]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/translate-a64.c
target/arm: Implement ARMv8.0-SB
[mirror_qemu.git] / target / arm / translate-a64.c
1 /*
2 * AArch64 translation
3 *
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg-op.h"
24 #include "tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
30
31 #include "exec/semihost.h"
32 #include "exec/gen-icount.h"
33
34 #include "exec/helper-proto.h"
35 #include "exec/helper-gen.h"
36 #include "exec/log.h"
37
38 #include "trace-tcg.h"
39 #include "translate-a64.h"
40 #include "qemu/atomic128.h"
41
42 static TCGv_i64 cpu_X[32];
43 static TCGv_i64 cpu_pc;
44
45 /* Load/store exclusive handling */
46 static TCGv_i64 cpu_exclusive_high;
47
48 static const char *regnames[] = {
49 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
50 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
51 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
52 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
53 };
54
55 enum a64_shift_type {
56 A64_SHIFT_TYPE_LSL = 0,
57 A64_SHIFT_TYPE_LSR = 1,
58 A64_SHIFT_TYPE_ASR = 2,
59 A64_SHIFT_TYPE_ROR = 3
60 };
61
62 /* Table based decoder typedefs - used when the relevant bits for decode
63 * are too awkwardly scattered across the instruction (eg SIMD).
64 */
65 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
66
67 typedef struct AArch64DecodeTable {
68 uint32_t pattern;
69 uint32_t mask;
70 AArch64DecodeFn *disas_fn;
71 } AArch64DecodeTable;
72
73 /* Function prototype for gen_ functions for calling Neon helpers */
74 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
75 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
76 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
77 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
78 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
79 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
80 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
81 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
82 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
83 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
84 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
85 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
86 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
87 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
88 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, TCGMemOp);
89
90 /* initialize TCG globals. */
91 void a64_translate_init(void)
92 {
93 int i;
94
95 cpu_pc = tcg_global_mem_new_i64(cpu_env,
96 offsetof(CPUARMState, pc),
97 "pc");
98 for (i = 0; i < 32; i++) {
99 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
100 offsetof(CPUARMState, xregs[i]),
101 regnames[i]);
102 }
103
104 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
105 offsetof(CPUARMState, exclusive_high), "exclusive_high");
106 }
107
108 static inline int get_a64_user_mem_index(DisasContext *s)
109 {
110 /* Return the core mmu_idx to use for A64 "unprivileged load/store" insns:
111 * if EL1, access as if EL0; otherwise access at current EL
112 */
113 ARMMMUIdx useridx;
114
115 switch (s->mmu_idx) {
116 case ARMMMUIdx_S12NSE1:
117 useridx = ARMMMUIdx_S12NSE0;
118 break;
119 case ARMMMUIdx_S1SE1:
120 useridx = ARMMMUIdx_S1SE0;
121 break;
122 case ARMMMUIdx_S2NS:
123 g_assert_not_reached();
124 default:
125 useridx = s->mmu_idx;
126 break;
127 }
128 return arm_to_core_mmu_idx(useridx);
129 }
130
131 static void reset_btype(DisasContext *s)
132 {
133 if (s->btype != 0) {
134 TCGv_i32 zero = tcg_const_i32(0);
135 tcg_gen_st_i32(zero, cpu_env, offsetof(CPUARMState, btype));
136 tcg_temp_free_i32(zero);
137 s->btype = 0;
138 }
139 }
140
141 static void set_btype(DisasContext *s, int val)
142 {
143 TCGv_i32 tcg_val;
144
145 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
146 tcg_debug_assert(val >= 1 && val <= 3);
147
148 tcg_val = tcg_const_i32(val);
149 tcg_gen_st_i32(tcg_val, cpu_env, offsetof(CPUARMState, btype));
150 tcg_temp_free_i32(tcg_val);
151 s->btype = -1;
152 }
153
154 void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
155 fprintf_function cpu_fprintf, int flags)
156 {
157 ARMCPU *cpu = ARM_CPU(cs);
158 CPUARMState *env = &cpu->env;
159 uint32_t psr = pstate_read(env);
160 int i;
161 int el = arm_current_el(env);
162 const char *ns_status;
163
164 cpu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
165 for (i = 0; i < 32; i++) {
166 if (i == 31) {
167 cpu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
168 } else {
169 cpu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
170 (i + 2) % 3 ? " " : "\n");
171 }
172 }
173
174 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
175 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
176 } else {
177 ns_status = "";
178 }
179 cpu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
180 psr,
181 psr & PSTATE_N ? 'N' : '-',
182 psr & PSTATE_Z ? 'Z' : '-',
183 psr & PSTATE_C ? 'C' : '-',
184 psr & PSTATE_V ? 'V' : '-',
185 ns_status,
186 el,
187 psr & PSTATE_SP ? 'h' : 't');
188
189 if (cpu_isar_feature(aa64_bti, cpu)) {
190 cpu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
191 }
192 if (!(flags & CPU_DUMP_FPU)) {
193 cpu_fprintf(f, "\n");
194 return;
195 }
196 if (fp_exception_el(env, el) != 0) {
197 cpu_fprintf(f, " FPU disabled\n");
198 return;
199 }
200 cpu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
201 vfp_get_fpcr(env), vfp_get_fpsr(env));
202
203 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
204 int j, zcr_len = sve_zcr_len_for_el(env, el);
205
206 for (i = 0; i <= FFR_PRED_NUM; i++) {
207 bool eol;
208 if (i == FFR_PRED_NUM) {
209 cpu_fprintf(f, "FFR=");
210 /* It's last, so end the line. */
211 eol = true;
212 } else {
213 cpu_fprintf(f, "P%02d=", i);
214 switch (zcr_len) {
215 case 0:
216 eol = i % 8 == 7;
217 break;
218 case 1:
219 eol = i % 6 == 5;
220 break;
221 case 2:
222 case 3:
223 eol = i % 3 == 2;
224 break;
225 default:
226 /* More than one quadword per predicate. */
227 eol = true;
228 break;
229 }
230 }
231 for (j = zcr_len / 4; j >= 0; j--) {
232 int digits;
233 if (j * 4 + 4 <= zcr_len + 1) {
234 digits = 16;
235 } else {
236 digits = (zcr_len % 4 + 1) * 4;
237 }
238 cpu_fprintf(f, "%0*" PRIx64 "%s", digits,
239 env->vfp.pregs[i].p[j],
240 j ? ":" : eol ? "\n" : " ");
241 }
242 }
243
244 for (i = 0; i < 32; i++) {
245 if (zcr_len == 0) {
246 cpu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
247 i, env->vfp.zregs[i].d[1],
248 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
249 } else if (zcr_len == 1) {
250 cpu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
251 ":%016" PRIx64 ":%016" PRIx64 "\n",
252 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
253 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
254 } else {
255 for (j = zcr_len; j >= 0; j--) {
256 bool odd = (zcr_len - j) % 2 != 0;
257 if (j == zcr_len) {
258 cpu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
259 } else if (!odd) {
260 if (j > 0) {
261 cpu_fprintf(f, " [%x-%x]=", j, j - 1);
262 } else {
263 cpu_fprintf(f, " [%x]=", j);
264 }
265 }
266 cpu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
267 env->vfp.zregs[i].d[j * 2 + 1],
268 env->vfp.zregs[i].d[j * 2],
269 odd || j == 0 ? "\n" : ":");
270 }
271 }
272 }
273 } else {
274 for (i = 0; i < 32; i++) {
275 uint64_t *q = aa64_vfp_qreg(env, i);
276 cpu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
277 i, q[1], q[0], (i & 1 ? "\n" : " "));
278 }
279 }
280 }
281
282 void gen_a64_set_pc_im(uint64_t val)
283 {
284 tcg_gen_movi_i64(cpu_pc, val);
285 }
286
287 /*
288 * Handle Top Byte Ignore (TBI) bits.
289 *
290 * If address tagging is enabled via the TCR TBI bits:
291 * + for EL2 and EL3 there is only one TBI bit, and if it is set
292 * then the address is zero-extended, clearing bits [63:56]
293 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
294 * and TBI1 controls addressses with bit 55 == 1.
295 * If the appropriate TBI bit is set for the address then
296 * the address is sign-extended from bit 55 into bits [63:56]
297 *
298 * Here We have concatenated TBI{1,0} into tbi.
299 */
300 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
301 TCGv_i64 src, int tbi)
302 {
303 if (tbi == 0) {
304 /* Load unmodified address */
305 tcg_gen_mov_i64(dst, src);
306 } else if (s->current_el >= 2) {
307 /* FIXME: ARMv8.1-VHE S2 translation regime. */
308 /* Force tag byte to all zero */
309 tcg_gen_extract_i64(dst, src, 0, 56);
310 } else {
311 /* Sign-extend from bit 55. */
312 tcg_gen_sextract_i64(dst, src, 0, 56);
313
314 if (tbi != 3) {
315 TCGv_i64 tcg_zero = tcg_const_i64(0);
316
317 /*
318 * The two TBI bits differ.
319 * If tbi0, then !tbi1: only use the extension if positive.
320 * if !tbi0, then tbi1: only use the extension if negative.
321 */
322 tcg_gen_movcond_i64(tbi == 1 ? TCG_COND_GE : TCG_COND_LT,
323 dst, dst, tcg_zero, dst, src);
324 tcg_temp_free_i64(tcg_zero);
325 }
326 }
327 }
328
329 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
330 {
331 /*
332 * If address tagging is enabled for instructions via the TCR TBI bits,
333 * then loading an address into the PC will clear out any tag.
334 */
335 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
336 }
337
338 /*
339 * Return a "clean" address for ADDR according to TBID.
340 * This is always a fresh temporary, as we need to be able to
341 * increment this independently of a dirty write-back address.
342 */
343 static TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
344 {
345 TCGv_i64 clean = new_tmp_a64(s);
346 gen_top_byte_ignore(s, clean, addr, s->tbid);
347 return clean;
348 }
349
350 typedef struct DisasCompare64 {
351 TCGCond cond;
352 TCGv_i64 value;
353 } DisasCompare64;
354
355 static void a64_test_cc(DisasCompare64 *c64, int cc)
356 {
357 DisasCompare c32;
358
359 arm_test_cc(&c32, cc);
360
361 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
362 * properly. The NE/EQ comparisons are also fine with this choice. */
363 c64->cond = c32.cond;
364 c64->value = tcg_temp_new_i64();
365 tcg_gen_ext_i32_i64(c64->value, c32.value);
366
367 arm_free_cc(&c32);
368 }
369
370 static void a64_free_cc(DisasCompare64 *c64)
371 {
372 tcg_temp_free_i64(c64->value);
373 }
374
375 static void gen_exception_internal(int excp)
376 {
377 TCGv_i32 tcg_excp = tcg_const_i32(excp);
378
379 assert(excp_is_internal(excp));
380 gen_helper_exception_internal(cpu_env, tcg_excp);
381 tcg_temp_free_i32(tcg_excp);
382 }
383
384 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
385 {
386 TCGv_i32 tcg_excp = tcg_const_i32(excp);
387 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
388 TCGv_i32 tcg_el = tcg_const_i32(target_el);
389
390 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
391 tcg_syn, tcg_el);
392 tcg_temp_free_i32(tcg_el);
393 tcg_temp_free_i32(tcg_syn);
394 tcg_temp_free_i32(tcg_excp);
395 }
396
397 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
398 {
399 gen_a64_set_pc_im(s->pc - offset);
400 gen_exception_internal(excp);
401 s->base.is_jmp = DISAS_NORETURN;
402 }
403
404 static void gen_exception_insn(DisasContext *s, int offset, int excp,
405 uint32_t syndrome, uint32_t target_el)
406 {
407 gen_a64_set_pc_im(s->pc - offset);
408 gen_exception(excp, syndrome, target_el);
409 s->base.is_jmp = DISAS_NORETURN;
410 }
411
412 static void gen_exception_bkpt_insn(DisasContext *s, int offset,
413 uint32_t syndrome)
414 {
415 TCGv_i32 tcg_syn;
416
417 gen_a64_set_pc_im(s->pc - offset);
418 tcg_syn = tcg_const_i32(syndrome);
419 gen_helper_exception_bkpt_insn(cpu_env, tcg_syn);
420 tcg_temp_free_i32(tcg_syn);
421 s->base.is_jmp = DISAS_NORETURN;
422 }
423
424 static void gen_ss_advance(DisasContext *s)
425 {
426 /* If the singlestep state is Active-not-pending, advance to
427 * Active-pending.
428 */
429 if (s->ss_active) {
430 s->pstate_ss = 0;
431 gen_helper_clear_pstate_ss(cpu_env);
432 }
433 }
434
435 static void gen_step_complete_exception(DisasContext *s)
436 {
437 /* We just completed step of an insn. Move from Active-not-pending
438 * to Active-pending, and then also take the swstep exception.
439 * This corresponds to making the (IMPDEF) choice to prioritize
440 * swstep exceptions over asynchronous exceptions taken to an exception
441 * level where debug is disabled. This choice has the advantage that
442 * we do not need to maintain internal state corresponding to the
443 * ISV/EX syndrome bits between completion of the step and generation
444 * of the exception, and our syndrome information is always correct.
445 */
446 gen_ss_advance(s);
447 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
448 default_exception_el(s));
449 s->base.is_jmp = DISAS_NORETURN;
450 }
451
452 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
453 {
454 /* No direct tb linking with singlestep (either QEMU's or the ARM
455 * debug architecture kind) or deterministic io
456 */
457 if (s->base.singlestep_enabled || s->ss_active ||
458 (tb_cflags(s->base.tb) & CF_LAST_IO)) {
459 return false;
460 }
461
462 #ifndef CONFIG_USER_ONLY
463 /* Only link tbs from inside the same guest page */
464 if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
465 return false;
466 }
467 #endif
468
469 return true;
470 }
471
472 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
473 {
474 TranslationBlock *tb;
475
476 tb = s->base.tb;
477 if (use_goto_tb(s, n, dest)) {
478 tcg_gen_goto_tb(n);
479 gen_a64_set_pc_im(dest);
480 tcg_gen_exit_tb(tb, n);
481 s->base.is_jmp = DISAS_NORETURN;
482 } else {
483 gen_a64_set_pc_im(dest);
484 if (s->ss_active) {
485 gen_step_complete_exception(s);
486 } else if (s->base.singlestep_enabled) {
487 gen_exception_internal(EXCP_DEBUG);
488 } else {
489 tcg_gen_lookup_and_goto_ptr();
490 s->base.is_jmp = DISAS_NORETURN;
491 }
492 }
493 }
494
495 void unallocated_encoding(DisasContext *s)
496 {
497 /* Unallocated and reserved encodings are uncategorized */
498 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
499 default_exception_el(s));
500 }
501
502 static void init_tmp_a64_array(DisasContext *s)
503 {
504 #ifdef CONFIG_DEBUG_TCG
505 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
506 #endif
507 s->tmp_a64_count = 0;
508 }
509
510 static void free_tmp_a64(DisasContext *s)
511 {
512 int i;
513 for (i = 0; i < s->tmp_a64_count; i++) {
514 tcg_temp_free_i64(s->tmp_a64[i]);
515 }
516 init_tmp_a64_array(s);
517 }
518
519 TCGv_i64 new_tmp_a64(DisasContext *s)
520 {
521 assert(s->tmp_a64_count < TMP_A64_MAX);
522 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
523 }
524
525 TCGv_i64 new_tmp_a64_zero(DisasContext *s)
526 {
527 TCGv_i64 t = new_tmp_a64(s);
528 tcg_gen_movi_i64(t, 0);
529 return t;
530 }
531
532 /*
533 * Register access functions
534 *
535 * These functions are used for directly accessing a register in where
536 * changes to the final register value are likely to be made. If you
537 * need to use a register for temporary calculation (e.g. index type
538 * operations) use the read_* form.
539 *
540 * B1.2.1 Register mappings
541 *
542 * In instruction register encoding 31 can refer to ZR (zero register) or
543 * the SP (stack pointer) depending on context. In QEMU's case we map SP
544 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
545 * This is the point of the _sp forms.
546 */
547 TCGv_i64 cpu_reg(DisasContext *s, int reg)
548 {
549 if (reg == 31) {
550 return new_tmp_a64_zero(s);
551 } else {
552 return cpu_X[reg];
553 }
554 }
555
556 /* register access for when 31 == SP */
557 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
558 {
559 return cpu_X[reg];
560 }
561
562 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
563 * representing the register contents. This TCGv is an auto-freed
564 * temporary so it need not be explicitly freed, and may be modified.
565 */
566 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
567 {
568 TCGv_i64 v = new_tmp_a64(s);
569 if (reg != 31) {
570 if (sf) {
571 tcg_gen_mov_i64(v, cpu_X[reg]);
572 } else {
573 tcg_gen_ext32u_i64(v, cpu_X[reg]);
574 }
575 } else {
576 tcg_gen_movi_i64(v, 0);
577 }
578 return v;
579 }
580
581 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
582 {
583 TCGv_i64 v = new_tmp_a64(s);
584 if (sf) {
585 tcg_gen_mov_i64(v, cpu_X[reg]);
586 } else {
587 tcg_gen_ext32u_i64(v, cpu_X[reg]);
588 }
589 return v;
590 }
591
592 /* Return the offset into CPUARMState of a slice (from
593 * the least significant end) of FP register Qn (ie
594 * Dn, Sn, Hn or Bn).
595 * (Note that this is not the same mapping as for A32; see cpu.h)
596 */
597 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
598 {
599 return vec_reg_offset(s, regno, 0, size);
600 }
601
602 /* Offset of the high half of the 128 bit vector Qn */
603 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
604 {
605 return vec_reg_offset(s, regno, 1, MO_64);
606 }
607
608 /* Convenience accessors for reading and writing single and double
609 * FP registers. Writing clears the upper parts of the associated
610 * 128 bit vector register, as required by the architecture.
611 * Note that unlike the GP register accessors, the values returned
612 * by the read functions must be manually freed.
613 */
614 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
615 {
616 TCGv_i64 v = tcg_temp_new_i64();
617
618 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
619 return v;
620 }
621
622 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
623 {
624 TCGv_i32 v = tcg_temp_new_i32();
625
626 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
627 return v;
628 }
629
630 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
631 {
632 TCGv_i32 v = tcg_temp_new_i32();
633
634 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
635 return v;
636 }
637
638 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
639 * If SVE is not enabled, then there are only 128 bits in the vector.
640 */
641 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
642 {
643 unsigned ofs = fp_reg_offset(s, rd, MO_64);
644 unsigned vsz = vec_full_reg_size(s);
645
646 if (!is_q) {
647 TCGv_i64 tcg_zero = tcg_const_i64(0);
648 tcg_gen_st_i64(tcg_zero, cpu_env, ofs + 8);
649 tcg_temp_free_i64(tcg_zero);
650 }
651 if (vsz > 16) {
652 tcg_gen_gvec_dup8i(ofs + 16, vsz - 16, vsz - 16, 0);
653 }
654 }
655
656 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
657 {
658 unsigned ofs = fp_reg_offset(s, reg, MO_64);
659
660 tcg_gen_st_i64(v, cpu_env, ofs);
661 clear_vec_high(s, false, reg);
662 }
663
664 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
665 {
666 TCGv_i64 tmp = tcg_temp_new_i64();
667
668 tcg_gen_extu_i32_i64(tmp, v);
669 write_fp_dreg(s, reg, tmp);
670 tcg_temp_free_i64(tmp);
671 }
672
673 TCGv_ptr get_fpstatus_ptr(bool is_f16)
674 {
675 TCGv_ptr statusptr = tcg_temp_new_ptr();
676 int offset;
677
678 /* In A64 all instructions (both FP and Neon) use the FPCR; there
679 * is no equivalent of the A32 Neon "standard FPSCR value".
680 * However half-precision operations operate under a different
681 * FZ16 flag and use vfp.fp_status_f16 instead of vfp.fp_status.
682 */
683 if (is_f16) {
684 offset = offsetof(CPUARMState, vfp.fp_status_f16);
685 } else {
686 offset = offsetof(CPUARMState, vfp.fp_status);
687 }
688 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
689 return statusptr;
690 }
691
692 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
693 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
694 GVecGen2Fn *gvec_fn, int vece)
695 {
696 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
697 is_q ? 16 : 8, vec_full_reg_size(s));
698 }
699
700 /* Expand a 2-operand + immediate AdvSIMD vector operation using
701 * an expander function.
702 */
703 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
704 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
705 {
706 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
707 imm, is_q ? 16 : 8, vec_full_reg_size(s));
708 }
709
710 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
711 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
712 GVecGen3Fn *gvec_fn, int vece)
713 {
714 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
715 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
716 }
717
718 /* Expand a 2-operand + immediate AdvSIMD vector operation using
719 * an op descriptor.
720 */
721 static void gen_gvec_op2i(DisasContext *s, bool is_q, int rd,
722 int rn, int64_t imm, const GVecGen2i *gvec_op)
723 {
724 tcg_gen_gvec_2i(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
725 is_q ? 16 : 8, vec_full_reg_size(s), imm, gvec_op);
726 }
727
728 /* Expand a 3-operand AdvSIMD vector operation using an op descriptor. */
729 static void gen_gvec_op3(DisasContext *s, bool is_q, int rd,
730 int rn, int rm, const GVecGen3 *gvec_op)
731 {
732 tcg_gen_gvec_3(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
733 vec_full_reg_offset(s, rm), is_q ? 16 : 8,
734 vec_full_reg_size(s), gvec_op);
735 }
736
737 /* Expand a 3-operand operation using an out-of-line helper. */
738 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
739 int rn, int rm, int data, gen_helper_gvec_3 *fn)
740 {
741 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
742 vec_full_reg_offset(s, rn),
743 vec_full_reg_offset(s, rm),
744 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
745 }
746
747 /* Expand a 3-operand + env pointer operation using
748 * an out-of-line helper.
749 */
750 static void gen_gvec_op3_env(DisasContext *s, bool is_q, int rd,
751 int rn, int rm, gen_helper_gvec_3_ptr *fn)
752 {
753 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
754 vec_full_reg_offset(s, rn),
755 vec_full_reg_offset(s, rm), cpu_env,
756 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
757 }
758
759 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
760 * an out-of-line helper.
761 */
762 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
763 int rm, bool is_fp16, int data,
764 gen_helper_gvec_3_ptr *fn)
765 {
766 TCGv_ptr fpst = get_fpstatus_ptr(is_fp16);
767 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
768 vec_full_reg_offset(s, rn),
769 vec_full_reg_offset(s, rm), fpst,
770 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
771 tcg_temp_free_ptr(fpst);
772 }
773
774 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
775 * than the 32 bit equivalent.
776 */
777 static inline void gen_set_NZ64(TCGv_i64 result)
778 {
779 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
780 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
781 }
782
783 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
784 static inline void gen_logic_CC(int sf, TCGv_i64 result)
785 {
786 if (sf) {
787 gen_set_NZ64(result);
788 } else {
789 tcg_gen_extrl_i64_i32(cpu_ZF, result);
790 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
791 }
792 tcg_gen_movi_i32(cpu_CF, 0);
793 tcg_gen_movi_i32(cpu_VF, 0);
794 }
795
796 /* dest = T0 + T1; compute C, N, V and Z flags */
797 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
798 {
799 if (sf) {
800 TCGv_i64 result, flag, tmp;
801 result = tcg_temp_new_i64();
802 flag = tcg_temp_new_i64();
803 tmp = tcg_temp_new_i64();
804
805 tcg_gen_movi_i64(tmp, 0);
806 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
807
808 tcg_gen_extrl_i64_i32(cpu_CF, flag);
809
810 gen_set_NZ64(result);
811
812 tcg_gen_xor_i64(flag, result, t0);
813 tcg_gen_xor_i64(tmp, t0, t1);
814 tcg_gen_andc_i64(flag, flag, tmp);
815 tcg_temp_free_i64(tmp);
816 tcg_gen_extrh_i64_i32(cpu_VF, flag);
817
818 tcg_gen_mov_i64(dest, result);
819 tcg_temp_free_i64(result);
820 tcg_temp_free_i64(flag);
821 } else {
822 /* 32 bit arithmetic */
823 TCGv_i32 t0_32 = tcg_temp_new_i32();
824 TCGv_i32 t1_32 = tcg_temp_new_i32();
825 TCGv_i32 tmp = tcg_temp_new_i32();
826
827 tcg_gen_movi_i32(tmp, 0);
828 tcg_gen_extrl_i64_i32(t0_32, t0);
829 tcg_gen_extrl_i64_i32(t1_32, t1);
830 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
831 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
832 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
833 tcg_gen_xor_i32(tmp, t0_32, t1_32);
834 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
835 tcg_gen_extu_i32_i64(dest, cpu_NF);
836
837 tcg_temp_free_i32(tmp);
838 tcg_temp_free_i32(t0_32);
839 tcg_temp_free_i32(t1_32);
840 }
841 }
842
843 /* dest = T0 - T1; compute C, N, V and Z flags */
844 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
845 {
846 if (sf) {
847 /* 64 bit arithmetic */
848 TCGv_i64 result, flag, tmp;
849
850 result = tcg_temp_new_i64();
851 flag = tcg_temp_new_i64();
852 tcg_gen_sub_i64(result, t0, t1);
853
854 gen_set_NZ64(result);
855
856 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
857 tcg_gen_extrl_i64_i32(cpu_CF, flag);
858
859 tcg_gen_xor_i64(flag, result, t0);
860 tmp = tcg_temp_new_i64();
861 tcg_gen_xor_i64(tmp, t0, t1);
862 tcg_gen_and_i64(flag, flag, tmp);
863 tcg_temp_free_i64(tmp);
864 tcg_gen_extrh_i64_i32(cpu_VF, flag);
865 tcg_gen_mov_i64(dest, result);
866 tcg_temp_free_i64(flag);
867 tcg_temp_free_i64(result);
868 } else {
869 /* 32 bit arithmetic */
870 TCGv_i32 t0_32 = tcg_temp_new_i32();
871 TCGv_i32 t1_32 = tcg_temp_new_i32();
872 TCGv_i32 tmp;
873
874 tcg_gen_extrl_i64_i32(t0_32, t0);
875 tcg_gen_extrl_i64_i32(t1_32, t1);
876 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
877 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
878 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
879 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
880 tmp = tcg_temp_new_i32();
881 tcg_gen_xor_i32(tmp, t0_32, t1_32);
882 tcg_temp_free_i32(t0_32);
883 tcg_temp_free_i32(t1_32);
884 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
885 tcg_temp_free_i32(tmp);
886 tcg_gen_extu_i32_i64(dest, cpu_NF);
887 }
888 }
889
890 /* dest = T0 + T1 + CF; do not compute flags. */
891 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
892 {
893 TCGv_i64 flag = tcg_temp_new_i64();
894 tcg_gen_extu_i32_i64(flag, cpu_CF);
895 tcg_gen_add_i64(dest, t0, t1);
896 tcg_gen_add_i64(dest, dest, flag);
897 tcg_temp_free_i64(flag);
898
899 if (!sf) {
900 tcg_gen_ext32u_i64(dest, dest);
901 }
902 }
903
904 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
905 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
906 {
907 if (sf) {
908 TCGv_i64 result, cf_64, vf_64, tmp;
909 result = tcg_temp_new_i64();
910 cf_64 = tcg_temp_new_i64();
911 vf_64 = tcg_temp_new_i64();
912 tmp = tcg_const_i64(0);
913
914 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
915 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
916 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
917 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
918 gen_set_NZ64(result);
919
920 tcg_gen_xor_i64(vf_64, result, t0);
921 tcg_gen_xor_i64(tmp, t0, t1);
922 tcg_gen_andc_i64(vf_64, vf_64, tmp);
923 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
924
925 tcg_gen_mov_i64(dest, result);
926
927 tcg_temp_free_i64(tmp);
928 tcg_temp_free_i64(vf_64);
929 tcg_temp_free_i64(cf_64);
930 tcg_temp_free_i64(result);
931 } else {
932 TCGv_i32 t0_32, t1_32, tmp;
933 t0_32 = tcg_temp_new_i32();
934 t1_32 = tcg_temp_new_i32();
935 tmp = tcg_const_i32(0);
936
937 tcg_gen_extrl_i64_i32(t0_32, t0);
938 tcg_gen_extrl_i64_i32(t1_32, t1);
939 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
940 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
941
942 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
943 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
944 tcg_gen_xor_i32(tmp, t0_32, t1_32);
945 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
946 tcg_gen_extu_i32_i64(dest, cpu_NF);
947
948 tcg_temp_free_i32(tmp);
949 tcg_temp_free_i32(t1_32);
950 tcg_temp_free_i32(t0_32);
951 }
952 }
953
954 /*
955 * Load/Store generators
956 */
957
958 /*
959 * Store from GPR register to memory.
960 */
961 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
962 TCGv_i64 tcg_addr, int size, int memidx,
963 bool iss_valid,
964 unsigned int iss_srt,
965 bool iss_sf, bool iss_ar)
966 {
967 g_assert(size <= 3);
968 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
969
970 if (iss_valid) {
971 uint32_t syn;
972
973 syn = syn_data_abort_with_iss(0,
974 size,
975 false,
976 iss_srt,
977 iss_sf,
978 iss_ar,
979 0, 0, 0, 0, 0, false);
980 disas_set_insn_syndrome(s, syn);
981 }
982 }
983
984 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
985 TCGv_i64 tcg_addr, int size,
986 bool iss_valid,
987 unsigned int iss_srt,
988 bool iss_sf, bool iss_ar)
989 {
990 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
991 iss_valid, iss_srt, iss_sf, iss_ar);
992 }
993
994 /*
995 * Load from memory to GPR register
996 */
997 static void do_gpr_ld_memidx(DisasContext *s,
998 TCGv_i64 dest, TCGv_i64 tcg_addr,
999 int size, bool is_signed,
1000 bool extend, int memidx,
1001 bool iss_valid, unsigned int iss_srt,
1002 bool iss_sf, bool iss_ar)
1003 {
1004 TCGMemOp memop = s->be_data + size;
1005
1006 g_assert(size <= 3);
1007
1008 if (is_signed) {
1009 memop += MO_SIGN;
1010 }
1011
1012 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
1013
1014 if (extend && is_signed) {
1015 g_assert(size < 3);
1016 tcg_gen_ext32u_i64(dest, dest);
1017 }
1018
1019 if (iss_valid) {
1020 uint32_t syn;
1021
1022 syn = syn_data_abort_with_iss(0,
1023 size,
1024 is_signed,
1025 iss_srt,
1026 iss_sf,
1027 iss_ar,
1028 0, 0, 0, 0, 0, false);
1029 disas_set_insn_syndrome(s, syn);
1030 }
1031 }
1032
1033 static void do_gpr_ld(DisasContext *s,
1034 TCGv_i64 dest, TCGv_i64 tcg_addr,
1035 int size, bool is_signed, bool extend,
1036 bool iss_valid, unsigned int iss_srt,
1037 bool iss_sf, bool iss_ar)
1038 {
1039 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
1040 get_mem_index(s),
1041 iss_valid, iss_srt, iss_sf, iss_ar);
1042 }
1043
1044 /*
1045 * Store from FP register to memory
1046 */
1047 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
1048 {
1049 /* This writes the bottom N bits of a 128 bit wide vector to memory */
1050 TCGv_i64 tmp = tcg_temp_new_i64();
1051 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
1052 if (size < 4) {
1053 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
1054 s->be_data + size);
1055 } else {
1056 bool be = s->be_data == MO_BE;
1057 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
1058
1059 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1060 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1061 s->be_data | MO_Q);
1062 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
1063 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1064 s->be_data | MO_Q);
1065 tcg_temp_free_i64(tcg_hiaddr);
1066 }
1067
1068 tcg_temp_free_i64(tmp);
1069 }
1070
1071 /*
1072 * Load from memory to FP register
1073 */
1074 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
1075 {
1076 /* This always zero-extends and writes to a full 128 bit wide vector */
1077 TCGv_i64 tmplo = tcg_temp_new_i64();
1078 TCGv_i64 tmphi;
1079
1080 if (size < 4) {
1081 TCGMemOp memop = s->be_data + size;
1082 tmphi = tcg_const_i64(0);
1083 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
1084 } else {
1085 bool be = s->be_data == MO_BE;
1086 TCGv_i64 tcg_hiaddr;
1087
1088 tmphi = tcg_temp_new_i64();
1089 tcg_hiaddr = tcg_temp_new_i64();
1090
1091 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1092 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1093 s->be_data | MO_Q);
1094 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1095 s->be_data | MO_Q);
1096 tcg_temp_free_i64(tcg_hiaddr);
1097 }
1098
1099 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
1100 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
1101
1102 tcg_temp_free_i64(tmplo);
1103 tcg_temp_free_i64(tmphi);
1104
1105 clear_vec_high(s, true, destidx);
1106 }
1107
1108 /*
1109 * Vector load/store helpers.
1110 *
1111 * The principal difference between this and a FP load is that we don't
1112 * zero extend as we are filling a partial chunk of the vector register.
1113 * These functions don't support 128 bit loads/stores, which would be
1114 * normal load/store operations.
1115 *
1116 * The _i32 versions are useful when operating on 32 bit quantities
1117 * (eg for floating point single or using Neon helper functions).
1118 */
1119
1120 /* Get value of an element within a vector register */
1121 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1122 int element, TCGMemOp memop)
1123 {
1124 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1125 switch (memop) {
1126 case MO_8:
1127 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1128 break;
1129 case MO_16:
1130 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1131 break;
1132 case MO_32:
1133 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1134 break;
1135 case MO_8|MO_SIGN:
1136 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1137 break;
1138 case MO_16|MO_SIGN:
1139 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1140 break;
1141 case MO_32|MO_SIGN:
1142 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1143 break;
1144 case MO_64:
1145 case MO_64|MO_SIGN:
1146 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1147 break;
1148 default:
1149 g_assert_not_reached();
1150 }
1151 }
1152
1153 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1154 int element, TCGMemOp memop)
1155 {
1156 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1157 switch (memop) {
1158 case MO_8:
1159 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1160 break;
1161 case MO_16:
1162 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1163 break;
1164 case MO_8|MO_SIGN:
1165 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1166 break;
1167 case MO_16|MO_SIGN:
1168 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1169 break;
1170 case MO_32:
1171 case MO_32|MO_SIGN:
1172 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1173 break;
1174 default:
1175 g_assert_not_reached();
1176 }
1177 }
1178
1179 /* Set value of an element within a vector register */
1180 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1181 int element, TCGMemOp memop)
1182 {
1183 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1184 switch (memop) {
1185 case MO_8:
1186 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1187 break;
1188 case MO_16:
1189 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1190 break;
1191 case MO_32:
1192 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1193 break;
1194 case MO_64:
1195 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1196 break;
1197 default:
1198 g_assert_not_reached();
1199 }
1200 }
1201
1202 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1203 int destidx, int element, TCGMemOp memop)
1204 {
1205 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1206 switch (memop) {
1207 case MO_8:
1208 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1209 break;
1210 case MO_16:
1211 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1212 break;
1213 case MO_32:
1214 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1215 break;
1216 default:
1217 g_assert_not_reached();
1218 }
1219 }
1220
1221 /* Store from vector register to memory */
1222 static void do_vec_st(DisasContext *s, int srcidx, int element,
1223 TCGv_i64 tcg_addr, int size, TCGMemOp endian)
1224 {
1225 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1226
1227 read_vec_element(s, tcg_tmp, srcidx, element, size);
1228 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1229
1230 tcg_temp_free_i64(tcg_tmp);
1231 }
1232
1233 /* Load from memory to vector register */
1234 static void do_vec_ld(DisasContext *s, int destidx, int element,
1235 TCGv_i64 tcg_addr, int size, TCGMemOp endian)
1236 {
1237 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1238
1239 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1240 write_vec_element(s, tcg_tmp, destidx, element, size);
1241
1242 tcg_temp_free_i64(tcg_tmp);
1243 }
1244
1245 /* Check that FP/Neon access is enabled. If it is, return
1246 * true. If not, emit code to generate an appropriate exception,
1247 * and return false; the caller should not emit any code for
1248 * the instruction. Note that this check must happen after all
1249 * unallocated-encoding checks (otherwise the syndrome information
1250 * for the resulting exception will be incorrect).
1251 */
1252 static inline bool fp_access_check(DisasContext *s)
1253 {
1254 assert(!s->fp_access_checked);
1255 s->fp_access_checked = true;
1256
1257 if (!s->fp_excp_el) {
1258 return true;
1259 }
1260
1261 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
1262 s->fp_excp_el);
1263 return false;
1264 }
1265
1266 /* Check that SVE access is enabled. If it is, return true.
1267 * If not, emit code to generate an appropriate exception and return false.
1268 */
1269 bool sve_access_check(DisasContext *s)
1270 {
1271 if (s->sve_excp_el) {
1272 gen_exception_insn(s, 4, EXCP_UDEF, syn_sve_access_trap(),
1273 s->sve_excp_el);
1274 return false;
1275 }
1276 return fp_access_check(s);
1277 }
1278
1279 /*
1280 * This utility function is for doing register extension with an
1281 * optional shift. You will likely want to pass a temporary for the
1282 * destination register. See DecodeRegExtend() in the ARM ARM.
1283 */
1284 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1285 int option, unsigned int shift)
1286 {
1287 int extsize = extract32(option, 0, 2);
1288 bool is_signed = extract32(option, 2, 1);
1289
1290 if (is_signed) {
1291 switch (extsize) {
1292 case 0:
1293 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1294 break;
1295 case 1:
1296 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1297 break;
1298 case 2:
1299 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1300 break;
1301 case 3:
1302 tcg_gen_mov_i64(tcg_out, tcg_in);
1303 break;
1304 }
1305 } else {
1306 switch (extsize) {
1307 case 0:
1308 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1309 break;
1310 case 1:
1311 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1312 break;
1313 case 2:
1314 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1315 break;
1316 case 3:
1317 tcg_gen_mov_i64(tcg_out, tcg_in);
1318 break;
1319 }
1320 }
1321
1322 if (shift) {
1323 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1324 }
1325 }
1326
1327 static inline void gen_check_sp_alignment(DisasContext *s)
1328 {
1329 /* The AArch64 architecture mandates that (if enabled via PSTATE
1330 * or SCTLR bits) there is a check that SP is 16-aligned on every
1331 * SP-relative load or store (with an exception generated if it is not).
1332 * In line with general QEMU practice regarding misaligned accesses,
1333 * we omit these checks for the sake of guest program performance.
1334 * This function is provided as a hook so we can more easily add these
1335 * checks in future (possibly as a "favour catching guest program bugs
1336 * over speed" user selectable option).
1337 */
1338 }
1339
1340 /*
1341 * This provides a simple table based table lookup decoder. It is
1342 * intended to be used when the relevant bits for decode are too
1343 * awkwardly placed and switch/if based logic would be confusing and
1344 * deeply nested. Since it's a linear search through the table, tables
1345 * should be kept small.
1346 *
1347 * It returns the first handler where insn & mask == pattern, or
1348 * NULL if there is no match.
1349 * The table is terminated by an empty mask (i.e. 0)
1350 */
1351 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1352 uint32_t insn)
1353 {
1354 const AArch64DecodeTable *tptr = table;
1355
1356 while (tptr->mask) {
1357 if ((insn & tptr->mask) == tptr->pattern) {
1358 return tptr->disas_fn;
1359 }
1360 tptr++;
1361 }
1362 return NULL;
1363 }
1364
1365 /*
1366 * The instruction disassembly implemented here matches
1367 * the instruction encoding classifications in chapter C4
1368 * of the ARM Architecture Reference Manual (DDI0487B_a);
1369 * classification names and decode diagrams here should generally
1370 * match up with those in the manual.
1371 */
1372
1373 /* Unconditional branch (immediate)
1374 * 31 30 26 25 0
1375 * +----+-----------+-------------------------------------+
1376 * | op | 0 0 1 0 1 | imm26 |
1377 * +----+-----------+-------------------------------------+
1378 */
1379 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1380 {
1381 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1382
1383 if (insn & (1U << 31)) {
1384 /* BL Branch with link */
1385 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1386 }
1387
1388 /* B Branch / BL Branch with link */
1389 reset_btype(s);
1390 gen_goto_tb(s, 0, addr);
1391 }
1392
1393 /* Compare and branch (immediate)
1394 * 31 30 25 24 23 5 4 0
1395 * +----+-------------+----+---------------------+--------+
1396 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1397 * +----+-------------+----+---------------------+--------+
1398 */
1399 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1400 {
1401 unsigned int sf, op, rt;
1402 uint64_t addr;
1403 TCGLabel *label_match;
1404 TCGv_i64 tcg_cmp;
1405
1406 sf = extract32(insn, 31, 1);
1407 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1408 rt = extract32(insn, 0, 5);
1409 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1410
1411 tcg_cmp = read_cpu_reg(s, rt, sf);
1412 label_match = gen_new_label();
1413
1414 reset_btype(s);
1415 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1416 tcg_cmp, 0, label_match);
1417
1418 gen_goto_tb(s, 0, s->pc);
1419 gen_set_label(label_match);
1420 gen_goto_tb(s, 1, addr);
1421 }
1422
1423 /* Test and branch (immediate)
1424 * 31 30 25 24 23 19 18 5 4 0
1425 * +----+-------------+----+-------+-------------+------+
1426 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1427 * +----+-------------+----+-------+-------------+------+
1428 */
1429 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1430 {
1431 unsigned int bit_pos, op, rt;
1432 uint64_t addr;
1433 TCGLabel *label_match;
1434 TCGv_i64 tcg_cmp;
1435
1436 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1437 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1438 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1439 rt = extract32(insn, 0, 5);
1440
1441 tcg_cmp = tcg_temp_new_i64();
1442 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1443 label_match = gen_new_label();
1444
1445 reset_btype(s);
1446 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1447 tcg_cmp, 0, label_match);
1448 tcg_temp_free_i64(tcg_cmp);
1449 gen_goto_tb(s, 0, s->pc);
1450 gen_set_label(label_match);
1451 gen_goto_tb(s, 1, addr);
1452 }
1453
1454 /* Conditional branch (immediate)
1455 * 31 25 24 23 5 4 3 0
1456 * +---------------+----+---------------------+----+------+
1457 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1458 * +---------------+----+---------------------+----+------+
1459 */
1460 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1461 {
1462 unsigned int cond;
1463 uint64_t addr;
1464
1465 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1466 unallocated_encoding(s);
1467 return;
1468 }
1469 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1470 cond = extract32(insn, 0, 4);
1471
1472 reset_btype(s);
1473 if (cond < 0x0e) {
1474 /* genuinely conditional branches */
1475 TCGLabel *label_match = gen_new_label();
1476 arm_gen_test_cc(cond, label_match);
1477 gen_goto_tb(s, 0, s->pc);
1478 gen_set_label(label_match);
1479 gen_goto_tb(s, 1, addr);
1480 } else {
1481 /* 0xe and 0xf are both "always" conditions */
1482 gen_goto_tb(s, 0, addr);
1483 }
1484 }
1485
1486 /* HINT instruction group, including various allocated HINTs */
1487 static void handle_hint(DisasContext *s, uint32_t insn,
1488 unsigned int op1, unsigned int op2, unsigned int crm)
1489 {
1490 unsigned int selector = crm << 3 | op2;
1491
1492 if (op1 != 3) {
1493 unallocated_encoding(s);
1494 return;
1495 }
1496
1497 switch (selector) {
1498 case 0b00000: /* NOP */
1499 break;
1500 case 0b00011: /* WFI */
1501 s->base.is_jmp = DISAS_WFI;
1502 break;
1503 case 0b00001: /* YIELD */
1504 /* When running in MTTCG we don't generate jumps to the yield and
1505 * WFE helpers as it won't affect the scheduling of other vCPUs.
1506 * If we wanted to more completely model WFE/SEV so we don't busy
1507 * spin unnecessarily we would need to do something more involved.
1508 */
1509 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1510 s->base.is_jmp = DISAS_YIELD;
1511 }
1512 break;
1513 case 0b00010: /* WFE */
1514 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1515 s->base.is_jmp = DISAS_WFE;
1516 }
1517 break;
1518 case 0b00100: /* SEV */
1519 case 0b00101: /* SEVL */
1520 /* we treat all as NOP at least for now */
1521 break;
1522 case 0b00111: /* XPACLRI */
1523 if (s->pauth_active) {
1524 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1525 }
1526 break;
1527 case 0b01000: /* PACIA1716 */
1528 if (s->pauth_active) {
1529 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1530 }
1531 break;
1532 case 0b01010: /* PACIB1716 */
1533 if (s->pauth_active) {
1534 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1535 }
1536 break;
1537 case 0b01100: /* AUTIA1716 */
1538 if (s->pauth_active) {
1539 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1540 }
1541 break;
1542 case 0b01110: /* AUTIB1716 */
1543 if (s->pauth_active) {
1544 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1545 }
1546 break;
1547 case 0b11000: /* PACIAZ */
1548 if (s->pauth_active) {
1549 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1550 new_tmp_a64_zero(s));
1551 }
1552 break;
1553 case 0b11001: /* PACIASP */
1554 if (s->pauth_active) {
1555 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1556 }
1557 break;
1558 case 0b11010: /* PACIBZ */
1559 if (s->pauth_active) {
1560 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1561 new_tmp_a64_zero(s));
1562 }
1563 break;
1564 case 0b11011: /* PACIBSP */
1565 if (s->pauth_active) {
1566 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1567 }
1568 break;
1569 case 0b11100: /* AUTIAZ */
1570 if (s->pauth_active) {
1571 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1572 new_tmp_a64_zero(s));
1573 }
1574 break;
1575 case 0b11101: /* AUTIASP */
1576 if (s->pauth_active) {
1577 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1578 }
1579 break;
1580 case 0b11110: /* AUTIBZ */
1581 if (s->pauth_active) {
1582 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1583 new_tmp_a64_zero(s));
1584 }
1585 break;
1586 case 0b11111: /* AUTIBSP */
1587 if (s->pauth_active) {
1588 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1589 }
1590 break;
1591 default:
1592 /* default specified as NOP equivalent */
1593 break;
1594 }
1595 }
1596
1597 static void gen_clrex(DisasContext *s, uint32_t insn)
1598 {
1599 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1600 }
1601
1602 /* CLREX, DSB, DMB, ISB */
1603 static void handle_sync(DisasContext *s, uint32_t insn,
1604 unsigned int op1, unsigned int op2, unsigned int crm)
1605 {
1606 TCGBar bar;
1607
1608 if (op1 != 3) {
1609 unallocated_encoding(s);
1610 return;
1611 }
1612
1613 switch (op2) {
1614 case 2: /* CLREX */
1615 gen_clrex(s, insn);
1616 return;
1617 case 4: /* DSB */
1618 case 5: /* DMB */
1619 switch (crm & 3) {
1620 case 1: /* MBReqTypes_Reads */
1621 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1622 break;
1623 case 2: /* MBReqTypes_Writes */
1624 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1625 break;
1626 default: /* MBReqTypes_All */
1627 bar = TCG_BAR_SC | TCG_MO_ALL;
1628 break;
1629 }
1630 tcg_gen_mb(bar);
1631 return;
1632 case 6: /* ISB */
1633 /* We need to break the TB after this insn to execute
1634 * a self-modified code correctly and also to take
1635 * any pending interrupts immediately.
1636 */
1637 reset_btype(s);
1638 gen_goto_tb(s, 0, s->pc);
1639 return;
1640
1641 case 7: /* SB */
1642 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1643 goto do_unallocated;
1644 }
1645 /*
1646 * TODO: There is no speculation barrier opcode for TCG;
1647 * MB and end the TB instead.
1648 */
1649 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1650 gen_goto_tb(s, 0, s->pc);
1651 return;
1652
1653 default:
1654 do_unallocated:
1655 unallocated_encoding(s);
1656 return;
1657 }
1658 }
1659
1660 /* MSR (immediate) - move immediate to processor state field */
1661 static void handle_msr_i(DisasContext *s, uint32_t insn,
1662 unsigned int op1, unsigned int op2, unsigned int crm)
1663 {
1664 int op = op1 << 3 | op2;
1665 switch (op) {
1666 case 0x05: /* SPSel */
1667 if (s->current_el == 0) {
1668 unallocated_encoding(s);
1669 return;
1670 }
1671 /* fall through */
1672 case 0x1e: /* DAIFSet */
1673 case 0x1f: /* DAIFClear */
1674 {
1675 TCGv_i32 tcg_imm = tcg_const_i32(crm);
1676 TCGv_i32 tcg_op = tcg_const_i32(op);
1677 gen_a64_set_pc_im(s->pc - 4);
1678 gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
1679 tcg_temp_free_i32(tcg_imm);
1680 tcg_temp_free_i32(tcg_op);
1681 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1682 gen_a64_set_pc_im(s->pc);
1683 s->base.is_jmp = (op == 0x1f ? DISAS_EXIT : DISAS_JUMP);
1684 break;
1685 }
1686 default:
1687 unallocated_encoding(s);
1688 return;
1689 }
1690 }
1691
1692 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1693 {
1694 TCGv_i32 tmp = tcg_temp_new_i32();
1695 TCGv_i32 nzcv = tcg_temp_new_i32();
1696
1697 /* build bit 31, N */
1698 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1699 /* build bit 30, Z */
1700 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1701 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1702 /* build bit 29, C */
1703 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1704 /* build bit 28, V */
1705 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1706 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1707 /* generate result */
1708 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1709
1710 tcg_temp_free_i32(nzcv);
1711 tcg_temp_free_i32(tmp);
1712 }
1713
1714 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1715
1716 {
1717 TCGv_i32 nzcv = tcg_temp_new_i32();
1718
1719 /* take NZCV from R[t] */
1720 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1721
1722 /* bit 31, N */
1723 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1724 /* bit 30, Z */
1725 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1726 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1727 /* bit 29, C */
1728 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1729 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1730 /* bit 28, V */
1731 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1732 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1733 tcg_temp_free_i32(nzcv);
1734 }
1735
1736 /* MRS - move from system register
1737 * MSR (register) - move to system register
1738 * SYS
1739 * SYSL
1740 * These are all essentially the same insn in 'read' and 'write'
1741 * versions, with varying op0 fields.
1742 */
1743 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1744 unsigned int op0, unsigned int op1, unsigned int op2,
1745 unsigned int crn, unsigned int crm, unsigned int rt)
1746 {
1747 const ARMCPRegInfo *ri;
1748 TCGv_i64 tcg_rt;
1749
1750 ri = get_arm_cp_reginfo(s->cp_regs,
1751 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1752 crn, crm, op0, op1, op2));
1753
1754 if (!ri) {
1755 /* Unknown register; this might be a guest error or a QEMU
1756 * unimplemented feature.
1757 */
1758 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1759 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1760 isread ? "read" : "write", op0, op1, crn, crm, op2);
1761 unallocated_encoding(s);
1762 return;
1763 }
1764
1765 /* Check access permissions */
1766 if (!cp_access_ok(s->current_el, ri, isread)) {
1767 unallocated_encoding(s);
1768 return;
1769 }
1770
1771 if (ri->accessfn) {
1772 /* Emit code to perform further access permissions checks at
1773 * runtime; this may result in an exception.
1774 */
1775 TCGv_ptr tmpptr;
1776 TCGv_i32 tcg_syn, tcg_isread;
1777 uint32_t syndrome;
1778
1779 gen_a64_set_pc_im(s->pc - 4);
1780 tmpptr = tcg_const_ptr(ri);
1781 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1782 tcg_syn = tcg_const_i32(syndrome);
1783 tcg_isread = tcg_const_i32(isread);
1784 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1785 tcg_temp_free_ptr(tmpptr);
1786 tcg_temp_free_i32(tcg_syn);
1787 tcg_temp_free_i32(tcg_isread);
1788 }
1789
1790 /* Handle special cases first */
1791 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1792 case ARM_CP_NOP:
1793 return;
1794 case ARM_CP_NZCV:
1795 tcg_rt = cpu_reg(s, rt);
1796 if (isread) {
1797 gen_get_nzcv(tcg_rt);
1798 } else {
1799 gen_set_nzcv(tcg_rt);
1800 }
1801 return;
1802 case ARM_CP_CURRENTEL:
1803 /* Reads as current EL value from pstate, which is
1804 * guaranteed to be constant by the tb flags.
1805 */
1806 tcg_rt = cpu_reg(s, rt);
1807 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1808 return;
1809 case ARM_CP_DC_ZVA:
1810 /* Writes clear the aligned block of memory which rt points into. */
1811 tcg_rt = cpu_reg(s, rt);
1812 gen_helper_dc_zva(cpu_env, tcg_rt);
1813 return;
1814 default:
1815 break;
1816 }
1817 if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) {
1818 return;
1819 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
1820 return;
1821 }
1822
1823 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1824 gen_io_start();
1825 }
1826
1827 tcg_rt = cpu_reg(s, rt);
1828
1829 if (isread) {
1830 if (ri->type & ARM_CP_CONST) {
1831 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1832 } else if (ri->readfn) {
1833 TCGv_ptr tmpptr;
1834 tmpptr = tcg_const_ptr(ri);
1835 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1836 tcg_temp_free_ptr(tmpptr);
1837 } else {
1838 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1839 }
1840 } else {
1841 if (ri->type & ARM_CP_CONST) {
1842 /* If not forbidden by access permissions, treat as WI */
1843 return;
1844 } else if (ri->writefn) {
1845 TCGv_ptr tmpptr;
1846 tmpptr = tcg_const_ptr(ri);
1847 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1848 tcg_temp_free_ptr(tmpptr);
1849 } else {
1850 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1851 }
1852 }
1853
1854 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1855 /* I/O operations must end the TB here (whether read or write) */
1856 gen_io_end();
1857 s->base.is_jmp = DISAS_UPDATE;
1858 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1859 /* We default to ending the TB on a coprocessor register write,
1860 * but allow this to be suppressed by the register definition
1861 * (usually only necessary to work around guest bugs).
1862 */
1863 s->base.is_jmp = DISAS_UPDATE;
1864 }
1865 }
1866
1867 /* System
1868 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1869 * +---------------------+---+-----+-----+-------+-------+-----+------+
1870 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1871 * +---------------------+---+-----+-----+-------+-------+-----+------+
1872 */
1873 static void disas_system(DisasContext *s, uint32_t insn)
1874 {
1875 unsigned int l, op0, op1, crn, crm, op2, rt;
1876 l = extract32(insn, 21, 1);
1877 op0 = extract32(insn, 19, 2);
1878 op1 = extract32(insn, 16, 3);
1879 crn = extract32(insn, 12, 4);
1880 crm = extract32(insn, 8, 4);
1881 op2 = extract32(insn, 5, 3);
1882 rt = extract32(insn, 0, 5);
1883
1884 if (op0 == 0) {
1885 if (l || rt != 31) {
1886 unallocated_encoding(s);
1887 return;
1888 }
1889 switch (crn) {
1890 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
1891 handle_hint(s, insn, op1, op2, crm);
1892 break;
1893 case 3: /* CLREX, DSB, DMB, ISB */
1894 handle_sync(s, insn, op1, op2, crm);
1895 break;
1896 case 4: /* MSR (immediate) */
1897 handle_msr_i(s, insn, op1, op2, crm);
1898 break;
1899 default:
1900 unallocated_encoding(s);
1901 break;
1902 }
1903 return;
1904 }
1905 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1906 }
1907
1908 /* Exception generation
1909 *
1910 * 31 24 23 21 20 5 4 2 1 0
1911 * +-----------------+-----+------------------------+-----+----+
1912 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1913 * +-----------------------+------------------------+----------+
1914 */
1915 static void disas_exc(DisasContext *s, uint32_t insn)
1916 {
1917 int opc = extract32(insn, 21, 3);
1918 int op2_ll = extract32(insn, 0, 5);
1919 int imm16 = extract32(insn, 5, 16);
1920 TCGv_i32 tmp;
1921
1922 switch (opc) {
1923 case 0:
1924 /* For SVC, HVC and SMC we advance the single-step state
1925 * machine before taking the exception. This is architecturally
1926 * mandated, to ensure that single-stepping a system call
1927 * instruction works properly.
1928 */
1929 switch (op2_ll) {
1930 case 1: /* SVC */
1931 gen_ss_advance(s);
1932 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1933 default_exception_el(s));
1934 break;
1935 case 2: /* HVC */
1936 if (s->current_el == 0) {
1937 unallocated_encoding(s);
1938 break;
1939 }
1940 /* The pre HVC helper handles cases when HVC gets trapped
1941 * as an undefined insn by runtime configuration.
1942 */
1943 gen_a64_set_pc_im(s->pc - 4);
1944 gen_helper_pre_hvc(cpu_env);
1945 gen_ss_advance(s);
1946 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
1947 break;
1948 case 3: /* SMC */
1949 if (s->current_el == 0) {
1950 unallocated_encoding(s);
1951 break;
1952 }
1953 gen_a64_set_pc_im(s->pc - 4);
1954 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1955 gen_helper_pre_smc(cpu_env, tmp);
1956 tcg_temp_free_i32(tmp);
1957 gen_ss_advance(s);
1958 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
1959 break;
1960 default:
1961 unallocated_encoding(s);
1962 break;
1963 }
1964 break;
1965 case 1:
1966 if (op2_ll != 0) {
1967 unallocated_encoding(s);
1968 break;
1969 }
1970 /* BRK */
1971 gen_exception_bkpt_insn(s, 4, syn_aa64_bkpt(imm16));
1972 break;
1973 case 2:
1974 if (op2_ll != 0) {
1975 unallocated_encoding(s);
1976 break;
1977 }
1978 /* HLT. This has two purposes.
1979 * Architecturally, it is an external halting debug instruction.
1980 * Since QEMU doesn't implement external debug, we treat this as
1981 * it is required for halting debug disabled: it will UNDEF.
1982 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1983 */
1984 if (semihosting_enabled() && imm16 == 0xf000) {
1985 #ifndef CONFIG_USER_ONLY
1986 /* In system mode, don't allow userspace access to semihosting,
1987 * to provide some semblance of security (and for consistency
1988 * with our 32-bit semihosting).
1989 */
1990 if (s->current_el == 0) {
1991 unsupported_encoding(s, insn);
1992 break;
1993 }
1994 #endif
1995 gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
1996 } else {
1997 unsupported_encoding(s, insn);
1998 }
1999 break;
2000 case 5:
2001 if (op2_ll < 1 || op2_ll > 3) {
2002 unallocated_encoding(s);
2003 break;
2004 }
2005 /* DCPS1, DCPS2, DCPS3 */
2006 unsupported_encoding(s, insn);
2007 break;
2008 default:
2009 unallocated_encoding(s);
2010 break;
2011 }
2012 }
2013
2014 /* Unconditional branch (register)
2015 * 31 25 24 21 20 16 15 10 9 5 4 0
2016 * +---------------+-------+-------+-------+------+-------+
2017 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
2018 * +---------------+-------+-------+-------+------+-------+
2019 */
2020 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
2021 {
2022 unsigned int opc, op2, op3, rn, op4;
2023 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */
2024 TCGv_i64 dst;
2025 TCGv_i64 modifier;
2026
2027 opc = extract32(insn, 21, 4);
2028 op2 = extract32(insn, 16, 5);
2029 op3 = extract32(insn, 10, 6);
2030 rn = extract32(insn, 5, 5);
2031 op4 = extract32(insn, 0, 5);
2032
2033 if (op2 != 0x1f) {
2034 goto do_unallocated;
2035 }
2036
2037 switch (opc) {
2038 case 0: /* BR */
2039 case 1: /* BLR */
2040 case 2: /* RET */
2041 btype_mod = opc;
2042 switch (op3) {
2043 case 0:
2044 /* BR, BLR, RET */
2045 if (op4 != 0) {
2046 goto do_unallocated;
2047 }
2048 dst = cpu_reg(s, rn);
2049 break;
2050
2051 case 2:
2052 case 3:
2053 if (!dc_isar_feature(aa64_pauth, s)) {
2054 goto do_unallocated;
2055 }
2056 if (opc == 2) {
2057 /* RETAA, RETAB */
2058 if (rn != 0x1f || op4 != 0x1f) {
2059 goto do_unallocated;
2060 }
2061 rn = 30;
2062 modifier = cpu_X[31];
2063 } else {
2064 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */
2065 if (op4 != 0x1f) {
2066 goto do_unallocated;
2067 }
2068 modifier = new_tmp_a64_zero(s);
2069 }
2070 if (s->pauth_active) {
2071 dst = new_tmp_a64(s);
2072 if (op3 == 2) {
2073 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2074 } else {
2075 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2076 }
2077 } else {
2078 dst = cpu_reg(s, rn);
2079 }
2080 break;
2081
2082 default:
2083 goto do_unallocated;
2084 }
2085 gen_a64_set_pc(s, dst);
2086 /* BLR also needs to load return address */
2087 if (opc == 1) {
2088 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
2089 }
2090 break;
2091
2092 case 8: /* BRAA */
2093 case 9: /* BLRAA */
2094 if (!dc_isar_feature(aa64_pauth, s)) {
2095 goto do_unallocated;
2096 }
2097 if ((op3 & ~1) != 2) {
2098 goto do_unallocated;
2099 }
2100 btype_mod = opc & 1;
2101 if (s->pauth_active) {
2102 dst = new_tmp_a64(s);
2103 modifier = cpu_reg_sp(s, op4);
2104 if (op3 == 2) {
2105 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2106 } else {
2107 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2108 }
2109 } else {
2110 dst = cpu_reg(s, rn);
2111 }
2112 gen_a64_set_pc(s, dst);
2113 /* BLRAA also needs to load return address */
2114 if (opc == 9) {
2115 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
2116 }
2117 break;
2118
2119 case 4: /* ERET */
2120 if (s->current_el == 0) {
2121 goto do_unallocated;
2122 }
2123 switch (op3) {
2124 case 0: /* ERET */
2125 if (op4 != 0) {
2126 goto do_unallocated;
2127 }
2128 dst = tcg_temp_new_i64();
2129 tcg_gen_ld_i64(dst, cpu_env,
2130 offsetof(CPUARMState, elr_el[s->current_el]));
2131 break;
2132
2133 case 2: /* ERETAA */
2134 case 3: /* ERETAB */
2135 if (!dc_isar_feature(aa64_pauth, s)) {
2136 goto do_unallocated;
2137 }
2138 if (rn != 0x1f || op4 != 0x1f) {
2139 goto do_unallocated;
2140 }
2141 dst = tcg_temp_new_i64();
2142 tcg_gen_ld_i64(dst, cpu_env,
2143 offsetof(CPUARMState, elr_el[s->current_el]));
2144 if (s->pauth_active) {
2145 modifier = cpu_X[31];
2146 if (op3 == 2) {
2147 gen_helper_autia(dst, cpu_env, dst, modifier);
2148 } else {
2149 gen_helper_autib(dst, cpu_env, dst, modifier);
2150 }
2151 }
2152 break;
2153
2154 default:
2155 goto do_unallocated;
2156 }
2157 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2158 gen_io_start();
2159 }
2160
2161 gen_helper_exception_return(cpu_env, dst);
2162 tcg_temp_free_i64(dst);
2163 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2164 gen_io_end();
2165 }
2166 /* Must exit loop to check un-masked IRQs */
2167 s->base.is_jmp = DISAS_EXIT;
2168 return;
2169
2170 case 5: /* DRPS */
2171 if (op3 != 0 || op4 != 0 || rn != 0x1f) {
2172 goto do_unallocated;
2173 } else {
2174 unsupported_encoding(s, insn);
2175 }
2176 return;
2177
2178 default:
2179 do_unallocated:
2180 unallocated_encoding(s);
2181 return;
2182 }
2183
2184 switch (btype_mod) {
2185 case 0: /* BR */
2186 if (dc_isar_feature(aa64_bti, s)) {
2187 /* BR to {x16,x17} or !guard -> 1, else 3. */
2188 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
2189 }
2190 break;
2191
2192 case 1: /* BLR */
2193 if (dc_isar_feature(aa64_bti, s)) {
2194 /* BLR sets BTYPE to 2, regardless of source guarded page. */
2195 set_btype(s, 2);
2196 }
2197 break;
2198
2199 default: /* RET or none of the above. */
2200 /* BTYPE will be set to 0 by normal end-of-insn processing. */
2201 break;
2202 }
2203
2204 s->base.is_jmp = DISAS_JUMP;
2205 }
2206
2207 /* Branches, exception generating and system instructions */
2208 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2209 {
2210 switch (extract32(insn, 25, 7)) {
2211 case 0x0a: case 0x0b:
2212 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
2213 disas_uncond_b_imm(s, insn);
2214 break;
2215 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
2216 disas_comp_b_imm(s, insn);
2217 break;
2218 case 0x1b: case 0x5b: /* Test & branch (immediate) */
2219 disas_test_b_imm(s, insn);
2220 break;
2221 case 0x2a: /* Conditional branch (immediate) */
2222 disas_cond_b_imm(s, insn);
2223 break;
2224 case 0x6a: /* Exception generation / System */
2225 if (insn & (1 << 24)) {
2226 if (extract32(insn, 22, 2) == 0) {
2227 disas_system(s, insn);
2228 } else {
2229 unallocated_encoding(s);
2230 }
2231 } else {
2232 disas_exc(s, insn);
2233 }
2234 break;
2235 case 0x6b: /* Unconditional branch (register) */
2236 disas_uncond_b_reg(s, insn);
2237 break;
2238 default:
2239 unallocated_encoding(s);
2240 break;
2241 }
2242 }
2243
2244 /*
2245 * Load/Store exclusive instructions are implemented by remembering
2246 * the value/address loaded, and seeing if these are the same
2247 * when the store is performed. This is not actually the architecturally
2248 * mandated semantics, but it works for typical guest code sequences
2249 * and avoids having to monitor regular stores.
2250 *
2251 * The store exclusive uses the atomic cmpxchg primitives to avoid
2252 * races in multi-threaded linux-user and when MTTCG softmmu is
2253 * enabled.
2254 */
2255 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2256 TCGv_i64 addr, int size, bool is_pair)
2257 {
2258 int idx = get_mem_index(s);
2259 TCGMemOp memop = s->be_data;
2260
2261 g_assert(size <= 3);
2262 if (is_pair) {
2263 g_assert(size >= 2);
2264 if (size == 2) {
2265 /* The pair must be single-copy atomic for the doubleword. */
2266 memop |= MO_64 | MO_ALIGN;
2267 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2268 if (s->be_data == MO_LE) {
2269 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2270 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2271 } else {
2272 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2273 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2274 }
2275 } else {
2276 /* The pair must be single-copy atomic for *each* doubleword, not
2277 the entire quadword, however it must be quadword aligned. */
2278 memop |= MO_64;
2279 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2280 memop | MO_ALIGN_16);
2281
2282 TCGv_i64 addr2 = tcg_temp_new_i64();
2283 tcg_gen_addi_i64(addr2, addr, 8);
2284 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2285 tcg_temp_free_i64(addr2);
2286
2287 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2288 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2289 }
2290 } else {
2291 memop |= size | MO_ALIGN;
2292 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2293 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2294 }
2295 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2296 }
2297
2298 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2299 TCGv_i64 addr, int size, int is_pair)
2300 {
2301 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2302 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2303 * [addr] = {Rt};
2304 * if (is_pair) {
2305 * [addr + datasize] = {Rt2};
2306 * }
2307 * {Rd} = 0;
2308 * } else {
2309 * {Rd} = 1;
2310 * }
2311 * env->exclusive_addr = -1;
2312 */
2313 TCGLabel *fail_label = gen_new_label();
2314 TCGLabel *done_label = gen_new_label();
2315 TCGv_i64 tmp;
2316
2317 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2318
2319 tmp = tcg_temp_new_i64();
2320 if (is_pair) {
2321 if (size == 2) {
2322 if (s->be_data == MO_LE) {
2323 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2324 } else {
2325 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2326 }
2327 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2328 cpu_exclusive_val, tmp,
2329 get_mem_index(s),
2330 MO_64 | MO_ALIGN | s->be_data);
2331 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2332 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2333 if (!HAVE_CMPXCHG128) {
2334 gen_helper_exit_atomic(cpu_env);
2335 s->base.is_jmp = DISAS_NORETURN;
2336 } else if (s->be_data == MO_LE) {
2337 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
2338 cpu_exclusive_addr,
2339 cpu_reg(s, rt),
2340 cpu_reg(s, rt2));
2341 } else {
2342 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
2343 cpu_exclusive_addr,
2344 cpu_reg(s, rt),
2345 cpu_reg(s, rt2));
2346 }
2347 } else if (s->be_data == MO_LE) {
2348 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
2349 cpu_reg(s, rt), cpu_reg(s, rt2));
2350 } else {
2351 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
2352 cpu_reg(s, rt), cpu_reg(s, rt2));
2353 }
2354 } else {
2355 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2356 cpu_reg(s, rt), get_mem_index(s),
2357 size | MO_ALIGN | s->be_data);
2358 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2359 }
2360 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2361 tcg_temp_free_i64(tmp);
2362 tcg_gen_br(done_label);
2363
2364 gen_set_label(fail_label);
2365 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2366 gen_set_label(done_label);
2367 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2368 }
2369
2370 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2371 int rn, int size)
2372 {
2373 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2374 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2375 int memidx = get_mem_index(s);
2376 TCGv_i64 clean_addr;
2377
2378 if (rn == 31) {
2379 gen_check_sp_alignment(s);
2380 }
2381 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2382 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx,
2383 size | MO_ALIGN | s->be_data);
2384 }
2385
2386 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2387 int rn, int size)
2388 {
2389 TCGv_i64 s1 = cpu_reg(s, rs);
2390 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2391 TCGv_i64 t1 = cpu_reg(s, rt);
2392 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2393 TCGv_i64 clean_addr;
2394 int memidx = get_mem_index(s);
2395
2396 if (rn == 31) {
2397 gen_check_sp_alignment(s);
2398 }
2399 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2400
2401 if (size == 2) {
2402 TCGv_i64 cmp = tcg_temp_new_i64();
2403 TCGv_i64 val = tcg_temp_new_i64();
2404
2405 if (s->be_data == MO_LE) {
2406 tcg_gen_concat32_i64(val, t1, t2);
2407 tcg_gen_concat32_i64(cmp, s1, s2);
2408 } else {
2409 tcg_gen_concat32_i64(val, t2, t1);
2410 tcg_gen_concat32_i64(cmp, s2, s1);
2411 }
2412
2413 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx,
2414 MO_64 | MO_ALIGN | s->be_data);
2415 tcg_temp_free_i64(val);
2416
2417 if (s->be_data == MO_LE) {
2418 tcg_gen_extr32_i64(s1, s2, cmp);
2419 } else {
2420 tcg_gen_extr32_i64(s2, s1, cmp);
2421 }
2422 tcg_temp_free_i64(cmp);
2423 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2424 if (HAVE_CMPXCHG128) {
2425 TCGv_i32 tcg_rs = tcg_const_i32(rs);
2426 if (s->be_data == MO_LE) {
2427 gen_helper_casp_le_parallel(cpu_env, tcg_rs,
2428 clean_addr, t1, t2);
2429 } else {
2430 gen_helper_casp_be_parallel(cpu_env, tcg_rs,
2431 clean_addr, t1, t2);
2432 }
2433 tcg_temp_free_i32(tcg_rs);
2434 } else {
2435 gen_helper_exit_atomic(cpu_env);
2436 s->base.is_jmp = DISAS_NORETURN;
2437 }
2438 } else {
2439 TCGv_i64 d1 = tcg_temp_new_i64();
2440 TCGv_i64 d2 = tcg_temp_new_i64();
2441 TCGv_i64 a2 = tcg_temp_new_i64();
2442 TCGv_i64 c1 = tcg_temp_new_i64();
2443 TCGv_i64 c2 = tcg_temp_new_i64();
2444 TCGv_i64 zero = tcg_const_i64(0);
2445
2446 /* Load the two words, in memory order. */
2447 tcg_gen_qemu_ld_i64(d1, clean_addr, memidx,
2448 MO_64 | MO_ALIGN_16 | s->be_data);
2449 tcg_gen_addi_i64(a2, clean_addr, 8);
2450 tcg_gen_qemu_ld_i64(d2, clean_addr, memidx, MO_64 | s->be_data);
2451
2452 /* Compare the two words, also in memory order. */
2453 tcg_gen_setcond_i64(TCG_COND_EQ, c1, d1, s1);
2454 tcg_gen_setcond_i64(TCG_COND_EQ, c2, d2, s2);
2455 tcg_gen_and_i64(c2, c2, c1);
2456
2457 /* If compare equal, write back new data, else write back old data. */
2458 tcg_gen_movcond_i64(TCG_COND_NE, c1, c2, zero, t1, d1);
2459 tcg_gen_movcond_i64(TCG_COND_NE, c2, c2, zero, t2, d2);
2460 tcg_gen_qemu_st_i64(c1, clean_addr, memidx, MO_64 | s->be_data);
2461 tcg_gen_qemu_st_i64(c2, a2, memidx, MO_64 | s->be_data);
2462 tcg_temp_free_i64(a2);
2463 tcg_temp_free_i64(c1);
2464 tcg_temp_free_i64(c2);
2465 tcg_temp_free_i64(zero);
2466
2467 /* Write back the data from memory to Rs. */
2468 tcg_gen_mov_i64(s1, d1);
2469 tcg_gen_mov_i64(s2, d2);
2470 tcg_temp_free_i64(d1);
2471 tcg_temp_free_i64(d2);
2472 }
2473 }
2474
2475 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2476 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2477 */
2478 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2479 {
2480 int opc0 = extract32(opc, 0, 1);
2481 int regsize;
2482
2483 if (is_signed) {
2484 regsize = opc0 ? 32 : 64;
2485 } else {
2486 regsize = size == 3 ? 64 : 32;
2487 }
2488 return regsize == 64;
2489 }
2490
2491 /* Load/store exclusive
2492 *
2493 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2494 * +-----+-------------+----+---+----+------+----+-------+------+------+
2495 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2496 * +-----+-------------+----+---+----+------+----+-------+------+------+
2497 *
2498 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2499 * L: 0 -> store, 1 -> load
2500 * o2: 0 -> exclusive, 1 -> not
2501 * o1: 0 -> single register, 1 -> register pair
2502 * o0: 1 -> load-acquire/store-release, 0 -> not
2503 */
2504 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2505 {
2506 int rt = extract32(insn, 0, 5);
2507 int rn = extract32(insn, 5, 5);
2508 int rt2 = extract32(insn, 10, 5);
2509 int rs = extract32(insn, 16, 5);
2510 int is_lasr = extract32(insn, 15, 1);
2511 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2512 int size = extract32(insn, 30, 2);
2513 TCGv_i64 clean_addr;
2514
2515 switch (o2_L_o1_o0) {
2516 case 0x0: /* STXR */
2517 case 0x1: /* STLXR */
2518 if (rn == 31) {
2519 gen_check_sp_alignment(s);
2520 }
2521 if (is_lasr) {
2522 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2523 }
2524 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2525 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false);
2526 return;
2527
2528 case 0x4: /* LDXR */
2529 case 0x5: /* LDAXR */
2530 if (rn == 31) {
2531 gen_check_sp_alignment(s);
2532 }
2533 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2534 s->is_ldex = true;
2535 gen_load_exclusive(s, rt, rt2, clean_addr, size, false);
2536 if (is_lasr) {
2537 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2538 }
2539 return;
2540
2541 case 0x8: /* STLLR */
2542 if (!dc_isar_feature(aa64_lor, s)) {
2543 break;
2544 }
2545 /* StoreLORelease is the same as Store-Release for QEMU. */
2546 /* fall through */
2547 case 0x9: /* STLR */
2548 /* Generate ISS for non-exclusive accesses including LASR. */
2549 if (rn == 31) {
2550 gen_check_sp_alignment(s);
2551 }
2552 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2553 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2554 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size, true, rt,
2555 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2556 return;
2557
2558 case 0xc: /* LDLAR */
2559 if (!dc_isar_feature(aa64_lor, s)) {
2560 break;
2561 }
2562 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2563 /* fall through */
2564 case 0xd: /* LDAR */
2565 /* Generate ISS for non-exclusive accesses including LASR. */
2566 if (rn == 31) {
2567 gen_check_sp_alignment(s);
2568 }
2569 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2570 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, false, true, rt,
2571 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2572 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2573 return;
2574
2575 case 0x2: case 0x3: /* CASP / STXP */
2576 if (size & 2) { /* STXP / STLXP */
2577 if (rn == 31) {
2578 gen_check_sp_alignment(s);
2579 }
2580 if (is_lasr) {
2581 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2582 }
2583 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2584 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true);
2585 return;
2586 }
2587 if (rt2 == 31
2588 && ((rt | rs) & 1) == 0
2589 && dc_isar_feature(aa64_atomics, s)) {
2590 /* CASP / CASPL */
2591 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2592 return;
2593 }
2594 break;
2595
2596 case 0x6: case 0x7: /* CASPA / LDXP */
2597 if (size & 2) { /* LDXP / LDAXP */
2598 if (rn == 31) {
2599 gen_check_sp_alignment(s);
2600 }
2601 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2602 s->is_ldex = true;
2603 gen_load_exclusive(s, rt, rt2, clean_addr, size, true);
2604 if (is_lasr) {
2605 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2606 }
2607 return;
2608 }
2609 if (rt2 == 31
2610 && ((rt | rs) & 1) == 0
2611 && dc_isar_feature(aa64_atomics, s)) {
2612 /* CASPA / CASPAL */
2613 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2614 return;
2615 }
2616 break;
2617
2618 case 0xa: /* CAS */
2619 case 0xb: /* CASL */
2620 case 0xe: /* CASA */
2621 case 0xf: /* CASAL */
2622 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2623 gen_compare_and_swap(s, rs, rt, rn, size);
2624 return;
2625 }
2626 break;
2627 }
2628 unallocated_encoding(s);
2629 }
2630
2631 /*
2632 * Load register (literal)
2633 *
2634 * 31 30 29 27 26 25 24 23 5 4 0
2635 * +-----+-------+---+-----+-------------------+-------+
2636 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2637 * +-----+-------+---+-----+-------------------+-------+
2638 *
2639 * V: 1 -> vector (simd/fp)
2640 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2641 * 10-> 32 bit signed, 11 -> prefetch
2642 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2643 */
2644 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2645 {
2646 int rt = extract32(insn, 0, 5);
2647 int64_t imm = sextract32(insn, 5, 19) << 2;
2648 bool is_vector = extract32(insn, 26, 1);
2649 int opc = extract32(insn, 30, 2);
2650 bool is_signed = false;
2651 int size = 2;
2652 TCGv_i64 tcg_rt, clean_addr;
2653
2654 if (is_vector) {
2655 if (opc == 3) {
2656 unallocated_encoding(s);
2657 return;
2658 }
2659 size = 2 + opc;
2660 if (!fp_access_check(s)) {
2661 return;
2662 }
2663 } else {
2664 if (opc == 3) {
2665 /* PRFM (literal) : prefetch */
2666 return;
2667 }
2668 size = 2 + extract32(opc, 0, 1);
2669 is_signed = extract32(opc, 1, 1);
2670 }
2671
2672 tcg_rt = cpu_reg(s, rt);
2673
2674 clean_addr = tcg_const_i64((s->pc - 4) + imm);
2675 if (is_vector) {
2676 do_fp_ld(s, rt, clean_addr, size);
2677 } else {
2678 /* Only unsigned 32bit loads target 32bit registers. */
2679 bool iss_sf = opc != 0;
2680
2681 do_gpr_ld(s, tcg_rt, clean_addr, size, is_signed, false,
2682 true, rt, iss_sf, false);
2683 }
2684 tcg_temp_free_i64(clean_addr);
2685 }
2686
2687 /*
2688 * LDNP (Load Pair - non-temporal hint)
2689 * LDP (Load Pair - non vector)
2690 * LDPSW (Load Pair Signed Word - non vector)
2691 * STNP (Store Pair - non-temporal hint)
2692 * STP (Store Pair - non vector)
2693 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2694 * LDP (Load Pair of SIMD&FP)
2695 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2696 * STP (Store Pair of SIMD&FP)
2697 *
2698 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2699 * +-----+-------+---+---+-------+---+-----------------------------+
2700 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2701 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2702 *
2703 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2704 * LDPSW 01
2705 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2706 * V: 0 -> GPR, 1 -> Vector
2707 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2708 * 10 -> signed offset, 11 -> pre-index
2709 * L: 0 -> Store 1 -> Load
2710 *
2711 * Rt, Rt2 = GPR or SIMD registers to be stored
2712 * Rn = general purpose register containing address
2713 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2714 */
2715 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2716 {
2717 int rt = extract32(insn, 0, 5);
2718 int rn = extract32(insn, 5, 5);
2719 int rt2 = extract32(insn, 10, 5);
2720 uint64_t offset = sextract64(insn, 15, 7);
2721 int index = extract32(insn, 23, 2);
2722 bool is_vector = extract32(insn, 26, 1);
2723 bool is_load = extract32(insn, 22, 1);
2724 int opc = extract32(insn, 30, 2);
2725
2726 bool is_signed = false;
2727 bool postindex = false;
2728 bool wback = false;
2729
2730 TCGv_i64 clean_addr, dirty_addr;
2731
2732 int size;
2733
2734 if (opc == 3) {
2735 unallocated_encoding(s);
2736 return;
2737 }
2738
2739 if (is_vector) {
2740 size = 2 + opc;
2741 } else {
2742 size = 2 + extract32(opc, 1, 1);
2743 is_signed = extract32(opc, 0, 1);
2744 if (!is_load && is_signed) {
2745 unallocated_encoding(s);
2746 return;
2747 }
2748 }
2749
2750 switch (index) {
2751 case 1: /* post-index */
2752 postindex = true;
2753 wback = true;
2754 break;
2755 case 0:
2756 /* signed offset with "non-temporal" hint. Since we don't emulate
2757 * caches we don't care about hints to the cache system about
2758 * data access patterns, and handle this identically to plain
2759 * signed offset.
2760 */
2761 if (is_signed) {
2762 /* There is no non-temporal-hint version of LDPSW */
2763 unallocated_encoding(s);
2764 return;
2765 }
2766 postindex = false;
2767 break;
2768 case 2: /* signed offset, rn not updated */
2769 postindex = false;
2770 break;
2771 case 3: /* pre-index */
2772 postindex = false;
2773 wback = true;
2774 break;
2775 }
2776
2777 if (is_vector && !fp_access_check(s)) {
2778 return;
2779 }
2780
2781 offset <<= size;
2782
2783 if (rn == 31) {
2784 gen_check_sp_alignment(s);
2785 }
2786
2787 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2788 if (!postindex) {
2789 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2790 }
2791 clean_addr = clean_data_tbi(s, dirty_addr);
2792
2793 if (is_vector) {
2794 if (is_load) {
2795 do_fp_ld(s, rt, clean_addr, size);
2796 } else {
2797 do_fp_st(s, rt, clean_addr, size);
2798 }
2799 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2800 if (is_load) {
2801 do_fp_ld(s, rt2, clean_addr, size);
2802 } else {
2803 do_fp_st(s, rt2, clean_addr, size);
2804 }
2805 } else {
2806 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2807 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2808
2809 if (is_load) {
2810 TCGv_i64 tmp = tcg_temp_new_i64();
2811
2812 /* Do not modify tcg_rt before recognizing any exception
2813 * from the second load.
2814 */
2815 do_gpr_ld(s, tmp, clean_addr, size, is_signed, false,
2816 false, 0, false, false);
2817 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2818 do_gpr_ld(s, tcg_rt2, clean_addr, size, is_signed, false,
2819 false, 0, false, false);
2820
2821 tcg_gen_mov_i64(tcg_rt, tmp);
2822 tcg_temp_free_i64(tmp);
2823 } else {
2824 do_gpr_st(s, tcg_rt, clean_addr, size,
2825 false, 0, false, false);
2826 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2827 do_gpr_st(s, tcg_rt2, clean_addr, size,
2828 false, 0, false, false);
2829 }
2830 }
2831
2832 if (wback) {
2833 if (postindex) {
2834 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2835 }
2836 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
2837 }
2838 }
2839
2840 /*
2841 * Load/store (immediate post-indexed)
2842 * Load/store (immediate pre-indexed)
2843 * Load/store (unscaled immediate)
2844 *
2845 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2846 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2847 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2848 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2849 *
2850 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2851 10 -> unprivileged
2852 * V = 0 -> non-vector
2853 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2854 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2855 */
2856 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2857 int opc,
2858 int size,
2859 int rt,
2860 bool is_vector)
2861 {
2862 int rn = extract32(insn, 5, 5);
2863 int imm9 = sextract32(insn, 12, 9);
2864 int idx = extract32(insn, 10, 2);
2865 bool is_signed = false;
2866 bool is_store = false;
2867 bool is_extended = false;
2868 bool is_unpriv = (idx == 2);
2869 bool iss_valid = !is_vector;
2870 bool post_index;
2871 bool writeback;
2872
2873 TCGv_i64 clean_addr, dirty_addr;
2874
2875 if (is_vector) {
2876 size |= (opc & 2) << 1;
2877 if (size > 4 || is_unpriv) {
2878 unallocated_encoding(s);
2879 return;
2880 }
2881 is_store = ((opc & 1) == 0);
2882 if (!fp_access_check(s)) {
2883 return;
2884 }
2885 } else {
2886 if (size == 3 && opc == 2) {
2887 /* PRFM - prefetch */
2888 if (idx != 0) {
2889 unallocated_encoding(s);
2890 return;
2891 }
2892 return;
2893 }
2894 if (opc == 3 && size > 1) {
2895 unallocated_encoding(s);
2896 return;
2897 }
2898 is_store = (opc == 0);
2899 is_signed = extract32(opc, 1, 1);
2900 is_extended = (size < 3) && extract32(opc, 0, 1);
2901 }
2902
2903 switch (idx) {
2904 case 0:
2905 case 2:
2906 post_index = false;
2907 writeback = false;
2908 break;
2909 case 1:
2910 post_index = true;
2911 writeback = true;
2912 break;
2913 case 3:
2914 post_index = false;
2915 writeback = true;
2916 break;
2917 default:
2918 g_assert_not_reached();
2919 }
2920
2921 if (rn == 31) {
2922 gen_check_sp_alignment(s);
2923 }
2924
2925 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2926 if (!post_index) {
2927 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
2928 }
2929 clean_addr = clean_data_tbi(s, dirty_addr);
2930
2931 if (is_vector) {
2932 if (is_store) {
2933 do_fp_st(s, rt, clean_addr, size);
2934 } else {
2935 do_fp_ld(s, rt, clean_addr, size);
2936 }
2937 } else {
2938 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2939 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2940 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2941
2942 if (is_store) {
2943 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx,
2944 iss_valid, rt, iss_sf, false);
2945 } else {
2946 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size,
2947 is_signed, is_extended, memidx,
2948 iss_valid, rt, iss_sf, false);
2949 }
2950 }
2951
2952 if (writeback) {
2953 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2954 if (post_index) {
2955 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
2956 }
2957 tcg_gen_mov_i64(tcg_rn, dirty_addr);
2958 }
2959 }
2960
2961 /*
2962 * Load/store (register offset)
2963 *
2964 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2965 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2966 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2967 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2968 *
2969 * For non-vector:
2970 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2971 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2972 * For vector:
2973 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2974 * opc<0>: 0 -> store, 1 -> load
2975 * V: 1 -> vector/simd
2976 * opt: extend encoding (see DecodeRegExtend)
2977 * S: if S=1 then scale (essentially index by sizeof(size))
2978 * Rt: register to transfer into/out of
2979 * Rn: address register or SP for base
2980 * Rm: offset register or ZR for offset
2981 */
2982 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
2983 int opc,
2984 int size,
2985 int rt,
2986 bool is_vector)
2987 {
2988 int rn = extract32(insn, 5, 5);
2989 int shift = extract32(insn, 12, 1);
2990 int rm = extract32(insn, 16, 5);
2991 int opt = extract32(insn, 13, 3);
2992 bool is_signed = false;
2993 bool is_store = false;
2994 bool is_extended = false;
2995
2996 TCGv_i64 tcg_rm, clean_addr, dirty_addr;
2997
2998 if (extract32(opt, 1, 1) == 0) {
2999 unallocated_encoding(s);
3000 return;
3001 }
3002
3003 if (is_vector) {
3004 size |= (opc & 2) << 1;
3005 if (size > 4) {
3006 unallocated_encoding(s);
3007 return;
3008 }
3009 is_store = !extract32(opc, 0, 1);
3010 if (!fp_access_check(s)) {
3011 return;
3012 }
3013 } else {
3014 if (size == 3 && opc == 2) {
3015 /* PRFM - prefetch */
3016 return;
3017 }
3018 if (opc == 3 && size > 1) {
3019 unallocated_encoding(s);
3020 return;
3021 }
3022 is_store = (opc == 0);
3023 is_signed = extract32(opc, 1, 1);
3024 is_extended = (size < 3) && extract32(opc, 0, 1);
3025 }
3026
3027 if (rn == 31) {
3028 gen_check_sp_alignment(s);
3029 }
3030 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3031
3032 tcg_rm = read_cpu_reg(s, rm, 1);
3033 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3034
3035 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3036 clean_addr = clean_data_tbi(s, dirty_addr);
3037
3038 if (is_vector) {
3039 if (is_store) {
3040 do_fp_st(s, rt, clean_addr, size);
3041 } else {
3042 do_fp_ld(s, rt, clean_addr, size);
3043 }
3044 } else {
3045 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3046 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3047 if (is_store) {
3048 do_gpr_st(s, tcg_rt, clean_addr, size,
3049 true, rt, iss_sf, false);
3050 } else {
3051 do_gpr_ld(s, tcg_rt, clean_addr, size,
3052 is_signed, is_extended,
3053 true, rt, iss_sf, false);
3054 }
3055 }
3056 }
3057
3058 /*
3059 * Load/store (unsigned immediate)
3060 *
3061 * 31 30 29 27 26 25 24 23 22 21 10 9 5
3062 * +----+-------+---+-----+-----+------------+-------+------+
3063 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
3064 * +----+-------+---+-----+-----+------------+-------+------+
3065 *
3066 * For non-vector:
3067 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3068 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3069 * For vector:
3070 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3071 * opc<0>: 0 -> store, 1 -> load
3072 * Rn: base address register (inc SP)
3073 * Rt: target register
3074 */
3075 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3076 int opc,
3077 int size,
3078 int rt,
3079 bool is_vector)
3080 {
3081 int rn = extract32(insn, 5, 5);
3082 unsigned int imm12 = extract32(insn, 10, 12);
3083 unsigned int offset;
3084
3085 TCGv_i64 clean_addr, dirty_addr;
3086
3087 bool is_store;
3088 bool is_signed = false;
3089 bool is_extended = false;
3090
3091 if (is_vector) {
3092 size |= (opc & 2) << 1;
3093 if (size > 4) {
3094 unallocated_encoding(s);
3095 return;
3096 }
3097 is_store = !extract32(opc, 0, 1);
3098 if (!fp_access_check(s)) {
3099 return;
3100 }
3101 } else {
3102 if (size == 3 && opc == 2) {
3103 /* PRFM - prefetch */
3104 return;
3105 }
3106 if (opc == 3 && size > 1) {
3107 unallocated_encoding(s);
3108 return;
3109 }
3110 is_store = (opc == 0);
3111 is_signed = extract32(opc, 1, 1);
3112 is_extended = (size < 3) && extract32(opc, 0, 1);
3113 }
3114
3115 if (rn == 31) {
3116 gen_check_sp_alignment(s);
3117 }
3118 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3119 offset = imm12 << size;
3120 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3121 clean_addr = clean_data_tbi(s, dirty_addr);
3122
3123 if (is_vector) {
3124 if (is_store) {
3125 do_fp_st(s, rt, clean_addr, size);
3126 } else {
3127 do_fp_ld(s, rt, clean_addr, size);
3128 }
3129 } else {
3130 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3131 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3132 if (is_store) {
3133 do_gpr_st(s, tcg_rt, clean_addr, size,
3134 true, rt, iss_sf, false);
3135 } else {
3136 do_gpr_ld(s, tcg_rt, clean_addr, size, is_signed, is_extended,
3137 true, rt, iss_sf, false);
3138 }
3139 }
3140 }
3141
3142 /* Atomic memory operations
3143 *
3144 * 31 30 27 26 24 22 21 16 15 12 10 5 0
3145 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3146 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
3147 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3148 *
3149 * Rt: the result register
3150 * Rn: base address or SP
3151 * Rs: the source register for the operation
3152 * V: vector flag (always 0 as of v8.3)
3153 * A: acquire flag
3154 * R: release flag
3155 */
3156 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3157 int size, int rt, bool is_vector)
3158 {
3159 int rs = extract32(insn, 16, 5);
3160 int rn = extract32(insn, 5, 5);
3161 int o3_opc = extract32(insn, 12, 4);
3162 TCGv_i64 tcg_rs, clean_addr;
3163 AtomicThreeOpFn *fn;
3164
3165 if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3166 unallocated_encoding(s);
3167 return;
3168 }
3169 switch (o3_opc) {
3170 case 000: /* LDADD */
3171 fn = tcg_gen_atomic_fetch_add_i64;
3172 break;
3173 case 001: /* LDCLR */
3174 fn = tcg_gen_atomic_fetch_and_i64;
3175 break;
3176 case 002: /* LDEOR */
3177 fn = tcg_gen_atomic_fetch_xor_i64;
3178 break;
3179 case 003: /* LDSET */
3180 fn = tcg_gen_atomic_fetch_or_i64;
3181 break;
3182 case 004: /* LDSMAX */
3183 fn = tcg_gen_atomic_fetch_smax_i64;
3184 break;
3185 case 005: /* LDSMIN */
3186 fn = tcg_gen_atomic_fetch_smin_i64;
3187 break;
3188 case 006: /* LDUMAX */
3189 fn = tcg_gen_atomic_fetch_umax_i64;
3190 break;
3191 case 007: /* LDUMIN */
3192 fn = tcg_gen_atomic_fetch_umin_i64;
3193 break;
3194 case 010: /* SWP */
3195 fn = tcg_gen_atomic_xchg_i64;
3196 break;
3197 default:
3198 unallocated_encoding(s);
3199 return;
3200 }
3201
3202 if (rn == 31) {
3203 gen_check_sp_alignment(s);
3204 }
3205 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
3206 tcg_rs = read_cpu_reg(s, rs, true);
3207
3208 if (o3_opc == 1) { /* LDCLR */
3209 tcg_gen_not_i64(tcg_rs, tcg_rs);
3210 }
3211
3212 /* The tcg atomic primitives are all full barriers. Therefore we
3213 * can ignore the Acquire and Release bits of this instruction.
3214 */
3215 fn(cpu_reg(s, rt), clean_addr, tcg_rs, get_mem_index(s),
3216 s->be_data | size | MO_ALIGN);
3217 }
3218
3219 /*
3220 * PAC memory operations
3221 *
3222 * 31 30 27 26 24 22 21 12 11 10 5 0
3223 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3224 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt |
3225 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3226 *
3227 * Rt: the result register
3228 * Rn: base address or SP
3229 * V: vector flag (always 0 as of v8.3)
3230 * M: clear for key DA, set for key DB
3231 * W: pre-indexing flag
3232 * S: sign for imm9.
3233 */
3234 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3235 int size, int rt, bool is_vector)
3236 {
3237 int rn = extract32(insn, 5, 5);
3238 bool is_wback = extract32(insn, 11, 1);
3239 bool use_key_a = !extract32(insn, 23, 1);
3240 int offset;
3241 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3242
3243 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3244 unallocated_encoding(s);
3245 return;
3246 }
3247
3248 if (rn == 31) {
3249 gen_check_sp_alignment(s);
3250 }
3251 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3252
3253 if (s->pauth_active) {
3254 if (use_key_a) {
3255 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, cpu_X[31]);
3256 } else {
3257 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, cpu_X[31]);
3258 }
3259 }
3260
3261 /* Form the 10-bit signed, scaled offset. */
3262 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3263 offset = sextract32(offset << size, 0, 10 + size);
3264 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3265
3266 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3267 clean_addr = clean_data_tbi(s, dirty_addr);
3268
3269 tcg_rt = cpu_reg(s, rt);
3270 do_gpr_ld(s, tcg_rt, clean_addr, size, /* is_signed */ false,
3271 /* extend */ false, /* iss_valid */ !is_wback,
3272 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3273
3274 if (is_wback) {
3275 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3276 }
3277 }
3278
3279 /* Load/store register (all forms) */
3280 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3281 {
3282 int rt = extract32(insn, 0, 5);
3283 int opc = extract32(insn, 22, 2);
3284 bool is_vector = extract32(insn, 26, 1);
3285 int size = extract32(insn, 30, 2);
3286
3287 switch (extract32(insn, 24, 2)) {
3288 case 0:
3289 if (extract32(insn, 21, 1) == 0) {
3290 /* Load/store register (unscaled immediate)
3291 * Load/store immediate pre/post-indexed
3292 * Load/store register unprivileged
3293 */
3294 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3295 return;
3296 }
3297 switch (extract32(insn, 10, 2)) {
3298 case 0:
3299 disas_ldst_atomic(s, insn, size, rt, is_vector);
3300 return;
3301 case 2:
3302 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3303 return;
3304 default:
3305 disas_ldst_pac(s, insn, size, rt, is_vector);
3306 return;
3307 }
3308 break;
3309 case 1:
3310 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3311 return;
3312 }
3313 unallocated_encoding(s);
3314 }
3315
3316 /* AdvSIMD load/store multiple structures
3317 *
3318 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
3319 * +---+---+---------------+---+-------------+--------+------+------+------+
3320 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
3321 * +---+---+---------------+---+-------------+--------+------+------+------+
3322 *
3323 * AdvSIMD load/store multiple structures (post-indexed)
3324 *
3325 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
3326 * +---+---+---------------+---+---+---------+--------+------+------+------+
3327 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
3328 * +---+---+---------------+---+---+---------+--------+------+------+------+
3329 *
3330 * Rt: first (or only) SIMD&FP register to be transferred
3331 * Rn: base address or SP
3332 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3333 */
3334 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3335 {
3336 int rt = extract32(insn, 0, 5);
3337 int rn = extract32(insn, 5, 5);
3338 int rm = extract32(insn, 16, 5);
3339 int size = extract32(insn, 10, 2);
3340 int opcode = extract32(insn, 12, 4);
3341 bool is_store = !extract32(insn, 22, 1);
3342 bool is_postidx = extract32(insn, 23, 1);
3343 bool is_q = extract32(insn, 30, 1);
3344 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3345 TCGMemOp endian = s->be_data;
3346
3347 int ebytes; /* bytes per element */
3348 int elements; /* elements per vector */
3349 int rpt; /* num iterations */
3350 int selem; /* structure elements */
3351 int r;
3352
3353 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3354 unallocated_encoding(s);
3355 return;
3356 }
3357
3358 if (!is_postidx && rm != 0) {
3359 unallocated_encoding(s);
3360 return;
3361 }
3362
3363 /* From the shared decode logic */
3364 switch (opcode) {
3365 case 0x0:
3366 rpt = 1;
3367 selem = 4;
3368 break;
3369 case 0x2:
3370 rpt = 4;
3371 selem = 1;
3372 break;
3373 case 0x4:
3374 rpt = 1;
3375 selem = 3;
3376 break;
3377 case 0x6:
3378 rpt = 3;
3379 selem = 1;
3380 break;
3381 case 0x7:
3382 rpt = 1;
3383 selem = 1;
3384 break;
3385 case 0x8:
3386 rpt = 1;
3387 selem = 2;
3388 break;
3389 case 0xa:
3390 rpt = 2;
3391 selem = 1;
3392 break;
3393 default:
3394 unallocated_encoding(s);
3395 return;
3396 }
3397
3398 if (size == 3 && !is_q && selem != 1) {
3399 /* reserved */
3400 unallocated_encoding(s);
3401 return;
3402 }
3403
3404 if (!fp_access_check(s)) {
3405 return;
3406 }
3407
3408 if (rn == 31) {
3409 gen_check_sp_alignment(s);
3410 }
3411
3412 /* For our purposes, bytes are always little-endian. */
3413 if (size == 0) {
3414 endian = MO_LE;
3415 }
3416
3417 /* Consecutive little-endian elements from a single register
3418 * can be promoted to a larger little-endian operation.
3419 */
3420 if (selem == 1 && endian == MO_LE) {
3421 size = 3;
3422 }
3423 ebytes = 1 << size;
3424 elements = (is_q ? 16 : 8) / ebytes;
3425
3426 tcg_rn = cpu_reg_sp(s, rn);
3427 clean_addr = clean_data_tbi(s, tcg_rn);
3428 tcg_ebytes = tcg_const_i64(ebytes);
3429
3430 for (r = 0; r < rpt; r++) {
3431 int e;
3432 for (e = 0; e < elements; e++) {
3433 int xs;
3434 for (xs = 0; xs < selem; xs++) {
3435 int tt = (rt + r + xs) % 32;
3436 if (is_store) {
3437 do_vec_st(s, tt, e, clean_addr, size, endian);
3438 } else {
3439 do_vec_ld(s, tt, e, clean_addr, size, endian);
3440 }
3441 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3442 }
3443 }
3444 }
3445 tcg_temp_free_i64(tcg_ebytes);
3446
3447 if (!is_store) {
3448 /* For non-quad operations, setting a slice of the low
3449 * 64 bits of the register clears the high 64 bits (in
3450 * the ARM ARM pseudocode this is implicit in the fact
3451 * that 'rval' is a 64 bit wide variable).
3452 * For quad operations, we might still need to zero the
3453 * high bits of SVE.
3454 */
3455 for (r = 0; r < rpt * selem; r++) {
3456 int tt = (rt + r) % 32;
3457 clear_vec_high(s, is_q, tt);
3458 }
3459 }
3460
3461 if (is_postidx) {
3462 if (rm == 31) {
3463 tcg_gen_addi_i64(tcg_rn, tcg_rn, rpt * elements * selem * ebytes);
3464 } else {
3465 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3466 }
3467 }
3468 }
3469
3470 /* AdvSIMD load/store single structure
3471 *
3472 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3473 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3474 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3475 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3476 *
3477 * AdvSIMD load/store single structure (post-indexed)
3478 *
3479 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3480 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3481 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3482 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3483 *
3484 * Rt: first (or only) SIMD&FP register to be transferred
3485 * Rn: base address or SP
3486 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3487 * index = encoded in Q:S:size dependent on size
3488 *
3489 * lane_size = encoded in R, opc
3490 * transfer width = encoded in opc, S, size
3491 */
3492 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3493 {
3494 int rt = extract32(insn, 0, 5);
3495 int rn = extract32(insn, 5, 5);
3496 int rm = extract32(insn, 16, 5);
3497 int size = extract32(insn, 10, 2);
3498 int S = extract32(insn, 12, 1);
3499 int opc = extract32(insn, 13, 3);
3500 int R = extract32(insn, 21, 1);
3501 int is_load = extract32(insn, 22, 1);
3502 int is_postidx = extract32(insn, 23, 1);
3503 int is_q = extract32(insn, 30, 1);
3504
3505 int scale = extract32(opc, 1, 2);
3506 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3507 bool replicate = false;
3508 int index = is_q << 3 | S << 2 | size;
3509 int ebytes, xs;
3510 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3511
3512 if (extract32(insn, 31, 1)) {
3513 unallocated_encoding(s);
3514 return;
3515 }
3516 if (!is_postidx && rm != 0) {
3517 unallocated_encoding(s);
3518 return;
3519 }
3520
3521 switch (scale) {
3522 case 3:
3523 if (!is_load || S) {
3524 unallocated_encoding(s);
3525 return;
3526 }
3527 scale = size;
3528 replicate = true;
3529 break;
3530 case 0:
3531 break;
3532 case 1:
3533 if (extract32(size, 0, 1)) {
3534 unallocated_encoding(s);
3535 return;
3536 }
3537 index >>= 1;
3538 break;
3539 case 2:
3540 if (extract32(size, 1, 1)) {
3541 unallocated_encoding(s);
3542 return;
3543 }
3544 if (!extract32(size, 0, 1)) {
3545 index >>= 2;
3546 } else {
3547 if (S) {
3548 unallocated_encoding(s);
3549 return;
3550 }
3551 index >>= 3;
3552 scale = 3;
3553 }
3554 break;
3555 default:
3556 g_assert_not_reached();
3557 }
3558
3559 if (!fp_access_check(s)) {
3560 return;
3561 }
3562
3563 ebytes = 1 << scale;
3564
3565 if (rn == 31) {
3566 gen_check_sp_alignment(s);
3567 }
3568
3569 tcg_rn = cpu_reg_sp(s, rn);
3570 clean_addr = clean_data_tbi(s, tcg_rn);
3571 tcg_ebytes = tcg_const_i64(ebytes);
3572
3573 for (xs = 0; xs < selem; xs++) {
3574 if (replicate) {
3575 /* Load and replicate to all elements */
3576 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3577
3578 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr,
3579 get_mem_index(s), s->be_data + scale);
3580 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3581 (is_q + 1) * 8, vec_full_reg_size(s),
3582 tcg_tmp);
3583 tcg_temp_free_i64(tcg_tmp);
3584 } else {
3585 /* Load/store one element per register */
3586 if (is_load) {
3587 do_vec_ld(s, rt, index, clean_addr, scale, s->be_data);
3588 } else {
3589 do_vec_st(s, rt, index, clean_addr, scale, s->be_data);
3590 }
3591 }
3592 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3593 rt = (rt + 1) % 32;
3594 }
3595 tcg_temp_free_i64(tcg_ebytes);
3596
3597 if (is_postidx) {
3598 if (rm == 31) {
3599 tcg_gen_addi_i64(tcg_rn, tcg_rn, selem * ebytes);
3600 } else {
3601 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3602 }
3603 }
3604 }
3605
3606 /* Loads and stores */
3607 static void disas_ldst(DisasContext *s, uint32_t insn)
3608 {
3609 switch (extract32(insn, 24, 6)) {
3610 case 0x08: /* Load/store exclusive */
3611 disas_ldst_excl(s, insn);
3612 break;
3613 case 0x18: case 0x1c: /* Load register (literal) */
3614 disas_ld_lit(s, insn);
3615 break;
3616 case 0x28: case 0x29:
3617 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
3618 disas_ldst_pair(s, insn);
3619 break;
3620 case 0x38: case 0x39:
3621 case 0x3c: case 0x3d: /* Load/store register (all forms) */
3622 disas_ldst_reg(s, insn);
3623 break;
3624 case 0x0c: /* AdvSIMD load/store multiple structures */
3625 disas_ldst_multiple_struct(s, insn);
3626 break;
3627 case 0x0d: /* AdvSIMD load/store single structure */
3628 disas_ldst_single_struct(s, insn);
3629 break;
3630 default:
3631 unallocated_encoding(s);
3632 break;
3633 }
3634 }
3635
3636 /* PC-rel. addressing
3637 * 31 30 29 28 24 23 5 4 0
3638 * +----+-------+-----------+-------------------+------+
3639 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
3640 * +----+-------+-----------+-------------------+------+
3641 */
3642 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
3643 {
3644 unsigned int page, rd;
3645 uint64_t base;
3646 uint64_t offset;
3647
3648 page = extract32(insn, 31, 1);
3649 /* SignExtend(immhi:immlo) -> offset */
3650 offset = sextract64(insn, 5, 19);
3651 offset = offset << 2 | extract32(insn, 29, 2);
3652 rd = extract32(insn, 0, 5);
3653 base = s->pc - 4;
3654
3655 if (page) {
3656 /* ADRP (page based) */
3657 base &= ~0xfff;
3658 offset <<= 12;
3659 }
3660
3661 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
3662 }
3663
3664 /*
3665 * Add/subtract (immediate)
3666 *
3667 * 31 30 29 28 24 23 22 21 10 9 5 4 0
3668 * +--+--+--+-----------+-----+-------------+-----+-----+
3669 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
3670 * +--+--+--+-----------+-----+-------------+-----+-----+
3671 *
3672 * sf: 0 -> 32bit, 1 -> 64bit
3673 * op: 0 -> add , 1 -> sub
3674 * S: 1 -> set flags
3675 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
3676 */
3677 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
3678 {
3679 int rd = extract32(insn, 0, 5);
3680 int rn = extract32(insn, 5, 5);
3681 uint64_t imm = extract32(insn, 10, 12);
3682 int shift = extract32(insn, 22, 2);
3683 bool setflags = extract32(insn, 29, 1);
3684 bool sub_op = extract32(insn, 30, 1);
3685 bool is_64bit = extract32(insn, 31, 1);
3686
3687 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3688 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
3689 TCGv_i64 tcg_result;
3690
3691 switch (shift) {
3692 case 0x0:
3693 break;
3694 case 0x1:
3695 imm <<= 12;
3696 break;
3697 default:
3698 unallocated_encoding(s);
3699 return;
3700 }
3701
3702 tcg_result = tcg_temp_new_i64();
3703 if (!setflags) {
3704 if (sub_op) {
3705 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
3706 } else {
3707 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
3708 }
3709 } else {
3710 TCGv_i64 tcg_imm = tcg_const_i64(imm);
3711 if (sub_op) {
3712 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3713 } else {
3714 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3715 }
3716 tcg_temp_free_i64(tcg_imm);
3717 }
3718
3719 if (is_64bit) {
3720 tcg_gen_mov_i64(tcg_rd, tcg_result);
3721 } else {
3722 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3723 }
3724
3725 tcg_temp_free_i64(tcg_result);
3726 }
3727
3728 /* The input should be a value in the bottom e bits (with higher
3729 * bits zero); returns that value replicated into every element
3730 * of size e in a 64 bit integer.
3731 */
3732 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
3733 {
3734 assert(e != 0);
3735 while (e < 64) {
3736 mask |= mask << e;
3737 e *= 2;
3738 }
3739 return mask;
3740 }
3741
3742 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
3743 static inline uint64_t bitmask64(unsigned int length)
3744 {
3745 assert(length > 0 && length <= 64);
3746 return ~0ULL >> (64 - length);
3747 }
3748
3749 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
3750 * only require the wmask. Returns false if the imms/immr/immn are a reserved
3751 * value (ie should cause a guest UNDEF exception), and true if they are
3752 * valid, in which case the decoded bit pattern is written to result.
3753 */
3754 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
3755 unsigned int imms, unsigned int immr)
3756 {
3757 uint64_t mask;
3758 unsigned e, levels, s, r;
3759 int len;
3760
3761 assert(immn < 2 && imms < 64 && immr < 64);
3762
3763 /* The bit patterns we create here are 64 bit patterns which
3764 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
3765 * 64 bits each. Each element contains the same value: a run
3766 * of between 1 and e-1 non-zero bits, rotated within the
3767 * element by between 0 and e-1 bits.
3768 *
3769 * The element size and run length are encoded into immn (1 bit)
3770 * and imms (6 bits) as follows:
3771 * 64 bit elements: immn = 1, imms = <length of run - 1>
3772 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
3773 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
3774 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
3775 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
3776 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
3777 * Notice that immn = 0, imms = 11111x is the only combination
3778 * not covered by one of the above options; this is reserved.
3779 * Further, <length of run - 1> all-ones is a reserved pattern.
3780 *
3781 * In all cases the rotation is by immr % e (and immr is 6 bits).
3782 */
3783
3784 /* First determine the element size */
3785 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
3786 if (len < 1) {
3787 /* This is the immn == 0, imms == 0x11111x case */
3788 return false;
3789 }
3790 e = 1 << len;
3791
3792 levels = e - 1;
3793 s = imms & levels;
3794 r = immr & levels;
3795
3796 if (s == levels) {
3797 /* <length of run - 1> mustn't be all-ones. */
3798 return false;
3799 }
3800
3801 /* Create the value of one element: s+1 set bits rotated
3802 * by r within the element (which is e bits wide)...
3803 */
3804 mask = bitmask64(s + 1);
3805 if (r) {
3806 mask = (mask >> r) | (mask << (e - r));
3807 mask &= bitmask64(e);
3808 }
3809 /* ...then replicate the element over the whole 64 bit value */
3810 mask = bitfield_replicate(mask, e);
3811 *result = mask;
3812 return true;
3813 }
3814
3815 /* Logical (immediate)
3816 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3817 * +----+-----+-------------+---+------+------+------+------+
3818 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
3819 * +----+-----+-------------+---+------+------+------+------+
3820 */
3821 static void disas_logic_imm(DisasContext *s, uint32_t insn)
3822 {
3823 unsigned int sf, opc, is_n, immr, imms, rn, rd;
3824 TCGv_i64 tcg_rd, tcg_rn;
3825 uint64_t wmask;
3826 bool is_and = false;
3827
3828 sf = extract32(insn, 31, 1);
3829 opc = extract32(insn, 29, 2);
3830 is_n = extract32(insn, 22, 1);
3831 immr = extract32(insn, 16, 6);
3832 imms = extract32(insn, 10, 6);
3833 rn = extract32(insn, 5, 5);
3834 rd = extract32(insn, 0, 5);
3835
3836 if (!sf && is_n) {
3837 unallocated_encoding(s);
3838 return;
3839 }
3840
3841 if (opc == 0x3) { /* ANDS */
3842 tcg_rd = cpu_reg(s, rd);
3843 } else {
3844 tcg_rd = cpu_reg_sp(s, rd);
3845 }
3846 tcg_rn = cpu_reg(s, rn);
3847
3848 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
3849 /* some immediate field values are reserved */
3850 unallocated_encoding(s);
3851 return;
3852 }
3853
3854 if (!sf) {
3855 wmask &= 0xffffffff;
3856 }
3857
3858 switch (opc) {
3859 case 0x3: /* ANDS */
3860 case 0x0: /* AND */
3861 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
3862 is_and = true;
3863 break;
3864 case 0x1: /* ORR */
3865 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
3866 break;
3867 case 0x2: /* EOR */
3868 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
3869 break;
3870 default:
3871 assert(FALSE); /* must handle all above */
3872 break;
3873 }
3874
3875 if (!sf && !is_and) {
3876 /* zero extend final result; we know we can skip this for AND
3877 * since the immediate had the high 32 bits clear.
3878 */
3879 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3880 }
3881
3882 if (opc == 3) { /* ANDS */
3883 gen_logic_CC(sf, tcg_rd);
3884 }
3885 }
3886
3887 /*
3888 * Move wide (immediate)
3889 *
3890 * 31 30 29 28 23 22 21 20 5 4 0
3891 * +--+-----+-------------+-----+----------------+------+
3892 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
3893 * +--+-----+-------------+-----+----------------+------+
3894 *
3895 * sf: 0 -> 32 bit, 1 -> 64 bit
3896 * opc: 00 -> N, 10 -> Z, 11 -> K
3897 * hw: shift/16 (0,16, and sf only 32, 48)
3898 */
3899 static void disas_movw_imm(DisasContext *s, uint32_t insn)
3900 {
3901 int rd = extract32(insn, 0, 5);
3902 uint64_t imm = extract32(insn, 5, 16);
3903 int sf = extract32(insn, 31, 1);
3904 int opc = extract32(insn, 29, 2);
3905 int pos = extract32(insn, 21, 2) << 4;
3906 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3907 TCGv_i64 tcg_imm;
3908
3909 if (!sf && (pos >= 32)) {
3910 unallocated_encoding(s);
3911 return;
3912 }
3913
3914 switch (opc) {
3915 case 0: /* MOVN */
3916 case 2: /* MOVZ */
3917 imm <<= pos;
3918 if (opc == 0) {
3919 imm = ~imm;
3920 }
3921 if (!sf) {
3922 imm &= 0xffffffffu;
3923 }
3924 tcg_gen_movi_i64(tcg_rd, imm);
3925 break;
3926 case 3: /* MOVK */
3927 tcg_imm = tcg_const_i64(imm);
3928 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
3929 tcg_temp_free_i64(tcg_imm);
3930 if (!sf) {
3931 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3932 }
3933 break;
3934 default:
3935 unallocated_encoding(s);
3936 break;
3937 }
3938 }
3939
3940 /* Bitfield
3941 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3942 * +----+-----+-------------+---+------+------+------+------+
3943 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
3944 * +----+-----+-------------+---+------+------+------+------+
3945 */
3946 static void disas_bitfield(DisasContext *s, uint32_t insn)
3947 {
3948 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
3949 TCGv_i64 tcg_rd, tcg_tmp;
3950
3951 sf = extract32(insn, 31, 1);
3952 opc = extract32(insn, 29, 2);
3953 n = extract32(insn, 22, 1);
3954 ri = extract32(insn, 16, 6);
3955 si = extract32(insn, 10, 6);
3956 rn = extract32(insn, 5, 5);
3957 rd = extract32(insn, 0, 5);
3958 bitsize = sf ? 64 : 32;
3959
3960 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
3961 unallocated_encoding(s);
3962 return;
3963 }
3964
3965 tcg_rd = cpu_reg(s, rd);
3966
3967 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
3968 to be smaller than bitsize, we'll never reference data outside the
3969 low 32-bits anyway. */
3970 tcg_tmp = read_cpu_reg(s, rn, 1);
3971
3972 /* Recognize simple(r) extractions. */
3973 if (si >= ri) {
3974 /* Wd<s-r:0> = Wn<s:r> */
3975 len = (si - ri) + 1;
3976 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
3977 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
3978 goto done;
3979 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
3980 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
3981 return;
3982 }
3983 /* opc == 1, BXFIL fall through to deposit */
3984 tcg_gen_extract_i64(tcg_tmp, tcg_tmp, ri, len);
3985 pos = 0;
3986 } else {
3987 /* Handle the ri > si case with a deposit
3988 * Wd<32+s-r,32-r> = Wn<s:0>
3989 */
3990 len = si + 1;
3991 pos = (bitsize - ri) & (bitsize - 1);
3992 }
3993
3994 if (opc == 0 && len < ri) {
3995 /* SBFM: sign extend the destination field from len to fill
3996 the balance of the word. Let the deposit below insert all
3997 of those sign bits. */
3998 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
3999 len = ri;
4000 }
4001
4002 if (opc == 1) { /* BFM, BXFIL */
4003 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4004 } else {
4005 /* SBFM or UBFM: We start with zero, and we haven't modified
4006 any bits outside bitsize, therefore the zero-extension
4007 below is unneeded. */
4008 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4009 return;
4010 }
4011
4012 done:
4013 if (!sf) { /* zero extend final result */
4014 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4015 }
4016 }
4017
4018 /* Extract
4019 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
4020 * +----+------+-------------+---+----+------+--------+------+------+
4021 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
4022 * +----+------+-------------+---+----+------+--------+------+------+
4023 */
4024 static void disas_extract(DisasContext *s, uint32_t insn)
4025 {
4026 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
4027
4028 sf = extract32(insn, 31, 1);
4029 n = extract32(insn, 22, 1);
4030 rm = extract32(insn, 16, 5);
4031 imm = extract32(insn, 10, 6);
4032 rn = extract32(insn, 5, 5);
4033 rd = extract32(insn, 0, 5);
4034 op21 = extract32(insn, 29, 2);
4035 op0 = extract32(insn, 21, 1);
4036 bitsize = sf ? 64 : 32;
4037
4038 if (sf != n || op21 || op0 || imm >= bitsize) {
4039 unallocated_encoding(s);
4040 } else {
4041 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4042
4043 tcg_rd = cpu_reg(s, rd);
4044
4045 if (unlikely(imm == 0)) {
4046 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4047 * so an extract from bit 0 is a special case.
4048 */
4049 if (sf) {
4050 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
4051 } else {
4052 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
4053 }
4054 } else if (rm == rn) { /* ROR */
4055 tcg_rm = cpu_reg(s, rm);
4056 if (sf) {
4057 tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm);
4058 } else {
4059 TCGv_i32 tmp = tcg_temp_new_i32();
4060 tcg_gen_extrl_i64_i32(tmp, tcg_rm);
4061 tcg_gen_rotri_i32(tmp, tmp, imm);
4062 tcg_gen_extu_i32_i64(tcg_rd, tmp);
4063 tcg_temp_free_i32(tmp);
4064 }
4065 } else {
4066 tcg_rm = read_cpu_reg(s, rm, sf);
4067 tcg_rn = read_cpu_reg(s, rn, sf);
4068 tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
4069 tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
4070 tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
4071 if (!sf) {
4072 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4073 }
4074 }
4075 }
4076 }
4077
4078 /* Data processing - immediate */
4079 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
4080 {
4081 switch (extract32(insn, 23, 6)) {
4082 case 0x20: case 0x21: /* PC-rel. addressing */
4083 disas_pc_rel_adr(s, insn);
4084 break;
4085 case 0x22: case 0x23: /* Add/subtract (immediate) */
4086 disas_add_sub_imm(s, insn);
4087 break;
4088 case 0x24: /* Logical (immediate) */
4089 disas_logic_imm(s, insn);
4090 break;
4091 case 0x25: /* Move wide (immediate) */
4092 disas_movw_imm(s, insn);
4093 break;
4094 case 0x26: /* Bitfield */
4095 disas_bitfield(s, insn);
4096 break;
4097 case 0x27: /* Extract */
4098 disas_extract(s, insn);
4099 break;
4100 default:
4101 unallocated_encoding(s);
4102 break;
4103 }
4104 }
4105
4106 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4107 * Note that it is the caller's responsibility to ensure that the
4108 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4109 * mandated semantics for out of range shifts.
4110 */
4111 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4112 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4113 {
4114 switch (shift_type) {
4115 case A64_SHIFT_TYPE_LSL:
4116 tcg_gen_shl_i64(dst, src, shift_amount);
4117 break;
4118 case A64_SHIFT_TYPE_LSR:
4119 tcg_gen_shr_i64(dst, src, shift_amount);
4120 break;
4121 case A64_SHIFT_TYPE_ASR:
4122 if (!sf) {
4123 tcg_gen_ext32s_i64(dst, src);
4124 }
4125 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4126 break;
4127 case A64_SHIFT_TYPE_ROR:
4128 if (sf) {
4129 tcg_gen_rotr_i64(dst, src, shift_amount);
4130 } else {
4131 TCGv_i32 t0, t1;
4132 t0 = tcg_temp_new_i32();
4133 t1 = tcg_temp_new_i32();
4134 tcg_gen_extrl_i64_i32(t0, src);
4135 tcg_gen_extrl_i64_i32(t1, shift_amount);
4136 tcg_gen_rotr_i32(t0, t0, t1);
4137 tcg_gen_extu_i32_i64(dst, t0);
4138 tcg_temp_free_i32(t0);
4139 tcg_temp_free_i32(t1);
4140 }
4141 break;
4142 default:
4143 assert(FALSE); /* all shift types should be handled */
4144 break;
4145 }
4146
4147 if (!sf) { /* zero extend final result */
4148 tcg_gen_ext32u_i64(dst, dst);
4149 }
4150 }
4151
4152 /* Shift a TCGv src by immediate, put result in dst.
4153 * The shift amount must be in range (this should always be true as the
4154 * relevant instructions will UNDEF on bad shift immediates).
4155 */
4156 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4157 enum a64_shift_type shift_type, unsigned int shift_i)
4158 {
4159 assert(shift_i < (sf ? 64 : 32));
4160
4161 if (shift_i == 0) {
4162 tcg_gen_mov_i64(dst, src);
4163 } else {
4164 TCGv_i64 shift_const;
4165
4166 shift_const = tcg_const_i64(shift_i);
4167 shift_reg(dst, src, sf, shift_type, shift_const);
4168 tcg_temp_free_i64(shift_const);
4169 }
4170 }
4171
4172 /* Logical (shifted register)
4173 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4174 * +----+-----+-----------+-------+---+------+--------+------+------+
4175 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4176 * +----+-----+-----------+-------+---+------+--------+------+------+
4177 */
4178 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4179 {
4180 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4181 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4182
4183 sf = extract32(insn, 31, 1);
4184 opc = extract32(insn, 29, 2);
4185 shift_type = extract32(insn, 22, 2);
4186 invert = extract32(insn, 21, 1);
4187 rm = extract32(insn, 16, 5);
4188 shift_amount = extract32(insn, 10, 6);
4189 rn = extract32(insn, 5, 5);
4190 rd = extract32(insn, 0, 5);
4191
4192 if (!sf && (shift_amount & (1 << 5))) {
4193 unallocated_encoding(s);
4194 return;
4195 }
4196
4197 tcg_rd = cpu_reg(s, rd);
4198
4199 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4200 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4201 * register-register MOV and MVN, so it is worth special casing.
4202 */
4203 tcg_rm = cpu_reg(s, rm);
4204 if (invert) {
4205 tcg_gen_not_i64(tcg_rd, tcg_rm);
4206 if (!sf) {
4207 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4208 }
4209 } else {
4210 if (sf) {
4211 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4212 } else {
4213 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4214 }
4215 }
4216 return;
4217 }
4218
4219 tcg_rm = read_cpu_reg(s, rm, sf);
4220
4221 if (shift_amount) {
4222 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4223 }
4224
4225 tcg_rn = cpu_reg(s, rn);
4226
4227 switch (opc | (invert << 2)) {
4228 case 0: /* AND */
4229 case 3: /* ANDS */
4230 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4231 break;
4232 case 1: /* ORR */
4233 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4234 break;
4235 case 2: /* EOR */
4236 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4237 break;
4238 case 4: /* BIC */
4239 case 7: /* BICS */
4240 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4241 break;
4242 case 5: /* ORN */
4243 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4244 break;
4245 case 6: /* EON */
4246 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4247 break;
4248 default:
4249 assert(FALSE);
4250 break;
4251 }
4252
4253 if (!sf) {
4254 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4255 }
4256
4257 if (opc == 3) {
4258 gen_logic_CC(sf, tcg_rd);
4259 }
4260 }
4261
4262 /*
4263 * Add/subtract (extended register)
4264 *
4265 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4266 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4267 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4268 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4269 *
4270 * sf: 0 -> 32bit, 1 -> 64bit
4271 * op: 0 -> add , 1 -> sub
4272 * S: 1 -> set flags
4273 * opt: 00
4274 * option: extension type (see DecodeRegExtend)
4275 * imm3: optional shift to Rm
4276 *
4277 * Rd = Rn + LSL(extend(Rm), amount)
4278 */
4279 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4280 {
4281 int rd = extract32(insn, 0, 5);
4282 int rn = extract32(insn, 5, 5);
4283 int imm3 = extract32(insn, 10, 3);
4284 int option = extract32(insn, 13, 3);
4285 int rm = extract32(insn, 16, 5);
4286 int opt = extract32(insn, 22, 2);
4287 bool setflags = extract32(insn, 29, 1);
4288 bool sub_op = extract32(insn, 30, 1);
4289 bool sf = extract32(insn, 31, 1);
4290
4291 TCGv_i64 tcg_rm, tcg_rn; /* temps */
4292 TCGv_i64 tcg_rd;
4293 TCGv_i64 tcg_result;
4294
4295 if (imm3 > 4 || opt != 0) {
4296 unallocated_encoding(s);
4297 return;
4298 }
4299
4300 /* non-flag setting ops may use SP */
4301 if (!setflags) {
4302 tcg_rd = cpu_reg_sp(s, rd);
4303 } else {
4304 tcg_rd = cpu_reg(s, rd);
4305 }
4306 tcg_rn = read_cpu_reg_sp(s, rn, sf);
4307
4308 tcg_rm = read_cpu_reg(s, rm, sf);
4309 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4310
4311 tcg_result = tcg_temp_new_i64();
4312
4313 if (!setflags) {
4314 if (sub_op) {
4315 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4316 } else {
4317 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4318 }
4319 } else {
4320 if (sub_op) {
4321 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4322 } else {
4323 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4324 }
4325 }
4326
4327 if (sf) {
4328 tcg_gen_mov_i64(tcg_rd, tcg_result);
4329 } else {
4330 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4331 }
4332
4333 tcg_temp_free_i64(tcg_result);
4334 }
4335
4336 /*
4337 * Add/subtract (shifted register)
4338 *
4339 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4340 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4341 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4342 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4343 *
4344 * sf: 0 -> 32bit, 1 -> 64bit
4345 * op: 0 -> add , 1 -> sub
4346 * S: 1 -> set flags
4347 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4348 * imm6: Shift amount to apply to Rm before the add/sub
4349 */
4350 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4351 {
4352 int rd = extract32(insn, 0, 5);
4353 int rn = extract32(insn, 5, 5);
4354 int imm6 = extract32(insn, 10, 6);
4355 int rm = extract32(insn, 16, 5);
4356 int shift_type = extract32(insn, 22, 2);
4357 bool setflags = extract32(insn, 29, 1);
4358 bool sub_op = extract32(insn, 30, 1);
4359 bool sf = extract32(insn, 31, 1);
4360
4361 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4362 TCGv_i64 tcg_rn, tcg_rm;
4363 TCGv_i64 tcg_result;
4364
4365 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4366 unallocated_encoding(s);
4367 return;
4368 }
4369
4370 tcg_rn = read_cpu_reg(s, rn, sf);
4371 tcg_rm = read_cpu_reg(s, rm, sf);
4372
4373 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4374
4375 tcg_result = tcg_temp_new_i64();
4376
4377 if (!setflags) {
4378 if (sub_op) {
4379 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4380 } else {
4381 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4382 }
4383 } else {
4384 if (sub_op) {
4385 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4386 } else {
4387 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4388 }
4389 }
4390
4391 if (sf) {
4392 tcg_gen_mov_i64(tcg_rd, tcg_result);
4393 } else {
4394 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4395 }
4396
4397 tcg_temp_free_i64(tcg_result);
4398 }
4399
4400 /* Data-processing (3 source)
4401 *
4402 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4403 * +--+------+-----------+------+------+----+------+------+------+
4404 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4405 * +--+------+-----------+------+------+----+------+------+------+
4406 */
4407 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4408 {
4409 int rd = extract32(insn, 0, 5);
4410 int rn = extract32(insn, 5, 5);
4411 int ra = extract32(insn, 10, 5);
4412 int rm = extract32(insn, 16, 5);
4413 int op_id = (extract32(insn, 29, 3) << 4) |
4414 (extract32(insn, 21, 3) << 1) |
4415 extract32(insn, 15, 1);
4416 bool sf = extract32(insn, 31, 1);
4417 bool is_sub = extract32(op_id, 0, 1);
4418 bool is_high = extract32(op_id, 2, 1);
4419 bool is_signed = false;
4420 TCGv_i64 tcg_op1;
4421 TCGv_i64 tcg_op2;
4422 TCGv_i64 tcg_tmp;
4423
4424 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4425 switch (op_id) {
4426 case 0x42: /* SMADDL */
4427 case 0x43: /* SMSUBL */
4428 case 0x44: /* SMULH */
4429 is_signed = true;
4430 break;
4431 case 0x0: /* MADD (32bit) */
4432 case 0x1: /* MSUB (32bit) */
4433 case 0x40: /* MADD (64bit) */
4434 case 0x41: /* MSUB (64bit) */
4435 case 0x4a: /* UMADDL */
4436 case 0x4b: /* UMSUBL */
4437 case 0x4c: /* UMULH */
4438 break;
4439 default:
4440 unallocated_encoding(s);
4441 return;
4442 }
4443
4444 if (is_high) {
4445 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4446 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4447 TCGv_i64 tcg_rn = cpu_reg(s, rn);
4448 TCGv_i64 tcg_rm = cpu_reg(s, rm);
4449
4450 if (is_signed) {
4451 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4452 } else {
4453 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4454 }
4455
4456 tcg_temp_free_i64(low_bits);
4457 return;
4458 }
4459
4460 tcg_op1 = tcg_temp_new_i64();
4461 tcg_op2 = tcg_temp_new_i64();
4462 tcg_tmp = tcg_temp_new_i64();
4463
4464 if (op_id < 0x42) {
4465 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4466 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4467 } else {
4468 if (is_signed) {
4469 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4470 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4471 } else {
4472 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4473 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4474 }
4475 }
4476
4477 if (ra == 31 && !is_sub) {
4478 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4479 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4480 } else {
4481 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4482 if (is_sub) {
4483 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4484 } else {
4485 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4486 }
4487 }
4488
4489 if (!sf) {
4490 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4491 }
4492
4493 tcg_temp_free_i64(tcg_op1);
4494 tcg_temp_free_i64(tcg_op2);
4495 tcg_temp_free_i64(tcg_tmp);
4496 }
4497
4498 /* Add/subtract (with carry)
4499 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
4500 * +--+--+--+------------------------+------+---------+------+-----+
4501 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
4502 * +--+--+--+------------------------+------+---------+------+-----+
4503 * [000000]
4504 */
4505
4506 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4507 {
4508 unsigned int sf, op, setflags, rm, rn, rd;
4509 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4510
4511 if (extract32(insn, 10, 6) != 0) {
4512 unallocated_encoding(s);
4513 return;
4514 }
4515
4516 sf = extract32(insn, 31, 1);
4517 op = extract32(insn, 30, 1);
4518 setflags = extract32(insn, 29, 1);
4519 rm = extract32(insn, 16, 5);
4520 rn = extract32(insn, 5, 5);
4521 rd = extract32(insn, 0, 5);
4522
4523 tcg_rd = cpu_reg(s, rd);
4524 tcg_rn = cpu_reg(s, rn);
4525
4526 if (op) {
4527 tcg_y = new_tmp_a64(s);
4528 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4529 } else {
4530 tcg_y = cpu_reg(s, rm);
4531 }
4532
4533 if (setflags) {
4534 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4535 } else {
4536 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4537 }
4538 }
4539
4540 /* Conditional compare (immediate / register)
4541 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4542 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4543 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
4544 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4545 * [1] y [0] [0]
4546 */
4547 static void disas_cc(DisasContext *s, uint32_t insn)
4548 {
4549 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
4550 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
4551 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
4552 DisasCompare c;
4553
4554 if (!extract32(insn, 29, 1)) {
4555 unallocated_encoding(s);
4556 return;
4557 }
4558 if (insn & (1 << 10 | 1 << 4)) {
4559 unallocated_encoding(s);
4560 return;
4561 }
4562 sf = extract32(insn, 31, 1);
4563 op = extract32(insn, 30, 1);
4564 is_imm = extract32(insn, 11, 1);
4565 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
4566 cond = extract32(insn, 12, 4);
4567 rn = extract32(insn, 5, 5);
4568 nzcv = extract32(insn, 0, 4);
4569
4570 /* Set T0 = !COND. */
4571 tcg_t0 = tcg_temp_new_i32();
4572 arm_test_cc(&c, cond);
4573 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
4574 arm_free_cc(&c);
4575
4576 /* Load the arguments for the new comparison. */
4577 if (is_imm) {
4578 tcg_y = new_tmp_a64(s);
4579 tcg_gen_movi_i64(tcg_y, y);
4580 } else {
4581 tcg_y = cpu_reg(s, y);
4582 }
4583 tcg_rn = cpu_reg(s, rn);
4584
4585 /* Set the flags for the new comparison. */
4586 tcg_tmp = tcg_temp_new_i64();
4587 if (op) {
4588 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4589 } else {
4590 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4591 }
4592 tcg_temp_free_i64(tcg_tmp);
4593
4594 /* If COND was false, force the flags to #nzcv. Compute two masks
4595 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
4596 * For tcg hosts that support ANDC, we can make do with just T1.
4597 * In either case, allow the tcg optimizer to delete any unused mask.
4598 */
4599 tcg_t1 = tcg_temp_new_i32();
4600 tcg_t2 = tcg_temp_new_i32();
4601 tcg_gen_neg_i32(tcg_t1, tcg_t0);
4602 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
4603
4604 if (nzcv & 8) { /* N */
4605 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
4606 } else {
4607 if (TCG_TARGET_HAS_andc_i32) {
4608 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
4609 } else {
4610 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
4611 }
4612 }
4613 if (nzcv & 4) { /* Z */
4614 if (TCG_TARGET_HAS_andc_i32) {
4615 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
4616 } else {
4617 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
4618 }
4619 } else {
4620 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
4621 }
4622 if (nzcv & 2) { /* C */
4623 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
4624 } else {
4625 if (TCG_TARGET_HAS_andc_i32) {
4626 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
4627 } else {
4628 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
4629 }
4630 }
4631 if (nzcv & 1) { /* V */
4632 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
4633 } else {
4634 if (TCG_TARGET_HAS_andc_i32) {
4635 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
4636 } else {
4637 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
4638 }
4639 }
4640 tcg_temp_free_i32(tcg_t0);
4641 tcg_temp_free_i32(tcg_t1);
4642 tcg_temp_free_i32(tcg_t2);
4643 }
4644
4645 /* Conditional select
4646 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
4647 * +----+----+---+-----------------+------+------+-----+------+------+
4648 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
4649 * +----+----+---+-----------------+------+------+-----+------+------+
4650 */
4651 static void disas_cond_select(DisasContext *s, uint32_t insn)
4652 {
4653 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
4654 TCGv_i64 tcg_rd, zero;
4655 DisasCompare64 c;
4656
4657 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
4658 /* S == 1 or op2<1> == 1 */
4659 unallocated_encoding(s);
4660 return;
4661 }
4662 sf = extract32(insn, 31, 1);
4663 else_inv = extract32(insn, 30, 1);
4664 rm = extract32(insn, 16, 5);
4665 cond = extract32(insn, 12, 4);
4666 else_inc = extract32(insn, 10, 1);
4667 rn = extract32(insn, 5, 5);
4668 rd = extract32(insn, 0, 5);
4669
4670 tcg_rd = cpu_reg(s, rd);
4671
4672 a64_test_cc(&c, cond);
4673 zero = tcg_const_i64(0);
4674
4675 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
4676 /* CSET & CSETM. */
4677 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
4678 if (else_inv) {
4679 tcg_gen_neg_i64(tcg_rd, tcg_rd);
4680 }
4681 } else {
4682 TCGv_i64 t_true = cpu_reg(s, rn);
4683 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
4684 if (else_inv && else_inc) {
4685 tcg_gen_neg_i64(t_false, t_false);
4686 } else if (else_inv) {
4687 tcg_gen_not_i64(t_false, t_false);
4688 } else if (else_inc) {
4689 tcg_gen_addi_i64(t_false, t_false, 1);
4690 }
4691 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
4692 }
4693
4694 tcg_temp_free_i64(zero);
4695 a64_free_cc(&c);
4696
4697 if (!sf) {
4698 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4699 }
4700 }
4701
4702 static void handle_clz(DisasContext *s, unsigned int sf,
4703 unsigned int rn, unsigned int rd)
4704 {
4705 TCGv_i64 tcg_rd, tcg_rn;
4706 tcg_rd = cpu_reg(s, rd);
4707 tcg_rn = cpu_reg(s, rn);
4708
4709 if (sf) {
4710 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
4711 } else {
4712 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4713 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4714 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
4715 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4716 tcg_temp_free_i32(tcg_tmp32);
4717 }
4718 }
4719
4720 static void handle_cls(DisasContext *s, unsigned int sf,
4721 unsigned int rn, unsigned int rd)
4722 {
4723 TCGv_i64 tcg_rd, tcg_rn;
4724 tcg_rd = cpu_reg(s, rd);
4725 tcg_rn = cpu_reg(s, rn);
4726
4727 if (sf) {
4728 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
4729 } else {
4730 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4731 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4732 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
4733 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4734 tcg_temp_free_i32(tcg_tmp32);
4735 }
4736 }
4737
4738 static void handle_rbit(DisasContext *s, unsigned int sf,
4739 unsigned int rn, unsigned int rd)
4740 {
4741 TCGv_i64 tcg_rd, tcg_rn;
4742 tcg_rd = cpu_reg(s, rd);
4743 tcg_rn = cpu_reg(s, rn);
4744
4745 if (sf) {
4746 gen_helper_rbit64(tcg_rd, tcg_rn);
4747 } else {
4748 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4749 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4750 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
4751 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4752 tcg_temp_free_i32(tcg_tmp32);
4753 }
4754 }
4755
4756 /* REV with sf==1, opcode==3 ("REV64") */
4757 static void handle_rev64(DisasContext *s, unsigned int sf,
4758 unsigned int rn, unsigned int rd)
4759 {
4760 if (!sf) {
4761 unallocated_encoding(s);
4762 return;
4763 }
4764 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
4765 }
4766
4767 /* REV with sf==0, opcode==2
4768 * REV32 (sf==1, opcode==2)
4769 */
4770 static void handle_rev32(DisasContext *s, unsigned int sf,
4771 unsigned int rn, unsigned int rd)
4772 {
4773 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4774
4775 if (sf) {
4776 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4777 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4778
4779 /* bswap32_i64 requires zero high word */
4780 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
4781 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
4782 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4783 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
4784 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
4785
4786 tcg_temp_free_i64(tcg_tmp);
4787 } else {
4788 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
4789 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
4790 }
4791 }
4792
4793 /* REV16 (opcode==1) */
4794 static void handle_rev16(DisasContext *s, unsigned int sf,
4795 unsigned int rn, unsigned int rd)
4796 {
4797 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4798 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4799 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4800 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
4801
4802 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
4803 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
4804 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
4805 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
4806 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
4807
4808 tcg_temp_free_i64(mask);
4809 tcg_temp_free_i64(tcg_tmp);
4810 }
4811
4812 /* Data-processing (1 source)
4813 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4814 * +----+---+---+-----------------+---------+--------+------+------+
4815 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
4816 * +----+---+---+-----------------+---------+--------+------+------+
4817 */
4818 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
4819 {
4820 unsigned int sf, opcode, opcode2, rn, rd;
4821 TCGv_i64 tcg_rd;
4822
4823 if (extract32(insn, 29, 1)) {
4824 unallocated_encoding(s);
4825 return;
4826 }
4827
4828 sf = extract32(insn, 31, 1);
4829 opcode = extract32(insn, 10, 6);
4830 opcode2 = extract32(insn, 16, 5);
4831 rn = extract32(insn, 5, 5);
4832 rd = extract32(insn, 0, 5);
4833
4834 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
4835
4836 switch (MAP(sf, opcode2, opcode)) {
4837 case MAP(0, 0x00, 0x00): /* RBIT */
4838 case MAP(1, 0x00, 0x00):
4839 handle_rbit(s, sf, rn, rd);
4840 break;
4841 case MAP(0, 0x00, 0x01): /* REV16 */
4842 case MAP(1, 0x00, 0x01):
4843 handle_rev16(s, sf, rn, rd);
4844 break;
4845 case MAP(0, 0x00, 0x02): /* REV/REV32 */
4846 case MAP(1, 0x00, 0x02):
4847 handle_rev32(s, sf, rn, rd);
4848 break;
4849 case MAP(1, 0x00, 0x03): /* REV64 */
4850 handle_rev64(s, sf, rn, rd);
4851 break;
4852 case MAP(0, 0x00, 0x04): /* CLZ */
4853 case MAP(1, 0x00, 0x04):
4854 handle_clz(s, sf, rn, rd);
4855 break;
4856 case MAP(0, 0x00, 0x05): /* CLS */
4857 case MAP(1, 0x00, 0x05):
4858 handle_cls(s, sf, rn, rd);
4859 break;
4860 case MAP(1, 0x01, 0x00): /* PACIA */
4861 if (s->pauth_active) {
4862 tcg_rd = cpu_reg(s, rd);
4863 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4864 } else if (!dc_isar_feature(aa64_pauth, s)) {
4865 goto do_unallocated;
4866 }
4867 break;
4868 case MAP(1, 0x01, 0x01): /* PACIB */
4869 if (s->pauth_active) {
4870 tcg_rd = cpu_reg(s, rd);
4871 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4872 } else if (!dc_isar_feature(aa64_pauth, s)) {
4873 goto do_unallocated;
4874 }
4875 break;
4876 case MAP(1, 0x01, 0x02): /* PACDA */
4877 if (s->pauth_active) {
4878 tcg_rd = cpu_reg(s, rd);
4879 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4880 } else if (!dc_isar_feature(aa64_pauth, s)) {
4881 goto do_unallocated;
4882 }
4883 break;
4884 case MAP(1, 0x01, 0x03): /* PACDB */
4885 if (s->pauth_active) {
4886 tcg_rd = cpu_reg(s, rd);
4887 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4888 } else if (!dc_isar_feature(aa64_pauth, s)) {
4889 goto do_unallocated;
4890 }
4891 break;
4892 case MAP(1, 0x01, 0x04): /* AUTIA */
4893 if (s->pauth_active) {
4894 tcg_rd = cpu_reg(s, rd);
4895 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4896 } else if (!dc_isar_feature(aa64_pauth, s)) {
4897 goto do_unallocated;
4898 }
4899 break;
4900 case MAP(1, 0x01, 0x05): /* AUTIB */
4901 if (s->pauth_active) {
4902 tcg_rd = cpu_reg(s, rd);
4903 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4904 } else if (!dc_isar_feature(aa64_pauth, s)) {
4905 goto do_unallocated;
4906 }
4907 break;
4908 case MAP(1, 0x01, 0x06): /* AUTDA */
4909 if (s->pauth_active) {
4910 tcg_rd = cpu_reg(s, rd);
4911 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4912 } else if (!dc_isar_feature(aa64_pauth, s)) {
4913 goto do_unallocated;
4914 }
4915 break;
4916 case MAP(1, 0x01, 0x07): /* AUTDB */
4917 if (s->pauth_active) {
4918 tcg_rd = cpu_reg(s, rd);
4919 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
4920 } else if (!dc_isar_feature(aa64_pauth, s)) {
4921 goto do_unallocated;
4922 }
4923 break;
4924 case MAP(1, 0x01, 0x08): /* PACIZA */
4925 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4926 goto do_unallocated;
4927 } else if (s->pauth_active) {
4928 tcg_rd = cpu_reg(s, rd);
4929 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4930 }
4931 break;
4932 case MAP(1, 0x01, 0x09): /* PACIZB */
4933 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4934 goto do_unallocated;
4935 } else if (s->pauth_active) {
4936 tcg_rd = cpu_reg(s, rd);
4937 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4938 }
4939 break;
4940 case MAP(1, 0x01, 0x0a): /* PACDZA */
4941 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4942 goto do_unallocated;
4943 } else if (s->pauth_active) {
4944 tcg_rd = cpu_reg(s, rd);
4945 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4946 }
4947 break;
4948 case MAP(1, 0x01, 0x0b): /* PACDZB */
4949 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4950 goto do_unallocated;
4951 } else if (s->pauth_active) {
4952 tcg_rd = cpu_reg(s, rd);
4953 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4954 }
4955 break;
4956 case MAP(1, 0x01, 0x0c): /* AUTIZA */
4957 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4958 goto do_unallocated;
4959 } else if (s->pauth_active) {
4960 tcg_rd = cpu_reg(s, rd);
4961 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4962 }
4963 break;
4964 case MAP(1, 0x01, 0x0d): /* AUTIZB */
4965 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4966 goto do_unallocated;
4967 } else if (s->pauth_active) {
4968 tcg_rd = cpu_reg(s, rd);
4969 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4970 }
4971 break;
4972 case MAP(1, 0x01, 0x0e): /* AUTDZA */
4973 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4974 goto do_unallocated;
4975 } else if (s->pauth_active) {
4976 tcg_rd = cpu_reg(s, rd);
4977 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4978 }
4979 break;
4980 case MAP(1, 0x01, 0x0f): /* AUTDZB */
4981 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4982 goto do_unallocated;
4983 } else if (s->pauth_active) {
4984 tcg_rd = cpu_reg(s, rd);
4985 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
4986 }
4987 break;
4988 case MAP(1, 0x01, 0x10): /* XPACI */
4989 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4990 goto do_unallocated;
4991 } else if (s->pauth_active) {
4992 tcg_rd = cpu_reg(s, rd);
4993 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
4994 }
4995 break;
4996 case MAP(1, 0x01, 0x11): /* XPACD */
4997 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
4998 goto do_unallocated;
4999 } else if (s->pauth_active) {
5000 tcg_rd = cpu_reg(s, rd);
5001 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5002 }
5003 break;
5004 default:
5005 do_unallocated:
5006 unallocated_encoding(s);
5007 break;
5008 }
5009
5010 #undef MAP
5011 }
5012
5013 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5014 unsigned int rm, unsigned int rn, unsigned int rd)
5015 {
5016 TCGv_i64 tcg_n, tcg_m, tcg_rd;
5017 tcg_rd = cpu_reg(s, rd);
5018
5019 if (!sf && is_signed) {
5020 tcg_n = new_tmp_a64(s);
5021 tcg_m = new_tmp_a64(s);
5022 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5023 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5024 } else {
5025 tcg_n = read_cpu_reg(s, rn, sf);
5026 tcg_m = read_cpu_reg(s, rm, sf);
5027 }
5028
5029 if (is_signed) {
5030 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5031 } else {
5032 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5033 }
5034
5035 if (!sf) { /* zero extend final result */
5036 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5037 }
5038 }
5039
5040 /* LSLV, LSRV, ASRV, RORV */
5041 static void handle_shift_reg(DisasContext *s,
5042 enum a64_shift_type shift_type, unsigned int sf,
5043 unsigned int rm, unsigned int rn, unsigned int rd)
5044 {
5045 TCGv_i64 tcg_shift = tcg_temp_new_i64();
5046 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5047 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5048
5049 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5050 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5051 tcg_temp_free_i64(tcg_shift);
5052 }
5053
5054 /* CRC32[BHWX], CRC32C[BHWX] */
5055 static void handle_crc32(DisasContext *s,
5056 unsigned int sf, unsigned int sz, bool crc32c,
5057 unsigned int rm, unsigned int rn, unsigned int rd)
5058 {
5059 TCGv_i64 tcg_acc, tcg_val;
5060 TCGv_i32 tcg_bytes;
5061
5062 if (!dc_isar_feature(aa64_crc32, s)
5063 || (sf == 1 && sz != 3)
5064 || (sf == 0 && sz == 3)) {
5065 unallocated_encoding(s);
5066 return;
5067 }
5068
5069 if (sz == 3) {
5070 tcg_val = cpu_reg(s, rm);
5071 } else {
5072 uint64_t mask;
5073 switch (sz) {
5074 case 0:
5075 mask = 0xFF;
5076 break;
5077 case 1:
5078 mask = 0xFFFF;
5079 break;
5080 case 2:
5081 mask = 0xFFFFFFFF;
5082 break;
5083 default:
5084 g_assert_not_reached();
5085 }
5086 tcg_val = new_tmp_a64(s);
5087 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5088 }
5089
5090 tcg_acc = cpu_reg(s, rn);
5091 tcg_bytes = tcg_const_i32(1 << sz);
5092
5093 if (crc32c) {
5094 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5095 } else {
5096 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5097 }
5098
5099 tcg_temp_free_i32(tcg_bytes);
5100 }
5101
5102 /* Data-processing (2 source)
5103 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5104 * +----+---+---+-----------------+------+--------+------+------+
5105 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5106 * +----+---+---+-----------------+------+--------+------+------+
5107 */
5108 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5109 {
5110 unsigned int sf, rm, opcode, rn, rd;
5111 sf = extract32(insn, 31, 1);
5112 rm = extract32(insn, 16, 5);
5113 opcode = extract32(insn, 10, 6);
5114 rn = extract32(insn, 5, 5);
5115 rd = extract32(insn, 0, 5);
5116
5117 if (extract32(insn, 29, 1)) {
5118 unallocated_encoding(s);
5119 return;
5120 }
5121
5122 switch (opcode) {
5123 case 2: /* UDIV */
5124 handle_div(s, false, sf, rm, rn, rd);
5125 break;
5126 case 3: /* SDIV */
5127 handle_div(s, true, sf, rm, rn, rd);
5128 break;
5129 case 8: /* LSLV */
5130 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5131 break;
5132 case 9: /* LSRV */
5133 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5134 break;
5135 case 10: /* ASRV */
5136 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5137 break;
5138 case 11: /* RORV */
5139 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5140 break;
5141 case 12: /* PACGA */
5142 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5143 goto do_unallocated;
5144 }
5145 gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5146 cpu_reg(s, rn), cpu_reg_sp(s, rm));
5147 break;
5148 case 16:
5149 case 17:
5150 case 18:
5151 case 19:
5152 case 20:
5153 case 21:
5154 case 22:
5155 case 23: /* CRC32 */
5156 {
5157 int sz = extract32(opcode, 0, 2);
5158 bool crc32c = extract32(opcode, 2, 1);
5159 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5160 break;
5161 }
5162 default:
5163 do_unallocated:
5164 unallocated_encoding(s);
5165 break;
5166 }
5167 }
5168
5169 /* Data processing - register */
5170 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5171 {
5172 switch (extract32(insn, 24, 5)) {
5173 case 0x0a: /* Logical (shifted register) */
5174 disas_logic_reg(s, insn);
5175 break;
5176 case 0x0b: /* Add/subtract */
5177 if (insn & (1 << 21)) { /* (extended register) */
5178 disas_add_sub_ext_reg(s, insn);
5179 } else {
5180 disas_add_sub_reg(s, insn);
5181 }
5182 break;
5183 case 0x1b: /* Data-processing (3 source) */
5184 disas_data_proc_3src(s, insn);
5185 break;
5186 case 0x1a:
5187 switch (extract32(insn, 21, 3)) {
5188 case 0x0: /* Add/subtract (with carry) */
5189 disas_adc_sbc(s, insn);
5190 break;
5191 case 0x2: /* Conditional compare */
5192 disas_cc(s, insn); /* both imm and reg forms */
5193 break;
5194 case 0x4: /* Conditional select */
5195 disas_cond_select(s, insn);
5196 break;
5197 case 0x6: /* Data-processing */
5198 if (insn & (1 << 30)) { /* (1 source) */
5199 disas_data_proc_1src(s, insn);
5200 } else { /* (2 source) */
5201 disas_data_proc_2src(s, insn);
5202 }
5203 break;
5204 default:
5205 unallocated_encoding(s);
5206 break;
5207 }
5208 break;
5209 default:
5210 unallocated_encoding(s);
5211 break;
5212 }
5213 }
5214
5215 static void handle_fp_compare(DisasContext *s, int size,
5216 unsigned int rn, unsigned int rm,
5217 bool cmp_with_zero, bool signal_all_nans)
5218 {
5219 TCGv_i64 tcg_flags = tcg_temp_new_i64();
5220 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
5221
5222 if (size == MO_64) {
5223 TCGv_i64 tcg_vn, tcg_vm;
5224
5225 tcg_vn = read_fp_dreg(s, rn);
5226 if (cmp_with_zero) {
5227 tcg_vm = tcg_const_i64(0);
5228 } else {
5229 tcg_vm = read_fp_dreg(s, rm);
5230 }
5231 if (signal_all_nans) {
5232 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5233 } else {
5234 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5235 }
5236 tcg_temp_free_i64(tcg_vn);
5237 tcg_temp_free_i64(tcg_vm);
5238 } else {
5239 TCGv_i32 tcg_vn = tcg_temp_new_i32();
5240 TCGv_i32 tcg_vm = tcg_temp_new_i32();
5241
5242 read_vec_element_i32(s, tcg_vn, rn, 0, size);
5243 if (cmp_with_zero) {
5244 tcg_gen_movi_i32(tcg_vm, 0);
5245 } else {
5246 read_vec_element_i32(s, tcg_vm, rm, 0, size);
5247 }
5248
5249 switch (size) {
5250 case MO_32:
5251 if (signal_all_nans) {
5252 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5253 } else {
5254 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5255 }
5256 break;
5257 case MO_16:
5258 if (signal_all_nans) {
5259 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5260 } else {
5261 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5262 }
5263 break;
5264 default:
5265 g_assert_not_reached();
5266 }
5267
5268 tcg_temp_free_i32(tcg_vn);
5269 tcg_temp_free_i32(tcg_vm);
5270 }
5271
5272 tcg_temp_free_ptr(fpst);
5273
5274 gen_set_nzcv(tcg_flags);
5275
5276 tcg_temp_free_i64(tcg_flags);
5277 }
5278
5279 /* Floating point compare
5280 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
5281 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5282 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
5283 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5284 */
5285 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5286 {
5287 unsigned int mos, type, rm, op, rn, opc, op2r;
5288 int size;
5289
5290 mos = extract32(insn, 29, 3);
5291 type = extract32(insn, 22, 2);
5292 rm = extract32(insn, 16, 5);
5293 op = extract32(insn, 14, 2);
5294 rn = extract32(insn, 5, 5);
5295 opc = extract32(insn, 3, 2);
5296 op2r = extract32(insn, 0, 3);
5297
5298 if (mos || op || op2r) {
5299 unallocated_encoding(s);
5300 return;
5301 }
5302
5303 switch (type) {
5304 case 0:
5305 size = MO_32;
5306 break;
5307 case 1:
5308 size = MO_64;
5309 break;
5310 case 3:
5311 size = MO_16;
5312 if (dc_isar_feature(aa64_fp16, s)) {
5313 break;
5314 }
5315 /* fallthru */
5316 default:
5317 unallocated_encoding(s);
5318 return;
5319 }
5320
5321 if (!fp_access_check(s)) {
5322 return;
5323 }
5324
5325 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5326 }
5327
5328 /* Floating point conditional compare
5329 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5330 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5331 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
5332 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5333 */
5334 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5335 {
5336 unsigned int mos, type, rm, cond, rn, op, nzcv;
5337 TCGv_i64 tcg_flags;
5338 TCGLabel *label_continue = NULL;
5339 int size;
5340
5341 mos = extract32(insn, 29, 3);
5342 type = extract32(insn, 22, 2);
5343 rm = extract32(insn, 16, 5);
5344 cond = extract32(insn, 12, 4);
5345 rn = extract32(insn, 5, 5);
5346 op = extract32(insn, 4, 1);
5347 nzcv = extract32(insn, 0, 4);
5348
5349 if (mos) {
5350 unallocated_encoding(s);
5351 return;
5352 }
5353
5354 switch (type) {
5355 case 0:
5356 size = MO_32;
5357 break;
5358 case 1:
5359 size = MO_64;
5360 break;
5361 case 3:
5362 size = MO_16;
5363 if (dc_isar_feature(aa64_fp16, s)) {
5364 break;
5365 }
5366 /* fallthru */
5367 default:
5368 unallocated_encoding(s);
5369 return;
5370 }
5371
5372 if (!fp_access_check(s)) {
5373 return;
5374 }
5375
5376 if (cond < 0x0e) { /* not always */
5377 TCGLabel *label_match = gen_new_label();
5378 label_continue = gen_new_label();
5379 arm_gen_test_cc(cond, label_match);
5380 /* nomatch: */
5381 tcg_flags = tcg_const_i64(nzcv << 28);
5382 gen_set_nzcv(tcg_flags);
5383 tcg_temp_free_i64(tcg_flags);
5384 tcg_gen_br(label_continue);
5385 gen_set_label(label_match);
5386 }
5387
5388 handle_fp_compare(s, size, rn, rm, false, op);
5389
5390 if (cond < 0x0e) {
5391 gen_set_label(label_continue);
5392 }
5393 }
5394
5395 /* Floating point conditional select
5396 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5397 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5398 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
5399 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5400 */
5401 static void disas_fp_csel(DisasContext *s, uint32_t insn)
5402 {
5403 unsigned int mos, type, rm, cond, rn, rd;
5404 TCGv_i64 t_true, t_false, t_zero;
5405 DisasCompare64 c;
5406 TCGMemOp sz;
5407
5408 mos = extract32(insn, 29, 3);
5409 type = extract32(insn, 22, 2);
5410 rm = extract32(insn, 16, 5);
5411 cond = extract32(insn, 12, 4);
5412 rn = extract32(insn, 5, 5);
5413 rd = extract32(insn, 0, 5);
5414
5415 if (mos) {
5416 unallocated_encoding(s);
5417 return;
5418 }
5419
5420 switch (type) {
5421 case 0:
5422 sz = MO_32;
5423 break;
5424 case 1:
5425 sz = MO_64;
5426 break;
5427 case 3:
5428 sz = MO_16;
5429 if (dc_isar_feature(aa64_fp16, s)) {
5430 break;
5431 }
5432 /* fallthru */
5433 default:
5434 unallocated_encoding(s);
5435 return;
5436 }
5437
5438 if (!fp_access_check(s)) {
5439 return;
5440 }
5441
5442 /* Zero extend sreg & hreg inputs to 64 bits now. */
5443 t_true = tcg_temp_new_i64();
5444 t_false = tcg_temp_new_i64();
5445 read_vec_element(s, t_true, rn, 0, sz);
5446 read_vec_element(s, t_false, rm, 0, sz);
5447
5448 a64_test_cc(&c, cond);
5449 t_zero = tcg_const_i64(0);
5450 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
5451 tcg_temp_free_i64(t_zero);
5452 tcg_temp_free_i64(t_false);
5453 a64_free_cc(&c);
5454
5455 /* Note that sregs & hregs write back zeros to the high bits,
5456 and we've already done the zero-extension. */
5457 write_fp_dreg(s, rd, t_true);
5458 tcg_temp_free_i64(t_true);
5459 }
5460
5461 /* Floating-point data-processing (1 source) - half precision */
5462 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
5463 {
5464 TCGv_ptr fpst = NULL;
5465 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
5466 TCGv_i32 tcg_res = tcg_temp_new_i32();
5467
5468 switch (opcode) {
5469 case 0x0: /* FMOV */
5470 tcg_gen_mov_i32(tcg_res, tcg_op);
5471 break;
5472 case 0x1: /* FABS */
5473 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
5474 break;
5475 case 0x2: /* FNEG */
5476 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
5477 break;
5478 case 0x3: /* FSQRT */
5479 fpst = get_fpstatus_ptr(true);
5480 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
5481 break;
5482 case 0x8: /* FRINTN */
5483 case 0x9: /* FRINTP */
5484 case 0xa: /* FRINTM */
5485 case 0xb: /* FRINTZ */
5486 case 0xc: /* FRINTA */
5487 {
5488 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5489 fpst = get_fpstatus_ptr(true);
5490
5491 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5492 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5493
5494 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5495 tcg_temp_free_i32(tcg_rmode);
5496 break;
5497 }
5498 case 0xe: /* FRINTX */
5499 fpst = get_fpstatus_ptr(true);
5500 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
5501 break;
5502 case 0xf: /* FRINTI */
5503 fpst = get_fpstatus_ptr(true);
5504 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5505 break;
5506 default:
5507 abort();
5508 }
5509
5510 write_fp_sreg(s, rd, tcg_res);
5511
5512 if (fpst) {
5513 tcg_temp_free_ptr(fpst);
5514 }
5515 tcg_temp_free_i32(tcg_op);
5516 tcg_temp_free_i32(tcg_res);
5517 }
5518
5519 /* Floating-point data-processing (1 source) - single precision */
5520 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
5521 {
5522 TCGv_ptr fpst;
5523 TCGv_i32 tcg_op;
5524 TCGv_i32 tcg_res;
5525
5526 fpst = get_fpstatus_ptr(false);
5527 tcg_op = read_fp_sreg(s, rn);
5528 tcg_res = tcg_temp_new_i32();
5529
5530 switch (opcode) {
5531 case 0x0: /* FMOV */
5532 tcg_gen_mov_i32(tcg_res, tcg_op);
5533 break;
5534 case 0x1: /* FABS */
5535 gen_helper_vfp_abss(tcg_res, tcg_op);
5536 break;
5537 case 0x2: /* FNEG */
5538 gen_helper_vfp_negs(tcg_res, tcg_op);
5539 break;
5540 case 0x3: /* FSQRT */
5541 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
5542 break;
5543 case 0x8: /* FRINTN */
5544 case 0x9: /* FRINTP */
5545 case 0xa: /* FRINTM */
5546 case 0xb: /* FRINTZ */
5547 case 0xc: /* FRINTA */
5548 {
5549 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5550
5551 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5552 gen_helper_rints(tcg_res, tcg_op, fpst);
5553
5554 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5555 tcg_temp_free_i32(tcg_rmode);
5556 break;
5557 }
5558 case 0xe: /* FRINTX */
5559 gen_helper_rints_exact(tcg_res, tcg_op, fpst);
5560 break;
5561 case 0xf: /* FRINTI */
5562 gen_helper_rints(tcg_res, tcg_op, fpst);
5563 break;
5564 default:
5565 abort();
5566 }
5567
5568 write_fp_sreg(s, rd, tcg_res);
5569
5570 tcg_temp_free_ptr(fpst);
5571 tcg_temp_free_i32(tcg_op);
5572 tcg_temp_free_i32(tcg_res);
5573 }
5574
5575 /* Floating-point data-processing (1 source) - double precision */
5576 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
5577 {
5578 TCGv_ptr fpst;
5579 TCGv_i64 tcg_op;
5580 TCGv_i64 tcg_res;
5581
5582 switch (opcode) {
5583 case 0x0: /* FMOV */
5584 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
5585 return;
5586 }
5587
5588 fpst = get_fpstatus_ptr(false);
5589 tcg_op = read_fp_dreg(s, rn);
5590 tcg_res = tcg_temp_new_i64();
5591
5592 switch (opcode) {
5593 case 0x1: /* FABS */
5594 gen_helper_vfp_absd(tcg_res, tcg_op);
5595 break;
5596 case 0x2: /* FNEG */
5597 gen_helper_vfp_negd(tcg_res, tcg_op);
5598 break;
5599 case 0x3: /* FSQRT */
5600 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
5601 break;
5602 case 0x8: /* FRINTN */
5603 case 0x9: /* FRINTP */
5604 case 0xa: /* FRINTM */
5605 case 0xb: /* FRINTZ */
5606 case 0xc: /* FRINTA */
5607 {
5608 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5609
5610 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5611 gen_helper_rintd(tcg_res, tcg_op, fpst);
5612
5613 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5614 tcg_temp_free_i32(tcg_rmode);
5615 break;
5616 }
5617 case 0xe: /* FRINTX */
5618 gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
5619 break;
5620 case 0xf: /* FRINTI */
5621 gen_helper_rintd(tcg_res, tcg_op, fpst);
5622 break;
5623 default:
5624 abort();
5625 }
5626
5627 write_fp_dreg(s, rd, tcg_res);
5628
5629 tcg_temp_free_ptr(fpst);
5630 tcg_temp_free_i64(tcg_op);
5631 tcg_temp_free_i64(tcg_res);
5632 }
5633
5634 static void handle_fp_fcvt(DisasContext *s, int opcode,
5635 int rd, int rn, int dtype, int ntype)
5636 {
5637 switch (ntype) {
5638 case 0x0:
5639 {
5640 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5641 if (dtype == 1) {
5642 /* Single to double */
5643 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5644 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
5645 write_fp_dreg(s, rd, tcg_rd);
5646 tcg_temp_free_i64(tcg_rd);
5647 } else {
5648 /* Single to half */
5649 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5650 TCGv_i32 ahp = get_ahp_flag();
5651 TCGv_ptr fpst = get_fpstatus_ptr(false);
5652
5653 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5654 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5655 write_fp_sreg(s, rd, tcg_rd);
5656 tcg_temp_free_i32(tcg_rd);
5657 tcg_temp_free_i32(ahp);
5658 tcg_temp_free_ptr(fpst);
5659 }
5660 tcg_temp_free_i32(tcg_rn);
5661 break;
5662 }
5663 case 0x1:
5664 {
5665 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
5666 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5667 if (dtype == 0) {
5668 /* Double to single */
5669 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
5670 } else {
5671 TCGv_ptr fpst = get_fpstatus_ptr(false);
5672 TCGv_i32 ahp = get_ahp_flag();
5673 /* Double to half */
5674 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5675 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5676 tcg_temp_free_ptr(fpst);
5677 tcg_temp_free_i32(ahp);
5678 }
5679 write_fp_sreg(s, rd, tcg_rd);
5680 tcg_temp_free_i32(tcg_rd);
5681 tcg_temp_free_i64(tcg_rn);
5682 break;
5683 }
5684 case 0x3:
5685 {
5686 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5687 TCGv_ptr tcg_fpst = get_fpstatus_ptr(false);
5688 TCGv_i32 tcg_ahp = get_ahp_flag();
5689 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
5690 if (dtype == 0) {
5691 /* Half to single */
5692 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5693 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5694 write_fp_sreg(s, rd, tcg_rd);
5695 tcg_temp_free_ptr(tcg_fpst);
5696 tcg_temp_free_i32(tcg_ahp);
5697 tcg_temp_free_i32(tcg_rd);
5698 } else {
5699 /* Half to double */
5700 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5701 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5702 write_fp_dreg(s, rd, tcg_rd);
5703 tcg_temp_free_i64(tcg_rd);
5704 }
5705 tcg_temp_free_i32(tcg_rn);
5706 break;
5707 }
5708 default:
5709 abort();
5710 }
5711 }
5712
5713 /* Floating point data-processing (1 source)
5714 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
5715 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5716 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
5717 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5718 */
5719 static void disas_fp_1src(DisasContext *s, uint32_t insn)
5720 {
5721 int mos = extract32(insn, 29, 3);
5722 int type = extract32(insn, 22, 2);
5723 int opcode = extract32(insn, 15, 6);
5724 int rn = extract32(insn, 5, 5);
5725 int rd = extract32(insn, 0, 5);
5726
5727 if (mos) {
5728 unallocated_encoding(s);
5729 return;
5730 }
5731
5732 switch (opcode) {
5733 case 0x4: case 0x5: case 0x7:
5734 {
5735 /* FCVT between half, single and double precision */
5736 int dtype = extract32(opcode, 0, 2);
5737 if (type == 2 || dtype == type) {
5738 unallocated_encoding(s);
5739 return;
5740 }
5741 if (!fp_access_check(s)) {
5742 return;
5743 }
5744
5745 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
5746 break;
5747 }
5748 case 0x0 ... 0x3:
5749 case 0x8 ... 0xc:
5750 case 0xe ... 0xf:
5751 /* 32-to-32 and 64-to-64 ops */
5752 switch (type) {
5753 case 0:
5754 if (!fp_access_check(s)) {
5755 return;
5756 }
5757
5758 handle_fp_1src_single(s, opcode, rd, rn);
5759 break;
5760 case 1:
5761 if (!fp_access_check(s)) {
5762 return;
5763 }
5764
5765 handle_fp_1src_double(s, opcode, rd, rn);
5766 break;
5767 case 3:
5768 if (!dc_isar_feature(aa64_fp16, s)) {
5769 unallocated_encoding(s);
5770 return;
5771 }
5772
5773 if (!fp_access_check(s)) {
5774 return;
5775 }
5776
5777 handle_fp_1src_half(s, opcode, rd, rn);
5778 break;
5779 default:
5780 unallocated_encoding(s);
5781 }
5782 break;
5783 default:
5784 unallocated_encoding(s);
5785 break;
5786 }
5787 }
5788
5789 /* Floating-point data-processing (2 source) - single precision */
5790 static void handle_fp_2src_single(DisasContext *s, int opcode,
5791 int rd, int rn, int rm)
5792 {
5793 TCGv_i32 tcg_op1;
5794 TCGv_i32 tcg_op2;
5795 TCGv_i32 tcg_res;
5796 TCGv_ptr fpst;
5797
5798 tcg_res = tcg_temp_new_i32();
5799 fpst = get_fpstatus_ptr(false);
5800 tcg_op1 = read_fp_sreg(s, rn);
5801 tcg_op2 = read_fp_sreg(s, rm);
5802
5803 switch (opcode) {
5804 case 0x0: /* FMUL */
5805 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
5806 break;
5807 case 0x1: /* FDIV */
5808 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
5809 break;
5810 case 0x2: /* FADD */
5811 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
5812 break;
5813 case 0x3: /* FSUB */
5814 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
5815 break;
5816 case 0x4: /* FMAX */
5817 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
5818 break;
5819 case 0x5: /* FMIN */
5820 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
5821 break;
5822 case 0x6: /* FMAXNM */
5823 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
5824 break;
5825 case 0x7: /* FMINNM */
5826 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
5827 break;
5828 case 0x8: /* FNMUL */
5829 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
5830 gen_helper_vfp_negs(tcg_res, tcg_res);
5831 break;
5832 }
5833
5834 write_fp_sreg(s, rd, tcg_res);
5835
5836 tcg_temp_free_ptr(fpst);
5837 tcg_temp_free_i32(tcg_op1);
5838 tcg_temp_free_i32(tcg_op2);
5839 tcg_temp_free_i32(tcg_res);
5840 }
5841
5842 /* Floating-point data-processing (2 source) - double precision */
5843 static void handle_fp_2src_double(DisasContext *s, int opcode,
5844 int rd, int rn, int rm)
5845 {
5846 TCGv_i64 tcg_op1;
5847 TCGv_i64 tcg_op2;
5848 TCGv_i64 tcg_res;
5849 TCGv_ptr fpst;
5850
5851 tcg_res = tcg_temp_new_i64();
5852 fpst = get_fpstatus_ptr(false);
5853 tcg_op1 = read_fp_dreg(s, rn);
5854 tcg_op2 = read_fp_dreg(s, rm);
5855
5856 switch (opcode) {
5857 case 0x0: /* FMUL */
5858 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5859 break;
5860 case 0x1: /* FDIV */
5861 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
5862 break;
5863 case 0x2: /* FADD */
5864 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
5865 break;
5866 case 0x3: /* FSUB */
5867 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
5868 break;
5869 case 0x4: /* FMAX */
5870 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
5871 break;
5872 case 0x5: /* FMIN */
5873 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
5874 break;
5875 case 0x6: /* FMAXNM */
5876 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5877 break;
5878 case 0x7: /* FMINNM */
5879 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5880 break;
5881 case 0x8: /* FNMUL */
5882 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5883 gen_helper_vfp_negd(tcg_res, tcg_res);
5884 break;
5885 }
5886
5887 write_fp_dreg(s, rd, tcg_res);
5888
5889 tcg_temp_free_ptr(fpst);
5890 tcg_temp_free_i64(tcg_op1);
5891 tcg_temp_free_i64(tcg_op2);
5892 tcg_temp_free_i64(tcg_res);
5893 }
5894
5895 /* Floating-point data-processing (2 source) - half precision */
5896 static void handle_fp_2src_half(DisasContext *s, int opcode,
5897 int rd, int rn, int rm)
5898 {
5899 TCGv_i32 tcg_op1;
5900 TCGv_i32 tcg_op2;
5901 TCGv_i32 tcg_res;
5902 TCGv_ptr fpst;
5903
5904 tcg_res = tcg_temp_new_i32();
5905 fpst = get_fpstatus_ptr(true);
5906 tcg_op1 = read_fp_hreg(s, rn);
5907 tcg_op2 = read_fp_hreg(s, rm);
5908
5909 switch (opcode) {
5910 case 0x0: /* FMUL */
5911 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
5912 break;
5913 case 0x1: /* FDIV */
5914 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
5915 break;
5916 case 0x2: /* FADD */
5917 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
5918 break;
5919 case 0x3: /* FSUB */
5920 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
5921 break;
5922 case 0x4: /* FMAX */
5923 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
5924 break;
5925 case 0x5: /* FMIN */
5926 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
5927 break;
5928 case 0x6: /* FMAXNM */
5929 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
5930 break;
5931 case 0x7: /* FMINNM */
5932 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
5933 break;
5934 case 0x8: /* FNMUL */
5935 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
5936 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
5937 break;
5938 default:
5939 g_assert_not_reached();
5940 }
5941
5942 write_fp_sreg(s, rd, tcg_res);
5943
5944 tcg_temp_free_ptr(fpst);
5945 tcg_temp_free_i32(tcg_op1);
5946 tcg_temp_free_i32(tcg_op2);
5947 tcg_temp_free_i32(tcg_res);
5948 }
5949
5950 /* Floating point data-processing (2 source)
5951 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5952 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
5953 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
5954 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
5955 */
5956 static void disas_fp_2src(DisasContext *s, uint32_t insn)
5957 {
5958 int mos = extract32(insn, 29, 3);
5959 int type = extract32(insn, 22, 2);
5960 int rd = extract32(insn, 0, 5);
5961 int rn = extract32(insn, 5, 5);
5962 int rm = extract32(insn, 16, 5);
5963 int opcode = extract32(insn, 12, 4);
5964
5965 if (opcode > 8 || mos) {
5966 unallocated_encoding(s);
5967 return;
5968 }
5969
5970 switch (type) {
5971 case 0:
5972 if (!fp_access_check(s)) {
5973 return;
5974 }
5975 handle_fp_2src_single(s, opcode, rd, rn, rm);
5976 break;
5977 case 1:
5978 if (!fp_access_check(s)) {
5979 return;
5980 }
5981 handle_fp_2src_double(s, opcode, rd, rn, rm);
5982 break;
5983 case 3:
5984 if (!dc_isar_feature(aa64_fp16, s)) {
5985 unallocated_encoding(s);
5986 return;
5987 }
5988 if (!fp_access_check(s)) {
5989 return;
5990 }
5991 handle_fp_2src_half(s, opcode, rd, rn, rm);
5992 break;
5993 default:
5994 unallocated_encoding(s);
5995 }
5996 }
5997
5998 /* Floating-point data-processing (3 source) - single precision */
5999 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6000 int rd, int rn, int rm, int ra)
6001 {
6002 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6003 TCGv_i32 tcg_res = tcg_temp_new_i32();
6004 TCGv_ptr fpst = get_fpstatus_ptr(false);
6005
6006 tcg_op1 = read_fp_sreg(s, rn);
6007 tcg_op2 = read_fp_sreg(s, rm);
6008 tcg_op3 = read_fp_sreg(s, ra);
6009
6010 /* These are fused multiply-add, and must be done as one
6011 * floating point operation with no rounding between the
6012 * multiplication and addition steps.
6013 * NB that doing the negations here as separate steps is
6014 * correct : an input NaN should come out with its sign bit
6015 * flipped if it is a negated-input.
6016 */
6017 if (o1 == true) {
6018 gen_helper_vfp_negs(tcg_op3, tcg_op3);
6019 }
6020
6021 if (o0 != o1) {
6022 gen_helper_vfp_negs(tcg_op1, tcg_op1);
6023 }
6024
6025 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6026
6027 write_fp_sreg(s, rd, tcg_res);
6028
6029 tcg_temp_free_ptr(fpst);
6030 tcg_temp_free_i32(tcg_op1);
6031 tcg_temp_free_i32(tcg_op2);
6032 tcg_temp_free_i32(tcg_op3);
6033 tcg_temp_free_i32(tcg_res);
6034 }
6035
6036 /* Floating-point data-processing (3 source) - double precision */
6037 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6038 int rd, int rn, int rm, int ra)
6039 {
6040 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6041 TCGv_i64 tcg_res = tcg_temp_new_i64();
6042 TCGv_ptr fpst = get_fpstatus_ptr(false);
6043
6044 tcg_op1 = read_fp_dreg(s, rn);
6045 tcg_op2 = read_fp_dreg(s, rm);
6046 tcg_op3 = read_fp_dreg(s, ra);
6047
6048 /* These are fused multiply-add, and must be done as one
6049 * floating point operation with no rounding between the
6050 * multiplication and addition steps.
6051 * NB that doing the negations here as separate steps is
6052 * correct : an input NaN should come out with its sign bit
6053 * flipped if it is a negated-input.
6054 */
6055 if (o1 == true) {
6056 gen_helper_vfp_negd(tcg_op3, tcg_op3);
6057 }
6058
6059 if (o0 != o1) {
6060 gen_helper_vfp_negd(tcg_op1, tcg_op1);
6061 }
6062
6063 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6064
6065 write_fp_dreg(s, rd, tcg_res);
6066
6067 tcg_temp_free_ptr(fpst);
6068 tcg_temp_free_i64(tcg_op1);
6069 tcg_temp_free_i64(tcg_op2);
6070 tcg_temp_free_i64(tcg_op3);
6071 tcg_temp_free_i64(tcg_res);
6072 }
6073
6074 /* Floating-point data-processing (3 source) - half precision */
6075 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6076 int rd, int rn, int rm, int ra)
6077 {
6078 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6079 TCGv_i32 tcg_res = tcg_temp_new_i32();
6080 TCGv_ptr fpst = get_fpstatus_ptr(true);
6081
6082 tcg_op1 = read_fp_hreg(s, rn);
6083 tcg_op2 = read_fp_hreg(s, rm);
6084 tcg_op3 = read_fp_hreg(s, ra);
6085
6086 /* These are fused multiply-add, and must be done as one
6087 * floating point operation with no rounding between the
6088 * multiplication and addition steps.
6089 * NB that doing the negations here as separate steps is
6090 * correct : an input NaN should come out with its sign bit
6091 * flipped if it is a negated-input.
6092 */
6093 if (o1 == true) {
6094 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6095 }
6096
6097 if (o0 != o1) {
6098 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6099 }
6100
6101 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6102
6103 write_fp_sreg(s, rd, tcg_res);
6104
6105 tcg_temp_free_ptr(fpst);
6106 tcg_temp_free_i32(tcg_op1);
6107 tcg_temp_free_i32(tcg_op2);
6108 tcg_temp_free_i32(tcg_op3);
6109 tcg_temp_free_i32(tcg_res);
6110 }
6111
6112 /* Floating point data-processing (3 source)
6113 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6114 * +---+---+---+-----------+------+----+------+----+------+------+------+
6115 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6116 * +---+---+---+-----------+------+----+------+----+------+------+------+
6117 */
6118 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6119 {
6120 int mos = extract32(insn, 29, 3);
6121 int type = extract32(insn, 22, 2);
6122 int rd = extract32(insn, 0, 5);
6123 int rn = extract32(insn, 5, 5);
6124 int ra = extract32(insn, 10, 5);
6125 int rm = extract32(insn, 16, 5);
6126 bool o0 = extract32(insn, 15, 1);
6127 bool o1 = extract32(insn, 21, 1);
6128
6129 if (mos) {
6130 unallocated_encoding(s);
6131 return;
6132 }
6133
6134 switch (type) {
6135 case 0:
6136 if (!fp_access_check(s)) {
6137 return;
6138 }
6139 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6140 break;
6141 case 1:
6142 if (!fp_access_check(s)) {
6143 return;
6144 }
6145 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6146 break;
6147 case 3:
6148 if (!dc_isar_feature(aa64_fp16, s)) {
6149 unallocated_encoding(s);
6150 return;
6151 }
6152 if (!fp_access_check(s)) {
6153 return;
6154 }
6155 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6156 break;
6157 default:
6158 unallocated_encoding(s);
6159 }
6160 }
6161
6162 /* The imm8 encodes the sign bit, enough bits to represent an exponent in
6163 * the range 01....1xx to 10....0xx, and the most significant 4 bits of
6164 * the mantissa; see VFPExpandImm() in the v8 ARM ARM.
6165 */
6166 uint64_t vfp_expand_imm(int size, uint8_t imm8)
6167 {
6168 uint64_t imm;
6169
6170 switch (size) {
6171 case MO_64:
6172 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
6173 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
6174 extract32(imm8, 0, 6);
6175 imm <<= 48;
6176 break;
6177 case MO_32:
6178 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
6179 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
6180 (extract32(imm8, 0, 6) << 3);
6181 imm <<= 16;
6182 break;
6183 case MO_16:
6184 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
6185 (extract32(imm8, 6, 1) ? 0x3000 : 0x4000) |
6186 (extract32(imm8, 0, 6) << 6);
6187 break;
6188 default:
6189 g_assert_not_reached();
6190 }
6191 return imm;
6192 }
6193
6194 /* Floating point immediate
6195 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
6196 * +---+---+---+-----------+------+---+------------+-------+------+------+
6197 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
6198 * +---+---+---+-----------+------+---+------------+-------+------+------+
6199 */
6200 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6201 {
6202 int rd = extract32(insn, 0, 5);
6203 int imm5 = extract32(insn, 5, 5);
6204 int imm8 = extract32(insn, 13, 8);
6205 int type = extract32(insn, 22, 2);
6206 int mos = extract32(insn, 29, 3);
6207 uint64_t imm;
6208 TCGv_i64 tcg_res;
6209 TCGMemOp sz;
6210
6211 if (mos || imm5) {
6212 unallocated_encoding(s);
6213 return;
6214 }
6215
6216 switch (type) {
6217 case 0:
6218 sz = MO_32;
6219 break;
6220 case 1:
6221 sz = MO_64;
6222 break;
6223 case 3:
6224 sz = MO_16;
6225 if (dc_isar_feature(aa64_fp16, s)) {
6226 break;
6227 }
6228 /* fallthru */
6229 default:
6230 unallocated_encoding(s);
6231 return;
6232 }
6233
6234 if (!fp_access_check(s)) {
6235 return;
6236 }
6237
6238 imm = vfp_expand_imm(sz, imm8);
6239
6240 tcg_res = tcg_const_i64(imm);
6241 write_fp_dreg(s, rd, tcg_res);
6242 tcg_temp_free_i64(tcg_res);
6243 }
6244
6245 /* Handle floating point <=> fixed point conversions. Note that we can
6246 * also deal with fp <=> integer conversions as a special case (scale == 64)
6247 * OPTME: consider handling that special case specially or at least skipping
6248 * the call to scalbn in the helpers for zero shifts.
6249 */
6250 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6251 bool itof, int rmode, int scale, int sf, int type)
6252 {
6253 bool is_signed = !(opcode & 1);
6254 TCGv_ptr tcg_fpstatus;
6255 TCGv_i32 tcg_shift, tcg_single;
6256 TCGv_i64 tcg_double;
6257
6258 tcg_fpstatus = get_fpstatus_ptr(type == 3);
6259
6260 tcg_shift = tcg_const_i32(64 - scale);
6261
6262 if (itof) {
6263 TCGv_i64 tcg_int = cpu_reg(s, rn);
6264 if (!sf) {
6265 TCGv_i64 tcg_extend = new_tmp_a64(s);
6266
6267 if (is_signed) {
6268 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6269 } else {
6270 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6271 }
6272
6273 tcg_int = tcg_extend;
6274 }
6275
6276 switch (type) {
6277 case 1: /* float64 */
6278 tcg_double = tcg_temp_new_i64();
6279 if (is_signed) {
6280 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6281 tcg_shift, tcg_fpstatus);
6282 } else {
6283 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6284 tcg_shift, tcg_fpstatus);
6285 }
6286 write_fp_dreg(s, rd, tcg_double);
6287 tcg_temp_free_i64(tcg_double);
6288 break;
6289
6290 case 0: /* float32 */
6291 tcg_single = tcg_temp_new_i32();
6292 if (is_signed) {
6293 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6294 tcg_shift, tcg_fpstatus);
6295 } else {
6296 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6297 tcg_shift, tcg_fpstatus);
6298 }
6299 write_fp_sreg(s, rd, tcg_single);
6300 tcg_temp_free_i32(tcg_single);
6301 break;
6302
6303 case 3: /* float16 */
6304 tcg_single = tcg_temp_new_i32();
6305 if (is_signed) {
6306 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6307 tcg_shift, tcg_fpstatus);
6308 } else {
6309 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6310 tcg_shift, tcg_fpstatus);
6311 }
6312 write_fp_sreg(s, rd, tcg_single);
6313 tcg_temp_free_i32(tcg_single);
6314 break;
6315
6316 default:
6317 g_assert_not_reached();
6318 }
6319 } else {
6320 TCGv_i64 tcg_int = cpu_reg(s, rd);
6321 TCGv_i32 tcg_rmode;
6322
6323 if (extract32(opcode, 2, 1)) {
6324 /* There are too many rounding modes to all fit into rmode,
6325 * so FCVTA[US] is a special case.
6326 */
6327 rmode = FPROUNDING_TIEAWAY;
6328 }
6329
6330 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
6331
6332 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
6333
6334 switch (type) {
6335 case 1: /* float64 */
6336 tcg_double = read_fp_dreg(s, rn);
6337 if (is_signed) {
6338 if (!sf) {
6339 gen_helper_vfp_tosld(tcg_int, tcg_double,
6340 tcg_shift, tcg_fpstatus);
6341 } else {
6342 gen_helper_vfp_tosqd(tcg_int, tcg_double,
6343 tcg_shift, tcg_fpstatus);
6344 }
6345 } else {
6346 if (!sf) {
6347 gen_helper_vfp_tould(tcg_int, tcg_double,
6348 tcg_shift, tcg_fpstatus);
6349 } else {
6350 gen_helper_vfp_touqd(tcg_int, tcg_double,
6351 tcg_shift, tcg_fpstatus);
6352 }
6353 }
6354 if (!sf) {
6355 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6356 }
6357 tcg_temp_free_i64(tcg_double);
6358 break;
6359
6360 case 0: /* float32 */
6361 tcg_single = read_fp_sreg(s, rn);
6362 if (sf) {
6363 if (is_signed) {
6364 gen_helper_vfp_tosqs(tcg_int, tcg_single,
6365 tcg_shift, tcg_fpstatus);
6366 } else {
6367 gen_helper_vfp_touqs(tcg_int, tcg_single,
6368 tcg_shift, tcg_fpstatus);
6369 }
6370 } else {
6371 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6372 if (is_signed) {
6373 gen_helper_vfp_tosls(tcg_dest, tcg_single,
6374 tcg_shift, tcg_fpstatus);
6375 } else {
6376 gen_helper_vfp_touls(tcg_dest, tcg_single,
6377 tcg_shift, tcg_fpstatus);
6378 }
6379 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6380 tcg_temp_free_i32(tcg_dest);
6381 }
6382 tcg_temp_free_i32(tcg_single);
6383 break;
6384
6385 case 3: /* float16 */
6386 tcg_single = read_fp_sreg(s, rn);
6387 if (sf) {
6388 if (is_signed) {
6389 gen_helper_vfp_tosqh(tcg_int, tcg_single,
6390 tcg_shift, tcg_fpstatus);
6391 } else {
6392 gen_helper_vfp_touqh(tcg_int, tcg_single,
6393 tcg_shift, tcg_fpstatus);
6394 }
6395 } else {
6396 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6397 if (is_signed) {
6398 gen_helper_vfp_toslh(tcg_dest, tcg_single,
6399 tcg_shift, tcg_fpstatus);
6400 } else {
6401 gen_helper_vfp_toulh(tcg_dest, tcg_single,
6402 tcg_shift, tcg_fpstatus);
6403 }
6404 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6405 tcg_temp_free_i32(tcg_dest);
6406 }
6407 tcg_temp_free_i32(tcg_single);
6408 break;
6409
6410 default:
6411 g_assert_not_reached();
6412 }
6413
6414 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
6415 tcg_temp_free_i32(tcg_rmode);
6416 }
6417
6418 tcg_temp_free_ptr(tcg_fpstatus);
6419 tcg_temp_free_i32(tcg_shift);
6420 }
6421
6422 /* Floating point <-> fixed point conversions
6423 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6424 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6425 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
6426 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6427 */
6428 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6429 {
6430 int rd = extract32(insn, 0, 5);
6431 int rn = extract32(insn, 5, 5);
6432 int scale = extract32(insn, 10, 6);
6433 int opcode = extract32(insn, 16, 3);
6434 int rmode = extract32(insn, 19, 2);
6435 int type = extract32(insn, 22, 2);
6436 bool sbit = extract32(insn, 29, 1);
6437 bool sf = extract32(insn, 31, 1);
6438 bool itof;
6439
6440 if (sbit || (!sf && scale < 32)) {
6441 unallocated_encoding(s);
6442 return;
6443 }
6444
6445 switch (type) {
6446 case 0: /* float32 */
6447 case 1: /* float64 */
6448 break;
6449 case 3: /* float16 */
6450 if (dc_isar_feature(aa64_fp16, s)) {
6451 break;
6452 }
6453 /* fallthru */
6454 default:
6455 unallocated_encoding(s);
6456 return;
6457 }
6458
6459 switch ((rmode << 3) | opcode) {
6460 case 0x2: /* SCVTF */
6461 case 0x3: /* UCVTF */
6462 itof = true;
6463 break;
6464 case 0x18: /* FCVTZS */
6465 case 0x19: /* FCVTZU */
6466 itof = false;
6467 break;
6468 default:
6469 unallocated_encoding(s);
6470 return;
6471 }
6472
6473 if (!fp_access_check(s)) {
6474 return;
6475 }
6476
6477 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
6478 }
6479
6480 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
6481 {
6482 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
6483 * without conversion.
6484 */
6485
6486 if (itof) {
6487 TCGv_i64 tcg_rn = cpu_reg(s, rn);
6488 TCGv_i64 tmp;
6489
6490 switch (type) {
6491 case 0:
6492 /* 32 bit */
6493 tmp = tcg_temp_new_i64();
6494 tcg_gen_ext32u_i64(tmp, tcg_rn);
6495 write_fp_dreg(s, rd, tmp);
6496 tcg_temp_free_i64(tmp);
6497 break;
6498 case 1:
6499 /* 64 bit */
6500 write_fp_dreg(s, rd, tcg_rn);
6501 break;
6502 case 2:
6503 /* 64 bit to top half. */
6504 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
6505 clear_vec_high(s, true, rd);
6506 break;
6507 case 3:
6508 /* 16 bit */
6509 tmp = tcg_temp_new_i64();
6510 tcg_gen_ext16u_i64(tmp, tcg_rn);
6511 write_fp_dreg(s, rd, tmp);
6512 tcg_temp_free_i64(tmp);
6513 break;
6514 default:
6515 g_assert_not_reached();
6516 }
6517 } else {
6518 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6519
6520 switch (type) {
6521 case 0:
6522 /* 32 bit */
6523 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
6524 break;
6525 case 1:
6526 /* 64 bit */
6527 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
6528 break;
6529 case 2:
6530 /* 64 bits from top half */
6531 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
6532 break;
6533 case 3:
6534 /* 16 bit */
6535 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
6536 break;
6537 default:
6538 g_assert_not_reached();
6539 }
6540 }
6541 }
6542
6543 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
6544 {
6545 TCGv_i64 t = read_fp_dreg(s, rn);
6546 TCGv_ptr fpstatus = get_fpstatus_ptr(false);
6547
6548 gen_helper_fjcvtzs(t, t, fpstatus);
6549
6550 tcg_temp_free_ptr(fpstatus);
6551
6552 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
6553 tcg_gen_extrh_i64_i32(cpu_ZF, t);
6554 tcg_gen_movi_i32(cpu_CF, 0);
6555 tcg_gen_movi_i32(cpu_NF, 0);
6556 tcg_gen_movi_i32(cpu_VF, 0);
6557
6558 tcg_temp_free_i64(t);
6559 }
6560
6561 /* Floating point <-> integer conversions
6562 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6563 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6564 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
6565 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6566 */
6567 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
6568 {
6569 int rd = extract32(insn, 0, 5);
6570 int rn = extract32(insn, 5, 5);
6571 int opcode = extract32(insn, 16, 3);
6572 int rmode = extract32(insn, 19, 2);
6573 int type = extract32(insn, 22, 2);
6574 bool sbit = extract32(insn, 29, 1);
6575 bool sf = extract32(insn, 31, 1);
6576 bool itof = false;
6577
6578 if (sbit) {
6579 goto do_unallocated;
6580 }
6581
6582 switch (opcode) {
6583 case 2: /* SCVTF */
6584 case 3: /* UCVTF */
6585 itof = true;
6586 /* fallthru */
6587 case 4: /* FCVTAS */
6588 case 5: /* FCVTAU */
6589 if (rmode != 0) {
6590 goto do_unallocated;
6591 }
6592 /* fallthru */
6593 case 0: /* FCVT[NPMZ]S */
6594 case 1: /* FCVT[NPMZ]U */
6595 switch (type) {
6596 case 0: /* float32 */
6597 case 1: /* float64 */
6598 break;
6599 case 3: /* float16 */
6600 if (!dc_isar_feature(aa64_fp16, s)) {
6601 goto do_unallocated;
6602 }
6603 break;
6604 default:
6605 goto do_unallocated;
6606 }
6607 if (!fp_access_check(s)) {
6608 return;
6609 }
6610 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
6611 break;
6612
6613 default:
6614 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
6615 case 0b01100110: /* FMOV half <-> 32-bit int */
6616 case 0b01100111:
6617 case 0b11100110: /* FMOV half <-> 64-bit int */
6618 case 0b11100111:
6619 if (!dc_isar_feature(aa64_fp16, s)) {
6620 goto do_unallocated;
6621 }
6622 /* fallthru */
6623 case 0b00000110: /* FMOV 32-bit */
6624 case 0b00000111:
6625 case 0b10100110: /* FMOV 64-bit */
6626 case 0b10100111:
6627 case 0b11001110: /* FMOV top half of 128-bit */
6628 case 0b11001111:
6629 if (!fp_access_check(s)) {
6630 return;
6631 }
6632 itof = opcode & 1;
6633 handle_fmov(s, rd, rn, type, itof);
6634 break;
6635
6636 case 0b00111110: /* FJCVTZS */
6637 if (!dc_isar_feature(aa64_jscvt, s)) {
6638 goto do_unallocated;
6639 } else if (fp_access_check(s)) {
6640 handle_fjcvtzs(s, rd, rn);
6641 }
6642 break;
6643
6644 default:
6645 do_unallocated:
6646 unallocated_encoding(s);
6647 return;
6648 }
6649 break;
6650 }
6651 }
6652
6653 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
6654 * 31 30 29 28 25 24 0
6655 * +---+---+---+---------+-----------------------------+
6656 * | | 0 | | 1 1 1 1 | |
6657 * +---+---+---+---------+-----------------------------+
6658 */
6659 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
6660 {
6661 if (extract32(insn, 24, 1)) {
6662 /* Floating point data-processing (3 source) */
6663 disas_fp_3src(s, insn);
6664 } else if (extract32(insn, 21, 1) == 0) {
6665 /* Floating point to fixed point conversions */
6666 disas_fp_fixed_conv(s, insn);
6667 } else {
6668 switch (extract32(insn, 10, 2)) {
6669 case 1:
6670 /* Floating point conditional compare */
6671 disas_fp_ccomp(s, insn);
6672 break;
6673 case 2:
6674 /* Floating point data-processing (2 source) */
6675 disas_fp_2src(s, insn);
6676 break;
6677 case 3:
6678 /* Floating point conditional select */
6679 disas_fp_csel(s, insn);
6680 break;
6681 case 0:
6682 switch (ctz32(extract32(insn, 12, 4))) {
6683 case 0: /* [15:12] == xxx1 */
6684 /* Floating point immediate */
6685 disas_fp_imm(s, insn);
6686 break;
6687 case 1: /* [15:12] == xx10 */
6688 /* Floating point compare */
6689 disas_fp_compare(s, insn);
6690 break;
6691 case 2: /* [15:12] == x100 */
6692 /* Floating point data-processing (1 source) */
6693 disas_fp_1src(s, insn);
6694 break;
6695 case 3: /* [15:12] == 1000 */
6696 unallocated_encoding(s);
6697 break;
6698 default: /* [15:12] == 0000 */
6699 /* Floating point <-> integer conversions */
6700 disas_fp_int_conv(s, insn);
6701 break;
6702 }
6703 break;
6704 }
6705 }
6706 }
6707
6708 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
6709 int pos)
6710 {
6711 /* Extract 64 bits from the middle of two concatenated 64 bit
6712 * vector register slices left:right. The extracted bits start
6713 * at 'pos' bits into the right (least significant) side.
6714 * We return the result in tcg_right, and guarantee not to
6715 * trash tcg_left.
6716 */
6717 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6718 assert(pos > 0 && pos < 64);
6719
6720 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
6721 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
6722 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
6723
6724 tcg_temp_free_i64(tcg_tmp);
6725 }
6726
6727 /* EXT
6728 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
6729 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6730 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
6731 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6732 */
6733 static void disas_simd_ext(DisasContext *s, uint32_t insn)
6734 {
6735 int is_q = extract32(insn, 30, 1);
6736 int op2 = extract32(insn, 22, 2);
6737 int imm4 = extract32(insn, 11, 4);
6738 int rm = extract32(insn, 16, 5);
6739 int rn = extract32(insn, 5, 5);
6740 int rd = extract32(insn, 0, 5);
6741 int pos = imm4 << 3;
6742 TCGv_i64 tcg_resl, tcg_resh;
6743
6744 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
6745 unallocated_encoding(s);
6746 return;
6747 }
6748
6749 if (!fp_access_check(s)) {
6750 return;
6751 }
6752
6753 tcg_resh = tcg_temp_new_i64();
6754 tcg_resl = tcg_temp_new_i64();
6755
6756 /* Vd gets bits starting at pos bits into Vm:Vn. This is
6757 * either extracting 128 bits from a 128:128 concatenation, or
6758 * extracting 64 bits from a 64:64 concatenation.
6759 */
6760 if (!is_q) {
6761 read_vec_element(s, tcg_resl, rn, 0, MO_64);
6762 if (pos != 0) {
6763 read_vec_element(s, tcg_resh, rm, 0, MO_64);
6764 do_ext64(s, tcg_resh, tcg_resl, pos);
6765 }
6766 tcg_gen_movi_i64(tcg_resh, 0);
6767 } else {
6768 TCGv_i64 tcg_hh;
6769 typedef struct {
6770 int reg;
6771 int elt;
6772 } EltPosns;
6773 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
6774 EltPosns *elt = eltposns;
6775
6776 if (pos >= 64) {
6777 elt++;
6778 pos -= 64;
6779 }
6780
6781 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
6782 elt++;
6783 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
6784 elt++;
6785 if (pos != 0) {
6786 do_ext64(s, tcg_resh, tcg_resl, pos);
6787 tcg_hh = tcg_temp_new_i64();
6788 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
6789 do_ext64(s, tcg_hh, tcg_resh, pos);
6790 tcg_temp_free_i64(tcg_hh);
6791 }
6792 }
6793
6794 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6795 tcg_temp_free_i64(tcg_resl);
6796 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6797 tcg_temp_free_i64(tcg_resh);
6798 }
6799
6800 /* TBL/TBX
6801 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
6802 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
6803 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
6804 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
6805 */
6806 static void disas_simd_tb(DisasContext *s, uint32_t insn)
6807 {
6808 int op2 = extract32(insn, 22, 2);
6809 int is_q = extract32(insn, 30, 1);
6810 int rm = extract32(insn, 16, 5);
6811 int rn = extract32(insn, 5, 5);
6812 int rd = extract32(insn, 0, 5);
6813 int is_tblx = extract32(insn, 12, 1);
6814 int len = extract32(insn, 13, 2);
6815 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
6816 TCGv_i32 tcg_regno, tcg_numregs;
6817
6818 if (op2 != 0) {
6819 unallocated_encoding(s);
6820 return;
6821 }
6822
6823 if (!fp_access_check(s)) {
6824 return;
6825 }
6826
6827 /* This does a table lookup: for every byte element in the input
6828 * we index into a table formed from up to four vector registers,
6829 * and then the output is the result of the lookups. Our helper
6830 * function does the lookup operation for a single 64 bit part of
6831 * the input.
6832 */
6833 tcg_resl = tcg_temp_new_i64();
6834 tcg_resh = tcg_temp_new_i64();
6835
6836 if (is_tblx) {
6837 read_vec_element(s, tcg_resl, rd, 0, MO_64);
6838 } else {
6839 tcg_gen_movi_i64(tcg_resl, 0);
6840 }
6841 if (is_tblx && is_q) {
6842 read_vec_element(s, tcg_resh, rd, 1, MO_64);
6843 } else {
6844 tcg_gen_movi_i64(tcg_resh, 0);
6845 }
6846
6847 tcg_idx = tcg_temp_new_i64();
6848 tcg_regno = tcg_const_i32(rn);
6849 tcg_numregs = tcg_const_i32(len + 1);
6850 read_vec_element(s, tcg_idx, rm, 0, MO_64);
6851 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
6852 tcg_regno, tcg_numregs);
6853 if (is_q) {
6854 read_vec_element(s, tcg_idx, rm, 1, MO_64);
6855 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
6856 tcg_regno, tcg_numregs);
6857 }
6858 tcg_temp_free_i64(tcg_idx);
6859 tcg_temp_free_i32(tcg_regno);
6860 tcg_temp_free_i32(tcg_numregs);
6861
6862 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6863 tcg_temp_free_i64(tcg_resl);
6864 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6865 tcg_temp_free_i64(tcg_resh);
6866 }
6867
6868 /* ZIP/UZP/TRN
6869 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
6870 * +---+---+-------------+------+---+------+---+------------------+------+
6871 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
6872 * +---+---+-------------+------+---+------+---+------------------+------+
6873 */
6874 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
6875 {
6876 int rd = extract32(insn, 0, 5);
6877 int rn = extract32(insn, 5, 5);
6878 int rm = extract32(insn, 16, 5);
6879 int size = extract32(insn, 22, 2);
6880 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
6881 * bit 2 indicates 1 vs 2 variant of the insn.
6882 */
6883 int opcode = extract32(insn, 12, 2);
6884 bool part = extract32(insn, 14, 1);
6885 bool is_q = extract32(insn, 30, 1);
6886 int esize = 8 << size;
6887 int i, ofs;
6888 int datasize = is_q ? 128 : 64;
6889 int elements = datasize / esize;
6890 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
6891
6892 if (opcode == 0 || (size == 3 && !is_q)) {
6893 unallocated_encoding(s);
6894 return;
6895 }
6896
6897 if (!fp_access_check(s)) {
6898 return;
6899 }
6900
6901 tcg_resl = tcg_const_i64(0);
6902 tcg_resh = tcg_const_i64(0);
6903 tcg_res = tcg_temp_new_i64();
6904
6905 for (i = 0; i < elements; i++) {
6906 switch (opcode) {
6907 case 1: /* UZP1/2 */
6908 {
6909 int midpoint = elements / 2;
6910 if (i < midpoint) {
6911 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
6912 } else {
6913 read_vec_element(s, tcg_res, rm,
6914 2 * (i - midpoint) + part, size);
6915 }
6916 break;
6917 }
6918 case 2: /* TRN1/2 */
6919 if (i & 1) {
6920 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
6921 } else {
6922 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
6923 }
6924 break;
6925 case 3: /* ZIP1/2 */
6926 {
6927 int base = part * elements / 2;
6928 if (i & 1) {
6929 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
6930 } else {
6931 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
6932 }
6933 break;
6934 }
6935 default:
6936 g_assert_not_reached();
6937 }
6938
6939 ofs = i * esize;
6940 if (ofs < 64) {
6941 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
6942 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
6943 } else {
6944 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
6945 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
6946 }
6947 }
6948
6949 tcg_temp_free_i64(tcg_res);
6950
6951 write_vec_element(s, tcg_resl, rd, 0, MO_64);
6952 tcg_temp_free_i64(tcg_resl);
6953 write_vec_element(s, tcg_resh, rd, 1, MO_64);
6954 tcg_temp_free_i64(tcg_resh);
6955 }
6956
6957 /*
6958 * do_reduction_op helper
6959 *
6960 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
6961 * important for correct NaN propagation that we do these
6962 * operations in exactly the order specified by the pseudocode.
6963 *
6964 * This is a recursive function, TCG temps should be freed by the
6965 * calling function once it is done with the values.
6966 */
6967 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
6968 int esize, int size, int vmap, TCGv_ptr fpst)
6969 {
6970 if (esize == size) {
6971 int element;
6972 TCGMemOp msize = esize == 16 ? MO_16 : MO_32;
6973 TCGv_i32 tcg_elem;
6974
6975 /* We should have one register left here */
6976 assert(ctpop8(vmap) == 1);
6977 element = ctz32(vmap);
6978 assert(element < 8);
6979
6980 tcg_elem = tcg_temp_new_i32();
6981 read_vec_element_i32(s, tcg_elem, rn, element, msize);
6982 return tcg_elem;
6983 } else {
6984 int bits = size / 2;
6985 int shift = ctpop8(vmap) / 2;
6986 int vmap_lo = (vmap >> shift) & vmap;
6987 int vmap_hi = (vmap & ~vmap_lo);
6988 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
6989
6990 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
6991 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
6992 tcg_res = tcg_temp_new_i32();
6993
6994 switch (fpopcode) {
6995 case 0x0c: /* fmaxnmv half-precision */
6996 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
6997 break;
6998 case 0x0f: /* fmaxv half-precision */
6999 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7000 break;
7001 case 0x1c: /* fminnmv half-precision */
7002 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7003 break;
7004 case 0x1f: /* fminv half-precision */
7005 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7006 break;
7007 case 0x2c: /* fmaxnmv */
7008 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7009 break;
7010 case 0x2f: /* fmaxv */
7011 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7012 break;
7013 case 0x3c: /* fminnmv */
7014 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7015 break;
7016 case 0x3f: /* fminv */
7017 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7018 break;
7019 default:
7020 g_assert_not_reached();
7021 }
7022
7023 tcg_temp_free_i32(tcg_hi);
7024 tcg_temp_free_i32(tcg_lo);
7025 return tcg_res;
7026 }
7027 }
7028
7029 /* AdvSIMD across lanes
7030 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7031 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7032 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7033 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7034 */
7035 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7036 {
7037 int rd = extract32(insn, 0, 5);
7038 int rn = extract32(insn, 5, 5);
7039 int size = extract32(insn, 22, 2);
7040 int opcode = extract32(insn, 12, 5);
7041 bool is_q = extract32(insn, 30, 1);
7042 bool is_u = extract32(insn, 29, 1);
7043 bool is_fp = false;
7044 bool is_min = false;
7045 int esize;
7046 int elements;
7047 int i;
7048 TCGv_i64 tcg_res, tcg_elt;
7049
7050 switch (opcode) {
7051 case 0x1b: /* ADDV */
7052 if (is_u) {
7053 unallocated_encoding(s);
7054 return;
7055 }
7056 /* fall through */
7057 case 0x3: /* SADDLV, UADDLV */
7058 case 0xa: /* SMAXV, UMAXV */
7059 case 0x1a: /* SMINV, UMINV */
7060 if (size == 3 || (size == 2 && !is_q)) {
7061 unallocated_encoding(s);
7062 return;
7063 }
7064 break;
7065 case 0xc: /* FMAXNMV, FMINNMV */
7066 case 0xf: /* FMAXV, FMINV */
7067 /* Bit 1 of size field encodes min vs max and the actual size
7068 * depends on the encoding of the U bit. If not set (and FP16
7069 * enabled) then we do half-precision float instead of single
7070 * precision.
7071 */
7072 is_min = extract32(size, 1, 1);
7073 is_fp = true;
7074 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7075 size = 1;
7076 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7077 unallocated_encoding(s);
7078 return;
7079 } else {
7080 size = 2;
7081 }
7082 break;
7083 default:
7084 unallocated_encoding(s);
7085 return;
7086 }
7087
7088 if (!fp_access_check(s)) {
7089 return;
7090 }
7091
7092 esize = 8 << size;
7093 elements = (is_q ? 128 : 64) / esize;
7094
7095 tcg_res = tcg_temp_new_i64();
7096 tcg_elt = tcg_temp_new_i64();
7097
7098 /* These instructions operate across all lanes of a vector
7099 * to produce a single result. We can guarantee that a 64
7100 * bit intermediate is sufficient:
7101 * + for [US]ADDLV the maximum element size is 32 bits, and
7102 * the result type is 64 bits
7103 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7104 * same as the element size, which is 32 bits at most
7105 * For the integer operations we can choose to work at 64
7106 * or 32 bits and truncate at the end; for simplicity
7107 * we use 64 bits always. The floating point
7108 * ops do require 32 bit intermediates, though.
7109 */
7110 if (!is_fp) {
7111 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7112
7113 for (i = 1; i < elements; i++) {
7114 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7115
7116 switch (opcode) {
7117 case 0x03: /* SADDLV / UADDLV */
7118 case 0x1b: /* ADDV */
7119 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7120 break;
7121 case 0x0a: /* SMAXV / UMAXV */
7122 if (is_u) {
7123 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7124 } else {
7125 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7126 }
7127 break;
7128 case 0x1a: /* SMINV / UMINV */
7129 if (is_u) {
7130 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7131 } else {
7132 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7133 }
7134 break;
7135 default:
7136 g_assert_not_reached();
7137 }
7138
7139 }
7140 } else {
7141 /* Floating point vector reduction ops which work across 32
7142 * bit (single) or 16 bit (half-precision) intermediates.
7143 * Note that correct NaN propagation requires that we do these
7144 * operations in exactly the order specified by the pseudocode.
7145 */
7146 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
7147 int fpopcode = opcode | is_min << 4 | is_u << 5;
7148 int vmap = (1 << elements) - 1;
7149 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7150 (is_q ? 128 : 64), vmap, fpst);
7151 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7152 tcg_temp_free_i32(tcg_res32);
7153 tcg_temp_free_ptr(fpst);
7154 }
7155
7156 tcg_temp_free_i64(tcg_elt);
7157
7158 /* Now truncate the result to the width required for the final output */
7159 if (opcode == 0x03) {
7160 /* SADDLV, UADDLV: result is 2*esize */
7161 size++;
7162 }
7163
7164 switch (size) {
7165 case 0:
7166 tcg_gen_ext8u_i64(tcg_res, tcg_res);
7167 break;
7168 case 1:
7169 tcg_gen_ext16u_i64(tcg_res, tcg_res);
7170 break;
7171 case 2:
7172 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7173 break;
7174 case 3:
7175 break;
7176 default:
7177 g_assert_not_reached();
7178 }
7179
7180 write_fp_dreg(s, rd, tcg_res);
7181 tcg_temp_free_i64(tcg_res);
7182 }
7183
7184 /* DUP (Element, Vector)
7185 *
7186 * 31 30 29 21 20 16 15 10 9 5 4 0
7187 * +---+---+-------------------+--------+-------------+------+------+
7188 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7189 * +---+---+-------------------+--------+-------------+------+------+
7190 *
7191 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7192 */
7193 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7194 int imm5)
7195 {
7196 int size = ctz32(imm5);
7197 int index = imm5 >> (size + 1);
7198
7199 if (size > 3 || (size == 3 && !is_q)) {
7200 unallocated_encoding(s);
7201 return;
7202 }
7203
7204 if (!fp_access_check(s)) {
7205 return;
7206 }
7207
7208 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7209 vec_reg_offset(s, rn, index, size),
7210 is_q ? 16 : 8, vec_full_reg_size(s));
7211 }
7212
7213 /* DUP (element, scalar)
7214 * 31 21 20 16 15 10 9 5 4 0
7215 * +-----------------------+--------+-------------+------+------+
7216 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7217 * +-----------------------+--------+-------------+------+------+
7218 */
7219 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7220 int imm5)
7221 {
7222 int size = ctz32(imm5);
7223 int index;
7224 TCGv_i64 tmp;
7225
7226 if (size > 3) {
7227 unallocated_encoding(s);
7228 return;
7229 }
7230
7231 if (!fp_access_check(s)) {
7232 return;
7233 }
7234
7235 index = imm5 >> (size + 1);
7236
7237 /* This instruction just extracts the specified element and
7238 * zero-extends it into the bottom of the destination register.
7239 */
7240 tmp = tcg_temp_new_i64();
7241 read_vec_element(s, tmp, rn, index, size);
7242 write_fp_dreg(s, rd, tmp);
7243 tcg_temp_free_i64(tmp);
7244 }
7245
7246 /* DUP (General)
7247 *
7248 * 31 30 29 21 20 16 15 10 9 5 4 0
7249 * +---+---+-------------------+--------+-------------+------+------+
7250 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
7251 * +---+---+-------------------+--------+-------------+------+------+
7252 *
7253 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7254 */
7255 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7256 int imm5)
7257 {
7258 int size = ctz32(imm5);
7259 uint32_t dofs, oprsz, maxsz;
7260
7261 if (size > 3 || ((size == 3) && !is_q)) {
7262 unallocated_encoding(s);
7263 return;
7264 }
7265
7266 if (!fp_access_check(s)) {
7267 return;
7268 }
7269
7270 dofs = vec_full_reg_offset(s, rd);
7271 oprsz = is_q ? 16 : 8;
7272 maxsz = vec_full_reg_size(s);
7273
7274 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7275 }
7276
7277 /* INS (Element)
7278 *
7279 * 31 21 20 16 15 14 11 10 9 5 4 0
7280 * +-----------------------+--------+------------+---+------+------+
7281 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7282 * +-----------------------+--------+------------+---+------+------+
7283 *
7284 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7285 * index: encoded in imm5<4:size+1>
7286 */
7287 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7288 int imm4, int imm5)
7289 {
7290 int size = ctz32(imm5);
7291 int src_index, dst_index;
7292 TCGv_i64 tmp;
7293
7294 if (size > 3) {
7295 unallocated_encoding(s);
7296 return;
7297 }
7298
7299 if (!fp_access_check(s)) {
7300 return;
7301 }
7302
7303 dst_index = extract32(imm5, 1+size, 5);
7304 src_index = extract32(imm4, size, 4);
7305
7306 tmp = tcg_temp_new_i64();
7307
7308 read_vec_element(s, tmp, rn, src_index, size);
7309 write_vec_element(s, tmp, rd, dst_index, size);
7310
7311 tcg_temp_free_i64(tmp);
7312 }
7313
7314
7315 /* INS (General)
7316 *
7317 * 31 21 20 16 15 10 9 5 4 0
7318 * +-----------------------+--------+-------------+------+------+
7319 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
7320 * +-----------------------+--------+-------------+------+------+
7321 *
7322 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7323 * index: encoded in imm5<4:size+1>
7324 */
7325 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7326 {
7327 int size = ctz32(imm5);
7328 int idx;
7329
7330 if (size > 3) {
7331 unallocated_encoding(s);
7332 return;
7333 }
7334
7335 if (!fp_access_check(s)) {
7336 return;
7337 }
7338
7339 idx = extract32(imm5, 1 + size, 4 - size);
7340 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7341 }
7342
7343 /*
7344 * UMOV (General)
7345 * SMOV (General)
7346 *
7347 * 31 30 29 21 20 16 15 12 10 9 5 4 0
7348 * +---+---+-------------------+--------+-------------+------+------+
7349 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
7350 * +---+---+-------------------+--------+-------------+------+------+
7351 *
7352 * U: unsigned when set
7353 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7354 */
7355 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7356 int rn, int rd, int imm5)
7357 {
7358 int size = ctz32(imm5);
7359 int element;
7360 TCGv_i64 tcg_rd;
7361
7362 /* Check for UnallocatedEncodings */
7363 if (is_signed) {
7364 if (size > 2 || (size == 2 && !is_q)) {
7365 unallocated_encoding(s);
7366 return;
7367 }
7368 } else {
7369 if (size > 3
7370 || (size < 3 && is_q)
7371 || (size == 3 && !is_q)) {
7372 unallocated_encoding(s);
7373 return;
7374 }
7375 }
7376
7377 if (!fp_access_check(s)) {
7378 return;
7379 }
7380
7381 element = extract32(imm5, 1+size, 4);
7382
7383 tcg_rd = cpu_reg(s, rd);
7384 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7385 if (is_signed && !is_q) {
7386 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7387 }
7388 }
7389
7390 /* AdvSIMD copy
7391 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7392 * +---+---+----+-----------------+------+---+------+---+------+------+
7393 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7394 * +---+---+----+-----------------+------+---+------+---+------+------+
7395 */
7396 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7397 {
7398 int rd = extract32(insn, 0, 5);
7399 int rn = extract32(insn, 5, 5);
7400 int imm4 = extract32(insn, 11, 4);
7401 int op = extract32(insn, 29, 1);
7402 int is_q = extract32(insn, 30, 1);
7403 int imm5 = extract32(insn, 16, 5);
7404
7405 if (op) {
7406 if (is_q) {
7407 /* INS (element) */
7408 handle_simd_inse(s, rd, rn, imm4, imm5);
7409 } else {
7410 unallocated_encoding(s);
7411 }
7412 } else {
7413 switch (imm4) {
7414 case 0:
7415 /* DUP (element - vector) */
7416 handle_simd_dupe(s, is_q, rd, rn, imm5);
7417 break;
7418 case 1:
7419 /* DUP (general) */
7420 handle_simd_dupg(s, is_q, rd, rn, imm5);
7421 break;
7422 case 3:
7423 if (is_q) {
7424 /* INS (general) */
7425 handle_simd_insg(s, rd, rn, imm5);
7426 } else {
7427 unallocated_encoding(s);
7428 }
7429 break;
7430 case 5:
7431 case 7:
7432 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7433 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7434 break;
7435 default:
7436 unallocated_encoding(s);
7437 break;
7438 }
7439 }
7440 }
7441
7442 /* AdvSIMD modified immediate
7443 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
7444 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7445 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
7446 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7447 *
7448 * There are a number of operations that can be carried out here:
7449 * MOVI - move (shifted) imm into register
7450 * MVNI - move inverted (shifted) imm into register
7451 * ORR - bitwise OR of (shifted) imm with register
7452 * BIC - bitwise clear of (shifted) imm with register
7453 * With ARMv8.2 we also have:
7454 * FMOV half-precision
7455 */
7456 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7457 {
7458 int rd = extract32(insn, 0, 5);
7459 int cmode = extract32(insn, 12, 4);
7460 int cmode_3_1 = extract32(cmode, 1, 3);
7461 int cmode_0 = extract32(cmode, 0, 1);
7462 int o2 = extract32(insn, 11, 1);
7463 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7464 bool is_neg = extract32(insn, 29, 1);
7465 bool is_q = extract32(insn, 30, 1);
7466 uint64_t imm = 0;
7467
7468 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7469 /* Check for FMOV (vector, immediate) - half-precision */
7470 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7471 unallocated_encoding(s);
7472 return;
7473 }
7474 }
7475
7476 if (!fp_access_check(s)) {
7477 return;
7478 }
7479
7480 /* See AdvSIMDExpandImm() in ARM ARM */
7481 switch (cmode_3_1) {
7482 case 0: /* Replicate(Zeros(24):imm8, 2) */
7483 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
7484 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
7485 case 3: /* Replicate(imm8:Zeros(24), 2) */
7486 {
7487 int shift = cmode_3_1 * 8;
7488 imm = bitfield_replicate(abcdefgh << shift, 32);
7489 break;
7490 }
7491 case 4: /* Replicate(Zeros(8):imm8, 4) */
7492 case 5: /* Replicate(imm8:Zeros(8), 4) */
7493 {
7494 int shift = (cmode_3_1 & 0x1) * 8;
7495 imm = bitfield_replicate(abcdefgh << shift, 16);
7496 break;
7497 }
7498 case 6:
7499 if (cmode_0) {
7500 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
7501 imm = (abcdefgh << 16) | 0xffff;
7502 } else {
7503 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
7504 imm = (abcdefgh << 8) | 0xff;
7505 }
7506 imm = bitfield_replicate(imm, 32);
7507 break;
7508 case 7:
7509 if (!cmode_0 && !is_neg) {
7510 imm = bitfield_replicate(abcdefgh, 8);
7511 } else if (!cmode_0 && is_neg) {
7512 int i;
7513 imm = 0;
7514 for (i = 0; i < 8; i++) {
7515 if ((abcdefgh) & (1 << i)) {
7516 imm |= 0xffULL << (i * 8);
7517 }
7518 }
7519 } else if (cmode_0) {
7520 if (is_neg) {
7521 imm = (abcdefgh & 0x3f) << 48;
7522 if (abcdefgh & 0x80) {
7523 imm |= 0x8000000000000000ULL;
7524 }
7525 if (abcdefgh & 0x40) {
7526 imm |= 0x3fc0000000000000ULL;
7527 } else {
7528 imm |= 0x4000000000000000ULL;
7529 }
7530 } else {
7531 if (o2) {
7532 /* FMOV (vector, immediate) - half-precision */
7533 imm = vfp_expand_imm(MO_16, abcdefgh);
7534 /* now duplicate across the lanes */
7535 imm = bitfield_replicate(imm, 16);
7536 } else {
7537 imm = (abcdefgh & 0x3f) << 19;
7538 if (abcdefgh & 0x80) {
7539 imm |= 0x80000000;
7540 }
7541 if (abcdefgh & 0x40) {
7542 imm |= 0x3e000000;
7543 } else {
7544 imm |= 0x40000000;
7545 }
7546 imm |= (imm << 32);
7547 }
7548 }
7549 }
7550 break;
7551 default:
7552 fprintf(stderr, "%s: cmode_3_1: %x\n", __func__, cmode_3_1);
7553 g_assert_not_reached();
7554 }
7555
7556 if (cmode_3_1 != 7 && is_neg) {
7557 imm = ~imm;
7558 }
7559
7560 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7561 /* MOVI or MVNI, with MVNI negation handled above. */
7562 tcg_gen_gvec_dup64i(vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7563 vec_full_reg_size(s), imm);
7564 } else {
7565 /* ORR or BIC, with BIC negation to AND handled above. */
7566 if (is_neg) {
7567 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7568 } else {
7569 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7570 }
7571 }
7572 }
7573
7574 /* AdvSIMD scalar copy
7575 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7576 * +-----+----+-----------------+------+---+------+---+------+------+
7577 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7578 * +-----+----+-----------------+------+---+------+---+------+------+
7579 */
7580 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7581 {
7582 int rd = extract32(insn, 0, 5);
7583 int rn = extract32(insn, 5, 5);
7584 int imm4 = extract32(insn, 11, 4);
7585 int imm5 = extract32(insn, 16, 5);
7586 int op = extract32(insn, 29, 1);
7587
7588 if (op != 0 || imm4 != 0) {
7589 unallocated_encoding(s);
7590 return;
7591 }
7592
7593 /* DUP (element, scalar) */
7594 handle_simd_dupes(s, rd, rn, imm5);
7595 }
7596
7597 /* AdvSIMD scalar pairwise
7598 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7599 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7600 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7601 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7602 */
7603 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7604 {
7605 int u = extract32(insn, 29, 1);
7606 int size = extract32(insn, 22, 2);
7607 int opcode = extract32(insn, 12, 5);
7608 int rn = extract32(insn, 5, 5);
7609 int rd = extract32(insn, 0, 5);
7610 TCGv_ptr fpst;
7611
7612 /* For some ops (the FP ones), size[1] is part of the encoding.
7613 * For ADDP strictly it is not but size[1] is always 1 for valid
7614 * encodings.
7615 */
7616 opcode |= (extract32(size, 1, 1) << 5);
7617
7618 switch (opcode) {
7619 case 0x3b: /* ADDP */
7620 if (u || size != 3) {
7621 unallocated_encoding(s);
7622 return;
7623 }
7624 if (!fp_access_check(s)) {
7625 return;
7626 }
7627
7628 fpst = NULL;
7629 break;
7630 case 0xc: /* FMAXNMP */
7631 case 0xd: /* FADDP */
7632 case 0xf: /* FMAXP */
7633 case 0x2c: /* FMINNMP */
7634 case 0x2f: /* FMINP */
7635 /* FP op, size[0] is 32 or 64 bit*/
7636 if (!u) {
7637 if (!dc_isar_feature(aa64_fp16, s)) {
7638 unallocated_encoding(s);
7639 return;
7640 } else {
7641 size = MO_16;
7642 }
7643 } else {
7644 size = extract32(size, 0, 1) ? MO_64 : MO_32;
7645 }
7646
7647 if (!fp_access_check(s)) {
7648 return;
7649 }
7650
7651 fpst = get_fpstatus_ptr(size == MO_16);
7652 break;
7653 default:
7654 unallocated_encoding(s);
7655 return;
7656 }
7657
7658 if (size == MO_64) {
7659 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7660 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7661 TCGv_i64 tcg_res = tcg_temp_new_i64();
7662
7663 read_vec_element(s, tcg_op1, rn, 0, MO_64);
7664 read_vec_element(s, tcg_op2, rn, 1, MO_64);
7665
7666 switch (opcode) {
7667 case 0x3b: /* ADDP */
7668 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
7669 break;
7670 case 0xc: /* FMAXNMP */
7671 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7672 break;
7673 case 0xd: /* FADDP */
7674 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7675 break;
7676 case 0xf: /* FMAXP */
7677 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7678 break;
7679 case 0x2c: /* FMINNMP */
7680 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7681 break;
7682 case 0x2f: /* FMINP */
7683 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7684 break;
7685 default:
7686 g_assert_not_reached();
7687 }
7688
7689 write_fp_dreg(s, rd, tcg_res);
7690
7691 tcg_temp_free_i64(tcg_op1);
7692 tcg_temp_free_i64(tcg_op2);
7693 tcg_temp_free_i64(tcg_res);
7694 } else {
7695 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7696 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7697 TCGv_i32 tcg_res = tcg_temp_new_i32();
7698
7699 read_vec_element_i32(s, tcg_op1, rn, 0, size);
7700 read_vec_element_i32(s, tcg_op2, rn, 1, size);
7701
7702 if (size == MO_16) {
7703 switch (opcode) {
7704 case 0xc: /* FMAXNMP */
7705 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7706 break;
7707 case 0xd: /* FADDP */
7708 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
7709 break;
7710 case 0xf: /* FMAXP */
7711 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
7712 break;
7713 case 0x2c: /* FMINNMP */
7714 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7715 break;
7716 case 0x2f: /* FMINP */
7717 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
7718 break;
7719 default:
7720 g_assert_not_reached();
7721 }
7722 } else {
7723 switch (opcode) {
7724 case 0xc: /* FMAXNMP */
7725 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7726 break;
7727 case 0xd: /* FADDP */
7728 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7729 break;
7730 case 0xf: /* FMAXP */
7731 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7732 break;
7733 case 0x2c: /* FMINNMP */
7734 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7735 break;
7736 case 0x2f: /* FMINP */
7737 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7738 break;
7739 default:
7740 g_assert_not_reached();
7741 }
7742 }
7743
7744 write_fp_sreg(s, rd, tcg_res);
7745
7746 tcg_temp_free_i32(tcg_op1);
7747 tcg_temp_free_i32(tcg_op2);
7748 tcg_temp_free_i32(tcg_res);
7749 }
7750
7751 if (fpst) {
7752 tcg_temp_free_ptr(fpst);
7753 }
7754 }
7755
7756 /*
7757 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
7758 *
7759 * This code is handles the common shifting code and is used by both
7760 * the vector and scalar code.
7761 */
7762 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
7763 TCGv_i64 tcg_rnd, bool accumulate,
7764 bool is_u, int size, int shift)
7765 {
7766 bool extended_result = false;
7767 bool round = tcg_rnd != NULL;
7768 int ext_lshift = 0;
7769 TCGv_i64 tcg_src_hi;
7770
7771 if (round && size == 3) {
7772 extended_result = true;
7773 ext_lshift = 64 - shift;
7774 tcg_src_hi = tcg_temp_new_i64();
7775 } else if (shift == 64) {
7776 if (!accumulate && is_u) {
7777 /* result is zero */
7778 tcg_gen_movi_i64(tcg_res, 0);
7779 return;
7780 }
7781 }
7782
7783 /* Deal with the rounding step */
7784 if (round) {
7785 if (extended_result) {
7786 TCGv_i64 tcg_zero = tcg_const_i64(0);
7787 if (!is_u) {
7788 /* take care of sign extending tcg_res */
7789 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
7790 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
7791 tcg_src, tcg_src_hi,
7792 tcg_rnd, tcg_zero);
7793 } else {
7794 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
7795 tcg_src, tcg_zero,
7796 tcg_rnd, tcg_zero);
7797 }
7798 tcg_temp_free_i64(tcg_zero);
7799 } else {
7800 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
7801 }
7802 }
7803
7804 /* Now do the shift right */
7805 if (round && extended_result) {
7806 /* extended case, >64 bit precision required */
7807 if (ext_lshift == 0) {
7808 /* special case, only high bits matter */
7809 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
7810 } else {
7811 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
7812 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
7813 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
7814 }
7815 } else {
7816 if (is_u) {
7817 if (shift == 64) {
7818 /* essentially shifting in 64 zeros */
7819 tcg_gen_movi_i64(tcg_src, 0);
7820 } else {
7821 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
7822 }
7823 } else {
7824 if (shift == 64) {
7825 /* effectively extending the sign-bit */
7826 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
7827 } else {
7828 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
7829 }
7830 }
7831 }
7832
7833 if (accumulate) {
7834 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
7835 } else {
7836 tcg_gen_mov_i64(tcg_res, tcg_src);
7837 }
7838
7839 if (extended_result) {
7840 tcg_temp_free_i64(tcg_src_hi);
7841 }
7842 }
7843
7844 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
7845 static void handle_scalar_simd_shri(DisasContext *s,
7846 bool is_u, int immh, int immb,
7847 int opcode, int rn, int rd)
7848 {
7849 const int size = 3;
7850 int immhb = immh << 3 | immb;
7851 int shift = 2 * (8 << size) - immhb;
7852 bool accumulate = false;
7853 bool round = false;
7854 bool insert = false;
7855 TCGv_i64 tcg_rn;
7856 TCGv_i64 tcg_rd;
7857 TCGv_i64 tcg_round;
7858
7859 if (!extract32(immh, 3, 1)) {
7860 unallocated_encoding(s);
7861 return;
7862 }
7863
7864 if (!fp_access_check(s)) {
7865 return;
7866 }
7867
7868 switch (opcode) {
7869 case 0x02: /* SSRA / USRA (accumulate) */
7870 accumulate = true;
7871 break;
7872 case 0x04: /* SRSHR / URSHR (rounding) */
7873 round = true;
7874 break;
7875 case 0x06: /* SRSRA / URSRA (accum + rounding) */
7876 accumulate = round = true;
7877 break;
7878 case 0x08: /* SRI */
7879 insert = true;
7880 break;
7881 }
7882
7883 if (round) {
7884 uint64_t round_const = 1ULL << (shift - 1);
7885 tcg_round = tcg_const_i64(round_const);
7886 } else {
7887 tcg_round = NULL;
7888 }
7889
7890 tcg_rn = read_fp_dreg(s, rn);
7891 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
7892
7893 if (insert) {
7894 /* shift count same as element size is valid but does nothing;
7895 * special case to avoid potential shift by 64.
7896 */
7897 int esize = 8 << size;
7898 if (shift != esize) {
7899 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
7900 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
7901 }
7902 } else {
7903 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
7904 accumulate, is_u, size, shift);
7905 }
7906
7907 write_fp_dreg(s, rd, tcg_rd);
7908
7909 tcg_temp_free_i64(tcg_rn);
7910 tcg_temp_free_i64(tcg_rd);
7911 if (round) {
7912 tcg_temp_free_i64(tcg_round);
7913 }
7914 }
7915
7916 /* SHL/SLI - Scalar shift left */
7917 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
7918 int immh, int immb, int opcode,
7919 int rn, int rd)
7920 {
7921 int size = 32 - clz32(immh) - 1;
7922 int immhb = immh << 3 | immb;
7923 int shift = immhb - (8 << size);
7924 TCGv_i64 tcg_rn = new_tmp_a64(s);
7925 TCGv_i64 tcg_rd = new_tmp_a64(s);
7926
7927 if (!extract32(immh, 3, 1)) {
7928 unallocated_encoding(s);
7929 return;
7930 }
7931
7932 if (!fp_access_check(s)) {
7933 return;
7934 }
7935
7936 tcg_rn = read_fp_dreg(s, rn);
7937 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
7938
7939 if (insert) {
7940 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
7941 } else {
7942 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
7943 }
7944
7945 write_fp_dreg(s, rd, tcg_rd);
7946
7947 tcg_temp_free_i64(tcg_rn);
7948 tcg_temp_free_i64(tcg_rd);
7949 }
7950
7951 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
7952 * (signed/unsigned) narrowing */
7953 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
7954 bool is_u_shift, bool is_u_narrow,
7955 int immh, int immb, int opcode,
7956 int rn, int rd)
7957 {
7958 int immhb = immh << 3 | immb;
7959 int size = 32 - clz32(immh) - 1;
7960 int esize = 8 << size;
7961 int shift = (2 * esize) - immhb;
7962 int elements = is_scalar ? 1 : (64 / esize);
7963 bool round = extract32(opcode, 0, 1);
7964 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
7965 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
7966 TCGv_i32 tcg_rd_narrowed;
7967 TCGv_i64 tcg_final;
7968
7969 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
7970 { gen_helper_neon_narrow_sat_s8,
7971 gen_helper_neon_unarrow_sat8 },
7972 { gen_helper_neon_narrow_sat_s16,
7973 gen_helper_neon_unarrow_sat16 },
7974 { gen_helper_neon_narrow_sat_s32,
7975 gen_helper_neon_unarrow_sat32 },
7976 { NULL, NULL },
7977 };
7978 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
7979 gen_helper_neon_narrow_sat_u8,
7980 gen_helper_neon_narrow_sat_u16,
7981 gen_helper_neon_narrow_sat_u32,
7982 NULL
7983 };
7984 NeonGenNarrowEnvFn *narrowfn;
7985
7986 int i;
7987
7988 assert(size < 4);
7989
7990 if (extract32(immh, 3, 1)) {
7991 unallocated_encoding(s);
7992 return;
7993 }
7994
7995 if (!fp_access_check(s)) {
7996 return;
7997 }
7998
7999 if (is_u_shift) {
8000 narrowfn = unsigned_narrow_fns[size];
8001 } else {
8002 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8003 }
8004
8005 tcg_rn = tcg_temp_new_i64();
8006 tcg_rd = tcg_temp_new_i64();
8007 tcg_rd_narrowed = tcg_temp_new_i32();
8008 tcg_final = tcg_const_i64(0);
8009
8010 if (round) {
8011 uint64_t round_const = 1ULL << (shift - 1);
8012 tcg_round = tcg_const_i64(round_const);
8013 } else {
8014 tcg_round = NULL;
8015 }
8016
8017 for (i = 0; i < elements; i++) {
8018 read_vec_element(s, tcg_rn, rn, i, ldop);
8019 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8020 false, is_u_shift, size+1, shift);
8021 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8022 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8023 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8024 }
8025
8026 if (!is_q) {
8027 write_vec_element(s, tcg_final, rd, 0, MO_64);
8028 } else {
8029 write_vec_element(s, tcg_final, rd, 1, MO_64);
8030 }
8031
8032 if (round) {
8033 tcg_temp_free_i64(tcg_round);
8034 }
8035 tcg_temp_free_i64(tcg_rn);
8036 tcg_temp_free_i64(tcg_rd);
8037 tcg_temp_free_i32(tcg_rd_narrowed);
8038 tcg_temp_free_i64(tcg_final);
8039
8040 clear_vec_high(s, is_q, rd);
8041 }
8042
8043 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8044 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8045 bool src_unsigned, bool dst_unsigned,
8046 int immh, int immb, int rn, int rd)
8047 {
8048 int immhb = immh << 3 | immb;
8049 int size = 32 - clz32(immh) - 1;
8050 int shift = immhb - (8 << size);
8051 int pass;
8052
8053 assert(immh != 0);
8054 assert(!(scalar && is_q));
8055
8056 if (!scalar) {
8057 if (!is_q && extract32(immh, 3, 1)) {
8058 unallocated_encoding(s);
8059 return;
8060 }
8061
8062 /* Since we use the variable-shift helpers we must
8063 * replicate the shift count into each element of
8064 * the tcg_shift value.
8065 */
8066 switch (size) {
8067 case 0:
8068 shift |= shift << 8;
8069 /* fall through */
8070 case 1:
8071 shift |= shift << 16;
8072 break;
8073 case 2:
8074 case 3:
8075 break;
8076 default:
8077 g_assert_not_reached();
8078 }
8079 }
8080
8081 if (!fp_access_check(s)) {
8082 return;
8083 }
8084
8085 if (size == 3) {
8086 TCGv_i64 tcg_shift = tcg_const_i64(shift);
8087 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8088 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8089 { NULL, gen_helper_neon_qshl_u64 },
8090 };
8091 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8092 int maxpass = is_q ? 2 : 1;
8093
8094 for (pass = 0; pass < maxpass; pass++) {
8095 TCGv_i64 tcg_op = tcg_temp_new_i64();
8096
8097 read_vec_element(s, tcg_op, rn, pass, MO_64);
8098 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8099 write_vec_element(s, tcg_op, rd, pass, MO_64);
8100
8101 tcg_temp_free_i64(tcg_op);
8102 }
8103 tcg_temp_free_i64(tcg_shift);
8104 clear_vec_high(s, is_q, rd);
8105 } else {
8106 TCGv_i32 tcg_shift = tcg_const_i32(shift);
8107 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8108 {
8109 { gen_helper_neon_qshl_s8,
8110 gen_helper_neon_qshl_s16,
8111 gen_helper_neon_qshl_s32 },
8112 { gen_helper_neon_qshlu_s8,
8113 gen_helper_neon_qshlu_s16,
8114 gen_helper_neon_qshlu_s32 }
8115 }, {
8116 { NULL, NULL, NULL },
8117 { gen_helper_neon_qshl_u8,
8118 gen_helper_neon_qshl_u16,
8119 gen_helper_neon_qshl_u32 }
8120 }
8121 };
8122 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8123 TCGMemOp memop = scalar ? size : MO_32;
8124 int maxpass = scalar ? 1 : is_q ? 4 : 2;
8125
8126 for (pass = 0; pass < maxpass; pass++) {
8127 TCGv_i32 tcg_op = tcg_temp_new_i32();
8128
8129 read_vec_element_i32(s, tcg_op, rn, pass, memop);
8130 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8131 if (scalar) {
8132 switch (size) {
8133 case 0:
8134 tcg_gen_ext8u_i32(tcg_op, tcg_op);
8135 break;
8136 case 1:
8137 tcg_gen_ext16u_i32(tcg_op, tcg_op);
8138 break;
8139 case 2:
8140 break;
8141 default:
8142 g_assert_not_reached();
8143 }
8144 write_fp_sreg(s, rd, tcg_op);
8145 } else {
8146 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8147 }
8148
8149 tcg_temp_free_i32(tcg_op);
8150 }
8151 tcg_temp_free_i32(tcg_shift);
8152
8153 if (!scalar) {
8154 clear_vec_high(s, is_q, rd);
8155 }
8156 }
8157 }
8158
8159 /* Common vector code for handling integer to FP conversion */
8160 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8161 int elements, int is_signed,
8162 int fracbits, int size)
8163 {
8164 TCGv_ptr tcg_fpst = get_fpstatus_ptr(size == MO_16);
8165 TCGv_i32 tcg_shift = NULL;
8166
8167 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
8168 int pass;
8169
8170 if (fracbits || size == MO_64) {
8171 tcg_shift = tcg_const_i32(fracbits);
8172 }
8173
8174 if (size == MO_64) {
8175 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8176 TCGv_i64 tcg_double = tcg_temp_new_i64();
8177
8178 for (pass = 0; pass < elements; pass++) {
8179 read_vec_element(s, tcg_int64, rn, pass, mop);
8180
8181 if (is_signed) {
8182 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8183 tcg_shift, tcg_fpst);
8184 } else {
8185 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8186 tcg_shift, tcg_fpst);
8187 }
8188 if (elements == 1) {
8189 write_fp_dreg(s, rd, tcg_double);
8190 } else {
8191 write_vec_element(s, tcg_double, rd, pass, MO_64);
8192 }
8193 }
8194
8195 tcg_temp_free_i64(tcg_int64);
8196 tcg_temp_free_i64(tcg_double);
8197
8198 } else {
8199 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8200 TCGv_i32 tcg_float = tcg_temp_new_i32();
8201
8202 for (pass = 0; pass < elements; pass++) {
8203 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8204
8205 switch (size) {
8206 case MO_32:
8207 if (fracbits) {
8208 if (is_signed) {
8209 gen_helper_vfp_sltos(tcg_float, tcg_int32,
8210 tcg_shift, tcg_fpst);
8211 } else {
8212 gen_helper_vfp_ultos(tcg_float, tcg_int32,
8213 tcg_shift, tcg_fpst);
8214 }
8215 } else {
8216 if (is_signed) {
8217 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8218 } else {
8219 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8220 }
8221 }
8222 break;
8223 case MO_16:
8224 if (fracbits) {
8225 if (is_signed) {
8226 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8227 tcg_shift, tcg_fpst);
8228 } else {
8229 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8230 tcg_shift, tcg_fpst);
8231 }
8232 } else {
8233 if (is_signed) {
8234 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8235 } else {
8236 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8237 }
8238 }
8239 break;
8240 default:
8241 g_assert_not_reached();
8242 }
8243
8244 if (elements == 1) {
8245 write_fp_sreg(s, rd, tcg_float);
8246 } else {
8247 write_vec_element_i32(s, tcg_float, rd, pass, size);
8248 }
8249 }
8250
8251 tcg_temp_free_i32(tcg_int32);
8252 tcg_temp_free_i32(tcg_float);
8253 }
8254
8255 tcg_temp_free_ptr(tcg_fpst);
8256 if (tcg_shift) {
8257 tcg_temp_free_i32(tcg_shift);
8258 }
8259
8260 clear_vec_high(s, elements << size == 16, rd);
8261 }
8262
8263 /* UCVTF/SCVTF - Integer to FP conversion */
8264 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8265 bool is_q, bool is_u,
8266 int immh, int immb, int opcode,
8267 int rn, int rd)
8268 {
8269 int size, elements, fracbits;
8270 int immhb = immh << 3 | immb;
8271
8272 if (immh & 8) {
8273 size = MO_64;
8274 if (!is_scalar && !is_q) {
8275 unallocated_encoding(s);
8276 return;
8277 }
8278 } else if (immh & 4) {
8279 size = MO_32;
8280 } else if (immh & 2) {
8281 size = MO_16;
8282 if (!dc_isar_feature(aa64_fp16, s)) {
8283 unallocated_encoding(s);
8284 return;
8285 }
8286 } else {
8287 /* immh == 0 would be a failure of the decode logic */
8288 g_assert(immh == 1);
8289 unallocated_encoding(s);
8290 return;
8291 }
8292
8293 if (is_scalar) {
8294 elements = 1;
8295 } else {
8296 elements = (8 << is_q) >> size;
8297 }
8298 fracbits = (16 << size) - immhb;
8299
8300 if (!fp_access_check(s)) {
8301 return;
8302 }
8303
8304 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8305 }
8306
8307 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8308 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8309 bool is_q, bool is_u,
8310 int immh, int immb, int rn, int rd)
8311 {
8312 int immhb = immh << 3 | immb;
8313 int pass, size, fracbits;
8314 TCGv_ptr tcg_fpstatus;
8315 TCGv_i32 tcg_rmode, tcg_shift;
8316
8317 if (immh & 0x8) {
8318 size = MO_64;
8319 if (!is_scalar && !is_q) {
8320 unallocated_encoding(s);
8321 return;
8322 }
8323 } else if (immh & 0x4) {
8324 size = MO_32;
8325 } else if (immh & 0x2) {
8326 size = MO_16;
8327 if (!dc_isar_feature(aa64_fp16, s)) {
8328 unallocated_encoding(s);
8329 return;
8330 }
8331 } else {
8332 /* Should have split out AdvSIMD modified immediate earlier. */
8333 assert(immh == 1);
8334 unallocated_encoding(s);
8335 return;
8336 }
8337
8338 if (!fp_access_check(s)) {
8339 return;
8340 }
8341
8342 assert(!(is_scalar && is_q));
8343
8344 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
8345 tcg_fpstatus = get_fpstatus_ptr(size == MO_16);
8346 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8347 fracbits = (16 << size) - immhb;
8348 tcg_shift = tcg_const_i32(fracbits);
8349
8350 if (size == MO_64) {
8351 int maxpass = is_scalar ? 1 : 2;
8352
8353 for (pass = 0; pass < maxpass; pass++) {
8354 TCGv_i64 tcg_op = tcg_temp_new_i64();
8355
8356 read_vec_element(s, tcg_op, rn, pass, MO_64);
8357 if (is_u) {
8358 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8359 } else {
8360 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8361 }
8362 write_vec_element(s, tcg_op, rd, pass, MO_64);
8363 tcg_temp_free_i64(tcg_op);
8364 }
8365 clear_vec_high(s, is_q, rd);
8366 } else {
8367 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8368 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8369
8370 switch (size) {
8371 case MO_16:
8372 if (is_u) {
8373 fn = gen_helper_vfp_touhh;
8374 } else {
8375 fn = gen_helper_vfp_toshh;
8376 }
8377 break;
8378 case MO_32:
8379 if (is_u) {
8380 fn = gen_helper_vfp_touls;
8381 } else {
8382 fn = gen_helper_vfp_tosls;
8383 }
8384 break;
8385 default:
8386 g_assert_not_reached();
8387 }
8388
8389 for (pass = 0; pass < maxpass; pass++) {
8390 TCGv_i32 tcg_op = tcg_temp_new_i32();
8391
8392 read_vec_element_i32(s, tcg_op, rn, pass, size);
8393 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8394 if (is_scalar) {
8395 write_fp_sreg(s, rd, tcg_op);
8396 } else {
8397 write_vec_element_i32(s, tcg_op, rd, pass, size);
8398 }
8399 tcg_temp_free_i32(tcg_op);
8400 }
8401 if (!is_scalar) {
8402 clear_vec_high(s, is_q, rd);
8403 }
8404 }
8405
8406 tcg_temp_free_ptr(tcg_fpstatus);
8407 tcg_temp_free_i32(tcg_shift);
8408 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8409 tcg_temp_free_i32(tcg_rmode);
8410 }
8411
8412 /* AdvSIMD scalar shift by immediate
8413 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8414 * +-----+---+-------------+------+------+--------+---+------+------+
8415 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8416 * +-----+---+-------------+------+------+--------+---+------+------+
8417 *
8418 * This is the scalar version so it works on a fixed sized registers
8419 */
8420 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8421 {
8422 int rd = extract32(insn, 0, 5);
8423 int rn = extract32(insn, 5, 5);
8424 int opcode = extract32(insn, 11, 5);
8425 int immb = extract32(insn, 16, 3);
8426 int immh = extract32(insn, 19, 4);
8427 bool is_u = extract32(insn, 29, 1);
8428
8429 if (immh == 0) {
8430 unallocated_encoding(s);
8431 return;
8432 }
8433
8434 switch (opcode) {
8435 case 0x08: /* SRI */
8436 if (!is_u) {
8437 unallocated_encoding(s);
8438 return;
8439 }
8440 /* fall through */
8441 case 0x00: /* SSHR / USHR */
8442 case 0x02: /* SSRA / USRA */
8443 case 0x04: /* SRSHR / URSHR */
8444 case 0x06: /* SRSRA / URSRA */
8445 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8446 break;
8447 case 0x0a: /* SHL / SLI */
8448 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8449 break;
8450 case 0x1c: /* SCVTF, UCVTF */
8451 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8452 opcode, rn, rd);
8453 break;
8454 case 0x10: /* SQSHRUN, SQSHRUN2 */
8455 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8456 if (!is_u) {
8457 unallocated_encoding(s);
8458 return;
8459 }
8460 handle_vec_simd_sqshrn(s, true, false, false, true,
8461 immh, immb, opcode, rn, rd);
8462 break;
8463 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8464 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8465 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8466 immh, immb, opcode, rn, rd);
8467 break;
8468 case 0xc: /* SQSHLU */
8469 if (!is_u) {
8470 unallocated_encoding(s);
8471 return;
8472 }
8473 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8474 break;
8475 case 0xe: /* SQSHL, UQSHL */
8476 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8477 break;
8478 case 0x1f: /* FCVTZS, FCVTZU */
8479 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8480 break;
8481 default:
8482 unallocated_encoding(s);
8483 break;
8484 }
8485 }
8486
8487 /* AdvSIMD scalar three different
8488 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8489 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8490 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8491 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8492 */
8493 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8494 {
8495 bool is_u = extract32(insn, 29, 1);
8496 int size = extract32(insn, 22, 2);
8497 int opcode = extract32(insn, 12, 4);
8498 int rm = extract32(insn, 16, 5);
8499 int rn = extract32(insn, 5, 5);
8500 int rd = extract32(insn, 0, 5);
8501
8502 if (is_u) {
8503 unallocated_encoding(s);
8504 return;
8505 }
8506
8507 switch (opcode) {
8508 case 0x9: /* SQDMLAL, SQDMLAL2 */
8509 case 0xb: /* SQDMLSL, SQDMLSL2 */
8510 case 0xd: /* SQDMULL, SQDMULL2 */
8511 if (size == 0 || size == 3) {
8512 unallocated_encoding(s);
8513 return;
8514 }
8515 break;
8516 default:
8517 unallocated_encoding(s);
8518 return;
8519 }
8520
8521 if (!fp_access_check(s)) {
8522 return;
8523 }
8524
8525 if (size == 2) {
8526 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8527 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8528 TCGv_i64 tcg_res = tcg_temp_new_i64();
8529
8530 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8531 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8532
8533 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8534 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
8535
8536 switch (opcode) {
8537 case 0xd: /* SQDMULL, SQDMULL2 */
8538 break;
8539 case 0xb: /* SQDMLSL, SQDMLSL2 */
8540 tcg_gen_neg_i64(tcg_res, tcg_res);
8541 /* fall through */
8542 case 0x9: /* SQDMLAL, SQDMLAL2 */
8543 read_vec_element(s, tcg_op1, rd, 0, MO_64);
8544 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
8545 tcg_res, tcg_op1);
8546 break;
8547 default:
8548 g_assert_not_reached();
8549 }
8550
8551 write_fp_dreg(s, rd, tcg_res);
8552
8553 tcg_temp_free_i64(tcg_op1);
8554 tcg_temp_free_i64(tcg_op2);
8555 tcg_temp_free_i64(tcg_res);
8556 } else {
8557 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8558 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8559 TCGv_i64 tcg_res = tcg_temp_new_i64();
8560
8561 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8562 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
8563
8564 switch (opcode) {
8565 case 0xd: /* SQDMULL, SQDMULL2 */
8566 break;
8567 case 0xb: /* SQDMLSL, SQDMLSL2 */
8568 gen_helper_neon_negl_u32(tcg_res, tcg_res);
8569 /* fall through */
8570 case 0x9: /* SQDMLAL, SQDMLAL2 */
8571 {
8572 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8573 read_vec_element(s, tcg_op3, rd, 0, MO_32);
8574 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
8575 tcg_res, tcg_op3);
8576 tcg_temp_free_i64(tcg_op3);
8577 break;
8578 }
8579 default:
8580 g_assert_not_reached();
8581 }
8582
8583 tcg_gen_ext32u_i64(tcg_res, tcg_res);
8584 write_fp_dreg(s, rd, tcg_res);
8585
8586 tcg_temp_free_i32(tcg_op1);
8587 tcg_temp_free_i32(tcg_op2);
8588 tcg_temp_free_i64(tcg_res);
8589 }
8590 }
8591
8592 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8593 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8594 {
8595 /* Handle 64x64->64 opcodes which are shared between the scalar
8596 * and vector 3-same groups. We cover every opcode where size == 3
8597 * is valid in either the three-reg-same (integer, not pairwise)
8598 * or scalar-three-reg-same groups.
8599 */
8600 TCGCond cond;
8601
8602 switch (opcode) {
8603 case 0x1: /* SQADD */
8604 if (u) {
8605 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8606 } else {
8607 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8608 }
8609 break;
8610 case 0x5: /* SQSUB */
8611 if (u) {
8612 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8613 } else {
8614 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8615 }
8616 break;
8617 case 0x6: /* CMGT, CMHI */
8618 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
8619 * We implement this using setcond (test) and then negating.
8620 */
8621 cond = u ? TCG_COND_GTU : TCG_COND_GT;
8622 do_cmop:
8623 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8624 tcg_gen_neg_i64(tcg_rd, tcg_rd);
8625 break;
8626 case 0x7: /* CMGE, CMHS */
8627 cond = u ? TCG_COND_GEU : TCG_COND_GE;
8628 goto do_cmop;
8629 case 0x11: /* CMTST, CMEQ */
8630 if (u) {
8631 cond = TCG_COND_EQ;
8632 goto do_cmop;
8633 }
8634 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8635 break;
8636 case 0x8: /* SSHL, USHL */
8637 if (u) {
8638 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
8639 } else {
8640 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
8641 }
8642 break;
8643 case 0x9: /* SQSHL, UQSHL */
8644 if (u) {
8645 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8646 } else {
8647 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8648 }
8649 break;
8650 case 0xa: /* SRSHL, URSHL */
8651 if (u) {
8652 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8653 } else {
8654 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8655 }
8656 break;
8657 case 0xb: /* SQRSHL, UQRSHL */
8658 if (u) {
8659 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8660 } else {
8661 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8662 }
8663 break;
8664 case 0x10: /* ADD, SUB */
8665 if (u) {
8666 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8667 } else {
8668 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8669 }
8670 break;
8671 default:
8672 g_assert_not_reached();
8673 }
8674 }
8675
8676 /* Handle the 3-same-operands float operations; shared by the scalar
8677 * and vector encodings. The caller must filter out any encodings
8678 * not allocated for the encoding it is dealing with.
8679 */
8680 static void handle_3same_float(DisasContext *s, int size, int elements,
8681 int fpopcode, int rd, int rn, int rm)
8682 {
8683 int pass;
8684 TCGv_ptr fpst = get_fpstatus_ptr(false);
8685
8686 for (pass = 0; pass < elements; pass++) {
8687 if (size) {
8688 /* Double */
8689 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8690 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8691 TCGv_i64 tcg_res = tcg_temp_new_i64();
8692
8693 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8694 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8695
8696 switch (fpopcode) {
8697 case 0x39: /* FMLS */
8698 /* As usual for ARM, separate negation for fused multiply-add */
8699 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8700 /* fall through */
8701 case 0x19: /* FMLA */
8702 read_vec_element(s, tcg_res, rd, pass, MO_64);
8703 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8704 tcg_res, fpst);
8705 break;
8706 case 0x18: /* FMAXNM */
8707 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8708 break;
8709 case 0x1a: /* FADD */
8710 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8711 break;
8712 case 0x1b: /* FMULX */
8713 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8714 break;
8715 case 0x1c: /* FCMEQ */
8716 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8717 break;
8718 case 0x1e: /* FMAX */
8719 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8720 break;
8721 case 0x1f: /* FRECPS */
8722 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8723 break;
8724 case 0x38: /* FMINNM */
8725 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8726 break;
8727 case 0x3a: /* FSUB */
8728 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8729 break;
8730 case 0x3e: /* FMIN */
8731 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8732 break;
8733 case 0x3f: /* FRSQRTS */
8734 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8735 break;
8736 case 0x5b: /* FMUL */
8737 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
8738 break;
8739 case 0x5c: /* FCMGE */
8740 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8741 break;
8742 case 0x5d: /* FACGE */
8743 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8744 break;
8745 case 0x5f: /* FDIV */
8746 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
8747 break;
8748 case 0x7a: /* FABD */
8749 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8750 gen_helper_vfp_absd(tcg_res, tcg_res);
8751 break;
8752 case 0x7c: /* FCMGT */
8753 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8754 break;
8755 case 0x7d: /* FACGT */
8756 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8757 break;
8758 default:
8759 g_assert_not_reached();
8760 }
8761
8762 write_vec_element(s, tcg_res, rd, pass, MO_64);
8763
8764 tcg_temp_free_i64(tcg_res);
8765 tcg_temp_free_i64(tcg_op1);
8766 tcg_temp_free_i64(tcg_op2);
8767 } else {
8768 /* Single */
8769 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8770 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8771 TCGv_i32 tcg_res = tcg_temp_new_i32();
8772
8773 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
8774 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
8775
8776 switch (fpopcode) {
8777 case 0x39: /* FMLS */
8778 /* As usual for ARM, separate negation for fused multiply-add */
8779 gen_helper_vfp_negs(tcg_op1, tcg_op1);
8780 /* fall through */
8781 case 0x19: /* FMLA */
8782 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8783 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
8784 tcg_res, fpst);
8785 break;
8786 case 0x1a: /* FADD */
8787 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8788 break;
8789 case 0x1b: /* FMULX */
8790 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
8791 break;
8792 case 0x1c: /* FCMEQ */
8793 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8794 break;
8795 case 0x1e: /* FMAX */
8796 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8797 break;
8798 case 0x1f: /* FRECPS */
8799 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8800 break;
8801 case 0x18: /* FMAXNM */
8802 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8803 break;
8804 case 0x38: /* FMINNM */
8805 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8806 break;
8807 case 0x3a: /* FSUB */
8808 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8809 break;
8810 case 0x3e: /* FMIN */
8811 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8812 break;
8813 case 0x3f: /* FRSQRTS */
8814 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8815 break;
8816 case 0x5b: /* FMUL */
8817 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
8818 break;
8819 case 0x5c: /* FCMGE */
8820 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8821 break;
8822 case 0x5d: /* FACGE */
8823 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8824 break;
8825 case 0x5f: /* FDIV */
8826 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
8827 break;
8828 case 0x7a: /* FABD */
8829 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8830 gen_helper_vfp_abss(tcg_res, tcg_res);
8831 break;
8832 case 0x7c: /* FCMGT */
8833 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8834 break;
8835 case 0x7d: /* FACGT */
8836 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8837 break;
8838 default:
8839 g_assert_not_reached();
8840 }
8841
8842 if (elements == 1) {
8843 /* scalar single so clear high part */
8844 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8845
8846 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
8847 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
8848 tcg_temp_free_i64(tcg_tmp);
8849 } else {
8850 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8851 }
8852
8853 tcg_temp_free_i32(tcg_res);
8854 tcg_temp_free_i32(tcg_op1);
8855 tcg_temp_free_i32(tcg_op2);
8856 }
8857 }
8858
8859 tcg_temp_free_ptr(fpst);
8860
8861 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
8862 }
8863
8864 /* AdvSIMD scalar three same
8865 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
8866 * +-----+---+-----------+------+---+------+--------+---+------+------+
8867 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
8868 * +-----+---+-----------+------+---+------+--------+---+------+------+
8869 */
8870 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
8871 {
8872 int rd = extract32(insn, 0, 5);
8873 int rn = extract32(insn, 5, 5);
8874 int opcode = extract32(insn, 11, 5);
8875 int rm = extract32(insn, 16, 5);
8876 int size = extract32(insn, 22, 2);
8877 bool u = extract32(insn, 29, 1);
8878 TCGv_i64 tcg_rd;
8879
8880 if (opcode >= 0x18) {
8881 /* Floating point: U, size[1] and opcode indicate operation */
8882 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
8883 switch (fpopcode) {
8884 case 0x1b: /* FMULX */
8885 case 0x1f: /* FRECPS */
8886 case 0x3f: /* FRSQRTS */
8887 case 0x5d: /* FACGE */
8888 case 0x7d: /* FACGT */
8889 case 0x1c: /* FCMEQ */
8890 case 0x5c: /* FCMGE */
8891 case 0x7c: /* FCMGT */
8892 case 0x7a: /* FABD */
8893 break;
8894 default:
8895 unallocated_encoding(s);
8896 return;
8897 }
8898
8899 if (!fp_access_check(s)) {
8900 return;
8901 }
8902
8903 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
8904 return;
8905 }
8906
8907 switch (opcode) {
8908 case 0x1: /* SQADD, UQADD */
8909 case 0x5: /* SQSUB, UQSUB */
8910 case 0x9: /* SQSHL, UQSHL */
8911 case 0xb: /* SQRSHL, UQRSHL */
8912 break;
8913 case 0x8: /* SSHL, USHL */
8914 case 0xa: /* SRSHL, URSHL */
8915 case 0x6: /* CMGT, CMHI */
8916 case 0x7: /* CMGE, CMHS */
8917 case 0x11: /* CMTST, CMEQ */
8918 case 0x10: /* ADD, SUB (vector) */
8919 if (size != 3) {
8920 unallocated_encoding(s);
8921 return;
8922 }
8923 break;
8924 case 0x16: /* SQDMULH, SQRDMULH (vector) */
8925 if (size != 1 && size != 2) {
8926 unallocated_encoding(s);
8927 return;
8928 }
8929 break;
8930 default:
8931 unallocated_encoding(s);
8932 return;
8933 }
8934
8935 if (!fp_access_check(s)) {
8936 return;
8937 }
8938
8939 tcg_rd = tcg_temp_new_i64();
8940
8941 if (size == 3) {
8942 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8943 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
8944
8945 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
8946 tcg_temp_free_i64(tcg_rn);
8947 tcg_temp_free_i64(tcg_rm);
8948 } else {
8949 /* Do a single operation on the lowest element in the vector.
8950 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
8951 * no side effects for all these operations.
8952 * OPTME: special-purpose helpers would avoid doing some
8953 * unnecessary work in the helper for the 8 and 16 bit cases.
8954 */
8955 NeonGenTwoOpEnvFn *genenvfn;
8956 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8957 TCGv_i32 tcg_rm = tcg_temp_new_i32();
8958 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
8959
8960 read_vec_element_i32(s, tcg_rn, rn, 0, size);
8961 read_vec_element_i32(s, tcg_rm, rm, 0, size);
8962
8963 switch (opcode) {
8964 case 0x1: /* SQADD, UQADD */
8965 {
8966 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8967 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
8968 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
8969 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
8970 };
8971 genenvfn = fns[size][u];
8972 break;
8973 }
8974 case 0x5: /* SQSUB, UQSUB */
8975 {
8976 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8977 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
8978 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
8979 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
8980 };
8981 genenvfn = fns[size][u];
8982 break;
8983 }
8984 case 0x9: /* SQSHL, UQSHL */
8985 {
8986 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8987 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
8988 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
8989 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
8990 };
8991 genenvfn = fns[size][u];
8992 break;
8993 }
8994 case 0xb: /* SQRSHL, UQRSHL */
8995 {
8996 static NeonGenTwoOpEnvFn * const fns[3][2] = {
8997 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
8998 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
8999 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9000 };
9001 genenvfn = fns[size][u];
9002 break;
9003 }
9004 case 0x16: /* SQDMULH, SQRDMULH */
9005 {
9006 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9007 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9008 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9009 };
9010 assert(size == 1 || size == 2);
9011 genenvfn = fns[size - 1][u];
9012 break;
9013 }
9014 default:
9015 g_assert_not_reached();
9016 }
9017
9018 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9019 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9020 tcg_temp_free_i32(tcg_rd32);
9021 tcg_temp_free_i32(tcg_rn);
9022 tcg_temp_free_i32(tcg_rm);
9023 }
9024
9025 write_fp_dreg(s, rd, tcg_rd);
9026
9027 tcg_temp_free_i64(tcg_rd);
9028 }
9029
9030 /* AdvSIMD scalar three same FP16
9031 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
9032 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9033 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
9034 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9035 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9036 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9037 */
9038 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9039 uint32_t insn)
9040 {
9041 int rd = extract32(insn, 0, 5);
9042 int rn = extract32(insn, 5, 5);
9043 int opcode = extract32(insn, 11, 3);
9044 int rm = extract32(insn, 16, 5);
9045 bool u = extract32(insn, 29, 1);
9046 bool a = extract32(insn, 23, 1);
9047 int fpopcode = opcode | (a << 3) | (u << 4);
9048 TCGv_ptr fpst;
9049 TCGv_i32 tcg_op1;
9050 TCGv_i32 tcg_op2;
9051 TCGv_i32 tcg_res;
9052
9053 switch (fpopcode) {
9054 case 0x03: /* FMULX */
9055 case 0x04: /* FCMEQ (reg) */
9056 case 0x07: /* FRECPS */
9057 case 0x0f: /* FRSQRTS */
9058 case 0x14: /* FCMGE (reg) */
9059 case 0x15: /* FACGE */
9060 case 0x1a: /* FABD */
9061 case 0x1c: /* FCMGT (reg) */
9062 case 0x1d: /* FACGT */
9063 break;
9064 default:
9065 unallocated_encoding(s);
9066 return;
9067 }
9068
9069 if (!dc_isar_feature(aa64_fp16, s)) {
9070 unallocated_encoding(s);
9071 }
9072
9073 if (!fp_access_check(s)) {
9074 return;
9075 }
9076
9077 fpst = get_fpstatus_ptr(true);
9078
9079 tcg_op1 = read_fp_hreg(s, rn);
9080 tcg_op2 = read_fp_hreg(s, rm);
9081 tcg_res = tcg_temp_new_i32();
9082
9083 switch (fpopcode) {
9084 case 0x03: /* FMULX */
9085 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9086 break;
9087 case 0x04: /* FCMEQ (reg) */
9088 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9089 break;
9090 case 0x07: /* FRECPS */
9091 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9092 break;
9093 case 0x0f: /* FRSQRTS */
9094 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9095 break;
9096 case 0x14: /* FCMGE (reg) */
9097 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9098 break;
9099 case 0x15: /* FACGE */
9100 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9101 break;
9102 case 0x1a: /* FABD */
9103 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9104 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9105 break;
9106 case 0x1c: /* FCMGT (reg) */
9107 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9108 break;
9109 case 0x1d: /* FACGT */
9110 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9111 break;
9112 default:
9113 g_assert_not_reached();
9114 }
9115
9116 write_fp_sreg(s, rd, tcg_res);
9117
9118
9119 tcg_temp_free_i32(tcg_res);
9120 tcg_temp_free_i32(tcg_op1);
9121 tcg_temp_free_i32(tcg_op2);
9122 tcg_temp_free_ptr(fpst);
9123 }
9124
9125 /* AdvSIMD scalar three same extra
9126 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9127 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9128 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9129 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9130 */
9131 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9132 uint32_t insn)
9133 {
9134 int rd = extract32(insn, 0, 5);
9135 int rn = extract32(insn, 5, 5);
9136 int opcode = extract32(insn, 11, 4);
9137 int rm = extract32(insn, 16, 5);
9138 int size = extract32(insn, 22, 2);
9139 bool u = extract32(insn, 29, 1);
9140 TCGv_i32 ele1, ele2, ele3;
9141 TCGv_i64 res;
9142 bool feature;
9143
9144 switch (u * 16 + opcode) {
9145 case 0x10: /* SQRDMLAH (vector) */
9146 case 0x11: /* SQRDMLSH (vector) */
9147 if (size != 1 && size != 2) {
9148 unallocated_encoding(s);
9149 return;
9150 }
9151 feature = dc_isar_feature(aa64_rdm, s);
9152 break;
9153 default:
9154 unallocated_encoding(s);
9155 return;
9156 }
9157 if (!feature) {
9158 unallocated_encoding(s);
9159 return;
9160 }
9161 if (!fp_access_check(s)) {
9162 return;
9163 }
9164
9165 /* Do a single operation on the lowest element in the vector.
9166 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9167 * with no side effects for all these operations.
9168 * OPTME: special-purpose helpers would avoid doing some
9169 * unnecessary work in the helper for the 16 bit cases.
9170 */
9171 ele1 = tcg_temp_new_i32();
9172 ele2 = tcg_temp_new_i32();
9173 ele3 = tcg_temp_new_i32();
9174
9175 read_vec_element_i32(s, ele1, rn, 0, size);
9176 read_vec_element_i32(s, ele2, rm, 0, size);
9177 read_vec_element_i32(s, ele3, rd, 0, size);
9178
9179 switch (opcode) {
9180 case 0x0: /* SQRDMLAH */
9181 if (size == 1) {
9182 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9183 } else {
9184 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9185 }
9186 break;
9187 case 0x1: /* SQRDMLSH */
9188 if (size == 1) {
9189 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9190 } else {
9191 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9192 }
9193 break;
9194 default:
9195 g_assert_not_reached();
9196 }
9197 tcg_temp_free_i32(ele1);
9198 tcg_temp_free_i32(ele2);
9199
9200 res = tcg_temp_new_i64();
9201 tcg_gen_extu_i32_i64(res, ele3);
9202 tcg_temp_free_i32(ele3);
9203
9204 write_fp_dreg(s, rd, res);
9205 tcg_temp_free_i64(res);
9206 }
9207
9208 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9209 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9210 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9211 {
9212 /* Handle 64->64 opcodes which are shared between the scalar and
9213 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9214 * is valid in either group and also the double-precision fp ops.
9215 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9216 * requires them.
9217 */
9218 TCGCond cond;
9219
9220 switch (opcode) {
9221 case 0x4: /* CLS, CLZ */
9222 if (u) {
9223 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9224 } else {
9225 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9226 }
9227 break;
9228 case 0x5: /* NOT */
9229 /* This opcode is shared with CNT and RBIT but we have earlier
9230 * enforced that size == 3 if and only if this is the NOT insn.
9231 */
9232 tcg_gen_not_i64(tcg_rd, tcg_rn);
9233 break;
9234 case 0x7: /* SQABS, SQNEG */
9235 if (u) {
9236 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9237 } else {
9238 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9239 }
9240 break;
9241 case 0xa: /* CMLT */
9242 /* 64 bit integer comparison against zero, result is
9243 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9244 * subtracting 1.
9245 */
9246 cond = TCG_COND_LT;
9247 do_cmop:
9248 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9249 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9250 break;
9251 case 0x8: /* CMGT, CMGE */
9252 cond = u ? TCG_COND_GE : TCG_COND_GT;
9253 goto do_cmop;
9254 case 0x9: /* CMEQ, CMLE */
9255 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9256 goto do_cmop;
9257 case 0xb: /* ABS, NEG */
9258 if (u) {
9259 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9260 } else {
9261 TCGv_i64 tcg_zero = tcg_const_i64(0);
9262 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9263 tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
9264 tcg_rn, tcg_rd);
9265 tcg_temp_free_i64(tcg_zero);
9266 }
9267 break;
9268 case 0x2f: /* FABS */
9269 gen_helper_vfp_absd(tcg_rd, tcg_rn);
9270 break;
9271 case 0x6f: /* FNEG */
9272 gen_helper_vfp_negd(tcg_rd, tcg_rn);
9273 break;
9274 case 0x7f: /* FSQRT */
9275 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9276 break;
9277 case 0x1a: /* FCVTNS */
9278 case 0x1b: /* FCVTMS */
9279 case 0x1c: /* FCVTAS */
9280 case 0x3a: /* FCVTPS */
9281 case 0x3b: /* FCVTZS */
9282 {
9283 TCGv_i32 tcg_shift = tcg_const_i32(0);
9284 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9285 tcg_temp_free_i32(tcg_shift);
9286 break;
9287 }
9288 case 0x5a: /* FCVTNU */
9289 case 0x5b: /* FCVTMU */
9290 case 0x5c: /* FCVTAU */
9291 case 0x7a: /* FCVTPU */
9292 case 0x7b: /* FCVTZU */
9293 {
9294 TCGv_i32 tcg_shift = tcg_const_i32(0);
9295 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9296 tcg_temp_free_i32(tcg_shift);
9297 break;
9298 }
9299 case 0x18: /* FRINTN */
9300 case 0x19: /* FRINTM */
9301 case 0x38: /* FRINTP */
9302 case 0x39: /* FRINTZ */
9303 case 0x58: /* FRINTA */
9304 case 0x79: /* FRINTI */
9305 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9306 break;
9307 case 0x59: /* FRINTX */
9308 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9309 break;
9310 default:
9311 g_assert_not_reached();
9312 }
9313 }
9314
9315 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9316 bool is_scalar, bool is_u, bool is_q,
9317 int size, int rn, int rd)
9318 {
9319 bool is_double = (size == MO_64);
9320 TCGv_ptr fpst;
9321
9322 if (!fp_access_check(s)) {
9323 return;
9324 }
9325
9326 fpst = get_fpstatus_ptr(size == MO_16);
9327
9328 if (is_double) {
9329 TCGv_i64 tcg_op = tcg_temp_new_i64();
9330 TCGv_i64 tcg_zero = tcg_const_i64(0);
9331 TCGv_i64 tcg_res = tcg_temp_new_i64();
9332 NeonGenTwoDoubleOPFn *genfn;
9333 bool swap = false;
9334 int pass;
9335
9336 switch (opcode) {
9337 case 0x2e: /* FCMLT (zero) */
9338 swap = true;
9339 /* fallthrough */
9340 case 0x2c: /* FCMGT (zero) */
9341 genfn = gen_helper_neon_cgt_f64;
9342 break;
9343 case 0x2d: /* FCMEQ (zero) */
9344 genfn = gen_helper_neon_ceq_f64;
9345 break;
9346 case 0x6d: /* FCMLE (zero) */
9347 swap = true;
9348 /* fall through */
9349 case 0x6c: /* FCMGE (zero) */
9350 genfn = gen_helper_neon_cge_f64;
9351 break;
9352 default:
9353 g_assert_not_reached();
9354 }
9355
9356 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9357 read_vec_element(s, tcg_op, rn, pass, MO_64);
9358 if (swap) {
9359 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9360 } else {
9361 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9362 }
9363 write_vec_element(s, tcg_res, rd, pass, MO_64);
9364 }
9365 tcg_temp_free_i64(tcg_res);
9366 tcg_temp_free_i64(tcg_zero);
9367 tcg_temp_free_i64(tcg_op);
9368
9369 clear_vec_high(s, !is_scalar, rd);
9370 } else {
9371 TCGv_i32 tcg_op = tcg_temp_new_i32();
9372 TCGv_i32 tcg_zero = tcg_const_i32(0);
9373 TCGv_i32 tcg_res = tcg_temp_new_i32();
9374 NeonGenTwoSingleOPFn *genfn;
9375 bool swap = false;
9376 int pass, maxpasses;
9377
9378 if (size == MO_16) {
9379 switch (opcode) {
9380 case 0x2e: /* FCMLT (zero) */
9381 swap = true;
9382 /* fall through */
9383 case 0x2c: /* FCMGT (zero) */
9384 genfn = gen_helper_advsimd_cgt_f16;
9385 break;
9386 case 0x2d: /* FCMEQ (zero) */
9387 genfn = gen_helper_advsimd_ceq_f16;
9388 break;
9389 case 0x6d: /* FCMLE (zero) */
9390 swap = true;
9391 /* fall through */
9392 case 0x6c: /* FCMGE (zero) */
9393 genfn = gen_helper_advsimd_cge_f16;
9394 break;
9395 default:
9396 g_assert_not_reached();
9397 }
9398 } else {
9399 switch (opcode) {
9400 case 0x2e: /* FCMLT (zero) */
9401 swap = true;
9402 /* fall through */
9403 case 0x2c: /* FCMGT (zero) */
9404 genfn = gen_helper_neon_cgt_f32;
9405 break;
9406 case 0x2d: /* FCMEQ (zero) */
9407 genfn = gen_helper_neon_ceq_f32;
9408 break;
9409 case 0x6d: /* FCMLE (zero) */
9410 swap = true;
9411 /* fall through */
9412 case 0x6c: /* FCMGE (zero) */
9413 genfn = gen_helper_neon_cge_f32;
9414 break;
9415 default:
9416 g_assert_not_reached();
9417 }
9418 }
9419
9420 if (is_scalar) {
9421 maxpasses = 1;
9422 } else {
9423 int vector_size = 8 << is_q;
9424 maxpasses = vector_size >> size;
9425 }
9426
9427 for (pass = 0; pass < maxpasses; pass++) {
9428 read_vec_element_i32(s, tcg_op, rn, pass, size);
9429 if (swap) {
9430 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9431 } else {
9432 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9433 }
9434 if (is_scalar) {
9435 write_fp_sreg(s, rd, tcg_res);
9436 } else {
9437 write_vec_element_i32(s, tcg_res, rd, pass, size);
9438 }
9439 }
9440 tcg_temp_free_i32(tcg_res);
9441 tcg_temp_free_i32(tcg_zero);
9442 tcg_temp_free_i32(tcg_op);
9443 if (!is_scalar) {
9444 clear_vec_high(s, is_q, rd);
9445 }
9446 }
9447
9448 tcg_temp_free_ptr(fpst);
9449 }
9450
9451 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9452 bool is_scalar, bool is_u, bool is_q,
9453 int size, int rn, int rd)
9454 {
9455 bool is_double = (size == 3);
9456 TCGv_ptr fpst = get_fpstatus_ptr(false);
9457
9458 if (is_double) {
9459 TCGv_i64 tcg_op = tcg_temp_new_i64();
9460 TCGv_i64 tcg_res = tcg_temp_new_i64();
9461 int pass;
9462
9463 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9464 read_vec_element(s, tcg_op, rn, pass, MO_64);
9465 switch (opcode) {
9466 case 0x3d: /* FRECPE */
9467 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9468 break;
9469 case 0x3f: /* FRECPX */
9470 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9471 break;
9472 case 0x7d: /* FRSQRTE */
9473 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9474 break;
9475 default:
9476 g_assert_not_reached();
9477 }
9478 write_vec_element(s, tcg_res, rd, pass, MO_64);
9479 }
9480 tcg_temp_free_i64(tcg_res);
9481 tcg_temp_free_i64(tcg_op);
9482 clear_vec_high(s, !is_scalar, rd);
9483 } else {
9484 TCGv_i32 tcg_op = tcg_temp_new_i32();
9485 TCGv_i32 tcg_res = tcg_temp_new_i32();
9486 int pass, maxpasses;
9487
9488 if (is_scalar) {
9489 maxpasses = 1;
9490 } else {
9491 maxpasses = is_q ? 4 : 2;
9492 }
9493
9494 for (pass = 0; pass < maxpasses; pass++) {
9495 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9496
9497 switch (opcode) {
9498 case 0x3c: /* URECPE */
9499 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
9500 break;
9501 case 0x3d: /* FRECPE */
9502 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9503 break;
9504 case 0x3f: /* FRECPX */
9505 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9506 break;
9507 case 0x7d: /* FRSQRTE */
9508 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9509 break;
9510 default:
9511 g_assert_not_reached();
9512 }
9513
9514 if (is_scalar) {
9515 write_fp_sreg(s, rd, tcg_res);
9516 } else {
9517 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9518 }
9519 }
9520 tcg_temp_free_i32(tcg_res);
9521 tcg_temp_free_i32(tcg_op);
9522 if (!is_scalar) {
9523 clear_vec_high(s, is_q, rd);
9524 }
9525 }
9526 tcg_temp_free_ptr(fpst);
9527 }
9528
9529 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9530 int opcode, bool u, bool is_q,
9531 int size, int rn, int rd)
9532 {
9533 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9534 * in the source becomes a size element in the destination).
9535 */
9536 int pass;
9537 TCGv_i32 tcg_res[2];
9538 int destelt = is_q ? 2 : 0;
9539 int passes = scalar ? 1 : 2;
9540
9541 if (scalar) {
9542 tcg_res[1] = tcg_const_i32(0);
9543 }
9544
9545 for (pass = 0; pass < passes; pass++) {
9546 TCGv_i64 tcg_op = tcg_temp_new_i64();
9547 NeonGenNarrowFn *genfn = NULL;
9548 NeonGenNarrowEnvFn *genenvfn = NULL;
9549
9550 if (scalar) {
9551 read_vec_element(s, tcg_op, rn, pass, size + 1);
9552 } else {
9553 read_vec_element(s, tcg_op, rn, pass, MO_64);
9554 }
9555 tcg_res[pass] = tcg_temp_new_i32();
9556
9557 switch (opcode) {
9558 case 0x12: /* XTN, SQXTUN */
9559 {
9560 static NeonGenNarrowFn * const xtnfns[3] = {
9561 gen_helper_neon_narrow_u8,
9562 gen_helper_neon_narrow_u16,
9563 tcg_gen_extrl_i64_i32,
9564 };
9565 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9566 gen_helper_neon_unarrow_sat8,
9567 gen_helper_neon_unarrow_sat16,
9568 gen_helper_neon_unarrow_sat32,
9569 };
9570 if (u) {
9571 genenvfn = sqxtunfns[size];
9572 } else {
9573 genfn = xtnfns[size];
9574 }
9575 break;
9576 }
9577 case 0x14: /* SQXTN, UQXTN */
9578 {
9579 static NeonGenNarrowEnvFn * const fns[3][2] = {
9580 { gen_helper_neon_narrow_sat_s8,
9581 gen_helper_neon_narrow_sat_u8 },
9582 { gen_helper_neon_narrow_sat_s16,
9583 gen_helper_neon_narrow_sat_u16 },
9584 { gen_helper_neon_narrow_sat_s32,
9585 gen_helper_neon_narrow_sat_u32 },
9586 };
9587 genenvfn = fns[size][u];
9588 break;
9589 }
9590 case 0x16: /* FCVTN, FCVTN2 */
9591 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9592 if (size == 2) {
9593 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
9594 } else {
9595 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9596 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9597 TCGv_ptr fpst = get_fpstatus_ptr(false);
9598 TCGv_i32 ahp = get_ahp_flag();
9599
9600 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9601 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9602 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9603 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9604 tcg_temp_free_i32(tcg_lo);
9605 tcg_temp_free_i32(tcg_hi);
9606 tcg_temp_free_ptr(fpst);
9607 tcg_temp_free_i32(ahp);
9608 }
9609 break;
9610 case 0x56: /* FCVTXN, FCVTXN2 */
9611 /* 64 bit to 32 bit float conversion
9612 * with von Neumann rounding (round to odd)
9613 */
9614 assert(size == 2);
9615 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
9616 break;
9617 default:
9618 g_assert_not_reached();
9619 }
9620
9621 if (genfn) {
9622 genfn(tcg_res[pass], tcg_op);
9623 } else if (genenvfn) {
9624 genenvfn(tcg_res[pass], cpu_env, tcg_op);
9625 }
9626
9627 tcg_temp_free_i64(tcg_op);
9628 }
9629
9630 for (pass = 0; pass < 2; pass++) {
9631 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9632 tcg_temp_free_i32(tcg_res[pass]);
9633 }
9634 clear_vec_high(s, is_q, rd);
9635 }
9636
9637 /* Remaining saturating accumulating ops */
9638 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9639 bool is_q, int size, int rn, int rd)
9640 {
9641 bool is_double = (size == 3);
9642
9643 if (is_double) {
9644 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9645 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9646 int pass;
9647
9648 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9649 read_vec_element(s, tcg_rn, rn, pass, MO_64);
9650 read_vec_element(s, tcg_rd, rd, pass, MO_64);
9651
9652 if (is_u) { /* USQADD */
9653 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9654 } else { /* SUQADD */
9655 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9656 }
9657 write_vec_element(s, tcg_rd, rd, pass, MO_64);
9658 }
9659 tcg_temp_free_i64(tcg_rd);
9660 tcg_temp_free_i64(tcg_rn);
9661 clear_vec_high(s, !is_scalar, rd);
9662 } else {
9663 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9664 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9665 int pass, maxpasses;
9666
9667 if (is_scalar) {
9668 maxpasses = 1;
9669 } else {
9670 maxpasses = is_q ? 4 : 2;
9671 }
9672
9673 for (pass = 0; pass < maxpasses; pass++) {
9674 if (is_scalar) {
9675 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9676 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9677 } else {
9678 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9679 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9680 }
9681
9682 if (is_u) { /* USQADD */
9683 switch (size) {
9684 case 0:
9685 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9686 break;
9687 case 1:
9688 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9689 break;
9690 case 2:
9691 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9692 break;
9693 default:
9694 g_assert_not_reached();
9695 }
9696 } else { /* SUQADD */
9697 switch (size) {
9698 case 0:
9699 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9700 break;
9701 case 1:
9702 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9703 break;
9704 case 2:
9705 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9706 break;
9707 default:
9708 g_assert_not_reached();
9709 }
9710 }
9711
9712 if (is_scalar) {
9713 TCGv_i64 tcg_zero = tcg_const_i64(0);
9714 write_vec_element(s, tcg_zero, rd, 0, MO_64);
9715 tcg_temp_free_i64(tcg_zero);
9716 }
9717 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9718 }
9719 tcg_temp_free_i32(tcg_rd);
9720 tcg_temp_free_i32(tcg_rn);
9721 clear_vec_high(s, is_q, rd);
9722 }
9723 }
9724
9725 /* AdvSIMD scalar two reg misc
9726 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9727 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9728 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9729 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9730 */
9731 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9732 {
9733 int rd = extract32(insn, 0, 5);
9734 int rn = extract32(insn, 5, 5);
9735 int opcode = extract32(insn, 12, 5);
9736 int size = extract32(insn, 22, 2);
9737 bool u = extract32(insn, 29, 1);
9738 bool is_fcvt = false;
9739 int rmode;
9740 TCGv_i32 tcg_rmode;
9741 TCGv_ptr tcg_fpstatus;
9742
9743 switch (opcode) {
9744 case 0x3: /* USQADD / SUQADD*/
9745 if (!fp_access_check(s)) {
9746 return;
9747 }
9748 handle_2misc_satacc(s, true, u, false, size, rn, rd);
9749 return;
9750 case 0x7: /* SQABS / SQNEG */
9751 break;
9752 case 0xa: /* CMLT */
9753 if (u) {
9754 unallocated_encoding(s);
9755 return;
9756 }
9757 /* fall through */
9758 case 0x8: /* CMGT, CMGE */
9759 case 0x9: /* CMEQ, CMLE */
9760 case 0xb: /* ABS, NEG */
9761 if (size != 3) {
9762 unallocated_encoding(s);
9763 return;
9764 }
9765 break;
9766 case 0x12: /* SQXTUN */
9767 if (!u) {
9768 unallocated_encoding(s);
9769 return;
9770 }
9771 /* fall through */
9772 case 0x14: /* SQXTN, UQXTN */
9773 if (size == 3) {
9774 unallocated_encoding(s);
9775 return;
9776 }
9777 if (!fp_access_check(s)) {
9778 return;
9779 }
9780 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
9781 return;
9782 case 0xc ... 0xf:
9783 case 0x16 ... 0x1d:
9784 case 0x1f:
9785 /* Floating point: U, size[1] and opcode indicate operation;
9786 * size[0] indicates single or double precision.
9787 */
9788 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
9789 size = extract32(size, 0, 1) ? 3 : 2;
9790 switch (opcode) {
9791 case 0x2c: /* FCMGT (zero) */
9792 case 0x2d: /* FCMEQ (zero) */
9793 case 0x2e: /* FCMLT (zero) */
9794 case 0x6c: /* FCMGE (zero) */
9795 case 0x6d: /* FCMLE (zero) */
9796 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
9797 return;
9798 case 0x1d: /* SCVTF */
9799 case 0x5d: /* UCVTF */
9800 {
9801 bool is_signed = (opcode == 0x1d);
9802 if (!fp_access_check(s)) {
9803 return;
9804 }
9805 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
9806 return;
9807 }
9808 case 0x3d: /* FRECPE */
9809 case 0x3f: /* FRECPX */
9810 case 0x7d: /* FRSQRTE */
9811 if (!fp_access_check(s)) {
9812 return;
9813 }
9814 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
9815 return;
9816 case 0x1a: /* FCVTNS */
9817 case 0x1b: /* FCVTMS */
9818 case 0x3a: /* FCVTPS */
9819 case 0x3b: /* FCVTZS */
9820 case 0x5a: /* FCVTNU */
9821 case 0x5b: /* FCVTMU */
9822 case 0x7a: /* FCVTPU */
9823 case 0x7b: /* FCVTZU */
9824 is_fcvt = true;
9825 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9826 break;
9827 case 0x1c: /* FCVTAS */
9828 case 0x5c: /* FCVTAU */
9829 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
9830 is_fcvt = true;
9831 rmode = FPROUNDING_TIEAWAY;
9832 break;
9833 case 0x56: /* FCVTXN, FCVTXN2 */
9834 if (size == 2) {
9835 unallocated_encoding(s);
9836 return;
9837 }
9838 if (!fp_access_check(s)) {
9839 return;
9840 }
9841 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
9842 return;
9843 default:
9844 unallocated_encoding(s);
9845 return;
9846 }
9847 break;
9848 default:
9849 unallocated_encoding(s);
9850 return;
9851 }
9852
9853 if (!fp_access_check(s)) {
9854 return;
9855 }
9856
9857 if (is_fcvt) {
9858 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
9859 tcg_fpstatus = get_fpstatus_ptr(false);
9860 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9861 } else {
9862 tcg_rmode = NULL;
9863 tcg_fpstatus = NULL;
9864 }
9865
9866 if (size == 3) {
9867 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9868 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9869
9870 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
9871 write_fp_dreg(s, rd, tcg_rd);
9872 tcg_temp_free_i64(tcg_rd);
9873 tcg_temp_free_i64(tcg_rn);
9874 } else {
9875 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9876 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9877
9878 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9879
9880 switch (opcode) {
9881 case 0x7: /* SQABS, SQNEG */
9882 {
9883 NeonGenOneOpEnvFn *genfn;
9884 static NeonGenOneOpEnvFn * const fns[3][2] = {
9885 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
9886 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
9887 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
9888 };
9889 genfn = fns[size][u];
9890 genfn(tcg_rd, cpu_env, tcg_rn);
9891 break;
9892 }
9893 case 0x1a: /* FCVTNS */
9894 case 0x1b: /* FCVTMS */
9895 case 0x1c: /* FCVTAS */
9896 case 0x3a: /* FCVTPS */
9897 case 0x3b: /* FCVTZS */
9898 {
9899 TCGv_i32 tcg_shift = tcg_const_i32(0);
9900 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9901 tcg_temp_free_i32(tcg_shift);
9902 break;
9903 }
9904 case 0x5a: /* FCVTNU */
9905 case 0x5b: /* FCVTMU */
9906 case 0x5c: /* FCVTAU */
9907 case 0x7a: /* FCVTPU */
9908 case 0x7b: /* FCVTZU */
9909 {
9910 TCGv_i32 tcg_shift = tcg_const_i32(0);
9911 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9912 tcg_temp_free_i32(tcg_shift);
9913 break;
9914 }
9915 default:
9916 g_assert_not_reached();
9917 }
9918
9919 write_fp_sreg(s, rd, tcg_rd);
9920 tcg_temp_free_i32(tcg_rd);
9921 tcg_temp_free_i32(tcg_rn);
9922 }
9923
9924 if (is_fcvt) {
9925 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9926 tcg_temp_free_i32(tcg_rmode);
9927 tcg_temp_free_ptr(tcg_fpstatus);
9928 }
9929 }
9930
9931 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
9932 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
9933 int immh, int immb, int opcode, int rn, int rd)
9934 {
9935 int size = 32 - clz32(immh) - 1;
9936 int immhb = immh << 3 | immb;
9937 int shift = 2 * (8 << size) - immhb;
9938 bool accumulate = false;
9939 int dsize = is_q ? 128 : 64;
9940 int esize = 8 << size;
9941 int elements = dsize/esize;
9942 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
9943 TCGv_i64 tcg_rn = new_tmp_a64(s);
9944 TCGv_i64 tcg_rd = new_tmp_a64(s);
9945 TCGv_i64 tcg_round;
9946 uint64_t round_const;
9947 int i;
9948
9949 if (extract32(immh, 3, 1) && !is_q) {
9950 unallocated_encoding(s);
9951 return;
9952 }
9953 tcg_debug_assert(size <= 3);
9954
9955 if (!fp_access_check(s)) {
9956 return;
9957 }
9958
9959 switch (opcode) {
9960 case 0x02: /* SSRA / USRA (accumulate) */
9961 if (is_u) {
9962 /* Shift count same as element size produces zero to add. */
9963 if (shift == 8 << size) {
9964 goto done;
9965 }
9966 gen_gvec_op2i(s, is_q, rd, rn, shift, &usra_op[size]);
9967 } else {
9968 /* Shift count same as element size produces all sign to add. */
9969 if (shift == 8 << size) {
9970 shift -= 1;
9971 }
9972 gen_gvec_op2i(s, is_q, rd, rn, shift, &ssra_op[size]);
9973 }
9974 return;
9975 case 0x08: /* SRI */
9976 /* Shift count same as element size is valid but does nothing. */
9977 if (shift == 8 << size) {
9978 goto done;
9979 }
9980 gen_gvec_op2i(s, is_q, rd, rn, shift, &sri_op[size]);
9981 return;
9982
9983 case 0x00: /* SSHR / USHR */
9984 if (is_u) {
9985 if (shift == 8 << size) {
9986 /* Shift count the same size as element size produces zero. */
9987 tcg_gen_gvec_dup8i(vec_full_reg_offset(s, rd),
9988 is_q ? 16 : 8, vec_full_reg_size(s), 0);
9989 } else {
9990 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shri, size);
9991 }
9992 } else {
9993 /* Shift count the same size as element size produces all sign. */
9994 if (shift == 8 << size) {
9995 shift -= 1;
9996 }
9997 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_sari, size);
9998 }
9999 return;
10000
10001 case 0x04: /* SRSHR / URSHR (rounding) */
10002 break;
10003 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10004 accumulate = true;
10005 break;
10006 default:
10007 g_assert_not_reached();
10008 }
10009
10010 round_const = 1ULL << (shift - 1);
10011 tcg_round = tcg_const_i64(round_const);
10012
10013 for (i = 0; i < elements; i++) {
10014 read_vec_element(s, tcg_rn, rn, i, memop);
10015 if (accumulate) {
10016 read_vec_element(s, tcg_rd, rd, i, memop);
10017 }
10018
10019 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10020 accumulate, is_u, size, shift);
10021
10022 write_vec_element(s, tcg_rd, rd, i, size);
10023 }
10024 tcg_temp_free_i64(tcg_round);
10025
10026 done:
10027 clear_vec_high(s, is_q, rd);
10028 }
10029
10030 /* SHL/SLI - Vector shift left */
10031 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10032 int immh, int immb, int opcode, int rn, int rd)
10033 {
10034 int size = 32 - clz32(immh) - 1;
10035 int immhb = immh << 3 | immb;
10036 int shift = immhb - (8 << size);
10037
10038 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10039 assert(size >= 0 && size <= 3);
10040
10041 if (extract32(immh, 3, 1) && !is_q) {
10042 unallocated_encoding(s);
10043 return;
10044 }
10045
10046 if (!fp_access_check(s)) {
10047 return;
10048 }
10049
10050 if (insert) {
10051 gen_gvec_op2i(s, is_q, rd, rn, shift, &sli_op[size]);
10052 } else {
10053 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10054 }
10055 }
10056
10057 /* USHLL/SHLL - Vector shift left with widening */
10058 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10059 int immh, int immb, int opcode, int rn, int rd)
10060 {
10061 int size = 32 - clz32(immh) - 1;
10062 int immhb = immh << 3 | immb;
10063 int shift = immhb - (8 << size);
10064 int dsize = 64;
10065 int esize = 8 << size;
10066 int elements = dsize/esize;
10067 TCGv_i64 tcg_rn = new_tmp_a64(s);
10068 TCGv_i64 tcg_rd = new_tmp_a64(s);
10069 int i;
10070
10071 if (size >= 3) {
10072 unallocated_encoding(s);
10073 return;
10074 }
10075
10076 if (!fp_access_check(s)) {
10077 return;
10078 }
10079
10080 /* For the LL variants the store is larger than the load,
10081 * so if rd == rn we would overwrite parts of our input.
10082 * So load everything right now and use shifts in the main loop.
10083 */
10084 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10085
10086 for (i = 0; i < elements; i++) {
10087 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10088 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10089 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10090 write_vec_element(s, tcg_rd, rd, i, size + 1);
10091 }
10092 }
10093
10094 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10095 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10096 int immh, int immb, int opcode, int rn, int rd)
10097 {
10098 int immhb = immh << 3 | immb;
10099 int size = 32 - clz32(immh) - 1;
10100 int dsize = 64;
10101 int esize = 8 << size;
10102 int elements = dsize/esize;
10103 int shift = (2 * esize) - immhb;
10104 bool round = extract32(opcode, 0, 1);
10105 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10106 TCGv_i64 tcg_round;
10107 int i;
10108
10109 if (extract32(immh, 3, 1)) {
10110 unallocated_encoding(s);
10111 return;
10112 }
10113
10114 if (!fp_access_check(s)) {
10115 return;
10116 }
10117
10118 tcg_rn = tcg_temp_new_i64();
10119 tcg_rd = tcg_temp_new_i64();
10120 tcg_final = tcg_temp_new_i64();
10121 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10122
10123 if (round) {
10124 uint64_t round_const = 1ULL << (shift - 1);
10125 tcg_round = tcg_const_i64(round_const);
10126 } else {
10127 tcg_round = NULL;
10128 }
10129
10130 for (i = 0; i < elements; i++) {
10131 read_vec_element(s, tcg_rn, rn, i, size+1);
10132 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10133 false, true, size+1, shift);
10134
10135 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10136 }
10137
10138 if (!is_q) {
10139 write_vec_element(s, tcg_final, rd, 0, MO_64);
10140 } else {
10141 write_vec_element(s, tcg_final, rd, 1, MO_64);
10142 }
10143 if (round) {
10144 tcg_temp_free_i64(tcg_round);
10145 }
10146 tcg_temp_free_i64(tcg_rn);
10147 tcg_temp_free_i64(tcg_rd);
10148 tcg_temp_free_i64(tcg_final);
10149
10150 clear_vec_high(s, is_q, rd);
10151 }
10152
10153
10154 /* AdvSIMD shift by immediate
10155 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10156 * +---+---+---+-------------+------+------+--------+---+------+------+
10157 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10158 * +---+---+---+-------------+------+------+--------+---+------+------+
10159 */
10160 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10161 {
10162 int rd = extract32(insn, 0, 5);
10163 int rn = extract32(insn, 5, 5);
10164 int opcode = extract32(insn, 11, 5);
10165 int immb = extract32(insn, 16, 3);
10166 int immh = extract32(insn, 19, 4);
10167 bool is_u = extract32(insn, 29, 1);
10168 bool is_q = extract32(insn, 30, 1);
10169
10170 switch (opcode) {
10171 case 0x08: /* SRI */
10172 if (!is_u) {
10173 unallocated_encoding(s);
10174 return;
10175 }
10176 /* fall through */
10177 case 0x00: /* SSHR / USHR */
10178 case 0x02: /* SSRA / USRA (accumulate) */
10179 case 0x04: /* SRSHR / URSHR (rounding) */
10180 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10181 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10182 break;
10183 case 0x0a: /* SHL / SLI */
10184 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10185 break;
10186 case 0x10: /* SHRN */
10187 case 0x11: /* RSHRN / SQRSHRUN */
10188 if (is_u) {
10189 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10190 opcode, rn, rd);
10191 } else {
10192 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10193 }
10194 break;
10195 case 0x12: /* SQSHRN / UQSHRN */
10196 case 0x13: /* SQRSHRN / UQRSHRN */
10197 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10198 opcode, rn, rd);
10199 break;
10200 case 0x14: /* SSHLL / USHLL */
10201 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10202 break;
10203 case 0x1c: /* SCVTF / UCVTF */
10204 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10205 opcode, rn, rd);
10206 break;
10207 case 0xc: /* SQSHLU */
10208 if (!is_u) {
10209 unallocated_encoding(s);
10210 return;
10211 }
10212 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10213 break;
10214 case 0xe: /* SQSHL, UQSHL */
10215 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10216 break;
10217 case 0x1f: /* FCVTZS/ FCVTZU */
10218 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10219 return;
10220 default:
10221 unallocated_encoding(s);
10222 return;
10223 }
10224 }
10225
10226 /* Generate code to do a "long" addition or subtraction, ie one done in
10227 * TCGv_i64 on vector lanes twice the width specified by size.
10228 */
10229 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10230 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10231 {
10232 static NeonGenTwo64OpFn * const fns[3][2] = {
10233 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10234 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10235 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10236 };
10237 NeonGenTwo64OpFn *genfn;
10238 assert(size < 3);
10239
10240 genfn = fns[size][is_sub];
10241 genfn(tcg_res, tcg_op1, tcg_op2);
10242 }
10243
10244 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10245 int opcode, int rd, int rn, int rm)
10246 {
10247 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10248 TCGv_i64 tcg_res[2];
10249 int pass, accop;
10250
10251 tcg_res[0] = tcg_temp_new_i64();
10252 tcg_res[1] = tcg_temp_new_i64();
10253
10254 /* Does this op do an adding accumulate, a subtracting accumulate,
10255 * or no accumulate at all?
10256 */
10257 switch (opcode) {
10258 case 5:
10259 case 8:
10260 case 9:
10261 accop = 1;
10262 break;
10263 case 10:
10264 case 11:
10265 accop = -1;
10266 break;
10267 default:
10268 accop = 0;
10269 break;
10270 }
10271
10272 if (accop != 0) {
10273 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10274 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10275 }
10276
10277 /* size == 2 means two 32x32->64 operations; this is worth special
10278 * casing because we can generally handle it inline.
10279 */
10280 if (size == 2) {
10281 for (pass = 0; pass < 2; pass++) {
10282 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10283 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10284 TCGv_i64 tcg_passres;
10285 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10286
10287 int elt = pass + is_q * 2;
10288
10289 read_vec_element(s, tcg_op1, rn, elt, memop);
10290 read_vec_element(s, tcg_op2, rm, elt, memop);
10291
10292 if (accop == 0) {
10293 tcg_passres = tcg_res[pass];
10294 } else {
10295 tcg_passres = tcg_temp_new_i64();
10296 }
10297
10298 switch (opcode) {
10299 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10300 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10301 break;
10302 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10303 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10304 break;
10305 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10306 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10307 {
10308 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10309 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10310
10311 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10312 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10313 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10314 tcg_passres,
10315 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10316 tcg_temp_free_i64(tcg_tmp1);
10317 tcg_temp_free_i64(tcg_tmp2);
10318 break;
10319 }
10320 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10321 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10322 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10323 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10324 break;
10325 case 9: /* SQDMLAL, SQDMLAL2 */
10326 case 11: /* SQDMLSL, SQDMLSL2 */
10327 case 13: /* SQDMULL, SQDMULL2 */
10328 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10329 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10330 tcg_passres, tcg_passres);
10331 break;
10332 default:
10333 g_assert_not_reached();
10334 }
10335
10336 if (opcode == 9 || opcode == 11) {
10337 /* saturating accumulate ops */
10338 if (accop < 0) {
10339 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10340 }
10341 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10342 tcg_res[pass], tcg_passres);
10343 } else if (accop > 0) {
10344 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10345 } else if (accop < 0) {
10346 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10347 }
10348
10349 if (accop != 0) {
10350 tcg_temp_free_i64(tcg_passres);
10351 }
10352
10353 tcg_temp_free_i64(tcg_op1);
10354 tcg_temp_free_i64(tcg_op2);
10355 }
10356 } else {
10357 /* size 0 or 1, generally helper functions */
10358 for (pass = 0; pass < 2; pass++) {
10359 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10360 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10361 TCGv_i64 tcg_passres;
10362 int elt = pass + is_q * 2;
10363
10364 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10365 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10366
10367 if (accop == 0) {
10368 tcg_passres = tcg_res[pass];
10369 } else {
10370 tcg_passres = tcg_temp_new_i64();
10371 }
10372
10373 switch (opcode) {
10374 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10375 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10376 {
10377 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10378 static NeonGenWidenFn * const widenfns[2][2] = {
10379 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10380 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10381 };
10382 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10383
10384 widenfn(tcg_op2_64, tcg_op2);
10385 widenfn(tcg_passres, tcg_op1);
10386 gen_neon_addl(size, (opcode == 2), tcg_passres,
10387 tcg_passres, tcg_op2_64);
10388 tcg_temp_free_i64(tcg_op2_64);
10389 break;
10390 }
10391 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10392 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10393 if (size == 0) {
10394 if (is_u) {
10395 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10396 } else {
10397 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10398 }
10399 } else {
10400 if (is_u) {
10401 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10402 } else {
10403 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10404 }
10405 }
10406 break;
10407 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10408 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10409 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10410 if (size == 0) {
10411 if (is_u) {
10412 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10413 } else {
10414 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10415 }
10416 } else {
10417 if (is_u) {
10418 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10419 } else {
10420 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10421 }
10422 }
10423 break;
10424 case 9: /* SQDMLAL, SQDMLAL2 */
10425 case 11: /* SQDMLSL, SQDMLSL2 */
10426 case 13: /* SQDMULL, SQDMULL2 */
10427 assert(size == 1);
10428 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10429 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10430 tcg_passres, tcg_passres);
10431 break;
10432 case 14: /* PMULL */
10433 assert(size == 0);
10434 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
10435 break;
10436 default:
10437 g_assert_not_reached();
10438 }
10439 tcg_temp_free_i32(tcg_op1);
10440 tcg_temp_free_i32(tcg_op2);
10441
10442 if (accop != 0) {
10443 if (opcode == 9 || opcode == 11) {
10444 /* saturating accumulate ops */
10445 if (accop < 0) {
10446 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10447 }
10448 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10449 tcg_res[pass],
10450 tcg_passres);
10451 } else {
10452 gen_neon_addl(size, (accop < 0), tcg_res[pass],
10453 tcg_res[pass], tcg_passres);
10454 }
10455 tcg_temp_free_i64(tcg_passres);
10456 }
10457 }
10458 }
10459
10460 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10461 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10462 tcg_temp_free_i64(tcg_res[0]);
10463 tcg_temp_free_i64(tcg_res[1]);
10464 }
10465
10466 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10467 int opcode, int rd, int rn, int rm)
10468 {
10469 TCGv_i64 tcg_res[2];
10470 int part = is_q ? 2 : 0;
10471 int pass;
10472
10473 for (pass = 0; pass < 2; pass++) {
10474 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10475 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10476 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10477 static NeonGenWidenFn * const widenfns[3][2] = {
10478 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10479 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10480 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10481 };
10482 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10483
10484 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10485 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10486 widenfn(tcg_op2_wide, tcg_op2);
10487 tcg_temp_free_i32(tcg_op2);
10488 tcg_res[pass] = tcg_temp_new_i64();
10489 gen_neon_addl(size, (opcode == 3),
10490 tcg_res[pass], tcg_op1, tcg_op2_wide);
10491 tcg_temp_free_i64(tcg_op1);
10492 tcg_temp_free_i64(tcg_op2_wide);
10493 }
10494
10495 for (pass = 0; pass < 2; pass++) {
10496 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10497 tcg_temp_free_i64(tcg_res[pass]);
10498 }
10499 }
10500
10501 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10502 {
10503 tcg_gen_addi_i64(in, in, 1U << 31);
10504 tcg_gen_extrh_i64_i32(res, in);
10505 }
10506
10507 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10508 int opcode, int rd, int rn, int rm)
10509 {
10510 TCGv_i32 tcg_res[2];
10511 int part = is_q ? 2 : 0;
10512 int pass;
10513
10514 for (pass = 0; pass < 2; pass++) {
10515 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10516 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10517 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10518 static NeonGenNarrowFn * const narrowfns[3][2] = {
10519 { gen_helper_neon_narrow_high_u8,
10520 gen_helper_neon_narrow_round_high_u8 },
10521 { gen_helper_neon_narrow_high_u16,
10522 gen_helper_neon_narrow_round_high_u16 },
10523 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10524 };
10525 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10526
10527 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10528 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10529
10530 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10531
10532 tcg_temp_free_i64(tcg_op1);
10533 tcg_temp_free_i64(tcg_op2);
10534
10535 tcg_res[pass] = tcg_temp_new_i32();
10536 gennarrow(tcg_res[pass], tcg_wideres);
10537 tcg_temp_free_i64(tcg_wideres);
10538 }
10539
10540 for (pass = 0; pass < 2; pass++) {
10541 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10542 tcg_temp_free_i32(tcg_res[pass]);
10543 }
10544 clear_vec_high(s, is_q, rd);
10545 }
10546
10547 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
10548 {
10549 /* PMULL of 64 x 64 -> 128 is an odd special case because it
10550 * is the only three-reg-diff instruction which produces a
10551 * 128-bit wide result from a single operation. However since
10552 * it's possible to calculate the two halves more or less
10553 * separately we just use two helper calls.
10554 */
10555 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10556 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10557 TCGv_i64 tcg_res = tcg_temp_new_i64();
10558
10559 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
10560 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
10561 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
10562 write_vec_element(s, tcg_res, rd, 0, MO_64);
10563 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
10564 write_vec_element(s, tcg_res, rd, 1, MO_64);
10565
10566 tcg_temp_free_i64(tcg_op1);
10567 tcg_temp_free_i64(tcg_op2);
10568 tcg_temp_free_i64(tcg_res);
10569 }
10570
10571 /* AdvSIMD three different
10572 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
10573 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10574 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
10575 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10576 */
10577 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10578 {
10579 /* Instructions in this group fall into three basic classes
10580 * (in each case with the operation working on each element in
10581 * the input vectors):
10582 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10583 * 128 bit input)
10584 * (2) wide 64 x 128 -> 128
10585 * (3) narrowing 128 x 128 -> 64
10586 * Here we do initial decode, catch unallocated cases and
10587 * dispatch to separate functions for each class.
10588 */
10589 int is_q = extract32(insn, 30, 1);
10590 int is_u = extract32(insn, 29, 1);
10591 int size = extract32(insn, 22, 2);
10592 int opcode = extract32(insn, 12, 4);
10593 int rm = extract32(insn, 16, 5);
10594 int rn = extract32(insn, 5, 5);
10595 int rd = extract32(insn, 0, 5);
10596
10597 switch (opcode) {
10598 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10599 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10600 /* 64 x 128 -> 128 */
10601 if (size == 3) {
10602 unallocated_encoding(s);
10603 return;
10604 }
10605 if (!fp_access_check(s)) {
10606 return;
10607 }
10608 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10609 break;
10610 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10611 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10612 /* 128 x 128 -> 64 */
10613 if (size == 3) {
10614 unallocated_encoding(s);
10615 return;
10616 }
10617 if (!fp_access_check(s)) {
10618 return;
10619 }
10620 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10621 break;
10622 case 14: /* PMULL, PMULL2 */
10623 if (is_u || size == 1 || size == 2) {
10624 unallocated_encoding(s);
10625 return;
10626 }
10627 if (size == 3) {
10628 if (!dc_isar_feature(aa64_pmull, s)) {
10629 unallocated_encoding(s);
10630 return;
10631 }
10632 if (!fp_access_check(s)) {
10633 return;
10634 }
10635 handle_pmull_64(s, is_q, rd, rn, rm);
10636 return;
10637 }
10638 goto is_widening;
10639 case 9: /* SQDMLAL, SQDMLAL2 */
10640 case 11: /* SQDMLSL, SQDMLSL2 */
10641 case 13: /* SQDMULL, SQDMULL2 */
10642 if (is_u || size == 0) {
10643 unallocated_encoding(s);
10644 return;
10645 }
10646 /* fall through */
10647 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10648 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10649 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10650 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10651 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10652 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10653 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10654 /* 64 x 64 -> 128 */
10655 if (size == 3) {
10656 unallocated_encoding(s);
10657 return;
10658 }
10659 is_widening:
10660 if (!fp_access_check(s)) {
10661 return;
10662 }
10663
10664 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10665 break;
10666 default:
10667 /* opcode 15 not allocated */
10668 unallocated_encoding(s);
10669 break;
10670 }
10671 }
10672
10673 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10674 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10675 {
10676 int rd = extract32(insn, 0, 5);
10677 int rn = extract32(insn, 5, 5);
10678 int rm = extract32(insn, 16, 5);
10679 int size = extract32(insn, 22, 2);
10680 bool is_u = extract32(insn, 29, 1);
10681 bool is_q = extract32(insn, 30, 1);
10682
10683 if (!fp_access_check(s)) {
10684 return;
10685 }
10686
10687 switch (size + 4 * is_u) {
10688 case 0: /* AND */
10689 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10690 return;
10691 case 1: /* BIC */
10692 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10693 return;
10694 case 2: /* ORR */
10695 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10696 return;
10697 case 3: /* ORN */
10698 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10699 return;
10700 case 4: /* EOR */
10701 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10702 return;
10703
10704 case 5: /* BSL bitwise select */
10705 gen_gvec_op3(s, is_q, rd, rn, rm, &bsl_op);
10706 return;
10707 case 6: /* BIT, bitwise insert if true */
10708 gen_gvec_op3(s, is_q, rd, rn, rm, &bit_op);
10709 return;
10710 case 7: /* BIF, bitwise insert if false */
10711 gen_gvec_op3(s, is_q, rd, rn, rm, &bif_op);
10712 return;
10713
10714 default:
10715 g_assert_not_reached();
10716 }
10717 }
10718
10719 /* Pairwise op subgroup of C3.6.16.
10720 *
10721 * This is called directly or via the handle_3same_float for float pairwise
10722 * operations where the opcode and size are calculated differently.
10723 */
10724 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10725 int size, int rn, int rm, int rd)
10726 {
10727 TCGv_ptr fpst;
10728 int pass;
10729
10730 /* Floating point operations need fpst */
10731 if (opcode >= 0x58) {
10732 fpst = get_fpstatus_ptr(false);
10733 } else {
10734 fpst = NULL;
10735 }
10736
10737 if (!fp_access_check(s)) {
10738 return;
10739 }
10740
10741 /* These operations work on the concatenated rm:rn, with each pair of
10742 * adjacent elements being operated on to produce an element in the result.
10743 */
10744 if (size == 3) {
10745 TCGv_i64 tcg_res[2];
10746
10747 for (pass = 0; pass < 2; pass++) {
10748 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10749 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10750 int passreg = (pass == 0) ? rn : rm;
10751
10752 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10753 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10754 tcg_res[pass] = tcg_temp_new_i64();
10755
10756 switch (opcode) {
10757 case 0x17: /* ADDP */
10758 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10759 break;
10760 case 0x58: /* FMAXNMP */
10761 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10762 break;
10763 case 0x5a: /* FADDP */
10764 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10765 break;
10766 case 0x5e: /* FMAXP */
10767 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10768 break;
10769 case 0x78: /* FMINNMP */
10770 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10771 break;
10772 case 0x7e: /* FMINP */
10773 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10774 break;
10775 default:
10776 g_assert_not_reached();
10777 }
10778
10779 tcg_temp_free_i64(tcg_op1);
10780 tcg_temp_free_i64(tcg_op2);
10781 }
10782
10783 for (pass = 0; pass < 2; pass++) {
10784 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10785 tcg_temp_free_i64(tcg_res[pass]);
10786 }
10787 } else {
10788 int maxpass = is_q ? 4 : 2;
10789 TCGv_i32 tcg_res[4];
10790
10791 for (pass = 0; pass < maxpass; pass++) {
10792 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10793 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10794 NeonGenTwoOpFn *genfn = NULL;
10795 int passreg = pass < (maxpass / 2) ? rn : rm;
10796 int passelt = (is_q && (pass & 1)) ? 2 : 0;
10797
10798 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10799 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10800 tcg_res[pass] = tcg_temp_new_i32();
10801
10802 switch (opcode) {
10803 case 0x17: /* ADDP */
10804 {
10805 static NeonGenTwoOpFn * const fns[3] = {
10806 gen_helper_neon_padd_u8,
10807 gen_helper_neon_padd_u16,
10808 tcg_gen_add_i32,
10809 };
10810 genfn = fns[size];
10811 break;
10812 }
10813 case 0x14: /* SMAXP, UMAXP */
10814 {
10815 static NeonGenTwoOpFn * const fns[3][2] = {
10816 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10817 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10818 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10819 };
10820 genfn = fns[size][u];
10821 break;
10822 }
10823 case 0x15: /* SMINP, UMINP */
10824 {
10825 static NeonGenTwoOpFn * const fns[3][2] = {
10826 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10827 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10828 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
10829 };
10830 genfn = fns[size][u];
10831 break;
10832 }
10833 /* The FP operations are all on single floats (32 bit) */
10834 case 0x58: /* FMAXNMP */
10835 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10836 break;
10837 case 0x5a: /* FADDP */
10838 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10839 break;
10840 case 0x5e: /* FMAXP */
10841 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10842 break;
10843 case 0x78: /* FMINNMP */
10844 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10845 break;
10846 case 0x7e: /* FMINP */
10847 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10848 break;
10849 default:
10850 g_assert_not_reached();
10851 }
10852
10853 /* FP ops called directly, otherwise call now */
10854 if (genfn) {
10855 genfn(tcg_res[pass], tcg_op1, tcg_op2);
10856 }
10857
10858 tcg_temp_free_i32(tcg_op1);
10859 tcg_temp_free_i32(tcg_op2);
10860 }
10861
10862 for (pass = 0; pass < maxpass; pass++) {
10863 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10864 tcg_temp_free_i32(tcg_res[pass]);
10865 }
10866 clear_vec_high(s, is_q, rd);
10867 }
10868
10869 if (fpst) {
10870 tcg_temp_free_ptr(fpst);
10871 }
10872 }
10873
10874 /* Floating point op subgroup of C3.6.16. */
10875 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10876 {
10877 /* For floating point ops, the U, size[1] and opcode bits
10878 * together indicate the operation. size[0] indicates single
10879 * or double.
10880 */
10881 int fpopcode = extract32(insn, 11, 5)
10882 | (extract32(insn, 23, 1) << 5)
10883 | (extract32(insn, 29, 1) << 6);
10884 int is_q = extract32(insn, 30, 1);
10885 int size = extract32(insn, 22, 1);
10886 int rm = extract32(insn, 16, 5);
10887 int rn = extract32(insn, 5, 5);
10888 int rd = extract32(insn, 0, 5);
10889
10890 int datasize = is_q ? 128 : 64;
10891 int esize = 32 << size;
10892 int elements = datasize / esize;
10893
10894 if (size == 1 && !is_q) {
10895 unallocated_encoding(s);
10896 return;
10897 }
10898
10899 switch (fpopcode) {
10900 case 0x58: /* FMAXNMP */
10901 case 0x5a: /* FADDP */
10902 case 0x5e: /* FMAXP */
10903 case 0x78: /* FMINNMP */
10904 case 0x7e: /* FMINP */
10905 if (size && !is_q) {
10906 unallocated_encoding(s);
10907 return;
10908 }
10909 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
10910 rn, rm, rd);
10911 return;
10912 case 0x1b: /* FMULX */
10913 case 0x1f: /* FRECPS */
10914 case 0x3f: /* FRSQRTS */
10915 case 0x5d: /* FACGE */
10916 case 0x7d: /* FACGT */
10917 case 0x19: /* FMLA */
10918 case 0x39: /* FMLS */
10919 case 0x18: /* FMAXNM */
10920 case 0x1a: /* FADD */
10921 case 0x1c: /* FCMEQ */
10922 case 0x1e: /* FMAX */
10923 case 0x38: /* FMINNM */
10924 case 0x3a: /* FSUB */
10925 case 0x3e: /* FMIN */
10926 case 0x5b: /* FMUL */
10927 case 0x5c: /* FCMGE */
10928 case 0x5f: /* FDIV */
10929 case 0x7a: /* FABD */
10930 case 0x7c: /* FCMGT */
10931 if (!fp_access_check(s)) {
10932 return;
10933 }
10934 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
10935 return;
10936
10937 case 0x1d: /* FMLAL */
10938 case 0x3d: /* FMLSL */
10939 case 0x59: /* FMLAL2 */
10940 case 0x79: /* FMLSL2 */
10941 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
10942 unallocated_encoding(s);
10943 return;
10944 }
10945 if (fp_access_check(s)) {
10946 int is_s = extract32(insn, 23, 1);
10947 int is_2 = extract32(insn, 29, 1);
10948 int data = (is_2 << 1) | is_s;
10949 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
10950 vec_full_reg_offset(s, rn),
10951 vec_full_reg_offset(s, rm), cpu_env,
10952 is_q ? 16 : 8, vec_full_reg_size(s),
10953 data, gen_helper_gvec_fmlal_a64);
10954 }
10955 return;
10956
10957 default:
10958 unallocated_encoding(s);
10959 return;
10960 }
10961 }
10962
10963 /* Integer op subgroup of C3.6.16. */
10964 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
10965 {
10966 int is_q = extract32(insn, 30, 1);
10967 int u = extract32(insn, 29, 1);
10968 int size = extract32(insn, 22, 2);
10969 int opcode = extract32(insn, 11, 5);
10970 int rm = extract32(insn, 16, 5);
10971 int rn = extract32(insn, 5, 5);
10972 int rd = extract32(insn, 0, 5);
10973 int pass;
10974 TCGCond cond;
10975
10976 switch (opcode) {
10977 case 0x13: /* MUL, PMUL */
10978 if (u && size != 0) {
10979 unallocated_encoding(s);
10980 return;
10981 }
10982 /* fall through */
10983 case 0x0: /* SHADD, UHADD */
10984 case 0x2: /* SRHADD, URHADD */
10985 case 0x4: /* SHSUB, UHSUB */
10986 case 0xc: /* SMAX, UMAX */
10987 case 0xd: /* SMIN, UMIN */
10988 case 0xe: /* SABD, UABD */
10989 case 0xf: /* SABA, UABA */
10990 case 0x12: /* MLA, MLS */
10991 if (size == 3) {
10992 unallocated_encoding(s);
10993 return;
10994 }
10995 break;
10996 case 0x16: /* SQDMULH, SQRDMULH */
10997 if (size == 0 || size == 3) {
10998 unallocated_encoding(s);
10999 return;
11000 }
11001 break;
11002 default:
11003 if (size == 3 && !is_q) {
11004 unallocated_encoding(s);
11005 return;
11006 }
11007 break;
11008 }
11009
11010 if (!fp_access_check(s)) {
11011 return;
11012 }
11013
11014 switch (opcode) {
11015 case 0x01: /* SQADD, UQADD */
11016 tcg_gen_gvec_4(vec_full_reg_offset(s, rd),
11017 offsetof(CPUARMState, vfp.qc),
11018 vec_full_reg_offset(s, rn),
11019 vec_full_reg_offset(s, rm),
11020 is_q ? 16 : 8, vec_full_reg_size(s),
11021 (u ? uqadd_op : sqadd_op) + size);
11022 return;
11023 case 0x05: /* SQSUB, UQSUB */
11024 tcg_gen_gvec_4(vec_full_reg_offset(s, rd),
11025 offsetof(CPUARMState, vfp.qc),
11026 vec_full_reg_offset(s, rn),
11027 vec_full_reg_offset(s, rm),
11028 is_q ? 16 : 8, vec_full_reg_size(s),
11029 (u ? uqsub_op : sqsub_op) + size);
11030 return;
11031 case 0x0c: /* SMAX, UMAX */
11032 if (u) {
11033 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11034 } else {
11035 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11036 }
11037 return;
11038 case 0x0d: /* SMIN, UMIN */
11039 if (u) {
11040 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11041 } else {
11042 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11043 }
11044 return;
11045 case 0x10: /* ADD, SUB */
11046 if (u) {
11047 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11048 } else {
11049 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11050 }
11051 return;
11052 case 0x13: /* MUL, PMUL */
11053 if (!u) { /* MUL */
11054 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11055 return;
11056 }
11057 break;
11058 case 0x12: /* MLA, MLS */
11059 if (u) {
11060 gen_gvec_op3(s, is_q, rd, rn, rm, &mls_op[size]);
11061 } else {
11062 gen_gvec_op3(s, is_q, rd, rn, rm, &mla_op[size]);
11063 }
11064 return;
11065 case 0x11:
11066 if (!u) { /* CMTST */
11067 gen_gvec_op3(s, is_q, rd, rn, rm, &cmtst_op[size]);
11068 return;
11069 }
11070 /* else CMEQ */
11071 cond = TCG_COND_EQ;
11072 goto do_gvec_cmp;
11073 case 0x06: /* CMGT, CMHI */
11074 cond = u ? TCG_COND_GTU : TCG_COND_GT;
11075 goto do_gvec_cmp;
11076 case 0x07: /* CMGE, CMHS */
11077 cond = u ? TCG_COND_GEU : TCG_COND_GE;
11078 do_gvec_cmp:
11079 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11080 vec_full_reg_offset(s, rn),
11081 vec_full_reg_offset(s, rm),
11082 is_q ? 16 : 8, vec_full_reg_size(s));
11083 return;
11084 }
11085
11086 if (size == 3) {
11087 assert(is_q);
11088 for (pass = 0; pass < 2; pass++) {
11089 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11090 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11091 TCGv_i64 tcg_res = tcg_temp_new_i64();
11092
11093 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11094 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11095
11096 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11097
11098 write_vec_element(s, tcg_res, rd, pass, MO_64);
11099
11100 tcg_temp_free_i64(tcg_res);
11101 tcg_temp_free_i64(tcg_op1);
11102 tcg_temp_free_i64(tcg_op2);
11103 }
11104 } else {
11105 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11106 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11107 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11108 TCGv_i32 tcg_res = tcg_temp_new_i32();
11109 NeonGenTwoOpFn *genfn = NULL;
11110 NeonGenTwoOpEnvFn *genenvfn = NULL;
11111
11112 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11113 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11114
11115 switch (opcode) {
11116 case 0x0: /* SHADD, UHADD */
11117 {
11118 static NeonGenTwoOpFn * const fns[3][2] = {
11119 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11120 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11121 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11122 };
11123 genfn = fns[size][u];
11124 break;
11125 }
11126 case 0x2: /* SRHADD, URHADD */
11127 {
11128 static NeonGenTwoOpFn * const fns[3][2] = {
11129 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11130 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11131 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11132 };
11133 genfn = fns[size][u];
11134 break;
11135 }
11136 case 0x4: /* SHSUB, UHSUB */
11137 {
11138 static NeonGenTwoOpFn * const fns[3][2] = {
11139 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11140 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11141 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11142 };
11143 genfn = fns[size][u];
11144 break;
11145 }
11146 case 0x8: /* SSHL, USHL */
11147 {
11148 static NeonGenTwoOpFn * const fns[3][2] = {
11149 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
11150 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
11151 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
11152 };
11153 genfn = fns[size][u];
11154 break;
11155 }
11156 case 0x9: /* SQSHL, UQSHL */
11157 {
11158 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11159 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11160 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11161 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11162 };
11163 genenvfn = fns[size][u];
11164 break;
11165 }
11166 case 0xa: /* SRSHL, URSHL */
11167 {
11168 static NeonGenTwoOpFn * const fns[3][2] = {
11169 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11170 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11171 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11172 };
11173 genfn = fns[size][u];
11174 break;
11175 }
11176 case 0xb: /* SQRSHL, UQRSHL */
11177 {
11178 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11179 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11180 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11181 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11182 };
11183 genenvfn = fns[size][u];
11184 break;
11185 }
11186 case 0xe: /* SABD, UABD */
11187 case 0xf: /* SABA, UABA */
11188 {
11189 static NeonGenTwoOpFn * const fns[3][2] = {
11190 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
11191 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
11192 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
11193 };
11194 genfn = fns[size][u];
11195 break;
11196 }
11197 case 0x13: /* MUL, PMUL */
11198 assert(u); /* PMUL */
11199 assert(size == 0);
11200 genfn = gen_helper_neon_mul_p8;
11201 break;
11202 case 0x16: /* SQDMULH, SQRDMULH */
11203 {
11204 static NeonGenTwoOpEnvFn * const fns[2][2] = {
11205 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
11206 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
11207 };
11208 assert(size == 1 || size == 2);
11209 genenvfn = fns[size - 1][u];
11210 break;
11211 }
11212 default:
11213 g_assert_not_reached();
11214 }
11215
11216 if (genenvfn) {
11217 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11218 } else {
11219 genfn(tcg_res, tcg_op1, tcg_op2);
11220 }
11221
11222 if (opcode == 0xf) {
11223 /* SABA, UABA: accumulating ops */
11224 static NeonGenTwoOpFn * const fns[3] = {
11225 gen_helper_neon_add_u8,
11226 gen_helper_neon_add_u16,
11227 tcg_gen_add_i32,
11228 };
11229
11230 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
11231 fns[size](tcg_res, tcg_op1, tcg_res);
11232 }
11233
11234 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11235
11236 tcg_temp_free_i32(tcg_res);
11237 tcg_temp_free_i32(tcg_op1);
11238 tcg_temp_free_i32(tcg_op2);
11239 }
11240 }
11241 clear_vec_high(s, is_q, rd);
11242 }
11243
11244 /* AdvSIMD three same
11245 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11246 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11247 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11248 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11249 */
11250 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11251 {
11252 int opcode = extract32(insn, 11, 5);
11253
11254 switch (opcode) {
11255 case 0x3: /* logic ops */
11256 disas_simd_3same_logic(s, insn);
11257 break;
11258 case 0x17: /* ADDP */
11259 case 0x14: /* SMAXP, UMAXP */
11260 case 0x15: /* SMINP, UMINP */
11261 {
11262 /* Pairwise operations */
11263 int is_q = extract32(insn, 30, 1);
11264 int u = extract32(insn, 29, 1);
11265 int size = extract32(insn, 22, 2);
11266 int rm = extract32(insn, 16, 5);
11267 int rn = extract32(insn, 5, 5);
11268 int rd = extract32(insn, 0, 5);
11269 if (opcode == 0x17) {
11270 if (u || (size == 3 && !is_q)) {
11271 unallocated_encoding(s);
11272 return;
11273 }
11274 } else {
11275 if (size == 3) {
11276 unallocated_encoding(s);
11277 return;
11278 }
11279 }
11280 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11281 break;
11282 }
11283 case 0x18 ... 0x31:
11284 /* floating point ops, sz[1] and U are part of opcode */
11285 disas_simd_3same_float(s, insn);
11286 break;
11287 default:
11288 disas_simd_3same_int(s, insn);
11289 break;
11290 }
11291 }
11292
11293 /*
11294 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11295 *
11296 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11297 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11298 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11299 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11300 *
11301 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11302 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11303 *
11304 */
11305 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11306 {
11307 int opcode, fpopcode;
11308 int is_q, u, a, rm, rn, rd;
11309 int datasize, elements;
11310 int pass;
11311 TCGv_ptr fpst;
11312 bool pairwise = false;
11313
11314 if (!dc_isar_feature(aa64_fp16, s)) {
11315 unallocated_encoding(s);
11316 return;
11317 }
11318
11319 if (!fp_access_check(s)) {
11320 return;
11321 }
11322
11323 /* For these floating point ops, the U, a and opcode bits
11324 * together indicate the operation.
11325 */
11326 opcode = extract32(insn, 11, 3);
11327 u = extract32(insn, 29, 1);
11328 a = extract32(insn, 23, 1);
11329 is_q = extract32(insn, 30, 1);
11330 rm = extract32(insn, 16, 5);
11331 rn = extract32(insn, 5, 5);
11332 rd = extract32(insn, 0, 5);
11333
11334 fpopcode = opcode | (a << 3) | (u << 4);
11335 datasize = is_q ? 128 : 64;
11336 elements = datasize / 16;
11337
11338 switch (fpopcode) {
11339 case 0x10: /* FMAXNMP */
11340 case 0x12: /* FADDP */
11341 case 0x16: /* FMAXP */
11342 case 0x18: /* FMINNMP */
11343 case 0x1e: /* FMINP */
11344 pairwise = true;
11345 break;
11346 }
11347
11348 fpst = get_fpstatus_ptr(true);
11349
11350 if (pairwise) {
11351 int maxpass = is_q ? 8 : 4;
11352 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11353 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11354 TCGv_i32 tcg_res[8];
11355
11356 for (pass = 0; pass < maxpass; pass++) {
11357 int passreg = pass < (maxpass / 2) ? rn : rm;
11358 int passelt = (pass << 1) & (maxpass - 1);
11359
11360 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11361 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11362 tcg_res[pass] = tcg_temp_new_i32();
11363
11364 switch (fpopcode) {
11365 case 0x10: /* FMAXNMP */
11366 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11367 fpst);
11368 break;
11369 case 0x12: /* FADDP */
11370 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11371 break;
11372 case 0x16: /* FMAXP */
11373 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11374 break;
11375 case 0x18: /* FMINNMP */
11376 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11377 fpst);
11378 break;
11379 case 0x1e: /* FMINP */
11380 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11381 break;
11382 default:
11383 g_assert_not_reached();
11384 }
11385 }
11386
11387 for (pass = 0; pass < maxpass; pass++) {
11388 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11389 tcg_temp_free_i32(tcg_res[pass]);
11390 }
11391
11392 tcg_temp_free_i32(tcg_op1);
11393 tcg_temp_free_i32(tcg_op2);
11394
11395 } else {
11396 for (pass = 0; pass < elements; pass++) {
11397 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11398 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11399 TCGv_i32 tcg_res = tcg_temp_new_i32();
11400
11401 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11402 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11403
11404 switch (fpopcode) {
11405 case 0x0: /* FMAXNM */
11406 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11407 break;
11408 case 0x1: /* FMLA */
11409 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11410 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11411 fpst);
11412 break;
11413 case 0x2: /* FADD */
11414 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11415 break;
11416 case 0x3: /* FMULX */
11417 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11418 break;
11419 case 0x4: /* FCMEQ */
11420 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11421 break;
11422 case 0x6: /* FMAX */
11423 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11424 break;
11425 case 0x7: /* FRECPS */
11426 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11427 break;
11428 case 0x8: /* FMINNM */
11429 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11430 break;
11431 case 0x9: /* FMLS */
11432 /* As usual for ARM, separate negation for fused multiply-add */
11433 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11434 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11435 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11436 fpst);
11437 break;
11438 case 0xa: /* FSUB */
11439 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11440 break;
11441 case 0xe: /* FMIN */
11442 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11443 break;
11444 case 0xf: /* FRSQRTS */
11445 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11446 break;
11447 case 0x13: /* FMUL */
11448 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11449 break;
11450 case 0x14: /* FCMGE */
11451 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11452 break;
11453 case 0x15: /* FACGE */
11454 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11455 break;
11456 case 0x17: /* FDIV */
11457 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11458 break;
11459 case 0x1a: /* FABD */
11460 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11461 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11462 break;
11463 case 0x1c: /* FCMGT */
11464 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11465 break;
11466 case 0x1d: /* FACGT */
11467 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11468 break;
11469 default:
11470 fprintf(stderr, "%s: insn %#04x, fpop %#2x @ %#" PRIx64 "\n",
11471 __func__, insn, fpopcode, s->pc);
11472 g_assert_not_reached();
11473 }
11474
11475 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11476 tcg_temp_free_i32(tcg_res);
11477 tcg_temp_free_i32(tcg_op1);
11478 tcg_temp_free_i32(tcg_op2);
11479 }
11480 }
11481
11482 tcg_temp_free_ptr(fpst);
11483
11484 clear_vec_high(s, is_q, rd);
11485 }
11486
11487 /* AdvSIMD three same extra
11488 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
11489 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11490 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
11491 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11492 */
11493 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11494 {
11495 int rd = extract32(insn, 0, 5);
11496 int rn = extract32(insn, 5, 5);
11497 int opcode = extract32(insn, 11, 4);
11498 int rm = extract32(insn, 16, 5);
11499 int size = extract32(insn, 22, 2);
11500 bool u = extract32(insn, 29, 1);
11501 bool is_q = extract32(insn, 30, 1);
11502 bool feature;
11503 int rot;
11504
11505 switch (u * 16 + opcode) {
11506 case 0x10: /* SQRDMLAH (vector) */
11507 case 0x11: /* SQRDMLSH (vector) */
11508 if (size != 1 && size != 2) {
11509 unallocated_encoding(s);
11510 return;
11511 }
11512 feature = dc_isar_feature(aa64_rdm, s);
11513 break;
11514 case 0x02: /* SDOT (vector) */
11515 case 0x12: /* UDOT (vector) */
11516 if (size != MO_32) {
11517 unallocated_encoding(s);
11518 return;
11519 }
11520 feature = dc_isar_feature(aa64_dp, s);
11521 break;
11522 case 0x18: /* FCMLA, #0 */
11523 case 0x19: /* FCMLA, #90 */
11524 case 0x1a: /* FCMLA, #180 */
11525 case 0x1b: /* FCMLA, #270 */
11526 case 0x1c: /* FCADD, #90 */
11527 case 0x1e: /* FCADD, #270 */
11528 if (size == 0
11529 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11530 || (size == 3 && !is_q)) {
11531 unallocated_encoding(s);
11532 return;
11533 }
11534 feature = dc_isar_feature(aa64_fcma, s);
11535 break;
11536 default:
11537 unallocated_encoding(s);
11538 return;
11539 }
11540 if (!feature) {
11541 unallocated_encoding(s);
11542 return;
11543 }
11544 if (!fp_access_check(s)) {
11545 return;
11546 }
11547
11548 switch (opcode) {
11549 case 0x0: /* SQRDMLAH (vector) */
11550 switch (size) {
11551 case 1:
11552 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s16);
11553 break;
11554 case 2:
11555 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s32);
11556 break;
11557 default:
11558 g_assert_not_reached();
11559 }
11560 return;
11561
11562 case 0x1: /* SQRDMLSH (vector) */
11563 switch (size) {
11564 case 1:
11565 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s16);
11566 break;
11567 case 2:
11568 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s32);
11569 break;
11570 default:
11571 g_assert_not_reached();
11572 }
11573 return;
11574
11575 case 0x2: /* SDOT / UDOT */
11576 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0,
11577 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11578 return;
11579
11580 case 0x8: /* FCMLA, #0 */
11581 case 0x9: /* FCMLA, #90 */
11582 case 0xa: /* FCMLA, #180 */
11583 case 0xb: /* FCMLA, #270 */
11584 rot = extract32(opcode, 0, 2);
11585 switch (size) {
11586 case 1:
11587 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, true, rot,
11588 gen_helper_gvec_fcmlah);
11589 break;
11590 case 2:
11591 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11592 gen_helper_gvec_fcmlas);
11593 break;
11594 case 3:
11595 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11596 gen_helper_gvec_fcmlad);
11597 break;
11598 default:
11599 g_assert_not_reached();
11600 }
11601 return;
11602
11603 case 0xc: /* FCADD, #90 */
11604 case 0xe: /* FCADD, #270 */
11605 rot = extract32(opcode, 1, 1);
11606 switch (size) {
11607 case 1:
11608 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11609 gen_helper_gvec_fcaddh);
11610 break;
11611 case 2:
11612 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11613 gen_helper_gvec_fcadds);
11614 break;
11615 case 3:
11616 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11617 gen_helper_gvec_fcaddd);
11618 break;
11619 default:
11620 g_assert_not_reached();
11621 }
11622 return;
11623
11624 default:
11625 g_assert_not_reached();
11626 }
11627 }
11628
11629 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11630 int size, int rn, int rd)
11631 {
11632 /* Handle 2-reg-misc ops which are widening (so each size element
11633 * in the source becomes a 2*size element in the destination.
11634 * The only instruction like this is FCVTL.
11635 */
11636 int pass;
11637
11638 if (size == 3) {
11639 /* 32 -> 64 bit fp conversion */
11640 TCGv_i64 tcg_res[2];
11641 int srcelt = is_q ? 2 : 0;
11642
11643 for (pass = 0; pass < 2; pass++) {
11644 TCGv_i32 tcg_op = tcg_temp_new_i32();
11645 tcg_res[pass] = tcg_temp_new_i64();
11646
11647 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11648 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11649 tcg_temp_free_i32(tcg_op);
11650 }
11651 for (pass = 0; pass < 2; pass++) {
11652 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11653 tcg_temp_free_i64(tcg_res[pass]);
11654 }
11655 } else {
11656 /* 16 -> 32 bit fp conversion */
11657 int srcelt = is_q ? 4 : 0;
11658 TCGv_i32 tcg_res[4];
11659 TCGv_ptr fpst = get_fpstatus_ptr(false);
11660 TCGv_i32 ahp = get_ahp_flag();
11661
11662 for (pass = 0; pass < 4; pass++) {
11663 tcg_res[pass] = tcg_temp_new_i32();
11664
11665 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11666 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11667 fpst, ahp);
11668 }
11669 for (pass = 0; pass < 4; pass++) {
11670 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11671 tcg_temp_free_i32(tcg_res[pass]);
11672 }
11673
11674 tcg_temp_free_ptr(fpst);
11675 tcg_temp_free_i32(ahp);
11676 }
11677 }
11678
11679 static void handle_rev(DisasContext *s, int opcode, bool u,
11680 bool is_q, int size, int rn, int rd)
11681 {
11682 int op = (opcode << 1) | u;
11683 int opsz = op + size;
11684 int grp_size = 3 - opsz;
11685 int dsize = is_q ? 128 : 64;
11686 int i;
11687
11688 if (opsz >= 3) {
11689 unallocated_encoding(s);
11690 return;
11691 }
11692
11693 if (!fp_access_check(s)) {
11694 return;
11695 }
11696
11697 if (size == 0) {
11698 /* Special case bytes, use bswap op on each group of elements */
11699 int groups = dsize / (8 << grp_size);
11700
11701 for (i = 0; i < groups; i++) {
11702 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11703
11704 read_vec_element(s, tcg_tmp, rn, i, grp_size);
11705 switch (grp_size) {
11706 case MO_16:
11707 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
11708 break;
11709 case MO_32:
11710 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
11711 break;
11712 case MO_64:
11713 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11714 break;
11715 default:
11716 g_assert_not_reached();
11717 }
11718 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11719 tcg_temp_free_i64(tcg_tmp);
11720 }
11721 clear_vec_high(s, is_q, rd);
11722 } else {
11723 int revmask = (1 << grp_size) - 1;
11724 int esize = 8 << size;
11725 int elements = dsize / esize;
11726 TCGv_i64 tcg_rn = tcg_temp_new_i64();
11727 TCGv_i64 tcg_rd = tcg_const_i64(0);
11728 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
11729
11730 for (i = 0; i < elements; i++) {
11731 int e_rev = (i & 0xf) ^ revmask;
11732 int off = e_rev * esize;
11733 read_vec_element(s, tcg_rn, rn, i, size);
11734 if (off >= 64) {
11735 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
11736 tcg_rn, off - 64, esize);
11737 } else {
11738 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
11739 }
11740 }
11741 write_vec_element(s, tcg_rd, rd, 0, MO_64);
11742 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
11743
11744 tcg_temp_free_i64(tcg_rd_hi);
11745 tcg_temp_free_i64(tcg_rd);
11746 tcg_temp_free_i64(tcg_rn);
11747 }
11748 }
11749
11750 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11751 bool is_q, int size, int rn, int rd)
11752 {
11753 /* Implement the pairwise operations from 2-misc:
11754 * SADDLP, UADDLP, SADALP, UADALP.
11755 * These all add pairs of elements in the input to produce a
11756 * double-width result element in the output (possibly accumulating).
11757 */
11758 bool accum = (opcode == 0x6);
11759 int maxpass = is_q ? 2 : 1;
11760 int pass;
11761 TCGv_i64 tcg_res[2];
11762
11763 if (size == 2) {
11764 /* 32 + 32 -> 64 op */
11765 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
11766
11767 for (pass = 0; pass < maxpass; pass++) {
11768 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11769 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11770
11771 tcg_res[pass] = tcg_temp_new_i64();
11772
11773 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11774 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11775 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11776 if (accum) {
11777 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11778 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11779 }
11780
11781 tcg_temp_free_i64(tcg_op1);
11782 tcg_temp_free_i64(tcg_op2);
11783 }
11784 } else {
11785 for (pass = 0; pass < maxpass; pass++) {
11786 TCGv_i64 tcg_op = tcg_temp_new_i64();
11787 NeonGenOneOpFn *genfn;
11788 static NeonGenOneOpFn * const fns[2][2] = {
11789 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
11790 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
11791 };
11792
11793 genfn = fns[size][u];
11794
11795 tcg_res[pass] = tcg_temp_new_i64();
11796
11797 read_vec_element(s, tcg_op, rn, pass, MO_64);
11798 genfn(tcg_res[pass], tcg_op);
11799
11800 if (accum) {
11801 read_vec_element(s, tcg_op, rd, pass, MO_64);
11802 if (size == 0) {
11803 gen_helper_neon_addl_u16(tcg_res[pass],
11804 tcg_res[pass], tcg_op);
11805 } else {
11806 gen_helper_neon_addl_u32(tcg_res[pass],
11807 tcg_res[pass], tcg_op);
11808 }
11809 }
11810 tcg_temp_free_i64(tcg_op);
11811 }
11812 }
11813 if (!is_q) {
11814 tcg_res[1] = tcg_const_i64(0);
11815 }
11816 for (pass = 0; pass < 2; pass++) {
11817 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11818 tcg_temp_free_i64(tcg_res[pass]);
11819 }
11820 }
11821
11822 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11823 {
11824 /* Implement SHLL and SHLL2 */
11825 int pass;
11826 int part = is_q ? 2 : 0;
11827 TCGv_i64 tcg_res[2];
11828
11829 for (pass = 0; pass < 2; pass++) {
11830 static NeonGenWidenFn * const widenfns[3] = {
11831 gen_helper_neon_widen_u8,
11832 gen_helper_neon_widen_u16,
11833 tcg_gen_extu_i32_i64,
11834 };
11835 NeonGenWidenFn *widenfn = widenfns[size];
11836 TCGv_i32 tcg_op = tcg_temp_new_i32();
11837
11838 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11839 tcg_res[pass] = tcg_temp_new_i64();
11840 widenfn(tcg_res[pass], tcg_op);
11841 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11842
11843 tcg_temp_free_i32(tcg_op);
11844 }
11845
11846 for (pass = 0; pass < 2; pass++) {
11847 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11848 tcg_temp_free_i64(tcg_res[pass]);
11849 }
11850 }
11851
11852 /* AdvSIMD two reg misc
11853 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
11854 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11855 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
11856 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11857 */
11858 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11859 {
11860 int size = extract32(insn, 22, 2);
11861 int opcode = extract32(insn, 12, 5);
11862 bool u = extract32(insn, 29, 1);
11863 bool is_q = extract32(insn, 30, 1);
11864 int rn = extract32(insn, 5, 5);
11865 int rd = extract32(insn, 0, 5);
11866 bool need_fpstatus = false;
11867 bool need_rmode = false;
11868 int rmode = -1;
11869 TCGv_i32 tcg_rmode;
11870 TCGv_ptr tcg_fpstatus;
11871
11872 switch (opcode) {
11873 case 0x0: /* REV64, REV32 */
11874 case 0x1: /* REV16 */
11875 handle_rev(s, opcode, u, is_q, size, rn, rd);
11876 return;
11877 case 0x5: /* CNT, NOT, RBIT */
11878 if (u && size == 0) {
11879 /* NOT */
11880 break;
11881 } else if (u && size == 1) {
11882 /* RBIT */
11883 break;
11884 } else if (!u && size == 0) {
11885 /* CNT */
11886 break;
11887 }
11888 unallocated_encoding(s);
11889 return;
11890 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11891 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11892 if (size == 3) {
11893 unallocated_encoding(s);
11894 return;
11895 }
11896 if (!fp_access_check(s)) {
11897 return;
11898 }
11899
11900 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11901 return;
11902 case 0x4: /* CLS, CLZ */
11903 if (size == 3) {
11904 unallocated_encoding(s);
11905 return;
11906 }
11907 break;
11908 case 0x2: /* SADDLP, UADDLP */
11909 case 0x6: /* SADALP, UADALP */
11910 if (size == 3) {
11911 unallocated_encoding(s);
11912 return;
11913 }
11914 if (!fp_access_check(s)) {
11915 return;
11916 }
11917 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11918 return;
11919 case 0x13: /* SHLL, SHLL2 */
11920 if (u == 0 || size == 3) {
11921 unallocated_encoding(s);
11922 return;
11923 }
11924 if (!fp_access_check(s)) {
11925 return;
11926 }
11927 handle_shll(s, is_q, size, rn, rd);
11928 return;
11929 case 0xa: /* CMLT */
11930 if (u == 1) {
11931 unallocated_encoding(s);
11932 return;
11933 }
11934 /* fall through */
11935 case 0x8: /* CMGT, CMGE */
11936 case 0x9: /* CMEQ, CMLE */
11937 case 0xb: /* ABS, NEG */
11938 if (size == 3 && !is_q) {
11939 unallocated_encoding(s);
11940 return;
11941 }
11942 break;
11943 case 0x3: /* SUQADD, USQADD */
11944 if (size == 3 && !is_q) {
11945 unallocated_encoding(s);
11946 return;
11947 }
11948 if (!fp_access_check(s)) {
11949 return;
11950 }
11951 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
11952 return;
11953 case 0x7: /* SQABS, SQNEG */
11954 if (size == 3 && !is_q) {
11955 unallocated_encoding(s);
11956 return;
11957 }
11958 break;
11959 case 0xc ... 0xf:
11960 case 0x16 ... 0x1d:
11961 case 0x1f:
11962 {
11963 /* Floating point: U, size[1] and opcode indicate operation;
11964 * size[0] indicates single or double precision.
11965 */
11966 int is_double = extract32(size, 0, 1);
11967 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11968 size = is_double ? 3 : 2;
11969 switch (opcode) {
11970 case 0x2f: /* FABS */
11971 case 0x6f: /* FNEG */
11972 if (size == 3 && !is_q) {
11973 unallocated_encoding(s);
11974 return;
11975 }
11976 break;
11977 case 0x1d: /* SCVTF */
11978 case 0x5d: /* UCVTF */
11979 {
11980 bool is_signed = (opcode == 0x1d) ? true : false;
11981 int elements = is_double ? 2 : is_q ? 4 : 2;
11982 if (is_double && !is_q) {
11983 unallocated_encoding(s);
11984 return;
11985 }
11986 if (!fp_access_check(s)) {
11987 return;
11988 }
11989 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11990 return;
11991 }
11992 case 0x2c: /* FCMGT (zero) */
11993 case 0x2d: /* FCMEQ (zero) */
11994 case 0x2e: /* FCMLT (zero) */
11995 case 0x6c: /* FCMGE (zero) */
11996 case 0x6d: /* FCMLE (zero) */
11997 if (size == 3 && !is_q) {
11998 unallocated_encoding(s);
11999 return;
12000 }
12001 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12002 return;
12003 case 0x7f: /* FSQRT */
12004 if (size == 3 && !is_q) {
12005 unallocated_encoding(s);
12006 return;
12007 }
12008 break;
12009 case 0x1a: /* FCVTNS */
12010 case 0x1b: /* FCVTMS */
12011 case 0x3a: /* FCVTPS */
12012 case 0x3b: /* FCVTZS */
12013 case 0x5a: /* FCVTNU */
12014 case 0x5b: /* FCVTMU */
12015 case 0x7a: /* FCVTPU */
12016 case 0x7b: /* FCVTZU */
12017 need_fpstatus = true;
12018 need_rmode = true;
12019 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12020 if (size == 3 && !is_q) {
12021 unallocated_encoding(s);
12022 return;
12023 }
12024 break;
12025 case 0x5c: /* FCVTAU */
12026 case 0x1c: /* FCVTAS */
12027 need_fpstatus = true;
12028 need_rmode = true;
12029 rmode = FPROUNDING_TIEAWAY;
12030 if (size == 3 && !is_q) {
12031 unallocated_encoding(s);
12032 return;
12033 }
12034 break;
12035 case 0x3c: /* URECPE */
12036 if (size == 3) {
12037 unallocated_encoding(s);
12038 return;
12039 }
12040 /* fall through */
12041 case 0x3d: /* FRECPE */
12042 case 0x7d: /* FRSQRTE */
12043 if (size == 3 && !is_q) {
12044 unallocated_encoding(s);
12045 return;
12046 }
12047 if (!fp_access_check(s)) {
12048 return;
12049 }
12050 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12051 return;
12052 case 0x56: /* FCVTXN, FCVTXN2 */
12053 if (size == 2) {
12054 unallocated_encoding(s);
12055 return;
12056 }
12057 /* fall through */
12058 case 0x16: /* FCVTN, FCVTN2 */
12059 /* handle_2misc_narrow does a 2*size -> size operation, but these
12060 * instructions encode the source size rather than dest size.
12061 */
12062 if (!fp_access_check(s)) {
12063 return;
12064 }
12065 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12066 return;
12067 case 0x17: /* FCVTL, FCVTL2 */
12068 if (!fp_access_check(s)) {
12069 return;
12070 }
12071 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12072 return;
12073 case 0x18: /* FRINTN */
12074 case 0x19: /* FRINTM */
12075 case 0x38: /* FRINTP */
12076 case 0x39: /* FRINTZ */
12077 need_rmode = true;
12078 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12079 /* fall through */
12080 case 0x59: /* FRINTX */
12081 case 0x79: /* FRINTI */
12082 need_fpstatus = true;
12083 if (size == 3 && !is_q) {
12084 unallocated_encoding(s);
12085 return;
12086 }
12087 break;
12088 case 0x58: /* FRINTA */
12089 need_rmode = true;
12090 rmode = FPROUNDING_TIEAWAY;
12091 need_fpstatus = true;
12092 if (size == 3 && !is_q) {
12093 unallocated_encoding(s);
12094 return;
12095 }
12096 break;
12097 case 0x7c: /* URSQRTE */
12098 if (size == 3) {
12099 unallocated_encoding(s);
12100 return;
12101 }
12102 need_fpstatus = true;
12103 break;
12104 default:
12105 unallocated_encoding(s);
12106 return;
12107 }
12108 break;
12109 }
12110 default:
12111 unallocated_encoding(s);
12112 return;
12113 }
12114
12115 if (!fp_access_check(s)) {
12116 return;
12117 }
12118
12119 if (need_fpstatus || need_rmode) {
12120 tcg_fpstatus = get_fpstatus_ptr(false);
12121 } else {
12122 tcg_fpstatus = NULL;
12123 }
12124 if (need_rmode) {
12125 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12126 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12127 } else {
12128 tcg_rmode = NULL;
12129 }
12130
12131 switch (opcode) {
12132 case 0x5:
12133 if (u && size == 0) { /* NOT */
12134 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12135 return;
12136 }
12137 break;
12138 case 0xb:
12139 if (u) { /* NEG */
12140 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12141 return;
12142 }
12143 break;
12144 }
12145
12146 if (size == 3) {
12147 /* All 64-bit element operations can be shared with scalar 2misc */
12148 int pass;
12149
12150 /* Coverity claims (size == 3 && !is_q) has been eliminated
12151 * from all paths leading to here.
12152 */
12153 tcg_debug_assert(is_q);
12154 for (pass = 0; pass < 2; pass++) {
12155 TCGv_i64 tcg_op = tcg_temp_new_i64();
12156 TCGv_i64 tcg_res = tcg_temp_new_i64();
12157
12158 read_vec_element(s, tcg_op, rn, pass, MO_64);
12159
12160 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12161 tcg_rmode, tcg_fpstatus);
12162
12163 write_vec_element(s, tcg_res, rd, pass, MO_64);
12164
12165 tcg_temp_free_i64(tcg_res);
12166 tcg_temp_free_i64(tcg_op);
12167 }
12168 } else {
12169 int pass;
12170
12171 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12172 TCGv_i32 tcg_op = tcg_temp_new_i32();
12173 TCGv_i32 tcg_res = tcg_temp_new_i32();
12174 TCGCond cond;
12175
12176 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12177
12178 if (size == 2) {
12179 /* Special cases for 32 bit elements */
12180 switch (opcode) {
12181 case 0xa: /* CMLT */
12182 /* 32 bit integer comparison against zero, result is
12183 * test ? (2^32 - 1) : 0. We implement via setcond(test)
12184 * and inverting.
12185 */
12186 cond = TCG_COND_LT;
12187 do_cmop:
12188 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
12189 tcg_gen_neg_i32(tcg_res, tcg_res);
12190 break;
12191 case 0x8: /* CMGT, CMGE */
12192 cond = u ? TCG_COND_GE : TCG_COND_GT;
12193 goto do_cmop;
12194 case 0x9: /* CMEQ, CMLE */
12195 cond = u ? TCG_COND_LE : TCG_COND_EQ;
12196 goto do_cmop;
12197 case 0x4: /* CLS */
12198 if (u) {
12199 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12200 } else {
12201 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12202 }
12203 break;
12204 case 0x7: /* SQABS, SQNEG */
12205 if (u) {
12206 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12207 } else {
12208 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12209 }
12210 break;
12211 case 0xb: /* ABS, NEG */
12212 if (u) {
12213 tcg_gen_neg_i32(tcg_res, tcg_op);
12214 } else {
12215 TCGv_i32 tcg_zero = tcg_const_i32(0);
12216 tcg_gen_neg_i32(tcg_res, tcg_op);
12217 tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
12218 tcg_zero, tcg_op, tcg_res);
12219 tcg_temp_free_i32(tcg_zero);
12220 }
12221 break;
12222 case 0x2f: /* FABS */
12223 gen_helper_vfp_abss(tcg_res, tcg_op);
12224 break;
12225 case 0x6f: /* FNEG */
12226 gen_helper_vfp_negs(tcg_res, tcg_op);
12227 break;
12228 case 0x7f: /* FSQRT */
12229 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12230 break;
12231 case 0x1a: /* FCVTNS */
12232 case 0x1b: /* FCVTMS */
12233 case 0x1c: /* FCVTAS */
12234 case 0x3a: /* FCVTPS */
12235 case 0x3b: /* FCVTZS */
12236 {
12237 TCGv_i32 tcg_shift = tcg_const_i32(0);
12238 gen_helper_vfp_tosls(tcg_res, tcg_op,
12239 tcg_shift, tcg_fpstatus);
12240 tcg_temp_free_i32(tcg_shift);
12241 break;
12242 }
12243 case 0x5a: /* FCVTNU */
12244 case 0x5b: /* FCVTMU */
12245 case 0x5c: /* FCVTAU */
12246 case 0x7a: /* FCVTPU */
12247 case 0x7b: /* FCVTZU */
12248 {
12249 TCGv_i32 tcg_shift = tcg_const_i32(0);
12250 gen_helper_vfp_touls(tcg_res, tcg_op,
12251 tcg_shift, tcg_fpstatus);
12252 tcg_temp_free_i32(tcg_shift);
12253 break;
12254 }
12255 case 0x18: /* FRINTN */
12256 case 0x19: /* FRINTM */
12257 case 0x38: /* FRINTP */
12258 case 0x39: /* FRINTZ */
12259 case 0x58: /* FRINTA */
12260 case 0x79: /* FRINTI */
12261 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12262 break;
12263 case 0x59: /* FRINTX */
12264 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12265 break;
12266 case 0x7c: /* URSQRTE */
12267 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
12268 break;
12269 default:
12270 g_assert_not_reached();
12271 }
12272 } else {
12273 /* Use helpers for 8 and 16 bit elements */
12274 switch (opcode) {
12275 case 0x5: /* CNT, RBIT */
12276 /* For these two insns size is part of the opcode specifier
12277 * (handled earlier); they always operate on byte elements.
12278 */
12279 if (u) {
12280 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12281 } else {
12282 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12283 }
12284 break;
12285 case 0x7: /* SQABS, SQNEG */
12286 {
12287 NeonGenOneOpEnvFn *genfn;
12288 static NeonGenOneOpEnvFn * const fns[2][2] = {
12289 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12290 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12291 };
12292 genfn = fns[size][u];
12293 genfn(tcg_res, cpu_env, tcg_op);
12294 break;
12295 }
12296 case 0x8: /* CMGT, CMGE */
12297 case 0x9: /* CMEQ, CMLE */
12298 case 0xa: /* CMLT */
12299 {
12300 static NeonGenTwoOpFn * const fns[3][2] = {
12301 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
12302 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
12303 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
12304 };
12305 NeonGenTwoOpFn *genfn;
12306 int comp;
12307 bool reverse;
12308 TCGv_i32 tcg_zero = tcg_const_i32(0);
12309
12310 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
12311 comp = (opcode - 0x8) * 2 + u;
12312 /* ...but LE, LT are implemented as reverse GE, GT */
12313 reverse = (comp > 2);
12314 if (reverse) {
12315 comp = 4 - comp;
12316 }
12317 genfn = fns[comp][size];
12318 if (reverse) {
12319 genfn(tcg_res, tcg_zero, tcg_op);
12320 } else {
12321 genfn(tcg_res, tcg_op, tcg_zero);
12322 }
12323 tcg_temp_free_i32(tcg_zero);
12324 break;
12325 }
12326 case 0xb: /* ABS, NEG */
12327 if (u) {
12328 TCGv_i32 tcg_zero = tcg_const_i32(0);
12329 if (size) {
12330 gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
12331 } else {
12332 gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
12333 }
12334 tcg_temp_free_i32(tcg_zero);
12335 } else {
12336 if (size) {
12337 gen_helper_neon_abs_s16(tcg_res, tcg_op);
12338 } else {
12339 gen_helper_neon_abs_s8(tcg_res, tcg_op);
12340 }
12341 }
12342 break;
12343 case 0x4: /* CLS, CLZ */
12344 if (u) {
12345 if (size == 0) {
12346 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12347 } else {
12348 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12349 }
12350 } else {
12351 if (size == 0) {
12352 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12353 } else {
12354 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12355 }
12356 }
12357 break;
12358 default:
12359 g_assert_not_reached();
12360 }
12361 }
12362
12363 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12364
12365 tcg_temp_free_i32(tcg_res);
12366 tcg_temp_free_i32(tcg_op);
12367 }
12368 }
12369 clear_vec_high(s, is_q, rd);
12370
12371 if (need_rmode) {
12372 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12373 tcg_temp_free_i32(tcg_rmode);
12374 }
12375 if (need_fpstatus) {
12376 tcg_temp_free_ptr(tcg_fpstatus);
12377 }
12378 }
12379
12380 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12381 *
12382 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
12383 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12384 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
12385 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12386 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12387 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12388 *
12389 * This actually covers two groups where scalar access is governed by
12390 * bit 28. A bunch of the instructions (float to integral) only exist
12391 * in the vector form and are un-allocated for the scalar decode. Also
12392 * in the scalar decode Q is always 1.
12393 */
12394 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12395 {
12396 int fpop, opcode, a, u;
12397 int rn, rd;
12398 bool is_q;
12399 bool is_scalar;
12400 bool only_in_vector = false;
12401
12402 int pass;
12403 TCGv_i32 tcg_rmode = NULL;
12404 TCGv_ptr tcg_fpstatus = NULL;
12405 bool need_rmode = false;
12406 bool need_fpst = true;
12407 int rmode;
12408
12409 if (!dc_isar_feature(aa64_fp16, s)) {
12410 unallocated_encoding(s);
12411 return;
12412 }
12413
12414 rd = extract32(insn, 0, 5);
12415 rn = extract32(insn, 5, 5);
12416
12417 a = extract32(insn, 23, 1);
12418 u = extract32(insn, 29, 1);
12419 is_scalar = extract32(insn, 28, 1);
12420 is_q = extract32(insn, 30, 1);
12421
12422 opcode = extract32(insn, 12, 5);
12423 fpop = deposit32(opcode, 5, 1, a);
12424 fpop = deposit32(fpop, 6, 1, u);
12425
12426 rd = extract32(insn, 0, 5);
12427 rn = extract32(insn, 5, 5);
12428
12429 switch (fpop) {
12430 case 0x1d: /* SCVTF */
12431 case 0x5d: /* UCVTF */
12432 {
12433 int elements;
12434
12435 if (is_scalar) {
12436 elements = 1;
12437 } else {
12438 elements = (is_q ? 8 : 4);
12439 }
12440
12441 if (!fp_access_check(s)) {
12442 return;
12443 }
12444 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12445 return;
12446 }
12447 break;
12448 case 0x2c: /* FCMGT (zero) */
12449 case 0x2d: /* FCMEQ (zero) */
12450 case 0x2e: /* FCMLT (zero) */
12451 case 0x6c: /* FCMGE (zero) */
12452 case 0x6d: /* FCMLE (zero) */
12453 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12454 return;
12455 case 0x3d: /* FRECPE */
12456 case 0x3f: /* FRECPX */
12457 break;
12458 case 0x18: /* FRINTN */
12459 need_rmode = true;
12460 only_in_vector = true;
12461 rmode = FPROUNDING_TIEEVEN;
12462 break;
12463 case 0x19: /* FRINTM */
12464 need_rmode = true;
12465 only_in_vector = true;
12466 rmode = FPROUNDING_NEGINF;
12467 break;
12468 case 0x38: /* FRINTP */
12469 need_rmode = true;
12470 only_in_vector = true;
12471 rmode = FPROUNDING_POSINF;
12472 break;
12473 case 0x39: /* FRINTZ */
12474 need_rmode = true;
12475 only_in_vector = true;
12476 rmode = FPROUNDING_ZERO;
12477 break;
12478 case 0x58: /* FRINTA */
12479 need_rmode = true;
12480 only_in_vector = true;
12481 rmode = FPROUNDING_TIEAWAY;
12482 break;
12483 case 0x59: /* FRINTX */
12484 case 0x79: /* FRINTI */
12485 only_in_vector = true;
12486 /* current rounding mode */
12487 break;
12488 case 0x1a: /* FCVTNS */
12489 need_rmode = true;
12490 rmode = FPROUNDING_TIEEVEN;
12491 break;
12492 case 0x1b: /* FCVTMS */
12493 need_rmode = true;
12494 rmode = FPROUNDING_NEGINF;
12495 break;
12496 case 0x1c: /* FCVTAS */
12497 need_rmode = true;
12498 rmode = FPROUNDING_TIEAWAY;
12499 break;
12500 case 0x3a: /* FCVTPS */
12501 need_rmode = true;
12502 rmode = FPROUNDING_POSINF;
12503 break;
12504 case 0x3b: /* FCVTZS */
12505 need_rmode = true;
12506 rmode = FPROUNDING_ZERO;
12507 break;
12508 case 0x5a: /* FCVTNU */
12509 need_rmode = true;
12510 rmode = FPROUNDING_TIEEVEN;
12511 break;
12512 case 0x5b: /* FCVTMU */
12513 need_rmode = true;
12514 rmode = FPROUNDING_NEGINF;
12515 break;
12516 case 0x5c: /* FCVTAU */
12517 need_rmode = true;
12518 rmode = FPROUNDING_TIEAWAY;
12519 break;
12520 case 0x7a: /* FCVTPU */
12521 need_rmode = true;
12522 rmode = FPROUNDING_POSINF;
12523 break;
12524 case 0x7b: /* FCVTZU */
12525 need_rmode = true;
12526 rmode = FPROUNDING_ZERO;
12527 break;
12528 case 0x2f: /* FABS */
12529 case 0x6f: /* FNEG */
12530 need_fpst = false;
12531 break;
12532 case 0x7d: /* FRSQRTE */
12533 case 0x7f: /* FSQRT (vector) */
12534 break;
12535 default:
12536 fprintf(stderr, "%s: insn %#04x fpop %#2x\n", __func__, insn, fpop);
12537 g_assert_not_reached();
12538 }
12539
12540
12541 /* Check additional constraints for the scalar encoding */
12542 if (is_scalar) {
12543 if (!is_q) {
12544 unallocated_encoding(s);
12545 return;
12546 }
12547 /* FRINTxx is only in the vector form */
12548 if (only_in_vector) {
12549 unallocated_encoding(s);
12550 return;
12551 }
12552 }
12553
12554 if (!fp_access_check(s)) {
12555 return;
12556 }
12557
12558 if (need_rmode || need_fpst) {
12559 tcg_fpstatus = get_fpstatus_ptr(true);
12560 }
12561
12562 if (need_rmode) {
12563 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12564 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12565 }
12566
12567 if (is_scalar) {
12568 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12569 TCGv_i32 tcg_res = tcg_temp_new_i32();
12570
12571 switch (fpop) {
12572 case 0x1a: /* FCVTNS */
12573 case 0x1b: /* FCVTMS */
12574 case 0x1c: /* FCVTAS */
12575 case 0x3a: /* FCVTPS */
12576 case 0x3b: /* FCVTZS */
12577 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12578 break;
12579 case 0x3d: /* FRECPE */
12580 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12581 break;
12582 case 0x3f: /* FRECPX */
12583 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12584 break;
12585 case 0x5a: /* FCVTNU */
12586 case 0x5b: /* FCVTMU */
12587 case 0x5c: /* FCVTAU */
12588 case 0x7a: /* FCVTPU */
12589 case 0x7b: /* FCVTZU */
12590 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12591 break;
12592 case 0x6f: /* FNEG */
12593 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12594 break;
12595 case 0x7d: /* FRSQRTE */
12596 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12597 break;
12598 default:
12599 g_assert_not_reached();
12600 }
12601
12602 /* limit any sign extension going on */
12603 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12604 write_fp_sreg(s, rd, tcg_res);
12605
12606 tcg_temp_free_i32(tcg_res);
12607 tcg_temp_free_i32(tcg_op);
12608 } else {
12609 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12610 TCGv_i32 tcg_op = tcg_temp_new_i32();
12611 TCGv_i32 tcg_res = tcg_temp_new_i32();
12612
12613 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12614
12615 switch (fpop) {
12616 case 0x1a: /* FCVTNS */
12617 case 0x1b: /* FCVTMS */
12618 case 0x1c: /* FCVTAS */
12619 case 0x3a: /* FCVTPS */
12620 case 0x3b: /* FCVTZS */
12621 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12622 break;
12623 case 0x3d: /* FRECPE */
12624 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12625 break;
12626 case 0x5a: /* FCVTNU */
12627 case 0x5b: /* FCVTMU */
12628 case 0x5c: /* FCVTAU */
12629 case 0x7a: /* FCVTPU */
12630 case 0x7b: /* FCVTZU */
12631 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12632 break;
12633 case 0x18: /* FRINTN */
12634 case 0x19: /* FRINTM */
12635 case 0x38: /* FRINTP */
12636 case 0x39: /* FRINTZ */
12637 case 0x58: /* FRINTA */
12638 case 0x79: /* FRINTI */
12639 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12640 break;
12641 case 0x59: /* FRINTX */
12642 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12643 break;
12644 case 0x2f: /* FABS */
12645 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12646 break;
12647 case 0x6f: /* FNEG */
12648 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12649 break;
12650 case 0x7d: /* FRSQRTE */
12651 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12652 break;
12653 case 0x7f: /* FSQRT */
12654 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12655 break;
12656 default:
12657 g_assert_not_reached();
12658 }
12659
12660 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12661
12662 tcg_temp_free_i32(tcg_res);
12663 tcg_temp_free_i32(tcg_op);
12664 }
12665
12666 clear_vec_high(s, is_q, rd);
12667 }
12668
12669 if (tcg_rmode) {
12670 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12671 tcg_temp_free_i32(tcg_rmode);
12672 }
12673
12674 if (tcg_fpstatus) {
12675 tcg_temp_free_ptr(tcg_fpstatus);
12676 }
12677 }
12678
12679 /* AdvSIMD scalar x indexed element
12680 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12681 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12682 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12683 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12684 * AdvSIMD vector x indexed element
12685 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12686 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12687 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12688 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12689 */
12690 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12691 {
12692 /* This encoding has two kinds of instruction:
12693 * normal, where we perform elt x idxelt => elt for each
12694 * element in the vector
12695 * long, where we perform elt x idxelt and generate a result of
12696 * double the width of the input element
12697 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12698 */
12699 bool is_scalar = extract32(insn, 28, 1);
12700 bool is_q = extract32(insn, 30, 1);
12701 bool u = extract32(insn, 29, 1);
12702 int size = extract32(insn, 22, 2);
12703 int l = extract32(insn, 21, 1);
12704 int m = extract32(insn, 20, 1);
12705 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12706 int rm = extract32(insn, 16, 4);
12707 int opcode = extract32(insn, 12, 4);
12708 int h = extract32(insn, 11, 1);
12709 int rn = extract32(insn, 5, 5);
12710 int rd = extract32(insn, 0, 5);
12711 bool is_long = false;
12712 int is_fp = 0;
12713 bool is_fp16 = false;
12714 int index;
12715 TCGv_ptr fpst;
12716
12717 switch (16 * u + opcode) {
12718 case 0x08: /* MUL */
12719 case 0x10: /* MLA */
12720 case 0x14: /* MLS */
12721 if (is_scalar) {
12722 unallocated_encoding(s);
12723 return;
12724 }
12725 break;
12726 case 0x02: /* SMLAL, SMLAL2 */
12727 case 0x12: /* UMLAL, UMLAL2 */
12728 case 0x06: /* SMLSL, SMLSL2 */
12729 case 0x16: /* UMLSL, UMLSL2 */
12730 case 0x0a: /* SMULL, SMULL2 */
12731 case 0x1a: /* UMULL, UMULL2 */
12732 if (is_scalar) {
12733 unallocated_encoding(s);
12734 return;
12735 }
12736 is_long = true;
12737 break;
12738 case 0x03: /* SQDMLAL, SQDMLAL2 */
12739 case 0x07: /* SQDMLSL, SQDMLSL2 */
12740 case 0x0b: /* SQDMULL, SQDMULL2 */
12741 is_long = true;
12742 break;
12743 case 0x0c: /* SQDMULH */
12744 case 0x0d: /* SQRDMULH */
12745 break;
12746 case 0x01: /* FMLA */
12747 case 0x05: /* FMLS */
12748 case 0x09: /* FMUL */
12749 case 0x19: /* FMULX */
12750 is_fp = 1;
12751 break;
12752 case 0x1d: /* SQRDMLAH */
12753 case 0x1f: /* SQRDMLSH */
12754 if (!dc_isar_feature(aa64_rdm, s)) {
12755 unallocated_encoding(s);
12756 return;
12757 }
12758 break;
12759 case 0x0e: /* SDOT */
12760 case 0x1e: /* UDOT */
12761 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12762 unallocated_encoding(s);
12763 return;
12764 }
12765 break;
12766 case 0x11: /* FCMLA #0 */
12767 case 0x13: /* FCMLA #90 */
12768 case 0x15: /* FCMLA #180 */
12769 case 0x17: /* FCMLA #270 */
12770 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12771 unallocated_encoding(s);
12772 return;
12773 }
12774 is_fp = 2;
12775 break;
12776 case 0x00: /* FMLAL */
12777 case 0x04: /* FMLSL */
12778 case 0x18: /* FMLAL2 */
12779 case 0x1c: /* FMLSL2 */
12780 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12781 unallocated_encoding(s);
12782 return;
12783 }
12784 size = MO_16;
12785 /* is_fp, but we pass cpu_env not fp_status. */
12786 break;
12787 default:
12788 unallocated_encoding(s);
12789 return;
12790 }
12791
12792 switch (is_fp) {
12793 case 1: /* normal fp */
12794 /* convert insn encoded size to TCGMemOp size */
12795 switch (size) {
12796 case 0: /* half-precision */
12797 size = MO_16;
12798 is_fp16 = true;
12799 break;
12800 case MO_32: /* single precision */
12801 case MO_64: /* double precision */
12802 break;
12803 default:
12804 unallocated_encoding(s);
12805 return;
12806 }
12807 break;
12808
12809 case 2: /* complex fp */
12810 /* Each indexable element is a complex pair. */
12811 size += 1;
12812 switch (size) {
12813 case MO_32:
12814 if (h && !is_q) {
12815 unallocated_encoding(s);
12816 return;
12817 }
12818 is_fp16 = true;
12819 break;
12820 case MO_64:
12821 break;
12822 default:
12823 unallocated_encoding(s);
12824 return;
12825 }
12826 break;
12827
12828 default: /* integer */
12829 switch (size) {
12830 case MO_8:
12831 case MO_64:
12832 unallocated_encoding(s);
12833 return;
12834 }
12835 break;
12836 }
12837 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12838 unallocated_encoding(s);
12839 return;
12840 }
12841
12842 /* Given TCGMemOp size, adjust register and indexing. */
12843 switch (size) {
12844 case MO_16:
12845 index = h << 2 | l << 1 | m;
12846 break;
12847 case MO_32:
12848 index = h << 1 | l;
12849 rm |= m << 4;
12850 break;
12851 case MO_64:
12852 if (l || !is_q) {
12853 unallocated_encoding(s);
12854 return;
12855 }
12856 index = h;
12857 rm |= m << 4;
12858 break;
12859 default:
12860 g_assert_not_reached();
12861 }
12862
12863 if (!fp_access_check(s)) {
12864 return;
12865 }
12866
12867 if (is_fp) {
12868 fpst = get_fpstatus_ptr(is_fp16);
12869 } else {
12870 fpst = NULL;
12871 }
12872
12873 switch (16 * u + opcode) {
12874 case 0x0e: /* SDOT */
12875 case 0x1e: /* UDOT */
12876 gen_gvec_op3_ool(s, is_q, rd, rn, rm, index,
12877 u ? gen_helper_gvec_udot_idx_b
12878 : gen_helper_gvec_sdot_idx_b);
12879 return;
12880 case 0x11: /* FCMLA #0 */
12881 case 0x13: /* FCMLA #90 */
12882 case 0x15: /* FCMLA #180 */
12883 case 0x17: /* FCMLA #270 */
12884 {
12885 int rot = extract32(insn, 13, 2);
12886 int data = (index << 2) | rot;
12887 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12888 vec_full_reg_offset(s, rn),
12889 vec_full_reg_offset(s, rm), fpst,
12890 is_q ? 16 : 8, vec_full_reg_size(s), data,
12891 size == MO_64
12892 ? gen_helper_gvec_fcmlas_idx
12893 : gen_helper_gvec_fcmlah_idx);
12894 tcg_temp_free_ptr(fpst);
12895 }
12896 return;
12897
12898 case 0x00: /* FMLAL */
12899 case 0x04: /* FMLSL */
12900 case 0x18: /* FMLAL2 */
12901 case 0x1c: /* FMLSL2 */
12902 {
12903 int is_s = extract32(opcode, 2, 1);
12904 int is_2 = u;
12905 int data = (index << 2) | (is_2 << 1) | is_s;
12906 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12907 vec_full_reg_offset(s, rn),
12908 vec_full_reg_offset(s, rm), cpu_env,
12909 is_q ? 16 : 8, vec_full_reg_size(s),
12910 data, gen_helper_gvec_fmlal_idx_a64);
12911 }
12912 return;
12913 }
12914
12915 if (size == 3) {
12916 TCGv_i64 tcg_idx = tcg_temp_new_i64();
12917 int pass;
12918
12919 assert(is_fp && is_q && !is_long);
12920
12921 read_vec_element(s, tcg_idx, rm, index, MO_64);
12922
12923 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12924 TCGv_i64 tcg_op = tcg_temp_new_i64();
12925 TCGv_i64 tcg_res = tcg_temp_new_i64();
12926
12927 read_vec_element(s, tcg_op, rn, pass, MO_64);
12928
12929 switch (16 * u + opcode) {
12930 case 0x05: /* FMLS */
12931 /* As usual for ARM, separate negation for fused multiply-add */
12932 gen_helper_vfp_negd(tcg_op, tcg_op);
12933 /* fall through */
12934 case 0x01: /* FMLA */
12935 read_vec_element(s, tcg_res, rd, pass, MO_64);
12936 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
12937 break;
12938 case 0x09: /* FMUL */
12939 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
12940 break;
12941 case 0x19: /* FMULX */
12942 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
12943 break;
12944 default:
12945 g_assert_not_reached();
12946 }
12947
12948 write_vec_element(s, tcg_res, rd, pass, MO_64);
12949 tcg_temp_free_i64(tcg_op);
12950 tcg_temp_free_i64(tcg_res);
12951 }
12952
12953 tcg_temp_free_i64(tcg_idx);
12954 clear_vec_high(s, !is_scalar, rd);
12955 } else if (!is_long) {
12956 /* 32 bit floating point, or 16 or 32 bit integer.
12957 * For the 16 bit scalar case we use the usual Neon helpers and
12958 * rely on the fact that 0 op 0 == 0 with no side effects.
12959 */
12960 TCGv_i32 tcg_idx = tcg_temp_new_i32();
12961 int pass, maxpasses;
12962
12963 if (is_scalar) {
12964 maxpasses = 1;
12965 } else {
12966 maxpasses = is_q ? 4 : 2;
12967 }
12968
12969 read_vec_element_i32(s, tcg_idx, rm, index, size);
12970
12971 if (size == 1 && !is_scalar) {
12972 /* The simplest way to handle the 16x16 indexed ops is to duplicate
12973 * the index into both halves of the 32 bit tcg_idx and then use
12974 * the usual Neon helpers.
12975 */
12976 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12977 }
12978
12979 for (pass = 0; pass < maxpasses; pass++) {
12980 TCGv_i32 tcg_op = tcg_temp_new_i32();
12981 TCGv_i32 tcg_res = tcg_temp_new_i32();
12982
12983 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12984
12985 switch (16 * u + opcode) {
12986 case 0x08: /* MUL */
12987 case 0x10: /* MLA */
12988 case 0x14: /* MLS */
12989 {
12990 static NeonGenTwoOpFn * const fns[2][2] = {
12991 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12992 { tcg_gen_add_i32, tcg_gen_sub_i32 },
12993 };
12994 NeonGenTwoOpFn *genfn;
12995 bool is_sub = opcode == 0x4;
12996
12997 if (size == 1) {
12998 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12999 } else {
13000 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13001 }
13002 if (opcode == 0x8) {
13003 break;
13004 }
13005 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13006 genfn = fns[size - 1][is_sub];
13007 genfn(tcg_res, tcg_op, tcg_res);
13008 break;
13009 }
13010 case 0x05: /* FMLS */
13011 case 0x01: /* FMLA */
13012 read_vec_element_i32(s, tcg_res, rd, pass,
13013 is_scalar ? size : MO_32);
13014 switch (size) {
13015 case 1:
13016 if (opcode == 0x5) {
13017 /* As usual for ARM, separate negation for fused
13018 * multiply-add */
13019 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13020 }
13021 if (is_scalar) {
13022 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13023 tcg_res, fpst);
13024 } else {
13025 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13026 tcg_res, fpst);
13027 }
13028 break;
13029 case 2:
13030 if (opcode == 0x5) {
13031 /* As usual for ARM, separate negation for
13032 * fused multiply-add */
13033 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13034 }
13035 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13036 tcg_res, fpst);
13037 break;
13038 default:
13039 g_assert_not_reached();
13040 }
13041 break;
13042 case 0x09: /* FMUL */
13043 switch (size) {
13044 case 1:
13045 if (is_scalar) {
13046 gen_helper_advsimd_mulh(tcg_res, tcg_op,
13047 tcg_idx, fpst);
13048 } else {
13049 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13050 tcg_idx, fpst);
13051 }
13052 break;
13053 case 2:
13054 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13055 break;
13056 default:
13057 g_assert_not_reached();
13058 }
13059 break;
13060 case 0x19: /* FMULX */
13061 switch (size) {
13062 case 1:
13063 if (is_scalar) {
13064 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13065 tcg_idx, fpst);
13066 } else {
13067 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13068 tcg_idx, fpst);
13069 }
13070 break;
13071 case 2:
13072 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13073 break;
13074 default:
13075 g_assert_not_reached();
13076 }
13077 break;
13078 case 0x0c: /* SQDMULH */
13079 if (size == 1) {
13080 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13081 tcg_op, tcg_idx);
13082 } else {
13083 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13084 tcg_op, tcg_idx);
13085 }
13086 break;
13087 case 0x0d: /* SQRDMULH */
13088 if (size == 1) {
13089 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13090 tcg_op, tcg_idx);
13091 } else {
13092 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13093 tcg_op, tcg_idx);
13094 }
13095 break;
13096 case 0x1d: /* SQRDMLAH */
13097 read_vec_element_i32(s, tcg_res, rd, pass,
13098 is_scalar ? size : MO_32);
13099 if (size == 1) {
13100 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13101 tcg_op, tcg_idx, tcg_res);
13102 } else {
13103 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13104 tcg_op, tcg_idx, tcg_res);
13105 }
13106 break;
13107 case 0x1f: /* SQRDMLSH */
13108 read_vec_element_i32(s, tcg_res, rd, pass,
13109 is_scalar ? size : MO_32);
13110 if (size == 1) {
13111 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13112 tcg_op, tcg_idx, tcg_res);
13113 } else {
13114 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13115 tcg_op, tcg_idx, tcg_res);
13116 }
13117 break;
13118 default:
13119 g_assert_not_reached();
13120 }
13121
13122 if (is_scalar) {
13123 write_fp_sreg(s, rd, tcg_res);
13124 } else {
13125 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13126 }
13127
13128 tcg_temp_free_i32(tcg_op);
13129 tcg_temp_free_i32(tcg_res);
13130 }
13131
13132 tcg_temp_free_i32(tcg_idx);
13133 clear_vec_high(s, is_q, rd);
13134 } else {
13135 /* long ops: 16x16->32 or 32x32->64 */
13136 TCGv_i64 tcg_res[2];
13137 int pass;
13138 bool satop = extract32(opcode, 0, 1);
13139 TCGMemOp memop = MO_32;
13140
13141 if (satop || !u) {
13142 memop |= MO_SIGN;
13143 }
13144
13145 if (size == 2) {
13146 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13147
13148 read_vec_element(s, tcg_idx, rm, index, memop);
13149
13150 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13151 TCGv_i64 tcg_op = tcg_temp_new_i64();
13152 TCGv_i64 tcg_passres;
13153 int passelt;
13154
13155 if (is_scalar) {
13156 passelt = 0;
13157 } else {
13158 passelt = pass + (is_q * 2);
13159 }
13160
13161 read_vec_element(s, tcg_op, rn, passelt, memop);
13162
13163 tcg_res[pass] = tcg_temp_new_i64();
13164
13165 if (opcode == 0xa || opcode == 0xb) {
13166 /* Non-accumulating ops */
13167 tcg_passres = tcg_res[pass];
13168 } else {
13169 tcg_passres = tcg_temp_new_i64();
13170 }
13171
13172 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13173 tcg_temp_free_i64(tcg_op);
13174
13175 if (satop) {
13176 /* saturating, doubling */
13177 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13178 tcg_passres, tcg_passres);
13179 }
13180
13181 if (opcode == 0xa || opcode == 0xb) {
13182 continue;
13183 }
13184
13185 /* Accumulating op: handle accumulate step */
13186 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13187
13188 switch (opcode) {
13189 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13190 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13191 break;
13192 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13193 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13194 break;
13195 case 0x7: /* SQDMLSL, SQDMLSL2 */
13196 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13197 /* fall through */
13198 case 0x3: /* SQDMLAL, SQDMLAL2 */
13199 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13200 tcg_res[pass],
13201 tcg_passres);
13202 break;
13203 default:
13204 g_assert_not_reached();
13205 }
13206 tcg_temp_free_i64(tcg_passres);
13207 }
13208 tcg_temp_free_i64(tcg_idx);
13209
13210 clear_vec_high(s, !is_scalar, rd);
13211 } else {
13212 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13213
13214 assert(size == 1);
13215 read_vec_element_i32(s, tcg_idx, rm, index, size);
13216
13217 if (!is_scalar) {
13218 /* The simplest way to handle the 16x16 indexed ops is to
13219 * duplicate the index into both halves of the 32 bit tcg_idx
13220 * and then use the usual Neon helpers.
13221 */
13222 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13223 }
13224
13225 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13226 TCGv_i32 tcg_op = tcg_temp_new_i32();
13227 TCGv_i64 tcg_passres;
13228
13229 if (is_scalar) {
13230 read_vec_element_i32(s, tcg_op, rn, pass, size);
13231 } else {
13232 read_vec_element_i32(s, tcg_op, rn,
13233 pass + (is_q * 2), MO_32);
13234 }
13235
13236 tcg_res[pass] = tcg_temp_new_i64();
13237
13238 if (opcode == 0xa || opcode == 0xb) {
13239 /* Non-accumulating ops */
13240 tcg_passres = tcg_res[pass];
13241 } else {
13242 tcg_passres = tcg_temp_new_i64();
13243 }
13244
13245 if (memop & MO_SIGN) {
13246 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13247 } else {
13248 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13249 }
13250 if (satop) {
13251 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13252 tcg_passres, tcg_passres);
13253 }
13254 tcg_temp_free_i32(tcg_op);
13255
13256 if (opcode == 0xa || opcode == 0xb) {
13257 continue;
13258 }
13259
13260 /* Accumulating op: handle accumulate step */
13261 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13262
13263 switch (opcode) {
13264 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13265 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13266 tcg_passres);
13267 break;
13268 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13269 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13270 tcg_passres);
13271 break;
13272 case 0x7: /* SQDMLSL, SQDMLSL2 */
13273 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13274 /* fall through */
13275 case 0x3: /* SQDMLAL, SQDMLAL2 */
13276 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13277 tcg_res[pass],
13278 tcg_passres);
13279 break;
13280 default:
13281 g_assert_not_reached();
13282 }
13283 tcg_temp_free_i64(tcg_passres);
13284 }
13285 tcg_temp_free_i32(tcg_idx);
13286
13287 if (is_scalar) {
13288 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13289 }
13290 }
13291
13292 if (is_scalar) {
13293 tcg_res[1] = tcg_const_i64(0);
13294 }
13295
13296 for (pass = 0; pass < 2; pass++) {
13297 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13298 tcg_temp_free_i64(tcg_res[pass]);
13299 }
13300 }
13301
13302 if (fpst) {
13303 tcg_temp_free_ptr(fpst);
13304 }
13305 }
13306
13307 /* Crypto AES
13308 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13309 * +-----------------+------+-----------+--------+-----+------+------+
13310 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13311 * +-----------------+------+-----------+--------+-----+------+------+
13312 */
13313 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13314 {
13315 int size = extract32(insn, 22, 2);
13316 int opcode = extract32(insn, 12, 5);
13317 int rn = extract32(insn, 5, 5);
13318 int rd = extract32(insn, 0, 5);
13319 int decrypt;
13320 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13321 TCGv_i32 tcg_decrypt;
13322 CryptoThreeOpIntFn *genfn;
13323
13324 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13325 unallocated_encoding(s);
13326 return;
13327 }
13328
13329 switch (opcode) {
13330 case 0x4: /* AESE */
13331 decrypt = 0;
13332 genfn = gen_helper_crypto_aese;
13333 break;
13334 case 0x6: /* AESMC */
13335 decrypt = 0;
13336 genfn = gen_helper_crypto_aesmc;
13337 break;
13338 case 0x5: /* AESD */
13339 decrypt = 1;
13340 genfn = gen_helper_crypto_aese;
13341 break;
13342 case 0x7: /* AESIMC */
13343 decrypt = 1;
13344 genfn = gen_helper_crypto_aesmc;
13345 break;
13346 default:
13347 unallocated_encoding(s);
13348 return;
13349 }
13350
13351 if (!fp_access_check(s)) {
13352 return;
13353 }
13354
13355 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13356 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13357 tcg_decrypt = tcg_const_i32(decrypt);
13358
13359 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_decrypt);
13360
13361 tcg_temp_free_ptr(tcg_rd_ptr);
13362 tcg_temp_free_ptr(tcg_rn_ptr);
13363 tcg_temp_free_i32(tcg_decrypt);
13364 }
13365
13366 /* Crypto three-reg SHA
13367 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
13368 * +-----------------+------+---+------+---+--------+-----+------+------+
13369 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
13370 * +-----------------+------+---+------+---+--------+-----+------+------+
13371 */
13372 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13373 {
13374 int size = extract32(insn, 22, 2);
13375 int opcode = extract32(insn, 12, 3);
13376 int rm = extract32(insn, 16, 5);
13377 int rn = extract32(insn, 5, 5);
13378 int rd = extract32(insn, 0, 5);
13379 CryptoThreeOpFn *genfn;
13380 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13381 bool feature;
13382
13383 if (size != 0) {
13384 unallocated_encoding(s);
13385 return;
13386 }
13387
13388 switch (opcode) {
13389 case 0: /* SHA1C */
13390 case 1: /* SHA1P */
13391 case 2: /* SHA1M */
13392 case 3: /* SHA1SU0 */
13393 genfn = NULL;
13394 feature = dc_isar_feature(aa64_sha1, s);
13395 break;
13396 case 4: /* SHA256H */
13397 genfn = gen_helper_crypto_sha256h;
13398 feature = dc_isar_feature(aa64_sha256, s);
13399 break;
13400 case 5: /* SHA256H2 */
13401 genfn = gen_helper_crypto_sha256h2;
13402 feature = dc_isar_feature(aa64_sha256, s);
13403 break;
13404 case 6: /* SHA256SU1 */
13405 genfn = gen_helper_crypto_sha256su1;
13406 feature = dc_isar_feature(aa64_sha256, s);
13407 break;
13408 default:
13409 unallocated_encoding(s);
13410 return;
13411 }
13412
13413 if (!feature) {
13414 unallocated_encoding(s);
13415 return;
13416 }
13417
13418 if (!fp_access_check(s)) {
13419 return;
13420 }
13421
13422 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13423 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13424 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13425
13426 if (genfn) {
13427 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13428 } else {
13429 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
13430
13431 gen_helper_crypto_sha1_3reg(tcg_rd_ptr, tcg_rn_ptr,
13432 tcg_rm_ptr, tcg_opcode);
13433 tcg_temp_free_i32(tcg_opcode);
13434 }
13435
13436 tcg_temp_free_ptr(tcg_rd_ptr);
13437 tcg_temp_free_ptr(tcg_rn_ptr);
13438 tcg_temp_free_ptr(tcg_rm_ptr);
13439 }
13440
13441 /* Crypto two-reg SHA
13442 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13443 * +-----------------+------+-----------+--------+-----+------+------+
13444 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13445 * +-----------------+------+-----------+--------+-----+------+------+
13446 */
13447 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13448 {
13449 int size = extract32(insn, 22, 2);
13450 int opcode = extract32(insn, 12, 5);
13451 int rn = extract32(insn, 5, 5);
13452 int rd = extract32(insn, 0, 5);
13453 CryptoTwoOpFn *genfn;
13454 bool feature;
13455 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13456
13457 if (size != 0) {
13458 unallocated_encoding(s);
13459 return;
13460 }
13461
13462 switch (opcode) {
13463 case 0: /* SHA1H */
13464 feature = dc_isar_feature(aa64_sha1, s);
13465 genfn = gen_helper_crypto_sha1h;
13466 break;
13467 case 1: /* SHA1SU1 */
13468 feature = dc_isar_feature(aa64_sha1, s);
13469 genfn = gen_helper_crypto_sha1su1;
13470 break;
13471 case 2: /* SHA256SU0 */
13472 feature = dc_isar_feature(aa64_sha256, s);
13473 genfn = gen_helper_crypto_sha256su0;
13474 break;
13475 default:
13476 unallocated_encoding(s);
13477 return;
13478 }
13479
13480 if (!feature) {
13481 unallocated_encoding(s);
13482 return;
13483 }
13484
13485 if (!fp_access_check(s)) {
13486 return;
13487 }
13488
13489 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13490 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13491
13492 genfn(tcg_rd_ptr, tcg_rn_ptr);
13493
13494 tcg_temp_free_ptr(tcg_rd_ptr);
13495 tcg_temp_free_ptr(tcg_rn_ptr);
13496 }
13497
13498 /* Crypto three-reg SHA512
13499 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13500 * +-----------------------+------+---+---+-----+--------+------+------+
13501 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
13502 * +-----------------------+------+---+---+-----+--------+------+------+
13503 */
13504 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13505 {
13506 int opcode = extract32(insn, 10, 2);
13507 int o = extract32(insn, 14, 1);
13508 int rm = extract32(insn, 16, 5);
13509 int rn = extract32(insn, 5, 5);
13510 int rd = extract32(insn, 0, 5);
13511 bool feature;
13512 CryptoThreeOpFn *genfn;
13513
13514 if (o == 0) {
13515 switch (opcode) {
13516 case 0: /* SHA512H */
13517 feature = dc_isar_feature(aa64_sha512, s);
13518 genfn = gen_helper_crypto_sha512h;
13519 break;
13520 case 1: /* SHA512H2 */
13521 feature = dc_isar_feature(aa64_sha512, s);
13522 genfn = gen_helper_crypto_sha512h2;
13523 break;
13524 case 2: /* SHA512SU1 */
13525 feature = dc_isar_feature(aa64_sha512, s);
13526 genfn = gen_helper_crypto_sha512su1;
13527 break;
13528 case 3: /* RAX1 */
13529 feature = dc_isar_feature(aa64_sha3, s);
13530 genfn = NULL;
13531 break;
13532 }
13533 } else {
13534 switch (opcode) {
13535 case 0: /* SM3PARTW1 */
13536 feature = dc_isar_feature(aa64_sm3, s);
13537 genfn = gen_helper_crypto_sm3partw1;
13538 break;
13539 case 1: /* SM3PARTW2 */
13540 feature = dc_isar_feature(aa64_sm3, s);
13541 genfn = gen_helper_crypto_sm3partw2;
13542 break;
13543 case 2: /* SM4EKEY */
13544 feature = dc_isar_feature(aa64_sm4, s);
13545 genfn = gen_helper_crypto_sm4ekey;
13546 break;
13547 default:
13548 unallocated_encoding(s);
13549 return;
13550 }
13551 }
13552
13553 if (!feature) {
13554 unallocated_encoding(s);
13555 return;
13556 }
13557
13558 if (!fp_access_check(s)) {
13559 return;
13560 }
13561
13562 if (genfn) {
13563 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13564
13565 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13566 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13567 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13568
13569 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13570
13571 tcg_temp_free_ptr(tcg_rd_ptr);
13572 tcg_temp_free_ptr(tcg_rn_ptr);
13573 tcg_temp_free_ptr(tcg_rm_ptr);
13574 } else {
13575 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13576 int pass;
13577
13578 tcg_op1 = tcg_temp_new_i64();
13579 tcg_op2 = tcg_temp_new_i64();
13580 tcg_res[0] = tcg_temp_new_i64();
13581 tcg_res[1] = tcg_temp_new_i64();
13582
13583 for (pass = 0; pass < 2; pass++) {
13584 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13585 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13586
13587 tcg_gen_rotli_i64(tcg_res[pass], tcg_op2, 1);
13588 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13589 }
13590 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13591 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13592
13593 tcg_temp_free_i64(tcg_op1);
13594 tcg_temp_free_i64(tcg_op2);
13595 tcg_temp_free_i64(tcg_res[0]);
13596 tcg_temp_free_i64(tcg_res[1]);
13597 }
13598 }
13599
13600 /* Crypto two-reg SHA512
13601 * 31 12 11 10 9 5 4 0
13602 * +-----------------------------------------+--------+------+------+
13603 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
13604 * +-----------------------------------------+--------+------+------+
13605 */
13606 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13607 {
13608 int opcode = extract32(insn, 10, 2);
13609 int rn = extract32(insn, 5, 5);
13610 int rd = extract32(insn, 0, 5);
13611 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13612 bool feature;
13613 CryptoTwoOpFn *genfn;
13614
13615 switch (opcode) {
13616 case 0: /* SHA512SU0 */
13617 feature = dc_isar_feature(aa64_sha512, s);
13618 genfn = gen_helper_crypto_sha512su0;
13619 break;
13620 case 1: /* SM4E */
13621 feature = dc_isar_feature(aa64_sm4, s);
13622 genfn = gen_helper_crypto_sm4e;
13623 break;
13624 default:
13625 unallocated_encoding(s);
13626 return;
13627 }
13628
13629 if (!feature) {
13630 unallocated_encoding(s);
13631 return;
13632 }
13633
13634 if (!fp_access_check(s)) {
13635 return;
13636 }
13637
13638 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13639 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13640
13641 genfn(tcg_rd_ptr, tcg_rn_ptr);
13642
13643 tcg_temp_free_ptr(tcg_rd_ptr);
13644 tcg_temp_free_ptr(tcg_rn_ptr);
13645 }
13646
13647 /* Crypto four-register
13648 * 31 23 22 21 20 16 15 14 10 9 5 4 0
13649 * +-------------------+-----+------+---+------+------+------+
13650 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
13651 * +-------------------+-----+------+---+------+------+------+
13652 */
13653 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13654 {
13655 int op0 = extract32(insn, 21, 2);
13656 int rm = extract32(insn, 16, 5);
13657 int ra = extract32(insn, 10, 5);
13658 int rn = extract32(insn, 5, 5);
13659 int rd = extract32(insn, 0, 5);
13660 bool feature;
13661
13662 switch (op0) {
13663 case 0: /* EOR3 */
13664 case 1: /* BCAX */
13665 feature = dc_isar_feature(aa64_sha3, s);
13666 break;
13667 case 2: /* SM3SS1 */
13668 feature = dc_isar_feature(aa64_sm3, s);
13669 break;
13670 default:
13671 unallocated_encoding(s);
13672 return;
13673 }
13674
13675 if (!feature) {
13676 unallocated_encoding(s);
13677 return;
13678 }
13679
13680 if (!fp_access_check(s)) {
13681 return;
13682 }
13683
13684 if (op0 < 2) {
13685 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13686 int pass;
13687
13688 tcg_op1 = tcg_temp_new_i64();
13689 tcg_op2 = tcg_temp_new_i64();
13690 tcg_op3 = tcg_temp_new_i64();
13691 tcg_res[0] = tcg_temp_new_i64();
13692 tcg_res[1] = tcg_temp_new_i64();
13693
13694 for (pass = 0; pass < 2; pass++) {
13695 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13696 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13697 read_vec_element(s, tcg_op3, ra, pass, MO_64);
13698
13699 if (op0 == 0) {
13700 /* EOR3 */
13701 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13702 } else {
13703 /* BCAX */
13704 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13705 }
13706 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13707 }
13708 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13709 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13710
13711 tcg_temp_free_i64(tcg_op1);
13712 tcg_temp_free_i64(tcg_op2);
13713 tcg_temp_free_i64(tcg_op3);
13714 tcg_temp_free_i64(tcg_res[0]);
13715 tcg_temp_free_i64(tcg_res[1]);
13716 } else {
13717 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13718
13719 tcg_op1 = tcg_temp_new_i32();
13720 tcg_op2 = tcg_temp_new_i32();
13721 tcg_op3 = tcg_temp_new_i32();
13722 tcg_res = tcg_temp_new_i32();
13723 tcg_zero = tcg_const_i32(0);
13724
13725 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13726 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13727 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13728
13729 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13730 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13731 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13732 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13733
13734 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13735 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13736 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13737 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13738
13739 tcg_temp_free_i32(tcg_op1);
13740 tcg_temp_free_i32(tcg_op2);
13741 tcg_temp_free_i32(tcg_op3);
13742 tcg_temp_free_i32(tcg_res);
13743 tcg_temp_free_i32(tcg_zero);
13744 }
13745 }
13746
13747 /* Crypto XAR
13748 * 31 21 20 16 15 10 9 5 4 0
13749 * +-----------------------+------+--------+------+------+
13750 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
13751 * +-----------------------+------+--------+------+------+
13752 */
13753 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13754 {
13755 int rm = extract32(insn, 16, 5);
13756 int imm6 = extract32(insn, 10, 6);
13757 int rn = extract32(insn, 5, 5);
13758 int rd = extract32(insn, 0, 5);
13759 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13760 int pass;
13761
13762 if (!dc_isar_feature(aa64_sha3, s)) {
13763 unallocated_encoding(s);
13764 return;
13765 }
13766
13767 if (!fp_access_check(s)) {
13768 return;
13769 }
13770
13771 tcg_op1 = tcg_temp_new_i64();
13772 tcg_op2 = tcg_temp_new_i64();
13773 tcg_res[0] = tcg_temp_new_i64();
13774 tcg_res[1] = tcg_temp_new_i64();
13775
13776 for (pass = 0; pass < 2; pass++) {
13777 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13778 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13779
13780 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
13781 tcg_gen_rotri_i64(tcg_res[pass], tcg_res[pass], imm6);
13782 }
13783 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13784 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13785
13786 tcg_temp_free_i64(tcg_op1);
13787 tcg_temp_free_i64(tcg_op2);
13788 tcg_temp_free_i64(tcg_res[0]);
13789 tcg_temp_free_i64(tcg_res[1]);
13790 }
13791
13792 /* Crypto three-reg imm2
13793 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13794 * +-----------------------+------+-----+------+--------+------+------+
13795 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
13796 * +-----------------------+------+-----+------+--------+------+------+
13797 */
13798 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13799 {
13800 int opcode = extract32(insn, 10, 2);
13801 int imm2 = extract32(insn, 12, 2);
13802 int rm = extract32(insn, 16, 5);
13803 int rn = extract32(insn, 5, 5);
13804 int rd = extract32(insn, 0, 5);
13805 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13806 TCGv_i32 tcg_imm2, tcg_opcode;
13807
13808 if (!dc_isar_feature(aa64_sm3, s)) {
13809 unallocated_encoding(s);
13810 return;
13811 }
13812
13813 if (!fp_access_check(s)) {
13814 return;
13815 }
13816
13817 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13818 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13819 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13820 tcg_imm2 = tcg_const_i32(imm2);
13821 tcg_opcode = tcg_const_i32(opcode);
13822
13823 gen_helper_crypto_sm3tt(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr, tcg_imm2,
13824 tcg_opcode);
13825
13826 tcg_temp_free_ptr(tcg_rd_ptr);
13827 tcg_temp_free_ptr(tcg_rn_ptr);
13828 tcg_temp_free_ptr(tcg_rm_ptr);
13829 tcg_temp_free_i32(tcg_imm2);
13830 tcg_temp_free_i32(tcg_opcode);
13831 }
13832
13833 /* C3.6 Data processing - SIMD, inc Crypto
13834 *
13835 * As the decode gets a little complex we are using a table based
13836 * approach for this part of the decode.
13837 */
13838 static const AArch64DecodeTable data_proc_simd[] = {
13839 /* pattern , mask , fn */
13840 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13841 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13842 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13843 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13844 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13845 { 0x0e000400, 0x9fe08400, disas_simd_copy },
13846 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13847 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13848 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13849 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13850 { 0x0e000000, 0xbf208c00, disas_simd_tb },
13851 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13852 { 0x2e000000, 0xbf208400, disas_simd_ext },
13853 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13854 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13855 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13856 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13857 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13858 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13859 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13860 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13861 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13862 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13863 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13864 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13865 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13866 { 0xce000000, 0xff808000, disas_crypto_four_reg },
13867 { 0xce800000, 0xffe00000, disas_crypto_xar },
13868 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13869 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13870 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13871 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13872 { 0x00000000, 0x00000000, NULL }
13873 };
13874
13875 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13876 {
13877 /* Note that this is called with all non-FP cases from
13878 * table C3-6 so it must UNDEF for entries not specifically
13879 * allocated to instructions in that table.
13880 */
13881 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13882 if (fn) {
13883 fn(s, insn);
13884 } else {
13885 unallocated_encoding(s);
13886 }
13887 }
13888
13889 /* C3.6 Data processing - SIMD and floating point */
13890 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13891 {
13892 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13893 disas_data_proc_fp(s, insn);
13894 } else {
13895 /* SIMD, including crypto */
13896 disas_data_proc_simd(s, insn);
13897 }
13898 }
13899
13900 /**
13901 * is_guarded_page:
13902 * @env: The cpu environment
13903 * @s: The DisasContext
13904 *
13905 * Return true if the page is guarded.
13906 */
13907 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13908 {
13909 #ifdef CONFIG_USER_ONLY
13910 return false; /* FIXME */
13911 #else
13912 uint64_t addr = s->base.pc_first;
13913 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13914 unsigned int index = tlb_index(env, mmu_idx, addr);
13915 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
13916
13917 /*
13918 * We test this immediately after reading an insn, which means
13919 * that any normal page must be in the TLB. The only exception
13920 * would be for executing from flash or device memory, which
13921 * does not retain the TLB entry.
13922 *
13923 * FIXME: Assume false for those, for now. We could use
13924 * arm_cpu_get_phys_page_attrs_debug to re-read the page
13925 * table entry even for that case.
13926 */
13927 return (tlb_hit(entry->addr_code, addr) &&
13928 env->iotlb[mmu_idx][index].attrs.target_tlb_bit0);
13929 #endif
13930 }
13931
13932 /**
13933 * btype_destination_ok:
13934 * @insn: The instruction at the branch destination
13935 * @bt: SCTLR_ELx.BT
13936 * @btype: PSTATE.BTYPE, and is non-zero
13937 *
13938 * On a guarded page, there are a limited number of insns
13939 * that may be present at the branch target:
13940 * - branch target identifiers,
13941 * - paciasp, pacibsp,
13942 * - BRK insn
13943 * - HLT insn
13944 * Anything else causes a Branch Target Exception.
13945 *
13946 * Return true if the branch is compatible, false to raise BTITRAP.
13947 */
13948 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
13949 {
13950 if ((insn & 0xfffff01fu) == 0xd503201fu) {
13951 /* HINT space */
13952 switch (extract32(insn, 5, 7)) {
13953 case 0b011001: /* PACIASP */
13954 case 0b011011: /* PACIBSP */
13955 /*
13956 * If SCTLR_ELx.BT, then PACI*SP are not compatible
13957 * with btype == 3. Otherwise all btype are ok.
13958 */
13959 return !bt || btype != 3;
13960 case 0b100000: /* BTI */
13961 /* Not compatible with any btype. */
13962 return false;
13963 case 0b100010: /* BTI c */
13964 /* Not compatible with btype == 3 */
13965 return btype != 3;
13966 case 0b100100: /* BTI j */
13967 /* Not compatible with btype == 2 */
13968 return btype != 2;
13969 case 0b100110: /* BTI jc */
13970 /* Compatible with any btype. */
13971 return true;
13972 }
13973 } else {
13974 switch (insn & 0xffe0001fu) {
13975 case 0xd4200000u: /* BRK */
13976 case 0xd4400000u: /* HLT */
13977 /* Give priority to the breakpoint exception. */
13978 return true;
13979 }
13980 }
13981 return false;
13982 }
13983
13984 /* C3.1 A64 instruction index by encoding */
13985 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
13986 {
13987 uint32_t insn;
13988
13989 insn = arm_ldl_code(env, s->pc, s->sctlr_b);
13990 s->insn = insn;
13991 s->pc += 4;
13992
13993 s->fp_access_checked = false;
13994
13995 if (dc_isar_feature(aa64_bti, s)) {
13996 if (s->base.num_insns == 1) {
13997 /*
13998 * At the first insn of the TB, compute s->guarded_page.
13999 * We delayed computing this until successfully reading
14000 * the first insn of the TB, above. This (mostly) ensures
14001 * that the softmmu tlb entry has been populated, and the
14002 * page table GP bit is available.
14003 *
14004 * Note that we need to compute this even if btype == 0,
14005 * because this value is used for BR instructions later
14006 * where ENV is not available.
14007 */
14008 s->guarded_page = is_guarded_page(env, s);
14009
14010 /* First insn can have btype set to non-zero. */
14011 tcg_debug_assert(s->btype >= 0);
14012
14013 /*
14014 * Note that the Branch Target Exception has fairly high
14015 * priority -- below debugging exceptions but above most
14016 * everything else. This allows us to handle this now
14017 * instead of waiting until the insn is otherwise decoded.
14018 */
14019 if (s->btype != 0
14020 && s->guarded_page
14021 && !btype_destination_ok(insn, s->bt, s->btype)) {
14022 gen_exception_insn(s, 4, EXCP_UDEF, syn_btitrap(s->btype),
14023 default_exception_el(s));
14024 return;
14025 }
14026 } else {
14027 /* Not the first insn: btype must be 0. */
14028 tcg_debug_assert(s->btype == 0);
14029 }
14030 }
14031
14032 switch (extract32(insn, 25, 4)) {
14033 case 0x0: case 0x1: case 0x3: /* UNALLOCATED */
14034 unallocated_encoding(s);
14035 break;
14036 case 0x2:
14037 if (!dc_isar_feature(aa64_sve, s) || !disas_sve(s, insn)) {
14038 unallocated_encoding(s);
14039 }
14040 break;
14041 case 0x8: case 0x9: /* Data processing - immediate */
14042 disas_data_proc_imm(s, insn);
14043 break;
14044 case 0xa: case 0xb: /* Branch, exception generation and system insns */
14045 disas_b_exc_sys(s, insn);
14046 break;
14047 case 0x4:
14048 case 0x6:
14049 case 0xc:
14050 case 0xe: /* Loads and stores */
14051 disas_ldst(s, insn);
14052 break;
14053 case 0x5:
14054 case 0xd: /* Data processing - register */
14055 disas_data_proc_reg(s, insn);
14056 break;
14057 case 0x7:
14058 case 0xf: /* Data processing - SIMD and floating point */
14059 disas_data_proc_simd_fp(s, insn);
14060 break;
14061 default:
14062 assert(FALSE); /* all 15 cases should be handled above */
14063 break;
14064 }
14065
14066 /* if we allocated any temporaries, free them here */
14067 free_tmp_a64(s);
14068
14069 /*
14070 * After execution of most insns, btype is reset to 0.
14071 * Note that we set btype == -1 when the insn sets btype.
14072 */
14073 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14074 reset_btype(s);
14075 }
14076 }
14077
14078 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14079 CPUState *cpu)
14080 {
14081 DisasContext *dc = container_of(dcbase, DisasContext, base);
14082 CPUARMState *env = cpu->env_ptr;
14083 ARMCPU *arm_cpu = arm_env_get_cpu(env);
14084 uint32_t tb_flags = dc->base.tb->flags;
14085 int bound, core_mmu_idx;
14086
14087 dc->isar = &arm_cpu->isar;
14088 dc->pc = dc->base.pc_first;
14089 dc->condjmp = 0;
14090
14091 dc->aarch64 = 1;
14092 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
14093 * there is no secure EL1, so we route exceptions to EL3.
14094 */
14095 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
14096 !arm_el_is_aa64(env, 3);
14097 dc->thumb = 0;
14098 dc->sctlr_b = 0;
14099 dc->be_data = FIELD_EX32(tb_flags, TBFLAG_ANY, BE_DATA) ? MO_BE : MO_LE;
14100 dc->condexec_mask = 0;
14101 dc->condexec_cond = 0;
14102 core_mmu_idx = FIELD_EX32(tb_flags, TBFLAG_ANY, MMUIDX);
14103 dc->mmu_idx = core_to_arm_mmu_idx(env, core_mmu_idx);
14104 dc->tbii = FIELD_EX32(tb_flags, TBFLAG_A64, TBII);
14105 dc->tbid = FIELD_EX32(tb_flags, TBFLAG_A64, TBID);
14106 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14107 #if !defined(CONFIG_USER_ONLY)
14108 dc->user = (dc->current_el == 0);
14109 #endif
14110 dc->fp_excp_el = FIELD_EX32(tb_flags, TBFLAG_ANY, FPEXC_EL);
14111 dc->sve_excp_el = FIELD_EX32(tb_flags, TBFLAG_A64, SVEEXC_EL);
14112 dc->sve_len = (FIELD_EX32(tb_flags, TBFLAG_A64, ZCR_LEN) + 1) * 16;
14113 dc->pauth_active = FIELD_EX32(tb_flags, TBFLAG_A64, PAUTH_ACTIVE);
14114 dc->bt = FIELD_EX32(tb_flags, TBFLAG_A64, BT);
14115 dc->btype = FIELD_EX32(tb_flags, TBFLAG_A64, BTYPE);
14116 dc->vec_len = 0;
14117 dc->vec_stride = 0;
14118 dc->cp_regs = arm_cpu->cp_regs;
14119 dc->features = env->features;
14120
14121 /* Single step state. The code-generation logic here is:
14122 * SS_ACTIVE == 0:
14123 * generate code with no special handling for single-stepping (except
14124 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14125 * this happens anyway because those changes are all system register or
14126 * PSTATE writes).
14127 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14128 * emit code for one insn
14129 * emit code to clear PSTATE.SS
14130 * emit code to generate software step exception for completed step
14131 * end TB (as usual for having generated an exception)
14132 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14133 * emit code to generate a software step exception
14134 * end the TB
14135 */
14136 dc->ss_active = FIELD_EX32(tb_flags, TBFLAG_ANY, SS_ACTIVE);
14137 dc->pstate_ss = FIELD_EX32(tb_flags, TBFLAG_ANY, PSTATE_SS);
14138 dc->is_ldex = false;
14139 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
14140
14141 /* Bound the number of insns to execute to those left on the page. */
14142 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14143
14144 /* If architectural single step active, limit to 1. */
14145 if (dc->ss_active) {
14146 bound = 1;
14147 }
14148 dc->base.max_insns = MIN(dc->base.max_insns, bound);
14149
14150 init_tmp_a64_array(dc);
14151 }
14152
14153 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14154 {
14155 }
14156
14157 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14158 {
14159 DisasContext *dc = container_of(dcbase, DisasContext, base);
14160
14161 tcg_gen_insn_start(dc->pc, 0, 0);
14162 dc->insn_start = tcg_last_op();
14163 }
14164
14165 static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
14166 const CPUBreakpoint *bp)
14167 {
14168 DisasContext *dc = container_of(dcbase, DisasContext, base);
14169
14170 if (bp->flags & BP_CPU) {
14171 gen_a64_set_pc_im(dc->pc);
14172 gen_helper_check_breakpoints(cpu_env);
14173 /* End the TB early; it likely won't be executed */
14174 dc->base.is_jmp = DISAS_TOO_MANY;
14175 } else {
14176 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
14177 /* The address covered by the breakpoint must be
14178 included in [tb->pc, tb->pc + tb->size) in order
14179 to for it to be properly cleared -- thus we
14180 increment the PC here so that the logic setting
14181 tb->size below does the right thing. */
14182 dc->pc += 4;
14183 dc->base.is_jmp = DISAS_NORETURN;
14184 }
14185
14186 return true;
14187 }
14188
14189 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14190 {
14191 DisasContext *dc = container_of(dcbase, DisasContext, base);
14192 CPUARMState *env = cpu->env_ptr;
14193
14194 if (dc->ss_active && !dc->pstate_ss) {
14195 /* Singlestep state is Active-pending.
14196 * If we're in this state at the start of a TB then either
14197 * a) we just took an exception to an EL which is being debugged
14198 * and this is the first insn in the exception handler
14199 * b) debug exceptions were masked and we just unmasked them
14200 * without changing EL (eg by clearing PSTATE.D)
14201 * In either case we're going to take a swstep exception in the
14202 * "did not step an insn" case, and so the syndrome ISV and EX
14203 * bits should be zero.
14204 */
14205 assert(dc->base.num_insns == 1);
14206 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
14207 default_exception_el(dc));
14208 dc->base.is_jmp = DISAS_NORETURN;
14209 } else {
14210 disas_a64_insn(env, dc);
14211 }
14212
14213 dc->base.pc_next = dc->pc;
14214 translator_loop_temp_check(&dc->base);
14215 }
14216
14217 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14218 {
14219 DisasContext *dc = container_of(dcbase, DisasContext, base);
14220
14221 if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
14222 /* Note that this means single stepping WFI doesn't halt the CPU.
14223 * For conditional branch insns this is harmless unreachable code as
14224 * gen_goto_tb() has already handled emitting the debug exception
14225 * (and thus a tb-jump is not possible when singlestepping).
14226 */
14227 switch (dc->base.is_jmp) {
14228 default:
14229 gen_a64_set_pc_im(dc->pc);
14230 /* fall through */
14231 case DISAS_EXIT:
14232 case DISAS_JUMP:
14233 if (dc->base.singlestep_enabled) {
14234 gen_exception_internal(EXCP_DEBUG);
14235 } else {
14236 gen_step_complete_exception(dc);
14237 }
14238 break;
14239 case DISAS_NORETURN:
14240 break;
14241 }
14242 } else {
14243 switch (dc->base.is_jmp) {
14244 case DISAS_NEXT:
14245 case DISAS_TOO_MANY:
14246 gen_goto_tb(dc, 1, dc->pc);
14247 break;
14248 default:
14249 case DISAS_UPDATE:
14250 gen_a64_set_pc_im(dc->pc);
14251 /* fall through */
14252 case DISAS_EXIT:
14253 tcg_gen_exit_tb(NULL, 0);
14254 break;
14255 case DISAS_JUMP:
14256 tcg_gen_lookup_and_goto_ptr();
14257 break;
14258 case DISAS_NORETURN:
14259 case DISAS_SWI:
14260 break;
14261 case DISAS_WFE:
14262 gen_a64_set_pc_im(dc->pc);
14263 gen_helper_wfe(cpu_env);
14264 break;
14265 case DISAS_YIELD:
14266 gen_a64_set_pc_im(dc->pc);
14267 gen_helper_yield(cpu_env);
14268 break;
14269 case DISAS_WFI:
14270 {
14271 /* This is a special case because we don't want to just halt the CPU
14272 * if trying to debug across a WFI.
14273 */
14274 TCGv_i32 tmp = tcg_const_i32(4);
14275
14276 gen_a64_set_pc_im(dc->pc);
14277 gen_helper_wfi(cpu_env, tmp);
14278 tcg_temp_free_i32(tmp);
14279 /* The helper doesn't necessarily throw an exception, but we
14280 * must go back to the main loop to check for interrupts anyway.
14281 */
14282 tcg_gen_exit_tb(NULL, 0);
14283 break;
14284 }
14285 }
14286 }
14287
14288 /* Functions above can change dc->pc, so re-align db->pc_next */
14289 dc->base.pc_next = dc->pc;
14290 }
14291
14292 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14293 CPUState *cpu)
14294 {
14295 DisasContext *dc = container_of(dcbase, DisasContext, base);
14296
14297 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
14298 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
14299 }
14300
14301 const TranslatorOps aarch64_translator_ops = {
14302 .init_disas_context = aarch64_tr_init_disas_context,
14303 .tb_start = aarch64_tr_tb_start,
14304 .insn_start = aarch64_tr_insn_start,
14305 .breakpoint_check = aarch64_tr_breakpoint_check,
14306 .translate_insn = aarch64_tr_translate_insn,
14307 .tb_stop = aarch64_tr_tb_stop,
14308 .disas_log = aarch64_tr_disas_log,
14309 };