]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/translate-a64.c
target/arm: Add TBFLAG_A64_TBID, split out gen_top_byte_ignore
[mirror_qemu.git] / target / arm / translate-a64.c
1 /*
2 * AArch64 translation
3 *
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg-op.h"
24 #include "tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
30
31 #include "exec/semihost.h"
32 #include "exec/gen-icount.h"
33
34 #include "exec/helper-proto.h"
35 #include "exec/helper-gen.h"
36 #include "exec/log.h"
37
38 #include "trace-tcg.h"
39 #include "translate-a64.h"
40 #include "qemu/atomic128.h"
41
42 static TCGv_i64 cpu_X[32];
43 static TCGv_i64 cpu_pc;
44
45 /* Load/store exclusive handling */
46 static TCGv_i64 cpu_exclusive_high;
47
48 static const char *regnames[] = {
49 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
50 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
51 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
52 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
53 };
54
55 enum a64_shift_type {
56 A64_SHIFT_TYPE_LSL = 0,
57 A64_SHIFT_TYPE_LSR = 1,
58 A64_SHIFT_TYPE_ASR = 2,
59 A64_SHIFT_TYPE_ROR = 3
60 };
61
62 /* Table based decoder typedefs - used when the relevant bits for decode
63 * are too awkwardly scattered across the instruction (eg SIMD).
64 */
65 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
66
67 typedef struct AArch64DecodeTable {
68 uint32_t pattern;
69 uint32_t mask;
70 AArch64DecodeFn *disas_fn;
71 } AArch64DecodeTable;
72
73 /* Function prototype for gen_ functions for calling Neon helpers */
74 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
75 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
76 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
77 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
78 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
79 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
80 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
81 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
82 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
83 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
84 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
85 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
86 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
87 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
88 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, TCGMemOp);
89
90 /* initialize TCG globals. */
91 void a64_translate_init(void)
92 {
93 int i;
94
95 cpu_pc = tcg_global_mem_new_i64(cpu_env,
96 offsetof(CPUARMState, pc),
97 "pc");
98 for (i = 0; i < 32; i++) {
99 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
100 offsetof(CPUARMState, xregs[i]),
101 regnames[i]);
102 }
103
104 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
105 offsetof(CPUARMState, exclusive_high), "exclusive_high");
106 }
107
108 static inline int get_a64_user_mem_index(DisasContext *s)
109 {
110 /* Return the core mmu_idx to use for A64 "unprivileged load/store" insns:
111 * if EL1, access as if EL0; otherwise access at current EL
112 */
113 ARMMMUIdx useridx;
114
115 switch (s->mmu_idx) {
116 case ARMMMUIdx_S12NSE1:
117 useridx = ARMMMUIdx_S12NSE0;
118 break;
119 case ARMMMUIdx_S1SE1:
120 useridx = ARMMMUIdx_S1SE0;
121 break;
122 case ARMMMUIdx_S2NS:
123 g_assert_not_reached();
124 default:
125 useridx = s->mmu_idx;
126 break;
127 }
128 return arm_to_core_mmu_idx(useridx);
129 }
130
131 static void reset_btype(DisasContext *s)
132 {
133 if (s->btype != 0) {
134 TCGv_i32 zero = tcg_const_i32(0);
135 tcg_gen_st_i32(zero, cpu_env, offsetof(CPUARMState, btype));
136 tcg_temp_free_i32(zero);
137 s->btype = 0;
138 }
139 }
140
141 static void set_btype(DisasContext *s, int val)
142 {
143 TCGv_i32 tcg_val;
144
145 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
146 tcg_debug_assert(val >= 1 && val <= 3);
147
148 tcg_val = tcg_const_i32(val);
149 tcg_gen_st_i32(tcg_val, cpu_env, offsetof(CPUARMState, btype));
150 tcg_temp_free_i32(tcg_val);
151 s->btype = -1;
152 }
153
154 void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
155 fprintf_function cpu_fprintf, int flags)
156 {
157 ARMCPU *cpu = ARM_CPU(cs);
158 CPUARMState *env = &cpu->env;
159 uint32_t psr = pstate_read(env);
160 int i;
161 int el = arm_current_el(env);
162 const char *ns_status;
163
164 cpu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
165 for (i = 0; i < 32; i++) {
166 if (i == 31) {
167 cpu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
168 } else {
169 cpu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
170 (i + 2) % 3 ? " " : "\n");
171 }
172 }
173
174 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
175 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
176 } else {
177 ns_status = "";
178 }
179 cpu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
180 psr,
181 psr & PSTATE_N ? 'N' : '-',
182 psr & PSTATE_Z ? 'Z' : '-',
183 psr & PSTATE_C ? 'C' : '-',
184 psr & PSTATE_V ? 'V' : '-',
185 ns_status,
186 el,
187 psr & PSTATE_SP ? 'h' : 't');
188
189 if (cpu_isar_feature(aa64_bti, cpu)) {
190 cpu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
191 }
192 if (!(flags & CPU_DUMP_FPU)) {
193 cpu_fprintf(f, "\n");
194 return;
195 }
196 if (fp_exception_el(env, el) != 0) {
197 cpu_fprintf(f, " FPU disabled\n");
198 return;
199 }
200 cpu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
201 vfp_get_fpcr(env), vfp_get_fpsr(env));
202
203 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
204 int j, zcr_len = sve_zcr_len_for_el(env, el);
205
206 for (i = 0; i <= FFR_PRED_NUM; i++) {
207 bool eol;
208 if (i == FFR_PRED_NUM) {
209 cpu_fprintf(f, "FFR=");
210 /* It's last, so end the line. */
211 eol = true;
212 } else {
213 cpu_fprintf(f, "P%02d=", i);
214 switch (zcr_len) {
215 case 0:
216 eol = i % 8 == 7;
217 break;
218 case 1:
219 eol = i % 6 == 5;
220 break;
221 case 2:
222 case 3:
223 eol = i % 3 == 2;
224 break;
225 default:
226 /* More than one quadword per predicate. */
227 eol = true;
228 break;
229 }
230 }
231 for (j = zcr_len / 4; j >= 0; j--) {
232 int digits;
233 if (j * 4 + 4 <= zcr_len + 1) {
234 digits = 16;
235 } else {
236 digits = (zcr_len % 4 + 1) * 4;
237 }
238 cpu_fprintf(f, "%0*" PRIx64 "%s", digits,
239 env->vfp.pregs[i].p[j],
240 j ? ":" : eol ? "\n" : " ");
241 }
242 }
243
244 for (i = 0; i < 32; i++) {
245 if (zcr_len == 0) {
246 cpu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
247 i, env->vfp.zregs[i].d[1],
248 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
249 } else if (zcr_len == 1) {
250 cpu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
251 ":%016" PRIx64 ":%016" PRIx64 "\n",
252 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
253 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
254 } else {
255 for (j = zcr_len; j >= 0; j--) {
256 bool odd = (zcr_len - j) % 2 != 0;
257 if (j == zcr_len) {
258 cpu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
259 } else if (!odd) {
260 if (j > 0) {
261 cpu_fprintf(f, " [%x-%x]=", j, j - 1);
262 } else {
263 cpu_fprintf(f, " [%x]=", j);
264 }
265 }
266 cpu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
267 env->vfp.zregs[i].d[j * 2 + 1],
268 env->vfp.zregs[i].d[j * 2],
269 odd || j == 0 ? "\n" : ":");
270 }
271 }
272 }
273 } else {
274 for (i = 0; i < 32; i++) {
275 uint64_t *q = aa64_vfp_qreg(env, i);
276 cpu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
277 i, q[1], q[0], (i & 1 ? "\n" : " "));
278 }
279 }
280 }
281
282 void gen_a64_set_pc_im(uint64_t val)
283 {
284 tcg_gen_movi_i64(cpu_pc, val);
285 }
286
287 /*
288 * Handle Top Byte Ignore (TBI) bits.
289 *
290 * If address tagging is enabled via the TCR TBI bits:
291 * + for EL2 and EL3 there is only one TBI bit, and if it is set
292 * then the address is zero-extended, clearing bits [63:56]
293 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
294 * and TBI1 controls addressses with bit 55 == 1.
295 * If the appropriate TBI bit is set for the address then
296 * the address is sign-extended from bit 55 into bits [63:56]
297 *
298 * Here We have concatenated TBI{1,0} into tbi.
299 */
300 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
301 TCGv_i64 src, int tbi)
302 {
303 if (tbi == 0) {
304 /* Load unmodified address */
305 tcg_gen_mov_i64(dst, src);
306 } else if (s->current_el >= 2) {
307 /* FIXME: ARMv8.1-VHE S2 translation regime. */
308 /* Force tag byte to all zero */
309 tcg_gen_extract_i64(dst, src, 0, 56);
310 } else {
311 /* Sign-extend from bit 55. */
312 tcg_gen_sextract_i64(dst, src, 0, 56);
313
314 if (tbi != 3) {
315 TCGv_i64 tcg_zero = tcg_const_i64(0);
316
317 /*
318 * The two TBI bits differ.
319 * If tbi0, then !tbi1: only use the extension if positive.
320 * if !tbi0, then tbi1: only use the extension if negative.
321 */
322 tcg_gen_movcond_i64(tbi == 1 ? TCG_COND_GE : TCG_COND_LT,
323 dst, dst, tcg_zero, dst, src);
324 tcg_temp_free_i64(tcg_zero);
325 }
326 }
327 }
328
329 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
330 {
331 /*
332 * If address tagging is enabled for instructions via the TCR TBI bits,
333 * then loading an address into the PC will clear out any tag.
334 */
335 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
336 }
337
338 typedef struct DisasCompare64 {
339 TCGCond cond;
340 TCGv_i64 value;
341 } DisasCompare64;
342
343 static void a64_test_cc(DisasCompare64 *c64, int cc)
344 {
345 DisasCompare c32;
346
347 arm_test_cc(&c32, cc);
348
349 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
350 * properly. The NE/EQ comparisons are also fine with this choice. */
351 c64->cond = c32.cond;
352 c64->value = tcg_temp_new_i64();
353 tcg_gen_ext_i32_i64(c64->value, c32.value);
354
355 arm_free_cc(&c32);
356 }
357
358 static void a64_free_cc(DisasCompare64 *c64)
359 {
360 tcg_temp_free_i64(c64->value);
361 }
362
363 static void gen_exception_internal(int excp)
364 {
365 TCGv_i32 tcg_excp = tcg_const_i32(excp);
366
367 assert(excp_is_internal(excp));
368 gen_helper_exception_internal(cpu_env, tcg_excp);
369 tcg_temp_free_i32(tcg_excp);
370 }
371
372 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
373 {
374 TCGv_i32 tcg_excp = tcg_const_i32(excp);
375 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
376 TCGv_i32 tcg_el = tcg_const_i32(target_el);
377
378 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
379 tcg_syn, tcg_el);
380 tcg_temp_free_i32(tcg_el);
381 tcg_temp_free_i32(tcg_syn);
382 tcg_temp_free_i32(tcg_excp);
383 }
384
385 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
386 {
387 gen_a64_set_pc_im(s->pc - offset);
388 gen_exception_internal(excp);
389 s->base.is_jmp = DISAS_NORETURN;
390 }
391
392 static void gen_exception_insn(DisasContext *s, int offset, int excp,
393 uint32_t syndrome, uint32_t target_el)
394 {
395 gen_a64_set_pc_im(s->pc - offset);
396 gen_exception(excp, syndrome, target_el);
397 s->base.is_jmp = DISAS_NORETURN;
398 }
399
400 static void gen_exception_bkpt_insn(DisasContext *s, int offset,
401 uint32_t syndrome)
402 {
403 TCGv_i32 tcg_syn;
404
405 gen_a64_set_pc_im(s->pc - offset);
406 tcg_syn = tcg_const_i32(syndrome);
407 gen_helper_exception_bkpt_insn(cpu_env, tcg_syn);
408 tcg_temp_free_i32(tcg_syn);
409 s->base.is_jmp = DISAS_NORETURN;
410 }
411
412 static void gen_ss_advance(DisasContext *s)
413 {
414 /* If the singlestep state is Active-not-pending, advance to
415 * Active-pending.
416 */
417 if (s->ss_active) {
418 s->pstate_ss = 0;
419 gen_helper_clear_pstate_ss(cpu_env);
420 }
421 }
422
423 static void gen_step_complete_exception(DisasContext *s)
424 {
425 /* We just completed step of an insn. Move from Active-not-pending
426 * to Active-pending, and then also take the swstep exception.
427 * This corresponds to making the (IMPDEF) choice to prioritize
428 * swstep exceptions over asynchronous exceptions taken to an exception
429 * level where debug is disabled. This choice has the advantage that
430 * we do not need to maintain internal state corresponding to the
431 * ISV/EX syndrome bits between completion of the step and generation
432 * of the exception, and our syndrome information is always correct.
433 */
434 gen_ss_advance(s);
435 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
436 default_exception_el(s));
437 s->base.is_jmp = DISAS_NORETURN;
438 }
439
440 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
441 {
442 /* No direct tb linking with singlestep (either QEMU's or the ARM
443 * debug architecture kind) or deterministic io
444 */
445 if (s->base.singlestep_enabled || s->ss_active ||
446 (tb_cflags(s->base.tb) & CF_LAST_IO)) {
447 return false;
448 }
449
450 #ifndef CONFIG_USER_ONLY
451 /* Only link tbs from inside the same guest page */
452 if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
453 return false;
454 }
455 #endif
456
457 return true;
458 }
459
460 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
461 {
462 TranslationBlock *tb;
463
464 tb = s->base.tb;
465 if (use_goto_tb(s, n, dest)) {
466 tcg_gen_goto_tb(n);
467 gen_a64_set_pc_im(dest);
468 tcg_gen_exit_tb(tb, n);
469 s->base.is_jmp = DISAS_NORETURN;
470 } else {
471 gen_a64_set_pc_im(dest);
472 if (s->ss_active) {
473 gen_step_complete_exception(s);
474 } else if (s->base.singlestep_enabled) {
475 gen_exception_internal(EXCP_DEBUG);
476 } else {
477 tcg_gen_lookup_and_goto_ptr();
478 s->base.is_jmp = DISAS_NORETURN;
479 }
480 }
481 }
482
483 void unallocated_encoding(DisasContext *s)
484 {
485 /* Unallocated and reserved encodings are uncategorized */
486 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
487 default_exception_el(s));
488 }
489
490 static void init_tmp_a64_array(DisasContext *s)
491 {
492 #ifdef CONFIG_DEBUG_TCG
493 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
494 #endif
495 s->tmp_a64_count = 0;
496 }
497
498 static void free_tmp_a64(DisasContext *s)
499 {
500 int i;
501 for (i = 0; i < s->tmp_a64_count; i++) {
502 tcg_temp_free_i64(s->tmp_a64[i]);
503 }
504 init_tmp_a64_array(s);
505 }
506
507 TCGv_i64 new_tmp_a64(DisasContext *s)
508 {
509 assert(s->tmp_a64_count < TMP_A64_MAX);
510 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
511 }
512
513 TCGv_i64 new_tmp_a64_zero(DisasContext *s)
514 {
515 TCGv_i64 t = new_tmp_a64(s);
516 tcg_gen_movi_i64(t, 0);
517 return t;
518 }
519
520 /*
521 * Register access functions
522 *
523 * These functions are used for directly accessing a register in where
524 * changes to the final register value are likely to be made. If you
525 * need to use a register for temporary calculation (e.g. index type
526 * operations) use the read_* form.
527 *
528 * B1.2.1 Register mappings
529 *
530 * In instruction register encoding 31 can refer to ZR (zero register) or
531 * the SP (stack pointer) depending on context. In QEMU's case we map SP
532 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
533 * This is the point of the _sp forms.
534 */
535 TCGv_i64 cpu_reg(DisasContext *s, int reg)
536 {
537 if (reg == 31) {
538 return new_tmp_a64_zero(s);
539 } else {
540 return cpu_X[reg];
541 }
542 }
543
544 /* register access for when 31 == SP */
545 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
546 {
547 return cpu_X[reg];
548 }
549
550 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
551 * representing the register contents. This TCGv is an auto-freed
552 * temporary so it need not be explicitly freed, and may be modified.
553 */
554 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
555 {
556 TCGv_i64 v = new_tmp_a64(s);
557 if (reg != 31) {
558 if (sf) {
559 tcg_gen_mov_i64(v, cpu_X[reg]);
560 } else {
561 tcg_gen_ext32u_i64(v, cpu_X[reg]);
562 }
563 } else {
564 tcg_gen_movi_i64(v, 0);
565 }
566 return v;
567 }
568
569 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
570 {
571 TCGv_i64 v = new_tmp_a64(s);
572 if (sf) {
573 tcg_gen_mov_i64(v, cpu_X[reg]);
574 } else {
575 tcg_gen_ext32u_i64(v, cpu_X[reg]);
576 }
577 return v;
578 }
579
580 /* Return the offset into CPUARMState of a slice (from
581 * the least significant end) of FP register Qn (ie
582 * Dn, Sn, Hn or Bn).
583 * (Note that this is not the same mapping as for A32; see cpu.h)
584 */
585 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
586 {
587 return vec_reg_offset(s, regno, 0, size);
588 }
589
590 /* Offset of the high half of the 128 bit vector Qn */
591 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
592 {
593 return vec_reg_offset(s, regno, 1, MO_64);
594 }
595
596 /* Convenience accessors for reading and writing single and double
597 * FP registers. Writing clears the upper parts of the associated
598 * 128 bit vector register, as required by the architecture.
599 * Note that unlike the GP register accessors, the values returned
600 * by the read functions must be manually freed.
601 */
602 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
603 {
604 TCGv_i64 v = tcg_temp_new_i64();
605
606 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
607 return v;
608 }
609
610 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
611 {
612 TCGv_i32 v = tcg_temp_new_i32();
613
614 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
615 return v;
616 }
617
618 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
619 {
620 TCGv_i32 v = tcg_temp_new_i32();
621
622 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
623 return v;
624 }
625
626 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
627 * If SVE is not enabled, then there are only 128 bits in the vector.
628 */
629 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
630 {
631 unsigned ofs = fp_reg_offset(s, rd, MO_64);
632 unsigned vsz = vec_full_reg_size(s);
633
634 if (!is_q) {
635 TCGv_i64 tcg_zero = tcg_const_i64(0);
636 tcg_gen_st_i64(tcg_zero, cpu_env, ofs + 8);
637 tcg_temp_free_i64(tcg_zero);
638 }
639 if (vsz > 16) {
640 tcg_gen_gvec_dup8i(ofs + 16, vsz - 16, vsz - 16, 0);
641 }
642 }
643
644 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
645 {
646 unsigned ofs = fp_reg_offset(s, reg, MO_64);
647
648 tcg_gen_st_i64(v, cpu_env, ofs);
649 clear_vec_high(s, false, reg);
650 }
651
652 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
653 {
654 TCGv_i64 tmp = tcg_temp_new_i64();
655
656 tcg_gen_extu_i32_i64(tmp, v);
657 write_fp_dreg(s, reg, tmp);
658 tcg_temp_free_i64(tmp);
659 }
660
661 TCGv_ptr get_fpstatus_ptr(bool is_f16)
662 {
663 TCGv_ptr statusptr = tcg_temp_new_ptr();
664 int offset;
665
666 /* In A64 all instructions (both FP and Neon) use the FPCR; there
667 * is no equivalent of the A32 Neon "standard FPSCR value".
668 * However half-precision operations operate under a different
669 * FZ16 flag and use vfp.fp_status_f16 instead of vfp.fp_status.
670 */
671 if (is_f16) {
672 offset = offsetof(CPUARMState, vfp.fp_status_f16);
673 } else {
674 offset = offsetof(CPUARMState, vfp.fp_status);
675 }
676 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
677 return statusptr;
678 }
679
680 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
681 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
682 GVecGen2Fn *gvec_fn, int vece)
683 {
684 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
685 is_q ? 16 : 8, vec_full_reg_size(s));
686 }
687
688 /* Expand a 2-operand + immediate AdvSIMD vector operation using
689 * an expander function.
690 */
691 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
692 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
693 {
694 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
695 imm, is_q ? 16 : 8, vec_full_reg_size(s));
696 }
697
698 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
699 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
700 GVecGen3Fn *gvec_fn, int vece)
701 {
702 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
703 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
704 }
705
706 /* Expand a 2-operand + immediate AdvSIMD vector operation using
707 * an op descriptor.
708 */
709 static void gen_gvec_op2i(DisasContext *s, bool is_q, int rd,
710 int rn, int64_t imm, const GVecGen2i *gvec_op)
711 {
712 tcg_gen_gvec_2i(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
713 is_q ? 16 : 8, vec_full_reg_size(s), imm, gvec_op);
714 }
715
716 /* Expand a 3-operand AdvSIMD vector operation using an op descriptor. */
717 static void gen_gvec_op3(DisasContext *s, bool is_q, int rd,
718 int rn, int rm, const GVecGen3 *gvec_op)
719 {
720 tcg_gen_gvec_3(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
721 vec_full_reg_offset(s, rm), is_q ? 16 : 8,
722 vec_full_reg_size(s), gvec_op);
723 }
724
725 /* Expand a 3-operand operation using an out-of-line helper. */
726 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
727 int rn, int rm, int data, gen_helper_gvec_3 *fn)
728 {
729 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
730 vec_full_reg_offset(s, rn),
731 vec_full_reg_offset(s, rm),
732 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
733 }
734
735 /* Expand a 3-operand + env pointer operation using
736 * an out-of-line helper.
737 */
738 static void gen_gvec_op3_env(DisasContext *s, bool is_q, int rd,
739 int rn, int rm, gen_helper_gvec_3_ptr *fn)
740 {
741 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
742 vec_full_reg_offset(s, rn),
743 vec_full_reg_offset(s, rm), cpu_env,
744 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
745 }
746
747 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
748 * an out-of-line helper.
749 */
750 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
751 int rm, bool is_fp16, int data,
752 gen_helper_gvec_3_ptr *fn)
753 {
754 TCGv_ptr fpst = get_fpstatus_ptr(is_fp16);
755 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
756 vec_full_reg_offset(s, rn),
757 vec_full_reg_offset(s, rm), fpst,
758 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
759 tcg_temp_free_ptr(fpst);
760 }
761
762 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
763 * than the 32 bit equivalent.
764 */
765 static inline void gen_set_NZ64(TCGv_i64 result)
766 {
767 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
768 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
769 }
770
771 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
772 static inline void gen_logic_CC(int sf, TCGv_i64 result)
773 {
774 if (sf) {
775 gen_set_NZ64(result);
776 } else {
777 tcg_gen_extrl_i64_i32(cpu_ZF, result);
778 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
779 }
780 tcg_gen_movi_i32(cpu_CF, 0);
781 tcg_gen_movi_i32(cpu_VF, 0);
782 }
783
784 /* dest = T0 + T1; compute C, N, V and Z flags */
785 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
786 {
787 if (sf) {
788 TCGv_i64 result, flag, tmp;
789 result = tcg_temp_new_i64();
790 flag = tcg_temp_new_i64();
791 tmp = tcg_temp_new_i64();
792
793 tcg_gen_movi_i64(tmp, 0);
794 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
795
796 tcg_gen_extrl_i64_i32(cpu_CF, flag);
797
798 gen_set_NZ64(result);
799
800 tcg_gen_xor_i64(flag, result, t0);
801 tcg_gen_xor_i64(tmp, t0, t1);
802 tcg_gen_andc_i64(flag, flag, tmp);
803 tcg_temp_free_i64(tmp);
804 tcg_gen_extrh_i64_i32(cpu_VF, flag);
805
806 tcg_gen_mov_i64(dest, result);
807 tcg_temp_free_i64(result);
808 tcg_temp_free_i64(flag);
809 } else {
810 /* 32 bit arithmetic */
811 TCGv_i32 t0_32 = tcg_temp_new_i32();
812 TCGv_i32 t1_32 = tcg_temp_new_i32();
813 TCGv_i32 tmp = tcg_temp_new_i32();
814
815 tcg_gen_movi_i32(tmp, 0);
816 tcg_gen_extrl_i64_i32(t0_32, t0);
817 tcg_gen_extrl_i64_i32(t1_32, t1);
818 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
819 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
820 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
821 tcg_gen_xor_i32(tmp, t0_32, t1_32);
822 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
823 tcg_gen_extu_i32_i64(dest, cpu_NF);
824
825 tcg_temp_free_i32(tmp);
826 tcg_temp_free_i32(t0_32);
827 tcg_temp_free_i32(t1_32);
828 }
829 }
830
831 /* dest = T0 - T1; compute C, N, V and Z flags */
832 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
833 {
834 if (sf) {
835 /* 64 bit arithmetic */
836 TCGv_i64 result, flag, tmp;
837
838 result = tcg_temp_new_i64();
839 flag = tcg_temp_new_i64();
840 tcg_gen_sub_i64(result, t0, t1);
841
842 gen_set_NZ64(result);
843
844 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
845 tcg_gen_extrl_i64_i32(cpu_CF, flag);
846
847 tcg_gen_xor_i64(flag, result, t0);
848 tmp = tcg_temp_new_i64();
849 tcg_gen_xor_i64(tmp, t0, t1);
850 tcg_gen_and_i64(flag, flag, tmp);
851 tcg_temp_free_i64(tmp);
852 tcg_gen_extrh_i64_i32(cpu_VF, flag);
853 tcg_gen_mov_i64(dest, result);
854 tcg_temp_free_i64(flag);
855 tcg_temp_free_i64(result);
856 } else {
857 /* 32 bit arithmetic */
858 TCGv_i32 t0_32 = tcg_temp_new_i32();
859 TCGv_i32 t1_32 = tcg_temp_new_i32();
860 TCGv_i32 tmp;
861
862 tcg_gen_extrl_i64_i32(t0_32, t0);
863 tcg_gen_extrl_i64_i32(t1_32, t1);
864 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
865 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
866 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
867 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
868 tmp = tcg_temp_new_i32();
869 tcg_gen_xor_i32(tmp, t0_32, t1_32);
870 tcg_temp_free_i32(t0_32);
871 tcg_temp_free_i32(t1_32);
872 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
873 tcg_temp_free_i32(tmp);
874 tcg_gen_extu_i32_i64(dest, cpu_NF);
875 }
876 }
877
878 /* dest = T0 + T1 + CF; do not compute flags. */
879 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
880 {
881 TCGv_i64 flag = tcg_temp_new_i64();
882 tcg_gen_extu_i32_i64(flag, cpu_CF);
883 tcg_gen_add_i64(dest, t0, t1);
884 tcg_gen_add_i64(dest, dest, flag);
885 tcg_temp_free_i64(flag);
886
887 if (!sf) {
888 tcg_gen_ext32u_i64(dest, dest);
889 }
890 }
891
892 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
893 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
894 {
895 if (sf) {
896 TCGv_i64 result, cf_64, vf_64, tmp;
897 result = tcg_temp_new_i64();
898 cf_64 = tcg_temp_new_i64();
899 vf_64 = tcg_temp_new_i64();
900 tmp = tcg_const_i64(0);
901
902 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
903 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
904 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
905 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
906 gen_set_NZ64(result);
907
908 tcg_gen_xor_i64(vf_64, result, t0);
909 tcg_gen_xor_i64(tmp, t0, t1);
910 tcg_gen_andc_i64(vf_64, vf_64, tmp);
911 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
912
913 tcg_gen_mov_i64(dest, result);
914
915 tcg_temp_free_i64(tmp);
916 tcg_temp_free_i64(vf_64);
917 tcg_temp_free_i64(cf_64);
918 tcg_temp_free_i64(result);
919 } else {
920 TCGv_i32 t0_32, t1_32, tmp;
921 t0_32 = tcg_temp_new_i32();
922 t1_32 = tcg_temp_new_i32();
923 tmp = tcg_const_i32(0);
924
925 tcg_gen_extrl_i64_i32(t0_32, t0);
926 tcg_gen_extrl_i64_i32(t1_32, t1);
927 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
928 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
929
930 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
931 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
932 tcg_gen_xor_i32(tmp, t0_32, t1_32);
933 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
934 tcg_gen_extu_i32_i64(dest, cpu_NF);
935
936 tcg_temp_free_i32(tmp);
937 tcg_temp_free_i32(t1_32);
938 tcg_temp_free_i32(t0_32);
939 }
940 }
941
942 /*
943 * Load/Store generators
944 */
945
946 /*
947 * Store from GPR register to memory.
948 */
949 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
950 TCGv_i64 tcg_addr, int size, int memidx,
951 bool iss_valid,
952 unsigned int iss_srt,
953 bool iss_sf, bool iss_ar)
954 {
955 g_assert(size <= 3);
956 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
957
958 if (iss_valid) {
959 uint32_t syn;
960
961 syn = syn_data_abort_with_iss(0,
962 size,
963 false,
964 iss_srt,
965 iss_sf,
966 iss_ar,
967 0, 0, 0, 0, 0, false);
968 disas_set_insn_syndrome(s, syn);
969 }
970 }
971
972 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
973 TCGv_i64 tcg_addr, int size,
974 bool iss_valid,
975 unsigned int iss_srt,
976 bool iss_sf, bool iss_ar)
977 {
978 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
979 iss_valid, iss_srt, iss_sf, iss_ar);
980 }
981
982 /*
983 * Load from memory to GPR register
984 */
985 static void do_gpr_ld_memidx(DisasContext *s,
986 TCGv_i64 dest, TCGv_i64 tcg_addr,
987 int size, bool is_signed,
988 bool extend, int memidx,
989 bool iss_valid, unsigned int iss_srt,
990 bool iss_sf, bool iss_ar)
991 {
992 TCGMemOp memop = s->be_data + size;
993
994 g_assert(size <= 3);
995
996 if (is_signed) {
997 memop += MO_SIGN;
998 }
999
1000 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
1001
1002 if (extend && is_signed) {
1003 g_assert(size < 3);
1004 tcg_gen_ext32u_i64(dest, dest);
1005 }
1006
1007 if (iss_valid) {
1008 uint32_t syn;
1009
1010 syn = syn_data_abort_with_iss(0,
1011 size,
1012 is_signed,
1013 iss_srt,
1014 iss_sf,
1015 iss_ar,
1016 0, 0, 0, 0, 0, false);
1017 disas_set_insn_syndrome(s, syn);
1018 }
1019 }
1020
1021 static void do_gpr_ld(DisasContext *s,
1022 TCGv_i64 dest, TCGv_i64 tcg_addr,
1023 int size, bool is_signed, bool extend,
1024 bool iss_valid, unsigned int iss_srt,
1025 bool iss_sf, bool iss_ar)
1026 {
1027 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
1028 get_mem_index(s),
1029 iss_valid, iss_srt, iss_sf, iss_ar);
1030 }
1031
1032 /*
1033 * Store from FP register to memory
1034 */
1035 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
1036 {
1037 /* This writes the bottom N bits of a 128 bit wide vector to memory */
1038 TCGv_i64 tmp = tcg_temp_new_i64();
1039 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
1040 if (size < 4) {
1041 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
1042 s->be_data + size);
1043 } else {
1044 bool be = s->be_data == MO_BE;
1045 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
1046
1047 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1048 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1049 s->be_data | MO_Q);
1050 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
1051 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1052 s->be_data | MO_Q);
1053 tcg_temp_free_i64(tcg_hiaddr);
1054 }
1055
1056 tcg_temp_free_i64(tmp);
1057 }
1058
1059 /*
1060 * Load from memory to FP register
1061 */
1062 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
1063 {
1064 /* This always zero-extends and writes to a full 128 bit wide vector */
1065 TCGv_i64 tmplo = tcg_temp_new_i64();
1066 TCGv_i64 tmphi;
1067
1068 if (size < 4) {
1069 TCGMemOp memop = s->be_data + size;
1070 tmphi = tcg_const_i64(0);
1071 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
1072 } else {
1073 bool be = s->be_data == MO_BE;
1074 TCGv_i64 tcg_hiaddr;
1075
1076 tmphi = tcg_temp_new_i64();
1077 tcg_hiaddr = tcg_temp_new_i64();
1078
1079 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1080 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1081 s->be_data | MO_Q);
1082 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1083 s->be_data | MO_Q);
1084 tcg_temp_free_i64(tcg_hiaddr);
1085 }
1086
1087 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
1088 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
1089
1090 tcg_temp_free_i64(tmplo);
1091 tcg_temp_free_i64(tmphi);
1092
1093 clear_vec_high(s, true, destidx);
1094 }
1095
1096 /*
1097 * Vector load/store helpers.
1098 *
1099 * The principal difference between this and a FP load is that we don't
1100 * zero extend as we are filling a partial chunk of the vector register.
1101 * These functions don't support 128 bit loads/stores, which would be
1102 * normal load/store operations.
1103 *
1104 * The _i32 versions are useful when operating on 32 bit quantities
1105 * (eg for floating point single or using Neon helper functions).
1106 */
1107
1108 /* Get value of an element within a vector register */
1109 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1110 int element, TCGMemOp memop)
1111 {
1112 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1113 switch (memop) {
1114 case MO_8:
1115 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1116 break;
1117 case MO_16:
1118 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1119 break;
1120 case MO_32:
1121 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1122 break;
1123 case MO_8|MO_SIGN:
1124 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1125 break;
1126 case MO_16|MO_SIGN:
1127 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1128 break;
1129 case MO_32|MO_SIGN:
1130 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1131 break;
1132 case MO_64:
1133 case MO_64|MO_SIGN:
1134 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1135 break;
1136 default:
1137 g_assert_not_reached();
1138 }
1139 }
1140
1141 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1142 int element, TCGMemOp memop)
1143 {
1144 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1145 switch (memop) {
1146 case MO_8:
1147 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1148 break;
1149 case MO_16:
1150 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1151 break;
1152 case MO_8|MO_SIGN:
1153 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1154 break;
1155 case MO_16|MO_SIGN:
1156 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1157 break;
1158 case MO_32:
1159 case MO_32|MO_SIGN:
1160 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1161 break;
1162 default:
1163 g_assert_not_reached();
1164 }
1165 }
1166
1167 /* Set value of an element within a vector register */
1168 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1169 int element, TCGMemOp memop)
1170 {
1171 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1172 switch (memop) {
1173 case MO_8:
1174 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1175 break;
1176 case MO_16:
1177 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1178 break;
1179 case MO_32:
1180 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1181 break;
1182 case MO_64:
1183 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1184 break;
1185 default:
1186 g_assert_not_reached();
1187 }
1188 }
1189
1190 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1191 int destidx, int element, TCGMemOp memop)
1192 {
1193 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1194 switch (memop) {
1195 case MO_8:
1196 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1197 break;
1198 case MO_16:
1199 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1200 break;
1201 case MO_32:
1202 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1203 break;
1204 default:
1205 g_assert_not_reached();
1206 }
1207 }
1208
1209 /* Store from vector register to memory */
1210 static void do_vec_st(DisasContext *s, int srcidx, int element,
1211 TCGv_i64 tcg_addr, int size, TCGMemOp endian)
1212 {
1213 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1214
1215 read_vec_element(s, tcg_tmp, srcidx, element, size);
1216 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1217
1218 tcg_temp_free_i64(tcg_tmp);
1219 }
1220
1221 /* Load from memory to vector register */
1222 static void do_vec_ld(DisasContext *s, int destidx, int element,
1223 TCGv_i64 tcg_addr, int size, TCGMemOp endian)
1224 {
1225 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1226
1227 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1228 write_vec_element(s, tcg_tmp, destidx, element, size);
1229
1230 tcg_temp_free_i64(tcg_tmp);
1231 }
1232
1233 /* Check that FP/Neon access is enabled. If it is, return
1234 * true. If not, emit code to generate an appropriate exception,
1235 * and return false; the caller should not emit any code for
1236 * the instruction. Note that this check must happen after all
1237 * unallocated-encoding checks (otherwise the syndrome information
1238 * for the resulting exception will be incorrect).
1239 */
1240 static inline bool fp_access_check(DisasContext *s)
1241 {
1242 assert(!s->fp_access_checked);
1243 s->fp_access_checked = true;
1244
1245 if (!s->fp_excp_el) {
1246 return true;
1247 }
1248
1249 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
1250 s->fp_excp_el);
1251 return false;
1252 }
1253
1254 /* Check that SVE access is enabled. If it is, return true.
1255 * If not, emit code to generate an appropriate exception and return false.
1256 */
1257 bool sve_access_check(DisasContext *s)
1258 {
1259 if (s->sve_excp_el) {
1260 gen_exception_insn(s, 4, EXCP_UDEF, syn_sve_access_trap(),
1261 s->sve_excp_el);
1262 return false;
1263 }
1264 return fp_access_check(s);
1265 }
1266
1267 /*
1268 * This utility function is for doing register extension with an
1269 * optional shift. You will likely want to pass a temporary for the
1270 * destination register. See DecodeRegExtend() in the ARM ARM.
1271 */
1272 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1273 int option, unsigned int shift)
1274 {
1275 int extsize = extract32(option, 0, 2);
1276 bool is_signed = extract32(option, 2, 1);
1277
1278 if (is_signed) {
1279 switch (extsize) {
1280 case 0:
1281 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1282 break;
1283 case 1:
1284 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1285 break;
1286 case 2:
1287 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1288 break;
1289 case 3:
1290 tcg_gen_mov_i64(tcg_out, tcg_in);
1291 break;
1292 }
1293 } else {
1294 switch (extsize) {
1295 case 0:
1296 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1297 break;
1298 case 1:
1299 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1300 break;
1301 case 2:
1302 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1303 break;
1304 case 3:
1305 tcg_gen_mov_i64(tcg_out, tcg_in);
1306 break;
1307 }
1308 }
1309
1310 if (shift) {
1311 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1312 }
1313 }
1314
1315 static inline void gen_check_sp_alignment(DisasContext *s)
1316 {
1317 /* The AArch64 architecture mandates that (if enabled via PSTATE
1318 * or SCTLR bits) there is a check that SP is 16-aligned on every
1319 * SP-relative load or store (with an exception generated if it is not).
1320 * In line with general QEMU practice regarding misaligned accesses,
1321 * we omit these checks for the sake of guest program performance.
1322 * This function is provided as a hook so we can more easily add these
1323 * checks in future (possibly as a "favour catching guest program bugs
1324 * over speed" user selectable option).
1325 */
1326 }
1327
1328 /*
1329 * This provides a simple table based table lookup decoder. It is
1330 * intended to be used when the relevant bits for decode are too
1331 * awkwardly placed and switch/if based logic would be confusing and
1332 * deeply nested. Since it's a linear search through the table, tables
1333 * should be kept small.
1334 *
1335 * It returns the first handler where insn & mask == pattern, or
1336 * NULL if there is no match.
1337 * The table is terminated by an empty mask (i.e. 0)
1338 */
1339 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1340 uint32_t insn)
1341 {
1342 const AArch64DecodeTable *tptr = table;
1343
1344 while (tptr->mask) {
1345 if ((insn & tptr->mask) == tptr->pattern) {
1346 return tptr->disas_fn;
1347 }
1348 tptr++;
1349 }
1350 return NULL;
1351 }
1352
1353 /*
1354 * The instruction disassembly implemented here matches
1355 * the instruction encoding classifications in chapter C4
1356 * of the ARM Architecture Reference Manual (DDI0487B_a);
1357 * classification names and decode diagrams here should generally
1358 * match up with those in the manual.
1359 */
1360
1361 /* Unconditional branch (immediate)
1362 * 31 30 26 25 0
1363 * +----+-----------+-------------------------------------+
1364 * | op | 0 0 1 0 1 | imm26 |
1365 * +----+-----------+-------------------------------------+
1366 */
1367 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1368 {
1369 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1370
1371 if (insn & (1U << 31)) {
1372 /* BL Branch with link */
1373 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1374 }
1375
1376 /* B Branch / BL Branch with link */
1377 reset_btype(s);
1378 gen_goto_tb(s, 0, addr);
1379 }
1380
1381 /* Compare and branch (immediate)
1382 * 31 30 25 24 23 5 4 0
1383 * +----+-------------+----+---------------------+--------+
1384 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1385 * +----+-------------+----+---------------------+--------+
1386 */
1387 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1388 {
1389 unsigned int sf, op, rt;
1390 uint64_t addr;
1391 TCGLabel *label_match;
1392 TCGv_i64 tcg_cmp;
1393
1394 sf = extract32(insn, 31, 1);
1395 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1396 rt = extract32(insn, 0, 5);
1397 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1398
1399 tcg_cmp = read_cpu_reg(s, rt, sf);
1400 label_match = gen_new_label();
1401
1402 reset_btype(s);
1403 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1404 tcg_cmp, 0, label_match);
1405
1406 gen_goto_tb(s, 0, s->pc);
1407 gen_set_label(label_match);
1408 gen_goto_tb(s, 1, addr);
1409 }
1410
1411 /* Test and branch (immediate)
1412 * 31 30 25 24 23 19 18 5 4 0
1413 * +----+-------------+----+-------+-------------+------+
1414 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1415 * +----+-------------+----+-------+-------------+------+
1416 */
1417 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1418 {
1419 unsigned int bit_pos, op, rt;
1420 uint64_t addr;
1421 TCGLabel *label_match;
1422 TCGv_i64 tcg_cmp;
1423
1424 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1425 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1426 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1427 rt = extract32(insn, 0, 5);
1428
1429 tcg_cmp = tcg_temp_new_i64();
1430 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1431 label_match = gen_new_label();
1432
1433 reset_btype(s);
1434 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1435 tcg_cmp, 0, label_match);
1436 tcg_temp_free_i64(tcg_cmp);
1437 gen_goto_tb(s, 0, s->pc);
1438 gen_set_label(label_match);
1439 gen_goto_tb(s, 1, addr);
1440 }
1441
1442 /* Conditional branch (immediate)
1443 * 31 25 24 23 5 4 3 0
1444 * +---------------+----+---------------------+----+------+
1445 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1446 * +---------------+----+---------------------+----+------+
1447 */
1448 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1449 {
1450 unsigned int cond;
1451 uint64_t addr;
1452
1453 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1454 unallocated_encoding(s);
1455 return;
1456 }
1457 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1458 cond = extract32(insn, 0, 4);
1459
1460 reset_btype(s);
1461 if (cond < 0x0e) {
1462 /* genuinely conditional branches */
1463 TCGLabel *label_match = gen_new_label();
1464 arm_gen_test_cc(cond, label_match);
1465 gen_goto_tb(s, 0, s->pc);
1466 gen_set_label(label_match);
1467 gen_goto_tb(s, 1, addr);
1468 } else {
1469 /* 0xe and 0xf are both "always" conditions */
1470 gen_goto_tb(s, 0, addr);
1471 }
1472 }
1473
1474 /* HINT instruction group, including various allocated HINTs */
1475 static void handle_hint(DisasContext *s, uint32_t insn,
1476 unsigned int op1, unsigned int op2, unsigned int crm)
1477 {
1478 unsigned int selector = crm << 3 | op2;
1479
1480 if (op1 != 3) {
1481 unallocated_encoding(s);
1482 return;
1483 }
1484
1485 switch (selector) {
1486 case 0b00000: /* NOP */
1487 break;
1488 case 0b00011: /* WFI */
1489 s->base.is_jmp = DISAS_WFI;
1490 break;
1491 case 0b00001: /* YIELD */
1492 /* When running in MTTCG we don't generate jumps to the yield and
1493 * WFE helpers as it won't affect the scheduling of other vCPUs.
1494 * If we wanted to more completely model WFE/SEV so we don't busy
1495 * spin unnecessarily we would need to do something more involved.
1496 */
1497 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1498 s->base.is_jmp = DISAS_YIELD;
1499 }
1500 break;
1501 case 0b00010: /* WFE */
1502 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1503 s->base.is_jmp = DISAS_WFE;
1504 }
1505 break;
1506 case 0b00100: /* SEV */
1507 case 0b00101: /* SEVL */
1508 /* we treat all as NOP at least for now */
1509 break;
1510 case 0b00111: /* XPACLRI */
1511 if (s->pauth_active) {
1512 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1513 }
1514 break;
1515 case 0b01000: /* PACIA1716 */
1516 if (s->pauth_active) {
1517 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1518 }
1519 break;
1520 case 0b01010: /* PACIB1716 */
1521 if (s->pauth_active) {
1522 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1523 }
1524 break;
1525 case 0b01100: /* AUTIA1716 */
1526 if (s->pauth_active) {
1527 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1528 }
1529 break;
1530 case 0b01110: /* AUTIB1716 */
1531 if (s->pauth_active) {
1532 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1533 }
1534 break;
1535 case 0b11000: /* PACIAZ */
1536 if (s->pauth_active) {
1537 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1538 new_tmp_a64_zero(s));
1539 }
1540 break;
1541 case 0b11001: /* PACIASP */
1542 if (s->pauth_active) {
1543 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1544 }
1545 break;
1546 case 0b11010: /* PACIBZ */
1547 if (s->pauth_active) {
1548 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1549 new_tmp_a64_zero(s));
1550 }
1551 break;
1552 case 0b11011: /* PACIBSP */
1553 if (s->pauth_active) {
1554 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1555 }
1556 break;
1557 case 0b11100: /* AUTIAZ */
1558 if (s->pauth_active) {
1559 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1560 new_tmp_a64_zero(s));
1561 }
1562 break;
1563 case 0b11101: /* AUTIASP */
1564 if (s->pauth_active) {
1565 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1566 }
1567 break;
1568 case 0b11110: /* AUTIBZ */
1569 if (s->pauth_active) {
1570 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1571 new_tmp_a64_zero(s));
1572 }
1573 break;
1574 case 0b11111: /* AUTIBSP */
1575 if (s->pauth_active) {
1576 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1577 }
1578 break;
1579 default:
1580 /* default specified as NOP equivalent */
1581 break;
1582 }
1583 }
1584
1585 static void gen_clrex(DisasContext *s, uint32_t insn)
1586 {
1587 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1588 }
1589
1590 /* CLREX, DSB, DMB, ISB */
1591 static void handle_sync(DisasContext *s, uint32_t insn,
1592 unsigned int op1, unsigned int op2, unsigned int crm)
1593 {
1594 TCGBar bar;
1595
1596 if (op1 != 3) {
1597 unallocated_encoding(s);
1598 return;
1599 }
1600
1601 switch (op2) {
1602 case 2: /* CLREX */
1603 gen_clrex(s, insn);
1604 return;
1605 case 4: /* DSB */
1606 case 5: /* DMB */
1607 switch (crm & 3) {
1608 case 1: /* MBReqTypes_Reads */
1609 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1610 break;
1611 case 2: /* MBReqTypes_Writes */
1612 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1613 break;
1614 default: /* MBReqTypes_All */
1615 bar = TCG_BAR_SC | TCG_MO_ALL;
1616 break;
1617 }
1618 tcg_gen_mb(bar);
1619 return;
1620 case 6: /* ISB */
1621 /* We need to break the TB after this insn to execute
1622 * a self-modified code correctly and also to take
1623 * any pending interrupts immediately.
1624 */
1625 reset_btype(s);
1626 gen_goto_tb(s, 0, s->pc);
1627 return;
1628 default:
1629 unallocated_encoding(s);
1630 return;
1631 }
1632 }
1633
1634 /* MSR (immediate) - move immediate to processor state field */
1635 static void handle_msr_i(DisasContext *s, uint32_t insn,
1636 unsigned int op1, unsigned int op2, unsigned int crm)
1637 {
1638 int op = op1 << 3 | op2;
1639 switch (op) {
1640 case 0x05: /* SPSel */
1641 if (s->current_el == 0) {
1642 unallocated_encoding(s);
1643 return;
1644 }
1645 /* fall through */
1646 case 0x1e: /* DAIFSet */
1647 case 0x1f: /* DAIFClear */
1648 {
1649 TCGv_i32 tcg_imm = tcg_const_i32(crm);
1650 TCGv_i32 tcg_op = tcg_const_i32(op);
1651 gen_a64_set_pc_im(s->pc - 4);
1652 gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
1653 tcg_temp_free_i32(tcg_imm);
1654 tcg_temp_free_i32(tcg_op);
1655 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1656 gen_a64_set_pc_im(s->pc);
1657 s->base.is_jmp = (op == 0x1f ? DISAS_EXIT : DISAS_JUMP);
1658 break;
1659 }
1660 default:
1661 unallocated_encoding(s);
1662 return;
1663 }
1664 }
1665
1666 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1667 {
1668 TCGv_i32 tmp = tcg_temp_new_i32();
1669 TCGv_i32 nzcv = tcg_temp_new_i32();
1670
1671 /* build bit 31, N */
1672 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1673 /* build bit 30, Z */
1674 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1675 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1676 /* build bit 29, C */
1677 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1678 /* build bit 28, V */
1679 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1680 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1681 /* generate result */
1682 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1683
1684 tcg_temp_free_i32(nzcv);
1685 tcg_temp_free_i32(tmp);
1686 }
1687
1688 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1689
1690 {
1691 TCGv_i32 nzcv = tcg_temp_new_i32();
1692
1693 /* take NZCV from R[t] */
1694 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1695
1696 /* bit 31, N */
1697 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1698 /* bit 30, Z */
1699 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1700 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1701 /* bit 29, C */
1702 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1703 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1704 /* bit 28, V */
1705 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1706 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1707 tcg_temp_free_i32(nzcv);
1708 }
1709
1710 /* MRS - move from system register
1711 * MSR (register) - move to system register
1712 * SYS
1713 * SYSL
1714 * These are all essentially the same insn in 'read' and 'write'
1715 * versions, with varying op0 fields.
1716 */
1717 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1718 unsigned int op0, unsigned int op1, unsigned int op2,
1719 unsigned int crn, unsigned int crm, unsigned int rt)
1720 {
1721 const ARMCPRegInfo *ri;
1722 TCGv_i64 tcg_rt;
1723
1724 ri = get_arm_cp_reginfo(s->cp_regs,
1725 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1726 crn, crm, op0, op1, op2));
1727
1728 if (!ri) {
1729 /* Unknown register; this might be a guest error or a QEMU
1730 * unimplemented feature.
1731 */
1732 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1733 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1734 isread ? "read" : "write", op0, op1, crn, crm, op2);
1735 unallocated_encoding(s);
1736 return;
1737 }
1738
1739 /* Check access permissions */
1740 if (!cp_access_ok(s->current_el, ri, isread)) {
1741 unallocated_encoding(s);
1742 return;
1743 }
1744
1745 if (ri->accessfn) {
1746 /* Emit code to perform further access permissions checks at
1747 * runtime; this may result in an exception.
1748 */
1749 TCGv_ptr tmpptr;
1750 TCGv_i32 tcg_syn, tcg_isread;
1751 uint32_t syndrome;
1752
1753 gen_a64_set_pc_im(s->pc - 4);
1754 tmpptr = tcg_const_ptr(ri);
1755 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1756 tcg_syn = tcg_const_i32(syndrome);
1757 tcg_isread = tcg_const_i32(isread);
1758 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1759 tcg_temp_free_ptr(tmpptr);
1760 tcg_temp_free_i32(tcg_syn);
1761 tcg_temp_free_i32(tcg_isread);
1762 }
1763
1764 /* Handle special cases first */
1765 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1766 case ARM_CP_NOP:
1767 return;
1768 case ARM_CP_NZCV:
1769 tcg_rt = cpu_reg(s, rt);
1770 if (isread) {
1771 gen_get_nzcv(tcg_rt);
1772 } else {
1773 gen_set_nzcv(tcg_rt);
1774 }
1775 return;
1776 case ARM_CP_CURRENTEL:
1777 /* Reads as current EL value from pstate, which is
1778 * guaranteed to be constant by the tb flags.
1779 */
1780 tcg_rt = cpu_reg(s, rt);
1781 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1782 return;
1783 case ARM_CP_DC_ZVA:
1784 /* Writes clear the aligned block of memory which rt points into. */
1785 tcg_rt = cpu_reg(s, rt);
1786 gen_helper_dc_zva(cpu_env, tcg_rt);
1787 return;
1788 default:
1789 break;
1790 }
1791 if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) {
1792 return;
1793 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
1794 return;
1795 }
1796
1797 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1798 gen_io_start();
1799 }
1800
1801 tcg_rt = cpu_reg(s, rt);
1802
1803 if (isread) {
1804 if (ri->type & ARM_CP_CONST) {
1805 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1806 } else if (ri->readfn) {
1807 TCGv_ptr tmpptr;
1808 tmpptr = tcg_const_ptr(ri);
1809 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1810 tcg_temp_free_ptr(tmpptr);
1811 } else {
1812 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1813 }
1814 } else {
1815 if (ri->type & ARM_CP_CONST) {
1816 /* If not forbidden by access permissions, treat as WI */
1817 return;
1818 } else if (ri->writefn) {
1819 TCGv_ptr tmpptr;
1820 tmpptr = tcg_const_ptr(ri);
1821 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1822 tcg_temp_free_ptr(tmpptr);
1823 } else {
1824 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1825 }
1826 }
1827
1828 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1829 /* I/O operations must end the TB here (whether read or write) */
1830 gen_io_end();
1831 s->base.is_jmp = DISAS_UPDATE;
1832 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1833 /* We default to ending the TB on a coprocessor register write,
1834 * but allow this to be suppressed by the register definition
1835 * (usually only necessary to work around guest bugs).
1836 */
1837 s->base.is_jmp = DISAS_UPDATE;
1838 }
1839 }
1840
1841 /* System
1842 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1843 * +---------------------+---+-----+-----+-------+-------+-----+------+
1844 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1845 * +---------------------+---+-----+-----+-------+-------+-----+------+
1846 */
1847 static void disas_system(DisasContext *s, uint32_t insn)
1848 {
1849 unsigned int l, op0, op1, crn, crm, op2, rt;
1850 l = extract32(insn, 21, 1);
1851 op0 = extract32(insn, 19, 2);
1852 op1 = extract32(insn, 16, 3);
1853 crn = extract32(insn, 12, 4);
1854 crm = extract32(insn, 8, 4);
1855 op2 = extract32(insn, 5, 3);
1856 rt = extract32(insn, 0, 5);
1857
1858 if (op0 == 0) {
1859 if (l || rt != 31) {
1860 unallocated_encoding(s);
1861 return;
1862 }
1863 switch (crn) {
1864 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
1865 handle_hint(s, insn, op1, op2, crm);
1866 break;
1867 case 3: /* CLREX, DSB, DMB, ISB */
1868 handle_sync(s, insn, op1, op2, crm);
1869 break;
1870 case 4: /* MSR (immediate) */
1871 handle_msr_i(s, insn, op1, op2, crm);
1872 break;
1873 default:
1874 unallocated_encoding(s);
1875 break;
1876 }
1877 return;
1878 }
1879 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1880 }
1881
1882 /* Exception generation
1883 *
1884 * 31 24 23 21 20 5 4 2 1 0
1885 * +-----------------+-----+------------------------+-----+----+
1886 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1887 * +-----------------------+------------------------+----------+
1888 */
1889 static void disas_exc(DisasContext *s, uint32_t insn)
1890 {
1891 int opc = extract32(insn, 21, 3);
1892 int op2_ll = extract32(insn, 0, 5);
1893 int imm16 = extract32(insn, 5, 16);
1894 TCGv_i32 tmp;
1895
1896 switch (opc) {
1897 case 0:
1898 /* For SVC, HVC and SMC we advance the single-step state
1899 * machine before taking the exception. This is architecturally
1900 * mandated, to ensure that single-stepping a system call
1901 * instruction works properly.
1902 */
1903 switch (op2_ll) {
1904 case 1: /* SVC */
1905 gen_ss_advance(s);
1906 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1907 default_exception_el(s));
1908 break;
1909 case 2: /* HVC */
1910 if (s->current_el == 0) {
1911 unallocated_encoding(s);
1912 break;
1913 }
1914 /* The pre HVC helper handles cases when HVC gets trapped
1915 * as an undefined insn by runtime configuration.
1916 */
1917 gen_a64_set_pc_im(s->pc - 4);
1918 gen_helper_pre_hvc(cpu_env);
1919 gen_ss_advance(s);
1920 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
1921 break;
1922 case 3: /* SMC */
1923 if (s->current_el == 0) {
1924 unallocated_encoding(s);
1925 break;
1926 }
1927 gen_a64_set_pc_im(s->pc - 4);
1928 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1929 gen_helper_pre_smc(cpu_env, tmp);
1930 tcg_temp_free_i32(tmp);
1931 gen_ss_advance(s);
1932 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
1933 break;
1934 default:
1935 unallocated_encoding(s);
1936 break;
1937 }
1938 break;
1939 case 1:
1940 if (op2_ll != 0) {
1941 unallocated_encoding(s);
1942 break;
1943 }
1944 /* BRK */
1945 gen_exception_bkpt_insn(s, 4, syn_aa64_bkpt(imm16));
1946 break;
1947 case 2:
1948 if (op2_ll != 0) {
1949 unallocated_encoding(s);
1950 break;
1951 }
1952 /* HLT. This has two purposes.
1953 * Architecturally, it is an external halting debug instruction.
1954 * Since QEMU doesn't implement external debug, we treat this as
1955 * it is required for halting debug disabled: it will UNDEF.
1956 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1957 */
1958 if (semihosting_enabled() && imm16 == 0xf000) {
1959 #ifndef CONFIG_USER_ONLY
1960 /* In system mode, don't allow userspace access to semihosting,
1961 * to provide some semblance of security (and for consistency
1962 * with our 32-bit semihosting).
1963 */
1964 if (s->current_el == 0) {
1965 unsupported_encoding(s, insn);
1966 break;
1967 }
1968 #endif
1969 gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
1970 } else {
1971 unsupported_encoding(s, insn);
1972 }
1973 break;
1974 case 5:
1975 if (op2_ll < 1 || op2_ll > 3) {
1976 unallocated_encoding(s);
1977 break;
1978 }
1979 /* DCPS1, DCPS2, DCPS3 */
1980 unsupported_encoding(s, insn);
1981 break;
1982 default:
1983 unallocated_encoding(s);
1984 break;
1985 }
1986 }
1987
1988 /* Unconditional branch (register)
1989 * 31 25 24 21 20 16 15 10 9 5 4 0
1990 * +---------------+-------+-------+-------+------+-------+
1991 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
1992 * +---------------+-------+-------+-------+------+-------+
1993 */
1994 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
1995 {
1996 unsigned int opc, op2, op3, rn, op4;
1997 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */
1998 TCGv_i64 dst;
1999 TCGv_i64 modifier;
2000
2001 opc = extract32(insn, 21, 4);
2002 op2 = extract32(insn, 16, 5);
2003 op3 = extract32(insn, 10, 6);
2004 rn = extract32(insn, 5, 5);
2005 op4 = extract32(insn, 0, 5);
2006
2007 if (op2 != 0x1f) {
2008 goto do_unallocated;
2009 }
2010
2011 switch (opc) {
2012 case 0: /* BR */
2013 case 1: /* BLR */
2014 case 2: /* RET */
2015 btype_mod = opc;
2016 switch (op3) {
2017 case 0:
2018 /* BR, BLR, RET */
2019 if (op4 != 0) {
2020 goto do_unallocated;
2021 }
2022 dst = cpu_reg(s, rn);
2023 break;
2024
2025 case 2:
2026 case 3:
2027 if (!dc_isar_feature(aa64_pauth, s)) {
2028 goto do_unallocated;
2029 }
2030 if (opc == 2) {
2031 /* RETAA, RETAB */
2032 if (rn != 0x1f || op4 != 0x1f) {
2033 goto do_unallocated;
2034 }
2035 rn = 30;
2036 modifier = cpu_X[31];
2037 } else {
2038 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */
2039 if (op4 != 0x1f) {
2040 goto do_unallocated;
2041 }
2042 modifier = new_tmp_a64_zero(s);
2043 }
2044 if (s->pauth_active) {
2045 dst = new_tmp_a64(s);
2046 if (op3 == 2) {
2047 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2048 } else {
2049 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2050 }
2051 } else {
2052 dst = cpu_reg(s, rn);
2053 }
2054 break;
2055
2056 default:
2057 goto do_unallocated;
2058 }
2059 gen_a64_set_pc(s, dst);
2060 /* BLR also needs to load return address */
2061 if (opc == 1) {
2062 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
2063 }
2064 break;
2065
2066 case 8: /* BRAA */
2067 case 9: /* BLRAA */
2068 if (!dc_isar_feature(aa64_pauth, s)) {
2069 goto do_unallocated;
2070 }
2071 if ((op3 & ~1) != 2) {
2072 goto do_unallocated;
2073 }
2074 btype_mod = opc & 1;
2075 if (s->pauth_active) {
2076 dst = new_tmp_a64(s);
2077 modifier = cpu_reg_sp(s, op4);
2078 if (op3 == 2) {
2079 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2080 } else {
2081 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2082 }
2083 } else {
2084 dst = cpu_reg(s, rn);
2085 }
2086 gen_a64_set_pc(s, dst);
2087 /* BLRAA also needs to load return address */
2088 if (opc == 9) {
2089 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
2090 }
2091 break;
2092
2093 case 4: /* ERET */
2094 if (s->current_el == 0) {
2095 goto do_unallocated;
2096 }
2097 switch (op3) {
2098 case 0: /* ERET */
2099 if (op4 != 0) {
2100 goto do_unallocated;
2101 }
2102 dst = tcg_temp_new_i64();
2103 tcg_gen_ld_i64(dst, cpu_env,
2104 offsetof(CPUARMState, elr_el[s->current_el]));
2105 break;
2106
2107 case 2: /* ERETAA */
2108 case 3: /* ERETAB */
2109 if (!dc_isar_feature(aa64_pauth, s)) {
2110 goto do_unallocated;
2111 }
2112 if (rn != 0x1f || op4 != 0x1f) {
2113 goto do_unallocated;
2114 }
2115 dst = tcg_temp_new_i64();
2116 tcg_gen_ld_i64(dst, cpu_env,
2117 offsetof(CPUARMState, elr_el[s->current_el]));
2118 if (s->pauth_active) {
2119 modifier = cpu_X[31];
2120 if (op3 == 2) {
2121 gen_helper_autia(dst, cpu_env, dst, modifier);
2122 } else {
2123 gen_helper_autib(dst, cpu_env, dst, modifier);
2124 }
2125 }
2126 break;
2127
2128 default:
2129 goto do_unallocated;
2130 }
2131 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2132 gen_io_start();
2133 }
2134
2135 gen_helper_exception_return(cpu_env, dst);
2136 tcg_temp_free_i64(dst);
2137 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2138 gen_io_end();
2139 }
2140 /* Must exit loop to check un-masked IRQs */
2141 s->base.is_jmp = DISAS_EXIT;
2142 return;
2143
2144 case 5: /* DRPS */
2145 if (op3 != 0 || op4 != 0 || rn != 0x1f) {
2146 goto do_unallocated;
2147 } else {
2148 unsupported_encoding(s, insn);
2149 }
2150 return;
2151
2152 default:
2153 do_unallocated:
2154 unallocated_encoding(s);
2155 return;
2156 }
2157
2158 switch (btype_mod) {
2159 case 0: /* BR */
2160 if (dc_isar_feature(aa64_bti, s)) {
2161 /* BR to {x16,x17} or !guard -> 1, else 3. */
2162 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
2163 }
2164 break;
2165
2166 case 1: /* BLR */
2167 if (dc_isar_feature(aa64_bti, s)) {
2168 /* BLR sets BTYPE to 2, regardless of source guarded page. */
2169 set_btype(s, 2);
2170 }
2171 break;
2172
2173 default: /* RET or none of the above. */
2174 /* BTYPE will be set to 0 by normal end-of-insn processing. */
2175 break;
2176 }
2177
2178 s->base.is_jmp = DISAS_JUMP;
2179 }
2180
2181 /* Branches, exception generating and system instructions */
2182 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2183 {
2184 switch (extract32(insn, 25, 7)) {
2185 case 0x0a: case 0x0b:
2186 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
2187 disas_uncond_b_imm(s, insn);
2188 break;
2189 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
2190 disas_comp_b_imm(s, insn);
2191 break;
2192 case 0x1b: case 0x5b: /* Test & branch (immediate) */
2193 disas_test_b_imm(s, insn);
2194 break;
2195 case 0x2a: /* Conditional branch (immediate) */
2196 disas_cond_b_imm(s, insn);
2197 break;
2198 case 0x6a: /* Exception generation / System */
2199 if (insn & (1 << 24)) {
2200 if (extract32(insn, 22, 2) == 0) {
2201 disas_system(s, insn);
2202 } else {
2203 unallocated_encoding(s);
2204 }
2205 } else {
2206 disas_exc(s, insn);
2207 }
2208 break;
2209 case 0x6b: /* Unconditional branch (register) */
2210 disas_uncond_b_reg(s, insn);
2211 break;
2212 default:
2213 unallocated_encoding(s);
2214 break;
2215 }
2216 }
2217
2218 /*
2219 * Load/Store exclusive instructions are implemented by remembering
2220 * the value/address loaded, and seeing if these are the same
2221 * when the store is performed. This is not actually the architecturally
2222 * mandated semantics, but it works for typical guest code sequences
2223 * and avoids having to monitor regular stores.
2224 *
2225 * The store exclusive uses the atomic cmpxchg primitives to avoid
2226 * races in multi-threaded linux-user and when MTTCG softmmu is
2227 * enabled.
2228 */
2229 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2230 TCGv_i64 addr, int size, bool is_pair)
2231 {
2232 int idx = get_mem_index(s);
2233 TCGMemOp memop = s->be_data;
2234
2235 g_assert(size <= 3);
2236 if (is_pair) {
2237 g_assert(size >= 2);
2238 if (size == 2) {
2239 /* The pair must be single-copy atomic for the doubleword. */
2240 memop |= MO_64 | MO_ALIGN;
2241 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2242 if (s->be_data == MO_LE) {
2243 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2244 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2245 } else {
2246 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2247 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2248 }
2249 } else {
2250 /* The pair must be single-copy atomic for *each* doubleword, not
2251 the entire quadword, however it must be quadword aligned. */
2252 memop |= MO_64;
2253 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2254 memop | MO_ALIGN_16);
2255
2256 TCGv_i64 addr2 = tcg_temp_new_i64();
2257 tcg_gen_addi_i64(addr2, addr, 8);
2258 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2259 tcg_temp_free_i64(addr2);
2260
2261 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2262 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2263 }
2264 } else {
2265 memop |= size | MO_ALIGN;
2266 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2267 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2268 }
2269 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2270 }
2271
2272 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2273 TCGv_i64 addr, int size, int is_pair)
2274 {
2275 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2276 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2277 * [addr] = {Rt};
2278 * if (is_pair) {
2279 * [addr + datasize] = {Rt2};
2280 * }
2281 * {Rd} = 0;
2282 * } else {
2283 * {Rd} = 1;
2284 * }
2285 * env->exclusive_addr = -1;
2286 */
2287 TCGLabel *fail_label = gen_new_label();
2288 TCGLabel *done_label = gen_new_label();
2289 TCGv_i64 tmp;
2290
2291 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2292
2293 tmp = tcg_temp_new_i64();
2294 if (is_pair) {
2295 if (size == 2) {
2296 if (s->be_data == MO_LE) {
2297 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2298 } else {
2299 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2300 }
2301 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2302 cpu_exclusive_val, tmp,
2303 get_mem_index(s),
2304 MO_64 | MO_ALIGN | s->be_data);
2305 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2306 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2307 if (!HAVE_CMPXCHG128) {
2308 gen_helper_exit_atomic(cpu_env);
2309 s->base.is_jmp = DISAS_NORETURN;
2310 } else if (s->be_data == MO_LE) {
2311 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
2312 cpu_exclusive_addr,
2313 cpu_reg(s, rt),
2314 cpu_reg(s, rt2));
2315 } else {
2316 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
2317 cpu_exclusive_addr,
2318 cpu_reg(s, rt),
2319 cpu_reg(s, rt2));
2320 }
2321 } else if (s->be_data == MO_LE) {
2322 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
2323 cpu_reg(s, rt), cpu_reg(s, rt2));
2324 } else {
2325 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
2326 cpu_reg(s, rt), cpu_reg(s, rt2));
2327 }
2328 } else {
2329 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2330 cpu_reg(s, rt), get_mem_index(s),
2331 size | MO_ALIGN | s->be_data);
2332 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2333 }
2334 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2335 tcg_temp_free_i64(tmp);
2336 tcg_gen_br(done_label);
2337
2338 gen_set_label(fail_label);
2339 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2340 gen_set_label(done_label);
2341 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2342 }
2343
2344 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2345 int rn, int size)
2346 {
2347 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2348 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2349 int memidx = get_mem_index(s);
2350 TCGv_i64 addr = cpu_reg_sp(s, rn);
2351
2352 if (rn == 31) {
2353 gen_check_sp_alignment(s);
2354 }
2355 tcg_gen_atomic_cmpxchg_i64(tcg_rs, addr, tcg_rs, tcg_rt, memidx,
2356 size | MO_ALIGN | s->be_data);
2357 }
2358
2359 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2360 int rn, int size)
2361 {
2362 TCGv_i64 s1 = cpu_reg(s, rs);
2363 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2364 TCGv_i64 t1 = cpu_reg(s, rt);
2365 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2366 TCGv_i64 addr = cpu_reg_sp(s, rn);
2367 int memidx = get_mem_index(s);
2368
2369 if (rn == 31) {
2370 gen_check_sp_alignment(s);
2371 }
2372
2373 if (size == 2) {
2374 TCGv_i64 cmp = tcg_temp_new_i64();
2375 TCGv_i64 val = tcg_temp_new_i64();
2376
2377 if (s->be_data == MO_LE) {
2378 tcg_gen_concat32_i64(val, t1, t2);
2379 tcg_gen_concat32_i64(cmp, s1, s2);
2380 } else {
2381 tcg_gen_concat32_i64(val, t2, t1);
2382 tcg_gen_concat32_i64(cmp, s2, s1);
2383 }
2384
2385 tcg_gen_atomic_cmpxchg_i64(cmp, addr, cmp, val, memidx,
2386 MO_64 | MO_ALIGN | s->be_data);
2387 tcg_temp_free_i64(val);
2388
2389 if (s->be_data == MO_LE) {
2390 tcg_gen_extr32_i64(s1, s2, cmp);
2391 } else {
2392 tcg_gen_extr32_i64(s2, s1, cmp);
2393 }
2394 tcg_temp_free_i64(cmp);
2395 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2396 if (HAVE_CMPXCHG128) {
2397 TCGv_i32 tcg_rs = tcg_const_i32(rs);
2398 if (s->be_data == MO_LE) {
2399 gen_helper_casp_le_parallel(cpu_env, tcg_rs, addr, t1, t2);
2400 } else {
2401 gen_helper_casp_be_parallel(cpu_env, tcg_rs, addr, t1, t2);
2402 }
2403 tcg_temp_free_i32(tcg_rs);
2404 } else {
2405 gen_helper_exit_atomic(cpu_env);
2406 s->base.is_jmp = DISAS_NORETURN;
2407 }
2408 } else {
2409 TCGv_i64 d1 = tcg_temp_new_i64();
2410 TCGv_i64 d2 = tcg_temp_new_i64();
2411 TCGv_i64 a2 = tcg_temp_new_i64();
2412 TCGv_i64 c1 = tcg_temp_new_i64();
2413 TCGv_i64 c2 = tcg_temp_new_i64();
2414 TCGv_i64 zero = tcg_const_i64(0);
2415
2416 /* Load the two words, in memory order. */
2417 tcg_gen_qemu_ld_i64(d1, addr, memidx,
2418 MO_64 | MO_ALIGN_16 | s->be_data);
2419 tcg_gen_addi_i64(a2, addr, 8);
2420 tcg_gen_qemu_ld_i64(d2, addr, memidx, MO_64 | s->be_data);
2421
2422 /* Compare the two words, also in memory order. */
2423 tcg_gen_setcond_i64(TCG_COND_EQ, c1, d1, s1);
2424 tcg_gen_setcond_i64(TCG_COND_EQ, c2, d2, s2);
2425 tcg_gen_and_i64(c2, c2, c1);
2426
2427 /* If compare equal, write back new data, else write back old data. */
2428 tcg_gen_movcond_i64(TCG_COND_NE, c1, c2, zero, t1, d1);
2429 tcg_gen_movcond_i64(TCG_COND_NE, c2, c2, zero, t2, d2);
2430 tcg_gen_qemu_st_i64(c1, addr, memidx, MO_64 | s->be_data);
2431 tcg_gen_qemu_st_i64(c2, a2, memidx, MO_64 | s->be_data);
2432 tcg_temp_free_i64(a2);
2433 tcg_temp_free_i64(c1);
2434 tcg_temp_free_i64(c2);
2435 tcg_temp_free_i64(zero);
2436
2437 /* Write back the data from memory to Rs. */
2438 tcg_gen_mov_i64(s1, d1);
2439 tcg_gen_mov_i64(s2, d2);
2440 tcg_temp_free_i64(d1);
2441 tcg_temp_free_i64(d2);
2442 }
2443 }
2444
2445 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2446 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2447 */
2448 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2449 {
2450 int opc0 = extract32(opc, 0, 1);
2451 int regsize;
2452
2453 if (is_signed) {
2454 regsize = opc0 ? 32 : 64;
2455 } else {
2456 regsize = size == 3 ? 64 : 32;
2457 }
2458 return regsize == 64;
2459 }
2460
2461 /* Load/store exclusive
2462 *
2463 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2464 * +-----+-------------+----+---+----+------+----+-------+------+------+
2465 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2466 * +-----+-------------+----+---+----+------+----+-------+------+------+
2467 *
2468 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2469 * L: 0 -> store, 1 -> load
2470 * o2: 0 -> exclusive, 1 -> not
2471 * o1: 0 -> single register, 1 -> register pair
2472 * o0: 1 -> load-acquire/store-release, 0 -> not
2473 */
2474 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2475 {
2476 int rt = extract32(insn, 0, 5);
2477 int rn = extract32(insn, 5, 5);
2478 int rt2 = extract32(insn, 10, 5);
2479 int rs = extract32(insn, 16, 5);
2480 int is_lasr = extract32(insn, 15, 1);
2481 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2482 int size = extract32(insn, 30, 2);
2483 TCGv_i64 tcg_addr;
2484
2485 switch (o2_L_o1_o0) {
2486 case 0x0: /* STXR */
2487 case 0x1: /* STLXR */
2488 if (rn == 31) {
2489 gen_check_sp_alignment(s);
2490 }
2491 if (is_lasr) {
2492 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2493 }
2494 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2495 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, false);
2496 return;
2497
2498 case 0x4: /* LDXR */
2499 case 0x5: /* LDAXR */
2500 if (rn == 31) {
2501 gen_check_sp_alignment(s);
2502 }
2503 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2504 s->is_ldex = true;
2505 gen_load_exclusive(s, rt, rt2, tcg_addr, size, false);
2506 if (is_lasr) {
2507 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2508 }
2509 return;
2510
2511 case 0x8: /* STLLR */
2512 if (!dc_isar_feature(aa64_lor, s)) {
2513 break;
2514 }
2515 /* StoreLORelease is the same as Store-Release for QEMU. */
2516 /* fall through */
2517 case 0x9: /* STLR */
2518 /* Generate ISS for non-exclusive accesses including LASR. */
2519 if (rn == 31) {
2520 gen_check_sp_alignment(s);
2521 }
2522 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2523 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2524 do_gpr_st(s, cpu_reg(s, rt), tcg_addr, size, true, rt,
2525 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2526 return;
2527
2528 case 0xc: /* LDLAR */
2529 if (!dc_isar_feature(aa64_lor, s)) {
2530 break;
2531 }
2532 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2533 /* fall through */
2534 case 0xd: /* LDAR */
2535 /* Generate ISS for non-exclusive accesses including LASR. */
2536 if (rn == 31) {
2537 gen_check_sp_alignment(s);
2538 }
2539 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2540 do_gpr_ld(s, cpu_reg(s, rt), tcg_addr, size, false, false, true, rt,
2541 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2542 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2543 return;
2544
2545 case 0x2: case 0x3: /* CASP / STXP */
2546 if (size & 2) { /* STXP / STLXP */
2547 if (rn == 31) {
2548 gen_check_sp_alignment(s);
2549 }
2550 if (is_lasr) {
2551 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2552 }
2553 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2554 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, true);
2555 return;
2556 }
2557 if (rt2 == 31
2558 && ((rt | rs) & 1) == 0
2559 && dc_isar_feature(aa64_atomics, s)) {
2560 /* CASP / CASPL */
2561 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2562 return;
2563 }
2564 break;
2565
2566 case 0x6: case 0x7: /* CASPA / LDXP */
2567 if (size & 2) { /* LDXP / LDAXP */
2568 if (rn == 31) {
2569 gen_check_sp_alignment(s);
2570 }
2571 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2572 s->is_ldex = true;
2573 gen_load_exclusive(s, rt, rt2, tcg_addr, size, true);
2574 if (is_lasr) {
2575 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2576 }
2577 return;
2578 }
2579 if (rt2 == 31
2580 && ((rt | rs) & 1) == 0
2581 && dc_isar_feature(aa64_atomics, s)) {
2582 /* CASPA / CASPAL */
2583 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2584 return;
2585 }
2586 break;
2587
2588 case 0xa: /* CAS */
2589 case 0xb: /* CASL */
2590 case 0xe: /* CASA */
2591 case 0xf: /* CASAL */
2592 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2593 gen_compare_and_swap(s, rs, rt, rn, size);
2594 return;
2595 }
2596 break;
2597 }
2598 unallocated_encoding(s);
2599 }
2600
2601 /*
2602 * Load register (literal)
2603 *
2604 * 31 30 29 27 26 25 24 23 5 4 0
2605 * +-----+-------+---+-----+-------------------+-------+
2606 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2607 * +-----+-------+---+-----+-------------------+-------+
2608 *
2609 * V: 1 -> vector (simd/fp)
2610 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2611 * 10-> 32 bit signed, 11 -> prefetch
2612 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2613 */
2614 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2615 {
2616 int rt = extract32(insn, 0, 5);
2617 int64_t imm = sextract32(insn, 5, 19) << 2;
2618 bool is_vector = extract32(insn, 26, 1);
2619 int opc = extract32(insn, 30, 2);
2620 bool is_signed = false;
2621 int size = 2;
2622 TCGv_i64 tcg_rt, tcg_addr;
2623
2624 if (is_vector) {
2625 if (opc == 3) {
2626 unallocated_encoding(s);
2627 return;
2628 }
2629 size = 2 + opc;
2630 if (!fp_access_check(s)) {
2631 return;
2632 }
2633 } else {
2634 if (opc == 3) {
2635 /* PRFM (literal) : prefetch */
2636 return;
2637 }
2638 size = 2 + extract32(opc, 0, 1);
2639 is_signed = extract32(opc, 1, 1);
2640 }
2641
2642 tcg_rt = cpu_reg(s, rt);
2643
2644 tcg_addr = tcg_const_i64((s->pc - 4) + imm);
2645 if (is_vector) {
2646 do_fp_ld(s, rt, tcg_addr, size);
2647 } else {
2648 /* Only unsigned 32bit loads target 32bit registers. */
2649 bool iss_sf = opc != 0;
2650
2651 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false,
2652 true, rt, iss_sf, false);
2653 }
2654 tcg_temp_free_i64(tcg_addr);
2655 }
2656
2657 /*
2658 * LDNP (Load Pair - non-temporal hint)
2659 * LDP (Load Pair - non vector)
2660 * LDPSW (Load Pair Signed Word - non vector)
2661 * STNP (Store Pair - non-temporal hint)
2662 * STP (Store Pair - non vector)
2663 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2664 * LDP (Load Pair of SIMD&FP)
2665 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2666 * STP (Store Pair of SIMD&FP)
2667 *
2668 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2669 * +-----+-------+---+---+-------+---+-----------------------------+
2670 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2671 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2672 *
2673 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2674 * LDPSW 01
2675 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2676 * V: 0 -> GPR, 1 -> Vector
2677 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2678 * 10 -> signed offset, 11 -> pre-index
2679 * L: 0 -> Store 1 -> Load
2680 *
2681 * Rt, Rt2 = GPR or SIMD registers to be stored
2682 * Rn = general purpose register containing address
2683 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2684 */
2685 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2686 {
2687 int rt = extract32(insn, 0, 5);
2688 int rn = extract32(insn, 5, 5);
2689 int rt2 = extract32(insn, 10, 5);
2690 uint64_t offset = sextract64(insn, 15, 7);
2691 int index = extract32(insn, 23, 2);
2692 bool is_vector = extract32(insn, 26, 1);
2693 bool is_load = extract32(insn, 22, 1);
2694 int opc = extract32(insn, 30, 2);
2695
2696 bool is_signed = false;
2697 bool postindex = false;
2698 bool wback = false;
2699
2700 TCGv_i64 tcg_addr; /* calculated address */
2701 int size;
2702
2703 if (opc == 3) {
2704 unallocated_encoding(s);
2705 return;
2706 }
2707
2708 if (is_vector) {
2709 size = 2 + opc;
2710 } else {
2711 size = 2 + extract32(opc, 1, 1);
2712 is_signed = extract32(opc, 0, 1);
2713 if (!is_load && is_signed) {
2714 unallocated_encoding(s);
2715 return;
2716 }
2717 }
2718
2719 switch (index) {
2720 case 1: /* post-index */
2721 postindex = true;
2722 wback = true;
2723 break;
2724 case 0:
2725 /* signed offset with "non-temporal" hint. Since we don't emulate
2726 * caches we don't care about hints to the cache system about
2727 * data access patterns, and handle this identically to plain
2728 * signed offset.
2729 */
2730 if (is_signed) {
2731 /* There is no non-temporal-hint version of LDPSW */
2732 unallocated_encoding(s);
2733 return;
2734 }
2735 postindex = false;
2736 break;
2737 case 2: /* signed offset, rn not updated */
2738 postindex = false;
2739 break;
2740 case 3: /* pre-index */
2741 postindex = false;
2742 wback = true;
2743 break;
2744 }
2745
2746 if (is_vector && !fp_access_check(s)) {
2747 return;
2748 }
2749
2750 offset <<= size;
2751
2752 if (rn == 31) {
2753 gen_check_sp_alignment(s);
2754 }
2755
2756 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2757
2758 if (!postindex) {
2759 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2760 }
2761
2762 if (is_vector) {
2763 if (is_load) {
2764 do_fp_ld(s, rt, tcg_addr, size);
2765 } else {
2766 do_fp_st(s, rt, tcg_addr, size);
2767 }
2768 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2769 if (is_load) {
2770 do_fp_ld(s, rt2, tcg_addr, size);
2771 } else {
2772 do_fp_st(s, rt2, tcg_addr, size);
2773 }
2774 } else {
2775 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2776 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2777
2778 if (is_load) {
2779 TCGv_i64 tmp = tcg_temp_new_i64();
2780
2781 /* Do not modify tcg_rt before recognizing any exception
2782 * from the second load.
2783 */
2784 do_gpr_ld(s, tmp, tcg_addr, size, is_signed, false,
2785 false, 0, false, false);
2786 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2787 do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false,
2788 false, 0, false, false);
2789
2790 tcg_gen_mov_i64(tcg_rt, tmp);
2791 tcg_temp_free_i64(tmp);
2792 } else {
2793 do_gpr_st(s, tcg_rt, tcg_addr, size,
2794 false, 0, false, false);
2795 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2796 do_gpr_st(s, tcg_rt2, tcg_addr, size,
2797 false, 0, false, false);
2798 }
2799 }
2800
2801 if (wback) {
2802 if (postindex) {
2803 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size));
2804 } else {
2805 tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size);
2806 }
2807 tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
2808 }
2809 }
2810
2811 /*
2812 * Load/store (immediate post-indexed)
2813 * Load/store (immediate pre-indexed)
2814 * Load/store (unscaled immediate)
2815 *
2816 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2817 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2818 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2819 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2820 *
2821 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2822 10 -> unprivileged
2823 * V = 0 -> non-vector
2824 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2825 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2826 */
2827 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2828 int opc,
2829 int size,
2830 int rt,
2831 bool is_vector)
2832 {
2833 int rn = extract32(insn, 5, 5);
2834 int imm9 = sextract32(insn, 12, 9);
2835 int idx = extract32(insn, 10, 2);
2836 bool is_signed = false;
2837 bool is_store = false;
2838 bool is_extended = false;
2839 bool is_unpriv = (idx == 2);
2840 bool iss_valid = !is_vector;
2841 bool post_index;
2842 bool writeback;
2843
2844 TCGv_i64 tcg_addr;
2845
2846 if (is_vector) {
2847 size |= (opc & 2) << 1;
2848 if (size > 4 || is_unpriv) {
2849 unallocated_encoding(s);
2850 return;
2851 }
2852 is_store = ((opc & 1) == 0);
2853 if (!fp_access_check(s)) {
2854 return;
2855 }
2856 } else {
2857 if (size == 3 && opc == 2) {
2858 /* PRFM - prefetch */
2859 if (idx != 0) {
2860 unallocated_encoding(s);
2861 return;
2862 }
2863 return;
2864 }
2865 if (opc == 3 && size > 1) {
2866 unallocated_encoding(s);
2867 return;
2868 }
2869 is_store = (opc == 0);
2870 is_signed = extract32(opc, 1, 1);
2871 is_extended = (size < 3) && extract32(opc, 0, 1);
2872 }
2873
2874 switch (idx) {
2875 case 0:
2876 case 2:
2877 post_index = false;
2878 writeback = false;
2879 break;
2880 case 1:
2881 post_index = true;
2882 writeback = true;
2883 break;
2884 case 3:
2885 post_index = false;
2886 writeback = true;
2887 break;
2888 default:
2889 g_assert_not_reached();
2890 }
2891
2892 if (rn == 31) {
2893 gen_check_sp_alignment(s);
2894 }
2895 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2896
2897 if (!post_index) {
2898 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2899 }
2900
2901 if (is_vector) {
2902 if (is_store) {
2903 do_fp_st(s, rt, tcg_addr, size);
2904 } else {
2905 do_fp_ld(s, rt, tcg_addr, size);
2906 }
2907 } else {
2908 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2909 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2910 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2911
2912 if (is_store) {
2913 do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx,
2914 iss_valid, rt, iss_sf, false);
2915 } else {
2916 do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
2917 is_signed, is_extended, memidx,
2918 iss_valid, rt, iss_sf, false);
2919 }
2920 }
2921
2922 if (writeback) {
2923 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2924 if (post_index) {
2925 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2926 }
2927 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2928 }
2929 }
2930
2931 /*
2932 * Load/store (register offset)
2933 *
2934 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2935 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2936 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2937 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2938 *
2939 * For non-vector:
2940 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2941 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2942 * For vector:
2943 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2944 * opc<0>: 0 -> store, 1 -> load
2945 * V: 1 -> vector/simd
2946 * opt: extend encoding (see DecodeRegExtend)
2947 * S: if S=1 then scale (essentially index by sizeof(size))
2948 * Rt: register to transfer into/out of
2949 * Rn: address register or SP for base
2950 * Rm: offset register or ZR for offset
2951 */
2952 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
2953 int opc,
2954 int size,
2955 int rt,
2956 bool is_vector)
2957 {
2958 int rn = extract32(insn, 5, 5);
2959 int shift = extract32(insn, 12, 1);
2960 int rm = extract32(insn, 16, 5);
2961 int opt = extract32(insn, 13, 3);
2962 bool is_signed = false;
2963 bool is_store = false;
2964 bool is_extended = false;
2965
2966 TCGv_i64 tcg_rm;
2967 TCGv_i64 tcg_addr;
2968
2969 if (extract32(opt, 1, 1) == 0) {
2970 unallocated_encoding(s);
2971 return;
2972 }
2973
2974 if (is_vector) {
2975 size |= (opc & 2) << 1;
2976 if (size > 4) {
2977 unallocated_encoding(s);
2978 return;
2979 }
2980 is_store = !extract32(opc, 0, 1);
2981 if (!fp_access_check(s)) {
2982 return;
2983 }
2984 } else {
2985 if (size == 3 && opc == 2) {
2986 /* PRFM - prefetch */
2987 return;
2988 }
2989 if (opc == 3 && size > 1) {
2990 unallocated_encoding(s);
2991 return;
2992 }
2993 is_store = (opc == 0);
2994 is_signed = extract32(opc, 1, 1);
2995 is_extended = (size < 3) && extract32(opc, 0, 1);
2996 }
2997
2998 if (rn == 31) {
2999 gen_check_sp_alignment(s);
3000 }
3001 tcg_addr = read_cpu_reg_sp(s, rn, 1);
3002
3003 tcg_rm = read_cpu_reg(s, rm, 1);
3004 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3005
3006 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm);
3007
3008 if (is_vector) {
3009 if (is_store) {
3010 do_fp_st(s, rt, tcg_addr, size);
3011 } else {
3012 do_fp_ld(s, rt, tcg_addr, size);
3013 }
3014 } else {
3015 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3016 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3017 if (is_store) {
3018 do_gpr_st(s, tcg_rt, tcg_addr, size,
3019 true, rt, iss_sf, false);
3020 } else {
3021 do_gpr_ld(s, tcg_rt, tcg_addr, size,
3022 is_signed, is_extended,
3023 true, rt, iss_sf, false);
3024 }
3025 }
3026 }
3027
3028 /*
3029 * Load/store (unsigned immediate)
3030 *
3031 * 31 30 29 27 26 25 24 23 22 21 10 9 5
3032 * +----+-------+---+-----+-----+------------+-------+------+
3033 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
3034 * +----+-------+---+-----+-----+------------+-------+------+
3035 *
3036 * For non-vector:
3037 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3038 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3039 * For vector:
3040 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3041 * opc<0>: 0 -> store, 1 -> load
3042 * Rn: base address register (inc SP)
3043 * Rt: target register
3044 */
3045 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3046 int opc,
3047 int size,
3048 int rt,
3049 bool is_vector)
3050 {
3051 int rn = extract32(insn, 5, 5);
3052 unsigned int imm12 = extract32(insn, 10, 12);
3053 unsigned int offset;
3054
3055 TCGv_i64 tcg_addr;
3056
3057 bool is_store;
3058 bool is_signed = false;
3059 bool is_extended = false;
3060
3061 if (is_vector) {
3062 size |= (opc & 2) << 1;
3063 if (size > 4) {
3064 unallocated_encoding(s);
3065 return;
3066 }
3067 is_store = !extract32(opc, 0, 1);
3068 if (!fp_access_check(s)) {
3069 return;
3070 }
3071 } else {
3072 if (size == 3 && opc == 2) {
3073 /* PRFM - prefetch */
3074 return;
3075 }
3076 if (opc == 3 && size > 1) {
3077 unallocated_encoding(s);
3078 return;
3079 }
3080 is_store = (opc == 0);
3081 is_signed = extract32(opc, 1, 1);
3082 is_extended = (size < 3) && extract32(opc, 0, 1);
3083 }
3084
3085 if (rn == 31) {
3086 gen_check_sp_alignment(s);
3087 }
3088 tcg_addr = read_cpu_reg_sp(s, rn, 1);
3089 offset = imm12 << size;
3090 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
3091
3092 if (is_vector) {
3093 if (is_store) {
3094 do_fp_st(s, rt, tcg_addr, size);
3095 } else {
3096 do_fp_ld(s, rt, tcg_addr, size);
3097 }
3098 } else {
3099 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3100 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3101 if (is_store) {
3102 do_gpr_st(s, tcg_rt, tcg_addr, size,
3103 true, rt, iss_sf, false);
3104 } else {
3105 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended,
3106 true, rt, iss_sf, false);
3107 }
3108 }
3109 }
3110
3111 /* Atomic memory operations
3112 *
3113 * 31 30 27 26 24 22 21 16 15 12 10 5 0
3114 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3115 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
3116 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3117 *
3118 * Rt: the result register
3119 * Rn: base address or SP
3120 * Rs: the source register for the operation
3121 * V: vector flag (always 0 as of v8.3)
3122 * A: acquire flag
3123 * R: release flag
3124 */
3125 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3126 int size, int rt, bool is_vector)
3127 {
3128 int rs = extract32(insn, 16, 5);
3129 int rn = extract32(insn, 5, 5);
3130 int o3_opc = extract32(insn, 12, 4);
3131 TCGv_i64 tcg_rn, tcg_rs;
3132 AtomicThreeOpFn *fn;
3133
3134 if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3135 unallocated_encoding(s);
3136 return;
3137 }
3138 switch (o3_opc) {
3139 case 000: /* LDADD */
3140 fn = tcg_gen_atomic_fetch_add_i64;
3141 break;
3142 case 001: /* LDCLR */
3143 fn = tcg_gen_atomic_fetch_and_i64;
3144 break;
3145 case 002: /* LDEOR */
3146 fn = tcg_gen_atomic_fetch_xor_i64;
3147 break;
3148 case 003: /* LDSET */
3149 fn = tcg_gen_atomic_fetch_or_i64;
3150 break;
3151 case 004: /* LDSMAX */
3152 fn = tcg_gen_atomic_fetch_smax_i64;
3153 break;
3154 case 005: /* LDSMIN */
3155 fn = tcg_gen_atomic_fetch_smin_i64;
3156 break;
3157 case 006: /* LDUMAX */
3158 fn = tcg_gen_atomic_fetch_umax_i64;
3159 break;
3160 case 007: /* LDUMIN */
3161 fn = tcg_gen_atomic_fetch_umin_i64;
3162 break;
3163 case 010: /* SWP */
3164 fn = tcg_gen_atomic_xchg_i64;
3165 break;
3166 default:
3167 unallocated_encoding(s);
3168 return;
3169 }
3170
3171 if (rn == 31) {
3172 gen_check_sp_alignment(s);
3173 }
3174 tcg_rn = cpu_reg_sp(s, rn);
3175 tcg_rs = read_cpu_reg(s, rs, true);
3176
3177 if (o3_opc == 1) { /* LDCLR */
3178 tcg_gen_not_i64(tcg_rs, tcg_rs);
3179 }
3180
3181 /* The tcg atomic primitives are all full barriers. Therefore we
3182 * can ignore the Acquire and Release bits of this instruction.
3183 */
3184 fn(cpu_reg(s, rt), tcg_rn, tcg_rs, get_mem_index(s),
3185 s->be_data | size | MO_ALIGN);
3186 }
3187
3188 /*
3189 * PAC memory operations
3190 *
3191 * 31 30 27 26 24 22 21 12 11 10 5 0
3192 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3193 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt |
3194 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3195 *
3196 * Rt: the result register
3197 * Rn: base address or SP
3198 * V: vector flag (always 0 as of v8.3)
3199 * M: clear for key DA, set for key DB
3200 * W: pre-indexing flag
3201 * S: sign for imm9.
3202 */
3203 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3204 int size, int rt, bool is_vector)
3205 {
3206 int rn = extract32(insn, 5, 5);
3207 bool is_wback = extract32(insn, 11, 1);
3208 bool use_key_a = !extract32(insn, 23, 1);
3209 int offset;
3210 TCGv_i64 tcg_addr, tcg_rt;
3211
3212 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3213 unallocated_encoding(s);
3214 return;
3215 }
3216
3217 if (rn == 31) {
3218 gen_check_sp_alignment(s);
3219 }
3220 tcg_addr = read_cpu_reg_sp(s, rn, 1);
3221
3222 if (s->pauth_active) {
3223 if (use_key_a) {
3224 gen_helper_autda(tcg_addr, cpu_env, tcg_addr, cpu_X[31]);
3225 } else {
3226 gen_helper_autdb(tcg_addr, cpu_env, tcg_addr, cpu_X[31]);
3227 }
3228 }
3229
3230 /* Form the 10-bit signed, scaled offset. */
3231 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3232 offset = sextract32(offset << size, 0, 10 + size);
3233 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
3234
3235 tcg_rt = cpu_reg(s, rt);
3236
3237 do_gpr_ld(s, tcg_rt, tcg_addr, size, /* is_signed */ false,
3238 /* extend */ false, /* iss_valid */ !is_wback,
3239 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3240
3241 if (is_wback) {
3242 tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
3243 }
3244 }
3245
3246 /* Load/store register (all forms) */
3247 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3248 {
3249 int rt = extract32(insn, 0, 5);
3250 int opc = extract32(insn, 22, 2);
3251 bool is_vector = extract32(insn, 26, 1);
3252 int size = extract32(insn, 30, 2);
3253
3254 switch (extract32(insn, 24, 2)) {
3255 case 0:
3256 if (extract32(insn, 21, 1) == 0) {
3257 /* Load/store register (unscaled immediate)
3258 * Load/store immediate pre/post-indexed
3259 * Load/store register unprivileged
3260 */
3261 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3262 return;
3263 }
3264 switch (extract32(insn, 10, 2)) {
3265 case 0:
3266 disas_ldst_atomic(s, insn, size, rt, is_vector);
3267 return;
3268 case 2:
3269 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3270 return;
3271 default:
3272 disas_ldst_pac(s, insn, size, rt, is_vector);
3273 return;
3274 }
3275 break;
3276 case 1:
3277 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3278 return;
3279 }
3280 unallocated_encoding(s);
3281 }
3282
3283 /* AdvSIMD load/store multiple structures
3284 *
3285 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
3286 * +---+---+---------------+---+-------------+--------+------+------+------+
3287 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
3288 * +---+---+---------------+---+-------------+--------+------+------+------+
3289 *
3290 * AdvSIMD load/store multiple structures (post-indexed)
3291 *
3292 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
3293 * +---+---+---------------+---+---+---------+--------+------+------+------+
3294 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
3295 * +---+---+---------------+---+---+---------+--------+------+------+------+
3296 *
3297 * Rt: first (or only) SIMD&FP register to be transferred
3298 * Rn: base address or SP
3299 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3300 */
3301 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3302 {
3303 int rt = extract32(insn, 0, 5);
3304 int rn = extract32(insn, 5, 5);
3305 int rm = extract32(insn, 16, 5);
3306 int size = extract32(insn, 10, 2);
3307 int opcode = extract32(insn, 12, 4);
3308 bool is_store = !extract32(insn, 22, 1);
3309 bool is_postidx = extract32(insn, 23, 1);
3310 bool is_q = extract32(insn, 30, 1);
3311 TCGv_i64 tcg_addr, tcg_rn, tcg_ebytes;
3312 TCGMemOp endian = s->be_data;
3313
3314 int ebytes; /* bytes per element */
3315 int elements; /* elements per vector */
3316 int rpt; /* num iterations */
3317 int selem; /* structure elements */
3318 int r;
3319
3320 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3321 unallocated_encoding(s);
3322 return;
3323 }
3324
3325 if (!is_postidx && rm != 0) {
3326 unallocated_encoding(s);
3327 return;
3328 }
3329
3330 /* From the shared decode logic */
3331 switch (opcode) {
3332 case 0x0:
3333 rpt = 1;
3334 selem = 4;
3335 break;
3336 case 0x2:
3337 rpt = 4;
3338 selem = 1;
3339 break;
3340 case 0x4:
3341 rpt = 1;
3342 selem = 3;
3343 break;
3344 case 0x6:
3345 rpt = 3;
3346 selem = 1;
3347 break;
3348 case 0x7:
3349 rpt = 1;
3350 selem = 1;
3351 break;
3352 case 0x8:
3353 rpt = 1;
3354 selem = 2;
3355 break;
3356 case 0xa:
3357 rpt = 2;
3358 selem = 1;
3359 break;
3360 default:
3361 unallocated_encoding(s);
3362 return;
3363 }
3364
3365 if (size == 3 && !is_q && selem != 1) {
3366 /* reserved */
3367 unallocated_encoding(s);
3368 return;
3369 }
3370
3371 if (!fp_access_check(s)) {
3372 return;
3373 }
3374
3375 if (rn == 31) {
3376 gen_check_sp_alignment(s);
3377 }
3378
3379 /* For our purposes, bytes are always little-endian. */
3380 if (size == 0) {
3381 endian = MO_LE;
3382 }
3383
3384 /* Consecutive little-endian elements from a single register
3385 * can be promoted to a larger little-endian operation.
3386 */
3387 if (selem == 1 && endian == MO_LE) {
3388 size = 3;
3389 }
3390 ebytes = 1 << size;
3391 elements = (is_q ? 16 : 8) / ebytes;
3392
3393 tcg_rn = cpu_reg_sp(s, rn);
3394 tcg_addr = tcg_temp_new_i64();
3395 tcg_gen_mov_i64(tcg_addr, tcg_rn);
3396 tcg_ebytes = tcg_const_i64(ebytes);
3397
3398 for (r = 0; r < rpt; r++) {
3399 int e;
3400 for (e = 0; e < elements; e++) {
3401 int xs;
3402 for (xs = 0; xs < selem; xs++) {
3403 int tt = (rt + r + xs) % 32;
3404 if (is_store) {
3405 do_vec_st(s, tt, e, tcg_addr, size, endian);
3406 } else {
3407 do_vec_ld(s, tt, e, tcg_addr, size, endian);
3408 }
3409 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_ebytes);
3410 }
3411 }
3412 }
3413
3414 if (!is_store) {
3415 /* For non-quad operations, setting a slice of the low
3416 * 64 bits of the register clears the high 64 bits (in
3417 * the ARM ARM pseudocode this is implicit in the fact
3418 * that 'rval' is a 64 bit wide variable).
3419 * For quad operations, we might still need to zero the
3420 * high bits of SVE.
3421 */
3422 for (r = 0; r < rpt * selem; r++) {
3423 int tt = (rt + r) % 32;
3424 clear_vec_high(s, is_q, tt);
3425 }
3426 }
3427
3428 if (is_postidx) {
3429 if (rm == 31) {
3430 tcg_gen_mov_i64(tcg_rn, tcg_addr);
3431 } else {
3432 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3433 }
3434 }
3435 tcg_temp_free_i64(tcg_ebytes);
3436 tcg_temp_free_i64(tcg_addr);
3437 }
3438
3439 /* AdvSIMD load/store single structure
3440 *
3441 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3442 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3443 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3444 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3445 *
3446 * AdvSIMD load/store single structure (post-indexed)
3447 *
3448 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3449 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3450 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3451 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3452 *
3453 * Rt: first (or only) SIMD&FP register to be transferred
3454 * Rn: base address or SP
3455 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3456 * index = encoded in Q:S:size dependent on size
3457 *
3458 * lane_size = encoded in R, opc
3459 * transfer width = encoded in opc, S, size
3460 */
3461 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3462 {
3463 int rt = extract32(insn, 0, 5);
3464 int rn = extract32(insn, 5, 5);
3465 int rm = extract32(insn, 16, 5);
3466 int size = extract32(insn, 10, 2);
3467 int S = extract32(insn, 12, 1);
3468 int opc = extract32(insn, 13, 3);
3469 int R = extract32(insn, 21, 1);
3470 int is_load = extract32(insn, 22, 1);
3471 int is_postidx = extract32(insn, 23, 1);
3472 int is_q = extract32(insn, 30, 1);
3473
3474 int scale = extract32(opc, 1, 2);
3475 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3476 bool replicate = false;
3477 int index = is_q << 3 | S << 2 | size;
3478 int ebytes, xs;
3479 TCGv_i64 tcg_addr, tcg_rn, tcg_ebytes;
3480
3481 if (extract32(insn, 31, 1)) {
3482 unallocated_encoding(s);
3483 return;
3484 }
3485 if (!is_postidx && rm != 0) {
3486 unallocated_encoding(s);
3487 return;
3488 }
3489
3490 switch (scale) {
3491 case 3:
3492 if (!is_load || S) {
3493 unallocated_encoding(s);
3494 return;
3495 }
3496 scale = size;
3497 replicate = true;
3498 break;
3499 case 0:
3500 break;
3501 case 1:
3502 if (extract32(size, 0, 1)) {
3503 unallocated_encoding(s);
3504 return;
3505 }
3506 index >>= 1;
3507 break;
3508 case 2:
3509 if (extract32(size, 1, 1)) {
3510 unallocated_encoding(s);
3511 return;
3512 }
3513 if (!extract32(size, 0, 1)) {
3514 index >>= 2;
3515 } else {
3516 if (S) {
3517 unallocated_encoding(s);
3518 return;
3519 }
3520 index >>= 3;
3521 scale = 3;
3522 }
3523 break;
3524 default:
3525 g_assert_not_reached();
3526 }
3527
3528 if (!fp_access_check(s)) {
3529 return;
3530 }
3531
3532 ebytes = 1 << scale;
3533
3534 if (rn == 31) {
3535 gen_check_sp_alignment(s);
3536 }
3537
3538 tcg_rn = cpu_reg_sp(s, rn);
3539 tcg_addr = tcg_temp_new_i64();
3540 tcg_gen_mov_i64(tcg_addr, tcg_rn);
3541 tcg_ebytes = tcg_const_i64(ebytes);
3542
3543 for (xs = 0; xs < selem; xs++) {
3544 if (replicate) {
3545 /* Load and replicate to all elements */
3546 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3547
3548 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
3549 get_mem_index(s), s->be_data + scale);
3550 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3551 (is_q + 1) * 8, vec_full_reg_size(s),
3552 tcg_tmp);
3553 tcg_temp_free_i64(tcg_tmp);
3554 } else {
3555 /* Load/store one element per register */
3556 if (is_load) {
3557 do_vec_ld(s, rt, index, tcg_addr, scale, s->be_data);
3558 } else {
3559 do_vec_st(s, rt, index, tcg_addr, scale, s->be_data);
3560 }
3561 }
3562 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_ebytes);
3563 rt = (rt + 1) % 32;
3564 }
3565
3566 if (is_postidx) {
3567 if (rm == 31) {
3568 tcg_gen_mov_i64(tcg_rn, tcg_addr);
3569 } else {
3570 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3571 }
3572 }
3573 tcg_temp_free_i64(tcg_ebytes);
3574 tcg_temp_free_i64(tcg_addr);
3575 }
3576
3577 /* Loads and stores */
3578 static void disas_ldst(DisasContext *s, uint32_t insn)
3579 {
3580 switch (extract32(insn, 24, 6)) {
3581 case 0x08: /* Load/store exclusive */
3582 disas_ldst_excl(s, insn);
3583 break;
3584 case 0x18: case 0x1c: /* Load register (literal) */
3585 disas_ld_lit(s, insn);
3586 break;
3587 case 0x28: case 0x29:
3588 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
3589 disas_ldst_pair(s, insn);
3590 break;
3591 case 0x38: case 0x39:
3592 case 0x3c: case 0x3d: /* Load/store register (all forms) */
3593 disas_ldst_reg(s, insn);
3594 break;
3595 case 0x0c: /* AdvSIMD load/store multiple structures */
3596 disas_ldst_multiple_struct(s, insn);
3597 break;
3598 case 0x0d: /* AdvSIMD load/store single structure */
3599 disas_ldst_single_struct(s, insn);
3600 break;
3601 default:
3602 unallocated_encoding(s);
3603 break;
3604 }
3605 }
3606
3607 /* PC-rel. addressing
3608 * 31 30 29 28 24 23 5 4 0
3609 * +----+-------+-----------+-------------------+------+
3610 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
3611 * +----+-------+-----------+-------------------+------+
3612 */
3613 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
3614 {
3615 unsigned int page, rd;
3616 uint64_t base;
3617 uint64_t offset;
3618
3619 page = extract32(insn, 31, 1);
3620 /* SignExtend(immhi:immlo) -> offset */
3621 offset = sextract64(insn, 5, 19);
3622 offset = offset << 2 | extract32(insn, 29, 2);
3623 rd = extract32(insn, 0, 5);
3624 base = s->pc - 4;
3625
3626 if (page) {
3627 /* ADRP (page based) */
3628 base &= ~0xfff;
3629 offset <<= 12;
3630 }
3631
3632 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
3633 }
3634
3635 /*
3636 * Add/subtract (immediate)
3637 *
3638 * 31 30 29 28 24 23 22 21 10 9 5 4 0
3639 * +--+--+--+-----------+-----+-------------+-----+-----+
3640 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
3641 * +--+--+--+-----------+-----+-------------+-----+-----+
3642 *
3643 * sf: 0 -> 32bit, 1 -> 64bit
3644 * op: 0 -> add , 1 -> sub
3645 * S: 1 -> set flags
3646 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
3647 */
3648 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
3649 {
3650 int rd = extract32(insn, 0, 5);
3651 int rn = extract32(insn, 5, 5);
3652 uint64_t imm = extract32(insn, 10, 12);
3653 int shift = extract32(insn, 22, 2);
3654 bool setflags = extract32(insn, 29, 1);
3655 bool sub_op = extract32(insn, 30, 1);
3656 bool is_64bit = extract32(insn, 31, 1);
3657
3658 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3659 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
3660 TCGv_i64 tcg_result;
3661
3662 switch (shift) {
3663 case 0x0:
3664 break;
3665 case 0x1:
3666 imm <<= 12;
3667 break;
3668 default:
3669 unallocated_encoding(s);
3670 return;
3671 }
3672
3673 tcg_result = tcg_temp_new_i64();
3674 if (!setflags) {
3675 if (sub_op) {
3676 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
3677 } else {
3678 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
3679 }
3680 } else {
3681 TCGv_i64 tcg_imm = tcg_const_i64(imm);
3682 if (sub_op) {
3683 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3684 } else {
3685 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3686 }
3687 tcg_temp_free_i64(tcg_imm);
3688 }
3689
3690 if (is_64bit) {
3691 tcg_gen_mov_i64(tcg_rd, tcg_result);
3692 } else {
3693 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3694 }
3695
3696 tcg_temp_free_i64(tcg_result);
3697 }
3698
3699 /* The input should be a value in the bottom e bits (with higher
3700 * bits zero); returns that value replicated into every element
3701 * of size e in a 64 bit integer.
3702 */
3703 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
3704 {
3705 assert(e != 0);
3706 while (e < 64) {
3707 mask |= mask << e;
3708 e *= 2;
3709 }
3710 return mask;
3711 }
3712
3713 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
3714 static inline uint64_t bitmask64(unsigned int length)
3715 {
3716 assert(length > 0 && length <= 64);
3717 return ~0ULL >> (64 - length);
3718 }
3719
3720 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
3721 * only require the wmask. Returns false if the imms/immr/immn are a reserved
3722 * value (ie should cause a guest UNDEF exception), and true if they are
3723 * valid, in which case the decoded bit pattern is written to result.
3724 */
3725 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
3726 unsigned int imms, unsigned int immr)
3727 {
3728 uint64_t mask;
3729 unsigned e, levels, s, r;
3730 int len;
3731
3732 assert(immn < 2 && imms < 64 && immr < 64);
3733
3734 /* The bit patterns we create here are 64 bit patterns which
3735 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
3736 * 64 bits each. Each element contains the same value: a run
3737 * of between 1 and e-1 non-zero bits, rotated within the
3738 * element by between 0 and e-1 bits.
3739 *
3740 * The element size and run length are encoded into immn (1 bit)
3741 * and imms (6 bits) as follows:
3742 * 64 bit elements: immn = 1, imms = <length of run - 1>
3743 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
3744 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
3745 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
3746 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
3747 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
3748 * Notice that immn = 0, imms = 11111x is the only combination
3749 * not covered by one of the above options; this is reserved.
3750 * Further, <length of run - 1> all-ones is a reserved pattern.
3751 *
3752 * In all cases the rotation is by immr % e (and immr is 6 bits).
3753 */
3754
3755 /* First determine the element size */
3756 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
3757 if (len < 1) {
3758 /* This is the immn == 0, imms == 0x11111x case */
3759 return false;
3760 }
3761 e = 1 << len;
3762
3763 levels = e - 1;
3764 s = imms & levels;
3765 r = immr & levels;
3766
3767 if (s == levels) {
3768 /* <length of run - 1> mustn't be all-ones. */
3769 return false;
3770 }
3771
3772 /* Create the value of one element: s+1 set bits rotated
3773 * by r within the element (which is e bits wide)...
3774 */
3775 mask = bitmask64(s + 1);
3776 if (r) {
3777 mask = (mask >> r) | (mask << (e - r));
3778 mask &= bitmask64(e);
3779 }
3780 /* ...then replicate the element over the whole 64 bit value */
3781 mask = bitfield_replicate(mask, e);
3782 *result = mask;
3783 return true;
3784 }
3785
3786 /* Logical (immediate)
3787 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3788 * +----+-----+-------------+---+------+------+------+------+
3789 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
3790 * +----+-----+-------------+---+------+------+------+------+
3791 */
3792 static void disas_logic_imm(DisasContext *s, uint32_t insn)
3793 {
3794 unsigned int sf, opc, is_n, immr, imms, rn, rd;
3795 TCGv_i64 tcg_rd, tcg_rn;
3796 uint64_t wmask;
3797 bool is_and = false;
3798
3799 sf = extract32(insn, 31, 1);
3800 opc = extract32(insn, 29, 2);
3801 is_n = extract32(insn, 22, 1);
3802 immr = extract32(insn, 16, 6);
3803 imms = extract32(insn, 10, 6);
3804 rn = extract32(insn, 5, 5);
3805 rd = extract32(insn, 0, 5);
3806
3807 if (!sf && is_n) {
3808 unallocated_encoding(s);
3809 return;
3810 }
3811
3812 if (opc == 0x3) { /* ANDS */
3813 tcg_rd = cpu_reg(s, rd);
3814 } else {
3815 tcg_rd = cpu_reg_sp(s, rd);
3816 }
3817 tcg_rn = cpu_reg(s, rn);
3818
3819 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
3820 /* some immediate field values are reserved */
3821 unallocated_encoding(s);
3822 return;
3823 }
3824
3825 if (!sf) {
3826 wmask &= 0xffffffff;
3827 }
3828
3829 switch (opc) {
3830 case 0x3: /* ANDS */
3831 case 0x0: /* AND */
3832 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
3833 is_and = true;
3834 break;
3835 case 0x1: /* ORR */
3836 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
3837 break;
3838 case 0x2: /* EOR */
3839 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
3840 break;
3841 default:
3842 assert(FALSE); /* must handle all above */
3843 break;
3844 }
3845
3846 if (!sf && !is_and) {
3847 /* zero extend final result; we know we can skip this for AND
3848 * since the immediate had the high 32 bits clear.
3849 */
3850 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3851 }
3852
3853 if (opc == 3) { /* ANDS */
3854 gen_logic_CC(sf, tcg_rd);
3855 }
3856 }
3857
3858 /*
3859 * Move wide (immediate)
3860 *
3861 * 31 30 29 28 23 22 21 20 5 4 0
3862 * +--+-----+-------------+-----+----------------+------+
3863 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
3864 * +--+-----+-------------+-----+----------------+------+
3865 *
3866 * sf: 0 -> 32 bit, 1 -> 64 bit
3867 * opc: 00 -> N, 10 -> Z, 11 -> K
3868 * hw: shift/16 (0,16, and sf only 32, 48)
3869 */
3870 static void disas_movw_imm(DisasContext *s, uint32_t insn)
3871 {
3872 int rd = extract32(insn, 0, 5);
3873 uint64_t imm = extract32(insn, 5, 16);
3874 int sf = extract32(insn, 31, 1);
3875 int opc = extract32(insn, 29, 2);
3876 int pos = extract32(insn, 21, 2) << 4;
3877 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3878 TCGv_i64 tcg_imm;
3879
3880 if (!sf && (pos >= 32)) {
3881 unallocated_encoding(s);
3882 return;
3883 }
3884
3885 switch (opc) {
3886 case 0: /* MOVN */
3887 case 2: /* MOVZ */
3888 imm <<= pos;
3889 if (opc == 0) {
3890 imm = ~imm;
3891 }
3892 if (!sf) {
3893 imm &= 0xffffffffu;
3894 }
3895 tcg_gen_movi_i64(tcg_rd, imm);
3896 break;
3897 case 3: /* MOVK */
3898 tcg_imm = tcg_const_i64(imm);
3899 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
3900 tcg_temp_free_i64(tcg_imm);
3901 if (!sf) {
3902 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3903 }
3904 break;
3905 default:
3906 unallocated_encoding(s);
3907 break;
3908 }
3909 }
3910
3911 /* Bitfield
3912 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3913 * +----+-----+-------------+---+------+------+------+------+
3914 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
3915 * +----+-----+-------------+---+------+------+------+------+
3916 */
3917 static void disas_bitfield(DisasContext *s, uint32_t insn)
3918 {
3919 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
3920 TCGv_i64 tcg_rd, tcg_tmp;
3921
3922 sf = extract32(insn, 31, 1);
3923 opc = extract32(insn, 29, 2);
3924 n = extract32(insn, 22, 1);
3925 ri = extract32(insn, 16, 6);
3926 si = extract32(insn, 10, 6);
3927 rn = extract32(insn, 5, 5);
3928 rd = extract32(insn, 0, 5);
3929 bitsize = sf ? 64 : 32;
3930
3931 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
3932 unallocated_encoding(s);
3933 return;
3934 }
3935
3936 tcg_rd = cpu_reg(s, rd);
3937
3938 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
3939 to be smaller than bitsize, we'll never reference data outside the
3940 low 32-bits anyway. */
3941 tcg_tmp = read_cpu_reg(s, rn, 1);
3942
3943 /* Recognize simple(r) extractions. */
3944 if (si >= ri) {
3945 /* Wd<s-r:0> = Wn<s:r> */
3946 len = (si - ri) + 1;
3947 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
3948 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
3949 goto done;
3950 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
3951 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
3952 return;
3953 }
3954 /* opc == 1, BXFIL fall through to deposit */
3955 tcg_gen_extract_i64(tcg_tmp, tcg_tmp, ri, len);
3956 pos = 0;
3957 } else {
3958 /* Handle the ri > si case with a deposit
3959 * Wd<32+s-r,32-r> = Wn<s:0>
3960 */
3961 len = si + 1;
3962 pos = (bitsize - ri) & (bitsize - 1);
3963 }
3964
3965 if (opc == 0 && len < ri) {
3966 /* SBFM: sign extend the destination field from len to fill
3967 the balance of the word. Let the deposit below insert all
3968 of those sign bits. */
3969 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
3970 len = ri;
3971 }
3972
3973 if (opc == 1) { /* BFM, BXFIL */
3974 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
3975 } else {
3976 /* SBFM or UBFM: We start with zero, and we haven't modified
3977 any bits outside bitsize, therefore the zero-extension
3978 below is unneeded. */
3979 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
3980 return;
3981 }
3982
3983 done:
3984 if (!sf) { /* zero extend final result */
3985 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3986 }
3987 }
3988
3989 /* Extract
3990 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
3991 * +----+------+-------------+---+----+------+--------+------+------+
3992 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
3993 * +----+------+-------------+---+----+------+--------+------+------+
3994 */
3995 static void disas_extract(DisasContext *s, uint32_t insn)
3996 {
3997 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
3998
3999 sf = extract32(insn, 31, 1);
4000 n = extract32(insn, 22, 1);
4001 rm = extract32(insn, 16, 5);
4002 imm = extract32(insn, 10, 6);
4003 rn = extract32(insn, 5, 5);
4004 rd = extract32(insn, 0, 5);
4005 op21 = extract32(insn, 29, 2);
4006 op0 = extract32(insn, 21, 1);
4007 bitsize = sf ? 64 : 32;
4008
4009 if (sf != n || op21 || op0 || imm >= bitsize) {
4010 unallocated_encoding(s);
4011 } else {
4012 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4013
4014 tcg_rd = cpu_reg(s, rd);
4015
4016 if (unlikely(imm == 0)) {
4017 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4018 * so an extract from bit 0 is a special case.
4019 */
4020 if (sf) {
4021 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
4022 } else {
4023 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
4024 }
4025 } else if (rm == rn) { /* ROR */
4026 tcg_rm = cpu_reg(s, rm);
4027 if (sf) {
4028 tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm);
4029 } else {
4030 TCGv_i32 tmp = tcg_temp_new_i32();
4031 tcg_gen_extrl_i64_i32(tmp, tcg_rm);
4032 tcg_gen_rotri_i32(tmp, tmp, imm);
4033 tcg_gen_extu_i32_i64(tcg_rd, tmp);
4034 tcg_temp_free_i32(tmp);
4035 }
4036 } else {
4037 tcg_rm = read_cpu_reg(s, rm, sf);
4038 tcg_rn = read_cpu_reg(s, rn, sf);
4039 tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
4040 tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
4041 tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
4042 if (!sf) {
4043 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4044 }
4045 }
4046 }
4047 }
4048
4049 /* Data processing - immediate */
4050 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
4051 {
4052 switch (extract32(insn, 23, 6)) {
4053 case 0x20: case 0x21: /* PC-rel. addressing */
4054 disas_pc_rel_adr(s, insn);
4055 break;
4056 case 0x22: case 0x23: /* Add/subtract (immediate) */
4057 disas_add_sub_imm(s, insn);
4058 break;
4059 case 0x24: /* Logical (immediate) */
4060 disas_logic_imm(s, insn);
4061 break;
4062 case 0x25: /* Move wide (immediate) */
4063 disas_movw_imm(s, insn);
4064 break;
4065 case 0x26: /* Bitfield */
4066 disas_bitfield(s, insn);
4067 break;
4068 case 0x27: /* Extract */
4069 disas_extract(s, insn);
4070 break;
4071 default:
4072 unallocated_encoding(s);
4073 break;
4074 }
4075 }
4076
4077 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4078 * Note that it is the caller's responsibility to ensure that the
4079 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4080 * mandated semantics for out of range shifts.
4081 */
4082 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4083 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4084 {
4085 switch (shift_type) {
4086 case A64_SHIFT_TYPE_LSL:
4087 tcg_gen_shl_i64(dst, src, shift_amount);
4088 break;
4089 case A64_SHIFT_TYPE_LSR:
4090 tcg_gen_shr_i64(dst, src, shift_amount);
4091 break;
4092 case A64_SHIFT_TYPE_ASR:
4093 if (!sf) {
4094 tcg_gen_ext32s_i64(dst, src);
4095 }
4096 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4097 break;
4098 case A64_SHIFT_TYPE_ROR:
4099 if (sf) {
4100 tcg_gen_rotr_i64(dst, src, shift_amount);
4101 } else {
4102 TCGv_i32 t0, t1;
4103 t0 = tcg_temp_new_i32();
4104 t1 = tcg_temp_new_i32();
4105 tcg_gen_extrl_i64_i32(t0, src);
4106 tcg_gen_extrl_i64_i32(t1, shift_amount);
4107 tcg_gen_rotr_i32(t0, t0, t1);
4108 tcg_gen_extu_i32_i64(dst, t0);
4109 tcg_temp_free_i32(t0);
4110 tcg_temp_free_i32(t1);
4111 }
4112 break;
4113 default:
4114 assert(FALSE); /* all shift types should be handled */
4115 break;
4116 }
4117
4118 if (!sf) { /* zero extend final result */
4119 tcg_gen_ext32u_i64(dst, dst);
4120 }
4121 }
4122
4123 /* Shift a TCGv src by immediate, put result in dst.
4124 * The shift amount must be in range (this should always be true as the
4125 * relevant instructions will UNDEF on bad shift immediates).
4126 */
4127 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4128 enum a64_shift_type shift_type, unsigned int shift_i)
4129 {
4130 assert(shift_i < (sf ? 64 : 32));
4131
4132 if (shift_i == 0) {
4133 tcg_gen_mov_i64(dst, src);
4134 } else {
4135 TCGv_i64 shift_const;
4136
4137 shift_const = tcg_const_i64(shift_i);
4138 shift_reg(dst, src, sf, shift_type, shift_const);
4139 tcg_temp_free_i64(shift_const);
4140 }
4141 }
4142
4143 /* Logical (shifted register)
4144 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4145 * +----+-----+-----------+-------+---+------+--------+------+------+
4146 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4147 * +----+-----+-----------+-------+---+------+--------+------+------+
4148 */
4149 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4150 {
4151 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4152 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4153
4154 sf = extract32(insn, 31, 1);
4155 opc = extract32(insn, 29, 2);
4156 shift_type = extract32(insn, 22, 2);
4157 invert = extract32(insn, 21, 1);
4158 rm = extract32(insn, 16, 5);
4159 shift_amount = extract32(insn, 10, 6);
4160 rn = extract32(insn, 5, 5);
4161 rd = extract32(insn, 0, 5);
4162
4163 if (!sf && (shift_amount & (1 << 5))) {
4164 unallocated_encoding(s);
4165 return;
4166 }
4167
4168 tcg_rd = cpu_reg(s, rd);
4169
4170 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4171 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4172 * register-register MOV and MVN, so it is worth special casing.
4173 */
4174 tcg_rm = cpu_reg(s, rm);
4175 if (invert) {
4176 tcg_gen_not_i64(tcg_rd, tcg_rm);
4177 if (!sf) {
4178 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4179 }
4180 } else {
4181 if (sf) {
4182 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4183 } else {
4184 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4185 }
4186 }
4187 return;
4188 }
4189
4190 tcg_rm = read_cpu_reg(s, rm, sf);
4191
4192 if (shift_amount) {
4193 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4194 }
4195
4196 tcg_rn = cpu_reg(s, rn);
4197
4198 switch (opc | (invert << 2)) {
4199 case 0: /* AND */
4200 case 3: /* ANDS */
4201 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4202 break;
4203 case 1: /* ORR */
4204 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4205 break;
4206 case 2: /* EOR */
4207 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4208 break;
4209 case 4: /* BIC */
4210 case 7: /* BICS */
4211 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4212 break;
4213 case 5: /* ORN */
4214 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4215 break;
4216 case 6: /* EON */
4217 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4218 break;
4219 default:
4220 assert(FALSE);
4221 break;
4222 }
4223
4224 if (!sf) {
4225 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4226 }
4227
4228 if (opc == 3) {
4229 gen_logic_CC(sf, tcg_rd);
4230 }
4231 }
4232
4233 /*
4234 * Add/subtract (extended register)
4235 *
4236 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4237 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4238 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4239 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4240 *
4241 * sf: 0 -> 32bit, 1 -> 64bit
4242 * op: 0 -> add , 1 -> sub
4243 * S: 1 -> set flags
4244 * opt: 00
4245 * option: extension type (see DecodeRegExtend)
4246 * imm3: optional shift to Rm
4247 *
4248 * Rd = Rn + LSL(extend(Rm), amount)
4249 */
4250 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4251 {
4252 int rd = extract32(insn, 0, 5);
4253 int rn = extract32(insn, 5, 5);
4254 int imm3 = extract32(insn, 10, 3);
4255 int option = extract32(insn, 13, 3);
4256 int rm = extract32(insn, 16, 5);
4257 int opt = extract32(insn, 22, 2);
4258 bool setflags = extract32(insn, 29, 1);
4259 bool sub_op = extract32(insn, 30, 1);
4260 bool sf = extract32(insn, 31, 1);
4261
4262 TCGv_i64 tcg_rm, tcg_rn; /* temps */
4263 TCGv_i64 tcg_rd;
4264 TCGv_i64 tcg_result;
4265
4266 if (imm3 > 4 || opt != 0) {
4267 unallocated_encoding(s);
4268 return;
4269 }
4270
4271 /* non-flag setting ops may use SP */
4272 if (!setflags) {
4273 tcg_rd = cpu_reg_sp(s, rd);
4274 } else {
4275 tcg_rd = cpu_reg(s, rd);
4276 }
4277 tcg_rn = read_cpu_reg_sp(s, rn, sf);
4278
4279 tcg_rm = read_cpu_reg(s, rm, sf);
4280 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4281
4282 tcg_result = tcg_temp_new_i64();
4283
4284 if (!setflags) {
4285 if (sub_op) {
4286 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4287 } else {
4288 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4289 }
4290 } else {
4291 if (sub_op) {
4292 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4293 } else {
4294 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4295 }
4296 }
4297
4298 if (sf) {
4299 tcg_gen_mov_i64(tcg_rd, tcg_result);
4300 } else {
4301 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4302 }
4303
4304 tcg_temp_free_i64(tcg_result);
4305 }
4306
4307 /*
4308 * Add/subtract (shifted register)
4309 *
4310 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4311 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4312 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4313 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4314 *
4315 * sf: 0 -> 32bit, 1 -> 64bit
4316 * op: 0 -> add , 1 -> sub
4317 * S: 1 -> set flags
4318 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4319 * imm6: Shift amount to apply to Rm before the add/sub
4320 */
4321 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4322 {
4323 int rd = extract32(insn, 0, 5);
4324 int rn = extract32(insn, 5, 5);
4325 int imm6 = extract32(insn, 10, 6);
4326 int rm = extract32(insn, 16, 5);
4327 int shift_type = extract32(insn, 22, 2);
4328 bool setflags = extract32(insn, 29, 1);
4329 bool sub_op = extract32(insn, 30, 1);
4330 bool sf = extract32(insn, 31, 1);
4331
4332 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4333 TCGv_i64 tcg_rn, tcg_rm;
4334 TCGv_i64 tcg_result;
4335
4336 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4337 unallocated_encoding(s);
4338 return;
4339 }
4340
4341 tcg_rn = read_cpu_reg(s, rn, sf);
4342 tcg_rm = read_cpu_reg(s, rm, sf);
4343
4344 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4345
4346 tcg_result = tcg_temp_new_i64();
4347
4348 if (!setflags) {
4349 if (sub_op) {
4350 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4351 } else {
4352 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4353 }
4354 } else {
4355 if (sub_op) {
4356 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4357 } else {
4358 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4359 }
4360 }
4361
4362 if (sf) {
4363 tcg_gen_mov_i64(tcg_rd, tcg_result);
4364 } else {
4365 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4366 }
4367
4368 tcg_temp_free_i64(tcg_result);
4369 }
4370
4371 /* Data-processing (3 source)
4372 *
4373 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4374 * +--+------+-----------+------+------+----+------+------+------+
4375 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4376 * +--+------+-----------+------+------+----+------+------+------+
4377 */
4378 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4379 {
4380 int rd = extract32(insn, 0, 5);
4381 int rn = extract32(insn, 5, 5);
4382 int ra = extract32(insn, 10, 5);
4383 int rm = extract32(insn, 16, 5);
4384 int op_id = (extract32(insn, 29, 3) << 4) |
4385 (extract32(insn, 21, 3) << 1) |
4386 extract32(insn, 15, 1);
4387 bool sf = extract32(insn, 31, 1);
4388 bool is_sub = extract32(op_id, 0, 1);
4389 bool is_high = extract32(op_id, 2, 1);
4390 bool is_signed = false;
4391 TCGv_i64 tcg_op1;
4392 TCGv_i64 tcg_op2;
4393 TCGv_i64 tcg_tmp;
4394
4395 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4396 switch (op_id) {
4397 case 0x42: /* SMADDL */
4398 case 0x43: /* SMSUBL */
4399 case 0x44: /* SMULH */
4400 is_signed = true;
4401 break;
4402 case 0x0: /* MADD (32bit) */
4403 case 0x1: /* MSUB (32bit) */
4404 case 0x40: /* MADD (64bit) */
4405 case 0x41: /* MSUB (64bit) */
4406 case 0x4a: /* UMADDL */
4407 case 0x4b: /* UMSUBL */
4408 case 0x4c: /* UMULH */
4409 break;
4410 default:
4411 unallocated_encoding(s);
4412 return;
4413 }
4414
4415 if (is_high) {
4416 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4417 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4418 TCGv_i64 tcg_rn = cpu_reg(s, rn);
4419 TCGv_i64 tcg_rm = cpu_reg(s, rm);
4420
4421 if (is_signed) {
4422 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4423 } else {
4424 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4425 }
4426
4427 tcg_temp_free_i64(low_bits);
4428 return;
4429 }
4430
4431 tcg_op1 = tcg_temp_new_i64();
4432 tcg_op2 = tcg_temp_new_i64();
4433 tcg_tmp = tcg_temp_new_i64();
4434
4435 if (op_id < 0x42) {
4436 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4437 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4438 } else {
4439 if (is_signed) {
4440 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4441 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4442 } else {
4443 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4444 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4445 }
4446 }
4447
4448 if (ra == 31 && !is_sub) {
4449 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4450 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4451 } else {
4452 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4453 if (is_sub) {
4454 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4455 } else {
4456 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4457 }
4458 }
4459
4460 if (!sf) {
4461 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4462 }
4463
4464 tcg_temp_free_i64(tcg_op1);
4465 tcg_temp_free_i64(tcg_op2);
4466 tcg_temp_free_i64(tcg_tmp);
4467 }
4468
4469 /* Add/subtract (with carry)
4470 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
4471 * +--+--+--+------------------------+------+---------+------+-----+
4472 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
4473 * +--+--+--+------------------------+------+---------+------+-----+
4474 * [000000]
4475 */
4476
4477 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4478 {
4479 unsigned int sf, op, setflags, rm, rn, rd;
4480 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4481
4482 if (extract32(insn, 10, 6) != 0) {
4483 unallocated_encoding(s);
4484 return;
4485 }
4486
4487 sf = extract32(insn, 31, 1);
4488 op = extract32(insn, 30, 1);
4489 setflags = extract32(insn, 29, 1);
4490 rm = extract32(insn, 16, 5);
4491 rn = extract32(insn, 5, 5);
4492 rd = extract32(insn, 0, 5);
4493
4494 tcg_rd = cpu_reg(s, rd);
4495 tcg_rn = cpu_reg(s, rn);
4496
4497 if (op) {
4498 tcg_y = new_tmp_a64(s);
4499 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4500 } else {
4501 tcg_y = cpu_reg(s, rm);
4502 }
4503
4504 if (setflags) {
4505 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4506 } else {
4507 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4508 }
4509 }
4510
4511 /* Conditional compare (immediate / register)
4512 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4513 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4514 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
4515 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4516 * [1] y [0] [0]
4517 */
4518 static void disas_cc(DisasContext *s, uint32_t insn)
4519 {
4520 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
4521 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
4522 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
4523 DisasCompare c;
4524
4525 if (!extract32(insn, 29, 1)) {
4526 unallocated_encoding(s);
4527 return;
4528 }
4529 if (insn & (1 << 10 | 1 << 4)) {
4530 unallocated_encoding(s);
4531 return;
4532 }
4533 sf = extract32(insn, 31, 1);
4534 op = extract32(insn, 30, 1);
4535 is_imm = extract32(insn, 11, 1);
4536 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
4537 cond = extract32(insn, 12, 4);
4538 rn = extract32(insn, 5, 5);
4539 nzcv = extract32(insn, 0, 4);
4540
4541 /* Set T0 = !COND. */
4542 tcg_t0 = tcg_temp_new_i32();
4543 arm_test_cc(&c, cond);
4544 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
4545 arm_free_cc(&c);
4546
4547 /* Load the arguments for the new comparison. */
4548 if (is_imm) {
4549 tcg_y = new_tmp_a64(s);
4550 tcg_gen_movi_i64(tcg_y, y);
4551 } else {
4552 tcg_y = cpu_reg(s, y);
4553 }
4554 tcg_rn = cpu_reg(s, rn);
4555
4556 /* Set the flags for the new comparison. */
4557 tcg_tmp = tcg_temp_new_i64();
4558 if (op) {
4559 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4560 } else {
4561 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4562 }
4563 tcg_temp_free_i64(tcg_tmp);
4564
4565 /* If COND was false, force the flags to #nzcv. Compute two masks
4566 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
4567 * For tcg hosts that support ANDC, we can make do with just T1.
4568 * In either case, allow the tcg optimizer to delete any unused mask.
4569 */
4570 tcg_t1 = tcg_temp_new_i32();
4571 tcg_t2 = tcg_temp_new_i32();
4572 tcg_gen_neg_i32(tcg_t1, tcg_t0);
4573 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
4574
4575 if (nzcv & 8) { /* N */
4576 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
4577 } else {
4578 if (TCG_TARGET_HAS_andc_i32) {
4579 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
4580 } else {
4581 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
4582 }
4583 }
4584 if (nzcv & 4) { /* Z */
4585 if (TCG_TARGET_HAS_andc_i32) {
4586 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
4587 } else {
4588 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
4589 }
4590 } else {
4591 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
4592 }
4593 if (nzcv & 2) { /* C */
4594 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
4595 } else {
4596 if (TCG_TARGET_HAS_andc_i32) {
4597 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
4598 } else {
4599 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
4600 }
4601 }
4602 if (nzcv & 1) { /* V */
4603 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
4604 } else {
4605 if (TCG_TARGET_HAS_andc_i32) {
4606 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
4607 } else {
4608 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
4609 }
4610 }
4611 tcg_temp_free_i32(tcg_t0);
4612 tcg_temp_free_i32(tcg_t1);
4613 tcg_temp_free_i32(tcg_t2);
4614 }
4615
4616 /* Conditional select
4617 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
4618 * +----+----+---+-----------------+------+------+-----+------+------+
4619 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
4620 * +----+----+---+-----------------+------+------+-----+------+------+
4621 */
4622 static void disas_cond_select(DisasContext *s, uint32_t insn)
4623 {
4624 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
4625 TCGv_i64 tcg_rd, zero;
4626 DisasCompare64 c;
4627
4628 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
4629 /* S == 1 or op2<1> == 1 */
4630 unallocated_encoding(s);
4631 return;
4632 }
4633 sf = extract32(insn, 31, 1);
4634 else_inv = extract32(insn, 30, 1);
4635 rm = extract32(insn, 16, 5);
4636 cond = extract32(insn, 12, 4);
4637 else_inc = extract32(insn, 10, 1);
4638 rn = extract32(insn, 5, 5);
4639 rd = extract32(insn, 0, 5);
4640
4641 tcg_rd = cpu_reg(s, rd);
4642
4643 a64_test_cc(&c, cond);
4644 zero = tcg_const_i64(0);
4645
4646 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
4647 /* CSET & CSETM. */
4648 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
4649 if (else_inv) {
4650 tcg_gen_neg_i64(tcg_rd, tcg_rd);
4651 }
4652 } else {
4653 TCGv_i64 t_true = cpu_reg(s, rn);
4654 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
4655 if (else_inv && else_inc) {
4656 tcg_gen_neg_i64(t_false, t_false);
4657 } else if (else_inv) {
4658 tcg_gen_not_i64(t_false, t_false);
4659 } else if (else_inc) {
4660 tcg_gen_addi_i64(t_false, t_false, 1);
4661 }
4662 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
4663 }
4664
4665 tcg_temp_free_i64(zero);
4666 a64_free_cc(&c);
4667
4668 if (!sf) {
4669 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4670 }
4671 }
4672
4673 static void handle_clz(DisasContext *s, unsigned int sf,
4674 unsigned int rn, unsigned int rd)
4675 {
4676 TCGv_i64 tcg_rd, tcg_rn;
4677 tcg_rd = cpu_reg(s, rd);
4678 tcg_rn = cpu_reg(s, rn);
4679
4680 if (sf) {
4681 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
4682 } else {
4683 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4684 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4685 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
4686 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4687 tcg_temp_free_i32(tcg_tmp32);
4688 }
4689 }
4690
4691 static void handle_cls(DisasContext *s, unsigned int sf,
4692 unsigned int rn, unsigned int rd)
4693 {
4694 TCGv_i64 tcg_rd, tcg_rn;
4695 tcg_rd = cpu_reg(s, rd);
4696 tcg_rn = cpu_reg(s, rn);
4697
4698 if (sf) {
4699 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
4700 } else {
4701 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4702 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4703 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
4704 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4705 tcg_temp_free_i32(tcg_tmp32);
4706 }
4707 }
4708
4709 static void handle_rbit(DisasContext *s, unsigned int sf,
4710 unsigned int rn, unsigned int rd)
4711 {
4712 TCGv_i64 tcg_rd, tcg_rn;
4713 tcg_rd = cpu_reg(s, rd);
4714 tcg_rn = cpu_reg(s, rn);
4715
4716 if (sf) {
4717 gen_helper_rbit64(tcg_rd, tcg_rn);
4718 } else {
4719 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4720 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4721 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
4722 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4723 tcg_temp_free_i32(tcg_tmp32);
4724 }
4725 }
4726
4727 /* REV with sf==1, opcode==3 ("REV64") */
4728 static void handle_rev64(DisasContext *s, unsigned int sf,
4729 unsigned int rn, unsigned int rd)
4730 {
4731 if (!sf) {
4732 unallocated_encoding(s);
4733 return;
4734 }
4735 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
4736 }
4737
4738 /* REV with sf==0, opcode==2
4739 * REV32 (sf==1, opcode==2)
4740 */
4741 static void handle_rev32(DisasContext *s, unsigned int sf,
4742 unsigned int rn, unsigned int rd)
4743 {
4744 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4745
4746 if (sf) {
4747 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4748 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4749
4750 /* bswap32_i64 requires zero high word */
4751 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
4752 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
4753 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4754 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
4755 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
4756
4757 tcg_temp_free_i64(tcg_tmp);
4758 } else {
4759 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
4760 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
4761 }
4762 }
4763
4764 /* REV16 (opcode==1) */
4765 static void handle_rev16(DisasContext *s, unsigned int sf,
4766 unsigned int rn, unsigned int rd)
4767 {
4768 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4769 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4770 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4771 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
4772
4773 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
4774 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
4775 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
4776 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
4777 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
4778
4779 tcg_temp_free_i64(mask);
4780 tcg_temp_free_i64(tcg_tmp);
4781 }
4782
4783 /* Data-processing (1 source)
4784 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4785 * +----+---+---+-----------------+---------+--------+------+------+
4786 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
4787 * +----+---+---+-----------------+---------+--------+------+------+
4788 */
4789 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
4790 {
4791 unsigned int sf, opcode, opcode2, rn, rd;
4792 TCGv_i64 tcg_rd;
4793
4794 if (extract32(insn, 29, 1)) {
4795 unallocated_encoding(s);
4796 return;
4797 }
4798
4799 sf = extract32(insn, 31, 1);
4800 opcode = extract32(insn, 10, 6);
4801 opcode2 = extract32(insn, 16, 5);
4802 rn = extract32(insn, 5, 5);
4803 rd = extract32(insn, 0, 5);
4804
4805 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
4806
4807 switch (MAP(sf, opcode2, opcode)) {
4808 case MAP(0, 0x00, 0x00): /* RBIT */
4809 case MAP(1, 0x00, 0x00):
4810 handle_rbit(s, sf, rn, rd);
4811 break;
4812 case MAP(0, 0x00, 0x01): /* REV16 */
4813 case MAP(1, 0x00, 0x01):
4814 handle_rev16(s, sf, rn, rd);
4815 break;
4816 case MAP(0, 0x00, 0x02): /* REV/REV32 */
4817 case MAP(1, 0x00, 0x02):
4818 handle_rev32(s, sf, rn, rd);
4819 break;
4820 case MAP(1, 0x00, 0x03): /* REV64 */
4821 handle_rev64(s, sf, rn, rd);
4822 break;
4823 case MAP(0, 0x00, 0x04): /* CLZ */
4824 case MAP(1, 0x00, 0x04):
4825 handle_clz(s, sf, rn, rd);
4826 break;
4827 case MAP(0, 0x00, 0x05): /* CLS */
4828 case MAP(1, 0x00, 0x05):
4829 handle_cls(s, sf, rn, rd);
4830 break;
4831 case MAP(1, 0x01, 0x00): /* PACIA */
4832 if (s->pauth_active) {
4833 tcg_rd = cpu_reg(s, rd);
4834 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4835 } else if (!dc_isar_feature(aa64_pauth, s)) {
4836 goto do_unallocated;
4837 }
4838 break;
4839 case MAP(1, 0x01, 0x01): /* PACIB */
4840 if (s->pauth_active) {
4841 tcg_rd = cpu_reg(s, rd);
4842 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4843 } else if (!dc_isar_feature(aa64_pauth, s)) {
4844 goto do_unallocated;
4845 }
4846 break;
4847 case MAP(1, 0x01, 0x02): /* PACDA */
4848 if (s->pauth_active) {
4849 tcg_rd = cpu_reg(s, rd);
4850 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4851 } else if (!dc_isar_feature(aa64_pauth, s)) {
4852 goto do_unallocated;
4853 }
4854 break;
4855 case MAP(1, 0x01, 0x03): /* PACDB */
4856 if (s->pauth_active) {
4857 tcg_rd = cpu_reg(s, rd);
4858 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4859 } else if (!dc_isar_feature(aa64_pauth, s)) {
4860 goto do_unallocated;
4861 }
4862 break;
4863 case MAP(1, 0x01, 0x04): /* AUTIA */
4864 if (s->pauth_active) {
4865 tcg_rd = cpu_reg(s, rd);
4866 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4867 } else if (!dc_isar_feature(aa64_pauth, s)) {
4868 goto do_unallocated;
4869 }
4870 break;
4871 case MAP(1, 0x01, 0x05): /* AUTIB */
4872 if (s->pauth_active) {
4873 tcg_rd = cpu_reg(s, rd);
4874 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4875 } else if (!dc_isar_feature(aa64_pauth, s)) {
4876 goto do_unallocated;
4877 }
4878 break;
4879 case MAP(1, 0x01, 0x06): /* AUTDA */
4880 if (s->pauth_active) {
4881 tcg_rd = cpu_reg(s, rd);
4882 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4883 } else if (!dc_isar_feature(aa64_pauth, s)) {
4884 goto do_unallocated;
4885 }
4886 break;
4887 case MAP(1, 0x01, 0x07): /* AUTDB */
4888 if (s->pauth_active) {
4889 tcg_rd = cpu_reg(s, rd);
4890 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4891 } else if (!dc_isar_feature(aa64_pauth, s)) {
4892 goto do_unallocated;
4893 }
4894 break;
4895 case MAP(1, 0x01, 0x08): /* PACIZA */
4896 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4897 goto do_unallocated;
4898 } else if (s->pauth_active) {
4899 tcg_rd = cpu_reg(s, rd);
4900 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4901 }
4902 break;
4903 case MAP(1, 0x01, 0x09): /* PACIZB */
4904 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4905 goto do_unallocated;
4906 } else if (s->pauth_active) {
4907 tcg_rd = cpu_reg(s, rd);
4908 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4909 }
4910 break;
4911 case MAP(1, 0x01, 0x0a): /* PACDZA */
4912 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4913 goto do_unallocated;
4914 } else if (s->pauth_active) {
4915 tcg_rd = cpu_reg(s, rd);
4916 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4917 }
4918 break;
4919 case MAP(1, 0x01, 0x0b): /* PACDZB */
4920 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4921 goto do_unallocated;
4922 } else if (s->pauth_active) {
4923 tcg_rd = cpu_reg(s, rd);
4924 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4925 }
4926 break;
4927 case MAP(1, 0x01, 0x0c): /* AUTIZA */
4928 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4929 goto do_unallocated;
4930 } else if (s->pauth_active) {
4931 tcg_rd = cpu_reg(s, rd);
4932 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4933 }
4934 break;
4935 case MAP(1, 0x01, 0x0d): /* AUTIZB */
4936 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4937 goto do_unallocated;
4938 } else if (s->pauth_active) {
4939 tcg_rd = cpu_reg(s, rd);
4940 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4941 }
4942 break;
4943 case MAP(1, 0x01, 0x0e): /* AUTDZA */
4944 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4945 goto do_unallocated;
4946 } else if (s->pauth_active) {
4947 tcg_rd = cpu_reg(s, rd);
4948 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4949 }
4950 break;
4951 case MAP(1, 0x01, 0x0f): /* AUTDZB */
4952 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4953 goto do_unallocated;
4954 } else if (s->pauth_active) {
4955 tcg_rd = cpu_reg(s, rd);
4956 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4957 }
4958 break;
4959 case MAP(1, 0x01, 0x10): /* XPACI */
4960 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4961 goto do_unallocated;
4962 } else if (s->pauth_active) {
4963 tcg_rd = cpu_reg(s, rd);
4964 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
4965 }
4966 break;
4967 case MAP(1, 0x01, 0x11): /* XPACD */
4968 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4969 goto do_unallocated;
4970 } else if (s->pauth_active) {
4971 tcg_rd = cpu_reg(s, rd);
4972 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
4973 }
4974 break;
4975 default:
4976 do_unallocated:
4977 unallocated_encoding(s);
4978 break;
4979 }
4980
4981 #undef MAP
4982 }
4983
4984 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
4985 unsigned int rm, unsigned int rn, unsigned int rd)
4986 {
4987 TCGv_i64 tcg_n, tcg_m, tcg_rd;
4988 tcg_rd = cpu_reg(s, rd);
4989
4990 if (!sf && is_signed) {
4991 tcg_n = new_tmp_a64(s);
4992 tcg_m = new_tmp_a64(s);
4993 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
4994 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
4995 } else {
4996 tcg_n = read_cpu_reg(s, rn, sf);
4997 tcg_m = read_cpu_reg(s, rm, sf);
4998 }
4999
5000 if (is_signed) {
5001 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5002 } else {
5003 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5004 }
5005
5006 if (!sf) { /* zero extend final result */
5007 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5008 }
5009 }
5010
5011 /* LSLV, LSRV, ASRV, RORV */
5012 static void handle_shift_reg(DisasContext *s,
5013 enum a64_shift_type shift_type, unsigned int sf,
5014 unsigned int rm, unsigned int rn, unsigned int rd)
5015 {
5016 TCGv_i64 tcg_shift = tcg_temp_new_i64();
5017 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5018 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5019
5020 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5021 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5022 tcg_temp_free_i64(tcg_shift);
5023 }
5024
5025 /* CRC32[BHWX], CRC32C[BHWX] */
5026 static void handle_crc32(DisasContext *s,
5027 unsigned int sf, unsigned int sz, bool crc32c,
5028 unsigned int rm, unsigned int rn, unsigned int rd)
5029 {
5030 TCGv_i64 tcg_acc, tcg_val;
5031 TCGv_i32 tcg_bytes;
5032
5033 if (!dc_isar_feature(aa64_crc32, s)
5034 || (sf == 1 && sz != 3)
5035 || (sf == 0 && sz == 3)) {
5036 unallocated_encoding(s);
5037 return;
5038 }
5039
5040 if (sz == 3) {
5041 tcg_val = cpu_reg(s, rm);
5042 } else {
5043 uint64_t mask;
5044 switch (sz) {
5045 case 0:
5046 mask = 0xFF;
5047 break;
5048 case 1:
5049 mask = 0xFFFF;
5050 break;
5051 case 2:
5052 mask = 0xFFFFFFFF;
5053 break;
5054 default:
5055 g_assert_not_reached();
5056 }
5057 tcg_val = new_tmp_a64(s);
5058 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5059 }
5060
5061 tcg_acc = cpu_reg(s, rn);
5062 tcg_bytes = tcg_const_i32(1 << sz);
5063
5064 if (crc32c) {
5065 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5066 } else {
5067 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5068 }
5069
5070 tcg_temp_free_i32(tcg_bytes);
5071 }
5072
5073 /* Data-processing (2 source)
5074 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5075 * +----+---+---+-----------------+------+--------+------+------+
5076 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5077 * +----+---+---+-----------------+------+--------+------+------+
5078 */
5079 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5080 {
5081 unsigned int sf, rm, opcode, rn, rd;
5082 sf = extract32(insn, 31, 1);
5083 rm = extract32(insn, 16, 5);
5084 opcode = extract32(insn, 10, 6);
5085 rn = extract32(insn, 5, 5);
5086 rd = extract32(insn, 0, 5);
5087
5088 if (extract32(insn, 29, 1)) {
5089 unallocated_encoding(s);
5090 return;
5091 }
5092
5093 switch (opcode) {
5094 case 2: /* UDIV */
5095 handle_div(s, false, sf, rm, rn, rd);
5096 break;
5097 case 3: /* SDIV */
5098 handle_div(s, true, sf, rm, rn, rd);
5099 break;
5100 case 8: /* LSLV */
5101 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5102 break;
5103 case 9: /* LSRV */
5104 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5105 break;
5106 case 10: /* ASRV */
5107 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5108 break;
5109 case 11: /* RORV */
5110 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5111 break;
5112 case 12: /* PACGA */
5113 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5114 goto do_unallocated;
5115 }
5116 gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5117 cpu_reg(s, rn), cpu_reg_sp(s, rm));
5118 break;
5119 case 16:
5120 case 17:
5121 case 18:
5122 case 19:
5123 case 20:
5124 case 21:
5125 case 22:
5126 case 23: /* CRC32 */
5127 {
5128 int sz = extract32(opcode, 0, 2);
5129 bool crc32c = extract32(opcode, 2, 1);
5130 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5131 break;
5132 }
5133 default:
5134 do_unallocated:
5135 unallocated_encoding(s);
5136 break;
5137 }
5138 }
5139
5140 /* Data processing - register */
5141 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5142 {
5143 switch (extract32(insn, 24, 5)) {
5144 case 0x0a: /* Logical (shifted register) */
5145 disas_logic_reg(s, insn);
5146 break;
5147 case 0x0b: /* Add/subtract */
5148 if (insn & (1 << 21)) { /* (extended register) */
5149 disas_add_sub_ext_reg(s, insn);
5150 } else {
5151 disas_add_sub_reg(s, insn);
5152 }
5153 break;
5154 case 0x1b: /* Data-processing (3 source) */
5155 disas_data_proc_3src(s, insn);
5156 break;
5157 case 0x1a:
5158 switch (extract32(insn, 21, 3)) {
5159 case 0x0: /* Add/subtract (with carry) */
5160 disas_adc_sbc(s, insn);
5161 break;
5162 case 0x2: /* Conditional compare */
5163 disas_cc(s, insn); /* both imm and reg forms */
5164 break;
5165 case 0x4: /* Conditional select */
5166 disas_cond_select(s, insn);
5167 break;
5168 case 0x6: /* Data-processing */
5169 if (insn & (1 << 30)) { /* (1 source) */
5170 disas_data_proc_1src(s, insn);
5171 } else { /* (2 source) */
5172 disas_data_proc_2src(s, insn);
5173 }
5174 break;
5175 default:
5176 unallocated_encoding(s);
5177 break;
5178 }
5179 break;
5180 default:
5181 unallocated_encoding(s);
5182 break;
5183 }
5184 }
5185
5186 static void handle_fp_compare(DisasContext *s, int size,
5187 unsigned int rn, unsigned int rm,
5188 bool cmp_with_zero, bool signal_all_nans)
5189 {
5190 TCGv_i64 tcg_flags = tcg_temp_new_i64();
5191 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
5192
5193 if (size == MO_64) {
5194 TCGv_i64 tcg_vn, tcg_vm;
5195
5196 tcg_vn = read_fp_dreg(s, rn);
5197 if (cmp_with_zero) {
5198 tcg_vm = tcg_const_i64(0);
5199 } else {
5200 tcg_vm = read_fp_dreg(s, rm);
5201 }
5202 if (signal_all_nans) {
5203 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5204 } else {
5205 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5206 }
5207 tcg_temp_free_i64(tcg_vn);
5208 tcg_temp_free_i64(tcg_vm);
5209 } else {
5210 TCGv_i32 tcg_vn = tcg_temp_new_i32();
5211 TCGv_i32 tcg_vm = tcg_temp_new_i32();
5212
5213 read_vec_element_i32(s, tcg_vn, rn, 0, size);
5214 if (cmp_with_zero) {
5215 tcg_gen_movi_i32(tcg_vm, 0);
5216 } else {
5217 read_vec_element_i32(s, tcg_vm, rm, 0, size);
5218 }
5219
5220 switch (size) {
5221 case MO_32:
5222 if (signal_all_nans) {
5223 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5224 } else {
5225 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5226 }
5227 break;
5228 case MO_16:
5229 if (signal_all_nans) {
5230 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5231 } else {
5232 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5233 }
5234 break;
5235 default:
5236 g_assert_not_reached();
5237 }
5238
5239 tcg_temp_free_i32(tcg_vn);
5240 tcg_temp_free_i32(tcg_vm);
5241 }
5242
5243 tcg_temp_free_ptr(fpst);
5244
5245 gen_set_nzcv(tcg_flags);
5246
5247 tcg_temp_free_i64(tcg_flags);
5248 }
5249
5250 /* Floating point compare
5251 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
5252 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5253 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
5254 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5255 */
5256 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5257 {
5258 unsigned int mos, type, rm, op, rn, opc, op2r;
5259 int size;
5260
5261 mos = extract32(insn, 29, 3);
5262 type = extract32(insn, 22, 2);
5263 rm = extract32(insn, 16, 5);
5264 op = extract32(insn, 14, 2);
5265 rn = extract32(insn, 5, 5);
5266 opc = extract32(insn, 3, 2);
5267 op2r = extract32(insn, 0, 3);
5268
5269 if (mos || op || op2r) {
5270 unallocated_encoding(s);
5271 return;
5272 }
5273
5274 switch (type) {
5275 case 0:
5276 size = MO_32;
5277 break;
5278 case 1:
5279 size = MO_64;
5280 break;
5281 case 3:
5282 size = MO_16;
5283 if (dc_isar_feature(aa64_fp16, s)) {
5284 break;
5285 }
5286 /* fallthru */
5287 default:
5288 unallocated_encoding(s);
5289 return;
5290 }
5291
5292 if (!fp_access_check(s)) {
5293 return;
5294 }
5295
5296 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5297 }
5298
5299 /* Floating point conditional compare
5300 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5301 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5302 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
5303 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5304 */
5305 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5306 {
5307 unsigned int mos, type, rm, cond, rn, op, nzcv;
5308 TCGv_i64 tcg_flags;
5309 TCGLabel *label_continue = NULL;
5310 int size;
5311
5312 mos = extract32(insn, 29, 3);
5313 type = extract32(insn, 22, 2);
5314 rm = extract32(insn, 16, 5);
5315 cond = extract32(insn, 12, 4);
5316 rn = extract32(insn, 5, 5);
5317 op = extract32(insn, 4, 1);
5318 nzcv = extract32(insn, 0, 4);
5319
5320 if (mos) {
5321 unallocated_encoding(s);
5322 return;
5323 }
5324
5325 switch (type) {
5326 case 0:
5327 size = MO_32;
5328 break;
5329 case 1:
5330 size = MO_64;
5331 break;
5332 case 3:
5333 size = MO_16;
5334 if (dc_isar_feature(aa64_fp16, s)) {
5335 break;
5336 }
5337 /* fallthru */
5338 default:
5339 unallocated_encoding(s);
5340 return;
5341 }
5342
5343 if (!fp_access_check(s)) {
5344 return;
5345 }
5346
5347 if (cond < 0x0e) { /* not always */
5348 TCGLabel *label_match = gen_new_label();
5349 label_continue = gen_new_label();
5350 arm_gen_test_cc(cond, label_match);
5351 /* nomatch: */
5352 tcg_flags = tcg_const_i64(nzcv << 28);
5353 gen_set_nzcv(tcg_flags);
5354 tcg_temp_free_i64(tcg_flags);
5355 tcg_gen_br(label_continue);
5356 gen_set_label(label_match);
5357 }
5358
5359 handle_fp_compare(s, size, rn, rm, false, op);
5360
5361 if (cond < 0x0e) {
5362 gen_set_label(label_continue);
5363 }
5364 }
5365
5366 /* Floating point conditional select
5367 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5368 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5369 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
5370 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5371 */
5372 static void disas_fp_csel(DisasContext *s, uint32_t insn)
5373 {
5374 unsigned int mos, type, rm, cond, rn, rd;
5375 TCGv_i64 t_true, t_false, t_zero;
5376 DisasCompare64 c;
5377 TCGMemOp sz;
5378
5379 mos = extract32(insn, 29, 3);
5380 type = extract32(insn, 22, 2);
5381 rm = extract32(insn, 16, 5);
5382 cond = extract32(insn, 12, 4);
5383 rn = extract32(insn, 5, 5);
5384 rd = extract32(insn, 0, 5);
5385
5386 if (mos) {
5387 unallocated_encoding(s);
5388 return;
5389 }
5390
5391 switch (type) {
5392 case 0:
5393 sz = MO_32;
5394 break;
5395 case 1:
5396 sz = MO_64;
5397 break;
5398 case 3:
5399 sz = MO_16;
5400 if (dc_isar_feature(aa64_fp16, s)) {
5401 break;
5402 }
5403 /* fallthru */
5404 default:
5405 unallocated_encoding(s);
5406 return;
5407 }
5408
5409 if (!fp_access_check(s)) {
5410 return;
5411 }
5412
5413 /* Zero extend sreg & hreg inputs to 64 bits now. */
5414 t_true = tcg_temp_new_i64();
5415 t_false = tcg_temp_new_i64();
5416 read_vec_element(s, t_true, rn, 0, sz);
5417 read_vec_element(s, t_false, rm, 0, sz);
5418
5419 a64_test_cc(&c, cond);
5420 t_zero = tcg_const_i64(0);
5421 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
5422 tcg_temp_free_i64(t_zero);
5423 tcg_temp_free_i64(t_false);
5424 a64_free_cc(&c);
5425
5426 /* Note that sregs & hregs write back zeros to the high bits,
5427 and we've already done the zero-extension. */
5428 write_fp_dreg(s, rd, t_true);
5429 tcg_temp_free_i64(t_true);
5430 }
5431
5432 /* Floating-point data-processing (1 source) - half precision */
5433 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
5434 {
5435 TCGv_ptr fpst = NULL;
5436 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
5437 TCGv_i32 tcg_res = tcg_temp_new_i32();
5438
5439 switch (opcode) {
5440 case 0x0: /* FMOV */
5441 tcg_gen_mov_i32(tcg_res, tcg_op);
5442 break;
5443 case 0x1: /* FABS */
5444 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
5445 break;
5446 case 0x2: /* FNEG */
5447 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
5448 break;
5449 case 0x3: /* FSQRT */
5450 fpst = get_fpstatus_ptr(true);
5451 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
5452 break;
5453 case 0x8: /* FRINTN */
5454 case 0x9: /* FRINTP */
5455 case 0xa: /* FRINTM */
5456 case 0xb: /* FRINTZ */
5457 case 0xc: /* FRINTA */
5458 {
5459 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5460 fpst = get_fpstatus_ptr(true);
5461
5462 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5463 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5464
5465 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5466 tcg_temp_free_i32(tcg_rmode);
5467 break;
5468 }
5469 case 0xe: /* FRINTX */
5470 fpst = get_fpstatus_ptr(true);
5471 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
5472 break;
5473 case 0xf: /* FRINTI */
5474 fpst = get_fpstatus_ptr(true);
5475 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5476 break;
5477 default:
5478 abort();
5479 }
5480
5481 write_fp_sreg(s, rd, tcg_res);
5482
5483 if (fpst) {
5484 tcg_temp_free_ptr(fpst);
5485 }
5486 tcg_temp_free_i32(tcg_op);
5487 tcg_temp_free_i32(tcg_res);
5488 }
5489
5490 /* Floating-point data-processing (1 source) - single precision */
5491 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
5492 {
5493 TCGv_ptr fpst;
5494 TCGv_i32 tcg_op;
5495 TCGv_i32 tcg_res;
5496
5497 fpst = get_fpstatus_ptr(false);
5498 tcg_op = read_fp_sreg(s, rn);
5499 tcg_res = tcg_temp_new_i32();
5500
5501 switch (opcode) {
5502 case 0x0: /* FMOV */
5503 tcg_gen_mov_i32(tcg_res, tcg_op);
5504 break;
5505 case 0x1: /* FABS */
5506 gen_helper_vfp_abss(tcg_res, tcg_op);
5507 break;
5508 case 0x2: /* FNEG */
5509 gen_helper_vfp_negs(tcg_res, tcg_op);
5510 break;
5511 case 0x3: /* FSQRT */
5512 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
5513 break;
5514 case 0x8: /* FRINTN */
5515 case 0x9: /* FRINTP */
5516 case 0xa: /* FRINTM */
5517 case 0xb: /* FRINTZ */
5518 case 0xc: /* FRINTA */
5519 {
5520 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5521
5522 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5523 gen_helper_rints(tcg_res, tcg_op, fpst);
5524
5525 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5526 tcg_temp_free_i32(tcg_rmode);
5527 break;
5528 }
5529 case 0xe: /* FRINTX */
5530 gen_helper_rints_exact(tcg_res, tcg_op, fpst);
5531 break;
5532 case 0xf: /* FRINTI */
5533 gen_helper_rints(tcg_res, tcg_op, fpst);
5534 break;
5535 default:
5536 abort();
5537 }
5538
5539 write_fp_sreg(s, rd, tcg_res);
5540
5541 tcg_temp_free_ptr(fpst);
5542 tcg_temp_free_i32(tcg_op);
5543 tcg_temp_free_i32(tcg_res);
5544 }
5545
5546 /* Floating-point data-processing (1 source) - double precision */
5547 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
5548 {
5549 TCGv_ptr fpst;
5550 TCGv_i64 tcg_op;
5551 TCGv_i64 tcg_res;
5552
5553 switch (opcode) {
5554 case 0x0: /* FMOV */
5555 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
5556 return;
5557 }
5558
5559 fpst = get_fpstatus_ptr(false);
5560 tcg_op = read_fp_dreg(s, rn);
5561 tcg_res = tcg_temp_new_i64();
5562
5563 switch (opcode) {
5564 case 0x1: /* FABS */
5565 gen_helper_vfp_absd(tcg_res, tcg_op);
5566 break;
5567 case 0x2: /* FNEG */
5568 gen_helper_vfp_negd(tcg_res, tcg_op);
5569 break;
5570 case 0x3: /* FSQRT */
5571 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
5572 break;
5573 case 0x8: /* FRINTN */
5574 case 0x9: /* FRINTP */
5575 case 0xa: /* FRINTM */
5576 case 0xb: /* FRINTZ */
5577 case 0xc: /* FRINTA */
5578 {
5579 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5580
5581 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5582 gen_helper_rintd(tcg_res, tcg_op, fpst);
5583
5584 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5585 tcg_temp_free_i32(tcg_rmode);
5586 break;
5587 }
5588 case 0xe: /* FRINTX */
5589 gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
5590 break;
5591 case 0xf: /* FRINTI */
5592 gen_helper_rintd(tcg_res, tcg_op, fpst);
5593 break;
5594 default:
5595 abort();
5596 }
5597
5598 write_fp_dreg(s, rd, tcg_res);
5599
5600 tcg_temp_free_ptr(fpst);
5601 tcg_temp_free_i64(tcg_op);
5602 tcg_temp_free_i64(tcg_res);
5603 }
5604
5605 static void handle_fp_fcvt(DisasContext *s, int opcode,
5606 int rd, int rn, int dtype, int ntype)
5607 {
5608 switch (ntype) {
5609 case 0x0:
5610 {
5611 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5612 if (dtype == 1) {
5613 /* Single to double */
5614 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5615 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
5616 write_fp_dreg(s, rd, tcg_rd);
5617 tcg_temp_free_i64(tcg_rd);
5618 } else {
5619 /* Single to half */
5620 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5621 TCGv_i32 ahp = get_ahp_flag();
5622 TCGv_ptr fpst = get_fpstatus_ptr(false);
5623
5624 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5625 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5626 write_fp_sreg(s, rd, tcg_rd);
5627 tcg_temp_free_i32(tcg_rd);
5628 tcg_temp_free_i32(ahp);
5629 tcg_temp_free_ptr(fpst);
5630 }
5631 tcg_temp_free_i32(tcg_rn);
5632 break;
5633 }
5634 case 0x1:
5635 {
5636 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
5637 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5638 if (dtype == 0) {
5639 /* Double to single */
5640 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
5641 } else {
5642 TCGv_ptr fpst = get_fpstatus_ptr(false);
5643 TCGv_i32 ahp = get_ahp_flag();
5644 /* Double to half */
5645 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5646 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5647 tcg_temp_free_ptr(fpst);
5648 tcg_temp_free_i32(ahp);
5649 }
5650 write_fp_sreg(s, rd, tcg_rd);
5651 tcg_temp_free_i32(tcg_rd);
5652 tcg_temp_free_i64(tcg_rn);
5653 break;
5654 }
5655 case 0x3:
5656 {
5657 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5658 TCGv_ptr tcg_fpst = get_fpstatus_ptr(false);
5659 TCGv_i32 tcg_ahp = get_ahp_flag();
5660 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
5661 if (dtype == 0) {
5662 /* Half to single */
5663 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5664 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5665 write_fp_sreg(s, rd, tcg_rd);
5666 tcg_temp_free_ptr(tcg_fpst);
5667 tcg_temp_free_i32(tcg_ahp);
5668 tcg_temp_free_i32(tcg_rd);
5669 } else {
5670 /* Half to double */
5671 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5672 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5673 write_fp_dreg(s, rd, tcg_rd);
5674 tcg_temp_free_i64(tcg_rd);
5675 }
5676 tcg_temp_free_i32(tcg_rn);
5677 break;
5678 }
5679 default:
5680 abort();
5681 }
5682 }
5683
5684 /* Floating point data-processing (1 source)
5685 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
5686 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5687 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
5688 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5689 */
5690 static void disas_fp_1src(DisasContext *s, uint32_t insn)
5691 {
5692 int mos = extract32(insn, 29, 3);
5693 int type = extract32(insn, 22, 2);
5694 int opcode = extract32(insn, 15, 6);
5695 int rn = extract32(insn, 5, 5);
5696 int rd = extract32(insn, 0, 5);
5697
5698 if (mos) {
5699 unallocated_encoding(s);
5700 return;
5701 }
5702
5703 switch (opcode) {
5704 case 0x4: case 0x5: case 0x7:
5705 {
5706 /* FCVT between half, single and double precision */
5707 int dtype = extract32(opcode, 0, 2);
5708 if (type == 2 || dtype == type) {
5709 unallocated_encoding(s);
5710 return;
5711 }
5712 if (!fp_access_check(s)) {
5713 return;
5714 }
5715
5716 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
5717 break;
5718 }
5719 case 0x0 ... 0x3:
5720 case 0x8 ... 0xc:
5721 case 0xe ... 0xf:
5722 /* 32-to-32 and 64-to-64 ops */
5723 switch (type) {
5724 case 0:
5725 if (!fp_access_check(s)) {
5726 return;
5727 }
5728
5729 handle_fp_1src_single(s, opcode, rd, rn);
5730 break;
5731 case 1:
5732 if (!fp_access_check(s)) {
5733 return;
5734 }
5735
5736 handle_fp_1src_double(s, opcode, rd, rn);
5737 break;
5738 case 3:
5739 if (!dc_isar_feature(aa64_fp16, s)) {
5740 unallocated_encoding(s);
5741 return;
5742 }
5743
5744 if (!fp_access_check(s)) {
5745 return;
5746 }
5747
5748 handle_fp_1src_half(s, opcode, rd, rn);
5749 break;
5750 default:
5751 unallocated_encoding(s);
5752 }
5753 break;
5754 default:
5755 unallocated_encoding(s);
5756 break;
5757 }
5758 }
5759
5760 /* Floating-point data-processing (2 source) - single precision */
5761 static void handle_fp_2src_single(DisasContext *s, int opcode,
5762 int rd, int rn, int rm)
5763 {
5764 TCGv_i32 tcg_op1;
5765 TCGv_i32 tcg_op2;
5766 TCGv_i32 tcg_res;
5767 TCGv_ptr fpst;
5768
5769 tcg_res = tcg_temp_new_i32();
5770 fpst = get_fpstatus_ptr(false);
5771 tcg_op1 = read_fp_sreg(s, rn);
5772 tcg_op2 = read_fp_sreg(s, rm);
5773
5774 switch (opcode) {
5775 case 0x0: /* FMUL */
5776 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
5777 break;
5778 case 0x1: /* FDIV */
5779 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
5780 break;
5781 case 0x2: /* FADD */
5782 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
5783 break;
5784 case 0x3: /* FSUB */
5785 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
5786 break;
5787 case 0x4: /* FMAX */
5788 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
5789 break;
5790 case 0x5: /* FMIN */
5791 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
5792 break;
5793 case 0x6: /* FMAXNM */
5794 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
5795 break;
5796 case 0x7: /* FMINNM */
5797 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
5798 break;
5799 case 0x8: /* FNMUL */
5800 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
5801 gen_helper_vfp_negs(tcg_res, tcg_res);
5802 break;
5803 }
5804
5805 write_fp_sreg(s, rd, tcg_res);
5806
5807 tcg_temp_free_ptr(fpst);
5808 tcg_temp_free_i32(tcg_op1);
5809 tcg_temp_free_i32(tcg_op2);
5810 tcg_temp_free_i32(tcg_res);
5811 }
5812
5813 /* Floating-point data-processing (2 source) - double precision */
5814 static void handle_fp_2src_double(DisasContext *s, int opcode,
5815 int rd, int rn, int rm)
5816 {
5817 TCGv_i64 tcg_op1;
5818 TCGv_i64 tcg_op2;
5819 TCGv_i64 tcg_res;
5820 TCGv_ptr fpst;
5821
5822 tcg_res = tcg_temp_new_i64();
5823 fpst = get_fpstatus_ptr(false);
5824 tcg_op1 = read_fp_dreg(s, rn);
5825 tcg_op2 = read_fp_dreg(s, rm);
5826
5827 switch (opcode) {
5828 case 0x0: /* FMUL */
5829 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5830 break;
5831 case 0x1: /* FDIV */
5832 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
5833 break;
5834 case 0x2: /* FADD */
5835 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
5836 break;
5837 case 0x3: /* FSUB */
5838 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
5839 break;
5840 case 0x4: /* FMAX */
5841 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
5842 break;
5843 case 0x5: /* FMIN */
5844 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
5845 break;
5846 case 0x6: /* FMAXNM */
5847 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5848 break;
5849 case 0x7: /* FMINNM */
5850 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5851 break;
5852 case 0x8: /* FNMUL */
5853 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5854 gen_helper_vfp_negd(tcg_res, tcg_res);
5855 break;
5856 }
5857
5858 write_fp_dreg(s, rd, tcg_res);
5859
5860 tcg_temp_free_ptr(fpst);
5861 tcg_temp_free_i64(tcg_op1);
5862 tcg_temp_free_i64(tcg_op2);
5863 tcg_temp_free_i64(tcg_res);
5864 }
5865
5866 /* Floating-point data-processing (2 source) - half precision */
5867 static void handle_fp_2src_half(DisasContext *s, int opcode,
5868 int rd, int rn, int rm)
5869 {
5870 TCGv_i32 tcg_op1;
5871 TCGv_i32 tcg_op2;
5872 TCGv_i32 tcg_res;
5873 TCGv_ptr fpst;
5874
5875 tcg_res = tcg_temp_new_i32();
5876 fpst = get_fpstatus_ptr(true);
5877 tcg_op1 = read_fp_hreg(s, rn);
5878 tcg_op2 = read_fp_hreg(s, rm);
5879
5880 switch (opcode) {
5881 case 0x0: /* FMUL */
5882 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
5883 break;
5884 case 0x1: /* FDIV */
5885 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
5886 break;
5887 case 0x2: /* FADD */
5888 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
5889 break;
5890 case 0x3: /* FSUB */
5891 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
5892 break;
5893 case 0x4: /* FMAX */
5894 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
5895 break;
5896 case 0x5: /* FMIN */
5897 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
5898 break;
5899 case 0x6: /* FMAXNM */
5900 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
5901 break;
5902 case 0x7: /* FMINNM */
5903 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
5904 break;
5905 case 0x8: /* FNMUL */
5906 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
5907 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
5908 break;
5909 default:
5910 g_assert_not_reached();
5911 }
5912
5913 write_fp_sreg(s, rd, tcg_res);
5914
5915 tcg_temp_free_ptr(fpst);
5916 tcg_temp_free_i32(tcg_op1);
5917 tcg_temp_free_i32(tcg_op2);
5918 tcg_temp_free_i32(tcg_res);
5919 }
5920
5921 /* Floating point data-processing (2 source)
5922 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5923 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
5924 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
5925 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
5926 */
5927 static void disas_fp_2src(DisasContext *s, uint32_t insn)
5928 {
5929 int mos = extract32(insn, 29, 3);
5930 int type = extract32(insn, 22, 2);
5931 int rd = extract32(insn, 0, 5);
5932 int rn = extract32(insn, 5, 5);
5933 int rm = extract32(insn, 16, 5);
5934 int opcode = extract32(insn, 12, 4);
5935
5936 if (opcode > 8 || mos) {
5937 unallocated_encoding(s);
5938 return;
5939 }
5940
5941 switch (type) {
5942 case 0:
5943 if (!fp_access_check(s)) {
5944 return;
5945 }
5946 handle_fp_2src_single(s, opcode, rd, rn, rm);
5947 break;
5948 case 1:
5949 if (!fp_access_check(s)) {
5950 return;
5951 }
5952 handle_fp_2src_double(s, opcode, rd, rn, rm);
5953 break;
5954 case 3:
5955 if (!dc_isar_feature(aa64_fp16, s)) {
5956 unallocated_encoding(s);
5957 return;
5958 }
5959 if (!fp_access_check(s)) {
5960 return;
5961 }
5962 handle_fp_2src_half(s, opcode, rd, rn, rm);
5963 break;
5964 default:
5965 unallocated_encoding(s);
5966 }
5967 }
5968
5969 /* Floating-point data-processing (3 source) - single precision */
5970 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
5971 int rd, int rn, int rm, int ra)
5972 {
5973 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
5974 TCGv_i32 tcg_res = tcg_temp_new_i32();
5975 TCGv_ptr fpst = get_fpstatus_ptr(false);
5976
5977 tcg_op1 = read_fp_sreg(s, rn);
5978 tcg_op2 = read_fp_sreg(s, rm);
5979 tcg_op3 = read_fp_sreg(s, ra);
5980
5981 /* These are fused multiply-add, and must be done as one
5982 * floating point operation with no rounding between the
5983 * multiplication and addition steps.
5984 * NB that doing the negations here as separate steps is
5985 * correct : an input NaN should come out with its sign bit
5986 * flipped if it is a negated-input.
5987 */
5988 if (o1 == true) {
5989 gen_helper_vfp_negs(tcg_op3, tcg_op3);
5990 }
5991
5992 if (o0 != o1) {
5993 gen_helper_vfp_negs(tcg_op1, tcg_op1);
5994 }
5995
5996 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
5997
5998 write_fp_sreg(s, rd, tcg_res);
5999
6000 tcg_temp_free_ptr(fpst);
6001 tcg_temp_free_i32(tcg_op1);
6002 tcg_temp_free_i32(tcg_op2);
6003 tcg_temp_free_i32(tcg_op3);
6004 tcg_temp_free_i32(tcg_res);
6005 }
6006
6007 /* Floating-point data-processing (3 source) - double precision */
6008 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6009 int rd, int rn, int rm, int ra)
6010 {
6011 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6012 TCGv_i64 tcg_res = tcg_temp_new_i64();
6013 TCGv_ptr fpst = get_fpstatus_ptr(false);
6014
6015 tcg_op1 = read_fp_dreg(s, rn);
6016 tcg_op2 = read_fp_dreg(s, rm);
6017 tcg_op3 = read_fp_dreg(s, ra);
6018
6019 /* These are fused multiply-add, and must be done as one
6020 * floating point operation with no rounding between the
6021 * multiplication and addition steps.
6022 * NB that doing the negations here as separate steps is
6023 * correct : an input NaN should come out with its sign bit
6024 * flipped if it is a negated-input.
6025 */
6026 if (o1 == true) {
6027 gen_helper_vfp_negd(tcg_op3, tcg_op3);
6028 }
6029
6030 if (o0 != o1) {
6031 gen_helper_vfp_negd(tcg_op1, tcg_op1);
6032 }
6033
6034 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6035
6036 write_fp_dreg(s, rd, tcg_res);
6037
6038 tcg_temp_free_ptr(fpst);
6039 tcg_temp_free_i64(tcg_op1);
6040 tcg_temp_free_i64(tcg_op2);
6041 tcg_temp_free_i64(tcg_op3);
6042 tcg_temp_free_i64(tcg_res);
6043 }
6044
6045 /* Floating-point data-processing (3 source) - half precision */
6046 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6047 int rd, int rn, int rm, int ra)
6048 {
6049 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6050 TCGv_i32 tcg_res = tcg_temp_new_i32();
6051 TCGv_ptr fpst = get_fpstatus_ptr(true);
6052
6053 tcg_op1 = read_fp_hreg(s, rn);
6054 tcg_op2 = read_fp_hreg(s, rm);
6055 tcg_op3 = read_fp_hreg(s, ra);
6056
6057 /* These are fused multiply-add, and must be done as one
6058 * floating point operation with no rounding between the
6059 * multiplication and addition steps.
6060 * NB that doing the negations here as separate steps is
6061 * correct : an input NaN should come out with its sign bit
6062 * flipped if it is a negated-input.
6063 */
6064 if (o1 == true) {
6065 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6066 }
6067
6068 if (o0 != o1) {
6069 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6070 }
6071
6072 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6073
6074 write_fp_sreg(s, rd, tcg_res);
6075
6076 tcg_temp_free_ptr(fpst);
6077 tcg_temp_free_i32(tcg_op1);
6078 tcg_temp_free_i32(tcg_op2);
6079 tcg_temp_free_i32(tcg_op3);
6080 tcg_temp_free_i32(tcg_res);
6081 }
6082
6083 /* Floating point data-processing (3 source)
6084 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6085 * +---+---+---+-----------+------+----+------+----+------+------+------+
6086 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6087 * +---+---+---+-----------+------+----+------+----+------+------+------+
6088 */
6089 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6090 {
6091 int mos = extract32(insn, 29, 3);
6092 int type = extract32(insn, 22, 2);
6093 int rd = extract32(insn, 0, 5);
6094 int rn = extract32(insn, 5, 5);
6095 int ra = extract32(insn, 10, 5);
6096 int rm = extract32(insn, 16, 5);
6097 bool o0 = extract32(insn, 15, 1);
6098 bool o1 = extract32(insn, 21, 1);
6099
6100 if (mos) {
6101 unallocated_encoding(s);
6102 return;
6103 }
6104
6105 switch (type) {
6106 case 0:
6107 if (!fp_access_check(s)) {
6108 return;
6109 }
6110 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6111 break;
6112 case 1:
6113 if (!fp_access_check(s)) {
6114 return;
6115 }
6116 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6117 break;
6118 case 3:
6119 if (!dc_isar_feature(aa64_fp16, s)) {
6120 unallocated_encoding(s);
6121 return;
6122 }
6123 if (!fp_access_check(s)) {
6124 return;
6125 }
6126 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6127 break;
6128 default:
6129 unallocated_encoding(s);
6130 }
6131 }
6132
6133 /* The imm8 encodes the sign bit, enough bits to represent an exponent in
6134 * the range 01....1xx to 10....0xx, and the most significant 4 bits of
6135 * the mantissa; see VFPExpandImm() in the v8 ARM ARM.
6136 */
6137 uint64_t vfp_expand_imm(int size, uint8_t imm8)
6138 {
6139 uint64_t imm;
6140
6141 switch (size) {
6142 case MO_64:
6143 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
6144 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
6145 extract32(imm8, 0, 6);
6146 imm <<= 48;
6147 break;
6148 case MO_32:
6149 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
6150 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
6151 (extract32(imm8, 0, 6) << 3);
6152 imm <<= 16;
6153 break;
6154 case MO_16:
6155 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
6156 (extract32(imm8, 6, 1) ? 0x3000 : 0x4000) |
6157 (extract32(imm8, 0, 6) << 6);
6158 break;
6159 default:
6160 g_assert_not_reached();
6161 }
6162 return imm;
6163 }
6164
6165 /* Floating point immediate
6166 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
6167 * +---+---+---+-----------+------+---+------------+-------+------+------+
6168 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
6169 * +---+---+---+-----------+------+---+------------+-------+------+------+
6170 */
6171 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6172 {
6173 int rd = extract32(insn, 0, 5);
6174 int imm5 = extract32(insn, 5, 5);
6175 int imm8 = extract32(insn, 13, 8);
6176 int type = extract32(insn, 22, 2);
6177 int mos = extract32(insn, 29, 3);
6178 uint64_t imm;
6179 TCGv_i64 tcg_res;
6180 TCGMemOp sz;
6181
6182 if (mos || imm5) {
6183 unallocated_encoding(s);
6184 return;
6185 }
6186
6187 switch (type) {
6188 case 0:
6189 sz = MO_32;
6190 break;
6191 case 1:
6192 sz = MO_64;
6193 break;
6194 case 3:
6195 sz = MO_16;
6196 if (dc_isar_feature(aa64_fp16, s)) {
6197 break;
6198 }
6199 /* fallthru */
6200 default:
6201 unallocated_encoding(s);
6202 return;
6203 }
6204
6205 if (!fp_access_check(s)) {
6206 return;
6207 }
6208
6209 imm = vfp_expand_imm(sz, imm8);
6210
6211 tcg_res = tcg_const_i64(imm);
6212 write_fp_dreg(s, rd, tcg_res);
6213 tcg_temp_free_i64(tcg_res);
6214 }
6215
6216 /* Handle floating point <=> fixed point conversions. Note that we can
6217 * also deal with fp <=> integer conversions as a special case (scale == 64)
6218 * OPTME: consider handling that special case specially or at least skipping
6219 * the call to scalbn in the helpers for zero shifts.
6220 */
6221 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6222 bool itof, int rmode, int scale, int sf, int type)
6223 {
6224 bool is_signed = !(opcode & 1);
6225 TCGv_ptr tcg_fpstatus;
6226 TCGv_i32 tcg_shift, tcg_single;
6227 TCGv_i64 tcg_double;
6228
6229 tcg_fpstatus = get_fpstatus_ptr(type == 3);
6230
6231 tcg_shift = tcg_const_i32(64 - scale);
6232
6233 if (itof) {
6234 TCGv_i64 tcg_int = cpu_reg(s, rn);
6235 if (!sf) {
6236 TCGv_i64 tcg_extend = new_tmp_a64(s);
6237
6238 if (is_signed) {
6239 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6240 } else {
6241 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6242 }
6243
6244 tcg_int = tcg_extend;
6245 }
6246
6247 switch (type) {
6248 case 1: /* float64 */
6249 tcg_double = tcg_temp_new_i64();
6250 if (is_signed) {
6251 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6252 tcg_shift, tcg_fpstatus);
6253 } else {
6254 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6255 tcg_shift, tcg_fpstatus);
6256 }
6257 write_fp_dreg(s, rd, tcg_double);
6258 tcg_temp_free_i64(tcg_double);
6259 break;
6260
6261 case 0: /* float32 */
6262 tcg_single = tcg_temp_new_i32();
6263 if (is_signed) {
6264 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6265 tcg_shift, tcg_fpstatus);
6266 } else {
6267 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6268 tcg_shift, tcg_fpstatus);
6269 }
6270 write_fp_sreg(s, rd, tcg_single);
6271 tcg_temp_free_i32(tcg_single);
6272 break;
6273
6274 case 3: /* float16 */
6275 tcg_single = tcg_temp_new_i32();
6276 if (is_signed) {
6277 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6278 tcg_shift, tcg_fpstatus);
6279 } else {
6280 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6281 tcg_shift, tcg_fpstatus);
6282 }
6283 write_fp_sreg(s, rd, tcg_single);
6284 tcg_temp_free_i32(tcg_single);
6285 break;
6286
6287 default:
6288 g_assert_not_reached();
6289 }
6290 } else {
6291 TCGv_i64 tcg_int = cpu_reg(s, rd);
6292 TCGv_i32 tcg_rmode;
6293
6294 if (extract32(opcode, 2, 1)) {
6295 /* There are too many rounding modes to all fit into rmode,
6296 * so FCVTA[US] is a special case.
6297 */
6298 rmode = FPROUNDING_TIEAWAY;
6299 }
6300
6301 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
6302
6303 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
6304
6305 switch (type) {
6306 case 1: /* float64 */
6307 tcg_double = read_fp_dreg(s, rn);
6308 if (is_signed) {
6309 if (!sf) {
6310 gen_helper_vfp_tosld(tcg_int, tcg_double,
6311 tcg_shift, tcg_fpstatus);
6312 } else {
6313 gen_helper_vfp_tosqd(tcg_int, tcg_double,
6314 tcg_shift, tcg_fpstatus);
6315 }
6316 } else {
6317 if (!sf) {
6318 gen_helper_vfp_tould(tcg_int, tcg_double,
6319 tcg_shift, tcg_fpstatus);
6320 } else {
6321 gen_helper_vfp_touqd(tcg_int, tcg_double,
6322 tcg_shift, tcg_fpstatus);
6323 }
6324 }
6325 if (!sf) {
6326 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6327 }
6328 tcg_temp_free_i64(tcg_double);
6329 break;
6330
6331 case 0: /* float32 */
6332 tcg_single = read_fp_sreg(s, rn);
6333 if (sf) {
6334 if (is_signed) {
6335 gen_helper_vfp_tosqs(tcg_int, tcg_single,
6336 tcg_shift, tcg_fpstatus);
6337 } else {
6338 gen_helper_vfp_touqs(tcg_int, tcg_single,
6339 tcg_shift, tcg_fpstatus);
6340 }
6341 } else {
6342 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6343 if (is_signed) {
6344 gen_helper_vfp_tosls(tcg_dest, tcg_single,
6345 tcg_shift, tcg_fpstatus);
6346 } else {
6347 gen_helper_vfp_touls(tcg_dest, tcg_single,
6348 tcg_shift, tcg_fpstatus);
6349 }
6350 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6351 tcg_temp_free_i32(tcg_dest);
6352 }
6353 tcg_temp_free_i32(tcg_single);
6354 break;
6355
6356 case 3: /* float16 */
6357 tcg_single = read_fp_sreg(s, rn);
6358 if (sf) {
6359 if (is_signed) {
6360 gen_helper_vfp_tosqh(tcg_int, tcg_single,
6361 tcg_shift, tcg_fpstatus);
6362 } else {
6363 gen_helper_vfp_touqh(tcg_int, tcg_single,
6364 tcg_shift, tcg_fpstatus);
6365 }
6366 } else {
6367 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6368 if (is_signed) {
6369 gen_helper_vfp_toslh(tcg_dest, tcg_single,
6370 tcg_shift, tcg_fpstatus);
6371 } else {
6372 gen_helper_vfp_toulh(tcg_dest, tcg_single,
6373 tcg_shift, tcg_fpstatus);
6374 }
6375 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6376 tcg_temp_free_i32(tcg_dest);
6377 }
6378 tcg_temp_free_i32(tcg_single);
6379 break;
6380
6381 default:
6382 g_assert_not_reached();
6383 }
6384
6385 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
6386 tcg_temp_free_i32(tcg_rmode);
6387 }
6388
6389 tcg_temp_free_ptr(tcg_fpstatus);
6390 tcg_temp_free_i32(tcg_shift);
6391 }
6392
6393 /* Floating point <-> fixed point conversions
6394 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6395 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6396 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
6397 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6398 */
6399 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6400 {
6401 int rd = extract32(insn, 0, 5);
6402 int rn = extract32(insn, 5, 5);
6403 int scale = extract32(insn, 10, 6);
6404 int opcode = extract32(insn, 16, 3);
6405 int rmode = extract32(insn, 19, 2);
6406 int type = extract32(insn, 22, 2);
6407 bool sbit = extract32(insn, 29, 1);
6408 bool sf = extract32(insn, 31, 1);
6409 bool itof;
6410
6411 if (sbit || (!sf && scale < 32)) {
6412 unallocated_encoding(s);
6413 return;
6414 }
6415
6416 switch (type) {
6417 case 0: /* float32 */
6418 case 1: /* float64 */
6419 break;
6420 case 3: /* float16 */
6421 if (dc_isar_feature(aa64_fp16, s)) {
6422 break;
6423 }
6424 /* fallthru */
6425 default:
6426 unallocated_encoding(s);
6427 return;
6428 }
6429
6430 switch ((rmode << 3) | opcode) {
6431 case 0x2: /* SCVTF */
6432 case 0x3: /* UCVTF */
6433 itof = true;
6434 break;
6435 case 0x18: /* FCVTZS */
6436 case 0x19: /* FCVTZU */
6437 itof = false;
6438 break;
6439 default:
6440 unallocated_encoding(s);
6441 return;
6442 }
6443
6444 if (!fp_access_check(s)) {
6445 return;
6446 }
6447
6448 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
6449 }
6450
6451 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
6452 {
6453 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
6454 * without conversion.
6455 */
6456
6457 if (itof) {
6458 TCGv_i64 tcg_rn = cpu_reg(s, rn);
6459 TCGv_i64 tmp;
6460
6461 switch (type) {
6462 case 0:
6463 /* 32 bit */
6464 tmp = tcg_temp_new_i64();
6465 tcg_gen_ext32u_i64(tmp, tcg_rn);
6466 write_fp_dreg(s, rd, tmp);
6467 tcg_temp_free_i64(tmp);
6468 break;
6469 case 1:
6470 /* 64 bit */
6471 write_fp_dreg(s, rd, tcg_rn);
6472 break;
6473 case 2:
6474 /* 64 bit to top half. */
6475 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
6476 clear_vec_high(s, true, rd);
6477 break;
6478 case 3:
6479 /* 16 bit */
6480 tmp = tcg_temp_new_i64();
6481 tcg_gen_ext16u_i64(tmp, tcg_rn);
6482 write_fp_dreg(s, rd, tmp);
6483 tcg_temp_free_i64(tmp);
6484 break;
6485 default:
6486 g_assert_not_reached();
6487 }
6488 } else {
6489 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6490
6491 switch (type) {
6492 case 0:
6493 /* 32 bit */
6494 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
6495 break;
6496 case 1:
6497 /* 64 bit */
6498 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
6499 break;
6500 case 2:
6501 /* 64 bits from top half */
6502 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
6503 break;
6504 case 3:
6505 /* 16 bit */
6506 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
6507 break;
6508 default:
6509 g_assert_not_reached();
6510 }
6511 }
6512 }
6513
6514 /* Floating point <-> integer conversions
6515 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6516 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6517 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
6518 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6519 */
6520 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
6521 {
6522 int rd = extract32(insn, 0, 5);
6523 int rn = extract32(insn, 5, 5);
6524 int opcode = extract32(insn, 16, 3);
6525 int rmode = extract32(insn, 19, 2);
6526 int type = extract32(insn, 22, 2);
6527 bool sbit = extract32(insn, 29, 1);
6528 bool sf = extract32(insn, 31, 1);
6529
6530 if (sbit) {
6531 unallocated_encoding(s);
6532 return;
6533 }
6534
6535 if (opcode > 5) {
6536 /* FMOV */
6537 bool itof = opcode & 1;
6538
6539 if (rmode >= 2) {
6540 unallocated_encoding(s);
6541 return;
6542 }
6543
6544 switch (sf << 3 | type << 1 | rmode) {
6545 case 0x0: /* 32 bit */
6546 case 0xa: /* 64 bit */
6547 case 0xd: /* 64 bit to top half of quad */
6548 break;
6549 case 0x6: /* 16-bit float, 32-bit int */
6550 case 0xe: /* 16-bit float, 64-bit int */
6551 if (dc_isar_feature(aa64_fp16, s)) {
6552 break;
6553 }
6554 /* fallthru */
6555 default:
6556 /* all other sf/type/rmode combinations are invalid */
6557 unallocated_encoding(s);
6558 return;
6559 }
6560
6561 if (!fp_access_check(s)) {
6562 return;
6563 }
6564 handle_fmov(s, rd, rn, type, itof);
6565 } else {
6566 /* actual FP conversions */
6567 bool itof = extract32(opcode, 1, 1);
6568
6569 if (rmode != 0 && opcode > 1) {
6570 unallocated_encoding(s);
6571 return;
6572 }
6573 switch (type) {
6574 case 0: /* float32 */
6575 case 1: /* float64 */
6576 break;
6577 case 3: /* float16 */
6578 if (dc_isar_feature(aa64_fp16, s)) {
6579 break;
6580 }
6581 /* fallthru */
6582 default:
6583 unallocated_encoding(s);
6584 return;
6585 }
6586
6587 if (!fp_access_check(s)) {
6588 return;
6589 }
6590 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
6591 }
6592 }
6593
6594 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
6595 * 31 30 29 28 25 24 0
6596 * +---+---+---+---------+-----------------------------+
6597 * | | 0 | | 1 1 1 1 | |
6598 * +---+---+---+---------+-----------------------------+
6599 */
6600 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
6601 {
6602 if (extract32(insn, 24, 1)) {
6603 /* Floating point data-processing (3 source) */
6604 disas_fp_3src(s, insn);
6605 } else if (extract32(insn, 21, 1) == 0) {
6606 /* Floating point to fixed point conversions */
6607 disas_fp_fixed_conv(s, insn);
6608 } else {
6609 switch (extract32(insn, 10, 2)) {
6610 case 1:
6611 /* Floating point conditional compare */
6612 disas_fp_ccomp(s, insn);
6613 break;
6614 case 2:
6615 /* Floating point data-processing (2 source) */
6616 disas_fp_2src(s, insn);
6617 break;
6618 case 3:
6619 /* Floating point conditional select */
6620 disas_fp_csel(s, insn);
6621 break;
6622 case 0:
6623 switch (ctz32(extract32(insn, 12, 4))) {
6624 case 0: /* [15:12] == xxx1 */
6625 /* Floating point immediate */
6626 disas_fp_imm(s, insn);
6627 break;
6628 case 1: /* [15:12] == xx10 */
6629 /* Floating point compare */
6630 disas_fp_compare(s, insn);
6631 break;
6632 case 2: /* [15:12] == x100 */
6633 /* Floating point data-processing (1 source) */
6634 disas_fp_1src(s, insn);
6635 break;
6636 case 3: /* [15:12] == 1000 */
6637 unallocated_encoding(s);
6638 break;
6639 default: /* [15:12] == 0000 */
6640 /* Floating point <-> integer conversions */
6641 disas_fp_int_conv(s, insn);
6642 break;
6643 }
6644 break;
6645 }
6646 }
6647 }
6648
6649 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
6650 int pos)
6651 {
6652 /* Extract 64 bits from the middle of two concatenated 64 bit
6653 * vector register slices left:right. The extracted bits start
6654 * at 'pos' bits into the right (least significant) side.
6655 * We return the result in tcg_right, and guarantee not to
6656 * trash tcg_left.
6657 */
6658 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6659 assert(pos > 0 && pos < 64);
6660
6661 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
6662 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
6663 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
6664
6665 tcg_temp_free_i64(tcg_tmp);
6666 }
6667
6668 /* EXT
6669 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
6670 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6671 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
6672 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6673 */
6674 static void disas_simd_ext(DisasContext *s, uint32_t insn)
6675 {
6676 int is_q = extract32(insn, 30, 1);
6677 int op2 = extract32(insn, 22, 2);
6678 int imm4 = extract32(insn, 11, 4);
6679 int rm = extract32(insn, 16, 5);
6680 int rn = extract32(insn, 5, 5);
6681 int rd = extract32(insn, 0, 5);
6682 int pos = imm4 << 3;
6683 TCGv_i64 tcg_resl, tcg_resh;
6684
6685 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
6686 unallocated_encoding(s);
6687 return;
6688 }
6689
6690 if (!fp_access_check(s)) {
6691 return;
6692 }
6693
6694 tcg_resh = tcg_temp_new_i64();
6695 tcg_resl = tcg_temp_new_i64();
6696
6697 /* Vd gets bits starting at pos bits into Vm:Vn. This is
6698 * either extracting 128 bits from a 128:128 concatenation, or
6699 * extracting 64 bits from a 64:64 concatenation.
6700 */
6701 if (!is_q) {
6702 read_vec_element(s, tcg_resl, rn, 0, MO_64);
6703 if (pos != 0) {
6704 read_vec_element(s, tcg_resh, rm, 0, MO_64);
6705 do_ext64(s, tcg_resh, tcg_resl, pos);
6706 }
6707 tcg_gen_movi_i64(tcg_resh, 0);
6708 } else {
6709 TCGv_i64 tcg_hh;
6710 typedef struct {
6711 int reg;
6712 int elt;
6713 } EltPosns;
6714 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
6715 EltPosns *elt = eltposns;
6716
6717 if (pos >= 64) {
6718 elt++;
6719 pos -= 64;
6720 }
6721
6722 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
6723 elt++;
6724 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
6725 elt++;
6726 if (pos != 0) {
6727 do_ext64(s, tcg_resh, tcg_resl, pos);
6728 tcg_hh = tcg_temp_new_i64();
6729 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
6730 do_ext64(s, tcg_hh, tcg_resh, pos);
6731 tcg_temp_free_i64(tcg_hh);
6732 }
6733 }
6734
6735 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6736 tcg_temp_free_i64(tcg_resl);
6737 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6738 tcg_temp_free_i64(tcg_resh);
6739 }
6740
6741 /* TBL/TBX
6742 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
6743 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
6744 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
6745 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
6746 */
6747 static void disas_simd_tb(DisasContext *s, uint32_t insn)
6748 {
6749 int op2 = extract32(insn, 22, 2);
6750 int is_q = extract32(insn, 30, 1);
6751 int rm = extract32(insn, 16, 5);
6752 int rn = extract32(insn, 5, 5);
6753 int rd = extract32(insn, 0, 5);
6754 int is_tblx = extract32(insn, 12, 1);
6755 int len = extract32(insn, 13, 2);
6756 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
6757 TCGv_i32 tcg_regno, tcg_numregs;
6758
6759 if (op2 != 0) {
6760 unallocated_encoding(s);
6761 return;
6762 }
6763
6764 if (!fp_access_check(s)) {
6765 return;
6766 }
6767
6768 /* This does a table lookup: for every byte element in the input
6769 * we index into a table formed from up to four vector registers,
6770 * and then the output is the result of the lookups. Our helper
6771 * function does the lookup operation for a single 64 bit part of
6772 * the input.
6773 */
6774 tcg_resl = tcg_temp_new_i64();
6775 tcg_resh = tcg_temp_new_i64();
6776
6777 if (is_tblx) {
6778 read_vec_element(s, tcg_resl, rd, 0, MO_64);
6779 } else {
6780 tcg_gen_movi_i64(tcg_resl, 0);
6781 }
6782 if (is_tblx && is_q) {
6783 read_vec_element(s, tcg_resh, rd, 1, MO_64);
6784 } else {
6785 tcg_gen_movi_i64(tcg_resh, 0);
6786 }
6787
6788 tcg_idx = tcg_temp_new_i64();
6789 tcg_regno = tcg_const_i32(rn);
6790 tcg_numregs = tcg_const_i32(len + 1);
6791 read_vec_element(s, tcg_idx, rm, 0, MO_64);
6792 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
6793 tcg_regno, tcg_numregs);
6794 if (is_q) {
6795 read_vec_element(s, tcg_idx, rm, 1, MO_64);
6796 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
6797 tcg_regno, tcg_numregs);
6798 }
6799 tcg_temp_free_i64(tcg_idx);
6800 tcg_temp_free_i32(tcg_regno);
6801 tcg_temp_free_i32(tcg_numregs);
6802
6803 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6804 tcg_temp_free_i64(tcg_resl);
6805 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6806 tcg_temp_free_i64(tcg_resh);
6807 }
6808
6809 /* ZIP/UZP/TRN
6810 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
6811 * +---+---+-------------+------+---+------+---+------------------+------+
6812 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
6813 * +---+---+-------------+------+---+------+---+------------------+------+
6814 */
6815 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
6816 {
6817 int rd = extract32(insn, 0, 5);
6818 int rn = extract32(insn, 5, 5);
6819 int rm = extract32(insn, 16, 5);
6820 int size = extract32(insn, 22, 2);
6821 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
6822 * bit 2 indicates 1 vs 2 variant of the insn.
6823 */
6824 int opcode = extract32(insn, 12, 2);
6825 bool part = extract32(insn, 14, 1);
6826 bool is_q = extract32(insn, 30, 1);
6827 int esize = 8 << size;
6828 int i, ofs;
6829 int datasize = is_q ? 128 : 64;
6830 int elements = datasize / esize;
6831 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
6832
6833 if (opcode == 0 || (size == 3 && !is_q)) {
6834 unallocated_encoding(s);
6835 return;
6836 }
6837
6838 if (!fp_access_check(s)) {
6839 return;
6840 }
6841
6842 tcg_resl = tcg_const_i64(0);
6843 tcg_resh = tcg_const_i64(0);
6844 tcg_res = tcg_temp_new_i64();
6845
6846 for (i = 0; i < elements; i++) {
6847 switch (opcode) {
6848 case 1: /* UZP1/2 */
6849 {
6850 int midpoint = elements / 2;
6851 if (i < midpoint) {
6852 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
6853 } else {
6854 read_vec_element(s, tcg_res, rm,
6855 2 * (i - midpoint) + part, size);
6856 }
6857 break;
6858 }
6859 case 2: /* TRN1/2 */
6860 if (i & 1) {
6861 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
6862 } else {
6863 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
6864 }
6865 break;
6866 case 3: /* ZIP1/2 */
6867 {
6868 int base = part * elements / 2;
6869 if (i & 1) {
6870 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
6871 } else {
6872 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
6873 }
6874 break;
6875 }
6876 default:
6877 g_assert_not_reached();
6878 }
6879
6880 ofs = i * esize;
6881 if (ofs < 64) {
6882 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
6883 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
6884 } else {
6885 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
6886 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
6887 }
6888 }
6889
6890 tcg_temp_free_i64(tcg_res);
6891
6892 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6893 tcg_temp_free_i64(tcg_resl);
6894 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6895 tcg_temp_free_i64(tcg_resh);
6896 }
6897
6898 /*
6899 * do_reduction_op helper
6900 *
6901 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
6902 * important for correct NaN propagation that we do these
6903 * operations in exactly the order specified by the pseudocode.
6904 *
6905 * This is a recursive function, TCG temps should be freed by the
6906 * calling function once it is done with the values.
6907 */
6908 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
6909 int esize, int size, int vmap, TCGv_ptr fpst)
6910 {
6911 if (esize == size) {
6912 int element;
6913 TCGMemOp msize = esize == 16 ? MO_16 : MO_32;
6914 TCGv_i32 tcg_elem;
6915
6916 /* We should have one register left here */
6917 assert(ctpop8(vmap) == 1);
6918 element = ctz32(vmap);
6919 assert(element < 8);
6920
6921 tcg_elem = tcg_temp_new_i32();
6922 read_vec_element_i32(s, tcg_elem, rn, element, msize);
6923 return tcg_elem;
6924 } else {
6925 int bits = size / 2;
6926 int shift = ctpop8(vmap) / 2;
6927 int vmap_lo = (vmap >> shift) & vmap;
6928 int vmap_hi = (vmap & ~vmap_lo);
6929 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
6930
6931 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
6932 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
6933 tcg_res = tcg_temp_new_i32();
6934
6935 switch (fpopcode) {
6936 case 0x0c: /* fmaxnmv half-precision */
6937 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
6938 break;
6939 case 0x0f: /* fmaxv half-precision */
6940 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
6941 break;
6942 case 0x1c: /* fminnmv half-precision */
6943 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
6944 break;
6945 case 0x1f: /* fminv half-precision */
6946 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
6947 break;
6948 case 0x2c: /* fmaxnmv */
6949 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
6950 break;
6951 case 0x2f: /* fmaxv */
6952 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
6953 break;
6954 case 0x3c: /* fminnmv */
6955 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
6956 break;
6957 case 0x3f: /* fminv */
6958 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
6959 break;
6960 default:
6961 g_assert_not_reached();
6962 }
6963
6964 tcg_temp_free_i32(tcg_hi);
6965 tcg_temp_free_i32(tcg_lo);
6966 return tcg_res;
6967 }
6968 }
6969
6970 /* AdvSIMD across lanes
6971 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
6972 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
6973 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
6974 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
6975 */
6976 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
6977 {
6978 int rd = extract32(insn, 0, 5);
6979 int rn = extract32(insn, 5, 5);
6980 int size = extract32(insn, 22, 2);
6981 int opcode = extract32(insn, 12, 5);
6982 bool is_q = extract32(insn, 30, 1);
6983 bool is_u = extract32(insn, 29, 1);
6984 bool is_fp = false;
6985 bool is_min = false;
6986 int esize;
6987 int elements;
6988 int i;
6989 TCGv_i64 tcg_res, tcg_elt;
6990
6991 switch (opcode) {
6992 case 0x1b: /* ADDV */
6993 if (is_u) {
6994 unallocated_encoding(s);
6995 return;
6996 }
6997 /* fall through */
6998 case 0x3: /* SADDLV, UADDLV */
6999 case 0xa: /* SMAXV, UMAXV */
7000 case 0x1a: /* SMINV, UMINV */
7001 if (size == 3 || (size == 2 && !is_q)) {
7002 unallocated_encoding(s);
7003 return;
7004 }
7005 break;
7006 case 0xc: /* FMAXNMV, FMINNMV */
7007 case 0xf: /* FMAXV, FMINV */
7008 /* Bit 1 of size field encodes min vs max and the actual size
7009 * depends on the encoding of the U bit. If not set (and FP16
7010 * enabled) then we do half-precision float instead of single
7011 * precision.
7012 */
7013 is_min = extract32(size, 1, 1);
7014 is_fp = true;
7015 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7016 size = 1;
7017 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7018 unallocated_encoding(s);
7019 return;
7020 } else {
7021 size = 2;
7022 }
7023 break;
7024 default:
7025 unallocated_encoding(s);
7026 return;
7027 }
7028
7029 if (!fp_access_check(s)) {
7030 return;
7031 }
7032
7033 esize = 8 << size;
7034 elements = (is_q ? 128 : 64) / esize;
7035
7036 tcg_res = tcg_temp_new_i64();
7037 tcg_elt = tcg_temp_new_i64();
7038
7039 /* These instructions operate across all lanes of a vector
7040 * to produce a single result. We can guarantee that a 64
7041 * bit intermediate is sufficient:
7042 * + for [US]ADDLV the maximum element size is 32 bits, and
7043 * the result type is 64 bits
7044 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7045 * same as the element size, which is 32 bits at most
7046 * For the integer operations we can choose to work at 64
7047 * or 32 bits and truncate at the end; for simplicity
7048 * we use 64 bits always. The floating point
7049 * ops do require 32 bit intermediates, though.
7050 */
7051 if (!is_fp) {
7052 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7053
7054 for (i = 1; i < elements; i++) {
7055 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7056
7057 switch (opcode) {
7058 case 0x03: /* SADDLV / UADDLV */
7059 case 0x1b: /* ADDV */
7060 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7061 break;
7062 case 0x0a: /* SMAXV / UMAXV */
7063 if (is_u) {
7064 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7065 } else {
7066 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7067 }
7068 break;
7069 case 0x1a: /* SMINV / UMINV */
7070 if (is_u) {
7071 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7072 } else {
7073 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7074 }
7075 break;
7076 default:
7077 g_assert_not_reached();
7078 }
7079
7080 }
7081 } else {
7082 /* Floating point vector reduction ops which work across 32
7083 * bit (single) or 16 bit (half-precision) intermediates.
7084 * Note that correct NaN propagation requires that we do these
7085 * operations in exactly the order specified by the pseudocode.
7086 */
7087 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
7088 int fpopcode = opcode | is_min << 4 | is_u << 5;
7089 int vmap = (1 << elements) - 1;
7090 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7091 (is_q ? 128 : 64), vmap, fpst);
7092 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7093 tcg_temp_free_i32(tcg_res32);
7094 tcg_temp_free_ptr(fpst);
7095 }
7096
7097 tcg_temp_free_i64(tcg_elt);
7098
7099 /* Now truncate the result to the width required for the final output */
7100 if (opcode == 0x03) {
7101 /* SADDLV, UADDLV: result is 2*esize */
7102 size++;
7103 }
7104
7105 switch (size) {
7106 case 0:
7107 tcg_gen_ext8u_i64(tcg_res, tcg_res);
7108 break;
7109 case 1:
7110 tcg_gen_ext16u_i64(tcg_res, tcg_res);
7111 break;
7112 case 2:
7113 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7114 break;
7115 case 3:
7116 break;
7117 default:
7118 g_assert_not_reached();
7119 }
7120
7121 write_fp_dreg(s, rd, tcg_res);
7122 tcg_temp_free_i64(tcg_res);
7123 }
7124
7125 /* DUP (Element, Vector)
7126 *
7127 * 31 30 29 21 20 16 15 10 9 5 4 0
7128 * +---+---+-------------------+--------+-------------+------+------+
7129 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7130 * +---+---+-------------------+--------+-------------+------+------+
7131 *
7132 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7133 */
7134 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7135 int imm5)
7136 {
7137 int size = ctz32(imm5);
7138 int index = imm5 >> (size + 1);
7139
7140 if (size > 3 || (size == 3 && !is_q)) {
7141 unallocated_encoding(s);
7142 return;
7143 }
7144
7145 if (!fp_access_check(s)) {
7146 return;
7147 }
7148
7149 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7150 vec_reg_offset(s, rn, index, size),
7151 is_q ? 16 : 8, vec_full_reg_size(s));
7152 }
7153
7154 /* DUP (element, scalar)
7155 * 31 21 20 16 15 10 9 5 4 0
7156 * +-----------------------+--------+-------------+------+------+
7157 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7158 * +-----------------------+--------+-------------+------+------+
7159 */
7160 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7161 int imm5)
7162 {
7163 int size = ctz32(imm5);
7164 int index;
7165 TCGv_i64 tmp;
7166
7167 if (size > 3) {
7168 unallocated_encoding(s);
7169 return;
7170 }
7171
7172 if (!fp_access_check(s)) {
7173 return;
7174 }
7175
7176 index = imm5 >> (size + 1);
7177
7178 /* This instruction just extracts the specified element and
7179 * zero-extends it into the bottom of the destination register.
7180 */
7181 tmp = tcg_temp_new_i64();
7182 read_vec_element(s, tmp, rn, index, size);
7183 write_fp_dreg(s, rd, tmp);
7184 tcg_temp_free_i64(tmp);
7185 }
7186
7187 /* DUP (General)
7188 *
7189 * 31 30 29 21 20 16 15 10 9 5 4 0
7190 * +---+---+-------------------+--------+-------------+------+------+
7191 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
7192 * +---+---+-------------------+--------+-------------+------+------+
7193 *
7194 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7195 */
7196 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7197 int imm5)
7198 {
7199 int size = ctz32(imm5);
7200 uint32_t dofs, oprsz, maxsz;
7201
7202 if (size > 3 || ((size == 3) && !is_q)) {
7203 unallocated_encoding(s);
7204 return;
7205 }
7206
7207 if (!fp_access_check(s)) {
7208 return;
7209 }
7210
7211 dofs = vec_full_reg_offset(s, rd);
7212 oprsz = is_q ? 16 : 8;
7213 maxsz = vec_full_reg_size(s);
7214
7215 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7216 }
7217
7218 /* INS (Element)
7219 *
7220 * 31 21 20 16 15 14 11 10 9 5 4 0
7221 * +-----------------------+--------+------------+---+------+------+
7222 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7223 * +-----------------------+--------+------------+---+------+------+
7224 *
7225 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7226 * index: encoded in imm5<4:size+1>
7227 */
7228 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7229 int imm4, int imm5)
7230 {
7231 int size = ctz32(imm5);
7232 int src_index, dst_index;
7233 TCGv_i64 tmp;
7234
7235 if (size > 3) {
7236 unallocated_encoding(s);
7237 return;
7238 }
7239
7240 if (!fp_access_check(s)) {
7241 return;
7242 }
7243
7244 dst_index = extract32(imm5, 1+size, 5);
7245 src_index = extract32(imm4, size, 4);
7246
7247 tmp = tcg_temp_new_i64();
7248
7249 read_vec_element(s, tmp, rn, src_index, size);
7250 write_vec_element(s, tmp, rd, dst_index, size);
7251
7252 tcg_temp_free_i64(tmp);
7253 }
7254
7255
7256 /* INS (General)
7257 *
7258 * 31 21 20 16 15 10 9 5 4 0
7259 * +-----------------------+--------+-------------+------+------+
7260 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
7261 * +-----------------------+--------+-------------+------+------+
7262 *
7263 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7264 * index: encoded in imm5<4:size+1>
7265 */
7266 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7267 {
7268 int size = ctz32(imm5);
7269 int idx;
7270
7271 if (size > 3) {
7272 unallocated_encoding(s);
7273 return;
7274 }
7275
7276 if (!fp_access_check(s)) {
7277 return;
7278 }
7279
7280 idx = extract32(imm5, 1 + size, 4 - size);
7281 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7282 }
7283
7284 /*
7285 * UMOV (General)
7286 * SMOV (General)
7287 *
7288 * 31 30 29 21 20 16 15 12 10 9 5 4 0
7289 * +---+---+-------------------+--------+-------------+------+------+
7290 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
7291 * +---+---+-------------------+--------+-------------+------+------+
7292 *
7293 * U: unsigned when set
7294 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7295 */
7296 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7297 int rn, int rd, int imm5)
7298 {
7299 int size = ctz32(imm5);
7300 int element;
7301 TCGv_i64 tcg_rd;
7302
7303 /* Check for UnallocatedEncodings */
7304 if (is_signed) {
7305 if (size > 2 || (size == 2 && !is_q)) {
7306 unallocated_encoding(s);
7307 return;
7308 }
7309 } else {
7310 if (size > 3
7311 || (size < 3 && is_q)
7312 || (size == 3 && !is_q)) {
7313 unallocated_encoding(s);
7314 return;
7315 }
7316 }
7317
7318 if (!fp_access_check(s)) {
7319 return;
7320 }
7321
7322 element = extract32(imm5, 1+size, 4);
7323
7324 tcg_rd = cpu_reg(s, rd);
7325 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7326 if (is_signed && !is_q) {
7327 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7328 }
7329 }
7330
7331 /* AdvSIMD copy
7332 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7333 * +---+---+----+-----------------+------+---+------+---+------+------+
7334 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7335 * +---+---+----+-----------------+------+---+------+---+------+------+
7336 */
7337 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7338 {
7339 int rd = extract32(insn, 0, 5);
7340 int rn = extract32(insn, 5, 5);
7341 int imm4 = extract32(insn, 11, 4);
7342 int op = extract32(insn, 29, 1);
7343 int is_q = extract32(insn, 30, 1);
7344 int imm5 = extract32(insn, 16, 5);
7345
7346 if (op) {
7347 if (is_q) {
7348 /* INS (element) */
7349 handle_simd_inse(s, rd, rn, imm4, imm5);
7350 } else {
7351 unallocated_encoding(s);
7352 }
7353 } else {
7354 switch (imm4) {
7355 case 0:
7356 /* DUP (element - vector) */
7357 handle_simd_dupe(s, is_q, rd, rn, imm5);
7358 break;
7359 case 1:
7360 /* DUP (general) */
7361 handle_simd_dupg(s, is_q, rd, rn, imm5);
7362 break;
7363 case 3:
7364 if (is_q) {
7365 /* INS (general) */
7366 handle_simd_insg(s, rd, rn, imm5);
7367 } else {
7368 unallocated_encoding(s);
7369 }
7370 break;
7371 case 5:
7372 case 7:
7373 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7374 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7375 break;
7376 default:
7377 unallocated_encoding(s);
7378 break;
7379 }
7380 }
7381 }
7382
7383 /* AdvSIMD modified immediate
7384 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
7385 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7386 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
7387 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7388 *
7389 * There are a number of operations that can be carried out here:
7390 * MOVI - move (shifted) imm into register
7391 * MVNI - move inverted (shifted) imm into register
7392 * ORR - bitwise OR of (shifted) imm with register
7393 * BIC - bitwise clear of (shifted) imm with register
7394 * With ARMv8.2 we also have:
7395 * FMOV half-precision
7396 */
7397 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7398 {
7399 int rd = extract32(insn, 0, 5);
7400 int cmode = extract32(insn, 12, 4);
7401 int cmode_3_1 = extract32(cmode, 1, 3);
7402 int cmode_0 = extract32(cmode, 0, 1);
7403 int o2 = extract32(insn, 11, 1);
7404 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7405 bool is_neg = extract32(insn, 29, 1);
7406 bool is_q = extract32(insn, 30, 1);
7407 uint64_t imm = 0;
7408
7409 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7410 /* Check for FMOV (vector, immediate) - half-precision */
7411 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7412 unallocated_encoding(s);
7413 return;
7414 }
7415 }
7416
7417 if (!fp_access_check(s)) {
7418 return;
7419 }
7420
7421 /* See AdvSIMDExpandImm() in ARM ARM */
7422 switch (cmode_3_1) {
7423 case 0: /* Replicate(Zeros(24):imm8, 2) */
7424 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
7425 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
7426 case 3: /* Replicate(imm8:Zeros(24), 2) */
7427 {
7428 int shift = cmode_3_1 * 8;
7429 imm = bitfield_replicate(abcdefgh << shift, 32);
7430 break;
7431 }
7432 case 4: /* Replicate(Zeros(8):imm8, 4) */
7433 case 5: /* Replicate(imm8:Zeros(8), 4) */
7434 {
7435 int shift = (cmode_3_1 & 0x1) * 8;
7436 imm = bitfield_replicate(abcdefgh << shift, 16);
7437 break;
7438 }
7439 case 6:
7440 if (cmode_0) {
7441 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
7442 imm = (abcdefgh << 16) | 0xffff;
7443 } else {
7444 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
7445 imm = (abcdefgh << 8) | 0xff;
7446 }
7447 imm = bitfield_replicate(imm, 32);
7448 break;
7449 case 7:
7450 if (!cmode_0 && !is_neg) {
7451 imm = bitfield_replicate(abcdefgh, 8);
7452 } else if (!cmode_0 && is_neg) {
7453 int i;
7454 imm = 0;
7455 for (i = 0; i < 8; i++) {
7456 if ((abcdefgh) & (1 << i)) {
7457 imm |= 0xffULL << (i * 8);
7458 }
7459 }
7460 } else if (cmode_0) {
7461 if (is_neg) {
7462 imm = (abcdefgh & 0x3f) << 48;
7463 if (abcdefgh & 0x80) {
7464 imm |= 0x8000000000000000ULL;
7465 }
7466 if (abcdefgh & 0x40) {
7467 imm |= 0x3fc0000000000000ULL;
7468 } else {
7469 imm |= 0x4000000000000000ULL;
7470 }
7471 } else {
7472 if (o2) {
7473 /* FMOV (vector, immediate) - half-precision */
7474 imm = vfp_expand_imm(MO_16, abcdefgh);
7475 /* now duplicate across the lanes */
7476 imm = bitfield_replicate(imm, 16);
7477 } else {
7478 imm = (abcdefgh & 0x3f) << 19;
7479 if (abcdefgh & 0x80) {
7480 imm |= 0x80000000;
7481 }
7482 if (abcdefgh & 0x40) {
7483 imm |= 0x3e000000;
7484 } else {
7485 imm |= 0x40000000;
7486 }
7487 imm |= (imm << 32);
7488 }
7489 }
7490 }
7491 break;
7492 default:
7493 fprintf(stderr, "%s: cmode_3_1: %x\n", __func__, cmode_3_1);
7494 g_assert_not_reached();
7495 }
7496
7497 if (cmode_3_1 != 7 && is_neg) {
7498 imm = ~imm;
7499 }
7500
7501 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7502 /* MOVI or MVNI, with MVNI negation handled above. */
7503 tcg_gen_gvec_dup64i(vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7504 vec_full_reg_size(s), imm);
7505 } else {
7506 /* ORR or BIC, with BIC negation to AND handled above. */
7507 if (is_neg) {
7508 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7509 } else {
7510 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7511 }
7512 }
7513 }
7514
7515 /* AdvSIMD scalar copy
7516 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7517 * +-----+----+-----------------+------+---+------+---+------+------+
7518 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7519 * +-----+----+-----------------+------+---+------+---+------+------+
7520 */
7521 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7522 {
7523 int rd = extract32(insn, 0, 5);
7524 int rn = extract32(insn, 5, 5);
7525 int imm4 = extract32(insn, 11, 4);
7526 int imm5 = extract32(insn, 16, 5);
7527 int op = extract32(insn, 29, 1);
7528
7529 if (op != 0 || imm4 != 0) {
7530 unallocated_encoding(s);
7531 return;
7532 }
7533
7534 /* DUP (element, scalar) */
7535 handle_simd_dupes(s, rd, rn, imm5);
7536 }
7537
7538 /* AdvSIMD scalar pairwise
7539 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7540 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7541 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7542 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7543 */
7544 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7545 {
7546 int u = extract32(insn, 29, 1);
7547 int size = extract32(insn, 22, 2);
7548 int opcode = extract32(insn, 12, 5);
7549 int rn = extract32(insn, 5, 5);
7550 int rd = extract32(insn, 0, 5);
7551 TCGv_ptr fpst;
7552
7553 /* For some ops (the FP ones), size[1] is part of the encoding.
7554 * For ADDP strictly it is not but size[1] is always 1 for valid
7555 * encodings.
7556 */
7557 opcode |= (extract32(size, 1, 1) << 5);
7558
7559 switch (opcode) {
7560 case 0x3b: /* ADDP */
7561 if (u || size != 3) {
7562 unallocated_encoding(s);
7563 return;
7564 }
7565 if (!fp_access_check(s)) {
7566 return;
7567 }
7568
7569 fpst = NULL;
7570 break;
7571 case 0xc: /* FMAXNMP */
7572 case 0xd: /* FADDP */
7573 case 0xf: /* FMAXP */
7574 case 0x2c: /* FMINNMP */
7575 case 0x2f: /* FMINP */
7576 /* FP op, size[0] is 32 or 64 bit*/
7577 if (!u) {
7578 if (!dc_isar_feature(aa64_fp16, s)) {
7579 unallocated_encoding(s);
7580 return;
7581 } else {
7582 size = MO_16;
7583 }
7584 } else {
7585 size = extract32(size, 0, 1) ? MO_64 : MO_32;
7586 }
7587
7588 if (!fp_access_check(s)) {
7589 return;
7590 }
7591
7592 fpst = get_fpstatus_ptr(size == MO_16);
7593 break;
7594 default:
7595 unallocated_encoding(s);
7596 return;
7597 }
7598
7599 if (size == MO_64) {
7600 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7601 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7602 TCGv_i64 tcg_res = tcg_temp_new_i64();
7603
7604 read_vec_element(s, tcg_op1, rn, 0, MO_64);
7605 read_vec_element(s, tcg_op2, rn, 1, MO_64);
7606
7607 switch (opcode) {
7608 case 0x3b: /* ADDP */
7609 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
7610 break;
7611 case 0xc: /* FMAXNMP */
7612 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7613 break;
7614 case 0xd: /* FADDP */
7615 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7616 break;
7617 case 0xf: /* FMAXP */
7618 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7619 break;
7620 case 0x2c: /* FMINNMP */
7621 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7622 break;
7623 case 0x2f: /* FMINP */
7624 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7625 break;
7626 default:
7627 g_assert_not_reached();
7628 }
7629
7630 write_fp_dreg(s, rd, tcg_res);
7631
7632 tcg_temp_free_i64(tcg_op1);
7633 tcg_temp_free_i64(tcg_op2);
7634 tcg_temp_free_i64(tcg_res);
7635 } else {
7636 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7637 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7638 TCGv_i32 tcg_res = tcg_temp_new_i32();
7639
7640 read_vec_element_i32(s, tcg_op1, rn, 0, size);
7641 read_vec_element_i32(s, tcg_op2, rn, 1, size);
7642
7643 if (size == MO_16) {
7644 switch (opcode) {
7645 case 0xc: /* FMAXNMP */
7646 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7647 break;
7648 case 0xd: /* FADDP */
7649 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
7650 break;
7651 case 0xf: /* FMAXP */
7652 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
7653 break;
7654 case 0x2c: /* FMINNMP */
7655 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7656 break;
7657 case 0x2f: /* FMINP */
7658 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
7659 break;
7660 default:
7661 g_assert_not_reached();
7662 }
7663 } else {
7664 switch (opcode) {
7665 case 0xc: /* FMAXNMP */
7666 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7667 break;
7668 case 0xd: /* FADDP */
7669 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7670 break;
7671 case 0xf: /* FMAXP */
7672 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7673 break;
7674 case 0x2c: /* FMINNMP */
7675 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7676 break;
7677 case 0x2f: /* FMINP */
7678 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7679 break;
7680 default:
7681 g_assert_not_reached();
7682 }
7683 }
7684
7685 write_fp_sreg(s, rd, tcg_res);
7686
7687 tcg_temp_free_i32(tcg_op1);
7688 tcg_temp_free_i32(tcg_op2);
7689 tcg_temp_free_i32(tcg_res);
7690 }
7691
7692 if (fpst) {
7693 tcg_temp_free_ptr(fpst);
7694 }
7695 }
7696
7697 /*
7698 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
7699 *
7700 * This code is handles the common shifting code and is used by both
7701 * the vector and scalar code.
7702 */
7703 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
7704 TCGv_i64 tcg_rnd, bool accumulate,
7705 bool is_u, int size, int shift)
7706 {
7707 bool extended_result = false;
7708 bool round = tcg_rnd != NULL;
7709 int ext_lshift = 0;
7710 TCGv_i64 tcg_src_hi;
7711
7712 if (round && size == 3) {
7713 extended_result = true;
7714 ext_lshift = 64 - shift;
7715 tcg_src_hi = tcg_temp_new_i64();
7716 } else if (shift == 64) {
7717 if (!accumulate && is_u) {
7718 /* result is zero */
7719 tcg_gen_movi_i64(tcg_res, 0);
7720 return;
7721 }
7722 }
7723
7724 /* Deal with the rounding step */
7725 if (round) {
7726 if (extended_result) {
7727 TCGv_i64 tcg_zero = tcg_const_i64(0);
7728 if (!is_u) {
7729 /* take care of sign extending tcg_res */
7730 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
7731 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
7732 tcg_src, tcg_src_hi,
7733 tcg_rnd, tcg_zero);
7734 } else {
7735 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
7736 tcg_src, tcg_zero,
7737 tcg_rnd, tcg_zero);
7738 }
7739 tcg_temp_free_i64(tcg_zero);
7740 } else {
7741 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
7742 }
7743 }
7744
7745 /* Now do the shift right */
7746 if (round && extended_result) {
7747 /* extended case, >64 bit precision required */
7748 if (ext_lshift == 0) {
7749 /* special case, only high bits matter */
7750 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
7751 } else {
7752 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
7753 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
7754 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
7755 }
7756 } else {
7757 if (is_u) {
7758 if (shift == 64) {
7759 /* essentially shifting in 64 zeros */
7760 tcg_gen_movi_i64(tcg_src, 0);
7761 } else {
7762 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
7763 }
7764 } else {
7765 if (shift == 64) {
7766 /* effectively extending the sign-bit */
7767 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
7768 } else {
7769 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
7770 }
7771 }
7772 }
7773
7774 if (accumulate) {
7775 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
7776 } else {
7777 tcg_gen_mov_i64(tcg_res, tcg_src);
7778 }
7779
7780 if (extended_result) {
7781 tcg_temp_free_i64(tcg_src_hi);
7782 }
7783 }
7784
7785 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
7786 static void handle_scalar_simd_shri(DisasContext *s,
7787 bool is_u, int immh, int immb,
7788 int opcode, int rn, int rd)
7789 {
7790 const int size = 3;
7791 int immhb = immh << 3 | immb;
7792 int shift = 2 * (8 << size) - immhb;
7793 bool accumulate = false;
7794 bool round = false;
7795 bool insert = false;
7796 TCGv_i64 tcg_rn;
7797 TCGv_i64 tcg_rd;
7798 TCGv_i64 tcg_round;
7799
7800 if (!extract32(immh, 3, 1)) {
7801 unallocated_encoding(s);
7802 return;
7803 }
7804
7805 if (!fp_access_check(s)) {
7806 return;
7807 }
7808
7809 switch (opcode) {
7810 case 0x02: /* SSRA / USRA (accumulate) */
7811 accumulate = true;
7812 break;
7813 case 0x04: /* SRSHR / URSHR (rounding) */
7814 round = true;
7815 break;
7816 case 0x06: /* SRSRA / URSRA (accum + rounding) */
7817 accumulate = round = true;
7818 break;
7819 case 0x08: /* SRI */
7820 insert = true;
7821 break;
7822 }
7823
7824 if (round) {
7825 uint64_t round_const = 1ULL << (shift - 1);
7826 tcg_round = tcg_const_i64(round_const);
7827 } else {
7828 tcg_round = NULL;
7829 }
7830
7831 tcg_rn = read_fp_dreg(s, rn);
7832 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
7833
7834 if (insert) {
7835 /* shift count same as element size is valid but does nothing;
7836 * special case to avoid potential shift by 64.
7837 */
7838 int esize = 8 << size;
7839 if (shift != esize) {
7840 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
7841 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
7842 }
7843 } else {
7844 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
7845 accumulate, is_u, size, shift);
7846 }
7847
7848 write_fp_dreg(s, rd, tcg_rd);
7849
7850 tcg_temp_free_i64(tcg_rn);
7851 tcg_temp_free_i64(tcg_rd);
7852 if (round) {
7853 tcg_temp_free_i64(tcg_round);
7854 }
7855 }
7856
7857 /* SHL/SLI - Scalar shift left */
7858 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
7859 int immh, int immb, int opcode,
7860 int rn, int rd)
7861 {
7862 int size = 32 - clz32(immh) - 1;
7863 int immhb = immh << 3 | immb;
7864 int shift = immhb - (8 << size);
7865 TCGv_i64 tcg_rn = new_tmp_a64(s);
7866 TCGv_i64 tcg_rd = new_tmp_a64(s);
7867
7868 if (!extract32(immh, 3, 1)) {
7869 unallocated_encoding(s);
7870 return;
7871 }
7872
7873 if (!fp_access_check(s)) {
7874 return;
7875 }
7876
7877 tcg_rn = read_fp_dreg(s, rn);
7878 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
7879
7880 if (insert) {
7881 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
7882 } else {
7883 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
7884 }
7885
7886 write_fp_dreg(s, rd, tcg_rd);
7887
7888 tcg_temp_free_i64(tcg_rn);
7889 tcg_temp_free_i64(tcg_rd);
7890 }
7891
7892 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
7893 * (signed/unsigned) narrowing */
7894 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
7895 bool is_u_shift, bool is_u_narrow,
7896 int immh, int immb, int opcode,
7897 int rn, int rd)
7898 {
7899 int immhb = immh << 3 | immb;
7900 int size = 32 - clz32(immh) - 1;
7901 int esize = 8 << size;
7902 int shift = (2 * esize) - immhb;
7903 int elements = is_scalar ? 1 : (64 / esize);
7904 bool round = extract32(opcode, 0, 1);
7905 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
7906 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
7907 TCGv_i32 tcg_rd_narrowed;
7908 TCGv_i64 tcg_final;
7909
7910 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
7911 { gen_helper_neon_narrow_sat_s8,
7912 gen_helper_neon_unarrow_sat8 },
7913 { gen_helper_neon_narrow_sat_s16,
7914 gen_helper_neon_unarrow_sat16 },
7915 { gen_helper_neon_narrow_sat_s32,
7916 gen_helper_neon_unarrow_sat32 },
7917 { NULL, NULL },
7918 };
7919 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
7920 gen_helper_neon_narrow_sat_u8,
7921 gen_helper_neon_narrow_sat_u16,
7922 gen_helper_neon_narrow_sat_u32,
7923 NULL
7924 };
7925 NeonGenNarrowEnvFn *narrowfn;
7926
7927 int i;
7928
7929 assert(size < 4);
7930
7931 if (extract32(immh, 3, 1)) {
7932 unallocated_encoding(s);
7933 return;
7934 }
7935
7936 if (!fp_access_check(s)) {
7937 return;
7938 }
7939
7940 if (is_u_shift) {
7941 narrowfn = unsigned_narrow_fns[size];
7942 } else {
7943 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
7944 }
7945
7946 tcg_rn = tcg_temp_new_i64();
7947 tcg_rd = tcg_temp_new_i64();
7948 tcg_rd_narrowed = tcg_temp_new_i32();
7949 tcg_final = tcg_const_i64(0);
7950
7951 if (round) {
7952 uint64_t round_const = 1ULL << (shift - 1);
7953 tcg_round = tcg_const_i64(round_const);
7954 } else {
7955 tcg_round = NULL;
7956 }
7957
7958 for (i = 0; i < elements; i++) {
7959 read_vec_element(s, tcg_rn, rn, i, ldop);
7960 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
7961 false, is_u_shift, size+1, shift);
7962 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
7963 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
7964 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
7965 }
7966
7967 if (!is_q) {
7968 write_vec_element(s, tcg_final, rd, 0, MO_64);
7969 } else {
7970 write_vec_element(s, tcg_final, rd, 1, MO_64);
7971 }
7972
7973 if (round) {
7974 tcg_temp_free_i64(tcg_round);
7975 }
7976 tcg_temp_free_i64(tcg_rn);
7977 tcg_temp_free_i64(tcg_rd);
7978 tcg_temp_free_i32(tcg_rd_narrowed);
7979 tcg_temp_free_i64(tcg_final);
7980
7981 clear_vec_high(s, is_q, rd);
7982 }
7983
7984 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
7985 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
7986 bool src_unsigned, bool dst_unsigned,
7987 int immh, int immb, int rn, int rd)
7988 {
7989 int immhb = immh << 3 | immb;
7990 int size = 32 - clz32(immh) - 1;
7991 int shift = immhb - (8 << size);
7992 int pass;
7993
7994 assert(immh != 0);
7995 assert(!(scalar && is_q));
7996
7997 if (!scalar) {
7998 if (!is_q && extract32(immh, 3, 1)) {
7999 unallocated_encoding(s);
8000 return;
8001 }
8002
8003 /* Since we use the variable-shift helpers we must
8004 * replicate the shift count into each element of
8005 * the tcg_shift value.
8006 */
8007 switch (size) {
8008 case 0:
8009 shift |= shift << 8;
8010 /* fall through */
8011 case 1:
8012 shift |= shift << 16;
8013 break;
8014 case 2:
8015 case 3:
8016 break;
8017 default:
8018 g_assert_not_reached();
8019 }
8020 }
8021
8022 if (!fp_access_check(s)) {
8023 return;
8024 }
8025
8026 if (size == 3) {
8027 TCGv_i64 tcg_shift = tcg_const_i64(shift);
8028 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8029 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8030 { NULL, gen_helper_neon_qshl_u64 },
8031 };
8032 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8033 int maxpass = is_q ? 2 : 1;
8034
8035 for (pass = 0; pass < maxpass; pass++) {
8036 TCGv_i64 tcg_op = tcg_temp_new_i64();
8037
8038 read_vec_element(s, tcg_op, rn, pass, MO_64);
8039 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8040 write_vec_element(s, tcg_op, rd, pass, MO_64);
8041
8042 tcg_temp_free_i64(tcg_op);
8043 }
8044 tcg_temp_free_i64(tcg_shift);
8045 clear_vec_high(s, is_q, rd);
8046 } else {
8047 TCGv_i32 tcg_shift = tcg_const_i32(shift);
8048 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8049 {
8050 { gen_helper_neon_qshl_s8,
8051 gen_helper_neon_qshl_s16,
8052 gen_helper_neon_qshl_s32 },
8053 { gen_helper_neon_qshlu_s8,
8054 gen_helper_neon_qshlu_s16,
8055 gen_helper_neon_qshlu_s32 }
8056 }, {
8057 { NULL, NULL, NULL },
8058 { gen_helper_neon_qshl_u8,
8059 gen_helper_neon_qshl_u16,
8060 gen_helper_neon_qshl_u32 }
8061 }
8062 };
8063 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8064 TCGMemOp memop = scalar ? size : MO_32;
8065 int maxpass = scalar ? 1 : is_q ? 4 : 2;
8066
8067 for (pass = 0; pass < maxpass; pass++) {
8068 TCGv_i32 tcg_op = tcg_temp_new_i32();
8069
8070 read_vec_element_i32(s, tcg_op, rn, pass, memop);
8071 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8072 if (scalar) {
8073 switch (size) {
8074 case 0:
8075 tcg_gen_ext8u_i32(tcg_op, tcg_op);
8076 break;
8077 case 1:
8078 tcg_gen_ext16u_i32(tcg_op, tcg_op);
8079 break;
8080 case 2:
8081 break;
8082 default:
8083 g_assert_not_reached();
8084 }
8085 write_fp_sreg(s, rd, tcg_op);
8086 } else {
8087 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8088 }
8089
8090 tcg_temp_free_i32(tcg_op);
8091 }
8092 tcg_temp_free_i32(tcg_shift);
8093
8094 if (!scalar) {
8095 clear_vec_high(s, is_q, rd);
8096 }
8097 }
8098 }
8099
8100 /* Common vector code for handling integer to FP conversion */
8101 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8102 int elements, int is_signed,
8103 int fracbits, int size)
8104 {
8105 TCGv_ptr tcg_fpst = get_fpstatus_ptr(size == MO_16);
8106 TCGv_i32 tcg_shift = NULL;
8107
8108 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
8109 int pass;
8110
8111 if (fracbits || size == MO_64) {
8112 tcg_shift = tcg_const_i32(fracbits);
8113 }
8114
8115 if (size == MO_64) {
8116 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8117 TCGv_i64 tcg_double = tcg_temp_new_i64();
8118
8119 for (pass = 0; pass < elements; pass++) {
8120 read_vec_element(s, tcg_int64, rn, pass, mop);
8121
8122 if (is_signed) {
8123 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8124 tcg_shift, tcg_fpst);
8125 } else {
8126 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8127 tcg_shift, tcg_fpst);
8128 }
8129 if (elements == 1) {
8130 write_fp_dreg(s, rd, tcg_double);
8131 } else {
8132 write_vec_element(s, tcg_double, rd, pass, MO_64);
8133 }
8134 }
8135
8136 tcg_temp_free_i64(tcg_int64);
8137 tcg_temp_free_i64(tcg_double);
8138
8139 } else {
8140 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8141 TCGv_i32 tcg_float = tcg_temp_new_i32();
8142
8143 for (pass = 0; pass < elements; pass++) {
8144 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8145
8146 switch (size) {
8147 case MO_32:
8148 if (fracbits) {
8149 if (is_signed) {
8150 gen_helper_vfp_sltos(tcg_float, tcg_int32,
8151 tcg_shift, tcg_fpst);
8152 } else {
8153 gen_helper_vfp_ultos(tcg_float, tcg_int32,
8154 tcg_shift, tcg_fpst);
8155 }
8156 } else {
8157 if (is_signed) {
8158 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8159 } else {
8160 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8161 }
8162 }
8163 break;
8164 case MO_16:
8165 if (fracbits) {
8166 if (is_signed) {
8167 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8168 tcg_shift, tcg_fpst);
8169 } else {
8170 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8171 tcg_shift, tcg_fpst);
8172 }
8173 } else {
8174 if (is_signed) {
8175 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8176 } else {
8177 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8178 }
8179 }
8180 break;
8181 default:
8182 g_assert_not_reached();
8183 }
8184
8185 if (elements == 1) {
8186 write_fp_sreg(s, rd, tcg_float);
8187 } else {
8188 write_vec_element_i32(s, tcg_float, rd, pass, size);
8189 }
8190 }
8191
8192 tcg_temp_free_i32(tcg_int32);
8193 tcg_temp_free_i32(tcg_float);
8194 }
8195
8196 tcg_temp_free_ptr(tcg_fpst);
8197 if (tcg_shift) {
8198 tcg_temp_free_i32(tcg_shift);
8199 }
8200
8201 clear_vec_high(s, elements << size == 16, rd);
8202 }
8203
8204 /* UCVTF/SCVTF - Integer to FP conversion */
8205 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8206 bool is_q, bool is_u,
8207 int immh, int immb, int opcode,
8208 int rn, int rd)
8209 {
8210 int size, elements, fracbits;
8211 int immhb = immh << 3 | immb;
8212
8213 if (immh & 8) {
8214 size = MO_64;
8215 if (!is_scalar && !is_q) {
8216 unallocated_encoding(s);
8217 return;
8218 }
8219 } else if (immh & 4) {
8220 size = MO_32;
8221 } else if (immh & 2) {
8222 size = MO_16;
8223 if (!dc_isar_feature(aa64_fp16, s)) {
8224 unallocated_encoding(s);
8225 return;
8226 }
8227 } else {
8228 /* immh == 0 would be a failure of the decode logic */
8229 g_assert(immh == 1);
8230 unallocated_encoding(s);
8231 return;
8232 }
8233
8234 if (is_scalar) {
8235 elements = 1;
8236 } else {
8237 elements = (8 << is_q) >> size;
8238 }
8239 fracbits = (16 << size) - immhb;
8240
8241 if (!fp_access_check(s)) {
8242 return;
8243 }
8244
8245 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8246 }
8247
8248 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8249 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8250 bool is_q, bool is_u,
8251 int immh, int immb, int rn, int rd)
8252 {
8253 int immhb = immh << 3 | immb;
8254 int pass, size, fracbits;
8255 TCGv_ptr tcg_fpstatus;
8256 TCGv_i32 tcg_rmode, tcg_shift;
8257
8258 if (immh & 0x8) {
8259 size = MO_64;
8260 if (!is_scalar && !is_q) {
8261 unallocated_encoding(s);
8262 return;
8263 }
8264 } else if (immh & 0x4) {
8265 size = MO_32;
8266 } else if (immh & 0x2) {
8267 size = MO_16;
8268 if (!dc_isar_feature(aa64_fp16, s)) {
8269 unallocated_encoding(s);
8270 return;
8271 }
8272 } else {
8273 /* Should have split out AdvSIMD modified immediate earlier. */
8274 assert(immh == 1);
8275 unallocated_encoding(s);
8276 return;
8277 }
8278
8279 if (!fp_access_check(s)) {
8280 return;
8281 }
8282
8283 assert(!(is_scalar && is_q));
8284
8285 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
8286 tcg_fpstatus = get_fpstatus_ptr(size == MO_16);
8287 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8288 fracbits = (16 << size) - immhb;
8289 tcg_shift = tcg_const_i32(fracbits);
8290
8291 if (size == MO_64) {
8292 int maxpass = is_scalar ? 1 : 2;
8293
8294 for (pass = 0; pass < maxpass; pass++) {
8295 TCGv_i64 tcg_op = tcg_temp_new_i64();
8296
8297 read_vec_element(s, tcg_op, rn, pass, MO_64);
8298 if (is_u) {
8299 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8300 } else {
8301 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8302 }
8303 write_vec_element(s, tcg_op, rd, pass, MO_64);
8304 tcg_temp_free_i64(tcg_op);
8305 }
8306 clear_vec_high(s, is_q, rd);
8307 } else {
8308 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8309 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8310
8311 switch (size) {
8312 case MO_16:
8313 if (is_u) {
8314 fn = gen_helper_vfp_touhh;
8315 } else {
8316 fn = gen_helper_vfp_toshh;
8317 }
8318 break;
8319 case MO_32:
8320 if (is_u) {
8321 fn = gen_helper_vfp_touls;
8322 } else {
8323 fn = gen_helper_vfp_tosls;
8324 }
8325 break;
8326 default:
8327 g_assert_not_reached();
8328 }
8329
8330 for (pass = 0; pass < maxpass; pass++) {
8331 TCGv_i32 tcg_op = tcg_temp_new_i32();
8332
8333 read_vec_element_i32(s, tcg_op, rn, pass, size);
8334 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8335 if (is_scalar) {
8336 write_fp_sreg(s, rd, tcg_op);
8337 } else {
8338 write_vec_element_i32(s, tcg_op, rd, pass, size);
8339 }
8340 tcg_temp_free_i32(tcg_op);
8341 }
8342 if (!is_scalar) {
8343 clear_vec_high(s, is_q, rd);
8344 }
8345 }
8346
8347 tcg_temp_free_ptr(tcg_fpstatus);
8348 tcg_temp_free_i32(tcg_shift);
8349 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8350 tcg_temp_free_i32(tcg_rmode);
8351 }
8352
8353 /* AdvSIMD scalar shift by immediate
8354 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8355 * +-----+---+-------------+------+------+--------+---+------+------+
8356 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8357 * +-----+---+-------------+------+------+--------+---+------+------+
8358 *
8359 * This is the scalar version so it works on a fixed sized registers
8360 */
8361 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8362 {
8363 int rd = extract32(insn, 0, 5);
8364 int rn = extract32(insn, 5, 5);
8365 int opcode = extract32(insn, 11, 5);
8366 int immb = extract32(insn, 16, 3);
8367 int immh = extract32(insn, 19, 4);
8368 bool is_u = extract32(insn, 29, 1);
8369
8370 if (immh == 0) {
8371 unallocated_encoding(s);
8372 return;
8373 }
8374
8375 switch (opcode) {
8376 case 0x08: /* SRI */
8377 if (!is_u) {
8378 unallocated_encoding(s);
8379 return;
8380 }
8381 /* fall through */
8382 case 0x00: /* SSHR / USHR */
8383 case 0x02: /* SSRA / USRA */
8384 case 0x04: /* SRSHR / URSHR */
8385 case 0x06: /* SRSRA / URSRA */
8386 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8387 break;
8388 case 0x0a: /* SHL / SLI */
8389 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8390 break;
8391 case 0x1c: /* SCVTF, UCVTF */
8392 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8393 opcode, rn, rd);
8394 break;
8395 case 0x10: /* SQSHRUN, SQSHRUN2 */
8396 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8397 if (!is_u) {
8398 unallocated_encoding(s);
8399 return;
8400 }
8401 handle_vec_simd_sqshrn(s, true, false, false, true,
8402 immh, immb, opcode, rn, rd);
8403 break;
8404 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8405 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8406 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8407 immh, immb, opcode, rn, rd);
8408 break;
8409 case 0xc: /* SQSHLU */
8410 if (!is_u) {
8411 unallocated_encoding(s);
8412 return;
8413 }
8414 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8415 break;
8416 case 0xe: /* SQSHL, UQSHL */
8417 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8418 break;
8419 case 0x1f: /* FCVTZS, FCVTZU */
8420 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8421 break;
8422 default:
8423 unallocated_encoding(s);
8424 break;
8425 }
8426 }
8427
8428 /* AdvSIMD scalar three different
8429 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8430 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8431 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8432 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8433 */
8434 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8435 {
8436 bool is_u = extract32(insn, 29, 1);
8437 int size = extract32(insn, 22, 2);
8438 int opcode = extract32(insn, 12, 4);
8439 int rm = extract32(insn, 16, 5);
8440 int rn = extract32(insn, 5, 5);
8441 int rd = extract32(insn, 0, 5);
8442
8443 if (is_u) {
8444 unallocated_encoding(s);
8445 return;
8446 }
8447
8448 switch (opcode) {
8449 case 0x9: /* SQDMLAL, SQDMLAL2 */
8450 case 0xb: /* SQDMLSL, SQDMLSL2 */
8451 case 0xd: /* SQDMULL, SQDMULL2 */
8452 if (size == 0 || size == 3) {
8453 unallocated_encoding(s);
8454 return;
8455 }
8456 break;
8457 default:
8458 unallocated_encoding(s);
8459 return;
8460 }
8461
8462 if (!fp_access_check(s)) {
8463 return;
8464 }
8465
8466 if (size == 2) {
8467 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8468 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8469 TCGv_i64 tcg_res = tcg_temp_new_i64();
8470
8471 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8472 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8473
8474 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8475 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
8476
8477 switch (opcode) {
8478 case 0xd: /* SQDMULL, SQDMULL2 */
8479 break;
8480 case 0xb: /* SQDMLSL, SQDMLSL2 */
8481 tcg_gen_neg_i64(tcg_res, tcg_res);
8482 /* fall through */
8483 case 0x9: /* SQDMLAL, SQDMLAL2 */
8484 read_vec_element(s, tcg_op1, rd, 0, MO_64);
8485 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
8486 tcg_res, tcg_op1);
8487 break;
8488 default:
8489 g_assert_not_reached();
8490 }
8491
8492 write_fp_dreg(s, rd, tcg_res);
8493
8494 tcg_temp_free_i64(tcg_op1);
8495 tcg_temp_free_i64(tcg_op2);
8496 tcg_temp_free_i64(tcg_res);
8497 } else {
8498 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8499 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8500 TCGv_i64 tcg_res = tcg_temp_new_i64();
8501
8502 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8503 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
8504
8505 switch (opcode) {
8506 case 0xd: /* SQDMULL, SQDMULL2 */
8507 break;
8508 case 0xb: /* SQDMLSL, SQDMLSL2 */
8509 gen_helper_neon_negl_u32(tcg_res, tcg_res);
8510 /* fall through */
8511 case 0x9: /* SQDMLAL, SQDMLAL2 */
8512 {
8513 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8514 read_vec_element(s, tcg_op3, rd, 0, MO_32);
8515 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
8516 tcg_res, tcg_op3);
8517 tcg_temp_free_i64(tcg_op3);
8518 break;
8519 }
8520 default:
8521 g_assert_not_reached();
8522 }
8523
8524 tcg_gen_ext32u_i64(tcg_res, tcg_res);
8525 write_fp_dreg(s, rd, tcg_res);
8526
8527 tcg_temp_free_i32(tcg_op1);
8528 tcg_temp_free_i32(tcg_op2);
8529 tcg_temp_free_i64(tcg_res);
8530 }
8531 }
8532
8533 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8534 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8535 {
8536 /* Handle 64x64->64 opcodes which are shared between the scalar
8537 * and vector 3-same groups. We cover every opcode where size == 3
8538 * is valid in either the three-reg-same (integer, not pairwise)
8539 * or scalar-three-reg-same groups.
8540 */
8541 TCGCond cond;
8542
8543 switch (opcode) {
8544 case 0x1: /* SQADD */
8545 if (u) {
8546 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8547 } else {
8548 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8549 }
8550 break;
8551 case 0x5: /* SQSUB */
8552 if (u) {
8553 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8554 } else {
8555 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8556 }
8557 break;
8558 case 0x6: /* CMGT, CMHI */
8559 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
8560 * We implement this using setcond (test) and then negating.
8561 */
8562 cond = u ? TCG_COND_GTU : TCG_COND_GT;
8563 do_cmop:
8564 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8565 tcg_gen_neg_i64(tcg_rd, tcg_rd);
8566 break;
8567 case 0x7: /* CMGE, CMHS */
8568 cond = u ? TCG_COND_GEU : TCG_COND_GE;
8569 goto do_cmop;
8570 case 0x11: /* CMTST, CMEQ */
8571 if (u) {
8572 cond = TCG_COND_EQ;
8573 goto do_cmop;
8574 }
8575 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8576 break;
8577 case 0x8: /* SSHL, USHL */
8578 if (u) {
8579 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
8580 } else {
8581 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
8582 }
8583 break;
8584 case 0x9: /* SQSHL, UQSHL */
8585 if (u) {
8586 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8587 } else {
8588 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8589 }
8590 break;
8591 case 0xa: /* SRSHL, URSHL */
8592 if (u) {
8593 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8594 } else {
8595 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8596 }
8597 break;
8598 case 0xb: /* SQRSHL, UQRSHL */
8599 if (u) {
8600 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8601 } else {
8602 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8603 }
8604 break;
8605 case 0x10: /* ADD, SUB */
8606 if (u) {
8607 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8608 } else {
8609 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8610 }
8611 break;
8612 default:
8613 g_assert_not_reached();
8614 }
8615 }
8616
8617 /* Handle the 3-same-operands float operations; shared by the scalar
8618 * and vector encodings. The caller must filter out any encodings
8619 * not allocated for the encoding it is dealing with.
8620 */
8621 static void handle_3same_float(DisasContext *s, int size, int elements,
8622 int fpopcode, int rd, int rn, int rm)
8623 {
8624 int pass;
8625 TCGv_ptr fpst = get_fpstatus_ptr(false);
8626
8627 for (pass = 0; pass < elements; pass++) {
8628 if (size) {
8629 /* Double */
8630 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8631 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8632 TCGv_i64 tcg_res = tcg_temp_new_i64();
8633
8634 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8635 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8636
8637 switch (fpopcode) {
8638 case 0x39: /* FMLS */
8639 /* As usual for ARM, separate negation for fused multiply-add */
8640 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8641 /* fall through */
8642 case 0x19: /* FMLA */
8643 read_vec_element(s, tcg_res, rd, pass, MO_64);
8644 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8645 tcg_res, fpst);
8646 break;
8647 case 0x18: /* FMAXNM */
8648 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8649 break;
8650 case 0x1a: /* FADD */
8651 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8652 break;
8653 case 0x1b: /* FMULX */
8654 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8655 break;
8656 case 0x1c: /* FCMEQ */
8657 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8658 break;
8659 case 0x1e: /* FMAX */
8660 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8661 break;
8662 case 0x1f: /* FRECPS */
8663 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8664 break;
8665 case 0x38: /* FMINNM */
8666 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8667 break;
8668 case 0x3a: /* FSUB */
8669 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8670 break;
8671 case 0x3e: /* FMIN */
8672 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8673 break;
8674 case 0x3f: /* FRSQRTS */
8675 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8676 break;
8677 case 0x5b: /* FMUL */
8678 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
8679 break;
8680 case 0x5c: /* FCMGE */
8681 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8682 break;
8683 case 0x5d: /* FACGE */
8684 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8685 break;
8686 case 0x5f: /* FDIV */
8687 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
8688 break;
8689 case 0x7a: /* FABD */
8690 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8691 gen_helper_vfp_absd(tcg_res, tcg_res);
8692 break;
8693 case 0x7c: /* FCMGT */
8694 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8695 break;
8696 case 0x7d: /* FACGT */
8697 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8698 break;
8699 default:
8700 g_assert_not_reached();
8701 }
8702
8703 write_vec_element(s, tcg_res, rd, pass, MO_64);
8704
8705 tcg_temp_free_i64(tcg_res);
8706 tcg_temp_free_i64(tcg_op1);
8707 tcg_temp_free_i64(tcg_op2);
8708 } else {
8709 /* Single */
8710 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8711 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8712 TCGv_i32 tcg_res = tcg_temp_new_i32();
8713
8714 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
8715 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
8716
8717 switch (fpopcode) {
8718 case 0x39: /* FMLS */
8719 /* As usual for ARM, separate negation for fused multiply-add */
8720 gen_helper_vfp_negs(tcg_op1, tcg_op1);
8721 /* fall through */
8722 case 0x19: /* FMLA */
8723 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8724 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
8725 tcg_res, fpst);
8726 break;
8727 case 0x1a: /* FADD */
8728 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8729 break;
8730 case 0x1b: /* FMULX */
8731 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
8732 break;
8733 case 0x1c: /* FCMEQ */
8734 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8735 break;
8736 case 0x1e: /* FMAX */
8737 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8738 break;
8739 case 0x1f: /* FRECPS */
8740 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8741 break;
8742 case 0x18: /* FMAXNM */
8743 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8744 break;
8745 case 0x38: /* FMINNM */
8746 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8747 break;
8748 case 0x3a: /* FSUB */
8749 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8750 break;
8751 case 0x3e: /* FMIN */
8752 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8753 break;
8754 case 0x3f: /* FRSQRTS */
8755 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8756 break;
8757 case 0x5b: /* FMUL */
8758 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
8759 break;
8760 case 0x5c: /* FCMGE */
8761 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8762 break;
8763 case 0x5d: /* FACGE */
8764 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8765 break;
8766 case 0x5f: /* FDIV */
8767 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
8768 break;
8769 case 0x7a: /* FABD */
8770 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8771 gen_helper_vfp_abss(tcg_res, tcg_res);
8772 break;
8773 case 0x7c: /* FCMGT */
8774 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8775 break;
8776 case 0x7d: /* FACGT */
8777 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8778 break;
8779 default:
8780 g_assert_not_reached();
8781 }
8782
8783 if (elements == 1) {
8784 /* scalar single so clear high part */
8785 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8786
8787 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
8788 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
8789 tcg_temp_free_i64(tcg_tmp);
8790 } else {
8791 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8792 }
8793
8794 tcg_temp_free_i32(tcg_res);
8795 tcg_temp_free_i32(tcg_op1);
8796 tcg_temp_free_i32(tcg_op2);
8797 }
8798 }
8799
8800 tcg_temp_free_ptr(fpst);
8801
8802 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
8803 }
8804
8805 /* AdvSIMD scalar three same
8806 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
8807 * +-----+---+-----------+------+---+------+--------+---+------+------+
8808 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
8809 * +-----+---+-----------+------+---+------+--------+---+------+------+
8810 */
8811 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
8812 {
8813 int rd = extract32(insn, 0, 5);
8814 int rn = extract32(insn, 5, 5);
8815 int opcode = extract32(insn, 11, 5);
8816 int rm = extract32(insn, 16, 5);
8817 int size = extract32(insn, 22, 2);
8818 bool u = extract32(insn, 29, 1);
8819 TCGv_i64 tcg_rd;
8820
8821 if (opcode >= 0x18) {
8822 /* Floating point: U, size[1] and opcode indicate operation */
8823 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
8824 switch (fpopcode) {
8825 case 0x1b: /* FMULX */
8826 case 0x1f: /* FRECPS */
8827 case 0x3f: /* FRSQRTS */
8828 case 0x5d: /* FACGE */
8829 case 0x7d: /* FACGT */
8830 case 0x1c: /* FCMEQ */
8831 case 0x5c: /* FCMGE */
8832 case 0x7c: /* FCMGT */
8833 case 0x7a: /* FABD */
8834 break;
8835 default:
8836 unallocated_encoding(s);
8837 return;
8838 }
8839
8840 if (!fp_access_check(s)) {
8841 return;
8842 }
8843
8844 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
8845 return;
8846 }
8847
8848 switch (opcode) {
8849 case 0x1: /* SQADD, UQADD */
8850 case 0x5: /* SQSUB, UQSUB */
8851 case 0x9: /* SQSHL, UQSHL */
8852 case 0xb: /* SQRSHL, UQRSHL */
8853 break;
8854 case 0x8: /* SSHL, USHL */
8855 case 0xa: /* SRSHL, URSHL */
8856 case 0x6: /* CMGT, CMHI */
8857 case 0x7: /* CMGE, CMHS */
8858 case 0x11: /* CMTST, CMEQ */
8859 case 0x10: /* ADD, SUB (vector) */
8860 if (size != 3) {
8861 unallocated_encoding(s);
8862 return;
8863 }
8864 break;
8865 case 0x16: /* SQDMULH, SQRDMULH (vector) */
8866 if (size != 1 && size != 2) {
8867 unallocated_encoding(s);
8868 return;
8869 }
8870 break;
8871 default:
8872 unallocated_encoding(s);
8873 return;
8874 }
8875
8876 if (!fp_access_check(s)) {
8877 return;
8878 }
8879
8880 tcg_rd = tcg_temp_new_i64();
8881
8882 if (size == 3) {
8883 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8884 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
8885
8886 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
8887 tcg_temp_free_i64(tcg_rn);
8888 tcg_temp_free_i64(tcg_rm);
8889 } else {
8890 /* Do a single operation on the lowest element in the vector.
8891 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
8892 * no side effects for all these operations.
8893 * OPTME: special-purpose helpers would avoid doing some
8894 * unnecessary work in the helper for the 8 and 16 bit cases.
8895 */
8896 NeonGenTwoOpEnvFn *genenvfn;
8897 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8898 TCGv_i32 tcg_rm = tcg_temp_new_i32();
8899 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
8900
8901 read_vec_element_i32(s, tcg_rn, rn, 0, size);
8902 read_vec_element_i32(s, tcg_rm, rm, 0, size);
8903
8904 switch (opcode) {
8905 case 0x1: /* SQADD, UQADD */
8906 {
8907 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8908 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
8909 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
8910 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
8911 };
8912 genenvfn = fns[size][u];
8913 break;
8914 }
8915 case 0x5: /* SQSUB, UQSUB */
8916 {
8917 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8918 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
8919 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
8920 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
8921 };
8922 genenvfn = fns[size][u];
8923 break;
8924 }
8925 case 0x9: /* SQSHL, UQSHL */
8926 {
8927 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8928 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
8929 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
8930 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
8931 };
8932 genenvfn = fns[size][u];
8933 break;
8934 }
8935 case 0xb: /* SQRSHL, UQRSHL */
8936 {
8937 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8938 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
8939 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
8940 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
8941 };
8942 genenvfn = fns[size][u];
8943 break;
8944 }
8945 case 0x16: /* SQDMULH, SQRDMULH */
8946 {
8947 static NeonGenTwoOpEnvFn * const fns[2][2] = {
8948 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
8949 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
8950 };
8951 assert(size == 1 || size == 2);
8952 genenvfn = fns[size - 1][u];
8953 break;
8954 }
8955 default:
8956 g_assert_not_reached();
8957 }
8958
8959 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
8960 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
8961 tcg_temp_free_i32(tcg_rd32);
8962 tcg_temp_free_i32(tcg_rn);
8963 tcg_temp_free_i32(tcg_rm);
8964 }
8965
8966 write_fp_dreg(s, rd, tcg_rd);
8967
8968 tcg_temp_free_i64(tcg_rd);
8969 }
8970
8971 /* AdvSIMD scalar three same FP16
8972 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
8973 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
8974 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
8975 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
8976 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
8977 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
8978 */
8979 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
8980 uint32_t insn)
8981 {
8982 int rd = extract32(insn, 0, 5);
8983 int rn = extract32(insn, 5, 5);
8984 int opcode = extract32(insn, 11, 3);
8985 int rm = extract32(insn, 16, 5);
8986 bool u = extract32(insn, 29, 1);
8987 bool a = extract32(insn, 23, 1);
8988 int fpopcode = opcode | (a << 3) | (u << 4);
8989 TCGv_ptr fpst;
8990 TCGv_i32 tcg_op1;
8991 TCGv_i32 tcg_op2;
8992 TCGv_i32 tcg_res;
8993
8994 switch (fpopcode) {
8995 case 0x03: /* FMULX */
8996 case 0x04: /* FCMEQ (reg) */
8997 case 0x07: /* FRECPS */
8998 case 0x0f: /* FRSQRTS */
8999 case 0x14: /* FCMGE (reg) */
9000 case 0x15: /* FACGE */
9001 case 0x1a: /* FABD */
9002 case 0x1c: /* FCMGT (reg) */
9003 case 0x1d: /* FACGT */
9004 break;
9005 default:
9006 unallocated_encoding(s);
9007 return;
9008 }
9009
9010 if (!dc_isar_feature(aa64_fp16, s)) {
9011 unallocated_encoding(s);
9012 }
9013
9014 if (!fp_access_check(s)) {
9015 return;
9016 }
9017
9018 fpst = get_fpstatus_ptr(true);
9019
9020 tcg_op1 = read_fp_hreg(s, rn);
9021 tcg_op2 = read_fp_hreg(s, rm);
9022 tcg_res = tcg_temp_new_i32();
9023
9024 switch (fpopcode) {
9025 case 0x03: /* FMULX */
9026 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9027 break;
9028 case 0x04: /* FCMEQ (reg) */
9029 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9030 break;
9031 case 0x07: /* FRECPS */
9032 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9033 break;
9034 case 0x0f: /* FRSQRTS */
9035 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9036 break;
9037 case 0x14: /* FCMGE (reg) */
9038 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9039 break;
9040 case 0x15: /* FACGE */
9041 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9042 break;
9043 case 0x1a: /* FABD */
9044 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9045 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9046 break;
9047 case 0x1c: /* FCMGT (reg) */
9048 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9049 break;
9050 case 0x1d: /* FACGT */
9051 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9052 break;
9053 default:
9054 g_assert_not_reached();
9055 }
9056
9057 write_fp_sreg(s, rd, tcg_res);
9058
9059
9060 tcg_temp_free_i32(tcg_res);
9061 tcg_temp_free_i32(tcg_op1);
9062 tcg_temp_free_i32(tcg_op2);
9063 tcg_temp_free_ptr(fpst);
9064 }
9065
9066 /* AdvSIMD scalar three same extra
9067 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9068 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9069 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9070 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9071 */
9072 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9073 uint32_t insn)
9074 {
9075 int rd = extract32(insn, 0, 5);
9076 int rn = extract32(insn, 5, 5);
9077 int opcode = extract32(insn, 11, 4);
9078 int rm = extract32(insn, 16, 5);
9079 int size = extract32(insn, 22, 2);
9080 bool u = extract32(insn, 29, 1);
9081 TCGv_i32 ele1, ele2, ele3;
9082 TCGv_i64 res;
9083 bool feature;
9084
9085 switch (u * 16 + opcode) {
9086 case 0x10: /* SQRDMLAH (vector) */
9087 case 0x11: /* SQRDMLSH (vector) */
9088 if (size != 1 && size != 2) {
9089 unallocated_encoding(s);
9090 return;
9091 }
9092 feature = dc_isar_feature(aa64_rdm, s);
9093 break;
9094 default:
9095 unallocated_encoding(s);
9096 return;
9097 }
9098 if (!feature) {
9099 unallocated_encoding(s);
9100 return;
9101 }
9102 if (!fp_access_check(s)) {
9103 return;
9104 }
9105
9106 /* Do a single operation on the lowest element in the vector.
9107 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9108 * with no side effects for all these operations.
9109 * OPTME: special-purpose helpers would avoid doing some
9110 * unnecessary work in the helper for the 16 bit cases.
9111 */
9112 ele1 = tcg_temp_new_i32();
9113 ele2 = tcg_temp_new_i32();
9114 ele3 = tcg_temp_new_i32();
9115
9116 read_vec_element_i32(s, ele1, rn, 0, size);
9117 read_vec_element_i32(s, ele2, rm, 0, size);
9118 read_vec_element_i32(s, ele3, rd, 0, size);
9119
9120 switch (opcode) {
9121 case 0x0: /* SQRDMLAH */
9122 if (size == 1) {
9123 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9124 } else {
9125 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9126 }
9127 break;
9128 case 0x1: /* SQRDMLSH */
9129 if (size == 1) {
9130 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9131 } else {
9132 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9133 }
9134 break;
9135 default:
9136 g_assert_not_reached();
9137 }
9138 tcg_temp_free_i32(ele1);
9139 tcg_temp_free_i32(ele2);
9140
9141 res = tcg_temp_new_i64();
9142 tcg_gen_extu_i32_i64(res, ele3);
9143 tcg_temp_free_i32(ele3);
9144
9145 write_fp_dreg(s, rd, res);
9146 tcg_temp_free_i64(res);
9147 }
9148
9149 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9150 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9151 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9152 {
9153 /* Handle 64->64 opcodes which are shared between the scalar and
9154 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9155 * is valid in either group and also the double-precision fp ops.
9156 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9157 * requires them.
9158 */
9159 TCGCond cond;
9160
9161 switch (opcode) {
9162 case 0x4: /* CLS, CLZ */
9163 if (u) {
9164 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9165 } else {
9166 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9167 }
9168 break;
9169 case 0x5: /* NOT */
9170 /* This opcode is shared with CNT and RBIT but we have earlier
9171 * enforced that size == 3 if and only if this is the NOT insn.
9172 */
9173 tcg_gen_not_i64(tcg_rd, tcg_rn);
9174 break;
9175 case 0x7: /* SQABS, SQNEG */
9176 if (u) {
9177 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9178 } else {
9179 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9180 }
9181 break;
9182 case 0xa: /* CMLT */
9183 /* 64 bit integer comparison against zero, result is
9184 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9185 * subtracting 1.
9186 */
9187 cond = TCG_COND_LT;
9188 do_cmop:
9189 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9190 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9191 break;
9192 case 0x8: /* CMGT, CMGE */
9193 cond = u ? TCG_COND_GE : TCG_COND_GT;
9194 goto do_cmop;
9195 case 0x9: /* CMEQ, CMLE */
9196 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9197 goto do_cmop;
9198 case 0xb: /* ABS, NEG */
9199 if (u) {
9200 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9201 } else {
9202 TCGv_i64 tcg_zero = tcg_const_i64(0);
9203 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9204 tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
9205 tcg_rn, tcg_rd);
9206 tcg_temp_free_i64(tcg_zero);
9207 }
9208 break;
9209 case 0x2f: /* FABS */
9210 gen_helper_vfp_absd(tcg_rd, tcg_rn);
9211 break;
9212 case 0x6f: /* FNEG */
9213 gen_helper_vfp_negd(tcg_rd, tcg_rn);
9214 break;
9215 case 0x7f: /* FSQRT */
9216 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9217 break;
9218 case 0x1a: /* FCVTNS */
9219 case 0x1b: /* FCVTMS */
9220 case 0x1c: /* FCVTAS */
9221 case 0x3a: /* FCVTPS */
9222 case 0x3b: /* FCVTZS */
9223 {
9224 TCGv_i32 tcg_shift = tcg_const_i32(0);
9225 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9226 tcg_temp_free_i32(tcg_shift);
9227 break;
9228 }
9229 case 0x5a: /* FCVTNU */
9230 case 0x5b: /* FCVTMU */
9231 case 0x5c: /* FCVTAU */
9232 case 0x7a: /* FCVTPU */
9233 case 0x7b: /* FCVTZU */
9234 {
9235 TCGv_i32 tcg_shift = tcg_const_i32(0);
9236 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9237 tcg_temp_free_i32(tcg_shift);
9238 break;
9239 }
9240 case 0x18: /* FRINTN */
9241 case 0x19: /* FRINTM */
9242 case 0x38: /* FRINTP */
9243 case 0x39: /* FRINTZ */
9244 case 0x58: /* FRINTA */
9245 case 0x79: /* FRINTI */
9246 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9247 break;
9248 case 0x59: /* FRINTX */
9249 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9250 break;
9251 default:
9252 g_assert_not_reached();
9253 }
9254 }
9255
9256 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9257 bool is_scalar, bool is_u, bool is_q,
9258 int size, int rn, int rd)
9259 {
9260 bool is_double = (size == MO_64);
9261 TCGv_ptr fpst;
9262
9263 if (!fp_access_check(s)) {
9264 return;
9265 }
9266
9267 fpst = get_fpstatus_ptr(size == MO_16);
9268
9269 if (is_double) {
9270 TCGv_i64 tcg_op = tcg_temp_new_i64();
9271 TCGv_i64 tcg_zero = tcg_const_i64(0);
9272 TCGv_i64 tcg_res = tcg_temp_new_i64();
9273 NeonGenTwoDoubleOPFn *genfn;
9274 bool swap = false;
9275 int pass;
9276
9277 switch (opcode) {
9278 case 0x2e: /* FCMLT (zero) */
9279 swap = true;
9280 /* fallthrough */
9281 case 0x2c: /* FCMGT (zero) */
9282 genfn = gen_helper_neon_cgt_f64;
9283 break;
9284 case 0x2d: /* FCMEQ (zero) */
9285 genfn = gen_helper_neon_ceq_f64;
9286 break;
9287 case 0x6d: /* FCMLE (zero) */
9288 swap = true;
9289 /* fall through */
9290 case 0x6c: /* FCMGE (zero) */
9291 genfn = gen_helper_neon_cge_f64;
9292 break;
9293 default:
9294 g_assert_not_reached();
9295 }
9296
9297 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9298 read_vec_element(s, tcg_op, rn, pass, MO_64);
9299 if (swap) {
9300 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9301 } else {
9302 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9303 }
9304 write_vec_element(s, tcg_res, rd, pass, MO_64);
9305 }
9306 tcg_temp_free_i64(tcg_res);
9307 tcg_temp_free_i64(tcg_zero);
9308 tcg_temp_free_i64(tcg_op);
9309
9310 clear_vec_high(s, !is_scalar, rd);
9311 } else {
9312 TCGv_i32 tcg_op = tcg_temp_new_i32();
9313 TCGv_i32 tcg_zero = tcg_const_i32(0);
9314 TCGv_i32 tcg_res = tcg_temp_new_i32();
9315 NeonGenTwoSingleOPFn *genfn;
9316 bool swap = false;
9317 int pass, maxpasses;
9318
9319 if (size == MO_16) {
9320 switch (opcode) {
9321 case 0x2e: /* FCMLT (zero) */
9322 swap = true;
9323 /* fall through */
9324 case 0x2c: /* FCMGT (zero) */
9325 genfn = gen_helper_advsimd_cgt_f16;
9326 break;
9327 case 0x2d: /* FCMEQ (zero) */
9328 genfn = gen_helper_advsimd_ceq_f16;
9329 break;
9330 case 0x6d: /* FCMLE (zero) */
9331 swap = true;
9332 /* fall through */
9333 case 0x6c: /* FCMGE (zero) */
9334 genfn = gen_helper_advsimd_cge_f16;
9335 break;
9336 default:
9337 g_assert_not_reached();
9338 }
9339 } else {
9340 switch (opcode) {
9341 case 0x2e: /* FCMLT (zero) */
9342 swap = true;
9343 /* fall through */
9344 case 0x2c: /* FCMGT (zero) */
9345 genfn = gen_helper_neon_cgt_f32;
9346 break;
9347 case 0x2d: /* FCMEQ (zero) */
9348 genfn = gen_helper_neon_ceq_f32;
9349 break;
9350 case 0x6d: /* FCMLE (zero) */
9351 swap = true;
9352 /* fall through */
9353 case 0x6c: /* FCMGE (zero) */
9354 genfn = gen_helper_neon_cge_f32;
9355 break;
9356 default:
9357 g_assert_not_reached();
9358 }
9359 }
9360
9361 if (is_scalar) {
9362 maxpasses = 1;
9363 } else {
9364 int vector_size = 8 << is_q;
9365 maxpasses = vector_size >> size;
9366 }
9367
9368 for (pass = 0; pass < maxpasses; pass++) {
9369 read_vec_element_i32(s, tcg_op, rn, pass, size);
9370 if (swap) {
9371 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9372 } else {
9373 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9374 }
9375 if (is_scalar) {
9376 write_fp_sreg(s, rd, tcg_res);
9377 } else {
9378 write_vec_element_i32(s, tcg_res, rd, pass, size);
9379 }
9380 }
9381 tcg_temp_free_i32(tcg_res);
9382 tcg_temp_free_i32(tcg_zero);
9383 tcg_temp_free_i32(tcg_op);
9384 if (!is_scalar) {
9385 clear_vec_high(s, is_q, rd);
9386 }
9387 }
9388
9389 tcg_temp_free_ptr(fpst);
9390 }
9391
9392 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9393 bool is_scalar, bool is_u, bool is_q,
9394 int size, int rn, int rd)
9395 {
9396 bool is_double = (size == 3);
9397 TCGv_ptr fpst = get_fpstatus_ptr(false);
9398
9399 if (is_double) {
9400 TCGv_i64 tcg_op = tcg_temp_new_i64();
9401 TCGv_i64 tcg_res = tcg_temp_new_i64();
9402 int pass;
9403
9404 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9405 read_vec_element(s, tcg_op, rn, pass, MO_64);
9406 switch (opcode) {
9407 case 0x3d: /* FRECPE */
9408 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9409 break;
9410 case 0x3f: /* FRECPX */
9411 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9412 break;
9413 case 0x7d: /* FRSQRTE */
9414 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9415 break;
9416 default:
9417 g_assert_not_reached();
9418 }
9419 write_vec_element(s, tcg_res, rd, pass, MO_64);
9420 }
9421 tcg_temp_free_i64(tcg_res);
9422 tcg_temp_free_i64(tcg_op);
9423 clear_vec_high(s, !is_scalar, rd);
9424 } else {
9425 TCGv_i32 tcg_op = tcg_temp_new_i32();
9426 TCGv_i32 tcg_res = tcg_temp_new_i32();
9427 int pass, maxpasses;
9428
9429 if (is_scalar) {
9430 maxpasses = 1;
9431 } else {
9432 maxpasses = is_q ? 4 : 2;
9433 }
9434
9435 for (pass = 0; pass < maxpasses; pass++) {
9436 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9437
9438 switch (opcode) {
9439 case 0x3c: /* URECPE */
9440 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
9441 break;
9442 case 0x3d: /* FRECPE */
9443 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9444 break;
9445 case 0x3f: /* FRECPX */
9446 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9447 break;
9448 case 0x7d: /* FRSQRTE */
9449 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9450 break;
9451 default:
9452 g_assert_not_reached();
9453 }
9454
9455 if (is_scalar) {
9456 write_fp_sreg(s, rd, tcg_res);
9457 } else {
9458 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9459 }
9460 }
9461 tcg_temp_free_i32(tcg_res);
9462 tcg_temp_free_i32(tcg_op);
9463 if (!is_scalar) {
9464 clear_vec_high(s, is_q, rd);
9465 }
9466 }
9467 tcg_temp_free_ptr(fpst);
9468 }
9469
9470 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9471 int opcode, bool u, bool is_q,
9472 int size, int rn, int rd)
9473 {
9474 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9475 * in the source becomes a size element in the destination).
9476 */
9477 int pass;
9478 TCGv_i32 tcg_res[2];
9479 int destelt = is_q ? 2 : 0;
9480 int passes = scalar ? 1 : 2;
9481
9482 if (scalar) {
9483 tcg_res[1] = tcg_const_i32(0);
9484 }
9485
9486 for (pass = 0; pass < passes; pass++) {
9487 TCGv_i64 tcg_op = tcg_temp_new_i64();
9488 NeonGenNarrowFn *genfn = NULL;
9489 NeonGenNarrowEnvFn *genenvfn = NULL;
9490
9491 if (scalar) {
9492 read_vec_element(s, tcg_op, rn, pass, size + 1);
9493 } else {
9494 read_vec_element(s, tcg_op, rn, pass, MO_64);
9495 }
9496 tcg_res[pass] = tcg_temp_new_i32();
9497
9498 switch (opcode) {
9499 case 0x12: /* XTN, SQXTUN */
9500 {
9501 static NeonGenNarrowFn * const xtnfns[3] = {
9502 gen_helper_neon_narrow_u8,
9503 gen_helper_neon_narrow_u16,
9504 tcg_gen_extrl_i64_i32,
9505 };
9506 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9507 gen_helper_neon_unarrow_sat8,
9508 gen_helper_neon_unarrow_sat16,
9509 gen_helper_neon_unarrow_sat32,
9510 };
9511 if (u) {
9512 genenvfn = sqxtunfns[size];
9513 } else {
9514 genfn = xtnfns[size];
9515 }
9516 break;
9517 }
9518 case 0x14: /* SQXTN, UQXTN */
9519 {
9520 static NeonGenNarrowEnvFn * const fns[3][2] = {
9521 { gen_helper_neon_narrow_sat_s8,
9522 gen_helper_neon_narrow_sat_u8 },
9523 { gen_helper_neon_narrow_sat_s16,
9524 gen_helper_neon_narrow_sat_u16 },
9525 { gen_helper_neon_narrow_sat_s32,
9526 gen_helper_neon_narrow_sat_u32 },
9527 };
9528 genenvfn = fns[size][u];
9529 break;
9530 }
9531 case 0x16: /* FCVTN, FCVTN2 */
9532 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9533 if (size == 2) {
9534 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
9535 } else {
9536 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9537 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9538 TCGv_ptr fpst = get_fpstatus_ptr(false);
9539 TCGv_i32 ahp = get_ahp_flag();
9540
9541 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9542 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9543 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9544 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9545 tcg_temp_free_i32(tcg_lo);
9546 tcg_temp_free_i32(tcg_hi);
9547 tcg_temp_free_ptr(fpst);
9548 tcg_temp_free_i32(ahp);
9549 }
9550 break;
9551 case 0x56: /* FCVTXN, FCVTXN2 */
9552 /* 64 bit to 32 bit float conversion
9553 * with von Neumann rounding (round to odd)
9554 */
9555 assert(size == 2);
9556 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
9557 break;
9558 default:
9559 g_assert_not_reached();
9560 }
9561
9562 if (genfn) {
9563 genfn(tcg_res[pass], tcg_op);
9564 } else if (genenvfn) {
9565 genenvfn(tcg_res[pass], cpu_env, tcg_op);
9566 }
9567
9568 tcg_temp_free_i64(tcg_op);
9569 }
9570
9571 for (pass = 0; pass < 2; pass++) {
9572 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9573 tcg_temp_free_i32(tcg_res[pass]);
9574 }
9575 clear_vec_high(s, is_q, rd);
9576 }
9577
9578 /* Remaining saturating accumulating ops */
9579 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9580 bool is_q, int size, int rn, int rd)
9581 {
9582 bool is_double = (size == 3);
9583
9584 if (is_double) {
9585 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9586 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9587 int pass;
9588
9589 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9590 read_vec_element(s, tcg_rn, rn, pass, MO_64);
9591 read_vec_element(s, tcg_rd, rd, pass, MO_64);
9592
9593 if (is_u) { /* USQADD */
9594 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9595 } else { /* SUQADD */
9596 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9597 }
9598 write_vec_element(s, tcg_rd, rd, pass, MO_64);
9599 }
9600 tcg_temp_free_i64(tcg_rd);
9601 tcg_temp_free_i64(tcg_rn);
9602 clear_vec_high(s, !is_scalar, rd);
9603 } else {
9604 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9605 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9606 int pass, maxpasses;
9607
9608 if (is_scalar) {
9609 maxpasses = 1;
9610 } else {
9611 maxpasses = is_q ? 4 : 2;
9612 }
9613
9614 for (pass = 0; pass < maxpasses; pass++) {
9615 if (is_scalar) {
9616 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9617 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9618 } else {
9619 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9620 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9621 }
9622
9623 if (is_u) { /* USQADD */
9624 switch (size) {
9625 case 0:
9626 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9627 break;
9628 case 1:
9629 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9630 break;
9631 case 2:
9632 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9633 break;
9634 default:
9635 g_assert_not_reached();
9636 }
9637 } else { /* SUQADD */
9638 switch (size) {
9639 case 0:
9640 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9641 break;
9642 case 1:
9643 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9644 break;
9645 case 2:
9646 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9647 break;
9648 default:
9649 g_assert_not_reached();
9650 }
9651 }
9652
9653 if (is_scalar) {
9654 TCGv_i64 tcg_zero = tcg_const_i64(0);
9655 write_vec_element(s, tcg_zero, rd, 0, MO_64);
9656 tcg_temp_free_i64(tcg_zero);
9657 }
9658 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9659 }
9660 tcg_temp_free_i32(tcg_rd);
9661 tcg_temp_free_i32(tcg_rn);
9662 clear_vec_high(s, is_q, rd);
9663 }
9664 }
9665
9666 /* AdvSIMD scalar two reg misc
9667 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9668 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9669 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9670 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9671 */
9672 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9673 {
9674 int rd = extract32(insn, 0, 5);
9675 int rn = extract32(insn, 5, 5);
9676 int opcode = extract32(insn, 12, 5);
9677 int size = extract32(insn, 22, 2);
9678 bool u = extract32(insn, 29, 1);
9679 bool is_fcvt = false;
9680 int rmode;
9681 TCGv_i32 tcg_rmode;
9682 TCGv_ptr tcg_fpstatus;
9683
9684 switch (opcode) {
9685 case 0x3: /* USQADD / SUQADD*/
9686 if (!fp_access_check(s)) {
9687 return;
9688 }
9689 handle_2misc_satacc(s, true, u, false, size, rn, rd);
9690 return;
9691 case 0x7: /* SQABS / SQNEG */
9692 break;
9693 case 0xa: /* CMLT */
9694 if (u) {
9695 unallocated_encoding(s);
9696 return;
9697 }
9698 /* fall through */
9699 case 0x8: /* CMGT, CMGE */
9700 case 0x9: /* CMEQ, CMLE */
9701 case 0xb: /* ABS, NEG */
9702 if (size != 3) {
9703 unallocated_encoding(s);
9704 return;
9705 }
9706 break;
9707 case 0x12: /* SQXTUN */
9708 if (!u) {
9709 unallocated_encoding(s);
9710 return;
9711 }
9712 /* fall through */
9713 case 0x14: /* SQXTN, UQXTN */
9714 if (size == 3) {
9715 unallocated_encoding(s);
9716 return;
9717 }
9718 if (!fp_access_check(s)) {
9719 return;
9720 }
9721 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
9722 return;
9723 case 0xc ... 0xf:
9724 case 0x16 ... 0x1d:
9725 case 0x1f:
9726 /* Floating point: U, size[1] and opcode indicate operation;
9727 * size[0] indicates single or double precision.
9728 */
9729 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
9730 size = extract32(size, 0, 1) ? 3 : 2;
9731 switch (opcode) {
9732 case 0x2c: /* FCMGT (zero) */
9733 case 0x2d: /* FCMEQ (zero) */
9734 case 0x2e: /* FCMLT (zero) */
9735 case 0x6c: /* FCMGE (zero) */
9736 case 0x6d: /* FCMLE (zero) */
9737 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
9738 return;
9739 case 0x1d: /* SCVTF */
9740 case 0x5d: /* UCVTF */
9741 {
9742 bool is_signed = (opcode == 0x1d);
9743 if (!fp_access_check(s)) {
9744 return;
9745 }
9746 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
9747 return;
9748 }
9749 case 0x3d: /* FRECPE */
9750 case 0x3f: /* FRECPX */
9751 case 0x7d: /* FRSQRTE */
9752 if (!fp_access_check(s)) {
9753 return;
9754 }
9755 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
9756 return;
9757 case 0x1a: /* FCVTNS */
9758 case 0x1b: /* FCVTMS */
9759 case 0x3a: /* FCVTPS */
9760 case 0x3b: /* FCVTZS */
9761 case 0x5a: /* FCVTNU */
9762 case 0x5b: /* FCVTMU */
9763 case 0x7a: /* FCVTPU */
9764 case 0x7b: /* FCVTZU */
9765 is_fcvt = true;
9766 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9767 break;
9768 case 0x1c: /* FCVTAS */
9769 case 0x5c: /* FCVTAU */
9770 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
9771 is_fcvt = true;
9772 rmode = FPROUNDING_TIEAWAY;
9773 break;
9774 case 0x56: /* FCVTXN, FCVTXN2 */
9775 if (size == 2) {
9776 unallocated_encoding(s);
9777 return;
9778 }
9779 if (!fp_access_check(s)) {
9780 return;
9781 }
9782 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
9783 return;
9784 default:
9785 unallocated_encoding(s);
9786 return;
9787 }
9788 break;
9789 default:
9790 unallocated_encoding(s);
9791 return;
9792 }
9793
9794 if (!fp_access_check(s)) {
9795 return;
9796 }
9797
9798 if (is_fcvt) {
9799 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
9800 tcg_fpstatus = get_fpstatus_ptr(false);
9801 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9802 } else {
9803 tcg_rmode = NULL;
9804 tcg_fpstatus = NULL;
9805 }
9806
9807 if (size == 3) {
9808 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9809 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9810
9811 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
9812 write_fp_dreg(s, rd, tcg_rd);
9813 tcg_temp_free_i64(tcg_rd);
9814 tcg_temp_free_i64(tcg_rn);
9815 } else {
9816 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9817 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9818
9819 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9820
9821 switch (opcode) {
9822 case 0x7: /* SQABS, SQNEG */
9823 {
9824 NeonGenOneOpEnvFn *genfn;
9825 static NeonGenOneOpEnvFn * const fns[3][2] = {
9826 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
9827 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
9828 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
9829 };
9830 genfn = fns[size][u];
9831 genfn(tcg_rd, cpu_env, tcg_rn);
9832 break;
9833 }
9834 case 0x1a: /* FCVTNS */
9835 case 0x1b: /* FCVTMS */
9836 case 0x1c: /* FCVTAS */
9837 case 0x3a: /* FCVTPS */
9838 case 0x3b: /* FCVTZS */
9839 {
9840 TCGv_i32 tcg_shift = tcg_const_i32(0);
9841 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9842 tcg_temp_free_i32(tcg_shift);
9843 break;
9844 }
9845 case 0x5a: /* FCVTNU */
9846 case 0x5b: /* FCVTMU */
9847 case 0x5c: /* FCVTAU */
9848 case 0x7a: /* FCVTPU */
9849 case 0x7b: /* FCVTZU */
9850 {
9851 TCGv_i32 tcg_shift = tcg_const_i32(0);
9852 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9853 tcg_temp_free_i32(tcg_shift);
9854 break;
9855 }
9856 default:
9857 g_assert_not_reached();
9858 }
9859
9860 write_fp_sreg(s, rd, tcg_rd);
9861 tcg_temp_free_i32(tcg_rd);
9862 tcg_temp_free_i32(tcg_rn);
9863 }
9864
9865 if (is_fcvt) {
9866 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9867 tcg_temp_free_i32(tcg_rmode);
9868 tcg_temp_free_ptr(tcg_fpstatus);
9869 }
9870 }
9871
9872 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
9873 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
9874 int immh, int immb, int opcode, int rn, int rd)
9875 {
9876 int size = 32 - clz32(immh) - 1;
9877 int immhb = immh << 3 | immb;
9878 int shift = 2 * (8 << size) - immhb;
9879 bool accumulate = false;
9880 int dsize = is_q ? 128 : 64;
9881 int esize = 8 << size;
9882 int elements = dsize/esize;
9883 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
9884 TCGv_i64 tcg_rn = new_tmp_a64(s);
9885 TCGv_i64 tcg_rd = new_tmp_a64(s);
9886 TCGv_i64 tcg_round;
9887 uint64_t round_const;
9888 int i;
9889
9890 if (extract32(immh, 3, 1) && !is_q) {
9891 unallocated_encoding(s);
9892 return;
9893 }
9894 tcg_debug_assert(size <= 3);
9895
9896 if (!fp_access_check(s)) {
9897 return;
9898 }
9899
9900 switch (opcode) {
9901 case 0x02: /* SSRA / USRA (accumulate) */
9902 if (is_u) {
9903 /* Shift count same as element size produces zero to add. */
9904 if (shift == 8 << size) {
9905 goto done;
9906 }
9907 gen_gvec_op2i(s, is_q, rd, rn, shift, &usra_op[size]);
9908 } else {
9909 /* Shift count same as element size produces all sign to add. */
9910 if (shift == 8 << size) {
9911 shift -= 1;
9912 }
9913 gen_gvec_op2i(s, is_q, rd, rn, shift, &ssra_op[size]);
9914 }
9915 return;
9916 case 0x08: /* SRI */
9917 /* Shift count same as element size is valid but does nothing. */
9918 if (shift == 8 << size) {
9919 goto done;
9920 }
9921 gen_gvec_op2i(s, is_q, rd, rn, shift, &sri_op[size]);
9922 return;
9923
9924 case 0x00: /* SSHR / USHR */
9925 if (is_u) {
9926 if (shift == 8 << size) {
9927 /* Shift count the same size as element size produces zero. */
9928 tcg_gen_gvec_dup8i(vec_full_reg_offset(s, rd),
9929 is_q ? 16 : 8, vec_full_reg_size(s), 0);
9930 } else {
9931 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shri, size);
9932 }
9933 } else {
9934 /* Shift count the same size as element size produces all sign. */
9935 if (shift == 8 << size) {
9936 shift -= 1;
9937 }
9938 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_sari, size);
9939 }
9940 return;
9941
9942 case 0x04: /* SRSHR / URSHR (rounding) */
9943 break;
9944 case 0x06: /* SRSRA / URSRA (accum + rounding) */
9945 accumulate = true;
9946 break;
9947 default:
9948 g_assert_not_reached();
9949 }
9950
9951 round_const = 1ULL << (shift - 1);
9952 tcg_round = tcg_const_i64(round_const);
9953
9954 for (i = 0; i < elements; i++) {
9955 read_vec_element(s, tcg_rn, rn, i, memop);
9956 if (accumulate) {
9957 read_vec_element(s, tcg_rd, rd, i, memop);
9958 }
9959
9960 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9961 accumulate, is_u, size, shift);
9962
9963 write_vec_element(s, tcg_rd, rd, i, size);
9964 }
9965 tcg_temp_free_i64(tcg_round);
9966
9967 done:
9968 clear_vec_high(s, is_q, rd);
9969 }
9970
9971 /* SHL/SLI - Vector shift left */
9972 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
9973 int immh, int immb, int opcode, int rn, int rd)
9974 {
9975 int size = 32 - clz32(immh) - 1;
9976 int immhb = immh << 3 | immb;
9977 int shift = immhb - (8 << size);
9978
9979 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
9980 assert(size >= 0 && size <= 3);
9981
9982 if (extract32(immh, 3, 1) && !is_q) {
9983 unallocated_encoding(s);
9984 return;
9985 }
9986
9987 if (!fp_access_check(s)) {
9988 return;
9989 }
9990
9991 if (insert) {
9992 gen_gvec_op2i(s, is_q, rd, rn, shift, &sli_op[size]);
9993 } else {
9994 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
9995 }
9996 }
9997
9998 /* USHLL/SHLL - Vector shift left with widening */
9999 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10000 int immh, int immb, int opcode, int rn, int rd)
10001 {
10002 int size = 32 - clz32(immh) - 1;
10003 int immhb = immh << 3 | immb;
10004 int shift = immhb - (8 << size);
10005 int dsize = 64;
10006 int esize = 8 << size;
10007 int elements = dsize/esize;
10008 TCGv_i64 tcg_rn = new_tmp_a64(s);
10009 TCGv_i64 tcg_rd = new_tmp_a64(s);
10010 int i;
10011
10012 if (size >= 3) {
10013 unallocated_encoding(s);
10014 return;
10015 }
10016
10017 if (!fp_access_check(s)) {
10018 return;
10019 }
10020
10021 /* For the LL variants the store is larger than the load,
10022 * so if rd == rn we would overwrite parts of our input.
10023 * So load everything right now and use shifts in the main loop.
10024 */
10025 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10026
10027 for (i = 0; i < elements; i++) {
10028 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10029 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10030 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10031 write_vec_element(s, tcg_rd, rd, i, size + 1);
10032 }
10033 }
10034
10035 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10036 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10037 int immh, int immb, int opcode, int rn, int rd)
10038 {
10039 int immhb = immh << 3 | immb;
10040 int size = 32 - clz32(immh) - 1;
10041 int dsize = 64;
10042 int esize = 8 << size;
10043 int elements = dsize/esize;
10044 int shift = (2 * esize) - immhb;
10045 bool round = extract32(opcode, 0, 1);
10046 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10047 TCGv_i64 tcg_round;
10048 int i;
10049
10050 if (extract32(immh, 3, 1)) {
10051 unallocated_encoding(s);
10052 return;
10053 }
10054
10055 if (!fp_access_check(s)) {
10056 return;
10057 }
10058
10059 tcg_rn = tcg_temp_new_i64();
10060 tcg_rd = tcg_temp_new_i64();
10061 tcg_final = tcg_temp_new_i64();
10062 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10063
10064 if (round) {
10065 uint64_t round_const = 1ULL << (shift - 1);
10066 tcg_round = tcg_const_i64(round_const);
10067 } else {
10068 tcg_round = NULL;
10069 }
10070
10071 for (i = 0; i < elements; i++) {
10072 read_vec_element(s, tcg_rn, rn, i, size+1);
10073 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10074 false, true, size+1, shift);
10075
10076 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10077 }
10078
10079 if (!is_q) {
10080 write_vec_element(s, tcg_final, rd, 0, MO_64);
10081 } else {
10082 write_vec_element(s, tcg_final, rd, 1, MO_64);
10083 }
10084 if (round) {
10085 tcg_temp_free_i64(tcg_round);
10086 }
10087 tcg_temp_free_i64(tcg_rn);
10088 tcg_temp_free_i64(tcg_rd);
10089 tcg_temp_free_i64(tcg_final);
10090
10091 clear_vec_high(s, is_q, rd);
10092 }
10093
10094
10095 /* AdvSIMD shift by immediate
10096 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10097 * +---+---+---+-------------+------+------+--------+---+------+------+
10098 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10099 * +---+---+---+-------------+------+------+--------+---+------+------+
10100 */
10101 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10102 {
10103 int rd = extract32(insn, 0, 5);
10104 int rn = extract32(insn, 5, 5);
10105 int opcode = extract32(insn, 11, 5);
10106 int immb = extract32(insn, 16, 3);
10107 int immh = extract32(insn, 19, 4);
10108 bool is_u = extract32(insn, 29, 1);
10109 bool is_q = extract32(insn, 30, 1);
10110
10111 switch (opcode) {
10112 case 0x08: /* SRI */
10113 if (!is_u) {
10114 unallocated_encoding(s);
10115 return;
10116 }
10117 /* fall through */
10118 case 0x00: /* SSHR / USHR */
10119 case 0x02: /* SSRA / USRA (accumulate) */
10120 case 0x04: /* SRSHR / URSHR (rounding) */
10121 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10122 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10123 break;
10124 case 0x0a: /* SHL / SLI */
10125 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10126 break;
10127 case 0x10: /* SHRN */
10128 case 0x11: /* RSHRN / SQRSHRUN */
10129 if (is_u) {
10130 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10131 opcode, rn, rd);
10132 } else {
10133 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10134 }
10135 break;
10136 case 0x12: /* SQSHRN / UQSHRN */
10137 case 0x13: /* SQRSHRN / UQRSHRN */
10138 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10139 opcode, rn, rd);
10140 break;
10141 case 0x14: /* SSHLL / USHLL */
10142 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10143 break;
10144 case 0x1c: /* SCVTF / UCVTF */
10145 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10146 opcode, rn, rd);
10147 break;
10148 case 0xc: /* SQSHLU */
10149 if (!is_u) {
10150 unallocated_encoding(s);
10151 return;
10152 }
10153 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10154 break;
10155 case 0xe: /* SQSHL, UQSHL */
10156 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10157 break;
10158 case 0x1f: /* FCVTZS/ FCVTZU */
10159 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10160 return;
10161 default:
10162 unallocated_encoding(s);
10163 return;
10164 }
10165 }
10166
10167 /* Generate code to do a "long" addition or subtraction, ie one done in
10168 * TCGv_i64 on vector lanes twice the width specified by size.
10169 */
10170 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10171 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10172 {
10173 static NeonGenTwo64OpFn * const fns[3][2] = {
10174 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10175 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10176 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10177 };
10178 NeonGenTwo64OpFn *genfn;
10179 assert(size < 3);
10180
10181 genfn = fns[size][is_sub];
10182 genfn(tcg_res, tcg_op1, tcg_op2);
10183 }
10184
10185 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10186 int opcode, int rd, int rn, int rm)
10187 {
10188 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10189 TCGv_i64 tcg_res[2];
10190 int pass, accop;
10191
10192 tcg_res[0] = tcg_temp_new_i64();
10193 tcg_res[1] = tcg_temp_new_i64();
10194
10195 /* Does this op do an adding accumulate, a subtracting accumulate,
10196 * or no accumulate at all?
10197 */
10198 switch (opcode) {
10199 case 5:
10200 case 8:
10201 case 9:
10202 accop = 1;
10203 break;
10204 case 10:
10205 case 11:
10206 accop = -1;
10207 break;
10208 default:
10209 accop = 0;
10210 break;
10211 }
10212
10213 if (accop != 0) {
10214 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10215 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10216 }
10217
10218 /* size == 2 means two 32x32->64 operations; this is worth special
10219 * casing because we can generally handle it inline.
10220 */
10221 if (size == 2) {
10222 for (pass = 0; pass < 2; pass++) {
10223 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10224 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10225 TCGv_i64 tcg_passres;
10226 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10227
10228 int elt = pass + is_q * 2;
10229
10230 read_vec_element(s, tcg_op1, rn, elt, memop);
10231 read_vec_element(s, tcg_op2, rm, elt, memop);
10232
10233 if (accop == 0) {
10234 tcg_passres = tcg_res[pass];
10235 } else {
10236 tcg_passres = tcg_temp_new_i64();
10237 }
10238
10239 switch (opcode) {
10240 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10241 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10242 break;
10243 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10244 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10245 break;
10246 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10247 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10248 {
10249 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10250 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10251
10252 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10253 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10254 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10255 tcg_passres,
10256 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10257 tcg_temp_free_i64(tcg_tmp1);
10258 tcg_temp_free_i64(tcg_tmp2);
10259 break;
10260 }
10261 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10262 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10263 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10264 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10265 break;
10266 case 9: /* SQDMLAL, SQDMLAL2 */
10267 case 11: /* SQDMLSL, SQDMLSL2 */
10268 case 13: /* SQDMULL, SQDMULL2 */
10269 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10270 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10271 tcg_passres, tcg_passres);
10272 break;
10273 default:
10274 g_assert_not_reached();
10275 }
10276
10277 if (opcode == 9 || opcode == 11) {
10278 /* saturating accumulate ops */
10279 if (accop < 0) {
10280 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10281 }
10282 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10283 tcg_res[pass], tcg_passres);
10284 } else if (accop > 0) {
10285 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10286 } else if (accop < 0) {
10287 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10288 }
10289
10290 if (accop != 0) {
10291 tcg_temp_free_i64(tcg_passres);
10292 }
10293
10294 tcg_temp_free_i64(tcg_op1);
10295 tcg_temp_free_i64(tcg_op2);
10296 }
10297 } else {
10298 /* size 0 or 1, generally helper functions */
10299 for (pass = 0; pass < 2; pass++) {
10300 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10301 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10302 TCGv_i64 tcg_passres;
10303 int elt = pass + is_q * 2;
10304
10305 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10306 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10307
10308 if (accop == 0) {
10309 tcg_passres = tcg_res[pass];
10310 } else {
10311 tcg_passres = tcg_temp_new_i64();
10312 }
10313
10314 switch (opcode) {
10315 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10316 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10317 {
10318 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10319 static NeonGenWidenFn * const widenfns[2][2] = {
10320 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10321 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10322 };
10323 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10324
10325 widenfn(tcg_op2_64, tcg_op2);
10326 widenfn(tcg_passres, tcg_op1);
10327 gen_neon_addl(size, (opcode == 2), tcg_passres,
10328 tcg_passres, tcg_op2_64);
10329 tcg_temp_free_i64(tcg_op2_64);
10330 break;
10331 }
10332 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10333 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10334 if (size == 0) {
10335 if (is_u) {
10336 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10337 } else {
10338 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10339 }
10340 } else {
10341 if (is_u) {
10342 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10343 } else {
10344 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10345 }
10346 }
10347 break;
10348 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10349 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10350 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10351 if (size == 0) {
10352 if (is_u) {
10353 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10354 } else {
10355 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10356 }
10357 } else {
10358 if (is_u) {
10359 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10360 } else {
10361 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10362 }
10363 }
10364 break;
10365 case 9: /* SQDMLAL, SQDMLAL2 */
10366 case 11: /* SQDMLSL, SQDMLSL2 */
10367 case 13: /* SQDMULL, SQDMULL2 */
10368 assert(size == 1);
10369 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10370 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10371 tcg_passres, tcg_passres);
10372 break;
10373 case 14: /* PMULL */
10374 assert(size == 0);
10375 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
10376 break;
10377 default:
10378 g_assert_not_reached();
10379 }
10380 tcg_temp_free_i32(tcg_op1);
10381 tcg_temp_free_i32(tcg_op2);
10382
10383 if (accop != 0) {
10384 if (opcode == 9 || opcode == 11) {
10385 /* saturating accumulate ops */
10386 if (accop < 0) {
10387 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10388 }
10389 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10390 tcg_res[pass],
10391 tcg_passres);
10392 } else {
10393 gen_neon_addl(size, (accop < 0), tcg_res[pass],
10394 tcg_res[pass], tcg_passres);
10395 }
10396 tcg_temp_free_i64(tcg_passres);
10397 }
10398 }
10399 }
10400
10401 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10402 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10403 tcg_temp_free_i64(tcg_res[0]);
10404 tcg_temp_free_i64(tcg_res[1]);
10405 }
10406
10407 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10408 int opcode, int rd, int rn, int rm)
10409 {
10410 TCGv_i64 tcg_res[2];
10411 int part = is_q ? 2 : 0;
10412 int pass;
10413
10414 for (pass = 0; pass < 2; pass++) {
10415 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10416 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10417 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10418 static NeonGenWidenFn * const widenfns[3][2] = {
10419 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10420 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10421 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10422 };
10423 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10424
10425 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10426 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10427 widenfn(tcg_op2_wide, tcg_op2);
10428 tcg_temp_free_i32(tcg_op2);
10429 tcg_res[pass] = tcg_temp_new_i64();
10430 gen_neon_addl(size, (opcode == 3),
10431 tcg_res[pass], tcg_op1, tcg_op2_wide);
10432 tcg_temp_free_i64(tcg_op1);
10433 tcg_temp_free_i64(tcg_op2_wide);
10434 }
10435
10436 for (pass = 0; pass < 2; pass++) {
10437 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10438 tcg_temp_free_i64(tcg_res[pass]);
10439 }
10440 }
10441
10442 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10443 {
10444 tcg_gen_addi_i64(in, in, 1U << 31);
10445 tcg_gen_extrh_i64_i32(res, in);
10446 }
10447
10448 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10449 int opcode, int rd, int rn, int rm)
10450 {
10451 TCGv_i32 tcg_res[2];
10452 int part = is_q ? 2 : 0;
10453 int pass;
10454
10455 for (pass = 0; pass < 2; pass++) {
10456 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10457 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10458 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10459 static NeonGenNarrowFn * const narrowfns[3][2] = {
10460 { gen_helper_neon_narrow_high_u8,
10461 gen_helper_neon_narrow_round_high_u8 },
10462 { gen_helper_neon_narrow_high_u16,
10463 gen_helper_neon_narrow_round_high_u16 },
10464 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10465 };
10466 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10467
10468 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10469 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10470
10471 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10472
10473 tcg_temp_free_i64(tcg_op1);
10474 tcg_temp_free_i64(tcg_op2);
10475
10476 tcg_res[pass] = tcg_temp_new_i32();
10477 gennarrow(tcg_res[pass], tcg_wideres);
10478 tcg_temp_free_i64(tcg_wideres);
10479 }
10480
10481 for (pass = 0; pass < 2; pass++) {
10482 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10483 tcg_temp_free_i32(tcg_res[pass]);
10484 }
10485 clear_vec_high(s, is_q, rd);
10486 }
10487
10488 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
10489 {
10490 /* PMULL of 64 x 64 -> 128 is an odd special case because it
10491 * is the only three-reg-diff instruction which produces a
10492 * 128-bit wide result from a single operation. However since
10493 * it's possible to calculate the two halves more or less
10494 * separately we just use two helper calls.
10495 */
10496 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10497 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10498 TCGv_i64 tcg_res = tcg_temp_new_i64();
10499
10500 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
10501 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
10502 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
10503 write_vec_element(s, tcg_res, rd, 0, MO_64);
10504 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
10505 write_vec_element(s, tcg_res, rd, 1, MO_64);
10506
10507 tcg_temp_free_i64(tcg_op1);
10508 tcg_temp_free_i64(tcg_op2);
10509 tcg_temp_free_i64(tcg_res);
10510 }
10511
10512 /* AdvSIMD three different
10513 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
10514 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10515 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
10516 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10517 */
10518 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10519 {
10520 /* Instructions in this group fall into three basic classes
10521 * (in each case with the operation working on each element in
10522 * the input vectors):
10523 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10524 * 128 bit input)
10525 * (2) wide 64 x 128 -> 128
10526 * (3) narrowing 128 x 128 -> 64
10527 * Here we do initial decode, catch unallocated cases and
10528 * dispatch to separate functions for each class.
10529 */
10530 int is_q = extract32(insn, 30, 1);
10531 int is_u = extract32(insn, 29, 1);
10532 int size = extract32(insn, 22, 2);
10533 int opcode = extract32(insn, 12, 4);
10534 int rm = extract32(insn, 16, 5);
10535 int rn = extract32(insn, 5, 5);
10536 int rd = extract32(insn, 0, 5);
10537
10538 switch (opcode) {
10539 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10540 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10541 /* 64 x 128 -> 128 */
10542 if (size == 3) {
10543 unallocated_encoding(s);
10544 return;
10545 }
10546 if (!fp_access_check(s)) {
10547 return;
10548 }
10549 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10550 break;
10551 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10552 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10553 /* 128 x 128 -> 64 */
10554 if (size == 3) {
10555 unallocated_encoding(s);
10556 return;
10557 }
10558 if (!fp_access_check(s)) {
10559 return;
10560 }
10561 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10562 break;
10563 case 14: /* PMULL, PMULL2 */
10564 if (is_u || size == 1 || size == 2) {
10565 unallocated_encoding(s);
10566 return;
10567 }
10568 if (size == 3) {
10569 if (!dc_isar_feature(aa64_pmull, s)) {
10570 unallocated_encoding(s);
10571 return;
10572 }
10573 if (!fp_access_check(s)) {
10574 return;
10575 }
10576 handle_pmull_64(s, is_q, rd, rn, rm);
10577 return;
10578 }
10579 goto is_widening;
10580 case 9: /* SQDMLAL, SQDMLAL2 */
10581 case 11: /* SQDMLSL, SQDMLSL2 */
10582 case 13: /* SQDMULL, SQDMULL2 */
10583 if (is_u || size == 0) {
10584 unallocated_encoding(s);
10585 return;
10586 }
10587 /* fall through */
10588 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10589 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10590 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10591 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10592 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10593 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10594 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10595 /* 64 x 64 -> 128 */
10596 if (size == 3) {
10597 unallocated_encoding(s);
10598 return;
10599 }
10600 is_widening:
10601 if (!fp_access_check(s)) {
10602 return;
10603 }
10604
10605 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10606 break;
10607 default:
10608 /* opcode 15 not allocated */
10609 unallocated_encoding(s);
10610 break;
10611 }
10612 }
10613
10614 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10615 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10616 {
10617 int rd = extract32(insn, 0, 5);
10618 int rn = extract32(insn, 5, 5);
10619 int rm = extract32(insn, 16, 5);
10620 int size = extract32(insn, 22, 2);
10621 bool is_u = extract32(insn, 29, 1);
10622 bool is_q = extract32(insn, 30, 1);
10623
10624 if (!fp_access_check(s)) {
10625 return;
10626 }
10627
10628 switch (size + 4 * is_u) {
10629 case 0: /* AND */
10630 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10631 return;
10632 case 1: /* BIC */
10633 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10634 return;
10635 case 2: /* ORR */
10636 if (rn == rm) { /* MOV */
10637 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_mov, 0);
10638 } else {
10639 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10640 }
10641 return;
10642 case 3: /* ORN */
10643 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10644 return;
10645 case 4: /* EOR */
10646 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10647 return;
10648
10649 case 5: /* BSL bitwise select */
10650 gen_gvec_op3(s, is_q, rd, rn, rm, &bsl_op);
10651 return;
10652 case 6: /* BIT, bitwise insert if true */
10653 gen_gvec_op3(s, is_q, rd, rn, rm, &bit_op);
10654 return;
10655 case 7: /* BIF, bitwise insert if false */
10656 gen_gvec_op3(s, is_q, rd, rn, rm, &bif_op);
10657 return;
10658
10659 default:
10660 g_assert_not_reached();
10661 }
10662 }
10663
10664 /* Pairwise op subgroup of C3.6.16.
10665 *
10666 * This is called directly or via the handle_3same_float for float pairwise
10667 * operations where the opcode and size are calculated differently.
10668 */
10669 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10670 int size, int rn, int rm, int rd)
10671 {
10672 TCGv_ptr fpst;
10673 int pass;
10674
10675 /* Floating point operations need fpst */
10676 if (opcode >= 0x58) {
10677 fpst = get_fpstatus_ptr(false);
10678 } else {
10679 fpst = NULL;
10680 }
10681
10682 if (!fp_access_check(s)) {
10683 return;
10684 }
10685
10686 /* These operations work on the concatenated rm:rn, with each pair of
10687 * adjacent elements being operated on to produce an element in the result.
10688 */
10689 if (size == 3) {
10690 TCGv_i64 tcg_res[2];
10691
10692 for (pass = 0; pass < 2; pass++) {
10693 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10694 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10695 int passreg = (pass == 0) ? rn : rm;
10696
10697 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10698 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10699 tcg_res[pass] = tcg_temp_new_i64();
10700
10701 switch (opcode) {
10702 case 0x17: /* ADDP */
10703 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10704 break;
10705 case 0x58: /* FMAXNMP */
10706 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10707 break;
10708 case 0x5a: /* FADDP */
10709 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10710 break;
10711 case 0x5e: /* FMAXP */
10712 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10713 break;
10714 case 0x78: /* FMINNMP */
10715 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10716 break;
10717 case 0x7e: /* FMINP */
10718 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10719 break;
10720 default:
10721 g_assert_not_reached();
10722 }
10723
10724 tcg_temp_free_i64(tcg_op1);
10725 tcg_temp_free_i64(tcg_op2);
10726 }
10727
10728 for (pass = 0; pass < 2; pass++) {
10729 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10730 tcg_temp_free_i64(tcg_res[pass]);
10731 }
10732 } else {
10733 int maxpass = is_q ? 4 : 2;
10734 TCGv_i32 tcg_res[4];
10735
10736 for (pass = 0; pass < maxpass; pass++) {
10737 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10738 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10739 NeonGenTwoOpFn *genfn = NULL;
10740 int passreg = pass < (maxpass / 2) ? rn : rm;
10741 int passelt = (is_q && (pass & 1)) ? 2 : 0;
10742
10743 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10744 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10745 tcg_res[pass] = tcg_temp_new_i32();
10746
10747 switch (opcode) {
10748 case 0x17: /* ADDP */
10749 {
10750 static NeonGenTwoOpFn * const fns[3] = {
10751 gen_helper_neon_padd_u8,
10752 gen_helper_neon_padd_u16,
10753 tcg_gen_add_i32,
10754 };
10755 genfn = fns[size];
10756 break;
10757 }
10758 case 0x14: /* SMAXP, UMAXP */
10759 {
10760 static NeonGenTwoOpFn * const fns[3][2] = {
10761 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10762 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10763 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10764 };
10765 genfn = fns[size][u];
10766 break;
10767 }
10768 case 0x15: /* SMINP, UMINP */
10769 {
10770 static NeonGenTwoOpFn * const fns[3][2] = {
10771 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10772 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10773 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
10774 };
10775 genfn = fns[size][u];
10776 break;
10777 }
10778 /* The FP operations are all on single floats (32 bit) */
10779 case 0x58: /* FMAXNMP */
10780 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10781 break;
10782 case 0x5a: /* FADDP */
10783 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10784 break;
10785 case 0x5e: /* FMAXP */
10786 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10787 break;
10788 case 0x78: /* FMINNMP */
10789 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10790 break;
10791 case 0x7e: /* FMINP */
10792 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10793 break;
10794 default:
10795 g_assert_not_reached();
10796 }
10797
10798 /* FP ops called directly, otherwise call now */
10799 if (genfn) {
10800 genfn(tcg_res[pass], tcg_op1, tcg_op2);
10801 }
10802
10803 tcg_temp_free_i32(tcg_op1);
10804 tcg_temp_free_i32(tcg_op2);
10805 }
10806
10807 for (pass = 0; pass < maxpass; pass++) {
10808 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10809 tcg_temp_free_i32(tcg_res[pass]);
10810 }
10811 clear_vec_high(s, is_q, rd);
10812 }
10813
10814 if (fpst) {
10815 tcg_temp_free_ptr(fpst);
10816 }
10817 }
10818
10819 /* Floating point op subgroup of C3.6.16. */
10820 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10821 {
10822 /* For floating point ops, the U, size[1] and opcode bits
10823 * together indicate the operation. size[0] indicates single
10824 * or double.
10825 */
10826 int fpopcode = extract32(insn, 11, 5)
10827 | (extract32(insn, 23, 1) << 5)
10828 | (extract32(insn, 29, 1) << 6);
10829 int is_q = extract32(insn, 30, 1);
10830 int size = extract32(insn, 22, 1);
10831 int rm = extract32(insn, 16, 5);
10832 int rn = extract32(insn, 5, 5);
10833 int rd = extract32(insn, 0, 5);
10834
10835 int datasize = is_q ? 128 : 64;
10836 int esize = 32 << size;
10837 int elements = datasize / esize;
10838
10839 if (size == 1 && !is_q) {
10840 unallocated_encoding(s);
10841 return;
10842 }
10843
10844 switch (fpopcode) {
10845 case 0x58: /* FMAXNMP */
10846 case 0x5a: /* FADDP */
10847 case 0x5e: /* FMAXP */
10848 case 0x78: /* FMINNMP */
10849 case 0x7e: /* FMINP */
10850 if (size && !is_q) {
10851 unallocated_encoding(s);
10852 return;
10853 }
10854 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
10855 rn, rm, rd);
10856 return;
10857 case 0x1b: /* FMULX */
10858 case 0x1f: /* FRECPS */
10859 case 0x3f: /* FRSQRTS */
10860 case 0x5d: /* FACGE */
10861 case 0x7d: /* FACGT */
10862 case 0x19: /* FMLA */
10863 case 0x39: /* FMLS */
10864 case 0x18: /* FMAXNM */
10865 case 0x1a: /* FADD */
10866 case 0x1c: /* FCMEQ */
10867 case 0x1e: /* FMAX */
10868 case 0x38: /* FMINNM */
10869 case 0x3a: /* FSUB */
10870 case 0x3e: /* FMIN */
10871 case 0x5b: /* FMUL */
10872 case 0x5c: /* FCMGE */
10873 case 0x5f: /* FDIV */
10874 case 0x7a: /* FABD */
10875 case 0x7c: /* FCMGT */
10876 if (!fp_access_check(s)) {
10877 return;
10878 }
10879
10880 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
10881 return;
10882 default:
10883 unallocated_encoding(s);
10884 return;
10885 }
10886 }
10887
10888 /* Integer op subgroup of C3.6.16. */
10889 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
10890 {
10891 int is_q = extract32(insn, 30, 1);
10892 int u = extract32(insn, 29, 1);
10893 int size = extract32(insn, 22, 2);
10894 int opcode = extract32(insn, 11, 5);
10895 int rm = extract32(insn, 16, 5);
10896 int rn = extract32(insn, 5, 5);
10897 int rd = extract32(insn, 0, 5);
10898 int pass;
10899 TCGCond cond;
10900
10901 switch (opcode) {
10902 case 0x13: /* MUL, PMUL */
10903 if (u && size != 0) {
10904 unallocated_encoding(s);
10905 return;
10906 }
10907 /* fall through */
10908 case 0x0: /* SHADD, UHADD */
10909 case 0x2: /* SRHADD, URHADD */
10910 case 0x4: /* SHSUB, UHSUB */
10911 case 0xc: /* SMAX, UMAX */
10912 case 0xd: /* SMIN, UMIN */
10913 case 0xe: /* SABD, UABD */
10914 case 0xf: /* SABA, UABA */
10915 case 0x12: /* MLA, MLS */
10916 if (size == 3) {
10917 unallocated_encoding(s);
10918 return;
10919 }
10920 break;
10921 case 0x16: /* SQDMULH, SQRDMULH */
10922 if (size == 0 || size == 3) {
10923 unallocated_encoding(s);
10924 return;
10925 }
10926 break;
10927 default:
10928 if (size == 3 && !is_q) {
10929 unallocated_encoding(s);
10930 return;
10931 }
10932 break;
10933 }
10934
10935 if (!fp_access_check(s)) {
10936 return;
10937 }
10938
10939 switch (opcode) {
10940 case 0x10: /* ADD, SUB */
10941 if (u) {
10942 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
10943 } else {
10944 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
10945 }
10946 return;
10947 case 0x13: /* MUL, PMUL */
10948 if (!u) { /* MUL */
10949 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
10950 return;
10951 }
10952 break;
10953 case 0x12: /* MLA, MLS */
10954 if (u) {
10955 gen_gvec_op3(s, is_q, rd, rn, rm, &mls_op[size]);
10956 } else {
10957 gen_gvec_op3(s, is_q, rd, rn, rm, &mla_op[size]);
10958 }
10959 return;
10960 case 0x11:
10961 if (!u) { /* CMTST */
10962 gen_gvec_op3(s, is_q, rd, rn, rm, &cmtst_op[size]);
10963 return;
10964 }
10965 /* else CMEQ */
10966 cond = TCG_COND_EQ;
10967 goto do_gvec_cmp;
10968 case 0x06: /* CMGT, CMHI */
10969 cond = u ? TCG_COND_GTU : TCG_COND_GT;
10970 goto do_gvec_cmp;
10971 case 0x07: /* CMGE, CMHS */
10972 cond = u ? TCG_COND_GEU : TCG_COND_GE;
10973 do_gvec_cmp:
10974 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
10975 vec_full_reg_offset(s, rn),
10976 vec_full_reg_offset(s, rm),
10977 is_q ? 16 : 8, vec_full_reg_size(s));
10978 return;
10979 }
10980
10981 if (size == 3) {
10982 assert(is_q);
10983 for (pass = 0; pass < 2; pass++) {
10984 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10985 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10986 TCGv_i64 tcg_res = tcg_temp_new_i64();
10987
10988 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10989 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10990
10991 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
10992
10993 write_vec_element(s, tcg_res, rd, pass, MO_64);
10994
10995 tcg_temp_free_i64(tcg_res);
10996 tcg_temp_free_i64(tcg_op1);
10997 tcg_temp_free_i64(tcg_op2);
10998 }
10999 } else {
11000 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11001 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11002 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11003 TCGv_i32 tcg_res = tcg_temp_new_i32();
11004 NeonGenTwoOpFn *genfn = NULL;
11005 NeonGenTwoOpEnvFn *genenvfn = NULL;
11006
11007 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11008 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11009
11010 switch (opcode) {
11011 case 0x0: /* SHADD, UHADD */
11012 {
11013 static NeonGenTwoOpFn * const fns[3][2] = {
11014 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11015 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11016 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11017 };
11018 genfn = fns[size][u];
11019 break;
11020 }
11021 case 0x1: /* SQADD, UQADD */
11022 {
11023 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11024 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
11025 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
11026 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
11027 };
11028 genenvfn = fns[size][u];
11029 break;
11030 }
11031 case 0x2: /* SRHADD, URHADD */
11032 {
11033 static NeonGenTwoOpFn * const fns[3][2] = {
11034 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11035 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11036 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11037 };
11038 genfn = fns[size][u];
11039 break;
11040 }
11041 case 0x4: /* SHSUB, UHSUB */
11042 {
11043 static NeonGenTwoOpFn * const fns[3][2] = {
11044 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11045 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11046 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11047 };
11048 genfn = fns[size][u];
11049 break;
11050 }
11051 case 0x5: /* SQSUB, UQSUB */
11052 {
11053 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11054 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
11055 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
11056 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
11057 };
11058 genenvfn = fns[size][u];
11059 break;
11060 }
11061 case 0x8: /* SSHL, USHL */
11062 {
11063 static NeonGenTwoOpFn * const fns[3][2] = {
11064 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
11065 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
11066 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
11067 };
11068 genfn = fns[size][u];
11069 break;
11070 }
11071 case 0x9: /* SQSHL, UQSHL */
11072 {
11073 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11074 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11075 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11076 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11077 };
11078 genenvfn = fns[size][u];
11079 break;
11080 }
11081 case 0xa: /* SRSHL, URSHL */
11082 {
11083 static NeonGenTwoOpFn * const fns[3][2] = {
11084 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11085 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11086 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11087 };
11088 genfn = fns[size][u];
11089 break;
11090 }
11091 case 0xb: /* SQRSHL, UQRSHL */
11092 {
11093 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11094 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11095 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11096 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11097 };
11098 genenvfn = fns[size][u];
11099 break;
11100 }
11101 case 0xc: /* SMAX, UMAX */
11102 {
11103 static NeonGenTwoOpFn * const fns[3][2] = {
11104 { gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
11105 { gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
11106 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11107 };
11108 genfn = fns[size][u];
11109 break;
11110 }
11111
11112 case 0xd: /* SMIN, UMIN */
11113 {
11114 static NeonGenTwoOpFn * const fns[3][2] = {
11115 { gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
11116 { gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
11117 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11118 };
11119 genfn = fns[size][u];
11120 break;
11121 }
11122 case 0xe: /* SABD, UABD */
11123 case 0xf: /* SABA, UABA */
11124 {
11125 static NeonGenTwoOpFn * const fns[3][2] = {
11126 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
11127 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
11128 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
11129 };
11130 genfn = fns[size][u];
11131 break;
11132 }
11133 case 0x13: /* MUL, PMUL */
11134 assert(u); /* PMUL */
11135 assert(size == 0);
11136 genfn = gen_helper_neon_mul_p8;
11137 break;
11138 case 0x16: /* SQDMULH, SQRDMULH */
11139 {
11140 static NeonGenTwoOpEnvFn * const fns[2][2] = {
11141 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
11142 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
11143 };
11144 assert(size == 1 || size == 2);
11145 genenvfn = fns[size - 1][u];
11146 break;
11147 }
11148 default:
11149 g_assert_not_reached();
11150 }
11151
11152 if (genenvfn) {
11153 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11154 } else {
11155 genfn(tcg_res, tcg_op1, tcg_op2);
11156 }
11157
11158 if (opcode == 0xf) {
11159 /* SABA, UABA: accumulating ops */
11160 static NeonGenTwoOpFn * const fns[3] = {
11161 gen_helper_neon_add_u8,
11162 gen_helper_neon_add_u16,
11163 tcg_gen_add_i32,
11164 };
11165
11166 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
11167 fns[size](tcg_res, tcg_op1, tcg_res);
11168 }
11169
11170 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11171
11172 tcg_temp_free_i32(tcg_res);
11173 tcg_temp_free_i32(tcg_op1);
11174 tcg_temp_free_i32(tcg_op2);
11175 }
11176 }
11177 clear_vec_high(s, is_q, rd);
11178 }
11179
11180 /* AdvSIMD three same
11181 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11182 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11183 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11184 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11185 */
11186 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11187 {
11188 int opcode = extract32(insn, 11, 5);
11189
11190 switch (opcode) {
11191 case 0x3: /* logic ops */
11192 disas_simd_3same_logic(s, insn);
11193 break;
11194 case 0x17: /* ADDP */
11195 case 0x14: /* SMAXP, UMAXP */
11196 case 0x15: /* SMINP, UMINP */
11197 {
11198 /* Pairwise operations */
11199 int is_q = extract32(insn, 30, 1);
11200 int u = extract32(insn, 29, 1);
11201 int size = extract32(insn, 22, 2);
11202 int rm = extract32(insn, 16, 5);
11203 int rn = extract32(insn, 5, 5);
11204 int rd = extract32(insn, 0, 5);
11205 if (opcode == 0x17) {
11206 if (u || (size == 3 && !is_q)) {
11207 unallocated_encoding(s);
11208 return;
11209 }
11210 } else {
11211 if (size == 3) {
11212 unallocated_encoding(s);
11213 return;
11214 }
11215 }
11216 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11217 break;
11218 }
11219 case 0x18 ... 0x31:
11220 /* floating point ops, sz[1] and U are part of opcode */
11221 disas_simd_3same_float(s, insn);
11222 break;
11223 default:
11224 disas_simd_3same_int(s, insn);
11225 break;
11226 }
11227 }
11228
11229 /*
11230 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11231 *
11232 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11233 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11234 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11235 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11236 *
11237 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11238 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11239 *
11240 */
11241 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11242 {
11243 int opcode, fpopcode;
11244 int is_q, u, a, rm, rn, rd;
11245 int datasize, elements;
11246 int pass;
11247 TCGv_ptr fpst;
11248 bool pairwise = false;
11249
11250 if (!dc_isar_feature(aa64_fp16, s)) {
11251 unallocated_encoding(s);
11252 return;
11253 }
11254
11255 if (!fp_access_check(s)) {
11256 return;
11257 }
11258
11259 /* For these floating point ops, the U, a and opcode bits
11260 * together indicate the operation.
11261 */
11262 opcode = extract32(insn, 11, 3);
11263 u = extract32(insn, 29, 1);
11264 a = extract32(insn, 23, 1);
11265 is_q = extract32(insn, 30, 1);
11266 rm = extract32(insn, 16, 5);
11267 rn = extract32(insn, 5, 5);
11268 rd = extract32(insn, 0, 5);
11269
11270 fpopcode = opcode | (a << 3) | (u << 4);
11271 datasize = is_q ? 128 : 64;
11272 elements = datasize / 16;
11273
11274 switch (fpopcode) {
11275 case 0x10: /* FMAXNMP */
11276 case 0x12: /* FADDP */
11277 case 0x16: /* FMAXP */
11278 case 0x18: /* FMINNMP */
11279 case 0x1e: /* FMINP */
11280 pairwise = true;
11281 break;
11282 }
11283
11284 fpst = get_fpstatus_ptr(true);
11285
11286 if (pairwise) {
11287 int maxpass = is_q ? 8 : 4;
11288 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11289 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11290 TCGv_i32 tcg_res[8];
11291
11292 for (pass = 0; pass < maxpass; pass++) {
11293 int passreg = pass < (maxpass / 2) ? rn : rm;
11294 int passelt = (pass << 1) & (maxpass - 1);
11295
11296 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11297 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11298 tcg_res[pass] = tcg_temp_new_i32();
11299
11300 switch (fpopcode) {
11301 case 0x10: /* FMAXNMP */
11302 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11303 fpst);
11304 break;
11305 case 0x12: /* FADDP */
11306 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11307 break;
11308 case 0x16: /* FMAXP */
11309 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11310 break;
11311 case 0x18: /* FMINNMP */
11312 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11313 fpst);
11314 break;
11315 case 0x1e: /* FMINP */
11316 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11317 break;
11318 default:
11319 g_assert_not_reached();
11320 }
11321 }
11322
11323 for (pass = 0; pass < maxpass; pass++) {
11324 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11325 tcg_temp_free_i32(tcg_res[pass]);
11326 }
11327
11328 tcg_temp_free_i32(tcg_op1);
11329 tcg_temp_free_i32(tcg_op2);
11330
11331 } else {
11332 for (pass = 0; pass < elements; pass++) {
11333 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11334 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11335 TCGv_i32 tcg_res = tcg_temp_new_i32();
11336
11337 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11338 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11339
11340 switch (fpopcode) {
11341 case 0x0: /* FMAXNM */
11342 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11343 break;
11344 case 0x1: /* FMLA */
11345 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11346 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11347 fpst);
11348 break;
11349 case 0x2: /* FADD */
11350 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11351 break;
11352 case 0x3: /* FMULX */
11353 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11354 break;
11355 case 0x4: /* FCMEQ */
11356 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11357 break;
11358 case 0x6: /* FMAX */
11359 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11360 break;
11361 case 0x7: /* FRECPS */
11362 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11363 break;
11364 case 0x8: /* FMINNM */
11365 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11366 break;
11367 case 0x9: /* FMLS */
11368 /* As usual for ARM, separate negation for fused multiply-add */
11369 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11370 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11371 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11372 fpst);
11373 break;
11374 case 0xa: /* FSUB */
11375 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11376 break;
11377 case 0xe: /* FMIN */
11378 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11379 break;
11380 case 0xf: /* FRSQRTS */
11381 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11382 break;
11383 case 0x13: /* FMUL */
11384 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11385 break;
11386 case 0x14: /* FCMGE */
11387 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11388 break;
11389 case 0x15: /* FACGE */
11390 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11391 break;
11392 case 0x17: /* FDIV */
11393 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11394 break;
11395 case 0x1a: /* FABD */
11396 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11397 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11398 break;
11399 case 0x1c: /* FCMGT */
11400 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11401 break;
11402 case 0x1d: /* FACGT */
11403 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11404 break;
11405 default:
11406 fprintf(stderr, "%s: insn %#04x, fpop %#2x @ %#" PRIx64 "\n",
11407 __func__, insn, fpopcode, s->pc);
11408 g_assert_not_reached();
11409 }
11410
11411 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11412 tcg_temp_free_i32(tcg_res);
11413 tcg_temp_free_i32(tcg_op1);
11414 tcg_temp_free_i32(tcg_op2);
11415 }
11416 }
11417
11418 tcg_temp_free_ptr(fpst);
11419
11420 clear_vec_high(s, is_q, rd);
11421 }
11422
11423 /* AdvSIMD three same extra
11424 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
11425 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11426 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
11427 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11428 */
11429 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11430 {
11431 int rd = extract32(insn, 0, 5);
11432 int rn = extract32(insn, 5, 5);
11433 int opcode = extract32(insn, 11, 4);
11434 int rm = extract32(insn, 16, 5);
11435 int size = extract32(insn, 22, 2);
11436 bool u = extract32(insn, 29, 1);
11437 bool is_q = extract32(insn, 30, 1);
11438 bool feature;
11439 int rot;
11440
11441 switch (u * 16 + opcode) {
11442 case 0x10: /* SQRDMLAH (vector) */
11443 case 0x11: /* SQRDMLSH (vector) */
11444 if (size != 1 && size != 2) {
11445 unallocated_encoding(s);
11446 return;
11447 }
11448 feature = dc_isar_feature(aa64_rdm, s);
11449 break;
11450 case 0x02: /* SDOT (vector) */
11451 case 0x12: /* UDOT (vector) */
11452 if (size != MO_32) {
11453 unallocated_encoding(s);
11454 return;
11455 }
11456 feature = dc_isar_feature(aa64_dp, s);
11457 break;
11458 case 0x18: /* FCMLA, #0 */
11459 case 0x19: /* FCMLA, #90 */
11460 case 0x1a: /* FCMLA, #180 */
11461 case 0x1b: /* FCMLA, #270 */
11462 case 0x1c: /* FCADD, #90 */
11463 case 0x1e: /* FCADD, #270 */
11464 if (size == 0
11465 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11466 || (size == 3 && !is_q)) {
11467 unallocated_encoding(s);
11468 return;
11469 }
11470 feature = dc_isar_feature(aa64_fcma, s);
11471 break;
11472 default:
11473 unallocated_encoding(s);
11474 return;
11475 }
11476 if (!feature) {
11477 unallocated_encoding(s);
11478 return;
11479 }
11480 if (!fp_access_check(s)) {
11481 return;
11482 }
11483
11484 switch (opcode) {
11485 case 0x0: /* SQRDMLAH (vector) */
11486 switch (size) {
11487 case 1:
11488 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s16);
11489 break;
11490 case 2:
11491 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s32);
11492 break;
11493 default:
11494 g_assert_not_reached();
11495 }
11496 return;
11497
11498 case 0x1: /* SQRDMLSH (vector) */
11499 switch (size) {
11500 case 1:
11501 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s16);
11502 break;
11503 case 2:
11504 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s32);
11505 break;
11506 default:
11507 g_assert_not_reached();
11508 }
11509 return;
11510
11511 case 0x2: /* SDOT / UDOT */
11512 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0,
11513 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11514 return;
11515
11516 case 0x8: /* FCMLA, #0 */
11517 case 0x9: /* FCMLA, #90 */
11518 case 0xa: /* FCMLA, #180 */
11519 case 0xb: /* FCMLA, #270 */
11520 rot = extract32(opcode, 0, 2);
11521 switch (size) {
11522 case 1:
11523 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, true, rot,
11524 gen_helper_gvec_fcmlah);
11525 break;
11526 case 2:
11527 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11528 gen_helper_gvec_fcmlas);
11529 break;
11530 case 3:
11531 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11532 gen_helper_gvec_fcmlad);
11533 break;
11534 default:
11535 g_assert_not_reached();
11536 }
11537 return;
11538
11539 case 0xc: /* FCADD, #90 */
11540 case 0xe: /* FCADD, #270 */
11541 rot = extract32(opcode, 1, 1);
11542 switch (size) {
11543 case 1:
11544 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11545 gen_helper_gvec_fcaddh);
11546 break;
11547 case 2:
11548 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11549 gen_helper_gvec_fcadds);
11550 break;
11551 case 3:
11552 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11553 gen_helper_gvec_fcaddd);
11554 break;
11555 default:
11556 g_assert_not_reached();
11557 }
11558 return;
11559
11560 default:
11561 g_assert_not_reached();
11562 }
11563 }
11564
11565 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11566 int size, int rn, int rd)
11567 {
11568 /* Handle 2-reg-misc ops which are widening (so each size element
11569 * in the source becomes a 2*size element in the destination.
11570 * The only instruction like this is FCVTL.
11571 */
11572 int pass;
11573
11574 if (size == 3) {
11575 /* 32 -> 64 bit fp conversion */
11576 TCGv_i64 tcg_res[2];
11577 int srcelt = is_q ? 2 : 0;
11578
11579 for (pass = 0; pass < 2; pass++) {
11580 TCGv_i32 tcg_op = tcg_temp_new_i32();
11581 tcg_res[pass] = tcg_temp_new_i64();
11582
11583 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11584 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11585 tcg_temp_free_i32(tcg_op);
11586 }
11587 for (pass = 0; pass < 2; pass++) {
11588 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11589 tcg_temp_free_i64(tcg_res[pass]);
11590 }
11591 } else {
11592 /* 16 -> 32 bit fp conversion */
11593 int srcelt = is_q ? 4 : 0;
11594 TCGv_i32 tcg_res[4];
11595 TCGv_ptr fpst = get_fpstatus_ptr(false);
11596 TCGv_i32 ahp = get_ahp_flag();
11597
11598 for (pass = 0; pass < 4; pass++) {
11599 tcg_res[pass] = tcg_temp_new_i32();
11600
11601 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11602 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11603 fpst, ahp);
11604 }
11605 for (pass = 0; pass < 4; pass++) {
11606 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11607 tcg_temp_free_i32(tcg_res[pass]);
11608 }
11609
11610 tcg_temp_free_ptr(fpst);
11611 tcg_temp_free_i32(ahp);
11612 }
11613 }
11614
11615 static void handle_rev(DisasContext *s, int opcode, bool u,
11616 bool is_q, int size, int rn, int rd)
11617 {
11618 int op = (opcode << 1) | u;
11619 int opsz = op + size;
11620 int grp_size = 3 - opsz;
11621 int dsize = is_q ? 128 : 64;
11622 int i;
11623
11624 if (opsz >= 3) {
11625 unallocated_encoding(s);
11626 return;
11627 }
11628
11629 if (!fp_access_check(s)) {
11630 return;
11631 }
11632
11633 if (size == 0) {
11634 /* Special case bytes, use bswap op on each group of elements */
11635 int groups = dsize / (8 << grp_size);
11636
11637 for (i = 0; i < groups; i++) {
11638 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11639
11640 read_vec_element(s, tcg_tmp, rn, i, grp_size);
11641 switch (grp_size) {
11642 case MO_16:
11643 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
11644 break;
11645 case MO_32:
11646 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
11647 break;
11648 case MO_64:
11649 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11650 break;
11651 default:
11652 g_assert_not_reached();
11653 }
11654 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11655 tcg_temp_free_i64(tcg_tmp);
11656 }
11657 clear_vec_high(s, is_q, rd);
11658 } else {
11659 int revmask = (1 << grp_size) - 1;
11660 int esize = 8 << size;
11661 int elements = dsize / esize;
11662 TCGv_i64 tcg_rn = tcg_temp_new_i64();
11663 TCGv_i64 tcg_rd = tcg_const_i64(0);
11664 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
11665
11666 for (i = 0; i < elements; i++) {
11667 int e_rev = (i & 0xf) ^ revmask;
11668 int off = e_rev * esize;
11669 read_vec_element(s, tcg_rn, rn, i, size);
11670 if (off >= 64) {
11671 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
11672 tcg_rn, off - 64, esize);
11673 } else {
11674 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
11675 }
11676 }
11677 write_vec_element(s, tcg_rd, rd, 0, MO_64);
11678 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
11679
11680 tcg_temp_free_i64(tcg_rd_hi);
11681 tcg_temp_free_i64(tcg_rd);
11682 tcg_temp_free_i64(tcg_rn);
11683 }
11684 }
11685
11686 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11687 bool is_q, int size, int rn, int rd)
11688 {
11689 /* Implement the pairwise operations from 2-misc:
11690 * SADDLP, UADDLP, SADALP, UADALP.
11691 * These all add pairs of elements in the input to produce a
11692 * double-width result element in the output (possibly accumulating).
11693 */
11694 bool accum = (opcode == 0x6);
11695 int maxpass = is_q ? 2 : 1;
11696 int pass;
11697 TCGv_i64 tcg_res[2];
11698
11699 if (size == 2) {
11700 /* 32 + 32 -> 64 op */
11701 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
11702
11703 for (pass = 0; pass < maxpass; pass++) {
11704 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11705 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11706
11707 tcg_res[pass] = tcg_temp_new_i64();
11708
11709 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11710 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11711 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11712 if (accum) {
11713 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11714 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11715 }
11716
11717 tcg_temp_free_i64(tcg_op1);
11718 tcg_temp_free_i64(tcg_op2);
11719 }
11720 } else {
11721 for (pass = 0; pass < maxpass; pass++) {
11722 TCGv_i64 tcg_op = tcg_temp_new_i64();
11723 NeonGenOneOpFn *genfn;
11724 static NeonGenOneOpFn * const fns[2][2] = {
11725 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
11726 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
11727 };
11728
11729 genfn = fns[size][u];
11730
11731 tcg_res[pass] = tcg_temp_new_i64();
11732
11733 read_vec_element(s, tcg_op, rn, pass, MO_64);
11734 genfn(tcg_res[pass], tcg_op);
11735
11736 if (accum) {
11737 read_vec_element(s, tcg_op, rd, pass, MO_64);
11738 if (size == 0) {
11739 gen_helper_neon_addl_u16(tcg_res[pass],
11740 tcg_res[pass], tcg_op);
11741 } else {
11742 gen_helper_neon_addl_u32(tcg_res[pass],
11743 tcg_res[pass], tcg_op);
11744 }
11745 }
11746 tcg_temp_free_i64(tcg_op);
11747 }
11748 }
11749 if (!is_q) {
11750 tcg_res[1] = tcg_const_i64(0);
11751 }
11752 for (pass = 0; pass < 2; pass++) {
11753 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11754 tcg_temp_free_i64(tcg_res[pass]);
11755 }
11756 }
11757
11758 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11759 {
11760 /* Implement SHLL and SHLL2 */
11761 int pass;
11762 int part = is_q ? 2 : 0;
11763 TCGv_i64 tcg_res[2];
11764
11765 for (pass = 0; pass < 2; pass++) {
11766 static NeonGenWidenFn * const widenfns[3] = {
11767 gen_helper_neon_widen_u8,
11768 gen_helper_neon_widen_u16,
11769 tcg_gen_extu_i32_i64,
11770 };
11771 NeonGenWidenFn *widenfn = widenfns[size];
11772 TCGv_i32 tcg_op = tcg_temp_new_i32();
11773
11774 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11775 tcg_res[pass] = tcg_temp_new_i64();
11776 widenfn(tcg_res[pass], tcg_op);
11777 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11778
11779 tcg_temp_free_i32(tcg_op);
11780 }
11781
11782 for (pass = 0; pass < 2; pass++) {
11783 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11784 tcg_temp_free_i64(tcg_res[pass]);
11785 }
11786 }
11787
11788 /* AdvSIMD two reg misc
11789 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
11790 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11791 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
11792 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11793 */
11794 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11795 {
11796 int size = extract32(insn, 22, 2);
11797 int opcode = extract32(insn, 12, 5);
11798 bool u = extract32(insn, 29, 1);
11799 bool is_q = extract32(insn, 30, 1);
11800 int rn = extract32(insn, 5, 5);
11801 int rd = extract32(insn, 0, 5);
11802 bool need_fpstatus = false;
11803 bool need_rmode = false;
11804 int rmode = -1;
11805 TCGv_i32 tcg_rmode;
11806 TCGv_ptr tcg_fpstatus;
11807
11808 switch (opcode) {
11809 case 0x0: /* REV64, REV32 */
11810 case 0x1: /* REV16 */
11811 handle_rev(s, opcode, u, is_q, size, rn, rd);
11812 return;
11813 case 0x5: /* CNT, NOT, RBIT */
11814 if (u && size == 0) {
11815 /* NOT */
11816 break;
11817 } else if (u && size == 1) {
11818 /* RBIT */
11819 break;
11820 } else if (!u && size == 0) {
11821 /* CNT */
11822 break;
11823 }
11824 unallocated_encoding(s);
11825 return;
11826 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11827 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11828 if (size == 3) {
11829 unallocated_encoding(s);
11830 return;
11831 }
11832 if (!fp_access_check(s)) {
11833 return;
11834 }
11835
11836 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11837 return;
11838 case 0x4: /* CLS, CLZ */
11839 if (size == 3) {
11840 unallocated_encoding(s);
11841 return;
11842 }
11843 break;
11844 case 0x2: /* SADDLP, UADDLP */
11845 case 0x6: /* SADALP, UADALP */
11846 if (size == 3) {
11847 unallocated_encoding(s);
11848 return;
11849 }
11850 if (!fp_access_check(s)) {
11851 return;
11852 }
11853 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11854 return;
11855 case 0x13: /* SHLL, SHLL2 */
11856 if (u == 0 || size == 3) {
11857 unallocated_encoding(s);
11858 return;
11859 }
11860 if (!fp_access_check(s)) {
11861 return;
11862 }
11863 handle_shll(s, is_q, size, rn, rd);
11864 return;
11865 case 0xa: /* CMLT */
11866 if (u == 1) {
11867 unallocated_encoding(s);
11868 return;
11869 }
11870 /* fall through */
11871 case 0x8: /* CMGT, CMGE */
11872 case 0x9: /* CMEQ, CMLE */
11873 case 0xb: /* ABS, NEG */
11874 if (size == 3 && !is_q) {
11875 unallocated_encoding(s);
11876 return;
11877 }
11878 break;
11879 case 0x3: /* SUQADD, USQADD */
11880 if (size == 3 && !is_q) {
11881 unallocated_encoding(s);
11882 return;
11883 }
11884 if (!fp_access_check(s)) {
11885 return;
11886 }
11887 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
11888 return;
11889 case 0x7: /* SQABS, SQNEG */
11890 if (size == 3 && !is_q) {
11891 unallocated_encoding(s);
11892 return;
11893 }
11894 break;
11895 case 0xc ... 0xf:
11896 case 0x16 ... 0x1d:
11897 case 0x1f:
11898 {
11899 /* Floating point: U, size[1] and opcode indicate operation;
11900 * size[0] indicates single or double precision.
11901 */
11902 int is_double = extract32(size, 0, 1);
11903 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11904 size = is_double ? 3 : 2;
11905 switch (opcode) {
11906 case 0x2f: /* FABS */
11907 case 0x6f: /* FNEG */
11908 if (size == 3 && !is_q) {
11909 unallocated_encoding(s);
11910 return;
11911 }
11912 break;
11913 case 0x1d: /* SCVTF */
11914 case 0x5d: /* UCVTF */
11915 {
11916 bool is_signed = (opcode == 0x1d) ? true : false;
11917 int elements = is_double ? 2 : is_q ? 4 : 2;
11918 if (is_double && !is_q) {
11919 unallocated_encoding(s);
11920 return;
11921 }
11922 if (!fp_access_check(s)) {
11923 return;
11924 }
11925 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11926 return;
11927 }
11928 case 0x2c: /* FCMGT (zero) */
11929 case 0x2d: /* FCMEQ (zero) */
11930 case 0x2e: /* FCMLT (zero) */
11931 case 0x6c: /* FCMGE (zero) */
11932 case 0x6d: /* FCMLE (zero) */
11933 if (size == 3 && !is_q) {
11934 unallocated_encoding(s);
11935 return;
11936 }
11937 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11938 return;
11939 case 0x7f: /* FSQRT */
11940 if (size == 3 && !is_q) {
11941 unallocated_encoding(s);
11942 return;
11943 }
11944 break;
11945 case 0x1a: /* FCVTNS */
11946 case 0x1b: /* FCVTMS */
11947 case 0x3a: /* FCVTPS */
11948 case 0x3b: /* FCVTZS */
11949 case 0x5a: /* FCVTNU */
11950 case 0x5b: /* FCVTMU */
11951 case 0x7a: /* FCVTPU */
11952 case 0x7b: /* FCVTZU */
11953 need_fpstatus = true;
11954 need_rmode = true;
11955 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11956 if (size == 3 && !is_q) {
11957 unallocated_encoding(s);
11958 return;
11959 }
11960 break;
11961 case 0x5c: /* FCVTAU */
11962 case 0x1c: /* FCVTAS */
11963 need_fpstatus = true;
11964 need_rmode = true;
11965 rmode = FPROUNDING_TIEAWAY;
11966 if (size == 3 && !is_q) {
11967 unallocated_encoding(s);
11968 return;
11969 }
11970 break;
11971 case 0x3c: /* URECPE */
11972 if (size == 3) {
11973 unallocated_encoding(s);
11974 return;
11975 }
11976 /* fall through */
11977 case 0x3d: /* FRECPE */
11978 case 0x7d: /* FRSQRTE */
11979 if (size == 3 && !is_q) {
11980 unallocated_encoding(s);
11981 return;
11982 }
11983 if (!fp_access_check(s)) {
11984 return;
11985 }
11986 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11987 return;
11988 case 0x56: /* FCVTXN, FCVTXN2 */
11989 if (size == 2) {
11990 unallocated_encoding(s);
11991 return;
11992 }
11993 /* fall through */
11994 case 0x16: /* FCVTN, FCVTN2 */
11995 /* handle_2misc_narrow does a 2*size -> size operation, but these
11996 * instructions encode the source size rather than dest size.
11997 */
11998 if (!fp_access_check(s)) {
11999 return;
12000 }
12001 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12002 return;
12003 case 0x17: /* FCVTL, FCVTL2 */
12004 if (!fp_access_check(s)) {
12005 return;
12006 }
12007 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12008 return;
12009 case 0x18: /* FRINTN */
12010 case 0x19: /* FRINTM */
12011 case 0x38: /* FRINTP */
12012 case 0x39: /* FRINTZ */
12013 need_rmode = true;
12014 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12015 /* fall through */
12016 case 0x59: /* FRINTX */
12017 case 0x79: /* FRINTI */
12018 need_fpstatus = true;
12019 if (size == 3 && !is_q) {
12020 unallocated_encoding(s);
12021 return;
12022 }
12023 break;
12024 case 0x58: /* FRINTA */
12025 need_rmode = true;
12026 rmode = FPROUNDING_TIEAWAY;
12027 need_fpstatus = true;
12028 if (size == 3 && !is_q) {
12029 unallocated_encoding(s);
12030 return;
12031 }
12032 break;
12033 case 0x7c: /* URSQRTE */
12034 if (size == 3) {
12035 unallocated_encoding(s);
12036 return;
12037 }
12038 need_fpstatus = true;
12039 break;
12040 default:
12041 unallocated_encoding(s);
12042 return;
12043 }
12044 break;
12045 }
12046 default:
12047 unallocated_encoding(s);
12048 return;
12049 }
12050
12051 if (!fp_access_check(s)) {
12052 return;
12053 }
12054
12055 if (need_fpstatus || need_rmode) {
12056 tcg_fpstatus = get_fpstatus_ptr(false);
12057 } else {
12058 tcg_fpstatus = NULL;
12059 }
12060 if (need_rmode) {
12061 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12062 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12063 } else {
12064 tcg_rmode = NULL;
12065 }
12066
12067 switch (opcode) {
12068 case 0x5:
12069 if (u && size == 0) { /* NOT */
12070 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12071 return;
12072 }
12073 break;
12074 case 0xb:
12075 if (u) { /* NEG */
12076 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12077 return;
12078 }
12079 break;
12080 }
12081
12082 if (size == 3) {
12083 /* All 64-bit element operations can be shared with scalar 2misc */
12084 int pass;
12085
12086 /* Coverity claims (size == 3 && !is_q) has been eliminated
12087 * from all paths leading to here.
12088 */
12089 tcg_debug_assert(is_q);
12090 for (pass = 0; pass < 2; pass++) {
12091 TCGv_i64 tcg_op = tcg_temp_new_i64();
12092 TCGv_i64 tcg_res = tcg_temp_new_i64();
12093
12094 read_vec_element(s, tcg_op, rn, pass, MO_64);
12095
12096 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12097 tcg_rmode, tcg_fpstatus);
12098
12099 write_vec_element(s, tcg_res, rd, pass, MO_64);
12100
12101 tcg_temp_free_i64(tcg_res);
12102 tcg_temp_free_i64(tcg_op);
12103 }
12104 } else {
12105 int pass;
12106
12107 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12108 TCGv_i32 tcg_op = tcg_temp_new_i32();
12109 TCGv_i32 tcg_res = tcg_temp_new_i32();
12110 TCGCond cond;
12111
12112 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12113
12114 if (size == 2) {
12115 /* Special cases for 32 bit elements */
12116 switch (opcode) {
12117 case 0xa: /* CMLT */
12118 /* 32 bit integer comparison against zero, result is
12119 * test ? (2^32 - 1) : 0. We implement via setcond(test)
12120 * and inverting.
12121 */
12122 cond = TCG_COND_LT;
12123 do_cmop:
12124 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
12125 tcg_gen_neg_i32(tcg_res, tcg_res);
12126 break;
12127 case 0x8: /* CMGT, CMGE */
12128 cond = u ? TCG_COND_GE : TCG_COND_GT;
12129 goto do_cmop;
12130 case 0x9: /* CMEQ, CMLE */
12131 cond = u ? TCG_COND_LE : TCG_COND_EQ;
12132 goto do_cmop;
12133 case 0x4: /* CLS */
12134 if (u) {
12135 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12136 } else {
12137 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12138 }
12139 break;
12140 case 0x7: /* SQABS, SQNEG */
12141 if (u) {
12142 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12143 } else {
12144 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12145 }
12146 break;
12147 case 0xb: /* ABS, NEG */
12148 if (u) {
12149 tcg_gen_neg_i32(tcg_res, tcg_op);
12150 } else {
12151 TCGv_i32 tcg_zero = tcg_const_i32(0);
12152 tcg_gen_neg_i32(tcg_res, tcg_op);
12153 tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
12154 tcg_zero, tcg_op, tcg_res);
12155 tcg_temp_free_i32(tcg_zero);
12156 }
12157 break;
12158 case 0x2f: /* FABS */
12159 gen_helper_vfp_abss(tcg_res, tcg_op);
12160 break;
12161 case 0x6f: /* FNEG */
12162 gen_helper_vfp_negs(tcg_res, tcg_op);
12163 break;
12164 case 0x7f: /* FSQRT */
12165 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12166 break;
12167 case 0x1a: /* FCVTNS */
12168 case 0x1b: /* FCVTMS */
12169 case 0x1c: /* FCVTAS */
12170 case 0x3a: /* FCVTPS */
12171 case 0x3b: /* FCVTZS */
12172 {
12173 TCGv_i32 tcg_shift = tcg_const_i32(0);
12174 gen_helper_vfp_tosls(tcg_res, tcg_op,
12175 tcg_shift, tcg_fpstatus);
12176 tcg_temp_free_i32(tcg_shift);
12177 break;
12178 }
12179 case 0x5a: /* FCVTNU */
12180 case 0x5b: /* FCVTMU */
12181 case 0x5c: /* FCVTAU */
12182 case 0x7a: /* FCVTPU */
12183 case 0x7b: /* FCVTZU */
12184 {
12185 TCGv_i32 tcg_shift = tcg_const_i32(0);
12186 gen_helper_vfp_touls(tcg_res, tcg_op,
12187 tcg_shift, tcg_fpstatus);
12188 tcg_temp_free_i32(tcg_shift);
12189 break;
12190 }
12191 case 0x18: /* FRINTN */
12192 case 0x19: /* FRINTM */
12193 case 0x38: /* FRINTP */
12194 case 0x39: /* FRINTZ */
12195 case 0x58: /* FRINTA */
12196 case 0x79: /* FRINTI */
12197 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12198 break;
12199 case 0x59: /* FRINTX */
12200 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12201 break;
12202 case 0x7c: /* URSQRTE */
12203 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
12204 break;
12205 default:
12206 g_assert_not_reached();
12207 }
12208 } else {
12209 /* Use helpers for 8 and 16 bit elements */
12210 switch (opcode) {
12211 case 0x5: /* CNT, RBIT */
12212 /* For these two insns size is part of the opcode specifier
12213 * (handled earlier); they always operate on byte elements.
12214 */
12215 if (u) {
12216 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12217 } else {
12218 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12219 }
12220 break;
12221 case 0x7: /* SQABS, SQNEG */
12222 {
12223 NeonGenOneOpEnvFn *genfn;
12224 static NeonGenOneOpEnvFn * const fns[2][2] = {
12225 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12226 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12227 };
12228 genfn = fns[size][u];
12229 genfn(tcg_res, cpu_env, tcg_op);
12230 break;
12231 }
12232 case 0x8: /* CMGT, CMGE */
12233 case 0x9: /* CMEQ, CMLE */
12234 case 0xa: /* CMLT */
12235 {
12236 static NeonGenTwoOpFn * const fns[3][2] = {
12237 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
12238 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
12239 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
12240 };
12241 NeonGenTwoOpFn *genfn;
12242 int comp;
12243 bool reverse;
12244 TCGv_i32 tcg_zero = tcg_const_i32(0);
12245
12246 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
12247 comp = (opcode - 0x8) * 2 + u;
12248 /* ...but LE, LT are implemented as reverse GE, GT */
12249 reverse = (comp > 2);
12250 if (reverse) {
12251 comp = 4 - comp;
12252 }
12253 genfn = fns[comp][size];
12254 if (reverse) {
12255 genfn(tcg_res, tcg_zero, tcg_op);
12256 } else {
12257 genfn(tcg_res, tcg_op, tcg_zero);
12258 }
12259 tcg_temp_free_i32(tcg_zero);
12260 break;
12261 }
12262 case 0xb: /* ABS, NEG */
12263 if (u) {
12264 TCGv_i32 tcg_zero = tcg_const_i32(0);
12265 if (size) {
12266 gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
12267 } else {
12268 gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
12269 }
12270 tcg_temp_free_i32(tcg_zero);
12271 } else {
12272 if (size) {
12273 gen_helper_neon_abs_s16(tcg_res, tcg_op);
12274 } else {
12275 gen_helper_neon_abs_s8(tcg_res, tcg_op);
12276 }
12277 }
12278 break;
12279 case 0x4: /* CLS, CLZ */
12280 if (u) {
12281 if (size == 0) {
12282 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12283 } else {
12284 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12285 }
12286 } else {
12287 if (size == 0) {
12288 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12289 } else {
12290 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12291 }
12292 }
12293 break;
12294 default:
12295 g_assert_not_reached();
12296 }
12297 }
12298
12299 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12300
12301 tcg_temp_free_i32(tcg_res);
12302 tcg_temp_free_i32(tcg_op);
12303 }
12304 }
12305 clear_vec_high(s, is_q, rd);
12306
12307 if (need_rmode) {
12308 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12309 tcg_temp_free_i32(tcg_rmode);
12310 }
12311 if (need_fpstatus) {
12312 tcg_temp_free_ptr(tcg_fpstatus);
12313 }
12314 }
12315
12316 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12317 *
12318 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
12319 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12320 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
12321 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12322 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12323 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12324 *
12325 * This actually covers two groups where scalar access is governed by
12326 * bit 28. A bunch of the instructions (float to integral) only exist
12327 * in the vector form and are un-allocated for the scalar decode. Also
12328 * in the scalar decode Q is always 1.
12329 */
12330 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12331 {
12332 int fpop, opcode, a, u;
12333 int rn, rd;
12334 bool is_q;
12335 bool is_scalar;
12336 bool only_in_vector = false;
12337
12338 int pass;
12339 TCGv_i32 tcg_rmode = NULL;
12340 TCGv_ptr tcg_fpstatus = NULL;
12341 bool need_rmode = false;
12342 bool need_fpst = true;
12343 int rmode;
12344
12345 if (!dc_isar_feature(aa64_fp16, s)) {
12346 unallocated_encoding(s);
12347 return;
12348 }
12349
12350 rd = extract32(insn, 0, 5);
12351 rn = extract32(insn, 5, 5);
12352
12353 a = extract32(insn, 23, 1);
12354 u = extract32(insn, 29, 1);
12355 is_scalar = extract32(insn, 28, 1);
12356 is_q = extract32(insn, 30, 1);
12357
12358 opcode = extract32(insn, 12, 5);
12359 fpop = deposit32(opcode, 5, 1, a);
12360 fpop = deposit32(fpop, 6, 1, u);
12361
12362 rd = extract32(insn, 0, 5);
12363 rn = extract32(insn, 5, 5);
12364
12365 switch (fpop) {
12366 case 0x1d: /* SCVTF */
12367 case 0x5d: /* UCVTF */
12368 {
12369 int elements;
12370
12371 if (is_scalar) {
12372 elements = 1;
12373 } else {
12374 elements = (is_q ? 8 : 4);
12375 }
12376
12377 if (!fp_access_check(s)) {
12378 return;
12379 }
12380 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12381 return;
12382 }
12383 break;
12384 case 0x2c: /* FCMGT (zero) */
12385 case 0x2d: /* FCMEQ (zero) */
12386 case 0x2e: /* FCMLT (zero) */
12387 case 0x6c: /* FCMGE (zero) */
12388 case 0x6d: /* FCMLE (zero) */
12389 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12390 return;
12391 case 0x3d: /* FRECPE */
12392 case 0x3f: /* FRECPX */
12393 break;
12394 case 0x18: /* FRINTN */
12395 need_rmode = true;
12396 only_in_vector = true;
12397 rmode = FPROUNDING_TIEEVEN;
12398 break;
12399 case 0x19: /* FRINTM */
12400 need_rmode = true;
12401 only_in_vector = true;
12402 rmode = FPROUNDING_NEGINF;
12403 break;
12404 case 0x38: /* FRINTP */
12405 need_rmode = true;
12406 only_in_vector = true;
12407 rmode = FPROUNDING_POSINF;
12408 break;
12409 case 0x39: /* FRINTZ */
12410 need_rmode = true;
12411 only_in_vector = true;
12412 rmode = FPROUNDING_ZERO;
12413 break;
12414 case 0x58: /* FRINTA */
12415 need_rmode = true;
12416 only_in_vector = true;
12417 rmode = FPROUNDING_TIEAWAY;
12418 break;
12419 case 0x59: /* FRINTX */
12420 case 0x79: /* FRINTI */
12421 only_in_vector = true;
12422 /* current rounding mode */
12423 break;
12424 case 0x1a: /* FCVTNS */
12425 need_rmode = true;
12426 rmode = FPROUNDING_TIEEVEN;
12427 break;
12428 case 0x1b: /* FCVTMS */
12429 need_rmode = true;
12430 rmode = FPROUNDING_NEGINF;
12431 break;
12432 case 0x1c: /* FCVTAS */
12433 need_rmode = true;
12434 rmode = FPROUNDING_TIEAWAY;
12435 break;
12436 case 0x3a: /* FCVTPS */
12437 need_rmode = true;
12438 rmode = FPROUNDING_POSINF;
12439 break;
12440 case 0x3b: /* FCVTZS */
12441 need_rmode = true;
12442 rmode = FPROUNDING_ZERO;
12443 break;
12444 case 0x5a: /* FCVTNU */
12445 need_rmode = true;
12446 rmode = FPROUNDING_TIEEVEN;
12447 break;
12448 case 0x5b: /* FCVTMU */
12449 need_rmode = true;
12450 rmode = FPROUNDING_NEGINF;
12451 break;
12452 case 0x5c: /* FCVTAU */
12453 need_rmode = true;
12454 rmode = FPROUNDING_TIEAWAY;
12455 break;
12456 case 0x7a: /* FCVTPU */
12457 need_rmode = true;
12458 rmode = FPROUNDING_POSINF;
12459 break;
12460 case 0x7b: /* FCVTZU */
12461 need_rmode = true;
12462 rmode = FPROUNDING_ZERO;
12463 break;
12464 case 0x2f: /* FABS */
12465 case 0x6f: /* FNEG */
12466 need_fpst = false;
12467 break;
12468 case 0x7d: /* FRSQRTE */
12469 case 0x7f: /* FSQRT (vector) */
12470 break;
12471 default:
12472 fprintf(stderr, "%s: insn %#04x fpop %#2x\n", __func__, insn, fpop);
12473 g_assert_not_reached();
12474 }
12475
12476
12477 /* Check additional constraints for the scalar encoding */
12478 if (is_scalar) {
12479 if (!is_q) {
12480 unallocated_encoding(s);
12481 return;
12482 }
12483 /* FRINTxx is only in the vector form */
12484 if (only_in_vector) {
12485 unallocated_encoding(s);
12486 return;
12487 }
12488 }
12489
12490 if (!fp_access_check(s)) {
12491 return;
12492 }
12493
12494 if (need_rmode || need_fpst) {
12495 tcg_fpstatus = get_fpstatus_ptr(true);
12496 }
12497
12498 if (need_rmode) {
12499 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12500 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12501 }
12502
12503 if (is_scalar) {
12504 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12505 TCGv_i32 tcg_res = tcg_temp_new_i32();
12506
12507 switch (fpop) {
12508 case 0x1a: /* FCVTNS */
12509 case 0x1b: /* FCVTMS */
12510 case 0x1c: /* FCVTAS */
12511 case 0x3a: /* FCVTPS */
12512 case 0x3b: /* FCVTZS */
12513 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12514 break;
12515 case 0x3d: /* FRECPE */
12516 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12517 break;
12518 case 0x3f: /* FRECPX */
12519 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12520 break;
12521 case 0x5a: /* FCVTNU */
12522 case 0x5b: /* FCVTMU */
12523 case 0x5c: /* FCVTAU */
12524 case 0x7a: /* FCVTPU */
12525 case 0x7b: /* FCVTZU */
12526 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12527 break;
12528 case 0x6f: /* FNEG */
12529 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12530 break;
12531 case 0x7d: /* FRSQRTE */
12532 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12533 break;
12534 default:
12535 g_assert_not_reached();
12536 }
12537
12538 /* limit any sign extension going on */
12539 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12540 write_fp_sreg(s, rd, tcg_res);
12541
12542 tcg_temp_free_i32(tcg_res);
12543 tcg_temp_free_i32(tcg_op);
12544 } else {
12545 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12546 TCGv_i32 tcg_op = tcg_temp_new_i32();
12547 TCGv_i32 tcg_res = tcg_temp_new_i32();
12548
12549 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12550
12551 switch (fpop) {
12552 case 0x1a: /* FCVTNS */
12553 case 0x1b: /* FCVTMS */
12554 case 0x1c: /* FCVTAS */
12555 case 0x3a: /* FCVTPS */
12556 case 0x3b: /* FCVTZS */
12557 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12558 break;
12559 case 0x3d: /* FRECPE */
12560 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12561 break;
12562 case 0x5a: /* FCVTNU */
12563 case 0x5b: /* FCVTMU */
12564 case 0x5c: /* FCVTAU */
12565 case 0x7a: /* FCVTPU */
12566 case 0x7b: /* FCVTZU */
12567 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12568 break;
12569 case 0x18: /* FRINTN */
12570 case 0x19: /* FRINTM */
12571 case 0x38: /* FRINTP */
12572 case 0x39: /* FRINTZ */
12573 case 0x58: /* FRINTA */
12574 case 0x79: /* FRINTI */
12575 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12576 break;
12577 case 0x59: /* FRINTX */
12578 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12579 break;
12580 case 0x2f: /* FABS */
12581 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12582 break;
12583 case 0x6f: /* FNEG */
12584 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12585 break;
12586 case 0x7d: /* FRSQRTE */
12587 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12588 break;
12589 case 0x7f: /* FSQRT */
12590 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12591 break;
12592 default:
12593 g_assert_not_reached();
12594 }
12595
12596 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12597
12598 tcg_temp_free_i32(tcg_res);
12599 tcg_temp_free_i32(tcg_op);
12600 }
12601
12602 clear_vec_high(s, is_q, rd);
12603 }
12604
12605 if (tcg_rmode) {
12606 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12607 tcg_temp_free_i32(tcg_rmode);
12608 }
12609
12610 if (tcg_fpstatus) {
12611 tcg_temp_free_ptr(tcg_fpstatus);
12612 }
12613 }
12614
12615 /* AdvSIMD scalar x indexed element
12616 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12617 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12618 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12619 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12620 * AdvSIMD vector x indexed element
12621 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12622 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12623 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12624 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12625 */
12626 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12627 {
12628 /* This encoding has two kinds of instruction:
12629 * normal, where we perform elt x idxelt => elt for each
12630 * element in the vector
12631 * long, where we perform elt x idxelt and generate a result of
12632 * double the width of the input element
12633 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12634 */
12635 bool is_scalar = extract32(insn, 28, 1);
12636 bool is_q = extract32(insn, 30, 1);
12637 bool u = extract32(insn, 29, 1);
12638 int size = extract32(insn, 22, 2);
12639 int l = extract32(insn, 21, 1);
12640 int m = extract32(insn, 20, 1);
12641 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12642 int rm = extract32(insn, 16, 4);
12643 int opcode = extract32(insn, 12, 4);
12644 int h = extract32(insn, 11, 1);
12645 int rn = extract32(insn, 5, 5);
12646 int rd = extract32(insn, 0, 5);
12647 bool is_long = false;
12648 int is_fp = 0;
12649 bool is_fp16 = false;
12650 int index;
12651 TCGv_ptr fpst;
12652
12653 switch (16 * u + opcode) {
12654 case 0x08: /* MUL */
12655 case 0x10: /* MLA */
12656 case 0x14: /* MLS */
12657 if (is_scalar) {
12658 unallocated_encoding(s);
12659 return;
12660 }
12661 break;
12662 case 0x02: /* SMLAL, SMLAL2 */
12663 case 0x12: /* UMLAL, UMLAL2 */
12664 case 0x06: /* SMLSL, SMLSL2 */
12665 case 0x16: /* UMLSL, UMLSL2 */
12666 case 0x0a: /* SMULL, SMULL2 */
12667 case 0x1a: /* UMULL, UMULL2 */
12668 if (is_scalar) {
12669 unallocated_encoding(s);
12670 return;
12671 }
12672 is_long = true;
12673 break;
12674 case 0x03: /* SQDMLAL, SQDMLAL2 */
12675 case 0x07: /* SQDMLSL, SQDMLSL2 */
12676 case 0x0b: /* SQDMULL, SQDMULL2 */
12677 is_long = true;
12678 break;
12679 case 0x0c: /* SQDMULH */
12680 case 0x0d: /* SQRDMULH */
12681 break;
12682 case 0x01: /* FMLA */
12683 case 0x05: /* FMLS */
12684 case 0x09: /* FMUL */
12685 case 0x19: /* FMULX */
12686 is_fp = 1;
12687 break;
12688 case 0x1d: /* SQRDMLAH */
12689 case 0x1f: /* SQRDMLSH */
12690 if (!dc_isar_feature(aa64_rdm, s)) {
12691 unallocated_encoding(s);
12692 return;
12693 }
12694 break;
12695 case 0x0e: /* SDOT */
12696 case 0x1e: /* UDOT */
12697 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12698 unallocated_encoding(s);
12699 return;
12700 }
12701 break;
12702 case 0x11: /* FCMLA #0 */
12703 case 0x13: /* FCMLA #90 */
12704 case 0x15: /* FCMLA #180 */
12705 case 0x17: /* FCMLA #270 */
12706 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12707 unallocated_encoding(s);
12708 return;
12709 }
12710 is_fp = 2;
12711 break;
12712 default:
12713 unallocated_encoding(s);
12714 return;
12715 }
12716
12717 switch (is_fp) {
12718 case 1: /* normal fp */
12719 /* convert insn encoded size to TCGMemOp size */
12720 switch (size) {
12721 case 0: /* half-precision */
12722 size = MO_16;
12723 is_fp16 = true;
12724 break;
12725 case MO_32: /* single precision */
12726 case MO_64: /* double precision */
12727 break;
12728 default:
12729 unallocated_encoding(s);
12730 return;
12731 }
12732 break;
12733
12734 case 2: /* complex fp */
12735 /* Each indexable element is a complex pair. */
12736 size += 1;
12737 switch (size) {
12738 case MO_32:
12739 if (h && !is_q) {
12740 unallocated_encoding(s);
12741 return;
12742 }
12743 is_fp16 = true;
12744 break;
12745 case MO_64:
12746 break;
12747 default:
12748 unallocated_encoding(s);
12749 return;
12750 }
12751 break;
12752
12753 default: /* integer */
12754 switch (size) {
12755 case MO_8:
12756 case MO_64:
12757 unallocated_encoding(s);
12758 return;
12759 }
12760 break;
12761 }
12762 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12763 unallocated_encoding(s);
12764 return;
12765 }
12766
12767 /* Given TCGMemOp size, adjust register and indexing. */
12768 switch (size) {
12769 case MO_16:
12770 index = h << 2 | l << 1 | m;
12771 break;
12772 case MO_32:
12773 index = h << 1 | l;
12774 rm |= m << 4;
12775 break;
12776 case MO_64:
12777 if (l || !is_q) {
12778 unallocated_encoding(s);
12779 return;
12780 }
12781 index = h;
12782 rm |= m << 4;
12783 break;
12784 default:
12785 g_assert_not_reached();
12786 }
12787
12788 if (!fp_access_check(s)) {
12789 return;
12790 }
12791
12792 if (is_fp) {
12793 fpst = get_fpstatus_ptr(is_fp16);
12794 } else {
12795 fpst = NULL;
12796 }
12797
12798 switch (16 * u + opcode) {
12799 case 0x0e: /* SDOT */
12800 case 0x1e: /* UDOT */
12801 gen_gvec_op3_ool(s, is_q, rd, rn, rm, index,
12802 u ? gen_helper_gvec_udot_idx_b
12803 : gen_helper_gvec_sdot_idx_b);
12804 return;
12805 case 0x11: /* FCMLA #0 */
12806 case 0x13: /* FCMLA #90 */
12807 case 0x15: /* FCMLA #180 */
12808 case 0x17: /* FCMLA #270 */
12809 {
12810 int rot = extract32(insn, 13, 2);
12811 int data = (index << 2) | rot;
12812 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12813 vec_full_reg_offset(s, rn),
12814 vec_full_reg_offset(s, rm), fpst,
12815 is_q ? 16 : 8, vec_full_reg_size(s), data,
12816 size == MO_64
12817 ? gen_helper_gvec_fcmlas_idx
12818 : gen_helper_gvec_fcmlah_idx);
12819 tcg_temp_free_ptr(fpst);
12820 }
12821 return;
12822 }
12823
12824 if (size == 3) {
12825 TCGv_i64 tcg_idx = tcg_temp_new_i64();
12826 int pass;
12827
12828 assert(is_fp && is_q && !is_long);
12829
12830 read_vec_element(s, tcg_idx, rm, index, MO_64);
12831
12832 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12833 TCGv_i64 tcg_op = tcg_temp_new_i64();
12834 TCGv_i64 tcg_res = tcg_temp_new_i64();
12835
12836 read_vec_element(s, tcg_op, rn, pass, MO_64);
12837
12838 switch (16 * u + opcode) {
12839 case 0x05: /* FMLS */
12840 /* As usual for ARM, separate negation for fused multiply-add */
12841 gen_helper_vfp_negd(tcg_op, tcg_op);
12842 /* fall through */
12843 case 0x01: /* FMLA */
12844 read_vec_element(s, tcg_res, rd, pass, MO_64);
12845 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
12846 break;
12847 case 0x09: /* FMUL */
12848 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
12849 break;
12850 case 0x19: /* FMULX */
12851 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
12852 break;
12853 default:
12854 g_assert_not_reached();
12855 }
12856
12857 write_vec_element(s, tcg_res, rd, pass, MO_64);
12858 tcg_temp_free_i64(tcg_op);
12859 tcg_temp_free_i64(tcg_res);
12860 }
12861
12862 tcg_temp_free_i64(tcg_idx);
12863 clear_vec_high(s, !is_scalar, rd);
12864 } else if (!is_long) {
12865 /* 32 bit floating point, or 16 or 32 bit integer.
12866 * For the 16 bit scalar case we use the usual Neon helpers and
12867 * rely on the fact that 0 op 0 == 0 with no side effects.
12868 */
12869 TCGv_i32 tcg_idx = tcg_temp_new_i32();
12870 int pass, maxpasses;
12871
12872 if (is_scalar) {
12873 maxpasses = 1;
12874 } else {
12875 maxpasses = is_q ? 4 : 2;
12876 }
12877
12878 read_vec_element_i32(s, tcg_idx, rm, index, size);
12879
12880 if (size == 1 && !is_scalar) {
12881 /* The simplest way to handle the 16x16 indexed ops is to duplicate
12882 * the index into both halves of the 32 bit tcg_idx and then use
12883 * the usual Neon helpers.
12884 */
12885 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12886 }
12887
12888 for (pass = 0; pass < maxpasses; pass++) {
12889 TCGv_i32 tcg_op = tcg_temp_new_i32();
12890 TCGv_i32 tcg_res = tcg_temp_new_i32();
12891
12892 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12893
12894 switch (16 * u + opcode) {
12895 case 0x08: /* MUL */
12896 case 0x10: /* MLA */
12897 case 0x14: /* MLS */
12898 {
12899 static NeonGenTwoOpFn * const fns[2][2] = {
12900 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12901 { tcg_gen_add_i32, tcg_gen_sub_i32 },
12902 };
12903 NeonGenTwoOpFn *genfn;
12904 bool is_sub = opcode == 0x4;
12905
12906 if (size == 1) {
12907 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12908 } else {
12909 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12910 }
12911 if (opcode == 0x8) {
12912 break;
12913 }
12914 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12915 genfn = fns[size - 1][is_sub];
12916 genfn(tcg_res, tcg_op, tcg_res);
12917 break;
12918 }
12919 case 0x05: /* FMLS */
12920 case 0x01: /* FMLA */
12921 read_vec_element_i32(s, tcg_res, rd, pass,
12922 is_scalar ? size : MO_32);
12923 switch (size) {
12924 case 1:
12925 if (opcode == 0x5) {
12926 /* As usual for ARM, separate negation for fused
12927 * multiply-add */
12928 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
12929 }
12930 if (is_scalar) {
12931 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
12932 tcg_res, fpst);
12933 } else {
12934 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
12935 tcg_res, fpst);
12936 }
12937 break;
12938 case 2:
12939 if (opcode == 0x5) {
12940 /* As usual for ARM, separate negation for
12941 * fused multiply-add */
12942 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
12943 }
12944 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
12945 tcg_res, fpst);
12946 break;
12947 default:
12948 g_assert_not_reached();
12949 }
12950 break;
12951 case 0x09: /* FMUL */
12952 switch (size) {
12953 case 1:
12954 if (is_scalar) {
12955 gen_helper_advsimd_mulh(tcg_res, tcg_op,
12956 tcg_idx, fpst);
12957 } else {
12958 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
12959 tcg_idx, fpst);
12960 }
12961 break;
12962 case 2:
12963 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
12964 break;
12965 default:
12966 g_assert_not_reached();
12967 }
12968 break;
12969 case 0x19: /* FMULX */
12970 switch (size) {
12971 case 1:
12972 if (is_scalar) {
12973 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
12974 tcg_idx, fpst);
12975 } else {
12976 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
12977 tcg_idx, fpst);
12978 }
12979 break;
12980 case 2:
12981 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
12982 break;
12983 default:
12984 g_assert_not_reached();
12985 }
12986 break;
12987 case 0x0c: /* SQDMULH */
12988 if (size == 1) {
12989 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
12990 tcg_op, tcg_idx);
12991 } else {
12992 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
12993 tcg_op, tcg_idx);
12994 }
12995 break;
12996 case 0x0d: /* SQRDMULH */
12997 if (size == 1) {
12998 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
12999 tcg_op, tcg_idx);
13000 } else {
13001 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13002 tcg_op, tcg_idx);
13003 }
13004 break;
13005 case 0x1d: /* SQRDMLAH */
13006 read_vec_element_i32(s, tcg_res, rd, pass,
13007 is_scalar ? size : MO_32);
13008 if (size == 1) {
13009 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13010 tcg_op, tcg_idx, tcg_res);
13011 } else {
13012 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13013 tcg_op, tcg_idx, tcg_res);
13014 }
13015 break;
13016 case 0x1f: /* SQRDMLSH */
13017 read_vec_element_i32(s, tcg_res, rd, pass,
13018 is_scalar ? size : MO_32);
13019 if (size == 1) {
13020 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13021 tcg_op, tcg_idx, tcg_res);
13022 } else {
13023 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13024 tcg_op, tcg_idx, tcg_res);
13025 }
13026 break;
13027 default:
13028 g_assert_not_reached();
13029 }
13030
13031 if (is_scalar) {
13032 write_fp_sreg(s, rd, tcg_res);
13033 } else {
13034 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13035 }
13036
13037 tcg_temp_free_i32(tcg_op);
13038 tcg_temp_free_i32(tcg_res);
13039 }
13040
13041 tcg_temp_free_i32(tcg_idx);
13042 clear_vec_high(s, is_q, rd);
13043 } else {
13044 /* long ops: 16x16->32 or 32x32->64 */
13045 TCGv_i64 tcg_res[2];
13046 int pass;
13047 bool satop = extract32(opcode, 0, 1);
13048 TCGMemOp memop = MO_32;
13049
13050 if (satop || !u) {
13051 memop |= MO_SIGN;
13052 }
13053
13054 if (size == 2) {
13055 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13056
13057 read_vec_element(s, tcg_idx, rm, index, memop);
13058
13059 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13060 TCGv_i64 tcg_op = tcg_temp_new_i64();
13061 TCGv_i64 tcg_passres;
13062 int passelt;
13063
13064 if (is_scalar) {
13065 passelt = 0;
13066 } else {
13067 passelt = pass + (is_q * 2);
13068 }
13069
13070 read_vec_element(s, tcg_op, rn, passelt, memop);
13071
13072 tcg_res[pass] = tcg_temp_new_i64();
13073
13074 if (opcode == 0xa || opcode == 0xb) {
13075 /* Non-accumulating ops */
13076 tcg_passres = tcg_res[pass];
13077 } else {
13078 tcg_passres = tcg_temp_new_i64();
13079 }
13080
13081 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13082 tcg_temp_free_i64(tcg_op);
13083
13084 if (satop) {
13085 /* saturating, doubling */
13086 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13087 tcg_passres, tcg_passres);
13088 }
13089
13090 if (opcode == 0xa || opcode == 0xb) {
13091 continue;
13092 }
13093
13094 /* Accumulating op: handle accumulate step */
13095 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13096
13097 switch (opcode) {
13098 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13099 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13100 break;
13101 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13102 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13103 break;
13104 case 0x7: /* SQDMLSL, SQDMLSL2 */
13105 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13106 /* fall through */
13107 case 0x3: /* SQDMLAL, SQDMLAL2 */
13108 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13109 tcg_res[pass],
13110 tcg_passres);
13111 break;
13112 default:
13113 g_assert_not_reached();
13114 }
13115 tcg_temp_free_i64(tcg_passres);
13116 }
13117 tcg_temp_free_i64(tcg_idx);
13118
13119 clear_vec_high(s, !is_scalar, rd);
13120 } else {
13121 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13122
13123 assert(size == 1);
13124 read_vec_element_i32(s, tcg_idx, rm, index, size);
13125
13126 if (!is_scalar) {
13127 /* The simplest way to handle the 16x16 indexed ops is to
13128 * duplicate the index into both halves of the 32 bit tcg_idx
13129 * and then use the usual Neon helpers.
13130 */
13131 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13132 }
13133
13134 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13135 TCGv_i32 tcg_op = tcg_temp_new_i32();
13136 TCGv_i64 tcg_passres;
13137
13138 if (is_scalar) {
13139 read_vec_element_i32(s, tcg_op, rn, pass, size);
13140 } else {
13141 read_vec_element_i32(s, tcg_op, rn,
13142 pass + (is_q * 2), MO_32);
13143 }
13144
13145 tcg_res[pass] = tcg_temp_new_i64();
13146
13147 if (opcode == 0xa || opcode == 0xb) {
13148 /* Non-accumulating ops */
13149 tcg_passres = tcg_res[pass];
13150 } else {
13151 tcg_passres = tcg_temp_new_i64();
13152 }
13153
13154 if (memop & MO_SIGN) {
13155 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13156 } else {
13157 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13158 }
13159 if (satop) {
13160 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13161 tcg_passres, tcg_passres);
13162 }
13163 tcg_temp_free_i32(tcg_op);
13164
13165 if (opcode == 0xa || opcode == 0xb) {
13166 continue;
13167 }
13168
13169 /* Accumulating op: handle accumulate step */
13170 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13171
13172 switch (opcode) {
13173 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13174 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13175 tcg_passres);
13176 break;
13177 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13178 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13179 tcg_passres);
13180 break;
13181 case 0x7: /* SQDMLSL, SQDMLSL2 */
13182 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13183 /* fall through */
13184 case 0x3: /* SQDMLAL, SQDMLAL2 */
13185 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13186 tcg_res[pass],
13187 tcg_passres);
13188 break;
13189 default:
13190 g_assert_not_reached();
13191 }
13192 tcg_temp_free_i64(tcg_passres);
13193 }
13194 tcg_temp_free_i32(tcg_idx);
13195
13196 if (is_scalar) {
13197 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13198 }
13199 }
13200
13201 if (is_scalar) {
13202 tcg_res[1] = tcg_const_i64(0);
13203 }
13204
13205 for (pass = 0; pass < 2; pass++) {
13206 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13207 tcg_temp_free_i64(tcg_res[pass]);
13208 }
13209 }
13210
13211 if (fpst) {
13212 tcg_temp_free_ptr(fpst);
13213 }
13214 }
13215
13216 /* Crypto AES
13217 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13218 * +-----------------+------+-----------+--------+-----+------+------+
13219 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13220 * +-----------------+------+-----------+--------+-----+------+------+
13221 */
13222 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13223 {
13224 int size = extract32(insn, 22, 2);
13225 int opcode = extract32(insn, 12, 5);
13226 int rn = extract32(insn, 5, 5);
13227 int rd = extract32(insn, 0, 5);
13228 int decrypt;
13229 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13230 TCGv_i32 tcg_decrypt;
13231 CryptoThreeOpIntFn *genfn;
13232
13233 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13234 unallocated_encoding(s);
13235 return;
13236 }
13237
13238 switch (opcode) {
13239 case 0x4: /* AESE */
13240 decrypt = 0;
13241 genfn = gen_helper_crypto_aese;
13242 break;
13243 case 0x6: /* AESMC */
13244 decrypt = 0;
13245 genfn = gen_helper_crypto_aesmc;
13246 break;
13247 case 0x5: /* AESD */
13248 decrypt = 1;
13249 genfn = gen_helper_crypto_aese;
13250 break;
13251 case 0x7: /* AESIMC */
13252 decrypt = 1;
13253 genfn = gen_helper_crypto_aesmc;
13254 break;
13255 default:
13256 unallocated_encoding(s);
13257 return;
13258 }
13259
13260 if (!fp_access_check(s)) {
13261 return;
13262 }
13263
13264 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13265 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13266 tcg_decrypt = tcg_const_i32(decrypt);
13267
13268 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_decrypt);
13269
13270 tcg_temp_free_ptr(tcg_rd_ptr);
13271 tcg_temp_free_ptr(tcg_rn_ptr);
13272 tcg_temp_free_i32(tcg_decrypt);
13273 }
13274
13275 /* Crypto three-reg SHA
13276 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
13277 * +-----------------+------+---+------+---+--------+-----+------+------+
13278 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
13279 * +-----------------+------+---+------+---+--------+-----+------+------+
13280 */
13281 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13282 {
13283 int size = extract32(insn, 22, 2);
13284 int opcode = extract32(insn, 12, 3);
13285 int rm = extract32(insn, 16, 5);
13286 int rn = extract32(insn, 5, 5);
13287 int rd = extract32(insn, 0, 5);
13288 CryptoThreeOpFn *genfn;
13289 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13290 bool feature;
13291
13292 if (size != 0) {
13293 unallocated_encoding(s);
13294 return;
13295 }
13296
13297 switch (opcode) {
13298 case 0: /* SHA1C */
13299 case 1: /* SHA1P */
13300 case 2: /* SHA1M */
13301 case 3: /* SHA1SU0 */
13302 genfn = NULL;
13303 feature = dc_isar_feature(aa64_sha1, s);
13304 break;
13305 case 4: /* SHA256H */
13306 genfn = gen_helper_crypto_sha256h;
13307 feature = dc_isar_feature(aa64_sha256, s);
13308 break;
13309 case 5: /* SHA256H2 */
13310 genfn = gen_helper_crypto_sha256h2;
13311 feature = dc_isar_feature(aa64_sha256, s);
13312 break;
13313 case 6: /* SHA256SU1 */
13314 genfn = gen_helper_crypto_sha256su1;
13315 feature = dc_isar_feature(aa64_sha256, s);
13316 break;
13317 default:
13318 unallocated_encoding(s);
13319 return;
13320 }
13321
13322 if (!feature) {
13323 unallocated_encoding(s);
13324 return;
13325 }
13326
13327 if (!fp_access_check(s)) {
13328 return;
13329 }
13330
13331 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13332 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13333 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13334
13335 if (genfn) {
13336 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13337 } else {
13338 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
13339
13340 gen_helper_crypto_sha1_3reg(tcg_rd_ptr, tcg_rn_ptr,
13341 tcg_rm_ptr, tcg_opcode);
13342 tcg_temp_free_i32(tcg_opcode);
13343 }
13344
13345 tcg_temp_free_ptr(tcg_rd_ptr);
13346 tcg_temp_free_ptr(tcg_rn_ptr);
13347 tcg_temp_free_ptr(tcg_rm_ptr);
13348 }
13349
13350 /* Crypto two-reg SHA
13351 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13352 * +-----------------+------+-----------+--------+-----+------+------+
13353 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13354 * +-----------------+------+-----------+--------+-----+------+------+
13355 */
13356 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13357 {
13358 int size = extract32(insn, 22, 2);
13359 int opcode = extract32(insn, 12, 5);
13360 int rn = extract32(insn, 5, 5);
13361 int rd = extract32(insn, 0, 5);
13362 CryptoTwoOpFn *genfn;
13363 bool feature;
13364 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13365
13366 if (size != 0) {
13367 unallocated_encoding(s);
13368 return;
13369 }
13370
13371 switch (opcode) {
13372 case 0: /* SHA1H */
13373 feature = dc_isar_feature(aa64_sha1, s);
13374 genfn = gen_helper_crypto_sha1h;
13375 break;
13376 case 1: /* SHA1SU1 */
13377 feature = dc_isar_feature(aa64_sha1, s);
13378 genfn = gen_helper_crypto_sha1su1;
13379 break;
13380 case 2: /* SHA256SU0 */
13381 feature = dc_isar_feature(aa64_sha256, s);
13382 genfn = gen_helper_crypto_sha256su0;
13383 break;
13384 default:
13385 unallocated_encoding(s);
13386 return;
13387 }
13388
13389 if (!feature) {
13390 unallocated_encoding(s);
13391 return;
13392 }
13393
13394 if (!fp_access_check(s)) {
13395 return;
13396 }
13397
13398 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13399 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13400
13401 genfn(tcg_rd_ptr, tcg_rn_ptr);
13402
13403 tcg_temp_free_ptr(tcg_rd_ptr);
13404 tcg_temp_free_ptr(tcg_rn_ptr);
13405 }
13406
13407 /* Crypto three-reg SHA512
13408 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13409 * +-----------------------+------+---+---+-----+--------+------+------+
13410 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
13411 * +-----------------------+------+---+---+-----+--------+------+------+
13412 */
13413 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13414 {
13415 int opcode = extract32(insn, 10, 2);
13416 int o = extract32(insn, 14, 1);
13417 int rm = extract32(insn, 16, 5);
13418 int rn = extract32(insn, 5, 5);
13419 int rd = extract32(insn, 0, 5);
13420 bool feature;
13421 CryptoThreeOpFn *genfn;
13422
13423 if (o == 0) {
13424 switch (opcode) {
13425 case 0: /* SHA512H */
13426 feature = dc_isar_feature(aa64_sha512, s);
13427 genfn = gen_helper_crypto_sha512h;
13428 break;
13429 case 1: /* SHA512H2 */
13430 feature = dc_isar_feature(aa64_sha512, s);
13431 genfn = gen_helper_crypto_sha512h2;
13432 break;
13433 case 2: /* SHA512SU1 */
13434 feature = dc_isar_feature(aa64_sha512, s);
13435 genfn = gen_helper_crypto_sha512su1;
13436 break;
13437 case 3: /* RAX1 */
13438 feature = dc_isar_feature(aa64_sha3, s);
13439 genfn = NULL;
13440 break;
13441 }
13442 } else {
13443 switch (opcode) {
13444 case 0: /* SM3PARTW1 */
13445 feature = dc_isar_feature(aa64_sm3, s);
13446 genfn = gen_helper_crypto_sm3partw1;
13447 break;
13448 case 1: /* SM3PARTW2 */
13449 feature = dc_isar_feature(aa64_sm3, s);
13450 genfn = gen_helper_crypto_sm3partw2;
13451 break;
13452 case 2: /* SM4EKEY */
13453 feature = dc_isar_feature(aa64_sm4, s);
13454 genfn = gen_helper_crypto_sm4ekey;
13455 break;
13456 default:
13457 unallocated_encoding(s);
13458 return;
13459 }
13460 }
13461
13462 if (!feature) {
13463 unallocated_encoding(s);
13464 return;
13465 }
13466
13467 if (!fp_access_check(s)) {
13468 return;
13469 }
13470
13471 if (genfn) {
13472 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13473
13474 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13475 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13476 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13477
13478 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13479
13480 tcg_temp_free_ptr(tcg_rd_ptr);
13481 tcg_temp_free_ptr(tcg_rn_ptr);
13482 tcg_temp_free_ptr(tcg_rm_ptr);
13483 } else {
13484 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13485 int pass;
13486
13487 tcg_op1 = tcg_temp_new_i64();
13488 tcg_op2 = tcg_temp_new_i64();
13489 tcg_res[0] = tcg_temp_new_i64();
13490 tcg_res[1] = tcg_temp_new_i64();
13491
13492 for (pass = 0; pass < 2; pass++) {
13493 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13494 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13495
13496 tcg_gen_rotli_i64(tcg_res[pass], tcg_op2, 1);
13497 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13498 }
13499 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13500 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13501
13502 tcg_temp_free_i64(tcg_op1);
13503 tcg_temp_free_i64(tcg_op2);
13504 tcg_temp_free_i64(tcg_res[0]);
13505 tcg_temp_free_i64(tcg_res[1]);
13506 }
13507 }
13508
13509 /* Crypto two-reg SHA512
13510 * 31 12 11 10 9 5 4 0
13511 * +-----------------------------------------+--------+------+------+
13512 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
13513 * +-----------------------------------------+--------+------+------+
13514 */
13515 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13516 {
13517 int opcode = extract32(insn, 10, 2);
13518 int rn = extract32(insn, 5, 5);
13519 int rd = extract32(insn, 0, 5);
13520 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13521 bool feature;
13522 CryptoTwoOpFn *genfn;
13523
13524 switch (opcode) {
13525 case 0: /* SHA512SU0 */
13526 feature = dc_isar_feature(aa64_sha512, s);
13527 genfn = gen_helper_crypto_sha512su0;
13528 break;
13529 case 1: /* SM4E */
13530 feature = dc_isar_feature(aa64_sm4, s);
13531 genfn = gen_helper_crypto_sm4e;
13532 break;
13533 default:
13534 unallocated_encoding(s);
13535 return;
13536 }
13537
13538 if (!feature) {
13539 unallocated_encoding(s);
13540 return;
13541 }
13542
13543 if (!fp_access_check(s)) {
13544 return;
13545 }
13546
13547 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13548 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13549
13550 genfn(tcg_rd_ptr, tcg_rn_ptr);
13551
13552 tcg_temp_free_ptr(tcg_rd_ptr);
13553 tcg_temp_free_ptr(tcg_rn_ptr);
13554 }
13555
13556 /* Crypto four-register
13557 * 31 23 22 21 20 16 15 14 10 9 5 4 0
13558 * +-------------------+-----+------+---+------+------+------+
13559 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
13560 * +-------------------+-----+------+---+------+------+------+
13561 */
13562 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13563 {
13564 int op0 = extract32(insn, 21, 2);
13565 int rm = extract32(insn, 16, 5);
13566 int ra = extract32(insn, 10, 5);
13567 int rn = extract32(insn, 5, 5);
13568 int rd = extract32(insn, 0, 5);
13569 bool feature;
13570
13571 switch (op0) {
13572 case 0: /* EOR3 */
13573 case 1: /* BCAX */
13574 feature = dc_isar_feature(aa64_sha3, s);
13575 break;
13576 case 2: /* SM3SS1 */
13577 feature = dc_isar_feature(aa64_sm3, s);
13578 break;
13579 default:
13580 unallocated_encoding(s);
13581 return;
13582 }
13583
13584 if (!feature) {
13585 unallocated_encoding(s);
13586 return;
13587 }
13588
13589 if (!fp_access_check(s)) {
13590 return;
13591 }
13592
13593 if (op0 < 2) {
13594 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13595 int pass;
13596
13597 tcg_op1 = tcg_temp_new_i64();
13598 tcg_op2 = tcg_temp_new_i64();
13599 tcg_op3 = tcg_temp_new_i64();
13600 tcg_res[0] = tcg_temp_new_i64();
13601 tcg_res[1] = tcg_temp_new_i64();
13602
13603 for (pass = 0; pass < 2; pass++) {
13604 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13605 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13606 read_vec_element(s, tcg_op3, ra, pass, MO_64);
13607
13608 if (op0 == 0) {
13609 /* EOR3 */
13610 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13611 } else {
13612 /* BCAX */
13613 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13614 }
13615 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13616 }
13617 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13618 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13619
13620 tcg_temp_free_i64(tcg_op1);
13621 tcg_temp_free_i64(tcg_op2);
13622 tcg_temp_free_i64(tcg_op3);
13623 tcg_temp_free_i64(tcg_res[0]);
13624 tcg_temp_free_i64(tcg_res[1]);
13625 } else {
13626 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13627
13628 tcg_op1 = tcg_temp_new_i32();
13629 tcg_op2 = tcg_temp_new_i32();
13630 tcg_op3 = tcg_temp_new_i32();
13631 tcg_res = tcg_temp_new_i32();
13632 tcg_zero = tcg_const_i32(0);
13633
13634 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13635 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13636 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13637
13638 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13639 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13640 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13641 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13642
13643 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13644 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13645 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13646 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13647
13648 tcg_temp_free_i32(tcg_op1);
13649 tcg_temp_free_i32(tcg_op2);
13650 tcg_temp_free_i32(tcg_op3);
13651 tcg_temp_free_i32(tcg_res);
13652 tcg_temp_free_i32(tcg_zero);
13653 }
13654 }
13655
13656 /* Crypto XAR
13657 * 31 21 20 16 15 10 9 5 4 0
13658 * +-----------------------+------+--------+------+------+
13659 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
13660 * +-----------------------+------+--------+------+------+
13661 */
13662 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13663 {
13664 int rm = extract32(insn, 16, 5);
13665 int imm6 = extract32(insn, 10, 6);
13666 int rn = extract32(insn, 5, 5);
13667 int rd = extract32(insn, 0, 5);
13668 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13669 int pass;
13670
13671 if (!dc_isar_feature(aa64_sha3, s)) {
13672 unallocated_encoding(s);
13673 return;
13674 }
13675
13676 if (!fp_access_check(s)) {
13677 return;
13678 }
13679
13680 tcg_op1 = tcg_temp_new_i64();
13681 tcg_op2 = tcg_temp_new_i64();
13682 tcg_res[0] = tcg_temp_new_i64();
13683 tcg_res[1] = tcg_temp_new_i64();
13684
13685 for (pass = 0; pass < 2; pass++) {
13686 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13687 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13688
13689 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
13690 tcg_gen_rotri_i64(tcg_res[pass], tcg_res[pass], imm6);
13691 }
13692 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13693 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13694
13695 tcg_temp_free_i64(tcg_op1);
13696 tcg_temp_free_i64(tcg_op2);
13697 tcg_temp_free_i64(tcg_res[0]);
13698 tcg_temp_free_i64(tcg_res[1]);
13699 }
13700
13701 /* Crypto three-reg imm2
13702 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13703 * +-----------------------+------+-----+------+--------+------+------+
13704 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
13705 * +-----------------------+------+-----+------+--------+------+------+
13706 */
13707 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13708 {
13709 int opcode = extract32(insn, 10, 2);
13710 int imm2 = extract32(insn, 12, 2);
13711 int rm = extract32(insn, 16, 5);
13712 int rn = extract32(insn, 5, 5);
13713 int rd = extract32(insn, 0, 5);
13714 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13715 TCGv_i32 tcg_imm2, tcg_opcode;
13716
13717 if (!dc_isar_feature(aa64_sm3, s)) {
13718 unallocated_encoding(s);
13719 return;
13720 }
13721
13722 if (!fp_access_check(s)) {
13723 return;
13724 }
13725
13726 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13727 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13728 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13729 tcg_imm2 = tcg_const_i32(imm2);
13730 tcg_opcode = tcg_const_i32(opcode);
13731
13732 gen_helper_crypto_sm3tt(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr, tcg_imm2,
13733 tcg_opcode);
13734
13735 tcg_temp_free_ptr(tcg_rd_ptr);
13736 tcg_temp_free_ptr(tcg_rn_ptr);
13737 tcg_temp_free_ptr(tcg_rm_ptr);
13738 tcg_temp_free_i32(tcg_imm2);
13739 tcg_temp_free_i32(tcg_opcode);
13740 }
13741
13742 /* C3.6 Data processing - SIMD, inc Crypto
13743 *
13744 * As the decode gets a little complex we are using a table based
13745 * approach for this part of the decode.
13746 */
13747 static const AArch64DecodeTable data_proc_simd[] = {
13748 /* pattern , mask , fn */
13749 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13750 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13751 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13752 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13753 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13754 { 0x0e000400, 0x9fe08400, disas_simd_copy },
13755 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13756 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13757 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13758 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13759 { 0x0e000000, 0xbf208c00, disas_simd_tb },
13760 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13761 { 0x2e000000, 0xbf208400, disas_simd_ext },
13762 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13763 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13764 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13765 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13766 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13767 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13768 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13769 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13770 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13771 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13772 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13773 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13774 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13775 { 0xce000000, 0xff808000, disas_crypto_four_reg },
13776 { 0xce800000, 0xffe00000, disas_crypto_xar },
13777 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13778 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13779 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13780 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13781 { 0x00000000, 0x00000000, NULL }
13782 };
13783
13784 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13785 {
13786 /* Note that this is called with all non-FP cases from
13787 * table C3-6 so it must UNDEF for entries not specifically
13788 * allocated to instructions in that table.
13789 */
13790 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13791 if (fn) {
13792 fn(s, insn);
13793 } else {
13794 unallocated_encoding(s);
13795 }
13796 }
13797
13798 /* C3.6 Data processing - SIMD and floating point */
13799 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13800 {
13801 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13802 disas_data_proc_fp(s, insn);
13803 } else {
13804 /* SIMD, including crypto */
13805 disas_data_proc_simd(s, insn);
13806 }
13807 }
13808
13809 /**
13810 * is_guarded_page:
13811 * @env: The cpu environment
13812 * @s: The DisasContext
13813 *
13814 * Return true if the page is guarded.
13815 */
13816 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13817 {
13818 #ifdef CONFIG_USER_ONLY
13819 return false; /* FIXME */
13820 #else
13821 uint64_t addr = s->base.pc_first;
13822 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13823 unsigned int index = tlb_index(env, mmu_idx, addr);
13824 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
13825
13826 /*
13827 * We test this immediately after reading an insn, which means
13828 * that any normal page must be in the TLB. The only exception
13829 * would be for executing from flash or device memory, which
13830 * does not retain the TLB entry.
13831 *
13832 * FIXME: Assume false for those, for now. We could use
13833 * arm_cpu_get_phys_page_attrs_debug to re-read the page
13834 * table entry even for that case.
13835 */
13836 return (tlb_hit(entry->addr_code, addr) &&
13837 env->iotlb[mmu_idx][index].attrs.target_tlb_bit0);
13838 #endif
13839 }
13840
13841 /**
13842 * btype_destination_ok:
13843 * @insn: The instruction at the branch destination
13844 * @bt: SCTLR_ELx.BT
13845 * @btype: PSTATE.BTYPE, and is non-zero
13846 *
13847 * On a guarded page, there are a limited number of insns
13848 * that may be present at the branch target:
13849 * - branch target identifiers,
13850 * - paciasp, pacibsp,
13851 * - BRK insn
13852 * - HLT insn
13853 * Anything else causes a Branch Target Exception.
13854 *
13855 * Return true if the branch is compatible, false to raise BTITRAP.
13856 */
13857 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
13858 {
13859 if ((insn & 0xfffff01fu) == 0xd503201fu) {
13860 /* HINT space */
13861 switch (extract32(insn, 5, 7)) {
13862 case 0b011001: /* PACIASP */
13863 case 0b011011: /* PACIBSP */
13864 /*
13865 * If SCTLR_ELx.BT, then PACI*SP are not compatible
13866 * with btype == 3. Otherwise all btype are ok.
13867 */
13868 return !bt || btype != 3;
13869 case 0b100000: /* BTI */
13870 /* Not compatible with any btype. */
13871 return false;
13872 case 0b100010: /* BTI c */
13873 /* Not compatible with btype == 3 */
13874 return btype != 3;
13875 case 0b100100: /* BTI j */
13876 /* Not compatible with btype == 2 */
13877 return btype != 2;
13878 case 0b100110: /* BTI jc */
13879 /* Compatible with any btype. */
13880 return true;
13881 }
13882 } else {
13883 switch (insn & 0xffe0001fu) {
13884 case 0xd4200000u: /* BRK */
13885 case 0xd4400000u: /* HLT */
13886 /* Give priority to the breakpoint exception. */
13887 return true;
13888 }
13889 }
13890 return false;
13891 }
13892
13893 /* C3.1 A64 instruction index by encoding */
13894 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
13895 {
13896 uint32_t insn;
13897
13898 insn = arm_ldl_code(env, s->pc, s->sctlr_b);
13899 s->insn = insn;
13900 s->pc += 4;
13901
13902 s->fp_access_checked = false;
13903
13904 if (dc_isar_feature(aa64_bti, s)) {
13905 if (s->base.num_insns == 1) {
13906 /*
13907 * At the first insn of the TB, compute s->guarded_page.
13908 * We delayed computing this until successfully reading
13909 * the first insn of the TB, above. This (mostly) ensures
13910 * that the softmmu tlb entry has been populated, and the
13911 * page table GP bit is available.
13912 *
13913 * Note that we need to compute this even if btype == 0,
13914 * because this value is used for BR instructions later
13915 * where ENV is not available.
13916 */
13917 s->guarded_page = is_guarded_page(env, s);
13918
13919 /* First insn can have btype set to non-zero. */
13920 tcg_debug_assert(s->btype >= 0);
13921
13922 /*
13923 * Note that the Branch Target Exception has fairly high
13924 * priority -- below debugging exceptions but above most
13925 * everything else. This allows us to handle this now
13926 * instead of waiting until the insn is otherwise decoded.
13927 */
13928 if (s->btype != 0
13929 && s->guarded_page
13930 && !btype_destination_ok(insn, s->bt, s->btype)) {
13931 gen_exception_insn(s, 4, EXCP_UDEF, syn_btitrap(s->btype),
13932 default_exception_el(s));
13933 return;
13934 }
13935 } else {
13936 /* Not the first insn: btype must be 0. */
13937 tcg_debug_assert(s->btype == 0);
13938 }
13939 }
13940
13941 switch (extract32(insn, 25, 4)) {
13942 case 0x0: case 0x1: case 0x3: /* UNALLOCATED */
13943 unallocated_encoding(s);
13944 break;
13945 case 0x2:
13946 if (!dc_isar_feature(aa64_sve, s) || !disas_sve(s, insn)) {
13947 unallocated_encoding(s);
13948 }
13949 break;
13950 case 0x8: case 0x9: /* Data processing - immediate */
13951 disas_data_proc_imm(s, insn);
13952 break;
13953 case 0xa: case 0xb: /* Branch, exception generation and system insns */
13954 disas_b_exc_sys(s, insn);
13955 break;
13956 case 0x4:
13957 case 0x6:
13958 case 0xc:
13959 case 0xe: /* Loads and stores */
13960 disas_ldst(s, insn);
13961 break;
13962 case 0x5:
13963 case 0xd: /* Data processing - register */
13964 disas_data_proc_reg(s, insn);
13965 break;
13966 case 0x7:
13967 case 0xf: /* Data processing - SIMD and floating point */
13968 disas_data_proc_simd_fp(s, insn);
13969 break;
13970 default:
13971 assert(FALSE); /* all 15 cases should be handled above */
13972 break;
13973 }
13974
13975 /* if we allocated any temporaries, free them here */
13976 free_tmp_a64(s);
13977
13978 /*
13979 * After execution of most insns, btype is reset to 0.
13980 * Note that we set btype == -1 when the insn sets btype.
13981 */
13982 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
13983 reset_btype(s);
13984 }
13985 }
13986
13987 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13988 CPUState *cpu)
13989 {
13990 DisasContext *dc = container_of(dcbase, DisasContext, base);
13991 CPUARMState *env = cpu->env_ptr;
13992 ARMCPU *arm_cpu = arm_env_get_cpu(env);
13993 uint32_t tb_flags = dc->base.tb->flags;
13994 int bound, core_mmu_idx;
13995
13996 dc->isar = &arm_cpu->isar;
13997 dc->pc = dc->base.pc_first;
13998 dc->condjmp = 0;
13999
14000 dc->aarch64 = 1;
14001 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
14002 * there is no secure EL1, so we route exceptions to EL3.
14003 */
14004 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
14005 !arm_el_is_aa64(env, 3);
14006 dc->thumb = 0;
14007 dc->sctlr_b = 0;
14008 dc->be_data = FIELD_EX32(tb_flags, TBFLAG_ANY, BE_DATA) ? MO_BE : MO_LE;
14009 dc->condexec_mask = 0;
14010 dc->condexec_cond = 0;
14011 core_mmu_idx = FIELD_EX32(tb_flags, TBFLAG_ANY, MMUIDX);
14012 dc->mmu_idx = core_to_arm_mmu_idx(env, core_mmu_idx);
14013 dc->tbii = FIELD_EX32(tb_flags, TBFLAG_A64, TBII);
14014 dc->tbid = FIELD_EX32(tb_flags, TBFLAG_A64, TBID);
14015 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14016 #if !defined(CONFIG_USER_ONLY)
14017 dc->user = (dc->current_el == 0);
14018 #endif
14019 dc->fp_excp_el = FIELD_EX32(tb_flags, TBFLAG_ANY, FPEXC_EL);
14020 dc->sve_excp_el = FIELD_EX32(tb_flags, TBFLAG_A64, SVEEXC_EL);
14021 dc->sve_len = (FIELD_EX32(tb_flags, TBFLAG_A64, ZCR_LEN) + 1) * 16;
14022 dc->pauth_active = FIELD_EX32(tb_flags, TBFLAG_A64, PAUTH_ACTIVE);
14023 dc->bt = FIELD_EX32(tb_flags, TBFLAG_A64, BT);
14024 dc->btype = FIELD_EX32(tb_flags, TBFLAG_A64, BTYPE);
14025 dc->vec_len = 0;
14026 dc->vec_stride = 0;
14027 dc->cp_regs = arm_cpu->cp_regs;
14028 dc->features = env->features;
14029
14030 /* Single step state. The code-generation logic here is:
14031 * SS_ACTIVE == 0:
14032 * generate code with no special handling for single-stepping (except
14033 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14034 * this happens anyway because those changes are all system register or
14035 * PSTATE writes).
14036 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14037 * emit code for one insn
14038 * emit code to clear PSTATE.SS
14039 * emit code to generate software step exception for completed step
14040 * end TB (as usual for having generated an exception)
14041 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14042 * emit code to generate a software step exception
14043 * end the TB
14044 */
14045 dc->ss_active = FIELD_EX32(tb_flags, TBFLAG_ANY, SS_ACTIVE);
14046 dc->pstate_ss = FIELD_EX32(tb_flags, TBFLAG_ANY, PSTATE_SS);
14047 dc->is_ldex = false;
14048 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
14049
14050 /* Bound the number of insns to execute to those left on the page. */
14051 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14052
14053 /* If architectural single step active, limit to 1. */
14054 if (dc->ss_active) {
14055 bound = 1;
14056 }
14057 dc->base.max_insns = MIN(dc->base.max_insns, bound);
14058
14059 init_tmp_a64_array(dc);
14060 }
14061
14062 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14063 {
14064 }
14065
14066 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14067 {
14068 DisasContext *dc = container_of(dcbase, DisasContext, base);
14069
14070 tcg_gen_insn_start(dc->pc, 0, 0);
14071 dc->insn_start = tcg_last_op();
14072 }
14073
14074 static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
14075 const CPUBreakpoint *bp)
14076 {
14077 DisasContext *dc = container_of(dcbase, DisasContext, base);
14078
14079 if (bp->flags & BP_CPU) {
14080 gen_a64_set_pc_im(dc->pc);
14081 gen_helper_check_breakpoints(cpu_env);
14082 /* End the TB early; it likely won't be executed */
14083 dc->base.is_jmp = DISAS_TOO_MANY;
14084 } else {
14085 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
14086 /* The address covered by the breakpoint must be
14087 included in [tb->pc, tb->pc + tb->size) in order
14088 to for it to be properly cleared -- thus we
14089 increment the PC here so that the logic setting
14090 tb->size below does the right thing. */
14091 dc->pc += 4;
14092 dc->base.is_jmp = DISAS_NORETURN;
14093 }
14094
14095 return true;
14096 }
14097
14098 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14099 {
14100 DisasContext *dc = container_of(dcbase, DisasContext, base);
14101 CPUARMState *env = cpu->env_ptr;
14102
14103 if (dc->ss_active && !dc->pstate_ss) {
14104 /* Singlestep state is Active-pending.
14105 * If we're in this state at the start of a TB then either
14106 * a) we just took an exception to an EL which is being debugged
14107 * and this is the first insn in the exception handler
14108 * b) debug exceptions were masked and we just unmasked them
14109 * without changing EL (eg by clearing PSTATE.D)
14110 * In either case we're going to take a swstep exception in the
14111 * "did not step an insn" case, and so the syndrome ISV and EX
14112 * bits should be zero.
14113 */
14114 assert(dc->base.num_insns == 1);
14115 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
14116 default_exception_el(dc));
14117 dc->base.is_jmp = DISAS_NORETURN;
14118 } else {
14119 disas_a64_insn(env, dc);
14120 }
14121
14122 dc->base.pc_next = dc->pc;
14123 translator_loop_temp_check(&dc->base);
14124 }
14125
14126 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14127 {
14128 DisasContext *dc = container_of(dcbase, DisasContext, base);
14129
14130 if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
14131 /* Note that this means single stepping WFI doesn't halt the CPU.
14132 * For conditional branch insns this is harmless unreachable code as
14133 * gen_goto_tb() has already handled emitting the debug exception
14134 * (and thus a tb-jump is not possible when singlestepping).
14135 */
14136 switch (dc->base.is_jmp) {
14137 default:
14138 gen_a64_set_pc_im(dc->pc);
14139 /* fall through */
14140 case DISAS_EXIT:
14141 case DISAS_JUMP:
14142 if (dc->base.singlestep_enabled) {
14143 gen_exception_internal(EXCP_DEBUG);
14144 } else {
14145 gen_step_complete_exception(dc);
14146 }
14147 break;
14148 case DISAS_NORETURN:
14149 break;
14150 }
14151 } else {
14152 switch (dc->base.is_jmp) {
14153 case DISAS_NEXT:
14154 case DISAS_TOO_MANY:
14155 gen_goto_tb(dc, 1, dc->pc);
14156 break;
14157 default:
14158 case DISAS_UPDATE:
14159 gen_a64_set_pc_im(dc->pc);
14160 /* fall through */
14161 case DISAS_EXIT:
14162 tcg_gen_exit_tb(NULL, 0);
14163 break;
14164 case DISAS_JUMP:
14165 tcg_gen_lookup_and_goto_ptr();
14166 break;
14167 case DISAS_NORETURN:
14168 case DISAS_SWI:
14169 break;
14170 case DISAS_WFE:
14171 gen_a64_set_pc_im(dc->pc);
14172 gen_helper_wfe(cpu_env);
14173 break;
14174 case DISAS_YIELD:
14175 gen_a64_set_pc_im(dc->pc);
14176 gen_helper_yield(cpu_env);
14177 break;
14178 case DISAS_WFI:
14179 {
14180 /* This is a special case because we don't want to just halt the CPU
14181 * if trying to debug across a WFI.
14182 */
14183 TCGv_i32 tmp = tcg_const_i32(4);
14184
14185 gen_a64_set_pc_im(dc->pc);
14186 gen_helper_wfi(cpu_env, tmp);
14187 tcg_temp_free_i32(tmp);
14188 /* The helper doesn't necessarily throw an exception, but we
14189 * must go back to the main loop to check for interrupts anyway.
14190 */
14191 tcg_gen_exit_tb(NULL, 0);
14192 break;
14193 }
14194 }
14195 }
14196
14197 /* Functions above can change dc->pc, so re-align db->pc_next */
14198 dc->base.pc_next = dc->pc;
14199 }
14200
14201 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14202 CPUState *cpu)
14203 {
14204 DisasContext *dc = container_of(dcbase, DisasContext, base);
14205
14206 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
14207 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
14208 }
14209
14210 const TranslatorOps aarch64_translator_ops = {
14211 .init_disas_context = aarch64_tr_init_disas_context,
14212 .tb_start = aarch64_tr_tb_start,
14213 .insn_start = aarch64_tr_insn_start,
14214 .breakpoint_check = aarch64_tr_breakpoint_check,
14215 .translate_insn = aarch64_tr_translate_insn,
14216 .tb_stop = aarch64_tr_tb_stop,
14217 .disas_log = aarch64_tr_disas_log,
14218 };