]> git.proxmox.com Git - mirror_qemu.git/blob - target/avr/helper.c
hw/nvme: move nvme emulation out of hw/block
[mirror_qemu.git] / target / avr / helper.c
1 /*
2 * QEMU AVR CPU helpers
3 *
4 * Copyright (c) 2016-2020 Michael Rolnik
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see
18 * <http://www.gnu.org/licenses/lgpl-2.1.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "hw/core/tcg-cpu-ops.h"
24 #include "exec/exec-all.h"
25 #include "exec/address-spaces.h"
26 #include "exec/helper-proto.h"
27
28 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
29 {
30 bool ret = false;
31 CPUClass *cc = CPU_GET_CLASS(cs);
32 AVRCPU *cpu = AVR_CPU(cs);
33 CPUAVRState *env = &cpu->env;
34
35 if (interrupt_request & CPU_INTERRUPT_RESET) {
36 if (cpu_interrupts_enabled(env)) {
37 cs->exception_index = EXCP_RESET;
38 cc->tcg_ops->do_interrupt(cs);
39
40 cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
41
42 ret = true;
43 }
44 }
45 if (interrupt_request & CPU_INTERRUPT_HARD) {
46 if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
47 int index = ctz32(env->intsrc);
48 cs->exception_index = EXCP_INT(index);
49 cc->tcg_ops->do_interrupt(cs);
50
51 env->intsrc &= env->intsrc - 1; /* clear the interrupt */
52 if (!env->intsrc) {
53 cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
54 }
55
56 ret = true;
57 }
58 }
59 return ret;
60 }
61
62 void avr_cpu_do_interrupt(CPUState *cs)
63 {
64 AVRCPU *cpu = AVR_CPU(cs);
65 CPUAVRState *env = &cpu->env;
66
67 uint32_t ret = env->pc_w;
68 int vector = 0;
69 int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
70 int base = 0;
71
72 if (cs->exception_index == EXCP_RESET) {
73 vector = 0;
74 } else if (env->intsrc != 0) {
75 vector = ctz32(env->intsrc) + 1;
76 }
77
78 if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
79 cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
80 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
81 cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
82 } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
83 cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
84 cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
85 } else {
86 cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
87 }
88
89 env->pc_w = base + vector * size;
90 env->sregI = 0; /* clear Global Interrupt Flag */
91
92 cs->exception_index = -1;
93 }
94
95 int avr_cpu_memory_rw_debug(CPUState *cs, vaddr addr, uint8_t *buf,
96 int len, bool is_write)
97 {
98 return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
99 }
100
101 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
102 {
103 return addr; /* I assume 1:1 address correspondence */
104 }
105
106 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
107 MMUAccessType access_type, int mmu_idx,
108 bool probe, uintptr_t retaddr)
109 {
110 int prot = 0;
111 MemTxAttrs attrs = {};
112 uint32_t paddr;
113
114 address &= TARGET_PAGE_MASK;
115
116 if (mmu_idx == MMU_CODE_IDX) {
117 /* access to code in flash */
118 paddr = OFFSET_CODE + address;
119 prot = PAGE_READ | PAGE_EXEC;
120 if (paddr + TARGET_PAGE_SIZE > OFFSET_DATA) {
121 error_report("execution left flash memory");
122 abort();
123 }
124 } else if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
125 /*
126 * access to CPU registers, exit and rebuilt this TB to use full access
127 * incase it touches specially handled registers like SREG or SP
128 */
129 AVRCPU *cpu = AVR_CPU(cs);
130 CPUAVRState *env = &cpu->env;
131 env->fullacc = 1;
132 cpu_loop_exit_restore(cs, retaddr);
133 } else {
134 /* access to memory. nothing special */
135 paddr = OFFSET_DATA + address;
136 prot = PAGE_READ | PAGE_WRITE;
137 }
138
139 tlb_set_page_with_attrs(cs, address, paddr, attrs, prot,
140 mmu_idx, TARGET_PAGE_SIZE);
141
142 return true;
143 }
144
145 /*
146 * helpers
147 */
148
149 void helper_sleep(CPUAVRState *env)
150 {
151 CPUState *cs = env_cpu(env);
152
153 cs->exception_index = EXCP_HLT;
154 cpu_loop_exit(cs);
155 }
156
157 void helper_unsupported(CPUAVRState *env)
158 {
159 CPUState *cs = env_cpu(env);
160
161 /*
162 * I count not find what happens on the real platform, so
163 * it's EXCP_DEBUG for meanwhile
164 */
165 cs->exception_index = EXCP_DEBUG;
166 if (qemu_loglevel_mask(LOG_UNIMP)) {
167 qemu_log("UNSUPPORTED\n");
168 cpu_dump_state(cs, stderr, 0);
169 }
170 cpu_loop_exit(cs);
171 }
172
173 void helper_debug(CPUAVRState *env)
174 {
175 CPUState *cs = env_cpu(env);
176
177 cs->exception_index = EXCP_DEBUG;
178 cpu_loop_exit(cs);
179 }
180
181 void helper_break(CPUAVRState *env)
182 {
183 CPUState *cs = env_cpu(env);
184
185 cs->exception_index = EXCP_DEBUG;
186 cpu_loop_exit(cs);
187 }
188
189 void helper_wdr(CPUAVRState *env)
190 {
191 CPUState *cs = env_cpu(env);
192
193 /* WD is not implemented yet, placeholder */
194 cs->exception_index = EXCP_DEBUG;
195 cpu_loop_exit(cs);
196 }
197
198 /*
199 * This function implements IN instruction
200 *
201 * It does the following
202 * a. if an IO register belongs to CPU, its value is read and returned
203 * b. otherwise io address is translated to mem address and physical memory
204 * is read.
205 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
206 *
207 */
208 target_ulong helper_inb(CPUAVRState *env, uint32_t port)
209 {
210 target_ulong data = 0;
211
212 switch (port) {
213 case 0x38: /* RAMPD */
214 data = 0xff & (env->rampD >> 16);
215 break;
216 case 0x39: /* RAMPX */
217 data = 0xff & (env->rampX >> 16);
218 break;
219 case 0x3a: /* RAMPY */
220 data = 0xff & (env->rampY >> 16);
221 break;
222 case 0x3b: /* RAMPZ */
223 data = 0xff & (env->rampZ >> 16);
224 break;
225 case 0x3c: /* EIND */
226 data = 0xff & (env->eind >> 16);
227 break;
228 case 0x3d: /* SPL */
229 data = env->sp & 0x00ff;
230 break;
231 case 0x3e: /* SPH */
232 data = env->sp >> 8;
233 break;
234 case 0x3f: /* SREG */
235 data = cpu_get_sreg(env);
236 break;
237 default:
238 /* not a special register, pass to normal memory access */
239 data = address_space_ldub(&address_space_memory,
240 OFFSET_IO_REGISTERS + port,
241 MEMTXATTRS_UNSPECIFIED, NULL);
242 }
243
244 return data;
245 }
246
247 /*
248 * This function implements OUT instruction
249 *
250 * It does the following
251 * a. if an IO register belongs to CPU, its value is written into the register
252 * b. otherwise io address is translated to mem address and physical memory
253 * is written.
254 * c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
255 *
256 */
257 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
258 {
259 data &= 0x000000ff;
260
261 switch (port) {
262 case 0x38: /* RAMPD */
263 if (avr_feature(env, AVR_FEATURE_RAMPD)) {
264 env->rampD = (data & 0xff) << 16;
265 }
266 break;
267 case 0x39: /* RAMPX */
268 if (avr_feature(env, AVR_FEATURE_RAMPX)) {
269 env->rampX = (data & 0xff) << 16;
270 }
271 break;
272 case 0x3a: /* RAMPY */
273 if (avr_feature(env, AVR_FEATURE_RAMPY)) {
274 env->rampY = (data & 0xff) << 16;
275 }
276 break;
277 case 0x3b: /* RAMPZ */
278 if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
279 env->rampZ = (data & 0xff) << 16;
280 }
281 break;
282 case 0x3c: /* EIDN */
283 env->eind = (data & 0xff) << 16;
284 break;
285 case 0x3d: /* SPL */
286 env->sp = (env->sp & 0xff00) | (data);
287 break;
288 case 0x3e: /* SPH */
289 if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
290 env->sp = (env->sp & 0x00ff) | (data << 8);
291 }
292 break;
293 case 0x3f: /* SREG */
294 cpu_set_sreg(env, data);
295 break;
296 default:
297 /* not a special register, pass to normal memory access */
298 address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
299 data, MEMTXATTRS_UNSPECIFIED, NULL);
300 }
301 }
302
303 /*
304 * this function implements LD instruction when there is a possibility to read
305 * from a CPU register
306 */
307 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
308 {
309 uint8_t data;
310
311 env->fullacc = false;
312
313 if (addr < NUMBER_OF_CPU_REGISTERS) {
314 /* CPU registers */
315 data = env->r[addr];
316 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
317 /* IO registers */
318 data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
319 } else {
320 /* memory */
321 data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
322 MEMTXATTRS_UNSPECIFIED, NULL);
323 }
324 return data;
325 }
326
327 /*
328 * this function implements ST instruction when there is a possibility to write
329 * into a CPU register
330 */
331 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
332 {
333 env->fullacc = false;
334
335 /* Following logic assumes this: */
336 assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
337 assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
338 NUMBER_OF_CPU_REGISTERS);
339
340 if (addr < NUMBER_OF_CPU_REGISTERS) {
341 /* CPU registers */
342 env->r[addr] = data;
343 } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
344 /* IO registers */
345 helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
346 } else {
347 /* memory */
348 address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
349 MEMTXATTRS_UNSPECIFIED, NULL);
350 }
351 }