 if (use_key_a) {
3241 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, cpu_X[31]);
3242 } else {
3243 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, cpu_X[31]);
3244 }
3245 }
3246
3247 /* Form the 10-bit signed, scaled offset. */
3248 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3249 offset = sextract32(offset << size, 0, 10 + size);
3250 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3251
3252 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3253 clean_addr = clean_data_tbi(s, dirty_addr);
3254
3255 tcg_rt = cpu_reg(s, rt);
3256 do_gpr_ld(s, tcg_rt, clean_addr, size, /* is_signed */ false,
3257 /* extend */ false, /* iss_valid */ !is_wback,
3258 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3259
3260 if (is_wback) {
3261 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3262 }
3263 }
3264
3265 /* Load/store register (all forms) */
3266 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3267 {
3268 int rt = extract32(insn, 0, 5);
3269 int opc = extract32(insn, 22, 2);
3270 bool is_vector = extract32(insn, 26, 1);
3271 int size = extract32(insn, 30, 2);
3272
3273 switch (extract32(insn, 24, 2)) {
3274 case 0:
3275 if (extract32(insn, 21, 1) == 0) {
3276 /* Load/store register (unscaled immediate)
3277 * Load/store immediate pre/post-indexed
3278 * Load/store register unprivileged
3279 */
3280 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3281 return;
3282 }
3283 switch (extract32(insn, 10, 2)) {
3284 case 0:
3285 disas_ldst_atomic(s, insn, size, rt, is_vector);
3286 return;
3287 case 2:
3288 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3289 return;
3290 default:
3291 disas_ldst_pac(s, insn, size, rt, is_vector);
3292 return;
3293 }
3294 break;
3295 case 1:
3296 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3297 return;
3298 }
3299 unallocated_encoding(s);
3300 }
3301
3302 /* AdvSIMD load/store multiple structures
3303 *
3304 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
3305 * +---+---+---------------+---+-------------+--------+------+------+------+
3306 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
3307 * +---+---+---------------+---+-------------+--------+------+------+------+
3308 *
3309 * AdvSIMD load/store multiple structures (post-indexed)
3310 *
3311 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
3312 * +---+---+---------------+---+---+---------+--------+------+------+------+
3313 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
3314 * +---+---+---------------+---+---+---------+--------+------+------+------+
3315 *
3316 * Rt: first (or only) SIMD&FP register to be transferred
3317 * Rn: base address or SP
3318 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3319 */
3320 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3321 {
3322 int rt = extract32(insn, 0, 5);
3323 int rn = extract32(insn, 5, 5);
3324 int rm = extract32(insn, 16, 5);
3325 int size = extract32(insn, 10, 2);
3326 int opcode = extract32(insn, 12, 4);
3327 bool is_store = !extract32(insn, 22, 1);
3328 bool is_postidx = extract32(insn, 23, 1);
3329 bool is_q = extract32(insn, 30, 1);
3330 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3331 TCGMemOp endian = s->be_data;
3332
3333 int ebytes; /* bytes per element */
3334 int elements; /* elements per vector */
3335 int rpt; /* num iterations */
3336 int selem; /* structure elements */
3337 int r;
3338
3339 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3340 unallocated_encoding(s);
3341 return;
3342 }
3343
3344 if (!is_postidx && rm != 0) {
3345 unallocated_encoding(s);
3346 return;
3347 }
3348
3349 /* From the shared decode logic */
3350 switch (opcode) {
3351 case 0x0:
3352 rpt = 1;
3353 selem = 4;
3354 break;
3355 case 0x2:
3356 rpt = 4;
3357 selem = 1;
3358 break;
3359 case 0x4:
3360 rpt = 1;
3361 selem = 3;
3362 break;
3363 case 0x6:
3364 rpt = 3;
3365 selem = 1;
3366 break;
3367 case 0x7:
3368 rpt = 1;
3369 selem = 1;
3370 break;
3371 case 0x8:
3372 rpt = 1;
3373 selem = 2;
3374 break;
3375 case 0xa:
3376 rpt = 2;
3377 selem = 1;
3378 break;
3379 default:
3380 unallocated_encoding(s);
3381 return;
3382 }
3383
3384 if (size == 3 && !is_q && selem != 1) {
3385 /* reserved */
3386 unallocated_encoding(s);
3387 return;
3388 }
3389
3390 if (!fp_access_check(s)) {
3391 return;
3392 }
3393
3394 if (rn == 31) {
3395 gen_check_sp_alignment(s);
3396 }
3397
3398 /* For our purposes, bytes are always little-endian. */
3399 if (size == 0) {
3400 endian = MO_LE;
3401 }
3402
3403 /* Consecutive little-endian elements from a single register
3404 * can be promoted to a larger little-endian operation.
3405 */
3406 if (selem == 1 && endian == MO_LE) {
3407 size = 3;
3408 }
3409 ebytes = 1 << size;
3410 elements = (is_q ? 16 : 8) / ebytes;
3411
3412 tcg_rn = cpu_reg_sp(s, rn);
3413 clean_addr = clean_data_tbi(s, tcg_rn);
3414 tcg_ebytes = tcg_const_i64(ebytes);
3415
3416 for (r = 0; r < rpt; r++) {
3417 int e;
3418 for (e = 0; e < elements; e++) {
3419 int xs;
3420 for (xs = 0; xs < selem; xs++) {
3421 int tt = (rt + r + xs) % 32;
3422 if (is_store) {
3423 do_vec_st(s, tt, e, clean_addr, size, endian);
3424 } else {
3425 do_vec_ld(s, tt, e, clean_addr, size, endian);
3426 }
3427 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3428 }
3429 }
3430 }
3431 tcg_temp_free_i64(tcg_ebytes);
3432
3433 if (!is_store) {
3434 /* For non-quad operations, setting a slice of the low
3435 * 64 bits of the register clears the high 64 bits (in
3436 * the ARM ARM pseudocode this is implicit in the fact
3437 * that 'rval' is a 64 bit wide variable).
3438 * For quad operations, we might still need to zero the
3439 * high bits of SVE.
3440 */
3441 for (r = 0; r < rpt * selem; r++) {
3442 int tt = (rt + r) % 32;
3443 clear_vec_high(s, is_q, tt);
3444 }
3445 }
3446
3447 if (is_postidx) {
3448 if (rm == 31) {
3449 tcg_gen_addi_i64(tcg_rn, tcg_rn, rpt * elements * selem * ebytes);
3450 } else {
3451 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3452 }
3453 }
3454 }
3455
3456 /* AdvSIMD load/store single structure
3457 *
3458 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3459 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3460 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3461 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3462 *
3463 * AdvSIMD load/store single structure (post-indexed)
3464 *
3465 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3466 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3467 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3468 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3469 *
3470 * Rt: first (or only) SIMD&FP register to be transferred
3471 * Rn: base address or SP
3472 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3473 * index = encoded in Q:S:size dependent on size
3474 *
3475 * lane_size = encoded in R, opc
3476 * transfer width = encoded in opc, S, size
3477 */
3478 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3479 {
3480 int rt = extract32(insn, 0, 5);
3481 int rn = extract32(insn, 5, 5);
3482 int rm = extract32(insn, 16, 5);
3483 int size = extract32(insn, 10, 2);
3484 int S = extract32(insn, 12, 1);
3485 int opc = extract32(insn, 13, 3);
3486 int R = extract32(insn, 21, 1);
3487 int is_load = extract32(insn, 22, 1);
3488 int is_postidx = extract32(insn, 23, 1);
3489 int is_q = extract32(insn, 30, 1);
3490
3491 int scale = extract32(opc, 1, 2);
3492 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3493 bool replicate = false;
3494 int index = is_q << 3 | S << 2 | size;
3495 int ebytes, xs;
3496 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3497
3498 if (extract32(insn, 31, 1)) {
3499 unallocated_encoding(s);
3500 return;
3501 }
3502 if (!is_postidx && rm != 0) {
3503 unallocated_encoding(s);
3504 return;
3505 }
3506
3507 switch (scale) {
3508 case 3:
3509 if (!is_load || S) {
3510 unallocated_encoding(s);
3511 return;
3512 }
3513 scale = size;
3514 replicate = true;
3515 break;
3516 case 0:
3517 break;
3518 case 1:
3519 if (extract32(size, 0, 1)) {
3520 unallocated_encoding(s);
3521 return;
3522 }
3523 index >>= 1;
3524 break;
3525 case 2:
3526 if (extract32(size, 1, 1)) {
3527 unallocated_encoding(s);
3528 return;
3529 }
3530 if (!extract32(size, 0, 1)) {
3531 index >>= 2;
3532 } else {
3533 if (S) {
3534 unallocated_encoding(s);
3535 return;
3536 }
3537 index >>= 3;
3538 scale = 3;
3539 }
3540 break;
3541 default:
3542 g_assert_not_reached();
3543 }
3544
3545 if (!fp_access_check(s)) {
3546 return;
3547 }
3548
3549 ebytes = 1 << scale;
3550
3551 if (rn == 31) {
3552 gen_check_sp_alignment(s);
3553 }
3554
3555 tcg_rn = cpu_reg_sp(s, rn);
3556 clean_addr = clean_data_tbi(s, tcg_rn);
3557 tcg_ebytes = tcg_const_i64(ebytes);
3558
3559 for (xs = 0; xs < selem; xs++) {
3560 if (replicate) {
3561 /* Load and replicate to all elements */
3562 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3563
3564 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr,
3565 get_mem_index(s), s->be_data + scale);
3566 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3567 (is_q + 1) * 8, vec_full_reg_size(s),
3568 tcg_tmp);
3569 tcg_temp_free_i64(tcg_tmp);
3570 } else {
3571 /* Load/store one element per register */
3572 if (is_load) {
3573 do_vec_ld(s, rt, index, clean_addr, scale, s->be_data);
3574 } else {
3575 do_vec_st(s, rt, index, clean_addr, scale, s->be_data);
3576 }
3577 }
3578 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3579 rt = (rt + 1) % 32;
3580 }
3581 tcg_temp_free_i64(tcg_ebytes);
3582
3583 if (is_postidx) {
3584 if (rm == 31) {
3585 tcg_gen_addi_i64(tcg_rn, tcg_rn, selem * ebytes);
3586 } else {
3587 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3588 }
3589 }
3590 }
3591
3592 /* Loads and stores */
3593 static void disas_ldst(DisasContext *s, uint32_t insn)
3594 {
3595 switch (extract32(insn, 24, 6)) {
3596 case 0x08: /* Load/store exclusive */
3597 disas_ldst_excl(s, insn);
3598 break;
3599 case 0x18: case 0x1c: /* Load register (literal) */
3600 disas_ld_lit(s, insn);
3601 break;
3602 case 0x28: case 0x29:
3603 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
3604 disas_ldst_pair(s, insn);
3605 break;
3606 case 0x38: case 0x39:
3607 case 0x3c: case 0x3d: /* Load/store register (all forms) */
3608 disas_ldst_reg(s, insn);
3609 break;
3610 case 0x0c: /* AdvSIMD load/store multiple structures */
3611 disas_ldst_multiple_struct(s, insn);
3612 break;
3613 case 0x0d: /* AdvSIMD load/store single structure */
3614 disas_ldst_single_struct(s, insn);
3615 break;
3616 default:
3617 unallocated_encoding(s);
3618 break;
3619 }
3620 }
3621
3622 /* PC-rel. addressing
3623 * 31 30 29 28 24 23 5 4 0
3624 * +----+-------+-----------+-------------------+------+
3625 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
3626 * +----+-------+-----------+-------------------+------+
3627 */
3628 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
3629 {
3630 unsigned int page, rd;
3631 uint64_t base;
3632 uint64_t offset;
3633
3634 page = extract32(insn, 31, 1);
3635 /* SignExtend(immhi:immlo) -> offset */
3636 offset = sextract64(insn, 5, 19);
3637 offset = offset << 2 | extract32(insn, 29, 2);
3638 rd = extract32(insn, 0, 5);
3639 base = s->pc - 4;
3640
3641 if (page) {
3642 /* ADRP (page based) */
3643 base &= ~0xfff;
3644 offset <<= 12;
3645 }
3646
3647 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
3648 }
3649
3650 /*
3651 * Add/subtract (immediate)
3652 *
3653 * 31 30 29 28 24 23 22 21 10 9 5 4 0
3654 * +--+--+--+-----------+-----+-------------+-----+-----+
3655 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
3656 * +--+--+--+-----------+-----+-------------+-----+-----+
3657 *
3658 * sf: 0 -> 32bit, 1 -> 64bit
3659 * op: 0 -> add , 1 -> sub
3660 * S: 1 -> set flags
3661 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
3662 */
3663 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
3664 {
3665 int rd = extract32(insn, 0, 5);
3666 int rn = extract32(insn, 5, 5);
3667 uint64_t imm = extract32(insn, 10, 12);
3668 int shift = extract32(insn, 22, 2);
3669 bool setflags = extract32(insn, 29, 1);
3670 bool sub_op = extract32(insn, 30, 1);
3671 bool is_64bit = extract32(insn, 31, 1);
3672
3673 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3674 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
3675 TCGv_i64 tcg_result;
3676
3677 switch (shift) {
3678 case 0x0:
3679 break;
3680 case 0x1:
3681 imm <<= 12;
3682 break;
3683 default:
3684 unallocated_encoding(s);
3685 return;
3686 }
3687
3688 tcg_result = tcg_temp_new_i64();
3689 if (!setflags) {
3690 if (sub_op) {
3691 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
3692 } else {
3693 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
3694 }
3695 } else {
3696 TCGv_i64 tcg_imm = tcg_const_i64(imm);
3697 if (sub_op) {
3698 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3699 } else {
3700 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3701 }
3702 tcg_temp_free_i64(tcg_imm);
3703 }
3704
3705 if (is_64bit) {
3706 tcg_gen_mov_i64(tcg_rd, tcg_result);
3707 } else {
3708 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3709 }
3710
3711 tcg_temp_free_i64(tcg_result);
3712 }
3713
3714 /* The input should be a value in the bottom e bits (with higher
3715 * bits zero); returns that value replicated into every element
3716 * of size e in a 64 bit integer.
3717 */
3718 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
3719 {
3720 assert(e != 0);
3721 while (e < 64) {
3722 mask |= mask << e;
3723 e *= 2;
3724 }
3725 return mask;
3726 }
3727
3728 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
3729 static inline uint64_t bitmask64(unsigned int length)
3730 {
3731 assert(length > 0 && length <= 64);
3732 return ~0ULL >> (64 - length);
3733 }
3734
3735 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
3736 * only require the wmask. Returns false if the imms/immr/immn are a reserved
3737 * value (ie should cause a guest UNDEF exception), and true if they are
3738 * valid, in which case the decoded bit pattern is written to result.
3739 */
3740 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
3741 unsigned int imms, unsigned int immr)
3742 {
3743 uint64_t mask;
3744 unsigned e, levels, s, r;
3745 int len;
3746
3747 assert(immn < 2 && imms < 64 && immr < 64);
3748
3749 /* The bit patterns we create here are 64 bit patterns which
3750 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
3751 * 64 bits each. Each element contains the same value: a run
3752 * of between 1 and e-1 non-zero bits, rotated within the
3753 * element by between 0 and e-1 bits.
3754 *
3755 * The element size and run length are encoded into immn (1 bit)
3756 * and imms (6 bits) as follows:
3757 * 64 bit elements: immn = 1, imms = <length of run - 1>
3758 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
3759 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
3760 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
3761 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
3762 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
3763 * Notice that immn = 0, imms = 11111x is the only combination
3764 * not covered by one of the above options; this is reserved.
3765 * Further, <length of run - 1> all-ones is a reserved pattern.
3766 *
3767 * In all cases the rotation is by immr % e (and immr is 6 bits).
3768 */
3769
3770 /* First determine the element size */
3771 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
3772 if (len < 1) {
3773 /* This is the immn == 0, imms == 0x11111x case */
3774 return false;
3775 }
3776 e = 1 << len;
3777
3778 levels = e - 1;
3779 s = imms & levels;
3780 r = immr & levels;
3781
3782 if (s == levels) {
3783 /* <length of run - 1> mustn't be all-ones. */
3784 return false;
3785 }
3786
3787 /* Create the value of one element: s+1 set bits rotated
3788 * by r within the element (which is e bits wide)...
3789 */
3790 mask = bitmask64(s + 1);
3791 if (r) {
3792 mask = (mask >> r) | (mask << (e - r));
3793 mask &= bitmask64(e);
3794 }
3795 /* ...then replicate the element over the whole 64 bit value */
3796 mask = bitfield_replicate(mask, e);
3797 *result = mask;
3798 return true;
3799 }
3800
3801 /* Logical (immediate)
3802 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3803 * +----+-----+-------------+---+------+------+------+------+
3804 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
3805 * +----+-----+-------------+---+------+------+------+------+
3806 */
3807 static void disas_logic_imm(DisasContext *s, uint32_t insn)
3808 {
3809 unsigned int sf, opc, is_n, immr, imms, rn, rd;
3810 TCGv_i64 tcg_rd, tcg_rn;
3811 uint64_t wmask;
3812 bool is_and = false;
3813
3814 sf = extract32(insn, 31, 1);
3815 opc = extract32(insn, 29, 2);
3816 is_n = extract32(insn, 22, 1);
3817 immr = extract32(insn, 16, 6);
3818 imms = extract32(insn, 10, 6);
3819 rn = extract32(insn, 5, 5);
3820 rd = extract32(insn, 0, 5);
3821
3822 if (!sf && is_n) {
3823 unallocated_encoding(s);
3824 return;
3825 }
3826
3827 if (opc == 0x3) { /* ANDS */
3828 tcg_rd = cpu_reg(s, rd);
3829 } else {
3830 tcg_rd = cpu_reg_sp(s, rd);
3831 }
3832 tcg_rn = cpu_reg(s, rn);
3833
3834 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
3835 /* some immediate field values are reserved */
3836 unallocated_encoding(s);
3837 return;
3838 }
3839
3840 if (!sf) {
3841 wmask &= 0xffffffff;
3842 }
3843
3844 switch (opc) {
3845 case 0x3: /* ANDS */
3846 case 0x0: /* AND */
3847 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
3848 is_and = true;
3849 break;
3850 case 0x1: /* ORR */
3851 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
3852 break;
3853 case 0x2: /* EOR */
3854 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
3855 break;
3856 default:
3857 assert(FALSE); /* must handle all above */
3858 break;
3859 }
3860
3861 if (!sf && !is_and) {
3862 /* zero extend final result; we know we can skip this for AND
3863 * since the immediate had the high 32 bits clear.
3864 */
3865 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3866 }
3867
3868 if (opc == 3) { /* ANDS */
3869 gen_logic_CC(sf, tcg_rd);
3870 }
3871 }
3872
3873 /*
3874 * Move wide (immediate)
3875 *
3876 * 31 30 29 28 23 22 21 20 5 4 0
3877 * +--+-----+-------------+-----+----------------+------+
3878 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
3879 * +--+-----+-------------+-----+----------------+------+
3880 *
3881 * sf: 0 -> 32 bit, 1 -> 64 bit
3882 * opc: 00 -> N, 10 -> Z, 11 -> K
3883 * hw: shift/16 (0,16, and sf only 32, 48)
3884 */
3885 static void disas_movw_imm(DisasContext *s, uint32_t insn)
3886 {
3887 int rd = extract32(insn, 0, 5);
3888 uint64_t imm = extract32(insn, 5, 16);
3889 int sf = extract32(insn, 31, 1);
3890 int opc = extract32(insn, 29, 2);
3891 int pos = extract32(insn, 21, 2) << 4;
3892 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3893 TCGv_i64 tcg_imm;
3894
3895 if (!sf && (pos >= 32)) {
3896 unallocated_encoding(s);
3897 return;
3898 }
3899
3900 switch (opc) {
3901 case 0: /* MOVN */
3902 case 2: /* MOVZ */
3903 imm <<= pos;
3904 if (opc == 0) {
3905 imm = ~imm;
3906 }
3907 if (!sf) {
3908 imm &= 0xffffffffu;
3909 }
3910 tcg_gen_movi_i64(tcg_rd, imm);
3911 break;
3912 case 3: /* MOVK */
3913 tcg_imm = tcg_const_i64(imm);
3914 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
3915 tcg_temp_free_i64(tcg_imm);
3916 if (!sf) {
3917 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3918 }
3919 break;
3920 default:
3921 unallocated_encoding(s);
3922 break;
3923 }
3924 }
3925
3926 /* Bitfield
3927 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3928 * +----+-----+-------------+---+------+------+------+------+
3929 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
3930 * +----+-----+-------------+---+------+------+------+------+
3931 */
3932 static void disas_bitfield(DisasContext *s, uint32_t insn)
3933 {
3934 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
3935 TCGv_i64 tcg_rd, tcg_tmp;
3936
3937 sf = extract32(insn, 31, 1);
3938 opc = extract32(insn, 29, 2);
3939 n = extract32(insn, 22, 1);
3940 ri = extract32(insn, 16, 6);
3941 si = extract32(insn, 10, 6);
3942 rn = extract32(insn, 5, 5);
3943 rd = extract32(insn, 0, 5);
3944 bitsize = sf ? 64 : 32;
3945
3946 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
3947 unallocated_encoding(s);
3948 return;
3949 }
3950
3951 tcg_rd = cpu_reg(s, rd);
3952
3953 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
3954 to be smaller than bitsize, we'll never reference data outside the
3955 low 32-bits anyway. */
3956 tcg_tmp = read_cpu_reg(s, rn, 1);
3957
3958 /* Recognize simple(r) extractions. */
3959 if (si >= ri) {
3960 /* Wd<s-r:0> = Wn<s:r> */
3961 len = (si - ri) + 1;
3962 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
3963 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
3964 goto done;
3965 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
3966 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
3967 return;
3968 }
3969 /* opc == 1, BXFIL fall through to deposit */
3970 tcg_gen_extract_i64(tcg_tmp, tcg_tmp, ri, len);
3971 pos = 0;
3972 } else {
3973 /* Handle the ri > si case with a deposit
3974 * Wd<32+s-r,32-r> = Wn<s:0>
3975 */
3976 len = si + 1;
3977 pos = (bitsize - ri) & (bitsize - 1);
3978 }
3979
3980 if (opc == 0 && len < ri) {
3981 /* SBFM: sign extend the destination field from len to fill
3982 the balance of the word. Let the deposit below insert all
3983 of those sign bits. */
3984 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
3985 len = ri;
3986 }
3987
3988 if (opc == 1) { /* BFM, BXFIL */
3989 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
3990 } else {
3991 /* SBFM or UBFM: We start with zero, and we haven't modified
3992 any bits outside bitsize, therefore the zero-extension
3993 below is unneeded. */
3994 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
3995 return;
3996 }
3997
3998 done:
3999 if (!sf) { /* zero extend final result */
4000 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4001 }
4002 }
4003
4004 /* Extract
4005 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
4006 * +----+------+-------------+---+----+------+--------+------+------+
4007 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
4008 * +----+------+-------------+---+----+------+--------+------+------+
4009 */
4010 static void disas_extract(DisasContext *s, uint32_t insn)
4011 {
4012 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
4013
4014 sf = extract32(insn, 31, 1);
4015 n = extract32(insn, 22, 1);
4016 rm = extract32(insn, 16, 5);
4017 imm = extract32(insn, 10, 6);
4018 rn = extract32(insn, 5, 5);
4019 rd = extract32(insn, 0, 5);
4020 op21 = extract32(insn, 29, 2);
4021 op0 = extract32(insn, 21, 1);
4022 bitsize = sf ? 64 : 32;
4023
4024 if (sf != n || op21 || op0 || imm >= bitsize) {
4025 unallocated_encoding(s);
4026 } else {
4027 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4028
4029 tcg_rd = cpu_reg(s, rd);
4030
4031 if (unlikely(imm == 0)) {
4032 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4033 * so an extract from bit 0 is a special case.
4034 */
4035 if (sf) {
4036 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
4037 } else {
4038 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
4039 }
4040 } else if (rm == rn) { /* ROR */
4041 tcg_rm = cpu_reg(s, rm);
4042 if (sf) {
4043 tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm);
4044 } else {
4045 TCGv_i32 tmp = tcg_temp_new_i32();
4046 tcg_gen_extrl_i64_i32(tmp, tcg_rm);
4047 tcg_gen_rotri_i32(tmp, tmp, imm);
4048 tcg_gen_extu_i32_i64(tcg_rd, tmp);
4049 tcg_temp_free_i32(tmp);
4050 }
4051 } else {
4052 tcg_rm = read_cpu_reg(s, rm, sf);
4053 tcg_rn = read_cpu_reg(s, rn, sf);
4054 tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
4055 tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
4056 tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
4057 if (!sf) {
4058 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4059 }
4060 }
4061 }
4062 }
4063
4064 /* Data processing - immediate */
4065 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
4066 {
4067 switch (extract32(insn, 23, 6)) {
4068 case 0x20: case 0x21: /* PC-rel. addressing */
4069 disas_pc_rel_adr(s, insn);
4070 break;
4071 case 0x22: case 0x23: /* Add/subtract (immediate) */
4072 disas_add_sub_imm(s, insn);
4073 break;
4074 case 0x24: /* Logical (immediate) */
4075 disas_logic_imm(s, insn);
4076 break;
4077 case 0x25: /* Move wide (immediate) */
4078 disas_movw_imm(s, insn);
4079 break;
4080 case 0x26: /* Bitfield */
4081 disas_bitfield(s, insn);
4082 break;
4083 case 0x27: /* Extract */
4084 disas_extract(s, insn);
4085 break;
4086 default:
4087 unallocated_encoding(s);
4088 break;
4089 }
4090 }
4091
4092 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4093 * Note that it is the caller's responsibility to ensure that the
4094 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4095 * mandated semantics for out of range shifts.
4096 */
4097 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4098 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4099 {
4100 switch (shift_type) {
4101 case A64_SHIFT_TYPE_LSL:
4102 tcg_gen_shl_i64(dst, src, shift_amount);
4103 break;
4104 case A64_SHIFT_TYPE_LSR:
4105 tcg_gen_shr_i64(dst, src, shift_amount);
4106 break;
4107 case A64_SHIFT_TYPE_ASR:
4108 if (!sf) {
4109 tcg_gen_ext32s_i64(dst, src);
4110 }
4111 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4112 break;
4113 case A64_SHIFT_TYPE_ROR:
4114 if (sf) {
4115 tcg_gen_rotr_i64(dst, src, shift_amount);
4116 } else {
4117 TCGv_i32 t0, t1;
4118 t0 = tcg_temp_new_i32();
4119 t1 = tcg_temp_new_i32();
4120 tcg_gen_extrl_i64_i32(t0, src);
4121 tcg_gen_extrl_i64_i32(t1, shift_amount);
4122 tcg_gen_rotr_i32(t0, t0, t1);
4123 tcg_gen_extu_i32_i64(dst, t0);
4124 tcg_temp_free_i32(t0);
4125 tcg_temp_free_i32(t1);
4126 }
4127 break;
4128 default:
4129 assert(FALSE); /* all shift types should be handled */
4130 break;
4131 }
4132
4133 if (!sf) { /* zero extend final result */
4134 tcg_gen_ext32u_i64(dst, dst);
4135 }
4136 }
4137
4138 /* Shift a TCGv src by immediate, put result in dst.
4139 * The shift amount must be in range (this should always be true as the
4140 * relevant instructions will UNDEF on bad shift immediates).
4141 */
4142 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4143 enum a64_shift_type shift_type, unsigned int shift_i)
4144 {
4145 assert(shift_i < (sf ? 64 : 32));
4146
4147 if (shift_i == 0) {
4148 tcg_gen_mov_i64(dst, src);
4149 } else {
4150 TCGv_i64 shift_const;
4151
4152 shift_const = tcg_const_i64(shift_i);
4153 shift_reg(dst, src, sf, shift_type, shift_const);
4154 tcg_temp_free_i64(shift_const);
4155 }
4156 }
4157
4158 /* Logical (shifted register)
4159 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4160 * +----+-----+-----------+-------+---+------+--------+------+------+
4161 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4162 * +----+-----+-----------+-------+---+------+--------+------+------+
4163 */
4164 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4165 {
4166 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4167 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4168
4169 sf = extract32(insn, 31, 1);
4170 opc = extract32(insn, 29, 2);
4171 shift_type = extract32(insn, 22, 2);
4172 invert = extract32(insn, 21, 1);
4173 rm = extract32(insn, 16, 5);
4174 shift_amount = extract32(insn, 10, 6);
4175 rn = extract32(insn, 5, 5);
4176 rd = extract32(insn, 0, 5);
4177
4178 if (!sf && (shift_amount & (1 << 5))) {
4179 unallocated_encoding(s);
4180 return;
4181 }
4182
4183 tcg_rd = cpu_reg(s, rd);
4184
4185 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4186 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4187 * register-register MOV and MVN, so it is worth special casing.
4188 */
4189 tcg_rm = cpu_reg(s, rm);
4190 if (invert) {
4191 tcg_gen_not_i64(tcg_rd, tcg_rm);
4192 if (!sf) {
4193 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4194 }
4195 } else {
4196 if (sf) {
4197 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4198 } else {
4199 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4200 }
4201 }
4202 return;
4203 }
4204
4205 tcg_rm = read_cpu_reg(s, rm, sf);
4206
4207 if (shift_amount) {
4208 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4209 }
4210
4211 tcg_rn = cpu_reg(s, rn);
4212
4213 switch (opc | (invert << 2)) {
4214 case 0: /* AND */
4215 case 3: /* ANDS */
4216 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4217 break;
4218 case 1: /* ORR */
4219 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4220 break;
4221 case 2: /* EOR */
4222 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4223 break;
4224 case 4: /* BIC */
4225 case 7: /* BICS */
4226 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4227 break;
4228 case 5: /* ORN */
4229 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4230 break;
4231 case 6: /* EON */
4232 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4233 break;
4234 default:
4235 assert(FALSE);
4236 break;
4237 }
4238
4239 if (!sf) {
4240 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4241 }
4242
4243 if (opc == 3) {
4244 gen_logic_CC(sf, tcg_rd);
4245 }
4246 }
4247
4248 /*
4249 * Add/subtract (extended register)
4250 *
4251 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4252 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4253 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4254 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4255 *
4256 * sf: 0 -> 32bit, 1 -> 64bit
4257 * op: 0 -> add , 1 -> sub
4258 * S: 1 -> set flags
4259 * opt: 00
4260 * option: extension type (see DecodeRegExtend)
4261 * imm3: optional shift to Rm
4262 *
4263 * Rd = Rn + LSL(extend(Rm), amount)
4264 */
4265 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4266 {
4267 int rd = extract32(insn, 0, 5);
4268 int rn = extract32(insn, 5, 5);
4269 int imm3 = extract32(insn, 10, 3);
4270 int option = extract32(insn, 13, 3);
4271 int rm = extract32(insn, 16, 5);
4272 int opt = extract32(insn, 22, 2);
4273 bool setflags = extract32(insn, 29, 1);
4274 bool sub_op = extract32(insn, 30, 1);
4275 bool sf = extract32(insn, 31, 1);
4276
4277 TCGv_i64 tcg_rm, tcg_rn; /* temps */
4278 TCGv_i64 tcg_rd;
4279 TCGv_i64 tcg_result;
4280
4281 if (imm3 > 4 || opt != 0) {
4282 unallocated_encoding(s);
4283 return;
4284 }
4285
4286 /* non-flag setting ops may use SP */
4287 if (!setflags) {
4288 tcg_rd = cpu_reg_sp(s, rd);
4289 } else {
4290 tcg_rd = cpu_reg(s, rd);
4291 }
4292 tcg_rn = read_cpu_reg_sp(s, rn, sf);
4293
4294 tcg_rm = read_cpu_reg(s, rm, sf);
4295 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4296
4297 tcg_result = tcg_temp_new_i64();
4298
4299 if (!setflags) {
4300 if (sub_op) {
4301 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4302 } else {
4303 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4304 }
4305 } else {
4306 if (sub_op) {
4307 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4308 } else {
4309 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4310 }
4311 }
4312
4313 if (sf) {
4314 tcg_gen_mov_i64(tcg_rd, tcg_result);
4315 } else {
4316 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4317 }
4318
4319 tcg_temp_free_i64(tcg_result);
4320 }
4321
4322 /*
4323 * Add/subtract (shifted register)
4324 *
4325 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4326 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4327 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4328 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4329 *
4330 * sf: 0 -> 32bit, 1 -> 64bit
4331 * op: 0 -> add , 1 -> sub
4332 * S: 1 -> set flags
4333 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4334 * imm6: Shift amount to apply to Rm before the add/sub
4335 */
4336 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4337 {
4338 int rd = extract32(insn, 0, 5);
4339 int rn = extract32(insn, 5, 5);
4340 int imm6 = extract32(insn, 10, 6);
4341 int rm = extract32(insn, 16, 5);
4342 int shift_type = extract32(insn, 22, 2);
4343 bool setflags = extract32(insn, 29, 1);
4344 bool sub_op = extract32(insn, 30, 1);
4345 bool sf = extract32(insn, 31, 1);
4346
4347 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4348 TCGv_i64 tcg_rn, tcg_rm;
4349 TCGv_i64 tcg_result;
4350
4351 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4352 unallocated_encoding(s);
4353 return;
4354 }
4355
4356 tcg_rn = read_cpu_reg(s, rn, sf);
4357 tcg_rm = read_cpu_reg(s, rm, sf);
4358
4359 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4360
4361 tcg_result = tcg_temp_new_i64();
4362
4363 if (!setflags) {
4364 if (sub_op) {
4365 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4366 } else {
4367 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4368 }
4369 } else {
4370 if (sub_op) {
4371 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4372 } else {
4373 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4374 }
4375 }
4376
4377 if (sf) {
4378 tcg_gen_mov_i64(tcg_rd, tcg_result);
4379 } else {
4380 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4381 }
4382
4383 tcg_temp_free_i64(tcg_result);
4384 }
4385
4386 /* Data-processing (3 source)
4387 *
4388 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4389 * +--+------+-----------+------+------+----+------+------+------+
4390 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4391 * +--+------+-----------+------+------+----+------+------+------+
4392 */
4393 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4394 {
4395 int rd = extract32(insn, 0, 5);
4396 int rn = extract32(insn, 5, 5);
4397 int ra = extract32(insn, 10, 5);
4398 int rm = extract32(insn, 16, 5);
4399 int op_id = (extract32(insn, 29, 3) << 4) |
4400 (extract32(insn, 21, 3) << 1) |
4401 extract32(insn, 15, 1);
4402 bool sf = extract32(insn, 31, 1);
4403 bool is_sub = extract32(op_id, 0, 1);
4404 bool is_high = extract32(op_id, 2, 1);
4405 bool is_signed = false;
4406 TCGv_i64 tcg_op1;
4407 TCGv_i64 tcg_op2;
4408 TCGv_i64 tcg_tmp;
4409
4410 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4411 switch (op_id) {
4412 case 0x42: /* SMADDL */
4413 case 0x43: /* SMSUBL */
4414 case 0x44: /* SMULH */
4415 is_signed = true;
4416 break;
4417 case 0x0: /* MADD (32bit) */
4418 case 0x1: /* MSUB (32bit) */
4419 case 0x40: /* MADD (64bit) */
4420 case 0x41: /* MSUB (64bit) */
4421 case 0x4a: /* UMADDL */
4422 case 0x4b: /* UMSUBL */
4423 case 0x4c: /* UMULH */
4424 break;
4425 default:
4426 unallocated_encoding(s);
4427 return;
4428 }
4429
4430 if (is_high) {
4431 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4432 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4433 TCGv_i64 tcg_rn = cpu_reg(s, rn);
4434 TCGv_i64 tcg_rm = cpu_reg(s, rm);
4435
4436 if (is_signed) {
4437 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4438 } else {
4439 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4440 }
4441
4442 tcg_temp_free_i64(low_bits);
4443 return;
4444 }
4445
4446 tcg_op1 = tcg_temp_new_i64();
4447 tcg_op2 = tcg_temp_new_i64();
4448 tcg_tmp = tcg_temp_new_i64();
4449
4450 if (op_id < 0x42) {
4451 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4452 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4453 } else {
4454 if (is_signed) {
4455 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4456 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4457 } else {
4458 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4459 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4460 }
4461 }
4462
4463 if (ra == 31 && !is_sub) {
4464 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4465 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4466 } else {
4467 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4468 if (is_sub) {
4469 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4470 } else {
4471 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4472 }
4473 }
4474
4475 if (!sf) {
4476 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4477 }
4478
4479 tcg_temp_free_i64(tcg_op1);
4480 tcg_temp_free_i64(tcg_op2);
4481 tcg_temp_free_i64(tcg_tmp);
4482 }
4483
4484 /* Add/subtract (with carry)
4485 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
4486 * +--+--+--+------------------------+------+---------+------+-----+
4487 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
4488 * +--+--+--+------------------------+------+---------+------+-----+
4489 * [000000]
4490 */
4491
4492 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4493 {
4494 unsigned int sf, op, setflags, rm, rn, rd;
4495 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4496
4497 if (extract32(insn, 10, 6) != 0) {
4498 unallocated_encoding(s);
4499 return;
4500 }
4501
4502 sf = extract32(insn, 31, 1);
4503 op = extract32(insn, 30, 1);
4504 setflags = extract32(insn, 29, 1);
4505 rm = extract32(insn, 16, 5);
4506 rn = extract32(insn, 5, 5);
4507 rd = extract32(insn, 0, 5);
4508
4509 tcg_rd = cpu_reg(s, rd);
4510 tcg_rn = cpu_reg(s, rn);
4511
4512 if (op) {
4513 tcg_y = new_tmp_a64(s);
4514 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4515 } else {
4516 tcg_y = cpu_reg(s, rm);
4517 }
4518
4519 if (setflags) {
4520 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4521 } else {
4522 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4523 }
4524 }
4525
4526 /* Conditional compare (immediate / register)
4527 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4528 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4529 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
4530 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4531 * [1] y [0] [0]
4532 */
4533 static void disas_cc(DisasContext *s, uint32_t insn)
4534 {
4535 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
4536 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
4537 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
4538 DisasCompare c;
4539
4540 if (!extract32(insn, 29, 1)) {
4541 unallocated_encoding(s);
4542 return;
4543 }
4544 if (insn & (1 << 10 | 1 << 4)) {
4545 unallocated_encoding(s);
4546 return;
4547 }
4548 sf = extract32(insn, 31, 1);
4549 op = extract32(insn, 30, 1);
4550 is_imm = extract32(insn, 11, 1);
4551 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
4552 cond = extract32(insn, 12, 4);
4553 rn = extract32(insn, 5, 5);
4554 nzcv = extract32(insn, 0, 4);
4555
4556 /* Set T0 = !COND. */
4557 tcg_t0 = tcg_temp_new_i32();
4558 arm_test_cc(&c, cond);
4559 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
4560 arm_free_cc(&c);
4561
4562 /* Load the arguments for the new comparison. */
4563 if (is_imm) {
4564 tcg_y = new_tmp_a64(s);
4565 tcg_gen_movi_i64(tcg_y, y);
4566 } else {
4567 tcg_y = cpu_reg(s, y);
4568 }
4569 tcg_rn = cpu_reg(s, rn);
4570
4571 /* Set the flags for the new comparison. */
4572 tcg_tmp = tcg_temp_new_i64();
4573 if (op) {
4574 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4575 } else {
4576 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4577 }
4578 tcg_temp_free_i64(tcg_tmp);
4579
4580 /* If COND was false, force the flags to #nzcv. Compute two masks
4581 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
4582 * For tcg hosts that support ANDC, we can make do with just T1.
4583 * In either case, allow the tcg optimizer to delete any unused mask.
4584 */
4585 tcg_t1 = tcg_temp_new_i32();
4586 tcg_t2 = tcg_temp_new_i32();
4587 tcg_gen_neg_i32(tcg_t1, tcg_t0);
4588 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
4589
4590 if (nzcv & 8) { /* N */
4591 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
4592 } else {
4593 if (TCG_TARGET_HAS_andc_i32) {
4594 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
4595 } else {
4596 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
4597 }
4598 }
4599 if (nzcv & 4) { /* Z */
4600 if (TCG_TARGET_HAS_andc_i32) {
4601 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
4602 } else {
4603 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
4604 }
4605 } else {
4606 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
4607 }
4608 if (nzcv & 2) { /* C */
4609 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
4610 } else {
4611 if (TCG_TARGET_HAS_andc_i32) {
4612 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
4613 } else {
4614 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
4615 }
4616 }
4617 if (nzcv & 1) { /* V */
4618 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
4619 } else {
4620 if (TCG_TARGET_HAS_andc_i32) {
4621 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
4622 } else {
4623 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
4624 }
4625 }
4626 tcg_temp_free_i32(tcg_t0);
4627 tcg_temp_free_i32(tcg_t1);
4628 tcg_temp_free_i32(tcg_t2);
4629 }
4630
4631 /* Conditional select
4632 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
4633 * +----+----+---+-----------------+------+------+-----+------+------+
4634 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
4635 * +----+----+---+-----------------+------+------+-----+------+------+
4636 */
4637 static void disas_cond_select(DisasContext *s, uint32_t insn)
4638 {
4639 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
4640 TCGv_i64 tcg_rd, zero;
4641 DisasCompare64 c;
4642
4643 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
4644 /* S == 1 or op2<1> == 1 */
4645 unallocated_encoding(s);
4646 return;
4647 }
4648 sf = extract32(insn, 31, 1);
4649 else_inv = extract32(insn, 30, 1);
4650 rm = extract32(insn, 16, 5);
4651 cond = extract32(insn, 12, 4);
4652 else_inc = extract32(insn, 10, 1);
4653 rn = extract32(insn, 5, 5);
4654 rd = extract32(insn, 0, 5);
4655
4656 tcg_rd = cpu_reg(s, rd);
4657
4658 a64_test_cc(&c, cond);
4659 zero = tcg_const_i64(0);
4660
4661 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
4662 /* CSET & CSETM. */
4663 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
4664 if (else_inv) {
4665 tcg_gen_neg_i64(tcg_rd, tcg_rd);
4666 }
4667 } else {
4668 TCGv_i64 t_true = cpu_reg(s, rn);
4669 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
4670 if (else_inv && else_inc) {
4671 tcg_gen_neg_i64(t_false, t_false);
4672 } else if (else_inv) {
4673 tcg_gen_not_i64(t_false, t_false);
4674 } else if (else_inc) {
4675 tcg_gen_addi_i64(t_false, t_false, 1);
4676 }
4677 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
4678 }
4679
4680 tcg_temp_free_i64(zero);
4681 a64_free_cc(&c);
4682
4683 if (!sf) {
4684 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4685 }
4686 }
4687
4688 static void handle_clz(DisasContext *s, unsigned int sf,
4689 unsigned int rn, unsigned int rd)
4690 {
4691 TCGv_i64 tcg_rd, tcg_rn;
4692 tcg_rd = cpu_reg(s, rd);
4693 tcg_rn = cpu_reg(s, rn);
4694
4695 if (sf) {
4696 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
4697 } else {
4698 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4699 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4700 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
4701 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4702 tcg_temp_free_i32(tcg_tmp32);
4703 }
4704 }
4705
4706 static void handle_cls(DisasContext *s, unsigned int sf,
4707 unsigned int rn, unsigned int rd)
4708 {
4709 TCGv_i64 tcg_rd, tcg_rn;
4710 tcg_rd = cpu_reg(s, rd);
4711 tcg_rn = cpu_reg(s, rn);
4712
4713 if (sf) {
4714 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
4715 } else {
4716 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4717 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4718 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
4719 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4720 tcg_temp_free_i32(tcg_tmp32);
4721 }
4722 }
4723
4724 static void handle_rbit(DisasContext *s, unsigned int sf,
4725 unsigned int rn, unsigned int rd)
4726 {
4727 TCGv_i64 tcg_rd, tcg_rn;
4728 tcg_rd = cpu_reg(s, rd);
4729 tcg_rn = cpu_reg(s, rn);
4730
4731 if (sf) {
4732 gen_helper_rbit64(tcg_rd, tcg_rn);
4733 } else {
4734 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4735 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4736 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
4737 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4738 tcg_temp_free_i32(tcg_tmp32);
4739 }
4740 }
4741
4742 /* REV with sf==1, opcode==3 ("REV64") */
4743 static void handle_rev64(DisasContext *s, unsigned int sf,
4744 unsigned int rn, unsigned int rd)
4745 {
4746 if (!sf) {
4747 unallocated_encoding(s);
4748 return;
4749 }
4750 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
4751 }
4752
4753 /* REV with sf==0, opcode==2
4754 * REV32 (sf==1, opcode==2)
4755 */
4756 static void handle_rev32(DisasContext *s, unsigned int sf,
4757 unsigned int rn, unsigned int rd)
4758 {
4759 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4760
4761 if (sf) {
4762 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4763 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4764
4765 /* bswap32_i64 requires zero high word */
4766 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
4767 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
4768 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4769 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
4770 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
4771
4772 tcg_temp_free_i64(tcg_tmp);
4773 } else {
4774 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
4775 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
4776 }
4777 }
4778
4779 /* REV16 (opcode==1) */
4780 static void handle_rev16(DisasContext *s, unsigned int sf,
4781 unsigned int rn, unsigned int rd)
4782 {
4783 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4784 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4785 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4786 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
4787
4788 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
4789 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
4790 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
4791 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
4792 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
4793
4794 tcg_temp_free_i64(mask);
4795 tcg_temp_free_i64(tcg_tmp);
4796 }
4797
4798 /* Data-processing (1 source)
4799 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4800 * +----+---+---+-----------------+---------+--------+------+------+
4801 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
4802 * +----+---+---+-----------------+---------+--------+------+------+
4803 */
4804 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
4805 {
4806 unsigned int sf, opcode, opcode2, rn, rd;
4807 TCGv_i64 tcg_rd;
4808
4809 if (extract32(insn, 29, 1)) {
4810 unallocated_encoding(s);
4811 return;
4812 }
4813
4814 sf = extract32(insn, 31, 1);
4815 opcode = extract32(insn, 10, 6);
4816 opcode2 = extract32(insn, 16, 5);
4817 rn = extract32(insn, 5, 5);
4818 rd = extract32(insn, 0, 5);
4819
4820 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
4821
4822 switch (MAP(sf, opcode2, opcode)) {
4823 case MAP(0, 0x00, 0x00): /* RBIT */
4824 case MAP(1, 0x00, 0x00):
4825 handle_rbit(s, sf, rn, rd);
4826 break;
4827 case MAP(0, 0x00, 0x01): /* REV16 */
4828 case MAP(1, 0x00, 0x01):
4829 handle_rev16(s, sf, rn, rd);
4830 break;
4831 case MAP(0, 0x00, 0x02): /* REV/REV32 */
4832 case MAP(1, 0x00, 0x02):
4833 handle_rev32(s, sf, rn, rd);
4834 break;
4835 case MAP(1, 0x00, 0x03): /* REV64 */
4836 handle_rev64(s, sf, rn, rd);
4837 break;
4838 case MAP(0, 0x00, 0x04): /* CLZ */
4839 case MAP(1, 0x00, 0x04):
4840 handle_clz(s, sf, rn, rd);
4841 break;
4842 case MAP(0, 0x00, 0x05): /* CLS */
4843 case MAP(1, 0x00, 0x05):
4844 handle_cls(s, sf, rn, rd);
4845 break;
4846 case MAP(1, 0x01, 0x00): /* PACIA */
4847 if (s->pauth_active) {
4848 tcg_rd = cpu_reg(s, rd);
4849 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4850 } else if (!dc_isar_feature(aa64_pauth, s)) {
4851 goto do_unallocated;
4852 }
4853 break;
4854 case MAP(1, 0x01, 0x01): /* PACIB */
4855 if (s->pauth_active) {
4856 tcg_rd = cpu_reg(s, rd);
4857 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4858 } else if (!dc_isar_feature(aa64_pauth, s)) {
4859 goto do_unallocated;
4860 }
4861 break;
4862 case MAP(1, 0x01, 0x02): /* PACDA */
4863 if (s->pauth_active) {
4864 tcg_rd = cpu_reg(s, rd);
4865 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4866 } else if (!dc_isar_feature(aa64_pauth, s)) {
4867 goto do_unallocated;
4868 }
4869 break;
4870 case MAP(1, 0x01, 0x03): /* PACDB */
4871 if (s->pauth_active) {
4872 tcg_rd = cpu_reg(s, rd);
4873 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4874 } else if (!dc_isar_feature(aa64_pauth, s)) {
4875 goto do_unallocated;
4876 }
4877 break;
4878 case MAP(1, 0x01, 0x04): /* AUTIA */
4879 if (s->pauth_active) {
4880 tcg_rd = cpu_reg(s, rd);
4881 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4882 } else if (!dc_isar_feature(aa64_pauth, s)) {
4883 goto do_unallocated;
4884 }
4885 break;
4886 case MAP(1, 0x01, 0x05): /* AUTIB */
4887 if (s->pauth_active) {
4888 tcg_rd = cpu_reg(s, rd);
4889 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4890 } else if (!dc_isar_feature(aa64_pauth, s)) {
4891 goto do_unallocated;
4892 }
4893 break;
4894 case MAP(1, 0x01, 0x06): /* AUTDA */
4895 if (s->pauth_active) {
4896 tcg_rd = cpu_reg(s, rd);
4897 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4898 } else if (!dc_isar_feature(aa64_pauth, s)) {
4899 goto do_unallocated;
4900 }
4901 break;
4902 case MAP(1, 0x01, 0x07): /* AUTDB */
4903 if (s->pauth_active) {
4904 tcg_rd = cpu_reg(s, rd);
4905 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4906 } else if (!dc_isar_feature(aa64_pauth, s)) {
4907 goto do_unallocated;
4908 }
4909 break;
4910 case MAP(1, 0x01, 0x08): /* PACIZA */
4911 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4912 goto do_unallocated;
4913 } else if (s->pauth_active) {
4914 tcg_rd = cpu_reg(s, rd);
4915 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4916 }
4917 break;
4918 case MAP(1, 0x01, 0x09): /* PACIZB */
4919 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4920 goto do_unallocated;
4921 } else if (s->pauth_active) {
4922 tcg_rd = cpu_reg(s, rd);
4923 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4924 }
4925 break;
4926 case MAP(1, 0x01, 0x0a): /* PACDZA */
4927 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4928 goto do_unallocated;
4929 } else if (s->pauth_active) {
4930 tcg_rd = cpu_reg(s, rd);
4931 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4932 }
4933 break;
4934 case MAP(1, 0x01, 0x0b): /* PACDZB */
4935 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4936 goto do_unallocated;
4937 } else if (s->pauth_active) {
4938 tcg_rd = cpu_reg(s, rd);
4939 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4940 }
4941 break;
4942 case MAP(1, 0x01, 0x0c): /* AUTIZA */
4943 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4944 goto do_unallocated;
4945 } else if (s->pauth_active) {
4946 tcg_rd = cpu_reg(s, rd);
4947 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4948 }
4949 break;
4950 case MAP(1, 0x01, 0x0d): /* AUTIZB */
4951 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4952 goto do_unallocated;
4953 } else if (s->pauth_active) {
4954 tcg_rd = cpu_reg(s, rd);
4955 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4956 }
4957 break;
4958 case MAP(1, 0x01, 0x0e): /* AUTDZA */
4959 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4960 goto do_unallocated;
4961 } else if (s->pauth_active) {
4962 tcg_rd = cpu_reg(s, rd);
4963 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4964 }
4965 break;
4966 case MAP(1, 0x01, 0x0f): /* AUTDZB */
4967 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4968 goto do_unallocated;
4969 } else if (s->pauth_active) {
4970 tcg_rd = cpu_reg(s, rd);
4971 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4972 }
4973 break;
4974 case MAP(1, 0x01, 0x10): /* XPACI */
4975 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4976 goto do_unallocated;
4977 } else if (s->pauth_active) {
4978 tcg_rd = cpu_reg(s, rd);
4979 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
4980 }
4981 break;
4982 case MAP(1, 0x01, 0x11): /* XPACD */
4983 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4984 goto do_unallocated;
4985 } else if (s->pauth_active) {
4986 tcg_rd = cpu_reg(s, rd);
4987 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
4988 }
4989 break;
4990 default:
4991 do_unallocated:
4992 unallocated_encoding(s);
4993 break;
4994 }
4995
4996 #undef MAP
4997 }
4998
4999 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5000 unsigned int rm, unsigned int rn, unsigned int rd)
5001 {
5002 TCGv_i64 tcg_n, tcg_m, tcg_rd;
5003 tcg_rd = cpu_reg(s, rd);
5004
5005 if (!sf && is_signed) {
5006 tcg_n = new_tmp_a64(s);
5007 tcg_m = new_tmp_a64(s);
5008 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5009 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5010 } else {
5011 tcg_n = read_cpu_reg(s, rn, sf);
5012 tcg_m = read_cpu_reg(s, rm, sf);
5013 }
5014
5015 if (is_signed) {
5016 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5017 } else {
5018 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5019 }
5020
5021 if (!sf) { /* zero extend final result */
5022 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5023 }
5024 }
5025
5026 /* LSLV, LSRV, ASRV, RORV */
5027 static void handle_shift_reg(DisasContext *s,
5028 enum a64_shift_type shift_type, unsigned int sf,
5029 unsigned int rm, unsigned int rn, unsigned int rd)
5030 {
5031 TCGv_i64 tcg_shift = tcg_temp_new_i64();
5032 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5033 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5034
5035 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5036 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5037 tcg_temp_free_i64(tcg_shift);
5038 }
5039
5040 /* CRC32[BHWX], CRC32C[BHWX] */
5041 static void handle_crc32(DisasContext *s,
5042 unsigned int sf, unsigned int sz, bool crc32c,
5043 unsigned int rm, unsigned int rn, unsigned int rd)
5044 {
5045 TCGv_i64 tcg_acc, tcg_val;
5046 TCGv_i32 tcg_bytes;
5047
5048 if (!dc_isar_feature(aa64_crc32, s)
5049 || (sf == 1 && sz != 3)
5050 || (sf == 0 && sz == 3)) {
5051 unallocated_encoding(s);
5052 return;
5053 }
5054
5055 if (sz == 3) {
5056 tcg_val = cpu_reg(s, rm);
5057 } else {
5058 uint64_t mask;
5059 switch (sz) {
5060 case 0:
5061 mask = 0xFF;
5062 break;
5063 case 1:
5064 mask = 0xFFFF;
5065 break;
5066 case 2:
5067 mask = 0xFFFFFFFF;
5068 break;
5069 default:
5070 g_assert_not_reached();
5071 }
5072 tcg_val = new_tmp_a64(s);
5073 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5074 }
5075
5076 tcg_acc = cpu_reg(s, rn);
5077 tcg_bytes = tcg_const_i32(1 << sz);
5078
5079 if (crc32c) {
5080 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5081 } else {
5082 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5083 }
5084
5085 tcg_temp_free_i32(tcg_bytes);
5086 }
5087
5088 /* Data-processing (2 source)
5089 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5090 * +----+---+---+-----------------+------+--------+------+------+
5091 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5092 * +----+---+---+-----------------+------+--------+------+------+
5093 */
5094 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5095 {
5096 unsigned int sf, rm, opcode, rn, rd;
5097 sf = extract32(insn, 31, 1);
5098 rm = extract32(insn, 16, 5);
5099 opcode = extract32(insn, 10, 6);
5100 rn = extract32(insn, 5, 5);
5101 rd = extract32(insn, 0, 5);
5102
5103 if (extract32(insn, 29, 1)) {
5104 unallocated_encoding(s);
5105 return;
5106 }
5107
5108 switch (opcode) {
5109 case 2: /* UDIV */
5110 handle_div(s, false, sf, rm, rn, rd);
5111 break;
5112 case 3: /* SDIV */
5113 handle_div(s, true, sf, rm, rn, rd);
5114 break;
5115 case 8: /* LSLV */
5116 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5117 break;
5118 case 9: /* LSRV */
5119 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5120 break;
5121 case 10: /* ASRV */
5122 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5123 break;
5124 case 11: /* RORV */
5125 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5126 break;
5127 case 12: /* PACGA */
5128 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5129 goto do_unallocated;
5130 }
5131 gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5132 cpu_reg(s, rn), cpu_reg_sp(s, rm));
5133 break;
5134 case 16:
5135 case 17:
5136 case 18:
5137 case 19:
5138 case 20:
5139 case 21:
5140 case 22:
5141 case 23: /* CRC32 */
5142 {
5143 int sz = extract32(opcode, 0, 2);
5144 bool crc32c = extract32(opcode, 2, 1);
5145 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5146 break;
5147 }
5148 default:
5149 do_unallocated:
5150 unallocated_encoding(s);
5151 break;
5152 }
5153 }
5154
5155 /* Data processing - register */
5156 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5157 {
5158 switch (extract32(insn, 24, 5)) {
5159 case 0x0a: /* Logical (shifted register) */
5160 disas_logic_reg(s, insn);
5161 break;
5162 case 0x0b: /* Add/subtract */
5163 if (insn & (1 << 21)) { /* (extended register) */
5164 disas_add_sub_ext_reg(s, insn);
5165 } else {
5166 disas_add_sub_reg(s, insn);
5167 }
5168 break;
5169 case 0x1b: /* Data-processing (3 source) */
5170 disas_data_proc_3src(s, insn);
5171 break;
5172 case 0x1a:
5173 switch (extract32(insn, 21, 3)) {
5174 case 0x0: /* Add/subtract (with carry) */
5175 disas_adc_sbc(s, insn);
5176 break;
5177 case 0x2: /* Conditional compare */
5178 disas_cc(s, insn); /* both imm and reg forms */
5179 break;
5180 case 0x4: /* Conditional select */
5181 disas_cond_select(s, insn);
5182 break;
5183 case 0x6: /* Data-processing */
5184 if (insn & (1 << 30)) { /* (1 source) */
5185 disas_data_proc_1src(s, insn);
5186 } else { /* (2 source) */
5187 disas_data_proc_2src(s, insn);
5188 }
5189 break;
5190 default:
5191 unallocated_encoding(s);
5192 break;
5193 }
5194 break;
5195 default:
5196 unallocated_encoding(s);
5197 break;
5198 }
5199 }
5200
5201 static void handle_fp_compare(DisasContext *s, int size,
5202 unsigned int rn, unsigned int rm,
5203 bool cmp_with_zero, bool signal_all_nans)
5204 {
5205 TCGv_i64 tcg_flags = tcg_temp_new_i64();
5206 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
5207
5208 if (size == MO_64) {
5209 TCGv_i64 tcg_vn, tcg_vm;
5210
5211 tcg_vn = read_fp_dreg(s, rn);
5212 if (cmp_with_zero) {
5213 tcg_vm = tcg_const_i64(0);
5214 } else {
5215 tcg_vm = read_fp_dreg(s, rm);
5216 }
5217 if (signal_all_nans) {
5218 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5219 } else {
5220 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5221 }
5222 tcg_temp_free_i64(tcg_vn);
5223 tcg_temp_free_i64(tcg_vm);
5224 } else {
5225 TCGv_i32 tcg_vn = tcg_temp_new_i32();
5226 TCGv_i32 tcg_vm = tcg_temp_new_i32();
5227
5228 read_vec_element_i32(s, tcg_vn, rn, 0, size);
5229 if (cmp_with_zero) {
5230 tcg_gen_movi_i32(tcg_vm, 0);
5231 } else {
5232 read_vec_element_i32(s, tcg_vm, rm, 0, size);
5233 }
5234
5235 switch (size) {
5236 case MO_32:
5237 if (signal_all_nans) {
5238 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5239 } else {
5240 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5241 }
5242 break;
5243 case MO_16:
5244 if (signal_all_nans) {
5245 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5246 } else {
5247 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5248 }
5249 break;
5250 default:
5251 g_assert_not_reached();
5252 }
5253
5254 tcg_temp_free_i32(tcg_vn);
5255 tcg_temp_free_i32(tcg_vm);
5256 }
5257
5258 tcg_temp_free_ptr(fpst);
5259
5260 gen_set_nzcv(tcg_flags);
5261
5262 tcg_temp_free_i64(tcg_flags);
5263 }
5264
5265 /* Floating point compare
5266 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
5267 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5268 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
5269 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5270 */
5271 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5272 {
5273 unsigned int mos, type, rm, op, rn, opc, op2r;
5274 int size;
5275
5276 mos = extract32(insn, 29, 3);
5277 type = extract32(insn, 22, 2);
5278 rm = extract32(insn, 16, 5);
5279 op = extract32(insn, 14, 2);
5280 rn = extract32(insn, 5, 5);
5281 opc = extract32(insn, 3, 2);
5282 op2r = extract32(insn, 0, 3);
5283
5284 if (mos || op || op2r) {
5285 unallocated_encoding(s);
5286 return;
5287 }
5288
5289 switch (type) {
5290 case 0:
5291 size = MO_32;
5292 break;
5293 case 1:
5294 size = MO_64;
5295 break;
5296 case 3:
5297 size = MO_16;
5298 if (dc_isar_feature(aa64_fp16, s)) {
5299 break;
5300 }
5301 /* fallthru */
5302 default:
5303 unallocated_encoding(s);
5304 return;
5305 }
5306
5307 if (!fp_access_check(s)) {
5308 return;
5309 }
5310
5311 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5312 }
5313
5314 /* Floating point conditional compare
5315 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5316 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5317 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
5318 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5319 */
5320 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5321 {
5322 unsigned int mos, type, rm, cond, rn, op, nzcv;
5323 TCGv_i64 tcg_flags;
5324 TCGLabel *label_continue = NULL;
5325 int size;
5326
5327 mos = extract32(insn, 29, 3);
5328 type = extract32(insn, 22, 2);
5329 rm = extract32(insn, 16, 5);
5330 cond = extract32(insn, 12, 4);
5331 rn = extract32(insn, 5, 5);
5332 op = extract32(insn, 4, 1);
5333 nzcv = extract32(insn, 0, 4);
5334
5335 if (mos) {
5336 unallocated_encoding(s);
5337 return;
5338 }
5339
5340 switch (type) {
5341 case 0:
5342 size = MO_32;
5343 break;
5344 case 1:
5345 size = MO_64;
5346 break;
5347 case 3:
5348 size = MO_16;
5349 if (dc_isar_feature(aa64_fp16, s)) {
5350 break;
5351 }
5352 /* fallthru */
5353 default:
5354 unallocated_encoding(s);
5355 return;
5356 }
5357
5358 if (!fp_access_check(s)) {
5359 return;
5360 }
5361
5362 if (cond < 0x0e) { /* not always */
5363 TCGLabel *label_match = gen_new_label();
5364 label_continue = gen_new_label();
5365 arm_gen_test_cc(cond, label_match);
5366 /* nomatch: */
5367 tcg_flags = tcg_const_i64(nzcv << 28);
5368 gen_set_nzcv(tcg_flags);
5369 tcg_temp_free_i64(tcg_flags);
5370 tcg_gen_br(label_continue);
5371 gen_set_label(label_match);
5372 }
5373
5374 handle_fp_compare(s, size, rn, rm, false, op);
5375
5376 if (cond < 0x0e) {
5377 gen_set_label(label_continue);
5378 }
5379 }
5380
5381 /* Floating point conditional select
5382 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5383 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5384 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
5385 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5386 */
5387 static void disas_fp_csel(DisasContext *s, uint32_t insn)
5388 {
5389 unsigned int mos, type, rm, cond, rn, rd;
5390 TCGv_i64 t_true, t_false, t_zero;
5391 DisasCompare64 c;
5392 TCGMemOp sz;
5393
5394 mos = extract32(insn, 29, 3);
5395 type = extract32(insn, 22, 2);
5396 rm = extract32(insn, 16, 5);
5397 cond = extract32(insn, 12, 4);
5398 rn = extract32(insn, 5, 5);
5399 rd = extract32(insn, 0, 5);
5400
5401 if (mos) {
5402 unallocated_encoding(s);
5403 return;
5404 }
5405
5406 switch (type) {
5407 case 0:
5408 sz = MO_32;
5409 break;
5410 case 1:
5411 sz = MO_64;
5412 break;
5413 case 3:
5414 sz = MO_16;
5415 if (dc_isar_feature(aa64_fp16, s)) {
5416 break;
5417 }
5418 /* fallthru */
5419 default:
5420 unallocated_encoding(s);
5421 return;
5422 }
5423
5424 if (!fp_access_check(s)) {
5425 return;
5426 }
5427
5428 /* Zero extend sreg & hreg inputs to 64 bits now. */
5429 t_true = tcg_temp_new_i64();
5430 t_false = tcg_temp_new_i64();
5431 read_vec_element(s, t_true, rn, 0, sz);
5432 read_vec_element(s, t_false, rm, 0, sz);
5433
5434 a64_test_cc(&c, cond);
5435 t_zero = tcg_const_i64(0);
5436 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
5437 tcg_temp_free_i64(t_zero);
5438 tcg_temp_free_i64(t_false);
5439 a64_free_cc(&c);
5440
5441 /* Note that sregs & hregs write back zeros to the high bits,
5442 and we've already done the zero-extension. */
5443 write_fp_dreg(s, rd, t_true);
5444 tcg_temp_free_i64(t_true);
5445 }
5446
5447 /* Floating-point data-processing (1 source) - half precision */
5448 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
5449 {
5450 TCGv_ptr fpst = NULL;
5451 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
5452 TCGv_i32 tcg_res = tcg_temp_new_i32();
5453
5454 switch (opcode) {
5455 case 0x0: /* FMOV */
5456 tcg_gen_mov_i32(tcg_res, tcg_op);
5457 break;
5458 case 0x1: /* FABS */
5459 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
5460 break;
5461 case 0x2: /* FNEG */
5462 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
5463 break;
5464 case 0x3: /* FSQRT */
5465 fpst = get_fpstatus_ptr(true);
5466 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
5467 break;
5468 case 0x8: /* FRINTN */
5469 case 0x9: /* FRINTP */
5470 case 0xa: /* FRINTM */
5471 case 0xb: /* FRINTZ */
5472 case 0xc: /* FRINTA */
5473 {
5474 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5475 fpst = get_fpstatus_ptr(true);
5476
5477 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5478 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5479
5480 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5481 tcg_temp_free_i32(tcg_rmode);
5482 break;
5483 }
5484 case 0xe: /* FRINTX */
5485 fpst = get_fpstatus_ptr(true);
5486 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
5487 break;
5488 case 0xf: /* FRINTI */
5489 fpst = get_fpstatus_ptr(true);
5490 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5491 break;
5492 default:
5493 abort();
5494 }
5495
5496 write_fp_sreg(s, rd, tcg_res);
5497
5498 if (fpst) {
5499 tcg_temp_free_ptr(fpst);
5500 }
5501 tcg_temp_free_i32(tcg_op);
5502 tcg_temp_free_i32(tcg_res);
5503 }
5504
5505 /* Floating-point data-processing (1 source) - single precision */
5506 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
5507 {
5508 TCGv_ptr fpst;
5509 TCGv_i32 tcg_op;
5510 TCGv_i32 tcg_res;
5511
5512 fpst = get_fpstatus_ptr(false);
5513 tcg_op = read_fp_sreg(s, rn);
5514 tcg_res = tcg_temp_new_i32();
5515
5516 switch (opcode) {
5517 case 0x0: /* FMOV */
5518 tcg_gen_mov_i32(tcg_res, tcg_op);
5519 break;
5520 case 0x1: /* FABS */
5521 gen_helper_vfp_abss(tcg_res, tcg_op);
5522 break;
5523 case 0x2: /* FNEG */
5524 gen_helper_vfp_negs(tcg_res, tcg_op);
5525 break;
5526 case 0x3: /* FSQRT */
5527 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
5528 break;
5529 case 0x8: /* FRINTN */
5530 case 0x9: /* FRINTP */
5531 case 0xa: /* FRINTM */
5532 case 0xb: /* FRINTZ */
5533 case 0xc: /* FRINTA */
5534 {
5535 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5536
5537 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5538 gen_helper_rints(tcg_res, tcg_op, fpst);
5539
5540 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5541 tcg_temp_free_i32(tcg_rmode);
5542 break;
5543 }
5544 case 0xe: /* FRINTX */
5545 gen_helper_rints_exact(tcg_res, tcg_op, fpst);
5546 break;
5547 case 0xf: /* FRINTI */
5548 gen_helper_rints(tcg_res, tcg_op, fpst);
5549 break;
5550 default:
5551 abort();
5552 }
5553
5554 write_fp_sreg(s, rd, tcg_res);
5555
5556 tcg_temp_free_ptr(fpst);
5557 tcg_temp_free_i32(tcg_op);
5558 tcg_temp_free_i32(tcg_res);
5559 }
5560
5561 /* Floating-point data-processing (1 source) - double precision */
5562 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
5563 {
5564 TCGv_ptr fpst;
5565 TCGv_i64 tcg_op;
5566 TCGv_i64 tcg_res;
5567
5568 switch (opcode) {
5569 case 0x0: /* FMOV */
5570 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
5571 return;
5572 }
5573
5574 fpst = get_fpstatus_ptr(false);
5575 tcg_op = read_fp_dreg(s, rn);
5576 tcg_res = tcg_temp_new_i64();
5577
5578 switch (opcode) {
5579 case 0x1: /* FABS */
5580 gen_helper_vfp_absd(tcg_res, tcg_op);
5581 break;
5582 case 0x2: /* FNEG */
5583 gen_helper_vfp_negd(tcg_res, tcg_op);
5584 break;
5585 case 0x3: /* FSQRT */
5586 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
5587 break;
5588 case 0x8: /* FRINTN */
5589 case 0x9: /* FRINTP */
5590 case 0xa: /* FRINTM */
5591 case 0xb: /* FRINTZ */
5592 case 0xc: /* FRINTA */
5593 {
5594 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5595
5596 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5597 gen_helper_rintd(tcg_res, tcg_op, fpst);
5598
5599 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5600 tcg_temp_free_i32(tcg_rmode);
5601 break;
5602 }
5603 case 0xe: /* FRINTX */
5604 gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
5605 break;
5606 case 0xf: /* FRINTI */
5607 gen_helper_rintd(tcg_res, tcg_op, fpst);
5608 break;
5609 default:
5610 abort();
5611 }
5612
5613 write_fp_dreg(s, rd, tcg_res);
5614
5615 tcg_temp_free_ptr(fpst);
5616 tcg_temp_free_i64(tcg_op);
5617 tcg_temp_free_i64(tcg_res);
5618 }
5619
5620 static void handle_fp_fcvt(DisasContext *s, int opcode,
5621 int rd, int rn, int dtype, int ntype)
5622 {
5623 switch (ntype) {
5624 case 0x0:
5625 {
5626 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5627 if (dtype == 1) {
5628 /* Single to double */
5629 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5630 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
5631 write_fp_dreg(s, rd, tcg_rd);
5632 tcg_temp_free_i64(tcg_rd);
5633 } else {
5634 /* Single to half */
5635 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5636 TCGv_i32 ahp = get_ahp_flag();
5637 TCGv_ptr fpst = get_fpstatus_ptr(false);
5638
5639 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5640 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5641 write_fp_sreg(s, rd, tcg_rd);
5642 tcg_temp_free_i32(tcg_rd);
5643 tcg_temp_free_i32(ahp);
5644 tcg_temp_free_ptr(fpst);
5645 }
5646 tcg_temp_free_i32(tcg_rn);
5647 break;
5648 }
5649 case 0x1:
5650 {
5651 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
5652 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5653 if (dtype == 0) {
5654 /* Double to single */
5655 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
5656 } else {
5657 TCGv_ptr fpst = get_fpstatus_ptr(false);
5658 TCGv_i32 ahp = get_ahp_flag();
5659 /* Double to half */
5660 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5661 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5662 tcg_temp_free_ptr(fpst);
5663 tcg_temp_free_i32(ahp);
5664 }
5665 write_fp_sreg(s, rd, tcg_rd);
5666 tcg_temp_free_i32(tcg_rd);
5667 tcg_temp_free_i64(tcg_rn);
5668 break;
5669 }
5670 case 0x3:
5671 {
5672 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5673 TCGv_ptr tcg_fpst = get_fpstatus_ptr(false);
5674 TCGv_i32 tcg_ahp = get_ahp_flag();
5675 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
5676 if (dtype == 0) {
5677 /* Half to single */
5678 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5679 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5680 write_fp_sreg(s, rd, tcg_rd);
5681 tcg_temp_free_ptr(tcg_fpst);
5682 tcg_temp_free_i32(tcg_ahp);
5683 tcg_temp_free_i32(tcg_rd);
5684 } else {
5685 /* Half to double */
5686 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5687 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5688 write_fp_dreg(s, rd, tcg_rd);
5689 tcg_temp_free_i64(tcg_rd);
5690 }
5691 tcg_temp_free_i32(tcg_rn);
5692 break;
5693 }
5694 default:
5695 abort();
5696 }
5697 }
5698
5699 /* Floating point data-processing (1 source)
5700 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
5701 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5702 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
5703 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5704 */
5705 static void disas_fp_1src(DisasContext *s, uint32_t insn)
5706 {
5707 int mos = extract32(insn, 29, 3);
5708 int type = extract32(insn, 22, 2);
5709 int opcode = extract32(insn, 15, 6);
5710 int rn = extract32(insn, 5, 5);
5711 int rd = extract32(insn, 0, 5);
5712
5713 if (mos) {
5714 unallocated_encoding(s);
5715 return;
5716 }
5717
5718 switch (opcode) {
5719 case 0x4: case 0x5: case 0x7:
5720 {
5721 /* FCVT between half, single and double precision */
5722 int dtype = extract32(opcode, 0, 2);
5723 if (type == 2 || dtype == type) {
5724 unallocated_encoding(s);
5725 return;
5726 }
5727 if (!fp_access_check(s)) {
5728 return;
5729 }
5730
5731 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
5732 break;
5733 }
5734 case 0x0 ... 0x3:
5735 case 0x8 ... 0xc:
5736 case 0xe ... 0xf:
5737 /* 32-to-32 and 64-to-64 ops */
5738 switch (type) {
5739 case 0:
5740 if (!fp_access_check(s)) {
5741 return;
5742 }
5743
5744 handle_fp_1src_single(s, opcode, rd, rn);
5745 break;
5746 case 1:
5747 if (!fp_access_check(s)) {
5748 return;
5749 }
5750
5751 handle_fp_1src_double(s, opcode, rd, rn);
5752 break;
5753 case 3:
5754 if (!dc_isar_feature(aa64_fp16, s)) {
5755 unallocated_encoding(s);
5756 return;
5757 }
5758
5759 if (!fp_access_check(s)) {
5760 return;
5761 }
5762
5763 handle_fp_1src_half(s, opcode, rd, rn);
5764 break;
5765 default:
5766 unallocated_encoding(s);
5767 }
5768 break;
5769 default:
5770 unallocated_encoding(s);
5771 break;
5772 }
5773 }
5774
5775 /* Floating-point data-processing (2 source) - single precision */
5776 static void handle_fp_2src_single(DisasContext *s, int opcode,
5777 int rd, int rn, int rm)
5778 {
5779 TCGv_i32 tcg_op1;
5780 TCGv_i32 tcg_op2;
5781 TCGv_i32 tcg_res;
5782 TCGv_ptr fpst;
5783
5784 tcg_res = tcg_temp_new_i32();
5785 fpst = get_fpstatus_ptr(false);
5786 tcg_op1 = read_fp_sreg(s, rn);
5787 tcg_op2 = read_fp_sreg(s, rm);
5788
5789 switch (opcode) {
5790 case 0x0: /* FMUL */
5791 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
5792 break;
5793 case 0x1: /* FDIV */
5794 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
5795 break;
5796 case 0x2: /* FADD */
5797 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
5798 break;
5799 case 0x3: /* FSUB */
5800 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
5801 break;
5802 case 0x4: /* FMAX */
5803 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
5804 break;
5805 case 0x5: /* FMIN */
5806 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
5807 break;
5808 case 0x6: /* FMAXNM */
5809 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
5810 break;
5811 case 0x7: /* FMINNM */
5812 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
5813 break;
5814 case 0x8: /* FNMUL */
5815 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
5816 gen_helper_vfp_negs(tcg_res, tcg_res);
5817 break;
5818 }
5819
5820 write_fp_sreg(s, rd, tcg_res);
5821
5822 tcg_temp_free_ptr(fpst);
5823 tcg_temp_free_i32(tcg_op1);
5824 tcg_temp_free_i32(tcg_op2);
5825 tcg_temp_free_i32(tcg_res);
5826 }
5827
5828 /* Floating-point data-processing (2 source) - double precision */
5829 static void handle_fp_2src_double(DisasContext *s, int opcode,
5830 int rd, int rn, int rm)
5831 {
5832 TCGv_i64 tcg_op1;
5833 TCGv_i64 tcg_op2;
5834 TCGv_i64 tcg_res;
5835 TCGv_ptr fpst;
5836
5837 tcg_res = tcg_temp_new_i64();
5838 fpst = get_fpstatus_ptr(false);
5839 tcg_op1 = read_fp_dreg(s, rn);
5840 tcg_op2 = read_fp_dreg(s, rm);
5841
5842 switch (opcode) {
5843 case 0x0: /* FMUL */
5844 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5845 break;
5846 case 0x1: /* FDIV */
5847 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
5848 break;
5849 case 0x2: /* FADD */
5850 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
5851 break;
5852 case 0x3: /* FSUB */
5853 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
5854 break;
5855 case 0x4: /* FMAX */
5856 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
5857 break;
5858 case 0x5: /* FMIN */
5859 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
5860 break;
5861 case 0x6: /* FMAXNM */
5862 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5863 break;
5864 case 0x7: /* FMINNM */
5865 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5866 break;
5867 case 0x8: /* FNMUL */
5868 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5869 gen_helper_vfp_negd(tcg_res, tcg_res);
5870 break;
5871 }
5872
5873 write_fp_dreg(s, rd, tcg_res);
5874
5875 tcg_temp_free_ptr(fpst);
5876 tcg_temp_free_i64(tcg_op1);
5877 tcg_temp_free_i64(tcg_op2);
5878 tcg_temp_free_i64(tcg_res);
5879 }
5880
5881 /* Floating-point data-processing (2 source) - half precision */
5882 static void handle_fp_2src_half(DisasContext *s, int opcode,
5883 int rd, int rn, int rm)
5884 {
5885 TCGv_i32 tcg_op1;
5886 TCGv_i32 tcg_op2;
5887 TCGv_i32 tcg_res;
5888 TCGv_ptr fpst;
5889
5890 tcg_res = tcg_temp_new_i32();
5891 fpst = get_fpstatus_ptr(true);
5892 tcg_op1 = read_fp_hreg(s, rn);
5893 tcg_op2 = read_fp_hreg(s, rm);
5894
5895 switch (opcode) {
5896 case 0x0: /* FMUL */
5897 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
5898 break;
5899 case 0x1: /* FDIV */
5900 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
5901 break;
5902 case 0x2: /* FADD */
5903 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
5904 break;
5905 case 0x3: /* FSUB */
5906 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
5907 break;
5908 case 0x4: /* FMAX */
5909 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
5910 break;
5911 case 0x5: /* FMIN */
5912 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
5913 break;
5914 case 0x6: /* FMAXNM */
5915 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
5916 break;
5917 case 0x7: /* FMINNM */
5918 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
5919 break;
5920 case 0x8: /* FNMUL */
5921 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
5922 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
5923 break;
5924 default:
5925 g_assert_not_reached();
5926 }
5927
5928 write_fp_sreg(s, rd, tcg_res);
5929
5930 tcg_temp_free_ptr(fpst);
5931 tcg_temp_free_i32(tcg_op1);
5932 tcg_temp_free_i32(tcg_op2);
5933 tcg_temp_free_i32(tcg_res);
5934 }
5935
5936 /* Floating point data-processing (2 source)
5937 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5938 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
5939 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
5940 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
5941 */
5942 static void disas_fp_2src(DisasContext *s, uint32_t insn)
5943 {
5944 int mos = extract32(insn, 29, 3);
5945 int type = extract32(insn, 22, 2);
5946 int rd = extract32(insn, 0, 5);
5947 int rn = extract32(insn, 5, 5);
5948 int rm = extract32(insn, 16, 5);
5949 int opcode = extract32(insn, 12, 4);
5950
5951 if (opcode > 8 || mos) {
5952 unallocated_encoding(s);
5953 return;
5954 }
5955
5956 switch (type) {
5957 case 0:
5958 if (!fp_access_check(s)) {
5959 return;
5960 }
5961 handle_fp_2src_single(s, opcode, rd, rn, rm);
5962 break;
5963 case 1:
5964 if (!fp_access_check(s)) {
5965 return;
5966 }
5967 handle_fp_2src_double(s, opcode, rd, rn, rm);
5968 break;
5969 case 3:
5970 if (!dc_isar_feature(aa64_fp16, s)) {
5971 unallocated_encoding(s);
5972 return;
5973 }
5974 if (!fp_access_check(s)) {
5975 return;
5976 }
5977 handle_fp_2src_half(s, opcode, rd, rn, rm);
5978 break;
5979 default:
5980 unallocated_encoding(s);
5981 }
5982 }
5983
5984 /* Floating-point data-processing (3 source) - single precision */
5985 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
5986 int rd, int rn, int rm, int ra)
5987 {
5988 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
5989 TCGv_i32 tcg_res = tcg_temp_new_i32();
5990 TCGv_ptr fpst = get_fpstatus_ptr(false);
5991
5992 tcg_op1 = read_fp_sreg(s, rn);
5993 tcg_op2 = read_fp_sreg(s, rm);
5994 tcg_op3 = read_fp_sreg(s, ra);
5995
5996 /* These are fused multiply-add, and must be done as one
5997 * floating point operation with no rounding between the
5998 * multiplication and addition steps.
5999 * NB that doing the negations here as separate steps is
6000 * correct : an input NaN should come out with its sign bit
6001 * flipped if it is a negated-input.
6002 */
6003 if (o1 == true) {
6004 gen_helper_vfp_negs(tcg_op3, tcg_op3);
6005 }
6006
6007 if (o0 != o1) {
6008 gen_helper_vfp_negs(tcg_op1, tcg_op1);
6009 }
6010
6011 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6012
6013 write_fp_sreg(s, rd, tcg_res);
6014
6015 tcg_temp_free_ptr(fpst);
6016 tcg_temp_free_i32(tcg_op1);
6017 tcg_temp_free_i32(tcg_op2);
6018 tcg_temp_free_i32(tcg_op3);
6019 tcg_temp_free_i32(tcg_res);
6020 }
6021
6022 /* Floating-point data-processing (3 source) - double precision */
6023 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6024 int rd, int rn, int rm, int ra)
6025 {
6026 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6027 TCGv_i64 tcg_res = tcg_temp_new_i64();
6028 TCGv_ptr fpst = get_fpstatus_ptr(false);
6029
6030 tcg_op1 = read_fp_dreg(s, rn);
6031 tcg_op2 = read_fp_dreg(s, rm);
6032 tcg_op3 = read_fp_dreg(s, ra);
6033
6034 /* These are fused multiply-add, and must be done as one
6035 * floating point operation with no rounding between the
6036 * multiplication and addition steps.
6037 * NB that doing the negations here as separate steps is
6038 * correct : an input NaN should come out with its sign bit
6039 * flipped if it is a negated-input.
6040 */
6041 if (o1 == true) {
6042 gen_helper_vfp_negd(tcg_op3, tcg_op3);
6043 }
6044
6045 if (o0 != o1) {
6046 gen_helper_vfp_negd(tcg_op1, tcg_op1);
6047 }
6048
6049 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6050
6051 write_fp_dreg(s, rd, tcg_res);
6052
6053 tcg_temp_free_ptr(fpst);
6054 tcg_temp_free_i64(tcg_op1);
6055 tcg_temp_free_i64(tcg_op2);
6056 tcg_temp_free_i64(tcg_op3);
6057 tcg_temp_free_i64(tcg_res);
6058 }
6059
6060 /* Floating-point data-processing (3 source) - half precision */
6061 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6062 int rd, int rn, int rm, int ra)
6063 {
6064 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6065 TCGv_i32 tcg_res = tcg_temp_new_i32();
6066 TCGv_ptr fpst = get_fpstatus_ptr(true);
6067
6068 tcg_op1 = read_fp_hreg(s, rn);
6069 tcg_op2 = read_fp_hreg(s, rm);
6070 tcg_op3 = read_fp_hreg(s, ra);
6071
6072 /* These are fused multiply-add, and must be done as one
6073 * floating point operation with no rounding between the
6074 * multiplication and addition steps.
6075 * NB that doing the negations here as separate steps is
6076 * correct : an input NaN should come out with its sign bit
6077 * flipped if it is a negated-input.
6078 */
6079 if (o1 == true) {
6080 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6081 }
6082
6083 if (o0 != o1) {
6084 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6085 }
6086
6087 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6088
6089 write_fp_sreg(s, rd, tcg_res);
6090
6091 tcg_temp_free_ptr(fpst);
6092 tcg_temp_free_i32(tcg_op1);
6093 tcg_temp_free_i32(tcg_op2);
6094 tcg_temp_free_i32(tcg_op3);
6095 tcg_temp_free_i32(tcg_res);
6096 }
6097
6098 /* Floating point data-processing (3 source)
6099 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6100 * +---+---+---+-----------+------+----+------+----+------+------+------+
6101 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6102 * +---+---+---+-----------+------+----+------+----+------+------+------+
6103 */
6104 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6105 {
6106 int mos = extract32(insn, 29, 3);
6107 int type = extract32(insn, 22, 2);
6108 int rd = extract32(insn, 0, 5);
6109 int rn = extract32(insn, 5, 5);
6110 int ra = extract32(insn, 10, 5);
6111 int rm = extract32(insn, 16, 5);
6112 bool o0 = extract32(insn, 15, 1);
6113 bool o1 = extract32(insn, 21, 1);
6114
6115 if (mos) {
6116 unallocated_encoding(s);
6117 return;
6118 }
6119
6120 switch (type) {
6121 case 0:
6122 if (!fp_access_check(s)) {
6123 return;
6124 }
6125 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6126 break;
6127 case 1:
6128 if (!fp_access_check(s)) {
6129 return;
6130 }
6131 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6132 break;
6133 case 3:
6134 if (!dc_isar_feature(aa64_fp16, s)) {
6135 unallocated_encoding(s);
6136 return;
6137 }
6138 if (!fp_access_check(s)) {
6139 return;
6140 }
6141 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6142 break;
6143 default:
6144 unallocated_encoding(s);
6145 }
6146 }
6147
6148 /* The imm8 encodes the sign bit, enough bits to represent an exponent in
6149 * the range 01....1xx to 10....0xx, and the most significant 4 bits of
6150 * the mantissa; see VFPExpandImm() in the v8 ARM ARM.
6151 */
6152 uint64_t vfp_expand_imm(int size, uint8_t imm8)
6153 {
6154 uint64_t imm;
6155
6156 switch (size) {
6157 case MO_64:
6158 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
6159 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
6160 extract32(imm8, 0, 6);
6161 imm <<= 48;
6162 break;
6163 case MO_32:
6164 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
6165 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
6166 (extract32(imm8, 0, 6) << 3);
6167 imm <<= 16;
6168 break;
6169 case MO_16:
6170 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
6171 (extract32(imm8, 6, 1) ? 0x3000 : 0x4000) |
6172 (extract32(imm8, 0, 6) << 6);
6173 break;
6174 default:
6175 g_assert_not_reached();
6176 }
6177 return imm;
6178 }
6179
6180 /* Floating point immediate
6181 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
6182 * +---+---+---+-----------+------+---+------------+-------+------+------+
6183 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
6184 * +---+---+---+-----------+------+---+------------+-------+------+------+
6185 */
6186 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6187 {
6188 int rd = extract32(insn, 0, 5);
6189 int imm5 = extract32(insn, 5, 5);
6190 int imm8 = extract32(insn, 13, 8);
6191 int type = extract32(insn, 22, 2);
6192 int mos = extract32(insn, 29, 3);
6193 uint64_t imm;
6194 TCGv_i64 tcg_res;
6195 TCGMemOp sz;
6196
6197 if (mos || imm5) {
6198 unallocated_encoding(s);
6199 return;
6200 }
6201
6202 switch (type) {
6203 case 0:
6204 sz = MO_32;
6205 break;
6206 case 1:
6207 sz = MO_64;
6208 break;
6209 case 3:
6210 sz = MO_16;
6211 if (dc_isar_feature(aa64_fp16, s)) {
6212 break;
6213 }
6214 /* fallthru */
6215 default:
6216 unallocated_encoding(s);
6217 return;
6218 }
6219
6220 if (!fp_access_check(s)) {
6221 return;
6222 }
6223
6224 imm = vfp_expand_imm(sz, imm8);
6225
6226 tcg_res = tcg_const_i64(imm);
6227 write_fp_dreg(s, rd, tcg_res);
6228 tcg_temp_free_i64(tcg_res);
6229 }
6230
6231 /* Handle floating point <=> fixed point conversions. Note that we can
6232 * also deal with fp <=> integer conversions as a special case (scale == 64)
6233 * OPTME: consider handling that special case specially or at least skipping
6234 * the call to scalbn in the helpers for zero shifts.
6235 */
6236 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6237 bool itof, int rmode, int scale, int sf, int type)
6238 {
6239 bool is_signed = !(opcode & 1);
6240 TCGv_ptr tcg_fpstatus;
6241 TCGv_i32 tcg_shift, tcg_single;
6242 TCGv_i64 tcg_double;
6243
6244 tcg_fpstatus = get_fpstatus_ptr(type == 3);
6245
6246 tcg_shift = tcg_const_i32(64 - scale);
6247
6248 if (itof) {
6249 TCGv_i64 tcg_int = cpu_reg(s, rn);
6250 if (!sf) {
6251 TCGv_i64 tcg_extend = new_tmp_a64(s);
6252
6253 if (is_signed) {
6254 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6255 } else {
6256 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6257 }
6258
6259 tcg_int = tcg_extend;
6260 }
6261
6262 switch (type) {
6263 case 1: /* float64 */
6264 tcg_double = tcg_temp_new_i64();
6265 if (is_signed) {
6266 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6267 tcg_shift, tcg_fpstatus);
6268 } else {
6269 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6270 tcg_shift, tcg_fpstatus);
6271 }
6272 write_fp_dreg(s, rd, tcg_double);
6273 tcg_temp_free_i64(tcg_double);
6274 break;
6275
6276 case 0: /* float32 */
6277 tcg_single = tcg_temp_new_i32();
6278 if (is_signed) {
6279 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6280 tcg_shift, tcg_fpstatus);
6281 } else {
6282 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6283 tcg_shift, tcg_fpstatus);
6284 }
6285 write_fp_sreg(s, rd, tcg_single);
6286 tcg_temp_free_i32(tcg_single);
6287 break;
6288
6289 case 3: /* float16 */
6290 tcg_single = tcg_temp_new_i32();
6291 if (is_signed) {
6292 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6293 tcg_shift, tcg_fpstatus);
6294 } else {
6295 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6296 tcg_shift, tcg_fpstatus);
6297 }
6298 write_fp_sreg(s, rd, tcg_single);
6299 tcg_temp_free_i32(tcg_single);
6300 break;
6301
6302 default:
6303 g_assert_not_reached();
6304 }
6305 } else {
6306 TCGv_i64 tcg_int = cpu_reg(s, rd);
6307 TCGv_i32 tcg_rmode;
6308
6309 if (extract32(opcode, 2, 1)) {
6310 /* There are too many rounding modes to all fit into rmode,
6311 * so FCVTA[US] is a special case.
6312 */
6313 rmode = FPROUNDING_TIEAWAY;
6314 }
6315
6316 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
6317
6318 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
6319
6320 switch (type) {
6321 case 1: /* float64 */
6322 tcg_double = read_fp_dreg(s, rn);
6323 if (is_signed) {
6324 if (!sf) {
6325 gen_helper_vfp_tosld(tcg_int, tcg_double,
6326 tcg_shift, tcg_fpstatus);
6327 } else {
6328 gen_helper_vfp_tosqd(tcg_int, tcg_double,
6329 tcg_shift, tcg_fpstatus);
6330 }
6331 } else {
6332 if (!sf) {
6333 gen_helper_vfp_tould(tcg_int, tcg_double,
6334 tcg_shift, tcg_fpstatus);
6335 } else {
6336 gen_helper_vfp_touqd(tcg_int, tcg_double,
6337 tcg_shift, tcg_fpstatus);
6338 }
6339 }
6340 if (!sf) {
6341 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6342 }
6343 tcg_temp_free_i64(tcg_double);
6344 break;
6345
6346 case 0: /* float32 */
6347 tcg_single = read_fp_sreg(s, rn);
6348 if (sf) {
6349 if (is_signed) {
6350 gen_helper_vfp_tosqs(tcg_int, tcg_single,
6351 tcg_shift, tcg_fpstatus);
6352 } else {
6353 gen_helper_vfp_touqs(tcg_int, tcg_single,
6354 tcg_shift, tcg_fpstatus);
6355 }
6356 } else {
6357 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6358 if (is_signed) {
6359 gen_helper_vfp_tosls(tcg_dest, tcg_single,
6360 tcg_shift, tcg_fpstatus);
6361 } else {
6362 gen_helper_vfp_touls(tcg_dest, tcg_single,
6363 tcg_shift, tcg_fpstatus);
6364 }
6365 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6366 tcg_temp_free_i32(tcg_dest);
6367 }
6368 tcg_temp_free_i32(tcg_single);
6369 break;
6370
6371 case 3: /* float16 */
6372 tcg_single = read_fp_sreg(s, rn);
6373 if (sf) {
6374 if (is_signed) {
6375 gen_helper_vfp_tosqh(tcg_int, tcg_single,
6376 tcg_shift, tcg_fpstatus);
6377 } else {
6378 gen_helper_vfp_touqh(tcg_int, tcg_single,
6379 tcg_shift, tcg_fpstatus);
6380 }
6381 } else {
6382 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6383 if (is_signed) {
6384 gen_helper_vfp_toslh(tcg_dest, tcg_single,
6385 tcg_shift, tcg_fpstatus);
6386 } else {
6387 gen_helper_vfp_toulh(tcg_dest, tcg_single,
6388 tcg_shift, tcg_fpstatus);
6389 }
6390 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6391 tcg_temp_free_i32(tcg_dest);
6392 }
6393 tcg_temp_free_i32(tcg_single);
6394 break;
6395
6396 default:
6397 g_assert_not_reached();
6398 }
6399
6400 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
6401 tcg_temp_free_i32(tcg_rmode);
6402 }
6403
6404 tcg_temp_free_ptr(tcg_fpstatus);
6405 tcg_temp_free_i32(tcg_shift);
6406 }
6407
6408 /* Floating point <-> fixed point conversions
6409 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6410 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6411 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
6412 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6413 */
6414 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6415 {
6416 int rd = extract32(insn, 0, 5);
6417 int rn = extract32(insn, 5, 5);
6418 int scale = extract32(insn, 10, 6);
6419 int opcode = extract32(insn, 16, 3);
6420 int rmode = extract32(insn, 19, 2);
6421 int type = extract32(insn, 22, 2);
6422 bool sbit = extract32(insn, 29, 1);
6423 bool sf = extract32(insn, 31, 1);
6424 bool itof;
6425
6426 if (sbit || (!sf && scale < 32)) {
6427 unallocated_encoding(s);
6428 return;
6429 }
6430
6431 switch (type) {
6432 case 0: /* float32 */
6433 case 1: /* float64 */
6434 break;
6435 case 3: /* float16 */
6436 if (dc_isar_feature(aa64_fp16, s)) {
6437 break;
6438 }
6439 /* fallthru */
6440 default:
6441 unallocated_encoding(s);
6442 return;
6443 }
6444
6445 switch ((rmode << 3) | opcode) {
6446 case 0x2: /* SCVTF */
6447 case 0x3: /* UCVTF */
6448 itof = true;
6449 break;
6450 case 0x18: /* FCVTZS */
6451 case 0x19: /* FCVTZU */
6452 itof = false;
6453 break;
6454 default:
6455 unallocated_encoding(s);
6456 return;
6457 }
6458
6459 if (!fp_access_check(s)) {
6460 return;
6461 }
6462
6463 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
6464 }
6465
6466 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
6467 {
6468 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
6469 * without conversion.
6470 */
6471
6472 if (itof) {
6473 TCGv_i64 tcg_rn = cpu_reg(s, rn);
6474 TCGv_i64 tmp;
6475
6476 switch (type) {
6477 case 0:
6478 /* 32 bit */
6479 tmp = tcg_temp_new_i64();
6480 tcg_gen_ext32u_i64(tmp, tcg_rn);
6481 write_fp_dreg(s, rd, tmp);
6482 tcg_temp_free_i64(tmp);
6483 break;
6484 case 1:
6485 /* 64 bit */
6486 write_fp_dreg(s, rd, tcg_rn);
6487 break;
6488 case 2:
6489 /* 64 bit to top half. */
6490 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
6491 clear_vec_high(s, true, rd);
6492 break;
6493 case 3:
6494 /* 16 bit */
6495 tmp = tcg_temp_new_i64();
6496 tcg_gen_ext16u_i64(tmp, tcg_rn);
6497 write_fp_dreg(s, rd, tmp);
6498 tcg_temp_free_i64(tmp);
6499 break;
6500 default:
6501 g_assert_not_reached();
6502 }
6503 } else {
6504 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6505
6506 switch (type) {
6507 case 0:
6508 /* 32 bit */
6509 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
6510 break;
6511 case 1:
6512 /* 64 bit */
6513 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
6514 break;
6515 case 2:
6516 /* 64 bits from top half */
6517 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
6518 break;
6519 case 3:
6520 /* 16 bit */
6521 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
6522 break;
6523 default:
6524 g_assert_not_reached();
6525 }
6526 }
6527 }
6528
6529 /* Floating point <-> integer conversions
6530 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6531 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6532 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
6533 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6534 */
6535 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
6536 {
6537 int rd = extract32(insn, 0, 5);
6538 int rn = extract32(insn, 5, 5);
6539 int opcode = extract32(insn, 16, 3);
6540 int rmode = extract32(insn, 19, 2);
6541 int type = extract32(insn, 22, 2);
6542 bool sbit = extract32(insn, 29, 1);
6543 bool sf = extract32(insn, 31, 1);
6544
6545 if (sbit) {
6546 unallocated_encoding(s);
6547 return;
6548 }
6549
6550 if (opcode > 5) {
6551 /* FMOV */
6552 bool itof = opcode & 1;
6553
6554 if (rmode >= 2) {
6555 unallocated_encoding(s);
6556 return;
6557 }
6558
6559 switch (sf << 3 | type << 1 | rmode) {
6560 case 0x0: /* 32 bit */
6561 case 0xa: /* 64 bit */
6562 case 0xd: /* 64 bit to top half of quad */
6563 break;
6564 case 0x6: /* 16-bit float, 32-bit int */
6565 case 0xe: /* 16-bit float, 64-bit int */
6566 if (dc_isar_feature(aa64_fp16, s)) {
6567 break;
6568 }
6569 /* fallthru */
6570 default:
6571 /* all other sf/type/rmode combinations are invalid */
6572 unallocated_encoding(s);
6573 return;
6574 }
6575
6576 if (!fp_access_check(s)) {
6577 return;
6578 }
6579 handle_fmov(s, rd, rn, type, itof);
6580 } else {
6581 /* actual FP conversions */
6582 bool itof = extract32(opcode, 1, 1);
6583
6584 if (rmode != 0 && opcode > 1) {
6585 unallocated_encoding(s);
6586 return;
6587 }
6588 switch (type) {
6589 case 0: /* float32 */
6590 case 1: /* float64 */
6591 break;
6592 case 3: /* float16 */
6593 if (dc_isar_feature(aa64_fp16, s)) {
6594 break;
6595 }
6596 /* fallthru */
6597 default:
6598 unallocated_encoding(s);
6599 return;
6600 }
6601
6602 if (!fp_access_check(s)) {
6603 return;
6604 }
6605 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
6606 }
6607 }
6608
6609 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
6610 * 31 30 29 28 25 24 0
6611 * +---+---+---+---------+-----------------------------+
6612 * | | 0 | | 1 1 1 1 | |
6613 * +---+---+---+---------+-----------------------------+
6614 */
6615 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
6616 {
6617 if (extract32(insn, 24, 1)) {
6618 /* Floating point data-processing (3 source) */
6619 disas_fp_3src(s, insn);
6620 } else if (extract32(insn, 21, 1) == 0) {
6621 /* Floating point to fixed point conversions */
6622 disas_fp_fixed_conv(s, insn);
6623 } else {
6624 switch (extract32(insn, 10, 2)) {
6625 case 1:
6626 /* Floating point conditional compare */
6627 disas_fp_ccomp(s, insn);
6628 break;
6629 case 2:
6630 /* Floating point data-processing (2 source) */
6631 disas_fp_2src(s, insn);
6632 break;
6633 case 3:
6634 /* Floating point conditional select */
6635 disas_fp_csel(s, insn);
6636 break;
6637 case 0:
6638 switch (ctz32(extract32(insn, 12, 4))) {
6639 case 0: /* [15:12] == xxx1 */
6640 /* Floating point immediate */
6641 disas_fp_imm(s, insn);
6642 break;
6643 case 1: /* [15:12] == xx10 */
6644 /* Floating point compare */
6645 disas_fp_compare(s, insn);
6646 break;
6647 case 2: /* [15:12] == x100 */
6648 /* Floating point data-processing (1 source) */
6649 disas_fp_1src(s, insn);
6650 break;
6651 case 3: /* [15:12] == 1000 */
6652 unallocated_encoding(s);
6653 break;
6654 default: /* [15:12] == 0000 */
6655 /* Floating point <-> integer conversions */
6656 disas_fp_int_conv(s, insn);
6657 break;
6658 }
6659 break;
6660 }
6661 }
6662 }
6663
6664 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
6665 int pos)
6666 {
6667 /* Extract 64 bits from the middle of two concatenated 64 bit
6668 * vector register slices left:right. The extracted bits start
6669 * at 'pos' bits into the right (least significant) side.
6670 * We return the result in tcg_right, and guarantee not to
6671 * trash tcg_left.
6672 */
6673 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6674 assert(pos > 0 && pos < 64);
6675
6676 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
6677 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
6678 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
6679
6680 tcg_temp_free_i64(tcg_tmp);
6681 }
6682
6683 /* EXT
6684 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
6685 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6686 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
6687 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6688 */
6689 static void disas_simd_ext(DisasContext *s, uint32_t insn)
6690 {
6691 int is_q = extract32(insn, 30, 1);
6692 int op2 = extract32(insn, 22, 2);
6693 int imm4 = extract32(insn, 11, 4);
6694 int rm = extract32(insn, 16, 5);
6695 int rn = extract32(insn, 5, 5);
6696 int rd = extract32(insn, 0, 5);
6697 int pos = imm4 << 3;
6698 TCGv_i64 tcg_resl, tcg_resh;
6699
6700 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
6701 unallocated_encoding(s);
6702 return;
6703 }
6704
6705 if (!fp_access_check(s)) {
6706 return;
6707 }
6708
6709 tcg_resh = tcg_temp_new_i64();
6710 tcg_resl = tcg_temp_new_i64();
6711
6712 /* Vd gets bits starting at pos bits into Vm:Vn. This is
6713 * either extracting 128 bits from a 128:128 concatenation, or
6714 * extracting 64 bits from a 64:64 concatenation.
6715 */
6716 if (!is_q) {
6717 read_vec_element(s, tcg_resl, rn, 0, MO_64);
6718 if (pos != 0) {
6719 read_vec_element(s, tcg_resh, rm, 0, MO_64);
6720 do_ext64(s, tcg_resh, tcg_resl, pos);
6721 }
6722 tcg_gen_movi_i64(tcg_resh, 0);
6723 } else {
6724 TCGv_i64 tcg_hh;
6725 typedef struct {
6726 int reg;
6727 int elt;
6728 } EltPosns;
6729 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
6730 EltPosns *elt = eltposns;
6731
6732 if (pos >= 64) {
6733 elt++;
6734 pos -= 64;
6735 }
6736
6737 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
6738 elt++;
6739 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
6740 elt++;
6741 if (pos != 0) {
6742 do_ext64(s, tcg_resh, tcg_resl, pos);
6743 tcg_hh = tcg_temp_new_i64();
6744 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
6745 do_ext64(s, tcg_hh, tcg_resh, pos);
6746 tcg_temp_free_i64(tcg_hh);
6747 }
6748 }
6749
6750 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6751 tcg_temp_free_i64(tcg_resl);
6752 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6753 tcg_temp_free_i64(tcg_resh);
6754 }
6755
6756 /* TBL/TBX
6757 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
6758 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
6759 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
6760 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
6761 */
6762 static void disas_simd_tb(DisasContext *s, uint32_t insn)
6763 {
6764 int op2 = extract32(insn, 22, 2);
6765 int is_q = extract32(insn, 30, 1);
6766 int rm = extract32(insn, 16, 5);
6767 int rn = extract32(insn, 5, 5);
6768 int rd = extract32(insn, 0, 5);
6769 int is_tblx = extract32(insn, 12, 1);
6770 int len = extract32(insn, 13, 2);
6771 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
6772 TCGv_i32 tcg_regno, tcg_numregs;
6773
6774 if (op2 != 0) {
6775 unallocated_encoding(s);
6776 return;
6777 }
6778
6779 if (!fp_access_check(s)) {
6780 return;
6781 }
6782
6783 /* This does a table lookup: for every byte element in the input
6784 * we index into a table formed from up to four vector registers,
6785 * and then the output is the result of the lookups. Our helper
6786 * function does the lookup operation for a single 64 bit part of
6787 * the input.
6788 */
6789 tcg_resl = tcg_temp_new_i64();
6790 tcg_resh = tcg_temp_new_i64();
6791
6792 if (is_tblx) {
6793 read_vec_element(s, tcg_resl, rd, 0, MO_64);
6794 } else {
6795 tcg_gen_movi_i64(tcg_resl, 0);
6796 }
6797 if (is_tblx && is_q) {
6798 read_vec_element(s, tcg_resh, rd, 1, MO_64);
6799 } else {
6800 tcg_gen_movi_i64(tcg_resh, 0);
6801 }
6802
6803 tcg_idx = tcg_temp_new_i64();
6804 tcg_regno = tcg_const_i32(rn);
6805 tcg_numregs = tcg_const_i32(len + 1);
6806 read_vec_element(s, tcg_idx, rm, 0, MO_64);
6807 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
6808 tcg_regno, tcg_numregs);
6809 if (is_q) {
6810 read_vec_element(s, tcg_idx, rm, 1, MO_64);
6811 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
6812 tcg_regno, tcg_numregs);
6813 }
6814 tcg_temp_free_i64(tcg_idx);
6815 tcg_temp_free_i32(tcg_regno);
6816 tcg_temp_free_i32(tcg_numregs);
6817
6818 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6819 tcg_temp_free_i64(tcg_resl);
6820 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6821 tcg_temp_free_i64(tcg_resh);
6822 }
6823
6824 /* ZIP/UZP/TRN
6825 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
6826 * +---+---+-------------+------+---+------+---+------------------+------+
6827 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
6828 * +---+---+-------------+------+---+------+---+------------------+------+
6829 */
6830 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
6831 {
6832 int rd = extract32(insn, 0, 5);
6833 int rn = extract32(insn, 5, 5);
6834 int rm = extract32(insn, 16, 5);
6835 int size = extract32(insn, 22, 2);
6836 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
6837 * bit 2 indicates 1 vs 2 variant of the insn.
6838 */
6839 int opcode = extract32(insn, 12, 2);
6840 bool part = extract32(insn, 14, 1);
6841 bool is_q = extract32(insn, 30, 1);
6842 int esize = 8 << size;
6843 int i, ofs;
6844 int datasize = is_q ? 128 : 64;
6845 int elements = datasize / esize;
6846 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
6847
6848 if (opcode == 0 || (size == 3 && !is_q)) {
6849 unallocated_encoding(s);
6850 return;
6851 }
6852
6853 if (!fp_access_check(s)) {
6854 return;
6855 }
6856
6857 tcg_resl = tcg_const_i64(0);
6858 tcg_resh = tcg_const_i64(0);
6859 tcg_res = tcg_temp_new_i64();
6860
6861 for (i = 0; i < elements; i++) {
6862 switch (opcode) {
6863 case 1: /* UZP1/2 */
6864 {
6865 int midpoint = elements / 2;
6866 if (i < midpoint) {
6867 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
6868 } else {
6869 read_vec_element(s, tcg_res, rm,
6870 2 * (i - midpoint) + part, size);
6871 }
6872 break;
6873 }
6874 case 2: /* TRN1/2 */
6875 if (i & 1) {
6876 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
6877 } else {
6878 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
6879 }
6880 break;
6881 case 3: /* ZIP1/2 */
6882 {
6883 int base = part * elements / 2;
6884 if (i & 1) {
6885 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
6886 } else {
6887 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
6888 }
6889 break;
6890 }
6891 default:
6892 g_assert_not_reached();
6893 }
6894
6895 ofs = i * esize;
6896 if (ofs < 64) {
6897 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
6898 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
6899 } else {
6900 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
6901 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
6902 }
6903 }
6904
6905 tcg_temp_free_i64(tcg_res);
6906
6907 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6908 tcg_temp_free_i64(tcg_resl);
6909 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6910 tcg_temp_free_i64(tcg_resh);
6911 }
6912
6913 /*
6914 * do_reduction_op helper
6915 *
6916 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
6917 * important for correct NaN propagation that we do these
6918 * operations in exactly the order specified by the pseudocode.
6919 *
6920 * This is a recursive function, TCG temps should be freed by the
6921 * calling function once it is done with the values.
6922 */
6923 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
6924 int esize, int size, int vmap, TCGv_ptr fpst)
6925 {
6926 if (esize == size) {
6927 int element;
6928 TCGMemOp msize = esize == 16 ? MO_16 : MO_32;
6929 TCGv_i32 tcg_elem;
6930
6931 /* We should have one register left here */
6932 assert(ctpop8(vmap) == 1);
6933 element = ctz32(vmap);
6934 assert(element < 8);
6935
6936 tcg_elem = tcg_temp_new_i32();
6937 read_vec_element_i32(s, tcg_elem, rn, element, msize);
6938 return tcg_elem;
6939 } else {
6940 int bits = size / 2;
6941 int shift = ctpop8(vmap) / 2;
6942 int vmap_lo = (vmap >> shift) & vmap;
6943 int vmap_hi = (vmap & ~vmap_lo);
6944 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
6945
6946 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
6947 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
6948 tcg_res = tcg_temp_new_i32();
6949
6950 switch (fpopcode) {
6951 case 0x0c: /* fmaxnmv half-precision */
6952 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
6953 break;
6954 case 0x0f: /* fmaxv half-precision */
6955 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
6956 break;
6957 case 0x1c: /* fminnmv half-precision */
6958 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
6959 break;
6960 case 0x1f: /* fminv half-precision */
6961 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
6962 break;
6963 case 0x2c: /* fmaxnmv */
6964 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
6965 break;
6966 case 0x2f: /* fmaxv */
6967 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
6968 break;
6969 case 0x3c: /* fminnmv */
6970 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
6971 break;
6972 case 0x3f: /* fminv */
6973 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
6974 break;
6975 default:
6976 g_assert_not_reached();
6977 }
6978
6979 tcg_temp_free_i32(tcg_hi);
6980 tcg_temp_free_i32(tcg_lo);
6981 return tcg_res;
6982 }
6983 }
6984
6985 /* AdvSIMD across lanes
6986 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
6987 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
6988 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
6989 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
6990 */
6991 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
6992 {
6993 int rd = extract32(insn, 0, 5);
6994 int rn = extract32(insn, 5, 5);
6995 int size = extract32(insn, 22, 2);
6996 int opcode = extract32(insn, 12, 5);
6997 bool is_q = extract32(insn, 30, 1);
6998 bool is_u = extract32(insn, 29, 1);
6999 bool is_fp = false;
7000 bool is_min = false;
7001 int esize;
7002 int elements;
7003 int i;
7004 TCGv_i64 tcg_res, tcg_elt;
7005
7006 switch (opcode) {
7007 case 0x1b: /* ADDV */
7008 if (is_u) {
7009 unallocated_encoding(s);
7010 return;
7011 }
7012 /* fall through */
7013 case 0x3: /* SADDLV, UADDLV */
7014 case 0xa: /* SMAXV, UMAXV */
7015 case 0x1a: /* SMINV, UMINV */
7016 if (size == 3 || (size == 2 && !is_q)) {
7017 unallocated_encoding(s);
7018 return;
7019 }
7020 break;
7021 case 0xc: /* FMAXNMV, FMINNMV */
7022 case 0xf: /* FMAXV, FMINV */
7023 /* Bit 1 of size field encodes min vs max and the actual size
7024 * depends on the encoding of the U bit. If not set (and FP16
7025 * enabled) then we do half-precision float instead of single
7026 * precision.
7027 */
7028 is_min = extract32(size, 1, 1);
7029 is_fp = true;
7030 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7031 size = 1;
7032 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7033 unallocated_encoding(s);
7034 return;
7035 } else {
7036 size = 2;
7037 }
7038 break;
7039 default:
7040 unallocated_encoding(s);
7041 return;
7042 }
7043
7044 if (!fp_access_check(s)) {
7045 return;
7046 }
7047
7048 esize = 8 << size;
7049 elements = (is_q ? 128 : 64) / esize;
7050
7051 tcg_res = tcg_temp_new_i64();
7052 tcg_elt = tcg_temp_new_i64();
7053
7054 /* These instructions operate across all lanes of a vector
7055 * to produce a single result. We can guarantee that a 64
7056 * bit intermediate is sufficient:
7057 * + for [US]ADDLV the maximum element size is 32 bits, and
7058 * the result type is 64 bits
7059 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7060 * same as the element size, which is 32 bits at most
7061 * For the integer operations we can choose to work at 64
7062 * or 32 bits and truncate at the end; for simplicity
7063 * we use 64 bits always. The floating point
7064 * ops do require 32 bit intermediates, though.
7065 */
7066 if (!is_fp) {
7067 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7068
7069 for (i = 1; i < elements; i++) {
7070 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7071
7072 switch (opcode) {
7073 case 0x03: /* SADDLV / UADDLV */
7074 case 0x1b: /* ADDV */
7075 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7076 break;
7077 case 0x0a: /* SMAXV / UMAXV */
7078 if (is_u) {
7079 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7080 } else {
7081 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7082 }
7083 break;
7084 case 0x1a: /* SMINV / UMINV */
7085 if (is_u) {
7086 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7087 } else {
7088 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7089 }
7090 break;
7091 default:
7092 g_assert_not_reached();
7093 }
7094
7095 }
7096 } else {
7097 /* Floating point vector reduction ops which work across 32
7098 * bit (single) or 16 bit (half-precision) intermediates.
7099 * Note that correct NaN propagation requires that we do these
7100 * operations in exactly the order specified by the pseudocode.
7101 */
7102 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
7103 int fpopcode = opcode | is_min << 4 | is_u << 5;
7104 int vmap = (1 << elements) - 1;
7105 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7106 (is_q ? 128 : 64), vmap, fpst);
7107 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7108 tcg_temp_free_i32(tcg_res32);
7109 tcg_temp_free_ptr(fpst);
7110 }
7111
7112 tcg_temp_free_i64(tcg_elt);
7113
7114 /* Now truncate the result to the width required for the final output */
7115 if (opcode == 0x03) {
7116 /* SADDLV, UADDLV: result is 2*esize */
7117 size++;
7118 }
7119
7120 switch (size) {
7121 case 0:
7122 tcg_gen_ext8u_i64(tcg_res, tcg_res);
7123 break;
7124 case 1:
7125 tcg_gen_ext16u_i64(tcg_res, tcg_res);
7126 break;
7127 case 2:
7128 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7129 break;
7130 case 3:
7131 break;
7132 default:
7133 g_assert_not_reached();
7134 }
7135
7136 write_fp_dreg(s, rd, tcg_res);
7137 tcg_temp_free_i64(tcg_res);
7138 }
7139
7140 /* DUP (Element, Vector)
7141 *
7142 * 31 30 29 21 20 16 15 10 9 5 4 0
7143 * +---+---+-------------------+--------+-------------+------+------+
7144 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7145 * +---+---+-------------------+--------+-------------+------+------+
7146 *
7147 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7148 */
7149 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7150 int imm5)
7151 {
7152 int size = ctz32(imm5);
7153 int index = imm5 >> (size + 1);
7154
7155 if (size > 3 || (size == 3 && !is_q)) {
7156 unallocated_encoding(s);
7157 return;
7158 }
7159
7160 if (!fp_access_check(s)) {
7161 return;
7162 }
7163
7164 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7165 vec_reg_offset(s, rn, index, size),
7166 is_q ? 16 : 8, vec_full_reg_size(s));
7167 }
7168
7169 /* DUP (element, scalar)
7170 * 31 21 20 16 15 10 9 5 4 0
7171 * +-----------------------+--------+-------------+------+------+
7172 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7173 * +-----------------------+--------+-------------+------+------+
7174 */
7175 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7176 int imm5)
7177 {
7178 int size = ctz32(imm5);
7179 int index;
7180 TCGv_i64 tmp;
7181
7182 if (size > 3) {
7183 unallocated_encoding(s);
7184 return;
7185 }
7186
7187 if (!fp_access_check(s)) {
7188 return;
7189 }
7190
7191 index = imm5 >> (size + 1);
7192
7193 /* This instruction just extracts the specified element and
7194 * zero-extends it into the bottom of the destination register.
7195 */
7196 tmp = tcg_temp_new_i64();
7197 read_vec_element(s, tmp, rn, index, size);
7198 write_fp_dreg(s, rd, tmp);
7199 tcg_temp_free_i64(tmp);
7200 }
7201
7202 /* DUP (General)
7203 *
7204 * 31 30 29 21 20 16 15 10 9 5 4 0
7205 * +---+---+-------------------+--------+-------------+------+------+
7206 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
7207 * +---+---+-------------------+--------+-------------+------+------+
7208 *
7209 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7210 */
7211 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7212 int imm5)
7213 {
7214 int size = ctz32(imm5);
7215 uint32_t dofs, oprsz, maxsz;
7216
7217 if (size > 3 || ((size == 3) && !is_q)) {
7218 unallocated_encoding(s);
7219 return;
7220 }
7221
7222 if (!fp_access_check(s)) {
7223 return;
7224 }
7225
7226 dofs = vec_full_reg_offset(s, rd);
7227 oprsz = is_q ? 16 : 8;
7228 maxsz = vec_full_reg_size(s);
7229
7230 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7231 }
7232
7233 /* INS (Element)
7234 *
7235 * 31 21 20 16 15 14 11 10 9 5 4 0
7236 * +-----------------------+--------+------------+---+------+------+
7237 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7238 * +-----------------------+--------+------------+---+------+------+
7239 *
7240 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7241 * index: encoded in imm5<4:size+1>
7242 */
7243 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7244 int imm4, int imm5)
7245 {
7246 int size = ctz32(imm5);
7247 int src_index, dst_index;
7248 TCGv_i64 tmp;
7249
7250 if (size > 3) {
7251 unallocated_encoding(s);
7252 return;
7253 }
7254
7255 if (!fp_access_check(s)) {
7256 return;
7257 }
7258
7259 dst_index = extract32(imm5, 1+size, 5);
7260 src_index = extract32(imm4, size, 4);
7261
7262 tmp = tcg_temp_new_i64();
7263
7264 read_vec_element(s, tmp, rn, src_index, size);
7265 write_vec_element(s, tmp, rd, dst_index, size);
7266
7267 tcg_temp_free_i64(tmp);
7268 }
7269
7270
7271 /* INS (General)
7272 *
7273 * 31 21 20 16 15 10 9 5 4 0
7274 * +-----------------------+--------+-------------+------+------+
7275 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
7276 * +-----------------------+--------+-------------+------+------+
7277 *
7278 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7279 * index: encoded in imm5<4:size+1>
7280 */
7281 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7282 {
7283 int size = ctz32(imm5);
7284 int idx;
7285
7286 if (size > 3) {
7287 unallocated_encoding(s);
7288 return;
7289 }
7290
7291 if (!fp_access_check(s)) {
7292 return;
7293 }
7294
7295 idx = extract32(imm5, 1 + size, 4 - size);
7296 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7297 }
7298
7299 /*
7300 * UMOV (General)
7301 * SMOV (General)
7302 *
7303 * 31 30 29 21 20 16 15 12 10 9 5 4 0
7304 * +---+---+-------------------+--------+-------------+------+------+
7305 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
7306 * +---+---+-------------------+--------+-------------+------+------+
7307 *
7308 * U: unsigned when set
7309 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7310 */
7311 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7312 int rn, int rd, int imm5)
7313 {
7314 int size = ctz32(imm5);
7315 int element;
7316 TCGv_i64 tcg_rd;
7317
7318 /* Check for UnallocatedEncodings */
7319 if (is_signed) {
7320 if (size > 2 || (size == 2 && !is_q)) {
7321 unallocated_encoding(s);
7322 return;
7323 }
7324 } else {
7325 if (size > 3
7326 || (size < 3 && is_q)
7327 || (size == 3 && !is_q)) {
7328 unallocated_encoding(s);
7329 return;
7330 }
7331 }
7332
7333 if (!fp_access_check(s)) {
7334 return;
7335 }
7336
7337 element = extract32(imm5, 1+size, 4);
7338
7339 tcg_rd = cpu_reg(s, rd);
7340 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7341 if (is_signed && !is_q) {
7342 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7343 }
7344 }
7345
7346 /* AdvSIMD copy
7347 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7348 * +---+---+----+-----------------+------+---+------+---+------+------+
7349 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7350 * +---+---+----+-----------------+------+---+------+---+------+------+
7351 */
7352 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7353 {
7354 int rd = extract32(insn, 0, 5);
7355 int rn = extract32(insn, 5, 5);
7356 int imm4 = extract32(insn, 11, 4);
7357 int op = extract32(insn, 29, 1);
7358 int is_q = extract32(insn, 30, 1);
7359 int imm5 = extract32(insn, 16, 5);
7360
7361 if (op) {
7362 if (is_q) {
7363 /* INS (element) */
7364 handle_simd_inse(s, rd, rn, imm4, imm5);
7365 } else {
7366 unallocated_encoding(s);
7367 }
7368 } else {
7369 switch (imm4) {
7370 case 0:
7371 /* DUP (element - vector) */
7372 handle_simd_dupe(s, is_q, rd, rn, imm5);
7373 break;
7374 case 1:
7375 /* DUP (general) */
7376 handle_simd_dupg(s, is_q, rd, rn, imm5);
7377 break;
7378 case 3:
7379 if (is_q) {
7380 /* INS (general) */
7381 handle_simd_insg(s, rd, rn, imm5);
7382 } else {
7383 unallocated_encoding(s);
7384 }
7385 break;
7386 case 5:
7387 case 7:
7388 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7389 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7390 break;
7391 default:
7392 unallocated_encoding(s);
7393 break;
7394 }
7395 }
7396 }
7397
7398 /* AdvSIMD modified immediate
7399 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
7400 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7401 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
7402 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7403 *
7404 * There are a number of operations that can be carried out here:
7405 * MOVI - move (shifted) imm into register
7406 * MVNI - move inverted (shifted) imm into register
7407 * ORR - bitwise OR of (shifted) imm with register
7408 * BIC - bitwise clear of (shifted) imm with register
7409 * With ARMv8.2 we also have:
7410 * FMOV half-precision
7411 */
7412 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7413 {
7414 int rd = extract32(insn, 0, 5);
7415 int cmode = extract32(insn, 12, 4);
7416 int cmode_3_1 = extract32(cmode, 1, 3);
7417 int cmode_0 = extract32(cmode, 0, 1);
7418 int o2 = extract32(insn, 11, 1);
7419 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7420 bool is_neg = extract32(insn, 29, 1);
7421 bool is_q = extract32(insn, 30, 1);
7422 uint64_t imm = 0;
7423
7424 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7425 /* Check for FMOV (vector, immediate) - half-precision */
7426 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7427 unallocated_encoding(s);
7428 return;
7429 }
7430 }
7431
7432 if (!fp_access_check(s)) {
7433 return;
7434 }
7435
7436 /* See AdvSIMDExpandImm() in ARM ARM */
7437 switch (cmode_3_1) {
7438 case 0: /* Replicate(Zeros(24):imm8, 2) */
7439 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
7440 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
7441 case 3: /* Replicate(imm8:Zeros(24), 2) */
7442 {
7443 int shift = cmode_3_1 * 8;
7444 imm = bitfield_replicate(abcdefgh << shift, 32);
7445 break;
7446 }
7447 case 4: /* Replicate(Zeros(8):imm8, 4) */
7448 case 5: /* Replicate(imm8:Zeros(8), 4) */
7449 {
7450 int shift = (cmode_3_1 & 0x1) * 8;
7451 imm = bitfield_replicate(abcdefgh << shift, 16);
7452 break;
7453 }
7454 case 6:
7455 if (cmode_0) {
7456 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
7457 imm = (abcdefgh << 16) | 0xffff;
7458 } else {
7459 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
7460 imm = (abcdefgh << 8) | 0xff;
7461 }
7462 imm = bitfield_replicate(imm, 32);
7463 break;
7464 case 7:
7465 if (!cmode_0 && !is_neg) {
7466 imm = bitfield_replicate(abcdefgh, 8);
7467 } else if (!cmode_0 && is_neg) {
7468 int i;
7469 imm = 0;
7470 for (i = 0; i < 8; i++) {
7471 if ((abcdefgh) & (1 << i)) {
7472 imm |= 0xffULL << (i * 8);
7473 }
7474 }
7475 } else if (cmode_0) {
7476 if (is_neg) {
7477 imm = (abcdefgh & 0x3f) << 48;
7478 if (abcdefgh & 0x80) {
7479 imm |= 0x8000000000000000ULL;
7480 }
7481 if (abcdefgh & 0x40) {
7482 imm |= 0x3fc0000000000000ULL;
7483 } else {
7484 imm |= 0x4000000000000000ULL;
7485 }
7486 } else {
7487 if (o2) {
7488 /* FMOV (vector, immediate) - half-precision */
7489 imm = vfp_expand_imm(MO_16, abcdefgh);
7490 /* now duplicate across the lanes */
7491 imm = bitfield_replicate(imm, 16);
7492 } else {
7493 imm = (abcdefgh & 0x3f) << 19;
7494 if (abcdefgh & 0x80) {
7495 imm |= 0x80000000;
7496 }
7497 if (abcdefgh & 0x40) {
7498 imm |= 0x3e000000;
7499 } else {
7500 imm |= 0x40000000;
7501 }
7502 imm |= (imm << 32);
7503 }
7504 }
7505 }
7506 break;
7507 default:
7508 fprintf(stderr, "%s: cmode_3_1: %x\n", __func__, cmode_3_1);
7509 g_assert_not_reached();
7510 }
7511
7512 if (cmode_3_1 != 7 && is_neg) {
7513 imm = ~imm;
7514 }
7515
7516 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7517 /* MOVI or MVNI, with MVNI negation handled above. */
7518 tcg_gen_gvec_dup64i(vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7519 vec_full_reg_size(s), imm);
7520 } else {
7521 /* ORR or BIC, with BIC negation to AND handled above. */
7522 if (is_neg) {
7523 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7524 } else {
7525 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7526 }
7527 }
7528 }
7529
7530 /* AdvSIMD scalar copy
7531 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7532 * +-----+----+-----------------+------+---+------+---+------+------+
7533 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7534 * +-----+----+-----------------+------+---+------+---+------+------+
7535 */
7536 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7537 {
7538 int rd = extract32(insn, 0, 5);
7539 int rn = extract32(insn, 5, 5);
7540 int imm4 = extract32(insn, 11, 4);
7541 int imm5 = extract32(insn, 16, 5);
7542 int op = extract32(insn, 29, 1);
7543
7544 if (op != 0 || imm4 != 0) {
7545 unallocated_encoding(s);
7546 return;
7547 }
7548
7549 /* DUP (element, scalar) */
7550 handle_simd_dupes(s, rd, rn, imm5);
7551 }
7552
7553 /* AdvSIMD scalar pairwise
7554 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7555 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7556 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7557 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7558 */
7559 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7560 {
7561 int u = extract32(insn, 29, 1);
7562 int size = extract32(insn, 22, 2);
7563 int opcode = extract32(insn, 12, 5);
7564 int rn = extract32(insn, 5, 5);
7565 int rd = extract32(insn, 0, 5);
7566 TCGv_ptr fpst;
7567
7568 /* For some ops (the FP ones), size[1] is part of the encoding.
7569 * For ADDP strictly it is not but size[1] is always 1 for valid
7570 * encodings.
7571 */
7572 opcode |= (extract32(size, 1, 1) << 5);
7573
7574 switch (opcode) {
7575 case 0x3b: /* ADDP */
7576 if (u || size != 3) {
7577 unallocated_encoding(s);
7578 return;
7579 }
7580 if (!fp_access_check(s)) {
7581 return;
7582 }
7583
7584 fpst = NULL;
7585 break;
7586 case 0xc: /* FMAXNMP */
7587 case 0xd: /* FADDP */
7588 case 0xf: /* FMAXP */
7589 case 0x2c: /* FMINNMP */
7590 case 0x2f: /* FMINP */
7591 /* FP op, size[0] is 32 or 64 bit*/
7592 if (!u) {
7593 if (!dc_isar_feature(aa64_fp16, s)) {
7594 unallocated_encoding(s);
7595 return;
7596 } else {
7597 size = MO_16;
7598 }
7599 } else {
7600 size = extract32(size, 0, 1) ? MO_64 : MO_32;
7601 }
7602
7603 if (!fp_access_check(s)) {
7604 return;
7605 }
7606
7607 fpst = get_fpstatus_ptr(size == MO_16);
7608 break;
7609 default:
7610 unallocated_encoding(s);
7611 return;
7612 }
7613
7614 if (size == MO_64) {
7615 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7616 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7617 TCGv_i64 tcg_res = tcg_temp_new_i64();
7618
7619 read_vec_element(s, tcg_op1, rn, 0, MO_64);
7620 read_vec_element(s, tcg_op2, rn, 1, MO_64);
7621
7622 switch (opcode) {
7623 case 0x3b: /* ADDP */
7624 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
7625 break;
7626 case 0xc: /* FMAXNMP */
7627 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7628 break;
7629 case 0xd: /* FADDP */
7630 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7631 break;
7632 case 0xf: /* FMAXP */
7633 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7634 break;
7635 case 0x2c: /* FMINNMP */
7636 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7637 break;
7638 case 0x2f: /* FMINP */
7639 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7640 break;
7641 default:
7642 g_assert_not_reached();
7643 }
7644
7645 write_fp_dreg(s, rd, tcg_res);
7646
7647 tcg_temp_free_i64(tcg_op1);
7648 tcg_temp_free_i64(tcg_op2);
7649 tcg_temp_free_i64(tcg_res);
7650 } else {
7651 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7652 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7653 TCGv_i32 tcg_res = tcg_temp_new_i32();
7654
7655 read_vec_element_i32(s, tcg_op1, rn, 0, size);
7656 read_vec_element_i32(s, tcg_op2, rn, 1, size);
7657
7658 if (size == MO_16) {
7659 switch (opcode) {
7660 case 0xc: /* FMAXNMP */
7661 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7662 break;
7663 case 0xd: /* FADDP */
7664 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
7665 break;
7666 case 0xf: /* FMAXP */
7667 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
7668 break;
7669 case 0x2c: /* FMINNMP */
7670 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7671 break;
7672 case 0x2f: /* FMINP */
7673 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
7674 break;
7675 default:
7676 g_assert_not_reached();
7677 }
7678 } else {
7679 switch (opcode) {
7680 case 0xc: /* FMAXNMP */
7681 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7682 break;
7683 case 0xd: /* FADDP */
7684 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7685 break;
7686 case 0xf: /* FMAXP */
7687 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7688 break;
7689 case 0x2c: /* FMINNMP */
7690 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7691 break;
7692 case 0x2f: /* FMINP */
7693 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7694 break;
7695 default:
7696 g_assert_not_reached();
7697 }
7698 }
7699
7700 write_fp_sreg(s, rd, tcg_res);
7701
7702 tcg_temp_free_i32(tcg_op1);
7703 tcg_temp_free_i32(tcg_op2);
7704 tcg_temp_free_i32(tcg_res);
7705 }
7706
7707 if (fpst) {
7708 tcg_temp_free_ptr(fpst);
7709 }
7710 }
7711
7712 /*
7713 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
7714 *
7715 * This code is handles the common shifting code and is used by both
7716 * the vector and scalar code.
7717 */
7718 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
7719 TCGv_i64 tcg_rnd, bool accumulate,
7720 bool is_u, int size, int shift)
7721 {
7722 bool extended_result = false;
7723 bool round = tcg_rnd != NULL;
7724 int ext_lshift = 0;
7725 TCGv_i64 tcg_src_hi;
7726
7727 if (round && size == 3) {
7728 extended_result = true;
7729 ext_lshift = 64 - shift;
7730 tcg_src_hi = tcg_temp_new_i64();
7731 } else if (shift == 64) {
7732 if (!accumulate && is_u) {
7733 /* result is zero */
7734 tcg_gen_movi_i64(tcg_res, 0);
7735 return;
7736 }
7737 }
7738
7739 /* Deal with the rounding step */
7740 if (round) {
7741 if (extended_result) {
7742 TCGv_i64 tcg_zero = tcg_const_i64(0);
7743 if (!is_u) {
7744 /* take care of sign extending tcg_res */
7745 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
7746 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
7747 tcg_src, tcg_src_hi,
7748 tcg_rnd, tcg_zero);
7749 } else {
7750 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
7751 tcg_src, tcg_zero,
7752 tcg_rnd, tcg_zero);
7753 }
7754 tcg_temp_free_i64(tcg_zero);
7755 } else {
7756 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
7757 }
7758 }
7759
7760 /* Now do the shift right */
7761 if (round && extended_result) {
7762 /* extended case, >64 bit precision required */
7763 if (ext_lshift == 0) {
7764 /* special case, only high bits matter */
7765 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
7766 } else {
7767 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
7768 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
7769 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
7770 }
7771 } else {
7772 if (is_u) {
7773 if (shift == 64) {
7774 /* essentially shifting in 64 zeros */
7775 tcg_gen_movi_i64(tcg_src, 0);
7776 } else {
7777 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
7778 }
7779 } else {
7780 if (shift == 64) {
7781 /* effectively extending the sign-bit */
7782 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
7783 } else {
7784 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
7785 }
7786 }
7787 }
7788
7789 if (accumulate) {
7790 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
7791 } else {
7792 tcg_gen_mov_i64(tcg_res, tcg_src);
7793 }
7794
7795 if (extended_result) {
7796 tcg_temp_free_i64(tcg_src_hi);
7797 }
7798 }
7799
7800 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
7801 static void handle_scalar_simd_shri(DisasContext *s,
7802 bool is_u, int immh, int immb,
7803 int opcode, int rn, int rd)
7804 {
7805 const int size = 3;
7806 int immhb = immh << 3 | immb;
7807 int shift = 2 * (8 << size) - immhb;
7808 bool accumulate = false;
7809 bool round = false;
7810 bool insert = false;
7811 TCGv_i64 tcg_rn;
7812 TCGv_i64 tcg_rd;
7813 TCGv_i64 tcg_round;
7814
7815 if (!extract32(immh, 3, 1)) {
7816 unallocated_encoding(s);
7817 return;
7818 }
7819
7820 if (!fp_access_check(s)) {
7821 return;
7822 }
7823
7824 switch (opcode) {
7825 case 0x02: /* SSRA / USRA (accumulate) */
7826 accumulate = true;
7827 break;
7828 case 0x04: /* SRSHR / URSHR (rounding) */
7829 round = true;
7830 break;
7831 case 0x06: /* SRSRA / URSRA (accum + rounding) */
7832 accumulate = round = true;
7833 break;
7834 case 0x08: /* SRI */
7835 insert = true;
7836 break;
7837 }
7838
7839 if (round) {
7840 uint64_t round_const = 1ULL << (shift - 1);
7841 tcg_round = tcg_const_i64(round_const);
7842 } else {
7843 tcg_round = NULL;
7844 }
7845
7846 tcg_rn = read_fp_dreg(s, rn);
7847 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
7848
7849 if (insert) {
7850 /* shift count same as element size is valid but does nothing;
7851 * special case to avoid potential shift by 64.
7852 */
7853 int esize = 8 << size;
7854 if (shift != esize) {
7855 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
7856 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
7857 }
7858 } else {
7859 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
7860 accumulate, is_u, size, shift);
7861 }
7862
7863 write_fp_dreg(s, rd, tcg_rd);
7864
7865 tcg_temp_free_i64(tcg_rn);
7866 tcg_temp_free_i64(tcg_rd);
7867 if (round) {
7868 tcg_temp_free_i64(tcg_round);
7869 }
7870 }
7871
7872 /* SHL/SLI - Scalar shift left */
7873 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
7874 int immh, int immb, int opcode,
7875 int rn, int rd)
7876 {
7877 int size = 32 - clz32(immh) - 1;
7878 int immhb = immh << 3 | immb;
7879 int shift = immhb - (8 << size);
7880 TCGv_i64 tcg_rn = new_tmp_a64(s);
7881 TCGv_i64 tcg_rd = new_tmp_a64(s);
7882
7883 if (!extract32(immh, 3, 1)) {
7884 unallocated_encoding(s);
7885 return;
7886 }
7887
7888 if (!fp_access_check(s)) {
7889 return;
7890 }
7891
7892 tcg_rn = read_fp_dreg(s, rn);
7893 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
7894
7895 if (insert) {
7896 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
7897 } else {
7898 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
7899 }
7900
7901 write_fp_dreg(s, rd, tcg_rd);
7902
7903 tcg_temp_free_i64(tcg_rn);
7904 tcg_temp_free_i64(tcg_rd);
7905 }
7906
7907 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
7908 * (signed/unsigned) narrowing */
7909 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
7910 bool is_u_shift, bool is_u_narrow,
7911 int immh, int immb, int opcode,
7912 int rn, int rd)
7913 {
7914 int immhb = immh << 3 | immb;
7915 int size = 32 - clz32(immh) - 1;
7916 int esize = 8 << size;
7917 int shift = (2 * esize) - immhb;
7918 int elements = is_scalar ? 1 : (64 / esize);
7919 bool round = extract32(opcode, 0, 1);
7920 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
7921 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
7922 TCGv_i32 tcg_rd_narrowed;
7923 TCGv_i64 tcg_final;
7924
7925 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
7926 { gen_helper_neon_narrow_sat_s8,
7927 gen_helper_neon_unarrow_sat8 },
7928 { gen_helper_neon_narrow_sat_s16,
7929 gen_helper_neon_unarrow_sat16 },
7930 { gen_helper_neon_narrow_sat_s32,
7931 gen_helper_neon_unarrow_sat32 },
7932 { NULL, NULL },
7933 };
7934 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
7935 gen_helper_neon_narrow_sat_u8,
7936 gen_helper_neon_narrow_sat_u16,
7937 gen_helper_neon_narrow_sat_u32,
7938 NULL
7939 };
7940 NeonGenNarrowEnvFn *narrowfn;
7941
7942 int i;
7943
7944 assert(size < 4);
7945
7946 if (extract32(immh, 3, 1)) {
7947 unallocated_encoding(s);
7948 return;
7949 }
7950
7951 if (!fp_access_check(s)) {
7952 return;
7953 }
7954
7955 if (is_u_shift) {
7956 narrowfn = unsigned_narrow_fns[size];
7957 } else {
7958 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
7959 }
7960
7961 tcg_rn = tcg_temp_new_i64();
7962 tcg_rd = tcg_temp_new_i64();
7963 tcg_rd_narrowed = tcg_temp_new_i32();
7964 tcg_final = tcg_const_i64(0);
7965
7966 if (round) {
7967 uint64_t round_const = 1ULL << (shift - 1);
7968 tcg_round = tcg_const_i64(round_const);
7969 } else {
7970 tcg_round = NULL;
7971 }
7972
7973 for (i = 0; i < elements; i++) {
7974 read_vec_element(s, tcg_rn, rn, i, ldop);
7975 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
7976 false, is_u_shift, size+1, shift);
7977 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
7978 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
7979 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
7980 }
7981
7982 if (!is_q) {
7983 write_vec_element(s, tcg_final, rd, 0, MO_64);
7984 } else {
7985 write_vec_element(s, tcg_final, rd, 1, MO_64);
7986 }
7987
7988 if (round) {
7989 tcg_temp_free_i64(tcg_round);
7990 }
7991 tcg_temp_free_i64(tcg_rn);
7992 tcg_temp_free_i64(tcg_rd);
7993 tcg_temp_free_i32(tcg_rd_narrowed);
7994 tcg_temp_free_i64(tcg_final);
7995
7996 clear_vec_high(s, is_q, rd);
7997 }
7998
7999 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8000 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8001 bool src_unsigned, bool dst_unsigned,
8002 int immh, int immb, int rn, int rd)
8003 {
8004 int immhb = immh << 3 | immb;
8005 int size = 32 - clz32(immh) - 1;
8006 int shift = immhb - (8 << size);
8007 int pass;
8008
8009 assert(immh != 0);
8010 assert(!(scalar && is_q));
8011
8012 if (!scalar) {
8013 if (!is_q && extract32(immh, 3, 1)) {
8014 unallocated_encoding(s);
8015 return;
8016 }
8017
8018 /* Since we use the variable-shift helpers we must
8019 * replicate the shift count into each element of
8020 * the tcg_shift value.
8021 */
8022 switch (size) {
8023 case 0:
8024 shift |= shift << 8;
8025 /* fall through */
8026 case 1:
8027 shift |= shift << 16;
8028 break;
8029 case 2:
8030 case 3:
8031 break;
8032 default:
8033 g_assert_not_reached();
8034 }
8035 }
8036
8037 if (!fp_access_check(s)) {
8038 return;
8039 }
8040
8041 if (size == 3) {
8042 TCGv_i64 tcg_shift = tcg_const_i64(shift);
8043 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8044 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8045 { NULL, gen_helper_neon_qshl_u64 },
8046 };
8047 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8048 int maxpass = is_q ? 2 : 1;
8049
8050 for (pass = 0; pass < maxpass; pass++) {
8051 TCGv_i64 tcg_op = tcg_temp_new_i64();
8052
8053 read_vec_element(s, tcg_op, rn, pass, MO_64);
8054 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8055 write_vec_element(s, tcg_op, rd, pass, MO_64);
8056
8057 tcg_temp_free_i64(tcg_op);
8058 }
8059 tcg_temp_free_i64(tcg_shift);
8060 clear_vec_high(s, is_q, rd);
8061 } else {
8062 TCGv_i32 tcg_shift = tcg_const_i32(shift);
8063 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8064 {
8065 { gen_helper_neon_qshl_s8,
8066 gen_helper_neon_qshl_s16,
8067 gen_helper_neon_qshl_s32 },
8068 { gen_helper_neon_qshlu_s8,
8069 gen_helper_neon_qshlu_s16,
8070 gen_helper_neon_qshlu_s32 }
8071 }, {
8072 { NULL, NULL, NULL },
8073 { gen_helper_neon_qshl_u8,
8074 gen_helper_neon_qshl_u16,
8075 gen_helper_neon_qshl_u32 }
8076 }
8077 };
8078 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8079 TCGMemOp memop = scalar ? size : MO_32;
8080 int maxpass = scalar ? 1 : is_q ? 4 : 2;
8081
8082 for (pass = 0; pass < maxpass; pass++) {
8083 TCGv_i32 tcg_op = tcg_temp_new_i32();
8084
8085 read_vec_element_i32(s, tcg_op, rn, pass, memop);
8086 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8087 if (scalar) {
8088 switch (size) {
8089 case 0:
8090 tcg_gen_ext8u_i32(tcg_op, tcg_op);
8091 break;
8092 case 1:
8093 tcg_gen_ext16u_i32(tcg_op, tcg_op);
8094 break;
8095 case 2:
8096 break;
8097 default:
8098 g_assert_not_reached();
8099 }
8100 write_fp_sreg(s, rd, tcg_op);
8101 } else {
8102 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8103 }
8104
8105 tcg_temp_free_i32(tcg_op);
8106 }
8107 tcg_temp_free_i32(tcg_shift);
8108
8109 if (!scalar) {
8110 clear_vec_high(s, is_q, rd);
8111 }
8112 }
8113 }
8114
8115 /* Common vector code for handling integer to FP conversion */
8116 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8117 int elements, int is_signed,
8118 int fracbits, int size)
8119 {
8120 TCGv_ptr tcg_fpst = get_fpstatus_ptr(size == MO_16);
8121 TCGv_i32 tcg_shift = NULL;
8122
8123 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
8124 int pass;
8125
8126 if (fracbits || size == MO_64) {
8127 tcg_shift = tcg_const_i32(fracbits);
8128 }
8129
8130 if (size == MO_64) {
8131 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8132 TCGv_i64 tcg_double = tcg_temp_new_i64();
8133
8134 for (pass = 0; pass < elements; pass++) {
8135 read_vec_element(s, tcg_int64, rn, pass, mop);
8136
8137 if (is_signed) {
8138 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8139 tcg_shift, tcg_fpst);
8140 } else {
8141 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8142 tcg_shift, tcg_fpst);
8143 }
8144 if (elements == 1) {
8145 write_fp_dreg(s, rd, tcg_double);
8146 } else {
8147 write_vec_element(s, tcg_double, rd, pass, MO_64);
8148 }
8149 }
8150
8151 tcg_temp_free_i64(tcg_int64);
8152 tcg_temp_free_i64(tcg_double);
8153
8154 } else {
8155 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8156 TCGv_i32 tcg_float = tcg_temp_new_i32();
8157
8158 for (pass = 0; pass < elements; pass++) {
8159 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8160
8161 switch (size) {
8162 case MO_32:
8163 if (fracbits) {
8164 if (is_signed) {
8165 gen_helper_vfp_sltos(tcg_float, tcg_int32,
8166 tcg_shift, tcg_fpst);
8167 } else {
8168 gen_helper_vfp_ultos(tcg_float, tcg_int32,
8169 tcg_shift, tcg_fpst);
8170 }
8171 } else {
8172 if (is_signed) {
8173 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8174 } else {
8175 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8176 }
8177 }
8178 break;
8179 case MO_16:
8180 if (fracbits) {
8181 if (is_signed) {
8182 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8183 tcg_shift, tcg_fpst);
8184 } else {
8185 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8186 tcg_shift, tcg_fpst);
8187 }
8188 } else {
8189 if (is_signed) {
8190 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8191 } else {
8192 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8193 }
8194 }
8195 break;
8196 default:
8197 g_assert_not_reached();
8198 }
8199
8200 if (elements == 1) {
8201 write_fp_sreg(s, rd, tcg_float);
8202 } else {
8203 write_vec_element_i32(s, tcg_float, rd, pass, size);
8204 }
8205 }
8206
8207 tcg_temp_free_i32(tcg_int32);
8208 tcg_temp_free_i32(tcg_float);
8209 }
8210
8211 tcg_temp_free_ptr(tcg_fpst);
8212 if (tcg_shift) {
8213 tcg_temp_free_i32(tcg_shift);
8214 }
8215
8216 clear_vec_high(s, elements << size == 16, rd);
8217 }
8218
8219 /* UCVTF/SCVTF - Integer to FP conversion */
8220 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8221 bool is_q, bool is_u,
8222 int immh, int immb, int opcode,
8223 int rn, int rd)
8224 {
8225 int size, elements, fracbits;
8226 int immhb = immh << 3 | immb;
8227
8228 if (immh & 8) {
8229 size = MO_64;
8230 if (!is_scalar && !is_q) {
8231 unallocated_encoding(s);
8232 return;
8233 }
8234 } else if (immh & 4) {
8235 size = MO_32;
8236 } else if (immh & 2) {
8237 size = MO_16;
8238 if (!dc_isar_feature(aa64_fp16, s)) {
8239 unallocated_encoding(s);
8240 return;
8241 }
8242 } else {
8243 /* immh == 0 would be a failure of the decode logic */
8244 g_assert(immh == 1);
8245 unallocated_encoding(s);
8246 return;
8247 }
8248
8249 if (is_scalar) {
8250 elements = 1;
8251 } else {
8252 elements = (8 << is_q) >> size;
8253 }
8254 fracbits = (16 << size) - immhb;
8255
8256 if (!fp_access_check(s)) {
8257 return;
8258 }
8259
8260 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8261 }
8262
8263 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8264 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8265 bool is_q, bool is_u,
8266 int immh, int immb, int rn, int rd)
8267 {
8268 int immhb = immh << 3 | immb;
8269 int pass, size, fracbits;
8270 TCGv_ptr tcg_fpstatus;
8271 TCGv_i32 tcg_rmode, tcg_shift;
8272
8273 if (immh & 0x8) {
8274 size = MO_64;
8275 if (!is_scalar && !is_q) {
8276 unallocated_encoding(s);
8277 return;
8278 }
8279 } else if (immh & 0x4) {
8280 size = MO_32;
8281 } else if (immh & 0x2) {
8282 size = MO_16;
8283 if (!dc_isar_feature(aa64_fp16, s)) {
8284 unallocated_encoding(s);
8285 return;
8286 }
8287 } else {
8288 /* Should have split out AdvSIMD modified immediate earlier. */
8289 assert(immh == 1);
8290 unallocated_encoding(s);
8291 return;
8292 }
8293
8294 if (!fp_access_check(s)) {
8295 return;
8296 }
8297
8298 assert(!(is_scalar && is_q));
8299
8300 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
8301 tcg_fpstatus = get_fpstatus_ptr(size == MO_16);
8302 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8303 fracbits = (16 << size) - immhb;
8304 tcg_shift = tcg_const_i32(fracbits);
8305
8306 if (size == MO_64) {
8307 int maxpass = is_scalar ? 1 : 2;
8308
8309 for (pass = 0; pass < maxpass; pass++) {
8310 TCGv_i64 tcg_op = tcg_temp_new_i64();
8311
8312 read_vec_element(s, tcg_op, rn, pass, MO_64);
8313 if (is_u) {
8314 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8315 } else {
8316 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8317 }
8318 write_vec_element(s, tcg_op, rd, pass, MO_64);
8319 tcg_temp_free_i64(tcg_op);
8320 }
8321 clear_vec_high(s, is_q, rd);
8322 } else {
8323 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8324 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8325
8326 switch (size) {
8327 case MO_16:
8328 if (is_u) {
8329 fn = gen_helper_vfp_touhh;
8330 } else {
8331 fn = gen_helper_vfp_toshh;
8332 }
8333 break;
8334 case MO_32:
8335 if (is_u) {
8336 fn = gen_helper_vfp_touls;
8337 } else {
8338 fn = gen_helper_vfp_tosls;
8339 }
8340 break;
8341 default:
8342 g_assert_not_reached();
8343 }
8344
8345 for (pass = 0; pass < maxpass; pass++) {
8346 TCGv_i32 tcg_op = tcg_temp_new_i32();
8347
8348 read_vec_element_i32(s, tcg_op, rn, pass, size);
8349 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8350 if (is_scalar) {
8351 write_fp_sreg(s, rd, tcg_op);
8352 } else {
8353 write_vec_element_i32(s, tcg_op, rd, pass, size);
8354 }
8355 tcg_temp_free_i32(tcg_op);
8356 }
8357 if (!is_scalar) {
8358 clear_vec_high(s, is_q, rd);
8359 }
8360 }
8361
8362 tcg_temp_free_ptr(tcg_fpstatus);
8363 tcg_temp_free_i32(tcg_shift);
8364 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8365 tcg_temp_free_i32(tcg_rmode);
8366 }
8367
8368 /* AdvSIMD scalar shift by immediate
8369 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8370 * +-----+---+-------------+------+------+--------+---+------+------+
8371 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8372 * +-----+---+-------------+------+------+--------+---+------+------+
8373 *
8374 * This is the scalar version so it works on a fixed sized registers
8375 */
8376 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8377 {
8378 int rd = extract32(insn, 0, 5);
8379 int rn = extract32(insn, 5, 5);
8380 int opcode = extract32(insn, 11, 5);
8381 int immb = extract32(insn, 16, 3);
8382 int immh = extract32(insn, 19, 4);
8383 bool is_u = extract32(insn, 29, 1);
8384
8385 if (immh == 0) {
8386 unallocated_encoding(s);
8387 return;
8388 }
8389
8390 switch (opcode) {
8391 case 0x08: /* SRI */
8392 if (!is_u) {
8393 unallocated_encoding(s);
8394 return;
8395 }
8396 /* fall through */
8397 case 0x00: /* SSHR / USHR */
8398 case 0x02: /* SSRA / USRA */
8399 case 0x04: /* SRSHR / URSHR */
8400 case 0x06: /* SRSRA / URSRA */
8401 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8402 break;
8403 case 0x0a: /* SHL / SLI */
8404 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8405 break;
8406 case 0x1c: /* SCVTF, UCVTF */
8407 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8408 opcode, rn, rd);
8409 break;
8410 case 0x10: /* SQSHRUN, SQSHRUN2 */
8411 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8412 if (!is_u) {
8413 unallocated_encoding(s);
8414 return;
8415 }
8416 handle_vec_simd_sqshrn(s, true, false, false, true,
8417 immh, immb, opcode, rn, rd);
8418 break;
8419 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8420 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8421 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8422 immh, immb, opcode, rn, rd);
8423 break;
8424 case 0xc: /* SQSHLU */
8425 if (!is_u) {
8426 unallocated_encoding(s);
8427 return;
8428 }
8429 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8430 break;
8431 case 0xe: /* SQSHL, UQSHL */
8432 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8433 break;
8434 case 0x1f: /* FCVTZS, FCVTZU */
8435 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8436 break;
8437 default:
8438 unallocated_encoding(s);
8439 break;
8440 }
8441 }
8442
8443 /* AdvSIMD scalar three different
8444 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8445 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8446 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8447 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8448 */
8449 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8450 {
8451 bool is_u = extract32(insn, 29, 1);
8452 int size = extract32(insn, 22, 2);
8453 int opcode = extract32(insn, 12, 4);
8454 int rm = extract32(insn, 16, 5);
8455 int rn = extract32(insn, 5, 5);
8456 int rd = extract32(insn, 0, 5);
8457
8458 if (is_u) {
8459 unallocated_encoding(s);
8460 return;
8461 }
8462
8463 switch (opcode) {
8464 case 0x9: /* SQDMLAL, SQDMLAL2 */
8465 case 0xb: /* SQDMLSL, SQDMLSL2 */
8466 case 0xd: /* SQDMULL, SQDMULL2 */
8467 if (size == 0 || size == 3) {
8468 unallocated_encoding(s);
8469 return;
8470 }
8471 break;
8472 default:
8473 unallocated_encoding(s);
8474 return;
8475 }
8476
8477 if (!fp_access_check(s)) {
8478 return;
8479 }
8480
8481 if (size == 2) {
8482 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8483 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8484 TCGv_i64 tcg_res = tcg_temp_new_i64();
8485
8486 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8487 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8488
8489 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8490 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
8491
8492 switch (opcode) {
8493 case 0xd: /* SQDMULL, SQDMULL2 */
8494 break;
8495 case 0xb: /* SQDMLSL, SQDMLSL2 */
8496 tcg_gen_neg_i64(tcg_res, tcg_res);
8497 /* fall through */
8498 case 0x9: /* SQDMLAL, SQDMLAL2 */
8499 read_vec_element(s, tcg_op1, rd, 0, MO_64);
8500 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
8501 tcg_res, tcg_op1);
8502 break;
8503 default:
8504 g_assert_not_reached();
8505 }
8506
8507 write_fp_dreg(s, rd, tcg_res);
8508
8509 tcg_temp_free_i64(tcg_op1);
8510 tcg_temp_free_i64(tcg_op2);
8511 tcg_temp_free_i64(tcg_res);
8512 } else {
8513 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8514 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8515 TCGv_i64 tcg_res = tcg_temp_new_i64();
8516
8517 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8518 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
8519
8520 switch (opcode) {
8521 case 0xd: /* SQDMULL, SQDMULL2 */
8522 break;
8523 case 0xb: /* SQDMLSL, SQDMLSL2 */
8524 gen_helper_neon_negl_u32(tcg_res, tcg_res);
8525 /* fall through */
8526 case 0x9: /* SQDMLAL, SQDMLAL2 */
8527 {
8528 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8529 read_vec_element(s, tcg_op3, rd, 0, MO_32);
8530 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
8531 tcg_res, tcg_op3);
8532 tcg_temp_free_i64(tcg_op3);
8533 break;
8534 }
8535 default:
8536 g_assert_not_reached();
8537 }
8538
8539 tcg_gen_ext32u_i64(tcg_res, tcg_res);
8540 write_fp_dreg(s, rd, tcg_res);
8541
8542 tcg_temp_free_i32(tcg_op1);
8543 tcg_temp_free_i32(tcg_op2);
8544 tcg_temp_free_i64(tcg_res);
8545 }
8546 }
8547
8548 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8549 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8550 {
8551 /* Handle 64x64->64 opcodes which are shared between the scalar
8552 * and vector 3-same groups. We cover every opcode where size == 3
8553 * is valid in either the three-reg-same (integer, not pairwise)
8554 * or scalar-three-reg-same groups.
8555 */
8556 TCGCond cond;
8557
8558 switch (opcode) {
8559 case 0x1: /* SQADD */
8560 if (u) {
8561 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8562 } else {
8563 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8564 }
8565 break;
8566 case 0x5: /* SQSUB */
8567 if (u) {
8568 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8569 } else {
8570 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8571 }
8572 break;
8573 case 0x6: /* CMGT, CMHI */
8574 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
8575 * We implement this using setcond (test) and then negating.
8576 */
8577 cond = u ? TCG_COND_GTU : TCG_COND_GT;
8578 do_cmop:
8579 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8580 tcg_gen_neg_i64(tcg_rd, tcg_rd);
8581 break;
8582 case 0x7: /* CMGE, CMHS */
8583 cond = u ? TCG_COND_GEU : TCG_COND_GE;
8584 goto do_cmop;
8585 case 0x11: /* CMTST, CMEQ */
8586 if (u) {
8587 cond = TCG_COND_EQ;
8588 goto do_cmop;
8589 }
8590 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8591 break;
8592 case 0x8: /* SSHL, USHL */
8593 if (u) {
8594 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
8595 } else {
8596 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
8597 }
8598 break;
8599 case 0x9: /* SQSHL, UQSHL */
8600 if (u) {
8601 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8602 } else {
8603 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8604 }
8605 break;
8606 case 0xa: /* SRSHL, URSHL */
8607 if (u) {
8608 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8609 } else {
8610 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8611 }
8612 break;
8613 case 0xb: /* SQRSHL, UQRSHL */
8614 if (u) {
8615 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8616 } else {
8617 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8618 }
8619 break;
8620 case 0x10: /* ADD, SUB */
8621 if (u) {
8622 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8623 } else {
8624 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8625 }
8626 break;
8627 default:
8628 g_assert_not_reached();
8629 }
8630 }
8631
8632 /* Handle the 3-same-operands float operations; shared by the scalar
8633 * and vector encodings. The caller must filter out any encodings
8634 * not allocated for the encoding it is dealing with.
8635 */
8636 static void handle_3same_float(DisasContext *s, int size, int elements,
8637 int fpopcode, int rd, int rn, int rm)
8638 {
8639 int pass;
8640 TCGv_ptr fpst = get_fpstatus_ptr(false);
8641
8642 for (pass = 0; pass < elements; pass++) {
8643 if (size) {
8644 /* Double */
8645 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8646 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8647 TCGv_i64 tcg_res = tcg_temp_new_i64();
8648
8649 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8650 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8651
8652 switch (fpopcode) {
8653 case 0x39: /* FMLS */
8654 /* As usual for ARM, separate negation for fused multiply-add */
8655 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8656 /* fall through */
8657 case 0x19: /* FMLA */
8658 read_vec_element(s, tcg_res, rd, pass, MO_64);
8659 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8660 tcg_res, fpst);
8661 break;
8662 case 0x18: /* FMAXNM */
8663 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8664 break;
8665 case 0x1a: /* FADD */
8666 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8667 break;
8668 case 0x1b: /* FMULX */
8669 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8670 break;
8671 case 0x1c: /* FCMEQ */
8672 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8673 break;
8674 case 0x1e: /* FMAX */
8675 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8676 break;
8677 case 0x1f: /* FRECPS */
8678 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8679 break;
8680 case 0x38: /* FMINNM */
8681 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8682 break;
8683 case 0x3a: /* FSUB */
8684 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8685 break;
8686 case 0x3e: /* FMIN */
8687 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8688 break;
8689 case 0x3f: /* FRSQRTS */
8690 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8691 break;
8692 case 0x5b: /* FMUL */
8693 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
8694 break;
8695 case 0x5c: /* FCMGE */
8696 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8697 break;
8698 case 0x5d: /* FACGE */
8699 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8700 break;
8701 case 0x5f: /* FDIV */
8702 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
8703 break;
8704 case 0x7a: /* FABD */
8705 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8706 gen_helper_vfp_absd(tcg_res, tcg_res);
8707 break;
8708 case 0x7c: /* FCMGT */
8709 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8710 break;
8711 case 0x7d: /* FACGT */
8712 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8713 break;
8714 default:
8715 g_assert_not_reached();
8716 }
8717
8718 write_vec_element(s, tcg_res, rd, pass, MO_64);
8719
8720 tcg_temp_free_i64(tcg_res);
8721 tcg_temp_free_i64(tcg_op1);
8722 tcg_temp_free_i64(tcg_op2);
8723 } else {
8724 /* Single */
8725 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8726 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8727 TCGv_i32 tcg_res = tcg_temp_new_i32();
8728
8729 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
8730 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
8731
8732 switch (fpopcode) {
8733 case 0x39: /* FMLS */
8734 /* As usual for ARM, separate negation for fused multiply-add */
8735 gen_helper_vfp_negs(tcg_op1, tcg_op1);
8736 /* fall through */
8737 case 0x19: /* FMLA */
8738 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8739 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
8740 tcg_res, fpst);
8741 break;
8742 case 0x1a: /* FADD */
8743 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8744 break;
8745 case 0x1b: /* FMULX */
8746 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
8747 break;
8748 case 0x1c: /* FCMEQ */
8749 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8750 break;
8751 case 0x1e: /* FMAX */
8752 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8753 break;
8754 case 0x1f: /* FRECPS */
8755 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8756 break;
8757 case 0x18: /* FMAXNM */
8758 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8759 break;
8760 case 0x38: /* FMINNM */
8761 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8762 break;
8763 case 0x3a: /* FSUB */
8764 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8765 break;
8766 case 0x3e: /* FMIN */
8767 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8768 break;
8769 case 0x3f: /* FRSQRTS */
8770 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8771 break;
8772 case 0x5b: /* FMUL */
8773 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
8774 break;
8775 case 0x5c: /* FCMGE */
8776 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8777 break;
8778 case 0x5d: /* FACGE */
8779 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8780 break;
8781 case 0x5f: /* FDIV */
8782 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
8783 break;
8784 case 0x7a: /* FABD */
8785 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8786 gen_helper_vfp_abss(tcg_res, tcg_res);
8787 break;
8788 case 0x7c: /* FCMGT */
8789 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8790 break;
8791 case 0x7d: /* FACGT */
8792 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8793 break;
8794 default:
8795 g_assert_not_reached();
8796 }
8797
8798 if (elements == 1) {
8799 /* scalar single so clear high part */
8800 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8801
8802 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
8803 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
8804 tcg_temp_free_i64(tcg_tmp);
8805 } else {
8806 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8807 }
8808
8809 tcg_temp_free_i32(tcg_res);
8810 tcg_temp_free_i32(tcg_op1);
8811 tcg_temp_free_i32(tcg_op2);
8812 }
8813 }
8814
8815 tcg_temp_free_ptr(fpst);
8816
8817 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
8818 }
8819
8820 /* AdvSIMD scalar three same
8821 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
8822 * +-----+---+-----------+------+---+------+--------+---+------+------+
8823 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
8824 * +-----+---+-----------+------+---+------+--------+---+------+------+
8825 */
8826 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
8827 {
8828 int rd = extract32(insn, 0, 5);
8829 int rn = extract32(insn, 5, 5);
8830 int opcode = extract32(insn, 11, 5);
8831 int rm = extract32(insn, 16, 5);
8832 int size = extract32(insn, 22, 2);
8833 bool u = extract32(insn, 29, 1);
8834 TCGv_i64 tcg_rd;
8835
8836 if (opcode >= 0x18) {
8837 /* Floating point: U, size[1] and opcode indicate operation */
8838 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
8839 switch (fpopcode) {
8840 case 0x1b: /* FMULX */
8841 case 0x1f: /* FRECPS */
8842 case 0x3f: /* FRSQRTS */
8843 case 0x5d: /* FACGE */
8844 case 0x7d: /* FACGT */
8845 case 0x1c: /* FCMEQ */
8846 case 0x5c: /* FCMGE */
8847 case 0x7c: /* FCMGT */
8848 case 0x7a: /* FABD */
8849 break;
8850 default:
8851 unallocated_encoding(s);
8852 return;
8853 }
8854
8855 if (!fp_access_check(s)) {
8856 return;
8857 }
8858
8859 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
8860 return;
8861 }
8862
8863 switch (opcode) {
8864 case 0x1: /* SQADD, UQADD */
8865 case 0x5: /* SQSUB, UQSUB */
8866 case 0x9: /* SQSHL, UQSHL */
8867 case 0xb: /* SQRSHL, UQRSHL */
8868 break;
8869 case 0x8: /* SSHL, USHL */
8870 case 0xa: /* SRSHL, URSHL */
8871 case 0x6: /* CMGT, CMHI */
8872 case 0x7: /* CMGE, CMHS */
8873 case 0x11: /* CMTST, CMEQ */
8874 case 0x10: /* ADD, SUB (vector) */
8875 if (size != 3) {
8876 unallocated_encoding(s);
8877 return;
8878 }
8879 break;
8880 case 0x16: /* SQDMULH, SQRDMULH (vector) */
8881 if (size != 1 && size != 2) {
8882 unallocated_encoding(s);
8883 return;
8884 }
8885 break;
8886 default:
8887 unallocated_encoding(s);
8888 return;
8889 }
8890
8891 if (!fp_access_check(s)) {
8892 return;
8893 }
8894
8895 tcg_rd = tcg_temp_new_i64();
8896
8897 if (size == 3) {
8898 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8899 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
8900
8901 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
8902 tcg_temp_free_i64(tcg_rn);
8903 tcg_temp_free_i64(tcg_rm);
8904 } else {
8905 /* Do a single operation on the lowest element in the vector.
8906 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
8907 * no side effects for all these operations.
8908 * OPTME: special-purpose helpers would avoid doing some
8909 * unnecessary work in the helper for the 8 and 16 bit cases.
8910 */
8911 NeonGenTwoOpEnvFn *genenvfn;
8912 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8913 TCGv_i32 tcg_rm = tcg_temp_new_i32();
8914 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
8915
8916 read_vec_element_i32(s, tcg_rn, rn, 0, size);
8917 read_vec_element_i32(s, tcg_rm, rm, 0, size);
8918
8919 switch (opcode) {
8920 case 0x1: /* SQADD, UQADD */
8921 {
8922 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8923 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
8924 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
8925 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
8926 };
8927 genenvfn = fns[size][u];
8928 break;
8929 }
8930 case 0x5: /* SQSUB, UQSUB */
8931 {
8932 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8933 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
8934 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
8935 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
8936 };
8937 genenvfn = fns[size][u];
8938 break;
8939 }
8940 case 0x9: /* SQSHL, UQSHL */
8941 {
8942 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8943 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
8944 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
8945 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
8946 };
8947 genenvfn = fns[size][u];
8948 break;
8949 }
8950 case 0xb: /* SQRSHL, UQRSHL */
8951 {
8952 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8953 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
8954 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
8955 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
8956 };
8957 genenvfn = fns[size][u];
8958 break;
8959 }
8960 case 0x16: /* SQDMULH, SQRDMULH */
8961 {
8962 static NeonGenTwoOpEnvFn * const fns[2][2] = {
8963 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
8964 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
8965 };
8966 assert(size == 1 || size == 2);
8967 genenvfn = fns[size - 1][u];
8968 break;
8969 }
8970 default:
8971 g_assert_not_reached();
8972 }
8973
8974 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
8975 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
8976 tcg_temp_free_i32(tcg_rd32);
8977 tcg_temp_free_i32(tcg_rn);
8978 tcg_temp_free_i32(tcg_rm);
8979 }
8980
8981 write_fp_dreg(s, rd, tcg_rd);
8982
8983 tcg_temp_free_i64(tcg_rd);
8984 }
8985
8986 /* AdvSIMD scalar three same FP16
8987 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
8988 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
8989 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
8990 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
8991 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
8992 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
8993 */
8994 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
8995 uint32_t insn)
8996 {
8997 int rd = extract32(insn, 0, 5);
8998 int rn = extract32(insn, 5, 5);
8999 int opcode = extract32(insn, 11, 3);
9000 int rm = extract32(insn, 16, 5);
9001 bool u = extract32(insn, 29, 1);
9002 bool a = extract32(insn, 23, 1);
9003 int fpopcode = opcode | (a << 3) | (u << 4);
9004 TCGv_ptr fpst;
9005 TCGv_i32 tcg_op1;
9006 TCGv_i32 tcg_op2;
9007 TCGv_i32 tcg_res;
9008
9009 switch (fpopcode) {
9010 case 0x03: /* FMULX */
9011 case 0x04: /* FCMEQ (reg) */
9012 case 0x07: /* FRECPS */
9013 case 0x0f: /* FRSQRTS */
9014 case 0x14: /* FCMGE (reg) */
9015 case 0x15: /* FACGE */
9016 case 0x1a: /* FABD */
9017 case 0x1c: /* FCMGT (reg) */
9018 case 0x1d: /* FACGT */
9019 break;
9020 default:
9021 unallocated_encoding(s);
9022 return;
9023 }
9024
9025 if (!dc_isar_feature(aa64_fp16, s)) {
9026 unallocated_encoding(s);
9027 }
9028
9029 if (!fp_access_check(s)) {
9030 return;
9031 }
9032
9033 fpst = get_fpstatus_ptr(true);
9034
9035 tcg_op1 = read_fp_hreg(s, rn);
9036 tcg_op2 = read_fp_hreg(s, rm);
9037 tcg_res = tcg_temp_new_i32();
9038
9039 switch (fpopcode) {
9040 case 0x03: /* FMULX */
9041 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9042 break;
9043 case 0x04: /* FCMEQ (reg) */
9044 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9045 break;
9046 case 0x07: /* FRECPS */
9047 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9048 break;
9049 case 0x0f: /* FRSQRTS */
9050 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9051 break;
9052 case 0x14: /* FCMGE (reg) */
9053 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9054 break;
9055 case 0x15: /* FACGE */
9056 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9057 break;
9058 case 0x1a: /* FABD */
9059 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9060 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9061 break;
9062 case 0x1c: /* FCMGT (reg) */
9063 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9064 break;
9065 case 0x1d: /* FACGT */
9066 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9067 break;
9068 default:
9069 g_assert_not_reached();
9070 }
9071
9072 write_fp_sreg(s, rd, tcg_res);
9073
9074
9075 tcg_temp_free_i32(tcg_res);
9076 tcg_temp_free_i32(tcg_op1);
9077 tcg_temp_free_i32(tcg_op2);
9078 tcg_temp_free_ptr(fpst);
9079 }
9080
9081 /* AdvSIMD scalar three same extra
9082 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9083 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9084 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9085 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9086 */
9087 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9088 uint32_t insn)
9089 {
9090 int rd = extract32(insn, 0, 5);
9091 int rn = extract32(insn, 5, 5);
9092 int opcode = extract32(insn, 11, 4);
9093 int rm = extract32(insn, 16, 5);
9094 int size = extract32(insn, 22, 2);
9095 bool u = extract32(insn, 29, 1);
9096 TCGv_i32 ele1, ele2, ele3;
9097 TCGv_i64 res;
9098 bool feature;
9099
9100 switch (u * 16 + opcode) {
9101 case 0x10: /* SQRDMLAH (vector) */
9102 case 0x11: /* SQRDMLSH (vector) */
9103 if (size != 1 && size != 2) {
9104 unallocated_encoding(s);
9105 return;
9106 }
9107 feature = dc_isar_feature(aa64_rdm, s);
9108 break;
9109 default:
9110 unallocated_encoding(s);
9111 return;
9112 }
9113 if (!feature) {
9114 unallocated_encoding(s);
9115 return;
9116 }
9117 if (!fp_access_check(s)) {
9118 return;
9119 }
9120
9121 /* Do a single operation on the lowest element in the vector.
9122 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9123 * with no side effects for all these operations.
9124 * OPTME: special-purpose helpers would avoid doing some
9125 * unnecessary work in the helper for the 16 bit cases.
9126 */
9127 ele1 = tcg_temp_new_i32();
9128 ele2 = tcg_temp_new_i32();
9129 ele3 = tcg_temp_new_i32();
9130
9131 read_vec_element_i32(s, ele1, rn, 0, size);
9132 read_vec_element_i32(s, ele2, rm, 0, size);
9133 read_vec_element_i32(s, ele3, rd, 0, size);
9134
9135 switch (opcode) {
9136 case 0x0: /* SQRDMLAH */
9137 if (size == 1) {
9138 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9139 } else {
9140 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9141 }
9142 break;
9143 case 0x1: /* SQRDMLSH */
9144 if (size == 1) {
9145 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9146 } else {
9147 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9148 }
9149 break;
9150 default:
9151 g_assert_not_reached();
9152 }
9153 tcg_temp_free_i32(ele1);
9154 tcg_temp_free_i32(ele2);
9155
9156 res = tcg_temp_new_i64();
9157 tcg_gen_extu_i32_i64(res, ele3);
9158 tcg_temp_free_i32(ele3);
9159
9160 write_fp_dreg(s, rd, res);
9161 tcg_temp_free_i64(res);
9162 }
9163
9164 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9165 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9166 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9167 {
9168 /* Handle 64->64 opcodes which are shared between the scalar and
9169 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9170 * is valid in either group and also the double-precision fp ops.
9171 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9172 * requires them.
9173 */
9174 TCGCond cond;
9175
9176 switch (opcode) {
9177 case 0x4: /* CLS, CLZ */
9178 if (u) {
9179 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9180 } else {
9181 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9182 }
9183 break;
9184 case 0x5: /* NOT */
9185 /* This opcode is shared with CNT and RBIT but we have earlier
9186 * enforced that size == 3 if and only if this is the NOT insn.
9187 */
9188 tcg_gen_not_i64(tcg_rd, tcg_rn);
9189 break;
9190 case 0x7: /* SQABS, SQNEG */
9191 if (u) {
9192 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9193 } else {
9194 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9195 }
9196 break;
9197 case 0xa: /* CMLT */
9198 /* 64 bit integer comparison against zero, result is
9199 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9200 * subtracting 1.
9201 */
9202 cond = TCG_COND_LT;
9203 do_cmop:
9204 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9205 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9206 break;
9207 case 0x8: /* CMGT, CMGE */
9208 cond = u ? TCG_COND_GE : TCG_COND_GT;
9209 goto do_cmop;
9210 case 0x9: /* CMEQ, CMLE */
9211 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9212 goto do_cmop;
9213 case 0xb: /* ABS, NEG */
9214 if (u) {
9215 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9216 } else {
9217 TCGv_i64 tcg_zero = tcg_const_i64(0);
9218 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9219 tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
9220 tcg_rn, tcg_rd);
9221 tcg_temp_free_i64(tcg_zero);
9222 }
9223 break;
9224 case 0x2f: /* FABS */
9225 gen_helper_vfp_absd(tcg_rd, tcg_rn);
9226 break;
9227 case 0x6f: /* FNEG */
9228 gen_helper_vfp_negd(tcg_rd, tcg_rn);
9229 break;
9230 case 0x7f: /* FSQRT */
9231 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9232 break;
9233 case 0x1a: /* FCVTNS */
9234 case 0x1b: /* FCVTMS */
9235 case 0x1c: /* FCVTAS */
9236 case 0x3a: /* FCVTPS */
9237 case 0x3b: /* FCVTZS */
9238 {
9239 TCGv_i32 tcg_shift = tcg_const_i32(0);
9240 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9241 tcg_temp_free_i32(tcg_shift);
9242 break;
9243 }
9244 case 0x5a: /* FCVTNU */
9245 case 0x5b: /* FCVTMU */
9246 case 0x5c: /* FCVTAU */
9247 case 0x7a: /* FCVTPU */
9248 case 0x7b: /* FCVTZU */
9249 {
9250 TCGv_i32 tcg_shift = tcg_const_i32(0);
9251 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9252 tcg_temp_free_i32(tcg_shift);
9253 break;
9254 }
9255 case 0x18: /* FRINTN */
9256 case 0x19: /* FRINTM */
9257 case 0x38: /* FRINTP */
9258 case 0x39: /* FRINTZ */
9259 case 0x58: /* FRINTA */
9260 case 0x79: /* FRINTI */
9261 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9262 break;
9263 case 0x59: /* FRINTX */
9264 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9265 break;
9266 default:
9267 g_assert_not_reached();
9268 }
9269 }
9270
9271 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9272 bool is_scalar, bool is_u, bool is_q,
9273 int size, int rn, int rd)
9274 {
9275 bool is_double = (size == MO_64);
9276 TCGv_ptr fpst;
9277
9278 if (!fp_access_check(s)) {
9279 return;
9280 }
9281
9282 fpst = get_fpstatus_ptr(size == MO_16);
9283
9284 if (is_double) {
9285 TCGv_i64 tcg_op = tcg_temp_new_i64();
9286 TCGv_i64 tcg_zero = tcg_const_i64(0);
9287 TCGv_i64 tcg_res = tcg_temp_new_i64();
9288 NeonGenTwoDoubleOPFn *genfn;
9289 bool swap = false;
9290 int pass;
9291
9292 switch (opcode) {
9293 case 0x2e: /* FCMLT (zero) */
9294 swap = true;
9295 /* fallthrough */
9296 case 0x2c: /* FCMGT (zero) */
9297 genfn = gen_helper_neon_cgt_f64;
9298 break;
9299 case 0x2d: /* FCMEQ (zero) */
9300 genfn = gen_helper_neon_ceq_f64;
9301 break;
9302 case 0x6d: /* FCMLE (zero) */
9303 swap = true;
9304 /* fall through */
9305 case 0x6c: /* FCMGE (zero) */
9306 genfn = gen_helper_neon_cge_f64;
9307 break;
9308 default:
9309 g_assert_not_reached();
9310 }
9311
9312 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9313 read_vec_element(s, tcg_op, rn, pass, MO_64);
9314 if (swap) {
9315 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9316 } else {
9317 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9318 }
9319 write_vec_element(s, tcg_res, rd, pass, MO_64);
9320 }
9321 tcg_temp_free_i64(tcg_res);
9322 tcg_temp_free_i64(tcg_zero);
9323 tcg_temp_free_i64(tcg_op);
9324
9325 clear_vec_high(s, !is_scalar, rd);
9326 } else {
9327 TCGv_i32 tcg_op = tcg_temp_new_i32();
9328 TCGv_i32 tcg_zero = tcg_const_i32(0);
9329 TCGv_i32 tcg_res = tcg_temp_new_i32();
9330 NeonGenTwoSingleOPFn *genfn;
9331 bool swap = false;
9332 int pass, maxpasses;
9333
9334 if (size == MO_16) {
9335 switch (opcode) {
9336 case 0x2e: /* FCMLT (zero) */
9337 swap = true;
9338 /* fall through */
9339 case 0x2c: /* FCMGT (zero) */
9340 genfn = gen_helper_advsimd_cgt_f16;
9341 break;
9342 case 0x2d: /* FCMEQ (zero) */
9343 genfn = gen_helper_advsimd_ceq_f16;
9344 break;
9345 case 0x6d: /* FCMLE (zero) */
9346 swap = true;
9347 /* fall through */
9348 case 0x6c: /* FCMGE (zero) */
9349 genfn = gen_helper_advsimd_cge_f16;
9350 break;
9351 default:
9352 g_assert_not_reached();
9353 }
9354 } else {
9355 switch (opcode) {
9356 case 0x2e: /* FCMLT (zero) */
9357 swap = true;
9358 /* fall through */
9359 case 0x2c: /* FCMGT (zero) */
9360 genfn = gen_helper_neon_cgt_f32;
9361 break;
9362 case 0x2d: /* FCMEQ (zero) */
9363 genfn = gen_helper_neon_ceq_f32;
9364 break;
9365 case 0x6d: /* FCMLE (zero) */
9366 swap = true;
9367 /* fall through */
9368 case 0x6c: /* FCMGE (zero) */
9369 genfn = gen_helper_neon_cge_f32;
9370 break;
9371 default:
9372 g_assert_not_reached();
9373 }
9374 }
9375
9376 if (is_scalar) {
9377 maxpasses = 1;
9378 } else {
9379 int vector_size = 8 << is_q;
9380 maxpasses = vector_size >> size;
9381 }
9382
9383 for (pass = 0; pass < maxpasses; pass++) {
9384 read_vec_element_i32(s, tcg_op, rn, pass, size);
9385 if (swap) {
9386 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9387 } else {
9388 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9389 }
9390 if (is_scalar) {
9391 write_fp_sreg(s, rd, tcg_res);
9392 } else {
9393 write_vec_element_i32(s, tcg_res, rd, pass, size);
9394 }
9395 }
9396 tcg_temp_free_i32(tcg_res);
9397 tcg_temp_free_i32(tcg_zero);
9398 tcg_temp_free_i32(tcg_op);
9399 if (!is_scalar) {
9400 clear_vec_high(s, is_q, rd);
9401 }
9402 }
9403
9404 tcg_temp_free_ptr(fpst);
9405 }
9406
9407 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9408 bool is_scalar, bool is_u, bool is_q,
9409 int size, int rn, int rd)
9410 {
9411 bool is_double = (size == 3);
9412 TCGv_ptr fpst = get_fpstatus_ptr(false);
9413
9414 if (is_double) {
9415 TCGv_i64 tcg_op = tcg_temp_new_i64();
9416 TCGv_i64 tcg_res = tcg_temp_new_i64();
9417 int pass;
9418
9419 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9420 read_vec_element(s, tcg_op, rn, pass, MO_64);
9421 switch (opcode) {
9422 case 0x3d: /* FRECPE */
9423 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9424 break;
9425 case 0x3f: /* FRECPX */
9426 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9427 break;
9428 case 0x7d: /* FRSQRTE */
9429 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9430 break;
9431 default:
9432 g_assert_not_reached();
9433 }
9434 write_vec_element(s, tcg_res, rd, pass, MO_64);
9435 }
9436 tcg_temp_free_i64(tcg_res);
9437 tcg_temp_free_i64(tcg_op);
9438 clear_vec_high(s, !is_scalar, rd);
9439 } else {
9440 TCGv_i32 tcg_op = tcg_temp_new_i32();
9441 TCGv_i32 tcg_res = tcg_temp_new_i32();
9442 int pass, maxpasses;
9443
9444 if (is_scalar) {
9445 maxpasses = 1;
9446 } else {
9447 maxpasses = is_q ? 4 : 2;
9448 }
9449
9450 for (pass = 0; pass < maxpasses; pass++) {
9451 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9452
9453 switch (opcode) {
9454 case 0x3c: /* URECPE */
9455 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
9456 break;
9457 case 0x3d: /* FRECPE */
9458 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9459 break;
9460 case 0x3f: /* FRECPX */
9461 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9462 break;
9463 case 0x7d: /* FRSQRTE */
9464 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9465 break;
9466 default:
9467 g_assert_not_reached();
9468 }
9469
9470 if (is_scalar) {
9471 write_fp_sreg(s, rd, tcg_res);
9472 } else {
9473 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9474 }
9475 }
9476 tcg_temp_free_i32(tcg_res);
9477 tcg_temp_free_i32(tcg_op);
9478 if (!is_scalar) {
9479 clear_vec_high(s, is_q, rd);
9480 }
9481 }
9482 tcg_temp_free_ptr(fpst);
9483 }
9484
9485 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9486 int opcode, bool u, bool is_q,
9487 int size, int rn, int rd)
9488 {
9489 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9490 * in the source becomes a size element in the destination).
9491 */
9492 int pass;
9493 TCGv_i32 tcg_res[2];
9494 int destelt = is_q ? 2 : 0;
9495 int passes = scalar ? 1 : 2;
9496
9497 if (scalar) {
9498 tcg_res[1] = tcg_const_i32(0);
9499 }
9500
9501 for (pass = 0; pass < passes; pass++) {
9502 TCGv_i64 tcg_op = tcg_temp_new_i64();
9503 NeonGenNarrowFn *genfn = NULL;
9504 NeonGenNarrowEnvFn *genenvfn = NULL;
9505
9506 if (scalar) {
9507 read_vec_element(s, tcg_op, rn, pass, size + 1);
9508 } else {
9509 read_vec_element(s, tcg_op, rn, pass, MO_64);
9510 }
9511 tcg_res[pass] = tcg_temp_new_i32();
9512
9513 switch (opcode) {
9514 case 0x12: /* XTN, SQXTUN */
9515 {
9516 static NeonGenNarrowFn * const xtnfns[3] = {
9517 gen_helper_neon_narrow_u8,
9518 gen_helper_neon_narrow_u16,
9519 tcg_gen_extrl_i64_i32,
9520 };
9521 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9522 gen_helper_neon_unarrow_sat8,
9523 gen_helper_neon_unarrow_sat16,
9524 gen_helper_neon_unarrow_sat32,
9525 };
9526 if (u) {
9527 genenvfn = sqxtunfns[size];
9528 } else {
9529 genfn = xtnfns[size];
9530 }
9531 break;
9532 }
9533 case 0x14: /* SQXTN, UQXTN */
9534 {
9535 static NeonGenNarrowEnvFn * const fns[3][2] = {
9536 { gen_helper_neon_narrow_sat_s8,
9537 gen_helper_neon_narrow_sat_u8 },
9538 { gen_helper_neon_narrow_sat_s16,
9539 gen_helper_neon_narrow_sat_u16 },
9540 { gen_helper_neon_narrow_sat_s32,
9541 gen_helper_neon_narrow_sat_u32 },
9542 };
9543 genenvfn = fns[size][u];
9544 break;
9545 }
9546 case 0x16: /* FCVTN, FCVTN2 */
9547 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9548 if (size == 2) {
9549 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
9550 } else {
9551 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9552 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9553 TCGv_ptr fpst = get_fpstatus_ptr(false);
9554 TCGv_i32 ahp = get_ahp_flag();
9555
9556 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9557 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9558 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9559 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9560 tcg_temp_free_i32(tcg_lo);
9561 tcg_temp_free_i32(tcg_hi);
9562 tcg_temp_free_ptr(fpst);
9563 tcg_temp_free_i32(ahp);
9564 }
9565 break;
9566 case 0x56: /* FCVTXN, FCVTXN2 */
9567 /* 64 bit to 32 bit float conversion
9568 * with von Neumann rounding (round to odd)
9569 */
9570 assert(size == 2);
9571 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
9572 break;
9573 default:
9574 g_assert_not_reached();
9575 }
9576
9577 if (genfn) {
9578 genfn(tcg_res[pass], tcg_op);
9579 } else if (genenvfn) {
9580 genenvfn(tcg_res[pass], cpu_env, tcg_op);
9581 }
9582
9583 tcg_temp_free_i64(tcg_op);
9584 }
9585
9586 for (pass = 0; pass < 2; pass++) {
9587 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9588 tcg_temp_free_i32(tcg_res[pass]);
9589 }
9590 clear_vec_high(s, is_q, rd);
9591 }
9592
9593 /* Remaining saturating accumulating ops */
9594 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9595 bool is_q, int size, int rn, int rd)
9596 {
9597 bool is_double = (size == 3);
9598
9599 if (is_double) {
9600 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9601 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9602 int pass;
9603
9604 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9605 read_vec_element(s, tcg_rn, rn, pass, MO_64);
9606 read_vec_element(s, tcg_rd, rd, pass, MO_64);
9607
9608 if (is_u) { /* USQADD */
9609 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9610 } else { /* SUQADD */
9611 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9612 }
9613 write_vec_element(s, tcg_rd, rd, pass, MO_64);
9614 }
9615 tcg_temp_free_i64(tcg_rd);
9616 tcg_temp_free_i64(tcg_rn);
9617 clear_vec_high(s, !is_scalar, rd);
9618 } else {
9619 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9620 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9621 int pass, maxpasses;
9622
9623 if (is_scalar) {
9624 maxpasses = 1;
9625 } else {
9626 maxpasses = is_q ? 4 : 2;
9627 }
9628
9629 for (pass = 0; pass < maxpasses; pass++) {
9630 if (is_scalar) {
9631 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9632 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9633 } else {
9634 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9635 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9636 }
9637
9638 if (is_u) { /* USQADD */
9639 switch (size) {
9640 case 0:
9641 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9642 break;
9643 case 1:
9644 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9645 break;
9646 case 2:
9647 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9648 break;
9649 default:
9650 g_assert_not_reached();
9651 }
9652 } else { /* SUQADD */
9653 switch (size) {
9654 case 0:
9655 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9656 break;
9657 case 1:
9658 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9659 break;
9660 case 2:
9661 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9662 break;
9663 default:
9664 g_assert_not_reached();
9665 }
9666 }
9667
9668 if (is_scalar) {
9669 TCGv_i64 tcg_zero = tcg_const_i64(0);
9670 write_vec_element(s, tcg_zero, rd, 0, MO_64);
9671 tcg_temp_free_i64(tcg_zero);
9672 }
9673 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9674 }
9675 tcg_temp_free_i32(tcg_rd);
9676 tcg_temp_free_i32(tcg_rn);
9677 clear_vec_high(s, is_q, rd);
9678 }
9679 }
9680
9681 /* AdvSIMD scalar two reg misc
9682 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9683 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9684 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9685 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9686 */
9687 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9688 {
9689 int rd = extract32(insn, 0, 5);
9690 int rn = extract32(insn, 5, 5);
9691 int opcode = extract32(insn, 12, 5);
9692 int size = extract32(insn, 22, 2);
9693 bool u = extract32(insn, 29, 1);
9694 bool is_fcvt = false;
9695 int rmode;
9696 TCGv_i32 tcg_rmode;
9697 TCGv_ptr tcg_fpstatus;
9698
9699 switch (opcode) {
9700 case 0x3: /* USQADD / SUQADD*/
9701 if (!fp_access_check(s)) {
9702 return;
9703 }
9704 handle_2misc_satacc(s, true, u, false, size, rn, rd);
9705 return;
9706 case 0x7: /* SQABS / SQNEG */
9707 break;
9708 case 0xa: /* CMLT */
9709 if (u) {
9710 unallocated_encoding(s);
9711 return;
9712 }
9713 /* fall through */
9714 case 0x8: /* CMGT, CMGE */
9715 case 0x9: /* CMEQ, CMLE */
9716 case 0xb: /* ABS, NEG */
9717 if (size != 3) {
9718 unallocated_encoding(s);
9719 return;
9720 }
9721 break;
9722 case 0x12: /* SQXTUN */
9723 if (!u) {
9724 unallocated_encoding(s);
9725 return;
9726 }
9727 /* fall through */
9728 case 0x14: /* SQXTN, UQXTN */
9729 if (size == 3) {
9730 unallocated_encoding(s);
9731 return;
9732 }
9733 if (!fp_access_check(s)) {
9734 return;
9735 }
9736 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
9737 return;
9738 case 0xc ... 0xf:
9739 case 0x16 ... 0x1d:
9740 case 0x1f:
9741 /* Floating point: U, size[1] and opcode indicate operation;
9742 * size[0] indicates single or double precision.
9743 */
9744 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
9745 size = extract32(size, 0, 1) ? 3 : 2;
9746 switch (opcode) {
9747 case 0x2c: /* FCMGT (zero) */
9748 case 0x2d: /* FCMEQ (zero) */
9749 case 0x2e: /* FCMLT (zero) */
9750 case 0x6c: /* FCMGE (zero) */
9751 case 0x6d: /* FCMLE (zero) */
9752 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
9753 return;
9754 case 0x1d: /* SCVTF */
9755 case 0x5d: /* UCVTF */
9756 {
9757 bool is_signed = (opcode == 0x1d);
9758 if (!fp_access_check(s)) {
9759 return;
9760 }
9761 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
9762 return;
9763 }
9764 case 0x3d: /* FRECPE */
9765 case 0x3f: /* FRECPX */
9766 case 0x7d: /* FRSQRTE */
9767 if (!fp_access_check(s)) {
9768 return;
9769 }
9770 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
9771 return;
9772 case 0x1a: /* FCVTNS */
9773 case 0x1b: /* FCVTMS */
9774 case 0x3a: /* FCVTPS */
9775 case 0x3b: /* FCVTZS */
9776 case 0x5a: /* FCVTNU */
9777 case 0x5b: /* FCVTMU */
9778 case 0x7a: /* FCVTPU */
9779 case 0x7b: /* FCVTZU */
9780 is_fcvt = true;
9781 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9782 break;
9783 case 0x1c: /* FCVTAS */
9784 case 0x5c: /* FCVTAU */
9785 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
9786 is_fcvt = true;
9787 rmode = FPROUNDING_TIEAWAY;
9788 break;
9789 case 0x56: /* FCVTXN, FCVTXN2 */
9790 if (size == 2) {
9791 unallocated_encoding(s);
9792 return;
9793 }
9794 if (!fp_access_check(s)) {
9795 return;
9796 }
9797 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
9798 return;
9799 default:
9800 unallocated_encoding(s);
9801 return;
9802 }
9803 break;
9804 default:
9805 unallocated_encoding(s);
9806 return;
9807 }
9808
9809 if (!fp_access_check(s)) {
9810 return;
9811 }
9812
9813 if (is_fcvt) {
9814 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
9815 tcg_fpstatus = get_fpstatus_ptr(false);
9816 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9817 } else {
9818 tcg_rmode = NULL;
9819 tcg_fpstatus = NULL;
9820 }
9821
9822 if (size == 3) {
9823 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9824 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9825
9826 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
9827 write_fp_dreg(s, rd, tcg_rd);
9828 tcg_temp_free_i64(tcg_rd);
9829 tcg_temp_free_i64(tcg_rn);
9830 } else {
9831 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9832 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9833
9834 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9835
9836 switch (opcode) {
9837 case 0x7: /* SQABS, SQNEG */
9838 {
9839 NeonGenOneOpEnvFn *genfn;
9840 static NeonGenOneOpEnvFn * const fns[3][2] = {
9841 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
9842 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
9843 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
9844 };
9845 genfn = fns[size][u];
9846 genfn(tcg_rd, cpu_env, tcg_rn);
9847 break;
9848 }
9849 case 0x1a: /* FCVTNS */
9850 case 0x1b: /* FCVTMS */
9851 case 0x1c: /* FCVTAS */
9852 case 0x3a: /* FCVTPS */
9853 case 0x3b: /* FCVTZS */
9854 {
9855 TCGv_i32 tcg_shift = tcg_const_i32(0);
9856 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9857 tcg_temp_free_i32(tcg_shift);
9858 break;
9859 }
9860 case 0x5a: /* FCVTNU */
9861 case 0x5b: /* FCVTMU */
9862 case 0x5c: /* FCVTAU */
9863 case 0x7a: /* FCVTPU */
9864 case 0x7b: /* FCVTZU */
9865 {
9866 TCGv_i32 tcg_shift = tcg_const_i32(0);
9867 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9868 tcg_temp_free_i32(tcg_shift);
9869 break;
9870 }
9871 default:
9872 g_assert_not_reached();
9873 }
9874
9875 write_fp_sreg(s, rd, tcg_rd);
9876 tcg_temp_free_i32(tcg_rd);
9877 tcg_temp_free_i32(tcg_rn);
9878 }
9879
9880 if (is_fcvt) {
9881 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9882 tcg_temp_free_i32(tcg_rmode);
9883 tcg_temp_free_ptr(tcg_fpstatus);
9884 }
9885 }
9886
9887 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
9888 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
9889 int immh, int immb, int opcode, int rn, int rd)
9890 {
9891 int size = 32 - clz32(immh) - 1;
9892 int immhb = immh << 3 | immb;
9893 int shift = 2 * (8 << size) - immhb;
9894 bool accumulate = false;
9895 int dsize = is_q ? 128 : 64;
9896 int esize = 8 << size;
9897 int elements = dsize/esize;
9898 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
9899 TCGv_i64 tcg_rn = new_tmp_a64(s);
9900 TCGv_i64 tcg_rd = new_tmp_a64(s);
9901 TCGv_i64 tcg_round;
9902 uint64_t round_const;
9903 int i;
9904
9905 if (extract32(immh, 3, 1) && !is_q) {
9906 unallocated_encoding(s);
9907 return;
9908 }
9909 tcg_debug_assert(size <= 3);
9910
9911 if (!fp_access_check(s)) {
9912 return;
9913 }
9914
9915 switch (opcode) {
9916 case 0x02: /* SSRA / USRA (accumulate) */
9917 if (is_u) {
9918 /* Shift count same as element size produces zero to add. */
9919 if (shift == 8 << size) {
9920 goto done;
9921 }
9922 gen_gvec_op2i(s, is_q, rd, rn, shift, &usra_op[size]);
9923 } else {
9924 /* Shift count same as element size produces all sign to add. */
9925 if (shift == 8 << size) {
9926 shift -= 1;
9927 }
9928 gen_gvec_op2i(s, is_q, rd, rn, shift, &ssra_op[size]);
9929 }
9930 return;
9931 case 0x08: /* SRI */
9932 /* Shift count same as element size is valid but does nothing. */
9933 if (shift == 8 << size) {
9934 goto done;
9935 }
9936 gen_gvec_op2i(s, is_q, rd, rn, shift, &sri_op[size]);
9937 return;
9938
9939 case 0x00: /* SSHR / USHR */
9940 if (is_u) {
9941 if (shift == 8 << size) {
9942 /* Shift count the same size as element size produces zero. */
9943 tcg_gen_gvec_dup8i(vec_full_reg_offset(s, rd),
9944 is_q ? 16 : 8, vec_full_reg_size(s), 0);
9945 } else {
9946 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shri, size);
9947 }
9948 } else {
9949 /* Shift count the same size as element size produces all sign. */
9950 if (shift == 8 << size) {
9951 shift -= 1;
9952 }
9953 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_sari, size);
9954 }
9955 return;
9956
9957 case 0x04: /* SRSHR / URSHR (rounding) */
9958 break;
9959 case 0x06: /* SRSRA / URSRA (accum + rounding) */
9960 accumulate = true;
9961 break;
9962 default:
9963 g_assert_not_reached();
9964 }
9965
9966 round_const = 1ULL << (shift - 1);
9967 tcg_round = tcg_const_i64(round_const);
9968
9969 for (i = 0; i < elements; i++) {
9970 read_vec_element(s, tcg_rn, rn, i, memop);
9971 if (accumulate) {
9972 read_vec_element(s, tcg_rd, rd, i, memop);
9973 }
9974
9975 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9976 accumulate, is_u, size, shift);
9977
9978 write_vec_element(s, tcg_rd, rd, i, size);
9979 }
9980 tcg_temp_free_i64(tcg_round);
9981
9982 done:
9983 clear_vec_high(s, is_q, rd);
9984 }
9985
9986 /* SHL/SLI - Vector shift left */
9987 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
9988 int immh, int immb, int opcode, int rn, int rd)
9989 {
9990 int size = 32 - clz32(immh) - 1;
9991 int immhb = immh << 3 | immb;
9992 int shift = immhb - (8 << size);
9993
9994 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
9995 assert(size >= 0 && size <= 3);
9996
9997 if (extract32(immh, 3, 1) && !is_q) {
9998 unallocated_encoding(s);
9999 return;
10000 }
10001
10002 if (!fp_access_check(s)) {
10003 return;
10004 }
10005
10006 if (insert) {
10007 gen_gvec_op2i(s, is_q, rd, rn, shift, &sli_op[size]);
10008 } else {
10009 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10010 }
10011 }
10012
10013 /* USHLL/SHLL - Vector shift left with widening */
10014 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10015 int immh, int immb, int opcode, int rn, int rd)
10016 {
10017 int size = 32 - clz32(immh) - 1;
10018 int immhb = immh << 3 | immb;
10019 int shift = immhb - (8 << size);
10020 int dsize = 64;
10021 int esize = 8 << size;
10022 int elements = dsize/esize;
10023 TCGv_i64 tcg_rn = new_tmp_a64(s);
10024 TCGv_i64 tcg_rd = new_tmp_a64(s);
10025 int i;
10026
10027 if (size >= 3) {
10028 unallocated_encoding(s);
10029 return;
10030 }
10031
10032 if (!fp_access_check(s)) {
10033 return;
10034 }
10035
10036 /* For the LL variants the store is larger than the load,
10037 * so if rd == rn we would overwrite parts of our input.
10038 * So load everything right now and use shifts in the main loop.
10039 */
10040 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10041
10042 for (i = 0; i < elements; i++) {
10043 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10044 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10045 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10046 write_vec_element(s, tcg_rd, rd, i, size + 1);
10047 }
10048 }
10049
10050 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10051 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10052 int immh, int immb, int opcode, int rn, int rd)
10053 {
10054 int immhb = immh << 3 | immb;
10055 int size = 32 - clz32(immh) - 1;
10056 int dsize = 64;
10057 int esize = 8 << size;
10058 int elements = dsize/esize;
10059 int shift = (2 * esize) - immhb;
10060 bool round = extract32(opcode, 0, 1);
10061 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10062 TCGv_i64 tcg_round;
10063 int i;
10064
10065 if (extract32(immh, 3, 1)) {
10066 unallocated_encoding(s);
10067 return;
10068 }
10069
10070 if (!fp_access_check(s)) {
10071 return;
10072 }
10073
10074 tcg_rn = tcg_temp_new_i64();
10075 tcg_rd = tcg_temp_new_i64();
10076 tcg_final = tcg_temp_new_i64();
10077 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10078
10079 if (round) {
10080 uint64_t round_const = 1ULL << (shift - 1);
10081 tcg_round = tcg_const_i64(round_const);
10082 } else {
10083 tcg_round = NULL;
10084 }
10085
10086 for (i = 0; i < elements; i++) {
10087 read_vec_element(s, tcg_rn, rn, i, size+1);
10088 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10089 false, true, size+1, shift);
10090
10091 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10092 }
10093
10094 if (!is_q) {
10095 write_vec_element(s, tcg_final, rd, 0, MO_64);
10096 } else {
10097 write_vec_element(s, tcg_final, rd, 1, MO_64);
10098 }
10099 if (round) {
10100 tcg_temp_free_i64(tcg_round);
10101 }
10102 tcg_temp_free_i64(tcg_rn);
10103 tcg_temp_free_i64(tcg_rd);
10104 tcg_temp_free_i64(tcg_final);
10105
10106 clear_vec_high(s, is_q, rd);
10107 }
10108
10109
10110 /* AdvSIMD shift by immediate
10111 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10112 * +---+---+---+-------------+------+------+--------+---+------+------+
10113 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10114 * +---+---+---+-------------+------+------+--------+---+------+------+
10115 */
10116 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10117 {
10118 int rd = extract32(insn, 0, 5);
10119 int rn = extract32(insn, 5, 5);
10120 int opcode = extract32(insn, 11, 5);
10121 int immb = extract32(insn, 16, 3);
10122 int immh = extract32(insn, 19, 4);
10123 bool is_u = extract32(insn, 29, 1);
10124 bool is_q = extract32(insn, 30, 1);
10125
10126 switch (opcode) {
10127 case 0x08: /* SRI */
10128 if (!is_u) {
10129 unallocated_encoding(s);
10130 return;
10131 }
10132 /* fall through */
10133 case 0x00: /* SSHR / USHR */
10134 case 0x02: /* SSRA / USRA (accumulate) */
10135 case 0x04: /* SRSHR / URSHR (rounding) */
10136 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10137 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10138 break;
10139 case 0x0a: /* SHL / SLI */
10140 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10141 break;
10142 case 0x10: /* SHRN */
10143 case 0x11: /* RSHRN / SQRSHRUN */
10144 if (is_u) {
10145 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10146 opcode, rn, rd);
10147 } else {
10148 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10149 }
10150 break;
10151 case 0x12: /* SQSHRN / UQSHRN */
10152 case 0x13: /* SQRSHRN / UQRSHRN */
10153 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10154 opcode, rn, rd);
10155 break;
10156 case 0x14: /* SSHLL / USHLL */
10157 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10158 break;
10159 case 0x1c: /* SCVTF / UCVTF */
10160 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10161 opcode, rn, rd);
10162 break;
10163 case 0xc: /* SQSHLU */
10164 if (!is_u) {
10165 unallocated_encoding(s);
10166 return;
10167 }
10168 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10169 break;
10170 case 0xe: /* SQSHL, UQSHL */
10171 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10172 break;
10173 case 0x1f: /* FCVTZS/ FCVTZU */
10174 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10175 return;
10176 default:
10177 unallocated_encoding(s);
10178 return;
10179 }
10180 }
10181
10182 /* Generate code to do a "long" addition or subtraction, ie one done in
10183 * TCGv_i64 on vector lanes twice the width specified by size.
10184 */
10185 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10186 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10187 {
10188 static NeonGenTwo64OpFn * const fns[3][2] = {
10189 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10190 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10191 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10192 };
10193 NeonGenTwo64OpFn *genfn;
10194 assert(size < 3);
10195
10196 genfn = fns[size][is_sub];
10197 genfn(tcg_res, tcg_op1, tcg_op2);
10198 }
10199
10200 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10201 int opcode, int rd, int rn, int rm)
10202 {
10203 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10204 TCGv_i64 tcg_res[2];
10205 int pass, accop;
10206
10207 tcg_res[0] = tcg_temp_new_i64();
10208 tcg_res[1] = tcg_temp_new_i64();
10209
10210 /* Does this op do an adding accumulate, a subtracting accumulate,
10211 * or no accumulate at all?
10212 */
10213 switch (opcode) {
10214 case 5:
10215 case 8:
10216 case 9:
10217 accop = 1;
10218 break;
10219 case 10:
10220 case 11:
10221 accop = -1;
10222 break;
10223 default:
10224 accop = 0;
10225 break;
10226 }
10227
10228 if (accop != 0) {
10229 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10230 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10231 }
10232
10233 /* size == 2 means two 32x32->64 operations; this is worth special
10234 * casing because we can generally handle it inline.
10235 */
10236 if (size == 2) {
10237 for (pass = 0; pass < 2; pass++) {
10238 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10239 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10240 TCGv_i64 tcg_passres;
10241 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10242
10243 int elt = pass + is_q * 2;
10244
10245 read_vec_element(s, tcg_op1, rn, elt, memop);
10246 read_vec_element(s, tcg_op2, rm, elt, memop);
10247
10248 if (accop == 0) {
10249 tcg_passres = tcg_res[pass];
10250 } else {
10251 tcg_passres = tcg_temp_new_i64();
10252 }
10253
10254 switch (opcode) {
10255 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10256 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10257 break;
10258 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10259 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10260 break;
10261 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10262 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10263 {
10264 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10265 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10266
10267 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10268 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10269 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10270 tcg_passres,
10271 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10272 tcg_temp_free_i64(tcg_tmp1);
10273 tcg_temp_free_i64(tcg_tmp2);
10274 break;
10275 }
10276 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10277 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10278 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10279 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10280 break;
10281 case 9: /* SQDMLAL, SQDMLAL2 */
10282 case 11: /* SQDMLSL, SQDMLSL2 */
10283 case 13: /* SQDMULL, SQDMULL2 */
10284 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10285 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10286 tcg_passres, tcg_passres);
10287 break;
10288 default:
10289 g_assert_not_reached();
10290 }
10291
10292 if (opcode == 9 || opcode == 11) {
10293 /* saturating accumulate ops */
10294 if (accop < 0) {
10295 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10296 }
10297 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10298 tcg_res[pass], tcg_passres);
10299 } else if (accop > 0) {
10300 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10301 } else if (accop < 0) {
10302 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10303 }
10304
10305 if (accop != 0) {
10306 tcg_temp_free_i64(tcg_passres);
10307 }
10308
10309 tcg_temp_free_i64(tcg_op1);
10310 tcg_temp_free_i64(tcg_op2);
10311 }
10312 } else {
10313 /* size 0 or 1, generally helper functions */
10314 for (pass = 0; pass < 2; pass++) {
10315 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10316 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10317 TCGv_i64 tcg_passres;
10318 int elt = pass + is_q * 2;
10319
10320 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10321 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10322
10323 if (accop == 0) {
10324 tcg_passres = tcg_res[pass];
10325 } else {
10326 tcg_passres = tcg_temp_new_i64();
10327 }
10328
10329 switch (opcode) {
10330 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10331 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10332 {
10333 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10334 static NeonGenWidenFn * const widenfns[2][2] = {
10335 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10336 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10337 };
10338 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10339
10340 widenfn(tcg_op2_64, tcg_op2);
10341 widenfn(tcg_passres, tcg_op1);
10342 gen_neon_addl(size, (opcode == 2), tcg_passres,
10343 tcg_passres, tcg_op2_64);
10344 tcg_temp_free_i64(tcg_op2_64);
10345 break;
10346 }
10347 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10348 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10349 if (size == 0) {
10350 if (is_u) {
10351 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10352 } else {
10353 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10354 }
10355 } else {
10356 if (is_u) {
10357 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10358 } else {
10359 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10360 }
10361 }
10362 break;
10363 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10364 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10365 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10366 if (size == 0) {
10367 if (is_u) {
10368 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10369 } else {
10370 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10371 }
10372 } else {
10373 if (is_u) {
10374 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10375 } else {
10376 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10377 }
10378 }
10379 break;
10380 case 9: /* SQDMLAL, SQDMLAL2 */
10381 case 11: /* SQDMLSL, SQDMLSL2 */
10382 case 13: /* SQDMULL, SQDMULL2 */
10383 assert(size == 1);
10384 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10385 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10386 tcg_passres, tcg_passres);
10387 break;
10388 case 14: /* PMULL */
10389 assert(size == 0);
10390 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
10391 break;
10392 default:
10393 g_assert_not_reached();
10394 }
10395 tcg_temp_free_i32(tcg_op1);
10396 tcg_temp_free_i32(tcg_op2);
10397
10398 if (accop != 0) {
10399 if (opcode == 9 || opcode == 11) {
10400 /* saturating accumulate ops */
10401 if (accop < 0) {
10402 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10403 }
10404 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10405 tcg_res[pass],
10406 tcg_passres);
10407 } else {
10408 gen_neon_addl(size, (accop < 0), tcg_res[pass],
10409 tcg_res[pass], tcg_passres);
10410 }
10411 tcg_temp_free_i64(tcg_passres);
10412 }
10413 }
10414 }
10415
10416 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10417 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10418 tcg_temp_free_i64(tcg_res[0]);
10419 tcg_temp_free_i64(tcg_res[1]);
10420 }
10421
10422 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10423 int opcode, int rd, int rn, int rm)
10424 {
10425 TCGv_i64 tcg_res[2];
10426 int part = is_q ? 2 : 0;
10427 int pass;
10428
10429 for (pass = 0; pass < 2; pass++) {
10430 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10431 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10432 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10433 static NeonGenWidenFn * const widenfns[3][2] = {
10434 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10435 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10436 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10437 };
10438 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10439
10440 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10441 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10442 widenfn(tcg_op2_wide, tcg_op2);
10443 tcg_temp_free_i32(tcg_op2);
10444 tcg_res[pass] = tcg_temp_new_i64();
10445 gen_neon_addl(size, (opcode == 3),
10446 tcg_res[pass], tcg_op1, tcg_op2_wide);
10447 tcg_temp_free_i64(tcg_op1);
10448 tcg_temp_free_i64(tcg_op2_wide);
10449 }
10450
10451 for (pass = 0; pass < 2; pass++) {
10452 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10453 tcg_temp_free_i64(tcg_res[pass]);
10454 }
10455 }
10456
10457 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10458 {
10459 tcg_gen_addi_i64(in, in, 1U << 31);
10460 tcg_gen_extrh_i64_i32(res, in);
10461 }
10462
10463 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10464 int opcode, int rd, int rn, int rm)
10465 {
10466 TCGv_i32 tcg_res[2];
10467 int part = is_q ? 2 : 0;
10468 int pass;
10469
10470 for (pass = 0; pass < 2; pass++) {
10471 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10472 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10473 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10474 static NeonGenNarrowFn * const narrowfns[3][2] = {
10475 { gen_helper_neon_narrow_high_u8,
10476 gen_helper_neon_narrow_round_high_u8 },
10477 { gen_helper_neon_narrow_high_u16,
10478 gen_helper_neon_narrow_round_high_u16 },
10479 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10480 };
10481 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10482
10483 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10484 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10485
10486 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10487
10488 tcg_temp_free_i64(tcg_op1);
10489 tcg_temp_free_i64(tcg_op2);
10490
10491 tcg_res[pass] = tcg_temp_new_i32();
10492 gennarrow(tcg_res[pass], tcg_wideres);
10493 tcg_temp_free_i64(tcg_wideres);
10494 }
10495
10496 for (pass = 0; pass < 2; pass++) {
10497 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10498 tcg_temp_free_i32(tcg_res[pass]);
10499 }
10500 clear_vec_high(s, is_q, rd);
10501 }
10502
10503 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
10504 {
10505 /* PMULL of 64 x 64 -> 128 is an odd special case because it
10506 * is the only three-reg-diff instruction which produces a
10507 * 128-bit wide result from a single operation. However since
10508 * it's possible to calculate the two halves more or less
10509 * separately we just use two helper calls.
10510 */
10511 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10512 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10513 TCGv_i64 tcg_res = tcg_temp_new_i64();
10514
10515 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
10516 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
10517 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
10518 write_vec_element(s, tcg_res, rd, 0, MO_64);
10519 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
10520 write_vec_element(s, tcg_res, rd, 1, MO_64);
10521
10522 tcg_temp_free_i64(tcg_op1);
10523 tcg_temp_free_i64(tcg_op2);
10524 tcg_temp_free_i64(tcg_res);
10525 }
10526
10527 /* AdvSIMD three different
10528 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
10529 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10530 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
10531 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10532 */
10533 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10534 {
10535 /* Instructions in this group fall into three basic classes
10536 * (in each case with the operation working on each element in
10537 * the input vectors):
10538 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10539 * 128 bit input)
10540 * (2) wide 64 x 128 -> 128
10541 * (3) narrowing 128 x 128 -> 64
10542 * Here we do initial decode, catch unallocated cases and
10543 * dispatch to separate functions for each class.
10544 */
10545 int is_q = extract32(insn, 30, 1);
10546 int is_u = extract32(insn, 29, 1);
10547 int size = extract32(insn, 22, 2);
10548 int opcode = extract32(insn, 12, 4);
10549 int rm = extract32(insn, 16, 5);
10550 int rn = extract32(insn, 5, 5);
10551 int rd = extract32(insn, 0, 5);
10552
10553 switch (opcode) {
10554 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10555 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10556 /* 64 x 128 -> 128 */
10557 if (size == 3) {
10558 unallocated_encoding(s);
10559 return;
10560 }
10561 if (!fp_access_check(s)) {
10562 return;
10563 }
10564 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10565 break;
10566 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10567 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10568 /* 128 x 128 -> 64 */
10569 if (size == 3) {
10570 unallocated_encoding(s);
10571 return;
10572 }
10573 if (!fp_access_check(s)) {
10574 return;
10575 }
10576 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10577 break;
10578 case 14: /* PMULL, PMULL2 */
10579 if (is_u || size == 1 || size == 2) {
10580 unallocated_encoding(s);
10581 return;
10582 }
10583 if (size == 3) {
10584 if (!dc_isar_feature(aa64_pmull, s)) {
10585 unallocated_encoding(s);
10586 return;
10587 }
10588 if (!fp_access_check(s)) {
10589 return;
10590 }
10591 handle_pmull_64(s, is_q, rd, rn, rm);
10592 return;
10593 }
10594 goto is_widening;
10595 case 9: /* SQDMLAL, SQDMLAL2 */
10596 case 11: /* SQDMLSL, SQDMLSL2 */
10597 case 13: /* SQDMULL, SQDMULL2 */
10598 if (is_u || size == 0) {
10599 unallocated_encoding(s);
10600 return;
10601 }
10602 /* fall through */
10603 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10604 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10605 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10606 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10607 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10608 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10609 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10610 /* 64 x 64 -> 128 */
10611 if (size == 3) {
10612 unallocated_encoding(s);
10613 return;
10614 }
10615 is_widening:
10616 if (!fp_access_check(s)) {
10617 return;
10618 }
10619
10620 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10621 break;
10622 default:
10623 /* opcode 15 not allocated */
10624 unallocated_encoding(s);
10625 break;
10626 }
10627 }
10628
10629 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10630 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10631 {
10632 int rd = extract32(insn, 0, 5);
10633 int rn = extract32(insn, 5, 5);
10634 int rm = extract32(insn, 16, 5);
10635 int size = extract32(insn, 22, 2);
10636 bool is_u = extract32(insn, 29, 1);
10637 bool is_q = extract32(insn, 30, 1);
10638
10639 if (!fp_access_check(s)) {
10640 return;
10641 }
10642
10643 switch (size + 4 * is_u) {
10644 case 0: /* AND */
10645 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10646 return;
10647 case 1: /* BIC */
10648 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10649 return;
10650 case 2: /* ORR */
10651 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10652 return;
10653 case 3: /* ORN */
10654 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10655 return;
10656 case 4: /* EOR */
10657 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10658 return;
10659
10660 case 5: /* BSL bitwise select */
10661 gen_gvec_op3(s, is_q, rd, rn, rm, &bsl_op);
10662 return;
10663 case 6: /* BIT, bitwise insert if true */
10664 gen_gvec_op3(s, is_q, rd, rn, rm, &bit_op);
10665 return;
10666 case 7: /* BIF, bitwise insert if false */
10667 gen_gvec_op3(s, is_q, rd, rn, rm, &bif_op);
10668 return;
10669
10670 default:
10671 g_assert_not_reached();
10672 }
10673 }
10674
10675 /* Pairwise op subgroup of C3.6.16.
10676 *
10677 * This is called directly or via the handle_3same_float for float pairwise
10678 * operations where the opcode and size are calculated differently.
10679 */
10680 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10681 int size, int rn, int rm, int rd)
10682 {
10683 TCGv_ptr fpst;
10684 int pass;
10685
10686 /* Floating point operations need fpst */
10687 if (opcode >= 0x58) {
10688 fpst = get_fpstatus_ptr(false);
10689 } else {
10690 fpst = NULL;
10691 }
10692
10693 if (!fp_access_check(s)) {
10694 return;
10695 }
10696
10697 /* These operations work on the concatenated rm:rn, with each pair of
10698 * adjacent elements being operated on to produce an element in the result.
10699 */
10700 if (size == 3) {
10701 TCGv_i64 tcg_res[2];
10702
10703 for (pass = 0; pass < 2; pass++) {
10704 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10705 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10706 int passreg = (pass == 0) ? rn : rm;
10707
10708 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10709 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10710 tcg_res[pass] = tcg_temp_new_i64();
10711
10712 switch (opcode) {
10713 case 0x17: /* ADDP */
10714 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10715 break;
10716 case 0x58: /* FMAXNMP */
10717 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10718 break;
10719 case 0x5a: /* FADDP */
10720 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10721 break;
10722 case 0x5e: /* FMAXP */
10723 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10724 break;
10725 case 0x78: /* FMINNMP */
10726 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10727 break;
10728 case 0x7e: /* FMINP */
10729 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10730 break;
10731 default:
10732 g_assert_not_reached();
10733 }
10734
10735 tcg_temp_free_i64(tcg_op1);
10736 tcg_temp_free_i64(tcg_op2);
10737 }
10738
10739 for (pass = 0; pass < 2; pass++) {
10740 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10741 tcg_temp_free_i64(tcg_res[pass]);
10742 }
10743 } else {
10744 int maxpass = is_q ? 4 : 2;
10745 TCGv_i32 tcg_res[4];
10746
10747 for (pass = 0; pass < maxpass; pass++) {
10748 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10749 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10750 NeonGenTwoOpFn *genfn = NULL;
10751 int passreg = pass < (maxpass / 2) ? rn : rm;
10752 int passelt = (is_q && (pass & 1)) ? 2 : 0;
10753
10754 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10755 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10756 tcg_res[pass] = tcg_temp_new_i32();
10757
10758 switch (opcode) {
10759 case 0x17: /* ADDP */
10760 {
10761 static NeonGenTwoOpFn * const fns[3] = {
10762 gen_helper_neon_padd_u8,
10763 gen_helper_neon_padd_u16,
10764 tcg_gen_add_i32,
10765 };
10766 genfn = fns[size];
10767 break;
10768 }
10769 case 0x14: /* SMAXP, UMAXP */
10770 {
10771 static NeonGenTwoOpFn * const fns[3][2] = {
10772 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10773 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10774 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10775 };
10776 genfn = fns[size][u];
10777 break;
10778 }
10779 case 0x15: /* SMINP, UMINP */
10780 {
10781 static NeonGenTwoOpFn * const fns[3][2] = {
10782 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10783 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10784 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
10785 };
10786 genfn = fns[size][u];
10787 break;
10788 }
10789 /* The FP operations are all on single floats (32 bit) */
10790 case 0x58: /* FMAXNMP */
10791 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10792 break;
10793 case 0x5a: /* FADDP */
10794 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10795 break;
10796 case 0x5e: /* FMAXP */
10797 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10798 break;
10799 case 0x78: /* FMINNMP */
10800 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10801 break;
10802 case 0x7e: /* FMINP */
10803 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10804 break;
10805 default:
10806 g_assert_not_reached();
10807 }
10808
10809 /* FP ops called directly, otherwise call now */
10810 if (genfn) {
10811 genfn(tcg_res[pass], tcg_op1, tcg_op2);
10812 }
10813
10814 tcg_temp_free_i32(tcg_op1);
10815 tcg_temp_free_i32(tcg_op2);
10816 }
10817
10818 for (pass = 0; pass < maxpass; pass++) {
10819 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10820 tcg_temp_free_i32(tcg_res[pass]);
10821 }
10822 clear_vec_high(s, is_q, rd);
10823 }
10824
10825 if (fpst) {
10826 tcg_temp_free_ptr(fpst);
10827 }
10828 }
10829
10830 /* Floating point op subgroup of C3.6.16. */
10831 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10832 {
10833 /* For floating point ops, the U, size[1] and opcode bits
10834 * together indicate the operation. size[0] indicates single
10835 * or double.
10836 */
10837 int fpopcode = extract32(insn, 11, 5)
10838 | (extract32(insn, 23, 1) << 5)
10839 | (extract32(insn, 29, 1) << 6);
10840 int is_q = extract32(insn, 30, 1);
10841 int size = extract32(insn, 22, 1);
10842 int rm = extract32(insn, 16, 5);
10843 int rn = extract32(insn, 5, 5);
10844 int rd = extract32(insn, 0, 5);
10845
10846 int datasize = is_q ? 128 : 64;
10847 int esize = 32 << size;
10848 int elements = datasize / esize;
10849
10850 if (size == 1 && !is_q) {
10851 unallocated_encoding(s);
10852 return;
10853 }
10854
10855 switch (fpopcode) {
10856 case 0x58: /* FMAXNMP */
10857 case 0x5a: /* FADDP */
10858 case 0x5e: /* FMAXP */
10859 case 0x78: /* FMINNMP */
10860 case 0x7e: /* FMINP */
10861 if (size && !is_q) {
10862 unallocated_encoding(s);
10863 return;
10864 }
10865 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
10866 rn, rm, rd);
10867 return;
10868 case 0x1b: /* FMULX */
10869 case 0x1f: /* FRECPS */
10870 case 0x3f: /* FRSQRTS */
10871 case 0x5d: /* FACGE */
10872 case 0x7d: /* FACGT */
10873 case 0x19: /* FMLA */
10874 case 0x39: /* FMLS */
10875 case 0x18: /* FMAXNM */
10876 case 0x1a: /* FADD */
10877 case 0x1c: /* FCMEQ */
10878 case 0x1e: /* FMAX */
10879 case 0x38: /* FMINNM */
10880 case 0x3a: /* FSUB */
10881 case 0x3e: /* FMIN */
10882 case 0x5b: /* FMUL */
10883 case 0x5c: /* FCMGE */
10884 case 0x5f: /* FDIV */
10885 case 0x7a: /* FABD */
10886 case 0x7c: /* FCMGT */
10887 if (!fp_access_check(s)) {
10888 return;
10889 }
10890
10891 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
10892 return;
10893 default:
10894 unallocated_encoding(s);
10895 return;
10896 }
10897 }
10898
10899 /* Integer op subgroup of C3.6.16. */
10900 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
10901 {
10902 int is_q = extract32(insn, 30, 1);
10903 int u = extract32(insn, 29, 1);
10904 int size = extract32(insn, 22, 2);
10905 int opcode = extract32(insn, 11, 5);
10906 int rm = extract32(insn, 16, 5);
10907 int rn = extract32(insn, 5, 5);
10908 int rd = extract32(insn, 0, 5);
10909 int pass;
10910 TCGCond cond;
10911
10912 switch (opcode) {
10913 case 0x13: /* MUL, PMUL */
10914 if (u && size != 0) {
10915 unallocated_encoding(s);
10916 return;
10917 }
10918 /* fall through */
10919 case 0x0: /* SHADD, UHADD */
10920 case 0x2: /* SRHADD, URHADD */
10921 case 0x4: /* SHSUB, UHSUB */
10922 case 0xc: /* SMAX, UMAX */
10923 case 0xd: /* SMIN, UMIN */
10924 case 0xe: /* SABD, UABD */
10925 case 0xf: /* SABA, UABA */
10926 case 0x12: /* MLA, MLS */
10927 if (size == 3) {
10928 unallocated_encoding(s);
10929 return;
10930 }
10931 break;
10932 case 0x16: /* SQDMULH, SQRDMULH */
10933 if (size == 0 || size == 3) {
10934 unallocated_encoding(s);
10935 return;
10936 }
10937 break;
10938 default:
10939 if (size == 3 && !is_q) {
10940 unallocated_encoding(s);
10941 return;
10942 }
10943 break;
10944 }
10945
10946 if (!fp_access_check(s)) {
10947 return;
10948 }
10949
10950 switch (opcode) {
10951 case 0x01: /* SQADD, UQADD */
10952 tcg_gen_gvec_4(vec_full_reg_offset(s, rd),
10953 offsetof(CPUARMState, vfp.qc),
10954 vec_full_reg_offset(s, rn),
10955 vec_full_reg_offset(s, rm),
10956 is_q ? 16 : 8, vec_full_reg_size(s),
10957 (u ? uqadd_op : sqadd_op) + size);
10958 return;
10959 case 0x05: /* SQSUB, UQSUB */
10960 tcg_gen_gvec_4(vec_full_reg_offset(s, rd),
10961 offsetof(CPUARMState, vfp.qc),
10962 vec_full_reg_offset(s, rn),
10963 vec_full_reg_offset(s, rm),
10964 is_q ? 16 : 8, vec_full_reg_size(s),
10965 (u ? uqsub_op : sqsub_op) + size);
10966 return;
10967 case 0x0c: /* SMAX, UMAX */
10968 if (u) {
10969 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
10970 } else {
10971 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
10972 }
10973 return;
10974 case 0x0d: /* SMIN, UMIN */
10975 if (u) {
10976 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
10977 } else {
10978 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
10979 }
10980 return;
10981 case 0x10: /* ADD, SUB */
10982 if (u) {
10983 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
10984 } else {
10985 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
10986 }
10987 return;
10988 case 0x13: /* MUL, PMUL */
10989 if (!u) { /* MUL */
10990 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
10991 return;
10992 }
10993 break;
10994 case 0x12: /* MLA, MLS */
10995 if (u) {
10996 gen_gvec_op3(s, is_q, rd, rn, rm, &mls_op[size]);
10997 } else {
10998 gen_gvec_op3(s, is_q, rd, rn, rm, &mla_op[size]);
10999 }
11000 return;
11001 case 0x11:
11002 if (!u) { /* CMTST */
11003 gen_gvec_op3(s, is_q, rd, rn, rm, &cmtst_op[size]);
11004 return;
11005 }
11006 /* else CMEQ */
11007 cond = TCG_COND_EQ;
11008 goto do_gvec_cmp;
11009 case 0x06: /* CMGT, CMHI */
11010 cond = u ? TCG_COND_GTU : TCG_COND_GT;
11011 goto do_gvec_cmp;
11012 case 0x07: /* CMGE, CMHS */
11013 cond = u ? TCG_COND_GEU : TCG_COND_GE;
11014 do_gvec_cmp:
11015 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11016 vec_full_reg_offset(s, rn),
11017 vec_full_reg_offset(s, rm),
11018 is_q ? 16 : 8, vec_full_reg_size(s));
11019 return;
11020 }
11021
11022 if (size == 3) {
11023 assert(is_q);
11024 for (pass = 0; pass < 2; pass++) {
11025 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11026 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11027 TCGv_i64 tcg_res = tcg_temp_new_i64();
11028
11029 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11030 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11031
11032 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11033
11034 write_vec_element(s, tcg_res, rd, pass, MO_64);
11035
11036 tcg_temp_free_i64(tcg_res);
11037 tcg_temp_free_i64(tcg_op1);
11038 tcg_temp_free_i64(tcg_op2);
11039 }
11040 } else {
11041 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11042 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11043 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11044 TCGv_i32 tcg_res = tcg_temp_new_i32();
11045 NeonGenTwoOpFn *genfn = NULL;
11046 NeonGenTwoOpEnvFn *genenvfn = NULL;
11047
11048 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11049 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11050
11051 switch (opcode) {
11052 case 0x0: /* SHADD, UHADD */
11053 {
11054 static NeonGenTwoOpFn * const fns[3][2] = {
11055 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11056 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11057 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11058 };
11059 genfn = fns[size][u];
11060 break;
11061 }
11062 case 0x2: /* SRHADD, URHADD */
11063 {
11064 static NeonGenTwoOpFn * const fns[3][2] = {
11065 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11066 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11067 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11068 };
11069 genfn = fns[size][u];
11070 break;
11071 }
11072 case 0x4: /* SHSUB, UHSUB */
11073 {
11074 static NeonGenTwoOpFn * const fns[3][2] = {
11075 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11076 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11077 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11078 };
11079 genfn = fns[size][u];
11080 break;
11081 }
11082 case 0x8: /* SSHL, USHL */
11083 {
11084 static NeonGenTwoOpFn * const fns[3][2] = {
11085 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
11086 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
11087 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
11088 };
11089 genfn = fns[size][u];
11090 break;
11091 }
11092 case 0x9: /* SQSHL, UQSHL */
11093 {
11094 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11095 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11096 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11097 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11098 };
11099 genenvfn = fns[size][u];
11100 break;
11101 }
11102 case 0xa: /* SRSHL, URSHL */
11103 {
11104 static NeonGenTwoOpFn * const fns[3][2] = {
11105 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11106 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11107 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11108 };
11109 genfn = fns[size][u];
11110 break;
11111 }
11112 case 0xb: /* SQRSHL, UQRSHL */
11113 {
11114 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11115 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11116 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11117 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11118 };
11119 genenvfn = fns[size][u];
11120 break;
11121 }
11122 case 0xe: /* SABD, UABD */
11123 case 0xf: /* SABA, UABA */
11124 {
11125 static NeonGenTwoOpFn * const fns[3][2] = {
11126 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
11127 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
11128 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
11129 };
11130 genfn = fns[size][u];
11131 break;
11132 }
11133 case 0x13: /* MUL, PMUL */
11134 assert(u); /* PMUL */
11135 assert(size == 0);
11136 genfn = gen_helper_neon_mul_p8;
11137 break;
11138 case 0x16: /* SQDMULH, SQRDMULH */
11139 {
11140 static NeonGenTwoOpEnvFn * const fns[2][2] = {
11141 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
11142 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
11143 };
11144 assert(size == 1 || size == 2);
11145 genenvfn = fns[size - 1][u];
11146 break;
11147 }
11148 default:
11149 g_assert_not_reached();
11150 }
11151
11152 if (genenvfn) {
11153 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11154 } else {
11155 genfn(tcg_res, tcg_op1, tcg_op2);
11156 }
11157
11158 if (opcode == 0xf) {
11159 /* SABA, UABA: accumulating ops */
11160 static NeonGenTwoOpFn * const fns[3] = {
11161 gen_helper_neon_add_u8,
11162 gen_helper_neon_add_u16,
11163 tcg_gen_add_i32,
11164 };
11165
11166 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
11167 fns[size](tcg_res, tcg_op1, tcg_res);
11168 }
11169
11170 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11171
11172 tcg_temp_free_i32(tcg_res);
11173 tcg_temp_free_i32(tcg_op1);
11174 tcg_temp_free_i32(tcg_op2);
11175 }
11176 }
11177 clear_vec_high(s, is_q, rd);
11178 }
11179
11180 /* AdvSIMD three same
11181 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11182 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11183 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11184 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11185 */
11186 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11187 {
11188 int opcode = extract32(insn, 11, 5);
11189
11190 switch (opcode) {
11191 case 0x3: /* logic ops */
11192 disas_simd_3same_logic(s, insn);
11193 break;
11194 case 0x17: /* ADDP */
11195 case 0x14: /* SMAXP, UMAXP */
11196 case 0x15: /* SMINP, UMINP */
11197 {
11198 /* Pairwise operations */
11199 int is_q = extract32(insn, 30, 1);
11200 int u = extract32(insn, 29, 1);
11201 int size = extract32(insn, 22, 2);
11202 int rm = extract32(insn, 16, 5);
11203 int rn = extract32(insn, 5, 5);
11204 int rd = extract32(insn, 0, 5);
11205 if (opcode == 0x17) {
11206 if (u || (size == 3 && !is_q)) {
11207 unallocated_encoding(s);
11208 return;
11209 }
11210 } else {
11211 if (size == 3) {
11212 unallocated_encoding(s);
11213 return;
11214 }
11215 }
11216 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11217 break;
11218 }
11219 case 0x18 ... 0x31:
11220 /* floating point ops, sz[1] and U are part of opcode */
11221 disas_simd_3same_float(s, insn);
11222 break;
11223 default:
11224 disas_simd_3same_int(s, insn);
11225 break;
11226 }
11227 }
11228
11229 /*
11230 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11231 *
11232 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11233 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11234 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11235 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11236 *
11237 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11238 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11239 *
11240 */
11241 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11242 {
11243 int opcode, fpopcode;
11244 int is_q, u, a, rm, rn, rd;
11245 int datasize, elements;
11246 int pass;
11247 TCGv_ptr fpst;
11248 bool pairwise = false;
11249
11250 if (!dc_isar_feature(aa64_fp16, s)) {
11251 unallocated_encoding(s);
11252 return;
11253 }
11254
11255 if (!fp_access_check(s)) {
11256 return;
11257 }
11258
11259 /* For these floating point ops, the U, a and opcode bits
11260 * together indicate the operation.
11261 */
11262 opcode = extract32(insn, 11, 3);
11263 u = extract32(insn, 29, 1);
11264 a = extract32(insn, 23, 1);
11265 is_q = extract32(insn, 30, 1);
11266 rm = extract32(insn, 16, 5);
11267 rn = extract32(insn, 5, 5);
11268 rd = extract32(insn, 0, 5);
11269
11270 fpopcode = opcode | (a << 3) | (u << 4);
11271 datasize = is_q ? 128 : 64;
11272 elements = datasize / 16;
11273
11274 switch (fpopcode) {
11275 case 0x10: /* FMAXNMP */
11276 case 0x12: /* FADDP */
11277 case 0x16: /* FMAXP */
11278 case 0x18: /* FMINNMP */
11279 case 0x1e: /* FMINP */
11280 pairwise = true;
11281 break;
11282 }
11283
11284 fpst = get_fpstatus_ptr(true);
11285
11286 if (pairwise) {
11287 int maxpass = is_q ? 8 : 4;
11288 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11289 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11290 TCGv_i32 tcg_res[8];
11291
11292 for (pass = 0; pass < maxpass; pass++) {
11293 int passreg = pass < (maxpass / 2) ? rn : rm;
11294 int passelt = (pass << 1) & (maxpass - 1);
11295
11296 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11297 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11298 tcg_res[pass] = tcg_temp_new_i32();
11299
11300 switch (fpopcode) {
11301 case 0x10: /* FMAXNMP */
11302 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11303 fpst);
11304 break;
11305 case 0x12: /* FADDP */
11306 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11307 break;
11308 case 0x16: /* FMAXP */
11309 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11310 break;
11311 case 0x18: /* FMINNMP */
11312 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11313 fpst);
11314 break;
11315 case 0x1e: /* FMINP */
11316 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11317 break;
11318 default:
11319 g_assert_not_reached();
11320 }
11321 }
11322
11323 for (pass = 0; pass < maxpass; pass++) {
11324 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11325 tcg_temp_free_i32(tcg_res[pass]);
11326 }
11327
11328 tcg_temp_free_i32(tcg_op1);
11329 tcg_temp_free_i32(tcg_op2);
11330
11331 } else {
11332 for (pass = 0; pass < elements; pass++) {
11333 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11334 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11335 TCGv_i32 tcg_res = tcg_temp_new_i32();
11336
11337 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11338 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11339
11340 switch (fpopcode) {
11341 case 0x0: /* FMAXNM */
11342 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11343 break;
11344 case 0x1: /* FMLA */
11345 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11346 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11347 fpst);
11348 break;
11349 case 0x2: /* FADD */
11350 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11351 break;
11352 case 0x3: /* FMULX */
11353 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11354 break;
11355 case 0x4: /* FCMEQ */
11356 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11357 break;
11358 case 0x6: /* FMAX */
11359 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11360 break;
11361 case 0x7: /* FRECPS */
11362 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11363 break;
11364 case 0x8: /* FMINNM */
11365 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11366 break;
11367 case 0x9: /* FMLS */
11368 /* As usual for ARM, separate negation for fused multiply-add */
11369 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11370 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11371 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11372 fpst);
11373 break;
11374 case 0xa: /* FSUB */
11375 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11376 break;
11377 case 0xe: /* FMIN */
11378 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11379 break;
11380 case 0xf: /* FRSQRTS */
11381 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11382 break;
11383 case 0x13: /* FMUL */
11384 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11385 break;
11386 case 0x14: /* FCMGE */
11387 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11388 break;
11389 case 0x15: /* FACGE */
11390 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11391 break;
11392 case 0x17: /* FDIV */
11393 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11394 break;
11395 case 0x1a: /* FABD */
11396 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11397 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11398 break;
11399 case 0x1c: /* FCMGT */
11400 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11401 break;
11402 case 0x1d: /* FACGT */
11403 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11404 break;
11405 default:
11406 fprintf(stderr, "%s: insn %#04x, fpop %#2x @ %#" PRIx64 "\n",
11407 __func__, insn, fpopcode, s->pc);
11408 g_assert_not_reached();
11409 }
11410
11411 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11412 tcg_temp_free_i32(tcg_res);
11413 tcg_temp_free_i32(tcg_op1);
11414 tcg_temp_free_i32(tcg_op2);
11415 }
11416 }
11417
11418 tcg_temp_free_ptr(fpst);
11419
11420 clear_vec_high(s, is_q, rd);
11421 }
11422
11423 /* AdvSIMD three same extra
11424 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
11425 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11426 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
11427 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11428 */
11429 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11430 {
11431 int rd = extract32(insn, 0, 5);
11432 int rn = extract32(insn, 5, 5);
11433 int opcode = extract32(insn, 11, 4);
11434 int rm = extract32(insn, 16, 5);
11435 int size = extract32(insn, 22, 2);
11436 bool u = extract32(insn, 29, 1);
11437 bool is_q = extract32(insn, 30, 1);
11438 bool feature;
11439 int rot;
11440
11441 switch (u * 16 + opcode) {
11442 case 0x10: /* SQRDMLAH (vector) */
11443 case 0x11: /* SQRDMLSH (vector) */
11444 if (size != 1 && size != 2) {
11445 unallocated_encoding(s);
11446 return;
11447 }
11448 feature = dc_isar_feature(aa64_rdm, s);
11449 break;
11450 case 0x02: /* SDOT (vector) */
11451 case 0x12: /* UDOT (vector) */
11452 if (size != MO_32) {
11453 unallocated_encoding(s);
11454 return;
11455 }
11456 feature = dc_isar_feature(aa64_dp, s);
11457 break;
11458 case 0x18: /* FCMLA, #0 */
11459 case 0x19: /* FCMLA, #90 */
11460 case 0x1a: /* FCMLA, #180 */
11461 case 0x1b: /* FCMLA, #270 */
11462 case 0x1c: /* FCADD, #90 */
11463 case 0x1e: /* FCADD, #270 */
11464 if (size == 0
11465 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11466 || (size == 3 && !is_q)) {
11467 unallocated_encoding(s);
11468 return;
11469 }
11470 feature = dc_isar_feature(aa64_fcma, s);
11471 break;
11472 default:
11473 unallocated_encoding(s);
11474 return;
11475 }
11476 if (!feature) {
11477 unallocated_encoding(s);
11478 return;
11479 }
11480 if (!fp_access_check(s)) {
11481 return;
11482 }
11483
11484 switch (opcode) {
11485 case 0x0: /* SQRDMLAH (vector) */
11486 switch (size) {
11487 case 1:
11488 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s16);
11489 break;
11490 case 2:
11491 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s32);
11492 break;
11493 default:
11494 g_assert_not_reached();
11495 }
11496 return;
11497
11498 case 0x1: /* SQRDMLSH (vector) */
11499 switch (size) {
11500 case 1:
11501 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s16);
11502 break;
11503 case 2:
11504 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s32);
11505 break;
11506 default:
11507 g_assert_not_reached();
11508 }
11509 return;
11510
11511 case 0x2: /* SDOT / UDOT */
11512 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0,
11513 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11514 return;
11515
11516 case 0x8: /* FCMLA, #0 */
11517 case 0x9: /* FCMLA, #90 */
11518 case 0xa: /* FCMLA, #180 */
11519 case 0xb: /* FCMLA, #270 */
11520 rot = extract32(opcode, 0, 2);
11521 switch (size) {
11522 case 1:
11523 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, true, rot,
11524 gen_helper_gvec_fcmlah);
11525 break;
11526 case 2:
11527 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11528 gen_helper_gvec_fcmlas);
11529 break;
11530 case 3:
11531 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11532 gen_helper_gvec_fcmlad);
11533 break;
11534 default:
11535 g_assert_not_reached();
11536 }
11537 return;
11538
11539 case 0xc: /* FCADD, #90 */
11540 case 0xe: /* FCADD, #270 */
11541 rot = extract32(opcode, 1, 1);
11542 switch (size) {
11543 case 1:
11544 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11545 gen_helper_gvec_fcaddh);
11546 break;
11547 case 2:
11548 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11549 gen_helper_gvec_fcadds);
11550 break;
11551 case 3:
11552 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11553 gen_helper_gvec_fcaddd);
11554 break;
11555 default:
11556 g_assert_not_reached();
11557 }
11558 return;
11559
11560 default:
11561 g_assert_not_reached();
11562 }
11563 }
11564
11565 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11566 int size, int rn, int rd)
11567 {
11568 /* Handle 2-reg-misc ops which are widening (so each size element
11569 * in the source becomes a 2*size element in the destination.
11570 * The only instruction like this is FCVTL.
11571 */
11572 int pass;
11573
11574 if (size == 3) {
11575 /* 32 -> 64 bit fp conversion */
11576 TCGv_i64 tcg_res[2];
11577 int srcelt = is_q ? 2 : 0;
11578
11579 for (pass = 0; pass < 2; pass++) {
11580 TCGv_i32 tcg_op = tcg_temp_new_i32();
11581 tcg_res[pass] = tcg_temp_new_i64();
11582
11583 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11584 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11585 tcg_temp_free_i32(tcg_op);
11586 }
11587 for (pass = 0; pass < 2; pass++) {
11588 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11589 tcg_temp_free_i64(tcg_res[pass]);
11590 }
11591 } else {
11592 /* 16 -> 32 bit fp conversion */
11593 int srcelt = is_q ? 4 : 0;
11594 TCGv_i32 tcg_res[4];
11595 TCGv_ptr fpst = get_fpstatus_ptr(false);
11596 TCGv_i32 ahp = get_ahp_flag();
11597
11598 for (pass = 0; pass < 4; pass++) {
11599 tcg_res[pass] = tcg_temp_new_i32();
11600
11601 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11602 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11603 fpst, ahp);
11604 }
11605 for (pass = 0; pass < 4; pass++) {
11606 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11607 tcg_temp_free_i32(tcg_res[pass]);
11608 }
11609
11610 tcg_temp_free_ptr(fpst);
11611 tcg_temp_free_i32(ahp);
11612 }
11613 }
11614
11615 static void handle_rev(DisasContext *s, int opcode, bool u,
11616 bool is_q, int size, int rn, int rd)
11617 {
11618 int op = (opcode << 1) | u;
11619 int opsz = op + size;
11620 int grp_size = 3 - opsz;
11621 int dsize = is_q ? 128 : 64;
11622 int i;
11623
11624 if (opsz >= 3) {
11625 unallocated_encoding(s);
11626 return;
11627 }
11628
11629 if (!fp_access_check(s)) {
11630 return;
11631 }
11632
11633 if (size == 0) {
11634 /* Special case bytes, use bswap op on each group of elements */
11635 int groups = dsize / (8 << grp_size);
11636
11637 for (i = 0; i < groups; i++) {
11638 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11639
11640 read_vec_element(s, tcg_tmp, rn, i, grp_size);
11641 switch (grp_size) {
11642 case MO_16:
11643 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
11644 break;
11645 case MO_32:
11646 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
11647 break;
11648 case MO_64:
11649 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11650 break;
11651 default:
11652 g_assert_not_reached();
11653 }
11654 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11655 tcg_temp_free_i64(tcg_tmp);
11656 }
11657 clear_vec_high(s, is_q, rd);
11658 } else {
11659 int revmask = (1 << grp_size) - 1;
11660 int esize = 8 << size;
11661 int elements = dsize / esize;
11662 TCGv_i64 tcg_rn = tcg_temp_new_i64();
11663 TCGv_i64 tcg_rd = tcg_const_i64(0);
11664 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
11665
11666 for (i = 0; i < elements; i++) {
11667 int e_rev = (i & 0xf) ^ revmask;
11668 int off = e_rev * esize;
11669 read_vec_element(s, tcg_rn, rn, i, size);
11670 if (off >= 64) {
11671 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
11672 tcg_rn, off - 64, esize);
11673 } else {
11674 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
11675 }
11676 }
11677 write_vec_element(s, tcg_rd, rd, 0, MO_64);
11678 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
11679
11680 tcg_temp_free_i64(tcg_rd_hi);
11681 tcg_temp_free_i64(tcg_rd);
11682 tcg_temp_free_i64(tcg_rn);
11683 }
11684 }
11685
11686 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11687 bool is_q, int size, int rn, int rd)
11688 {
11689 /* Implement the pairwise operations from 2-misc:
11690 * SADDLP, UADDLP, SADALP, UADALP.
11691 * These all add pairs of elements in the input to produce a
11692 * double-width result element in the output (possibly accumulating).
11693 */
11694 bool accum = (opcode == 0x6);
11695 int maxpass = is_q ? 2 : 1;
11696 int pass;
11697 TCGv_i64 tcg_res[2];
11698
11699 if (size == 2) {
11700 /* 32 + 32 -> 64 op */
11701 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
11702
11703 for (pass = 0; pass < maxpass; pass++) {
11704 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11705 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11706
11707 tcg_res[pass] = tcg_temp_new_i64();
11708
11709 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11710 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11711 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11712 if (accum) {
11713 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11714 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11715 }
11716
11717 tcg_temp_free_i64(tcg_op1);
11718 tcg_temp_free_i64(tcg_op2);
11719 }
11720 } else {
11721 for (pass = 0; pass < maxpass; pass++) {
11722 TCGv_i64 tcg_op = tcg_temp_new_i64();
11723 NeonGenOneOpFn *genfn;
11724 static NeonGenOneOpFn * const fns[2][2] = {
11725 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
11726 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
11727 };
11728
11729 genfn = fns[size][u];
11730
11731 tcg_res[pass] = tcg_temp_new_i64();
11732
11733 read_vec_element(s, tcg_op, rn, pass, MO_64);
11734 genfn(tcg_res[pass], tcg_op);
11735
11736 if (accum) {
11737 read_vec_element(s, tcg_op, rd, pass, MO_64);
11738 if (size == 0) {
11739 gen_helper_neon_addl_u16(tcg_res[pass],
11740 tcg_res[pass], tcg_op);
11741 } else {
11742 gen_helper_neon_addl_u32(tcg_res[pass],
11743 tcg_res[pass], tcg_op);
11744 }
11745 }
11746 tcg_temp_free_i64(tcg_op);
11747 }
11748 }
11749 if (!is_q) {
11750 tcg_res[1] = tcg_const_i64(0);
11751 }
11752 for (pass = 0; pass < 2; pass++) {
11753 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11754 tcg_temp_free_i64(tcg_res[pass]);
11755 }
11756 }
11757
11758 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11759 {
11760 /* Implement SHLL and SHLL2 */
11761 int pass;
11762 int part = is_q ? 2 : 0;
11763 TCGv_i64 tcg_res[2];
11764
11765 for (pass = 0; pass < 2; pass++) {
11766 static NeonGenWidenFn * const widenfns[3] = {
11767 gen_helper_neon_widen_u8,
11768 gen_helper_neon_widen_u16,
11769 tcg_gen_extu_i32_i64,
11770 };
11771 NeonGenWidenFn *widenfn = widenfns[size];
11772 TCGv_i32 tcg_op = tcg_temp_new_i32();
11773
11774 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11775 tcg_res[pass] = tcg_temp_new_i64();
11776 widenfn(tcg_res[pass], tcg_op);
11777 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11778
11779 tcg_temp_free_i32(tcg_op);
11780 }
11781
11782 for (pass = 0; pass < 2; pass++) {
11783 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11784 tcg_temp_free_i64(tcg_res[pass]);
11785 }
11786 }
11787
11788 /* AdvSIMD two reg misc
11789 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
11790 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11791 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
11792 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11793 */
11794 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11795 {
11796 int size = extract32(insn, 22, 2);
11797 int opcode = extract32(insn, 12, 5);
11798 bool u = extract32(insn, 29, 1);
11799 bool is_q = extract32(insn, 30, 1);
11800 int rn = extract32(insn, 5, 5);
11801 int rd = extract32(insn, 0, 5);
11802 bool need_fpstatus = false;
11803 bool need_rmode = false;
11804 int rmode = -1;
11805 TCGv_i32 tcg_rmode;
11806 TCGv_ptr tcg_fpstatus;
11807
11808 switch (opcode) {
11809 case 0x0: /* REV64, REV32 */
11810 case 0x1: /* REV16 */
11811 handle_rev(s, opcode, u, is_q, size, rn, rd);
11812 return;
11813 case 0x5: /* CNT, NOT, RBIT */
11814 if (u && size == 0) {
11815 /* NOT */
11816 break;
11817 } else if (u && size == 1) {
11818 /* RBIT */
11819 break;
11820 } else if (!u && size == 0) {
11821 /* CNT */
11822 break;
11823 }
11824 unallocated_encoding(s);
11825 return;
11826 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11827 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11828 if (size == 3) {
11829 unallocated_encoding(s);
11830 return;
11831 }
11832 if (!fp_access_check(s)) {
11833 return;
11834 }
11835
11836 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11837 return;
11838 case 0x4: /* CLS, CLZ */
11839 if (size == 3) {
11840 unallocated_encoding(s);
11841 return;
11842 }
11843 break;
11844 case 0x2: /* SADDLP, UADDLP */
11845 case 0x6: /* SADALP, UADALP */
11846 if (size == 3) {
11847 unallocated_encoding(s);
11848 return;
11849 }
11850 if (!fp_access_check(s)) {
11851 return;
11852 }
11853 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11854 return;
11855 case 0x13: /* SHLL, SHLL2 */
11856 if (u == 0 || size == 3) {
11857 unallocated_encoding(s);
11858 return;
11859 }
11860 if (!fp_access_check(s)) {
11861 return;
11862 }
11863 handle_shll(s, is_q, size, rn, rd);
11864 return;
11865 case 0xa: /* CMLT */
11866 if (u == 1) {
11867 unallocated_encoding(s);
11868 return;
11869 }
11870 /* fall through */
11871 case 0x8: /* CMGT, CMGE */
11872 case 0x9: /* CMEQ, CMLE */
11873 case 0xb: /* ABS, NEG */
11874 if (size == 3 && !is_q) {
11875 unallocated_encoding(s);
11876 return;
11877 }
11878 break;
11879 case 0x3: /* SUQADD, USQADD */
11880 if (size == 3 && !is_q) {
11881 unallocated_encoding(s);
11882 return;
11883 }
11884 if (!fp_access_check(s)) {
11885 return;
11886 }
11887 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
11888 return;
11889 case 0x7: /* SQABS, SQNEG */
11890 if (size == 3 && !is_q) {
11891 unallocated_encoding(s);
11892 return;
11893 }
11894 break;
11895 case 0xc ... 0xf:
11896 case 0x16 ... 0x1d:
11897 case 0x1f:
11898 {
11899 /* Floating point: U, size[1] and opcode indicate operation;
11900 * size[0] indicates single or double precision.
11901 */
11902 int is_double = extract32(size, 0, 1);
11903 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11904 size = is_double ? 3 : 2;
11905 switch (opcode) {
11906 case 0x2f: /* FABS */
11907 case 0x6f: /* FNEG */
11908 if (size == 3 && !is_q) {
11909 unallocated_encoding(s);
11910 return;
11911 }
11912 break;
11913 case 0x1d: /* SCVTF */
11914 case 0x5d: /* UCVTF */
11915 {
11916 bool is_signed = (opcode == 0x1d) ? true : false;
11917 int elements = is_double ? 2 : is_q ? 4 : 2;
11918 if (is_double && !is_q) {
11919 unallocated_encoding(s);
11920 return;
11921 }
11922 if (!fp_access_check(s)) {
11923 return;
11924 }
11925 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11926 return;
11927 }
11928 case 0x2c: /* FCMGT (zero) */
11929 case 0x2d: /* FCMEQ (zero) */
11930 case 0x2e: /* FCMLT (zero) */
11931 case 0x6c: /* FCMGE (zero) */
11932 case 0x6d: /* FCMLE (zero) */
11933 if (size == 3 && !is_q) {
11934 unallocated_encoding(s);
11935 return;
11936 }
11937 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11938 return;
11939 case 0x7f: /* FSQRT */
11940 if (size == 3 && !is_q) {
11941 unallocated_encoding(s);
11942 return;
11943 }
11944 break;
11945 case 0x1a: /* FCVTNS */
11946 case 0x1b: /* FCVTMS */
11947 case 0x3a: /* FCVTPS */
11948 case 0x3b: /* FCVTZS */
11949 case 0x5a: /* FCVTNU */
11950 case 0x5b: /* FCVTMU */
11951 case 0x7a: /* FCVTPU */
11952 case 0x7b: /* FCVTZU */
11953 need_fpstatus = true;
11954 need_rmode = true;
11955 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11956 if (size == 3 && !is_q) {
11957 unallocated_encoding(s);
11958 return;
11959 }
11960 break;
11961 case 0x5c: /* FCVTAU */
11962 case 0x1c: /* FCVTAS */
11963 need_fpstatus = true;
11964 need_rmode = true;
11965 rmode = FPROUNDING_TIEAWAY;
11966 if (size == 3 && !is_q) {
11967 unallocated_encoding(s);
11968 return;
11969 }
11970 break;
11971 case 0x3c: /* URECPE */
11972 if (size == 3) {
11973 unallocated_encoding(s);
11974 return;
11975 }
11976 /* fall through */
11977 case 0x3d: /* FRECPE */
11978 case 0x7d: /* FRSQRTE */
11979 if (size == 3 && !is_q) {
11980 unallocated_encoding(s);
11981 return;
11982 }
11983 if (!fp_access_check(s)) {
11984 return;
11985 }
11986 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11987 return;
11988 case 0x56: /* FCVTXN, FCVTXN2 */
11989 if (size == 2) {
11990 unallocated_encoding(s);
11991 return;
11992 }
11993 /* fall through */
11994 case 0x16: /* FCVTN, FCVTN2 */
11995 /* handle_2misc_narrow does a 2*size -> size operation, but these
11996 * instructions encode the source size rather than dest size.
11997 */
11998 if (!fp_access_check(s)) {
11999 return;
12000 }
12001 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12002 return;
12003 case 0x17: /* FCVTL, FCVTL2 */
12004 if (!fp_access_check(s)) {
12005 return;
12006 }
12007 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12008 return;
12009 case 0x18: /* FRINTN */
12010 case 0x19: /* FRINTM */
12011 case 0x38: /* FRINTP */
12012 case 0x39: /* FRINTZ */
12013 need_rmode = true;
12014 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12015 /* fall through */
12016 case 0x59: /* FRINTX */
12017 case 0x79: /* FRINTI */
12018 need_fpstatus = true;
12019 if (size == 3 && !is_q) {
12020 unallocated_encoding(s);
12021 return;
12022 }
12023 break;
12024 case 0x58: /* FRINTA */
12025 need_rmode = true;
12026 rmode = FPROUNDING_TIEAWAY;
12027 need_fpstatus = true;
12028 if (size == 3 && !is_q) {
12029 unallocated_encoding(s);
12030 return;
12031 }
12032 break;
12033 case 0x7c: /* URSQRTE */
12034 if (size == 3) {
12035 unallocated_encoding(s);
12036 return;
12037 }
12038 need_fpstatus = true;
12039 break;
12040 default:
12041 unallocated_encoding(s);
12042 return;
12043 }
12044 break;
12045 }
12046 default:
12047 unallocated_encoding(s);
12048 return;
12049 }
12050
12051 if (!fp_access_check(s)) {
12052 return;
12053 }
12054
12055 if (need_fpstatus || need_rmode) {
12056 tcg_fpstatus = get_fpstatus_ptr(false);
12057 } else {
12058 tcg_fpstatus = NULL;
12059 }
12060 if (need_rmode) {
12061 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12062 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12063 } else {
12064 tcg_rmode = NULL;
12065 }
12066
12067 switch (opcode) {
12068 case 0x5:
12069 if (u && size == 0) { /* NOT */
12070 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12071 return;
12072 }
12073 break;
12074 case 0xb:
12075 if (u) { /* NEG */
12076 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12077 return;
12078 }
12079 break;
12080 }
12081
12082 if (size == 3) {
12083 /* All 64-bit element operations can be shared with scalar 2misc */
12084 int pass;
12085
12086 /* Coverity claims (size == 3 && !is_q) has been eliminated
12087 * from all paths leading to here.
12088 */
12089 tcg_debug_assert(is_q);
12090 for (pass = 0; pass < 2; pass++) {
12091 TCGv_i64 tcg_op = tcg_temp_new_i64();
12092 TCGv_i64 tcg_res = tcg_temp_new_i64();
12093
12094 read_vec_element(s, tcg_op, rn, pass, MO_64);
12095
12096 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12097 tcg_rmode, tcg_fpstatus);
12098
12099 write_vec_element(s, tcg_res, rd, pass, MO_64);
12100
12101 tcg_temp_free_i64(tcg_res);
12102 tcg_temp_free_i64(tcg_op);
12103 }
12104 } else {
12105 int pass;
12106
12107 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12108 TCGv_i32 tcg_op = tcg_temp_new_i32();
12109 TCGv_i32 tcg_res = tcg_temp_new_i32();
12110 TCGCond cond;
12111
12112 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12113
12114 if (size == 2) {
12115 /* Special cases for 32 bit elements */
12116 switch (opcode) {
12117 case 0xa: /* CMLT */
12118 /* 32 bit integer comparison against zero, result is
12119 * test ? (2^32 - 1) : 0. We implement via setcond(test)
12120 * and inverting.
12121 */
12122 cond = TCG_COND_LT;
12123 do_cmop:
12124 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
12125 tcg_gen_neg_i32(tcg_res, tcg_res);
12126 break;
12127 case 0x8: /* CMGT, CMGE */
12128 cond = u ? TCG_COND_GE : TCG_COND_GT;
12129 goto do_cmop;
12130 case 0x9: /* CMEQ, CMLE */
12131 cond = u ? TCG_COND_LE : TCG_COND_EQ;
12132 goto do_cmop;
12133 case 0x4: /* CLS */
12134 if (u) {
12135 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12136 } else {
12137 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12138 }
12139 break;
12140 case 0x7: /* SQABS, SQNEG */
12141 if (u) {
12142 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12143 } else {
12144 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12145 }
12146 break;
12147 case 0xb: /* ABS, NEG */
12148 if (u) {
12149 tcg_gen_neg_i32(tcg_res, tcg_op);
12150 } else {
12151 TCGv_i32 tcg_zero = tcg_const_i32(0);
12152 tcg_gen_neg_i32(tcg_res, tcg_op);
12153 tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
12154 tcg_zero, tcg_op, tcg_res);
12155 tcg_temp_free_i32(tcg_zero);
12156 }
12157 break;
12158 case 0x2f: /* FABS */
12159 gen_helper_vfp_abss(tcg_res, tcg_op);
12160 break;
12161 case 0x6f: /* FNEG */
12162 gen_helper_vfp_negs(tcg_res, tcg_op);
12163 break;
12164 case 0x7f: /* FSQRT */
12165 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12166 break;
12167 case 0x1a: /* FCVTNS */
12168 case 0x1b: /* FCVTMS */
12169 case 0x1c: /* FCVTAS */
12170 case 0x3a: /* FCVTPS */
12171 case 0x3b: /* FCVTZS */
12172 {
12173 TCGv_i32 tcg_shift = tcg_const_i32(0);
12174 gen_helper_vfp_tosls(tcg_res, tcg_op,
12175 tcg_shift, tcg_fpstatus);
12176 tcg_temp_free_i32(tcg_shift);
12177 break;
12178 }
12179 case 0x5a: /* FCVTNU */
12180 case 0x5b: /* FCVTMU */
12181 case 0x5c: /* FCVTAU */
12182 case 0x7a: /* FCVTPU */
12183 case 0x7b: /* FCVTZU */
12184 {
12185 TCGv_i32 tcg_shift = tcg_const_i32(0);
12186 gen_helper_vfp_touls(tcg_res, tcg_op,
12187 tcg_shift, tcg_fpstatus);
12188 tcg_temp_free_i32(tcg_shift);
12189 break;
12190 }
12191 case 0x18: /* FRINTN */
12192 case 0x19: /* FRINTM */
12193 case 0x38: /* FRINTP */
12194 case 0x39: /* FRINTZ */
12195 case 0x58: /* FRINTA */
12196 case 0x79: /* FRINTI */
12197 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12198 break;
12199 case 0x59: /* FRINTX */
12200 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12201 break;
12202 case 0x7c: /* URSQRTE */
12203 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
12204 break;
12205 default:
12206 g_assert_not_reached();
12207 }
12208 } else {
12209 /* Use helpers for 8 and 16 bit elements */
12210 switch (opcode) {
12211 case 0x5: /* CNT, RBIT */
12212 /* For these two insns size is part of the opcode specifier
12213 * (handled earlier); they always operate on byte elements.
12214 */
12215 if (u) {
12216 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12217 } else {
12218 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12219 }
12220 break;
12221 case 0x7: /* SQABS, SQNEG */
12222 {
12223 NeonGenOneOpEnvFn *genfn;
12224 static NeonGenOneOpEnvFn * const fns[2][2] = {
12225 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12226 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12227 };
12228 genfn = fns[size][u];
12229 genfn(tcg_res, cpu_env, tcg_op);
12230 break;
12231 }
12232 case 0x8: /* CMGT, CMGE */
12233 case 0x9: /* CMEQ, CMLE */
12234 case 0xa: /* CMLT */
12235 {
12236 static NeonGenTwoOpFn * const fns[3][2] = {
12237 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
12238 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
12239 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
12240 };
12241 NeonGenTwoOpFn *genfn;
12242 int comp;
12243 bool reverse;
12244 TCGv_i32 tcg_zero = tcg_const_i32(0);
12245
12246 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
12247 comp = (opcode - 0x8) * 2 + u;
12248 /* ...but LE, LT are implemented as reverse GE, GT */
12249 reverse = (comp > 2);
12250 if (reverse) {
12251 comp = 4 - comp;
12252 }
12253 genfn = fns[comp][size];
12254 if (reverse) {
12255 genfn(tcg_res, tcg_zero, tcg_op);
12256 } else {
12257 genfn(tcg_res, tcg_op, tcg_zero);
12258 }
12259 tcg_temp_free_i32(tcg_zero);
12260 break;
12261 }
12262 case 0xb: /* ABS, NEG */
12263 if (u) {
12264 TCGv_i32 tcg_zero = tcg_const_i32(0);
12265 if (size) {
12266 gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
12267 } else {
12268 gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
12269 }
12270 tcg_temp_free_i32(tcg_zero);
12271 } else {
12272 if (size) {
12273 gen_helper_neon_abs_s16(tcg_res, tcg_op);
12274 } else {
12275 gen_helper_neon_abs_s8(tcg_res, tcg_op);
12276 }
12277 }
12278 break;
12279 case 0x4: /* CLS, CLZ */
12280 if (u) {
12281 if (size == 0) {
12282 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12283 } else {
12284 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12285 }
12286 } else {
12287 if (size == 0) {
12288 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12289 } else {
12290 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12291 }
12292 }
12293 break;
12294 default:
12295 g_assert_not_reached();
12296 }
12297 }
12298
12299 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12300
12301 tcg_temp_free_i32(tcg_res);
12302 tcg_temp_free_i32(tcg_op);
12303 }
12304 }
12305 clear_vec_high(s, is_q, rd);
12306
12307 if (need_rmode) {
12308 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12309 tcg_temp_free_i32(tcg_rmode);
12310 }
12311 if (need_fpstatus) {
12312 tcg_temp_free_ptr(tcg_fpstatus);
12313 }
12314 }
12315
12316 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12317 *
12318 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
12319 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12320 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
12321 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12322 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12323 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12324 *
12325 * This actually covers two groups where scalar access is governed by
12326 * bit 28. A bunch of the instructions (float to integral) only exist
12327 * in the vector form and are un-allocated for the scalar decode. Also
12328 * in the scalar decode Q is always 1.
12329 */
12330 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12331 {
12332 int fpop, opcode, a, u;
12333 int rn, rd;
12334 bool is_q;
12335 bool is_scalar;
12336 bool only_in_vector = false;
12337
12338 int pass;
12339 TCGv_i32 tcg_rmode = NULL;
12340 TCGv_ptr tcg_fpstatus = NULL;
12341 bool need_rmode = false;
12342 bool need_fpst = true;
12343 int rmode;
12344
12345 if (!dc_isar_feature(aa64_fp16, s)) {
12346 unallocated_encoding(s);
12347 return;
12348 }
12349
12350 rd = extract32(insn, 0, 5);
12351 rn = extract32(insn, 5, 5);
12352
12353 a = extract32(insn, 23, 1);
12354 u = extract32(insn, 29, 1);
12355 is_scalar = extract32(insn, 28, 1);
12356 is_q = extract32(insn, 30, 1);
12357
12358 opcode = extract32(insn, 12, 5);
12359 fpop = deposit32(opcode, 5, 1, a);
12360 fpop = deposit32(fpop, 6, 1, u);
12361
12362 rd = extract32(insn, 0, 5);
12363 rn = extract32(insn, 5, 5);
12364
12365 switch (fpop) {
12366 case 0x1d: /* SCVTF */
12367 case 0x5d: /* UCVTF */
12368 {
12369 int elements;
12370
12371 if (is_scalar) {
12372 elements = 1;
12373 } else {
12374 elements = (is_q ? 8 : 4);
12375 }
12376
12377 if (!fp_access_check(s)) {
12378 return;
12379 }
12380 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12381 return;
12382 }
12383 break;
12384 case 0x2c: /* FCMGT (zero) */
12385 case 0x2d: /* FCMEQ (zero) */
12386 case 0x2e: /* FCMLT (zero) */
12387 case 0x6c: /* FCMGE (zero) */
12388 case 0x6d: /* FCMLE (zero) */
12389 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12390 return;
12391 case 0x3d: /* FRECPE */
12392 case 0x3f: /* FRECPX */
12393 break;
12394 case 0x18: /* FRINTN */
12395 need_rmode = true;
12396 only_in_vector = true;
12397 rmode = FPROUNDING_TIEEVEN;
12398 break;
12399 case 0x19: /* FRINTM */
12400 need_rmode = true;
12401 only_in_vector = true;
12402 rmode = FPROUNDING_NEGINF;
12403 break;
12404 case 0x38: /* FRINTP */
12405 need_rmode = true;
12406 only_in_vector = true;
12407 rmode = FPROUNDING_POSINF;
12408 break;
12409 case 0x39: /* FRINTZ */
12410 need_rmode = true;
12411 only_in_vector = true;
12412 rmode = FPROUNDING_ZERO;
12413 break;
12414 case 0x58: /* FRINTA */
12415 need_rmode = true;
12416 only_in_vector = true;
12417 rmode = FPROUNDING_TIEAWAY;
12418 break;
12419 case 0x59: /* FRINTX */
12420 case 0x79: /* FRINTI */
12421 only_in_vector = true;
12422 /* current rounding mode */
12423 break;
12424 case 0x1a: /* FCVTNS */
12425 need_rmode = true;
12426 rmode = FPROUNDING_TIEEVEN;
12427 break;
12428 case 0x1b: /* FCVTMS */
12429 need_rmode = true;
12430 rmode = FPROUNDING_NEGINF;
12431 break;
12432 case 0x1c: /* FCVTAS */
12433 need_rmode = true;
12434 rmode = FPROUNDING_TIEAWAY;
12435 break;
12436 case 0x3a: /* FCVTPS */
12437 need_rmode = true;
12438 rmode = FPROUNDING_POSINF;
12439 break;
12440 case 0x3b: /* FCVTZS */
12441 need_rmode = true;
12442 rmode = FPROUNDING_ZERO;
12443 break;
12444 case 0x5a: /* FCVTNU */
12445 need_rmode = true;
12446 rmode = FPROUNDING_TIEEVEN;
12447 break;
12448 case 0x5b: /* FCVTMU */
12449 need_rmode = true;
12450 rmode = FPROUNDING_NEGINF;
12451 break;
12452 case 0x5c: /* FCVTAU */
12453 need_rmode = true;
12454 rmode = FPROUNDING_TIEAWAY;
12455 break;
12456 case 0x7a: /* FCVTPU */
12457 need_rmode = true;
12458 rmode = FPROUNDING_POSINF;
12459 break;
12460 case 0x7b: /* FCVTZU */
12461 need_rmode = true;
12462 rmode = FPROUNDING_ZERO;
12463 break;
12464 case 0x2f: /* FABS */
12465 case 0x6f: /* FNEG */
12466 need_fpst = false;
12467 break;
12468 case 0x7d: /* FRSQRTE */
12469 case 0x7f: /* FSQRT (vector) */
12470 break;
12471 default:
12472 fprintf(stderr, "%s: insn %#04x fpop %#2x\n", __func__, insn, fpop);
12473 g_assert_not_reached();
12474 }
12475
12476
12477 /* Check additional constraints for the scalar encoding */
12478 if (is_scalar) {
12479 if (!is_q) {
12480 unallocated_encoding(s);
12481 return;
12482 }
12483 /* FRINTxx is only in the vector form */
12484 if (only_in_vector) {
12485 unallocated_encoding(s);
12486 return;
12487 }
12488 }
12489
12490 if (!fp_access_check(s)) {
12491 return;
12492 }
12493
12494 if (need_rmode || need_fpst) {
12495 tcg_fpstatus = get_fpstatus_ptr(true);
12496 }
12497
12498 if (need_rmode) {
12499 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12500 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12501 }
12502
12503 if (is_scalar) {
12504 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12505 TCGv_i32 tcg_res = tcg_temp_new_i32();
12506
12507 switch (fpop) {
12508 case 0x1a: /* FCVTNS */
12509 case 0x1b: /* FCVTMS */
12510 case 0x1c: /* FCVTAS */
12511 case 0x3a: /* FCVTPS */
12512 case 0x3b: /* FCVTZS */
12513 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12514 break;
12515 case 0x3d: /* FRECPE */
12516 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12517 break;
12518 case 0x3f: /* FRECPX */
12519 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12520 break;
12521 case 0x5a: /* FCVTNU */
12522 case 0x5b: /* FCVTMU */
12523 case 0x5c: /* FCVTAU */
12524 case 0x7a: /* FCVTPU */
12525 case 0x7b: /* FCVTZU */
12526 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12527 break;
12528 case 0x6f: /* FNEG */
12529 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12530 break;
12531 case 0x7d: /* FRSQRTE */
12532 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12533 break;
12534 default:
12535 g_assert_not_reached();
12536 }
12537
12538 /* limit any sign extension going on */
12539 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12540 write_fp_sreg(s, rd, tcg_res);
12541
12542 tcg_temp_free_i32(tcg_res);
12543 tcg_temp_free_i32(tcg_op);
12544 } else {
12545 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12546 TCGv_i32 tcg_op = tcg_temp_new_i32();
12547 TCGv_i32 tcg_res = tcg_temp_new_i32();
12548
12549 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12550
12551 switch (fpop) {
12552 case 0x1a: /* FCVTNS */
12553 case 0x1b: /* FCVTMS */
12554 case 0x1c: /* FCVTAS */
12555 case 0x3a: /* FCVTPS */
12556 case 0x3b: /* FCVTZS */
12557 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12558 break;
12559 case 0x3d: /* FRECPE */
12560 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12561 break;
12562 case 0x5a: /* FCVTNU */
12563 case 0x5b: /* FCVTMU */
12564 case 0x5c: /* FCVTAU */
12565 case 0x7a: /* FCVTPU */
12566 case 0x7b: /* FCVTZU */
12567 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12568 break;
12569 case 0x18: /* FRINTN */
12570 case 0x19: /* FRINTM */
12571 case 0x38: /* FRINTP */
12572 case 0x39: /* FRINTZ */
12573 case 0x58: /* FRINTA */
12574 case 0x79: /* FRINTI */
12575 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12576 break;
12577 case 0x59: /* FRINTX */
12578 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12579 break;
12580 case 0x2f: /* FABS */
12581 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12582 break;
12583 case 0x6f: /* FNEG */
12584 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12585 break;
12586 case 0x7d: /* FRSQRTE */
12587 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12588 break;
12589 case 0x7f: /* FSQRT */
12590 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12591 break;
12592 default:
12593 g_assert_not_reached();
12594 }
12595
12596 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12597
12598 tcg_temp_free_i32(tcg_res);
12599 tcg_temp_free_i32(tcg_op);
12600 }
12601
12602 clear_vec_high(s, is_q, rd);
12603 }
12604
12605 if (tcg_rmode) {
12606 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12607 tcg_temp_free_i32(tcg_rmode);
12608 }
12609
12610 if (tcg_fpstatus) {
12611 tcg_temp_free_ptr(tcg_fpstatus);
12612 }
12613 }
12614
12615 /* AdvSIMD scalar x indexed element
12616 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12617 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12618 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12619 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12620 * AdvSIMD vector x indexed element
12621 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12622 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12623 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12624 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12625 */
12626 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12627 {
12628 /* This encoding has two kinds of instruction:
12629 * normal, where we perform elt x idxelt => elt for each
12630 * element in the vector
12631 * long, where we perform elt x idxelt and generate a result of
12632 * double the width of the input element
12633 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12634 */
12635 bool is_scalar = extract32(insn, 28, 1);
12636 bool is_q = extract32(insn, 30, 1);
12637 bool u = extract32(insn, 29, 1);
12638 int size = extract32(insn, 22, 2);
12639 int l = extract32(insn, 21, 1);
12640 int m = extract32(insn, 20, 1);
12641 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12642 int rm = extract32(insn, 16, 4);
12643 int opcode = extract32(insn, 12, 4);
12644 int h = extract32(insn, 11, 1);
12645 int rn = extract32(insn, 5, 5);
12646 int rd = extract32(insn, 0, 5);
12647 bool is_long = false;
12648 int is_fp = 0;
12649 bool is_fp16 = false;
12650 int index;
12651 TCGv_ptr fpst;
12652
12653 switch (16 * u + opcode) {
12654 case 0x08: /* MUL */
12655 case 0x10: /* MLA */
12656 case 0x14: /* MLS */
12657 if (is_scalar) {
12658 unallocated_encoding(s);
12659 return;
12660 }
12661 break;
12662 case 0x02: /* SMLAL, SMLAL2 */
12663 case 0x12: /* UMLAL, UMLAL2 */
12664 case 0x06: /* SMLSL, SMLSL2 */
12665 case 0x16: /* UMLSL, UMLSL2 */
12666 case 0x0a: /* SMULL, SMULL2 */
12667 case 0x1a: /* UMULL, UMULL2 */
12668 if (is_scalar) {
12669 unallocated_encoding(s);
12670 return;
12671 }
12672 is_long = true;
12673 break;
12674 case 0x03: /* SQDMLAL, SQDMLAL2 */
12675 case 0x07: /* SQDMLSL, SQDMLSL2 */
12676 case 0x0b: /* SQDMULL, SQDMULL2 */
12677 is_long = true;
12678 break;
12679 case 0x0c: /* SQDMULH */
12680 case 0x0d: /* SQRDMULH */
12681 break;
12682 case 0x01: /* FMLA */
12683 case 0x05: /* FMLS */
12684 case 0x09: /* FMUL */
12685 case 0x19: /* FMULX */
12686 is_fp = 1;
12687 break;
12688 case 0x1d: /* SQRDMLAH */
12689 case 0x1f: /* SQRDMLSH */
12690 if (!dc_isar_feature(aa64_rdm, s)) {
12691 unallocated_encoding(s);
12692 return;
12693 }
12694 break;
12695 case 0x0e: /* SDOT */
12696 case 0x1e: /* UDOT */
12697 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12698 unallocated_encoding(s);
12699 return;
12700 }
12701 break;
12702 case 0x11: /* FCMLA #0 */
12703 case 0x13: /* FCMLA #90 */
12704 case 0x15: /* FCMLA #180 */
12705 case 0x17: /* FCMLA #270 */
12706 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12707 unallocated_encoding(s);
12708 return;
12709 }
12710 is_fp = 2;
12711 break;
12712 default:
12713 unallocated_encoding(s);
12714 return;
12715 }
12716
12717 switch (is_fp) {
12718 case 1: /* normal fp */
12719 /* convert insn encoded size to TCGMemOp size */
12720 switch (size) {
12721 case 0: /* half-precision */
12722 size = MO_16;
12723 is_fp16 = true;
12724 break;
12725 case MO_32: /* single precision */
12726 case MO_64: /* double precision */
12727 break;
12728 default:
12729 unallocated_encoding(s);
12730 return;
12731 }
12732 break;
12733
12734 case 2: /* complex fp */
12735 /* Each indexable element is a complex pair. */
12736 size += 1;
12737 switch (size) {
12738 case MO_32:
12739 if (h && !is_q) {
12740 unallocated_encoding(s);
12741 return;
12742 }
12743 is_fp16 = true;
12744 break;
12745 case MO_64:
12746 break;
12747 default:
12748 unallocated_encoding(s);
12749 return;
12750 }
12751 break;
12752
12753 default: /* integer */
12754 switch (size) {
12755 case MO_8:
12756 case MO_64:
12757 unallocated_encoding(s);
12758 return;
12759 }
12760 break;
12761 }
12762 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12763 unallocated_encoding(s);
12764 return;
12765 }
12766
12767 /* Given TCGMemOp size, adjust register and indexing. */
12768 switch (size) {
12769 case MO_16:
12770 index = h << 2 | l << 1 | m;
12771 break;
12772 case MO_32:
12773 index = h << 1 | l;
12774 rm |= m << 4;
12775 break;
12776 case MO_64:
12777 if (l || !is_q) {
12778 unallocated_encoding(s);
12779 return;
12780 }
12781 index = h;
12782 rm |= m << 4;
12783 break;
12784 default:
12785 g_assert_not_reached();
12786 }
12787
12788 if (!fp_access_check(s)) {
12789 return;
12790 }
12791
12792 if (is_fp) {
12793 fpst = get_fpstatus_ptr(is_fp16);
12794 } else {
12795 fpst = NULL;
12796 }
12797
12798 switch (16 * u + opcode) {
12799 case 0x0e: /* SDOT */
12800 case 0x1e: /* UDOT */
12801 gen_gvec_op3_ool(s, is_q, rd, rn, rm, index,
12802 u ? gen_helper_gvec_udot_idx_b
12803 : gen_helper_gvec_sdot_idx_b);
12804 return;
12805 case 0x11: /* FCMLA #0 */
12806 case 0x13: /* FCMLA #90 */
12807 case 0x15: /* FCMLA #180 */
12808 case 0x17: /* FCMLA #270 */
12809 {
12810 int rot = extract32(insn, 13, 2);
12811 int data = (index << 2) | rot;
12812 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12813 vec_full_reg_offset(s, rn),
12814 vec_full_reg_offset(s, rm), fpst,
12815 is_q ? 16 : 8, vec_full_reg_size(s), data,
12816 size == MO_64
12817 ? gen_helper_gvec_fcmlas_idx
12818 : gen_helper_gvec_fcmlah_idx);
12819 tcg_temp_free_ptr(fpst);
12820 }
12821 return;
12822 }
12823
12824 if (size == 3) {
12825 TCGv_i64 tcg_idx = tcg_temp_new_i64();
12826 int pass;
12827
12828 assert(is_fp && is_q && !is_long);
12829
12830 read_vec_element(s, tcg_idx, rm, index, MO_64);
12831
12832 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12833 TCGv_i64 tcg_op = tcg_temp_new_i64();
12834 TCGv_i64 tcg_res = tcg_temp_new_i64();
12835
12836 read_vec_element(s, tcg_op, rn, pass, MO_64);
12837
12838 switch (16 * u + opcode) {
12839 case 0x05: /* FMLS */
12840 /* As usual for ARM, separate negation for fused multiply-add */
12841 gen_helper_vfp_negd(tcg_op, tcg_op);
12842 /* fall through */
12843 case 0x01: /* FMLA */
12844 read_vec_element(s, tcg_res, rd, pass, MO_64);
12845 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
12846 break;
12847 case 0x09: /* FMUL */
12848 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
12849 break;
12850 case 0x19: /* FMULX */
12851 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
12852 break;
12853 default:
12854 g_assert_not_reached();
12855 }
12856
12857 write_vec_element(s, tcg_res, rd, pass, MO_64);
12858 tcg_temp_free_i64(tcg_op);
12859 tcg_temp_free_i64(tcg_res);
12860 }
12861
12862 tcg_temp_free_i64(tcg_idx);
12863 clear_vec_high(s, !is_scalar, rd);
12864 } else if (!is_long) {
12865 /* 32 bit floating point, or 16 or 32 bit integer.
12866 * For the 16 bit scalar case we use the usual Neon helpers and
12867 * rely on the fact that 0 op 0 == 0 with no side effects.
12868 */
12869 TCGv_i32 tcg_idx = tcg_temp_new_i32();
12870 int pass, maxpasses;
12871
12872 if (is_scalar) {
12873 maxpasses = 1;
12874 } else {
12875 maxpasses = is_q ? 4 : 2;
12876 }
12877
12878 read_vec_element_i32(s, tcg_idx, rm, index, size);
12879
12880 if (size == 1 && !is_scalar) {
12881 /* The simplest way to handle the 16x16 indexed ops is to duplicate
12882 * the index into both halves of the 32 bit tcg_idx and then use
12883 * the usual Neon helpers.
12884 */
12885 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12886 }
12887
12888 for (pass = 0; pass < maxpasses; pass++) {
12889 TCGv_i32 tcg_op = tcg_temp_new_i32();
12890 TCGv_i32 tcg_res = tcg_temp_new_i32();
12891
12892 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12893
12894 switch (16 * u + opcode) {
12895 case 0x08: /* MUL */
12896 case 0x10: /* MLA */
12897 case 0x14: /* MLS */
12898 {
12899 static NeonGenTwoOpFn * const fns[2][2] = {
12900 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12901 { tcg_gen_add_i32, tcg_gen_sub_i32 },
12902 };
12903 NeonGenTwoOpFn *genfn;
12904 bool is_sub = opcode == 0x4;
12905
12906 if (size == 1) {
12907 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12908 } else {
12909 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12910 }
12911 if (opcode == 0x8) {
12912 break;
12913 }
12914 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12915 genfn = fns[size - 1][is_sub];
12916 genfn(tcg_res, tcg_op, tcg_res);
12917 break;
12918 }
12919 case 0x05: /* FMLS */
12920 case 0x01: /* FMLA */
12921 read_vec_element_i32(s, tcg_res, rd, pass,
12922 is_scalar ? size : MO_32);
12923 switch (size) {
12924 case 1:
12925 if (opcode == 0x5) {
12926 /* As usual for ARM, separate negation for fused
12927 * multiply-add */
12928 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
12929 }
12930 if (is_scalar) {
12931 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
12932 tcg_res, fpst);
12933 } else {
12934 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
12935 tcg_res, fpst);
12936 }
12937 break;
12938 case 2:
12939 if (opcode == 0x5) {
12940 /* As usual for ARM, separate negation for
12941 * fused multiply-add */
12942 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
12943 }
12944 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
12945 tcg_res, fpst);
12946 break;
12947 default:
12948 g_assert_not_reached();
12949 }
12950 break;
12951 case 0x09: /* FMUL */
12952 switch (size) {
12953 case 1:
12954 if (is_scalar) {
12955 gen_helper_advsimd_mulh(tcg_res, tcg_op,
12956 tcg_idx, fpst);
12957 } else {
12958 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
12959 tcg_idx, fpst);
12960 }
12961 break;
12962 case 2:
12963 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
12964 break;
12965 default:
12966 g_assert_not_reached();
12967 }
12968 break;
12969 case 0x19: /* FMULX */
12970 switch (size) {
12971 case 1:
12972 if (is_scalar) {
12973 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
12974 tcg_idx, fpst);
12975 } else {
12976 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
12977 tcg_idx, fpst);
12978 }
12979 break;
12980 case 2:
12981 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
12982 break;
12983 default:
12984 g_assert_not_reached();
12985 }
12986 break;
12987 case 0x0c: /* SQDMULH */
12988 if (size == 1) {
12989 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
12990 tcg_op, tcg_idx);
12991 } else {
12992 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
12993 tcg_op, tcg_idx);
12994 }
12995 break;
12996 case 0x0d: /* SQRDMULH */
12997 if (size == 1) {
12998 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
12999 tcg_op, tcg_idx);
13000 } else {
13001 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13002 tcg_op, tcg_idx);
13003 }
13004 break;
13005 case 0x1d: /* SQRDMLAH */
13006 read_vec_element_i32(s, tcg_res, rd, pass,
13007 is_scalar ? size : MO_32);
13008 if (size == 1) {
13009 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13010 tcg_op, tcg_idx, tcg_res);
13011 } else {
13012 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13013 tcg_op, tcg_idx, tcg_res);
13014 }
13015 break;
13016 case 0x1f: /* SQRDMLSH */
13017 read_vec_element_i32(s, tcg_res, rd, pass,
13018 is_scalar ? size : MO_32);
13019 if (size == 1) {
13020 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13021 tcg_op, tcg_idx, tcg_res);
13022 } else {
13023 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13024 tcg_op, tcg_idx, tcg_res);
13025 }
13026 break;
13027 default:
13028 g_assert_not_reached();
13029 }
13030
13031 if (is_scalar) {
13032 write_fp_sreg(s, rd, tcg_res);
13033 } else {
13034 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13035 }
13036
13037 tcg_temp_free_i32(tcg_op);
13038 tcg_temp_free_i32(tcg_res);
13039 }
13040
13041 tcg_temp_free_i32(tcg_idx);
13042 clear_vec_high(s, is_q, rd);
13043 } else {
13044 /* long ops: 16x16->32 or 32x32->64 */
13045 TCGv_i64 tcg_res[2];
13046 int pass;
13047 bool satop = extract32(opcode, 0, 1);
13048 TCGMemOp memop = MO_32;
13049
13050 if (satop || !u) {
13051 memop |= MO_SIGN;
13052 }
13053
13054 if (size == 2) {
13055 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13056
13057 read_vec_element(s, tcg_idx, rm, index, memop);
13058
13059 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13060 TCGv_i64 tcg_op = tcg_temp_new_i64();
13061 TCGv_i64 tcg_passres;
13062 int passelt;
13063
13064 if (is_scalar) {
13065 passelt = 0;
13066 } else {
13067 passelt = pass + (is_q * 2);
13068 }
13069
13070 read_vec_element(s, tcg_op, rn, passelt, memop);
13071
13072 tcg_res[pass] = tcg_temp_new_i64();
13073
13074 if (opcode == 0xa || opcode == 0xb) {
13075 /* Non-accumulating ops */
13076 tcg_passres = tcg_res[pass];
13077 } else {
13078 tcg_passres = tcg_temp_new_i64();
13079 }
13080
13081 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13082 tcg_temp_free_i64(tcg_op);
13083
13084 if (satop) {
13085 /* saturating, doubling */
13086 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13087 tcg_passres, tcg_passres);
13088 }
13089
13090 if (opcode == 0xa || opcode == 0xb) {
13091 continue;
13092 }
13093
13094 /* Accumulating op: handle accumulate step */
13095 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13096
13097 switch (opcode) {
13098 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13099 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13100 break;
13101 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13102 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13103 break;
13104 case 0x7: /* SQDMLSL, SQDMLSL2 */
13105 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13106 /* fall through */
13107 case 0x3: /* SQDMLAL, SQDMLAL2 */
13108 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13109 tcg_res[pass],
13110 tcg_passres);
13111 break;
13112 default:
13113 g_assert_not_reached();
13114 }
13115 tcg_temp_free_i64(tcg_passres);
13116 }
13117 tcg_temp_free_i64(tcg_idx);
13118
13119 clear_vec_high(s, !is_scalar, rd);
13120 } else {
13121 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13122
13123 assert(size == 1);
13124 read_vec_element_i32(s, tcg_idx, rm, index, size);
13125
13126 if (!is_scalar) {
13127 /* The simplest way to handle the 16x16 indexed ops is to
13128 * duplicate the index into both halves of the 32 bit tcg_idx
13129 * and then use the usual Neon helpers.
13130 */
13131 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13132 }
13133
13134 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13135 TCGv_i32 tcg_op = tcg_temp_new_i32();
13136 TCGv_i64 tcg_passres;
13137
13138 if (is_scalar) {
13139 read_vec_element_i32(s, tcg_op, rn, pass, size);
13140 } else {
13141 read_vec_element_i32(s, tcg_op, rn,
13142 pass + (is_q * 2), MO_32);
13143 }
13144
13145 tcg_res[pass] = tcg_temp_new_i64();
13146
13147 if (opcode == 0xa || opcode == 0xb) {
13148 /* Non-accumulating ops */
13149 tcg_passres = tcg_res[pass];
13150 } else {
13151 tcg_passres = tcg_temp_new_i64();
13152 }
13153
13154 if (memop & MO_SIGN) {
13155 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13156 } else {
13157 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13158 }
13159 if (satop) {
13160 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13161 tcg_passres, tcg_passres);
13162 }
13163 tcg_temp_free_i32(tcg_op);
13164
13165 if (opcode == 0xa || opcode == 0xb) {
13166 continue;
13167 }
13168
13169 /* Accumulating op: handle accumulate step */
13170 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13171
13172 switch (opcode) {
13173 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13174 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13175 tcg_passres);
13176 break;
13177 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13178 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13179 tcg_passres);
13180 break;
13181 case 0x7: /* SQDMLSL, SQDMLSL2 */
13182 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13183 /* fall through */
13184 case 0x3: /* SQDMLAL, SQDMLAL2 */
13185 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13186 tcg_res[pass],
13187 tcg_passres);
13188 break;
13189 default:
13190 g_assert_not_reached();
13191 }
13192 tcg_temp_free_i64(tcg_passres);
13193 }
13194 tcg_temp_free_i32(tcg_idx);
13195
13196 if (is_scalar) {
13197 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13198 }
13199 }
13200
13201 if (is_scalar) {
13202 tcg_res[1] = tcg_const_i64(0);
13203 }
13204
13205 for (pass = 0; pass < 2; pass++) {
13206 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13207 tcg_temp_free_i64(tcg_res[pass]);
13208 }
13209 }
13210
13211 if (fpst) {
13212 tcg_temp_free_ptr(fpst);
13213 }
13214 }
13215
13216 /* Crypto AES
13217 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13218 * +-----------------+------+-----------+--------+-----+------+------+
13219 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13220 * +-----------------+------+-----------+--------+-----+------+------+
13221 */
13222 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13223 {
13224 int size = extract32(insn, 22, 2);
13225 int opcode = extract32(insn, 12, 5);
13226 int rn = extract32(insn, 5, 5);
13227 int rd = extract32(insn, 0, 5);
13228 int decrypt;
13229 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13230 TCGv_i32 tcg_decrypt;
13231 CryptoThreeOpIntFn *genfn;
13232
13233 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13234 unallocated_encoding(s);
13235 return;
13236 }
13237
13238 switch (opcode) {
13239 case 0x4: /* AESE */
13240 decrypt = 0;
13241 genfn = gen_helper_crypto_aese;
13242 break;
13243 case 0x6: /* AESMC */
13244 decrypt = 0;
13245 genfn = gen_helper_crypto_aesmc;
13246 break;
13247 case 0x5: /* AESD */
13248 decrypt = 1;
13249 genfn = gen_helper_crypto_aese;
13250 break;
13251 case 0x7: /* AESIMC */
13252 decrypt = 1;
13253 genfn = gen_helper_crypto_aesmc;
13254 break;
13255 default:
13256 unallocated_encoding(s);
13257 return;
13258 }
13259
13260 if (!fp_access_check(s)) {
13261 return;
13262 }
13263
13264 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13265 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13266 tcg_decrypt = tcg_const_i32(decrypt);
13267
13268 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_decrypt);
13269
13270 tcg_temp_free_ptr(tcg_rd_ptr);
13271 tcg_temp_free_ptr(tcg_rn_ptr);
13272 tcg_temp_free_i32(tcg_decrypt);
13273 }
13274
13275 /* Crypto three-reg SHA
13276 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
13277 * +-----------------+------+---+------+---+--------+-----+------+------+
13278 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
13279 * +-----------------+------+---+------+---+--------+-----+------+------+
13280 */
13281 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13282 {
13283 int size = extract32(insn, 22, 2);
13284 int opcode = extract32(insn, 12, 3);
13285 int rm = extract32(insn, 16, 5);
13286 int rn = extract32(insn, 5, 5);
13287 int rd = extract32(insn, 0, 5);
13288 CryptoThreeOpFn *genfn;
13289 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13290 bool feature;
13291
13292 if (size != 0) {
13293 unallocated_encoding(s);
13294 return;
13295 }
13296
13297 switch (opcode) {
13298 case 0: /* SHA1C */
13299 case 1: /* SHA1P */
13300 case 2: /* SHA1M */
13301 case 3: /* SHA1SU0 */
13302 genfn = NULL;
13303 feature = dc_isar_feature(aa64_sha1, s);
13304 break;
13305 case 4: /* SHA256H */
13306 genfn = gen_helper_crypto_sha256h;
13307 feature = dc_isar_feature(aa64_sha256, s);
13308 break;
13309 case 5: /* SHA256H2 */
13310 genfn = gen_helper_crypto_sha256h2;
13311 feature = dc_isar_feature(aa64_sha256, s);
13312 break;
13313 case 6: /* SHA256SU1 */
13314 genfn = gen_helper_crypto_sha256su1;
13315 feature = dc_isar_feature(aa64_sha256, s);
13316 break;
13317 default:
13318 unallocated_encoding(s);
13319 return;
13320 }
13321
13322 if (!feature) {
13323 unallocated_encoding(s);
13324 return;
13325 }
13326
13327 if (!fp_access_check(s)) {
13328 return;
13329 }
13330
13331 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13332 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13333 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13334
13335 if (genfn) {
13336 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13337 } else {
13338 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
13339
13340 gen_helper_crypto_sha1_3reg(tcg_rd_ptr, tcg_rn_ptr,
13341 tcg_rm_ptr, tcg_opcode);
13342 tcg_temp_free_i32(tcg_opcode);
13343 }
13344
13345 tcg_temp_free_ptr(tcg_rd_ptr);
13346 tcg_temp_free_ptr(tcg_rn_ptr);
13347 tcg_temp_free_ptr(tcg_rm_ptr);
13348 }
13349
13350 /* Crypto two-reg SHA
13351 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13352 * +-----------------+------+-----------+--------+-----+------+------+
13353 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13354 * +-----------------+------+-----------+--------+-----+------+------+
13355 */
13356 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13357 {
13358 int size = extract32(insn, 22, 2);
13359 int opcode = extract32(insn, 12, 5);
13360 int rn = extract32(insn, 5, 5);
13361 int rd = extract32(insn, 0, 5);
13362 CryptoTwoOpFn *genfn;
13363 bool feature;
13364 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13365
13366 if (size != 0) {
13367 unallocated_encoding(s);
13368 return;
13369 }
13370
13371 switch (opcode) {
13372 case 0: /* SHA1H */
13373 feature = dc_isar_feature(aa64_sha1, s);
13374 genfn = gen_helper_crypto_sha1h;
13375 break;
13376 case 1: /* SHA1SU1 */
13377 feature = dc_isar_feature(aa64_sha1, s);
13378 genfn = gen_helper_crypto_sha1su1;
13379 break;
13380 case 2: /* SHA256SU0 */
13381 feature = dc_isar_feature(aa64_sha256, s);
13382 genfn = gen_helper_crypto_sha256su0;
13383 break;
13384 default:
13385 unallocated_encoding(s);
13386 return;
13387 }
13388
13389 if (!feature) {
13390 unallocated_encoding(s);
13391 return;
13392 }
13393
13394 if (!fp_access_check(s)) {
13395 return;
13396 }
13397
13398 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13399 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13400
13401 genfn(tcg_rd_ptr, tcg_rn_ptr);
13402
13403 tcg_temp_free_ptr(tcg_rd_ptr);
13404 tcg_temp_free_ptr(tcg_rn_ptr);
13405 }
13406
13407 /* Crypto three-reg SHA512
13408 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13409 * +-----------------------+------+---+---+-----+--------+------+------+
13410 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
13411 * +-----------------------+------+---+---+-----+--------+------+------+
13412 */
13413 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13414 {
13415 int opcode = extract32(insn, 10, 2);
13416 int o = extract32(insn, 14, 1);
13417 int rm = extract32(insn, 16, 5);
13418 int rn = extract32(insn, 5, 5);
13419 int rd = extract32(insn, 0, 5);
13420 bool feature;
13421 CryptoThreeOpFn *genfn;
13422
13423 if (o == 0) {
13424 switch (opcode) {
13425 case 0: /* SHA512H */
13426 feature = dc_isar_feature(aa64_sha512, s);
13427 genfn = gen_helper_crypto_sha512h;
13428 break;
13429 case 1: /* SHA512H2 */
13430 feature = dc_isar_feature(aa64_sha512, s);
13431 genfn = gen_helper_crypto_sha512h2;
13432 break;
13433 case 2: /* SHA512SU1 */
13434 feature = dc_isar_feature(aa64_sha512, s);
13435 genfn = gen_helper_crypto_sha512su1;
13436 break;
13437 case 3: /* RAX1 */
13438 feature = dc_isar_feature(aa64_sha3, s);
13439 genfn = NULL;
13440 break;
13441 }
13442 } else {
13443 switch (opcode) {
13444 case 0: /* SM3PARTW1 */
13445 feature = dc_isar_feature(aa64_sm3, s);
13446 genfn = gen_helper_crypto_sm3partw1;
13447 break;
13448 case 1: /* SM3PARTW2 */
13449 feature = dc_isar_feature(aa64_sm3, s);
13450 genfn = gen_helper_crypto_sm3partw2;
13451 break;
13452 case 2: /* SM4EKEY */
13453 feature = dc_isar_feature(aa64_sm4, s);
13454 genfn = gen_helper_crypto_sm4ekey;
13455 break;
13456 default:
13457 unallocated_encoding(s);
13458 return;
13459 }
13460 }
13461
13462 if (!feature) {
13463 unallocated_encoding(s);
13464 return;
13465 }
13466
13467 if (!fp_access_check(s)) {
13468 return;
13469 }
13470
13471 if (genfn) {
13472 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13473
13474 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13475 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13476 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13477
13478 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13479
13480 tcg_temp_free_ptr(tcg_rd_ptr);
13481 tcg_temp_free_ptr(tcg_rn_ptr);
13482 tcg_temp_free_ptr(tcg_rm_ptr);
13483 } else {
13484 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13485 int pass;
13486
13487 tcg_op1 = tcg_temp_new_i64();
13488 tcg_op2 = tcg_temp_new_i64();
13489 tcg_res[0] = tcg_temp_new_i64();
13490 tcg_res[1] = tcg_temp_new_i64();
13491
13492 for (pass = 0; pass < 2; pass++) {
13493 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13494 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13495
13496 tcg_gen_rotli_i64(tcg_res[pass], tcg_op2, 1);
13497 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13498 }
13499 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13500 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13501
13502 tcg_temp_free_i64(tcg_op1);
13503 tcg_temp_free_i64(tcg_op2);
13504 tcg_temp_free_i64(tcg_res[0]);
13505 tcg_temp_free_i64(tcg_res[1]);
13506 }
13507 }
13508
13509 /* Crypto two-reg SHA512
13510 * 31 12 11 10 9 5 4 0
13511 * +-----------------------------------------+--------+------+------+
13512 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
13513 * +-----------------------------------------+--------+------+------+
13514 */
13515 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13516 {
13517 int opcode = extract32(insn, 10, 2);
13518 int rn = extract32(insn, 5, 5);
13519 int rd = extract32(insn, 0, 5);
13520 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13521 bool feature;
13522 CryptoTwoOpFn *genfn;
13523
13524 switch (opcode) {
13525 case 0: /* SHA512SU0 */
13526 feature = dc_isar_feature(aa64_sha512, s);
13527 genfn = gen_helper_crypto_sha512su0;
13528 break;
13529 case 1: /* SM4E */
13530 feature = dc_isar_feature(aa64_sm4, s);
13531 genfn = gen_helper_crypto_sm4e;
13532 break;
13533 default:
13534 unallocated_encoding(s);
13535 return;
13536 }
13537
13538 if (!feature) {
13539 unallocated_encoding(s);
13540 return;
13541 }
13542
13543 if (!fp_access_check(s)) {
13544 return;
13545 }
13546
13547 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13548 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13549
13550 genfn(tcg_rd_ptr, tcg_rn_ptr);
13551
13552 tcg_temp_free_ptr(tcg_rd_ptr);
13553 tcg_temp_free_ptr(tcg_rn_ptr);
13554 }
13555
13556 /* Crypto four-register
13557 * 31 23 22 21 20 16 15 14 10 9 5 4 0
13558 * +-------------------+-----+------+---+------+------+------+
13559 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
13560 * +-------------------+-----+------+---+------+------+------+
13561 */
13562 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13563 {
13564 int op0 = extract32(insn, 21, 2);
13565 int rm = extract32(insn, 16, 5);
13566 int ra = extract32(insn, 10, 5);
13567 int rn = extract32(insn, 5, 5);
13568 int rd = extract32(insn, 0, 5);
13569 bool feature;
13570
13571 switch (op0) {
13572 case 0: /* EOR3 */
13573 case 1: /* BCAX */
13574 feature = dc_isar_feature(aa64_sha3, s);
13575 break;
13576 case 2: /* SM3SS1 */
13577 feature = dc_isar_feature(aa64_sm3, s);
13578 break;
13579 default:
13580 unallocated_encoding(s);
13581 return;
13582 }
13583
13584 if (!feature) {
13585 unallocated_encoding(s);
13586 return;
13587 }
13588
13589 if (!fp_access_check(s)) {
13590 return;
13591 }
13592
13593 if (op0 < 2) {
13594 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13595 int pass;
13596
13597 tcg_op1 = tcg_temp_new_i64();
13598 tcg_op2 = tcg_temp_new_i64();
13599 tcg_op3 = tcg_temp_new_i64();
13600 tcg_res[0] = tcg_temp_new_i64();
13601 tcg_res[1] = tcg_temp_new_i64();
13602
13603 for (pass = 0; pass < 2; pass++) {
13604 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13605 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13606 read_vec_element(s, tcg_op3, ra, pass, MO_64);
13607
13608 if (op0 == 0) {
13609 /* EOR3 */
13610 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13611 } else {
13612 /* BCAX */
13613 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13614 }
13615 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13616 }
13617 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13618 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13619
13620 tcg_temp_free_i64(tcg_op1);
13621 tcg_temp_free_i64(tcg_op2);
13622 tcg_temp_free_i64(tcg_op3);
13623 tcg_temp_free_i64(tcg_res[0]);
13624 tcg_temp_free_i64(tcg_res[1]);
13625 } else {
13626 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13627
13628 tcg_op1 = tcg_temp_new_i32();
13629 tcg_op2 = tcg_temp_new_i32();
13630 tcg_op3 = tcg_temp_new_i32();
13631 tcg_res = tcg_temp_new_i32();
13632 tcg_zero = tcg_const_i32(0);
13633
13634 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13635 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13636 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13637
13638 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13639 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13640 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13641 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13642
13643 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13644 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13645 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13646 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13647
13648 tcg_temp_free_i32(tcg_op1);
13649 tcg_temp_free_i32(tcg_op2);
13650 tcg_temp_free_i32(tcg_op3);
13651 tcg_temp_free_i32(tcg_res);
13652 tcg_temp_free_i32(tcg_zero);
13653 }
13654 }
13655
13656 /* Crypto XAR
13657 * 31 21 20 16 15 10 9 5 4 0
13658 * +-----------------------+------+--------+------+------+
13659 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
13660 * +-----------------------+------+--------+------+------+
13661 */
13662 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13663 {
13664 int rm = extract32(insn, 16, 5);
13665 int imm6 = extract32(insn, 10, 6);
13666 int rn = extract32(insn, 5, 5);
13667 int rd = extract32(insn, 0, 5);
13668 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13669 int pass;
13670
13671 if (!dc_isar_feature(aa64_sha3, s)) {
13672 unallocated_encoding(s);
13673 return;
13674 }
13675
13676 if (!fp_access_check(s)) {
13677 return;
13678 }
13679
13680 tcg_op1 = tcg_temp_new_i64();
13681 tcg_op2 = tcg_temp_new_i64();
13682 tcg_res[0] = tcg_temp_new_i64();
13683 tcg_res[1] = tcg_temp_new_i64();
13684
13685 for (pass = 0; pass < 2; pass++) {
13686 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13687 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13688
13689 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
13690 tcg_gen_rotri_i64(tcg_res[pass], tcg_res[pass], imm6);
13691 }
13692 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13693 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13694
13695 tcg_temp_free_i64(tcg_op1);
13696 tcg_temp_free_i64(tcg_op2);
13697 tcg_temp_free_i64(tcg_res[0]);
13698 tcg_temp_free_i64(tcg_res[1]);
13699 }
13700
13701 /* Crypto three-reg imm2
13702 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13703 * +-----------------------+------+-----+------+--------+------+------+
13704 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
13705 * +-----------------------+------+-----+------+--------+------+------+
13706 */
13707 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13708 {
13709 int opcode = extract32(insn, 10, 2);
13710 int imm2 = extract32(insn, 12, 2);
13711 int rm = extract32(insn, 16, 5);
13712 int rn = extract32(insn, 5, 5);
13713 int rd = extract32(insn, 0, 5);
13714 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13715 TCGv_i32 tcg_imm2, tcg_opcode;
13716
13717 if (!dc_isar_feature(aa64_sm3, s)) {
13718 unallocated_encoding(s);
13719 return;
13720 }
13721
13722 if (!fp_access_check(s)) {
13723 return;
13724 }
13725
13726 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13727 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13728 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13729 tcg_imm2 = tcg_const_i32(imm2);
13730 tcg_opcode = tcg_const_i32(opcode);
13731
13732 gen_helper_crypto_sm3tt(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr, tcg_imm2,
13733 tcg_opcode);
13734
13735 tcg_temp_free_ptr(tcg_rd_ptr);
13736 tcg_temp_free_ptr(tcg_rn_ptr);
13737 tcg_temp_free_ptr(tcg_rm_ptr);
13738 tcg_temp_free_i32(tcg_imm2);
13739 tcg_temp_free_i32(tcg_opcode);
13740 }
13741
13742 /* C3.6 Data processing - SIMD, inc Crypto
13743 *
13744 * As the decode gets a little complex we are using a table based
13745 * approach for this part of the decode.
13746 */
13747 static const AArch64DecodeTable data_proc_simd[] = {
13748 /* pattern , mask , fn */
13749 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13750 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13751 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13752 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13753 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13754 { 0x0e000400, 0x9fe08400, disas_simd_copy },
13755 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13756 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13757 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13758 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13759 { 0x0e000000, 0xbf208c00, disas_simd_tb },
13760 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13761 { 0x2e000000, 0xbf208400, disas_simd_ext },
13762 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13763 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13764 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13765 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13766 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13767 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13768 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13769 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13770 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13771 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13772 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13773 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13774 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13775 { 0xce000000, 0xff808000, disas_crypto_four_reg },
13776 { 0xce800000, 0xffe00000, disas_crypto_xar },
13777 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13778 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13779 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13780 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13781 { 0x00000000, 0x00000000, NULL }
13782 };
13783
13784 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13785 {
13786 /* Note that this is called with all non-FP cases from
13787 * table C3-6 so it must UNDEF for entries not specifically
13788 * allocated to instructions in that table.
13789 */
13790 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13791 if (fn) {
13792 fn(s, insn);
13793 } else {
13794 unallocated_encoding(s);
13795 }
13796 }
13797
13798 /* C3.6 Data processing - SIMD and floating point */
13799 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13800 {
13801 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13802 disas_data_proc_fp(s, insn);
13803 } else {
13804 /* SIMD, including crypto */
13805 disas_data_proc_simd(s, insn);
13806 }
13807 }
13808
13809 /**
13810 * is_guarded_page:
13811 * @env: The cpu environment
13812 * @s: The DisasContext
13813 *
13814 * Return true if the page is guarded.
13815 */
13816 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13817 {
13818 #ifdef CONFIG_USER_ONLY
13819 return false; /* FIXME */
13820 #else
13821 uint64_t addr = s->base.pc_first;
13822 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13823 unsigned int index = tlb_index(env, mmu_idx, addr);
13824 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
13825
13826 /*
13827 * We test this immediately after reading an insn, which means
13828 * that any normal page must be in the TLB. The only exception
13829 * would be for executing from flash or device memory, which
13830 * does not retain the TLB entry.
13831 *
13832 * FIXME: Assume false for those, for now. We could use
13833 * arm_cpu_get_phys_page_attrs_debug to re-read the page
13834 * table entry even for that case.
13835 */
13836 return (tlb_hit(entry->addr_code, addr) &&
13837 env->iotlb[mmu_idx][index].attrs.target_tlb_bit0);
13838 #endif
13839 }
13840
13841 /**
13842 * btype_destination_ok:
13843 * @insn: The instruction at the branch destination
13844 * @bt: SCTLR_ELx.BT
13845 * @btype: PSTATE.BTYPE, and is non-zero
13846 *
13847 * On a guarded page, there are a limited number of insns
13848 * that may be present at the branch target:
13849 * - branch target identifiers,
13850 * - paciasp, pacibsp,
13851 * - BRK insn
13852 * - HLT insn
13853 * Anything else causes a Branch Target Exception.
13854 *
13855 * Return true if the branch is compatible, false to raise BTITRAP.
13856 */
13857 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
13858 {
13859 if ((insn & 0xfffff01fu) == 0xd503201fu) {
13860 /* HINT space */
13861 switch (extract32(insn, 5, 7)) {
13862 case 0b011001: /* PACIASP */
13863 case 0b011011: /* PACIBSP */
13864 /*
13865 * If SCTLR_ELx.BT, then PACI*SP are not compatible
13866 * with btype == 3. Otherwise all btype are ok.
13867 */
13868 return !bt || btype != 3;
13869 case 0b100000: /* BTI */
13870 /* Not compatible with any btype. */
13871 return false;
13872 case 0b100010: /* BTI c */
13873 /* Not compatible with btype == 3 */
13874 return btype != 3;
13875 case 0b100100: /* BTI j */
13876 /* Not compatible with btype == 2 */
13877 return btype != 2;
13878 case 0b100110: /* BTI jc */
13879 /* Compatible with any btype. */
13880 return true;
13881 }
13882 } else {
13883 switch (insn & 0xffe0001fu) {
13884 case 0xd4200000u: /* BRK */
13885 case 0xd4400000u: /* HLT */
13886 /* Give priority to the breakpoint exception. */
13887 return true;
13888 }
13889 }
13890 return false;
13891 }
13892
13893 /* C3.1 A64 instruction index by encoding */
13894 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
13895 {
13896 uint32_t insn;
13897
13898 insn = arm_ldl_code(env, s->pc, s->sctlr_b);
13899 s->insn = insn;
13900 s->pc += 4;
13901
13902 s->fp_access_checked = false;
13903
13904 if (dc_isar_feature(aa64_bti, s)) {
13905 if (s->base.num_insns == 1) {
13906 /*
13907 * At the first insn of the TB, compute s->guarded_page.
13908 * We delayed computing this until successfully reading
13909 * the first insn of the TB, above. This (mostly) ensures
13910 * that the softmmu tlb entry has been populated, and the
13911 * page table GP bit is available.
13912 *
13913 * Note that we need to compute this even if btype == 0,
13914 * because this value is used for BR instructions later
13915 * where ENV is not available.
13916 */
13917 s->guarded_page = is_guarded_page(env, s);
13918
13919 /* First insn can have btype set to non-zero. */
13920 tcg_debug_assert(s->btype >= 0);
13921
13922 /*
13923 * Note that the Branch Target Exception has fairly high
13924 * priority -- below debugging exceptions but above most
13925 * everything else. This allows us to handle this now
13926 * instead of waiting until the insn is otherwise decoded.
13927 */
13928 if (s->btype != 0
13929 && s->guarded_page
13930 && !btype_destination_ok(insn, s->bt, s->btype)) {
13931 gen_exception_insn(s, 4, EXCP_UDEF, syn_btitrap(s->btype),
13932 default_exception_el(s));
13933 return;
13934 }
13935 } else {
13936 /* Not the first insn: btype must be 0. */
13937 tcg_debug_assert(s->btype == 0);
13938 }
13939 }
13940
13941 switch (extract32(insn, 25, 4)) {
13942 case 0x0: case 0x1: case 0x3: /* UNALLOCATED */
13943 unallocated_encoding(s);
13944 break;
13945 case 0x2:
13946 if (!dc_isar_feature(aa64_sve, s) || !disas_sve(s, insn)) {
13947 unallocated_encoding(s);
13948 }
13949 break;
13950 case 0x8: case 0x9: /* Data processing - immediate */
13951 disas_data_proc_imm(s, insn);
13952 break;
13953 case 0xa: case 0xb: /* Branch, exception generation and system insns */
13954 disas_b_exc_sys(s, insn);
13955 break;
13956 case 0x4:
13957 case 0x6:
13958 case 0xc:
13959 case 0xe: /* Loads and stores */
13960 disas_ldst(s, insn);
13961 break;
13962 case 0x5:
13963 case 0xd: /* Data processing - register */
13964 disas_data_proc_reg(s, insn);
13965 break;
13966 case 0x7:
13967 case 0xf: /* Data processing - SIMD and floating point */
13968 disas_data_proc_simd_fp(s, insn);
13969 break;
13970 default:
13971 assert(FALSE); /* all 15 cases should be handled above */
13972 break;
13973 }
13974
13975 /* if we allocated any temporaries, free them here */
13976 free_tmp_a64(s);
13977
13978 /*
13979 * After execution of most insns, btype is reset to 0.
13980 * Note that we set btype == -1 when the insn sets btype.
13981 */
13982 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
13983 reset_btype(s);
13984 }
13985 }
13986
13987 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13988 CPUState *cpu)
13989 {
13990 DisasContext *dc = container_of(dcbase, DisasContext, base);
13991 CPUARMState *env = cpu->env_ptr;
13992 ARMCPU *arm_cpu = arm_env_get_cpu(env);
13993 uint32_t tb_flags = dc->base.tb->flags;
13994 int bound, core_mmu_idx;
13995
13996 dc->isar = &arm_cpu->isar;
13997 dc->pc = dc->base.pc_first;
13998 dc->condjmp = 0;
13999
14000 dc->aarch64 = 1;
14001 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
14002 * there is no secure EL1, so we route exceptions to EL3.
14003 */
14004 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
14005 !arm_el_is_aa64(env, 3);
14006 dc->thumb = 0;
14007 dc->sctlr_b = 0;
14008 dc->be_data = FIELD_EX32(tb_flags, TBFLAG_ANY, BE_DATA) ? MO_BE : MO_LE;
14009 dc->condexec_mask = 0;
14010 dc->condexec_cond = 0;
14011 core_mmu_idx = FIELD_EX32(tb_flags, TBFLAG_ANY, MMUIDX);
14012 dc->mmu_idx = core_to_arm_mmu_idx(env, core_mmu_idx);
14013 dc->tbii = FIELD_EX32(tb_flags, TBFLAG_A64, TBII);
14014 dc->tbid = FIELD_EX32(tb_flags, TBFLAG_A64, TBID);
14015 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14016 #if !defined(CONFIG_USER_ONLY)
14017 dc->user = (dc->current_el == 0);
14018 #endif
14019 dc->fp_excp_el = FIELD_EX32(tb_flags, TBFLAG_ANY, FPEXC_EL);
14020 dc->sve_excp_el = FIELD_EX32(tb_flags, TBFLAG_A64, SVEEXC_EL);
14021 dc->sve_len = (FIELD_EX32(tb_flags, TBFLAG_A64, ZCR_LEN) + 1) * 16;
14022 dc->pauth_active = FIELD_EX32(tb_flags, TBFLAG_A64, PAUTH_ACTIVE);
14023 dc->bt = FIELD_EX32(tb_flags, TBFLAG_A64, BT);
14024 dc->btype = FIELD_EX32(tb_flags, TBFLAG_A64, BTYPE);
14025 dc->vec_len = 0;
14026 dc->vec_stride = 0;
14027 dc->cp_regs = arm_cpu->cp_regs;
14028 dc->features = env->features;
14029
14030 /* Single step state. The code-generation logic here is:
14031 * SS_ACTIVE == 0:
14032 * generate code with no special handling for single-stepping (except
14033 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14034 * this happens anyway because those changes are all system register or
14035 * PSTATE writes).
14036 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14037 * emit code for one insn
14038 * emit code to clear PSTATE.SS
14039 * emit code to generate software step exception for completed step
14040 * end TB (as usual for having generated an exception)
14041 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14042 * emit code to generate a software step exception
14043 * end the TB
14044 */
14045 dc->ss_active = FIELD_EX32(tb_flags, TBFLAG_ANY, SS_ACTIVE);
14046 dc->pstate_ss = FIELD_EX32(tb_flags, TBFLAG_ANY, PSTATE_SS);
14047 dc->is_ldex = false;
14048 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
14049
14050 /* Bound the number of insns to execute to those left on the page. */
14051 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14052
14053 /* If architectural single step active, limit to 1. */
14054 if (dc->ss_active) {
14055 bound = 1;
14056 }
14057 dc->base.max_insns = MIN(dc->base.max_insns, bound);
14058
14059 init_tmp_a64_array(dc);
14060 }
14061
14062 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14063 {
14064 }
14065
14066 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14067 {
14068 DisasContext *dc = container_of(dcbase, DisasContext, base);
14069
14070 tcg_gen_insn_start(dc->pc, 0, 0);
14071 dc->insn_start = tcg_last_op();
14072 }
14073
14074 static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
14075 const CPUBreakpoint *bp)
14076 {
14077 DisasContext *dc = container_of(dcbase, DisasContext, base);
14078
14079 if (bp->flags & BP_CPU) {
14080 gen_a64_set_pc_im(dc->pc);
14081 gen_helper_check_breakpoints(cpu_env);
14082 /* End the TB early; it likely won't be executed */
14083 dc->base.is_jmp = DISAS_TOO_MANY;
14084 } else {
14085 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
14086 /* The address covered by the breakpoint must be
14087 included in [tb->pc, tb->pc + tb->size) in order
14088 to for it to be properly cleared -- thus we
14089 increment the PC here so that the logic setting
14090 tb->size below does the right thing. */
14091 dc->pc += 4;
14092 dc->base.is_jmp = DISAS_NORETURN;
14093 }
14094
14095 return true;
14096 }
14097
14098 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14099 {
14100 DisasContext *dc = container_of(dcbase, DisasContext, base);
14101 CPUARMState *env = cpu->env_ptr;
14102
14103 if (dc->ss_active && !dc->pstate_ss) {
14104 /* Singlestep state is Active-pending.
14105 * If we're in this state at the start of a TB then either
14106 * a) we just took an exception to an EL which is being debugged
14107 * and this is the first insn in the exception handler
14108 * b) debug exceptions were masked and we just unmasked them
14109 * without changing EL (eg by clearing PSTATE.D)
14110 * In either case we're going to take a swstep exception in the
14111 * "did not step an insn" case, and so the syndrome ISV and EX
14112 * bits should be zero.
14113 */
14114 assert(dc->base.num_insns == 1);
14115 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
14116 default_exception_el(dc));
14117 dc->base.is_jmp = DISAS_NORETURN;
14118 } else {
14119 disas_a64_insn(env, dc);
14120 }
14121
14122 dc->base.pc_next = dc->pc;
14123 translator_loop_temp_check(&dc->base);
14124 }
14125
14126 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14127 {
14128 DisasContext *dc = container_of(dcbase, DisasContext, base);
14129
14130 if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
14131 /* Note that this means single stepping WFI doesn't halt the CPU.
14132 * For conditional branch insns this is harmless unreachable code as
14133 * gen_goto_tb() has already handled emitting the debug exception
14134 * (and thus a tb-jump is not possible when singlestepping).
14135 */
14136 switch (dc->base.is_jmp) {
14137 default:
14138 gen_a64_set_pc_im(dc->pc);
14139 /* fall through */
14140 case DISAS_EXIT:
14141 case DISAS_JUMP:
14142 if (dc->base.singlestep_enabled) {
14143 gen_exception_internal(EXCP_DEBUG);
14144 } else {
14145 gen_step_complete_exception(dc);
14146 }
14147 break;
14148 case DISAS_NORETURN:
14149 break;
14150 }
14151 } else {
14152 switch (dc->base.is_jmp) {
14153 case DISAS_NEXT:
14154 case DISAS_TOO_MANY:
14155 gen_goto_tb(dc, 1, dc->pc);
14156 break;
14157 default:
14158 case DISAS_UPDATE:
14159 gen_a64_set_pc_im(dc->pc);
14160 /* fall through */
14161 case DISAS_EXIT:
14162 tcg_gen_exit_tb(NULL, 0);
14163 break;
14164 case DISAS_JUMP:
14165 tcg_gen_lookup_and_goto_ptr();
14166 break;
14167 case DISAS_NORETURN:
14168 case DISAS_SWI:
14169 break;
14170 case DISAS_WFE:
14171 gen_a64_set_pc_im(dc->pc);
14172 gen_helper_wfe(cpu_env);
14173 break;
14174 case DISAS_YIELD:
14175 gen_a64_set_pc_im(dc->pc);
14176 gen_helper_yield(cpu_env);
14177 break;
14178 case DISAS_WFI:
14179 {
14180 /* This is a special case because we don't want to just halt the CPU
14181 * if trying to debug across a WFI.
14182 */
14183 TCGv_i32 tmp = tcg_const_i32(4);
14184
14185 gen_a64_set_pc_im(dc->pc);
14186 gen_helper_wfi(cpu_env, tmp);
14187 tcg_temp_free_i32(tmp);
14188 /* The helper doesn't necessarily throw an exception, but we
14189 * must go back to the main loop to check for interrupts anyway.
14190 */
14191 tcg_gen_exit_tb(NULL, 0);
14192 break;
14193 }
14194 }
14195 }
14196
14197 /* Functions above can change dc->pc, so re-align db->pc_next */
14198 dc->base.pc_next = dc->pc;
14199 }
14200
14201 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14202 CPUState *cpu)
14203 {
14204 DisasContext *dc = container_of(dcbase, DisasContext, base);
14205
14206 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
14207 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
14208 }
14209
14210 const TranslatorOps aarch64_translator_ops = {
14211 .init_disas_context = aarch64_tr_init_disas_context,
14212 .tb_start = aarch64_tr_tb_start,
14213 .insn_start = aarch64_tr_insn_start,
14214 .breakpoint_check = aarch64_tr_breakpoint_check,
14215 .translate_insn = aarch64_tr_translate_insn,
14216 .tb_stop = aarch64_tr_tb_stop,
14217 .disas_log = aarch64_tr_disas_log,
14218 };