]> git.proxmox.com Git - mirror_qemu.git/blob - target/avr/translate.c
hw/hyperv: Include missing headers
[mirror_qemu.git] / target / avr / translate.c
1 /*
2 * QEMU AVR CPU
3 *
4 * Copyright (c) 2019-2020 Michael Rolnik
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see
18 * <http://www.gnu.org/licenses/lgpl-2.1.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "tcg/tcg.h"
24 #include "cpu.h"
25 #include "exec/exec-all.h"
26 #include "tcg/tcg-op.h"
27 #include "exec/cpu_ldst.h"
28 #include "exec/helper-proto.h"
29 #include "exec/helper-gen.h"
30 #include "exec/log.h"
31 #include "exec/translator.h"
32
33 #define HELPER_H "helper.h"
34 #include "exec/helper-info.c.inc"
35 #undef HELPER_H
36
37
38 /*
39 * Define if you want a BREAK instruction translated to a breakpoint
40 * Active debugging connection is assumed
41 * This is for
42 * https://github.com/seharris/qemu-avr-tests/tree/master/instruction-tests
43 * tests
44 */
45 #undef BREAKPOINT_ON_BREAK
46
47 static TCGv cpu_pc;
48
49 static TCGv cpu_Cf;
50 static TCGv cpu_Zf;
51 static TCGv cpu_Nf;
52 static TCGv cpu_Vf;
53 static TCGv cpu_Sf;
54 static TCGv cpu_Hf;
55 static TCGv cpu_Tf;
56 static TCGv cpu_If;
57
58 static TCGv cpu_rampD;
59 static TCGv cpu_rampX;
60 static TCGv cpu_rampY;
61 static TCGv cpu_rampZ;
62
63 static TCGv cpu_r[NUMBER_OF_CPU_REGISTERS];
64 static TCGv cpu_eind;
65 static TCGv cpu_sp;
66
67 static TCGv cpu_skip;
68
69 static const char reg_names[NUMBER_OF_CPU_REGISTERS][8] = {
70 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
71 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
72 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
73 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
74 };
75 #define REG(x) (cpu_r[x])
76
77 #define DISAS_EXIT DISAS_TARGET_0 /* We want return to the cpu main loop. */
78 #define DISAS_LOOKUP DISAS_TARGET_1 /* We have a variable condition exit. */
79 #define DISAS_CHAIN DISAS_TARGET_2 /* We have a single condition exit. */
80
81 typedef struct DisasContext DisasContext;
82
83 /* This is the state at translation time. */
84 struct DisasContext {
85 DisasContextBase base;
86
87 CPUAVRState *env;
88 CPUState *cs;
89
90 target_long npc;
91 uint32_t opcode;
92
93 /* Routine used to access memory */
94 int memidx;
95
96 /*
97 * some AVR instructions can make the following instruction to be skipped
98 * Let's name those instructions
99 * A - instruction that can skip the next one
100 * B - instruction that can be skipped. this depends on execution of A
101 * there are two scenarios
102 * 1. A and B belong to the same translation block
103 * 2. A is the last instruction in the translation block and B is the last
104 *
105 * following variables are used to simplify the skipping logic, they are
106 * used in the following manner (sketch)
107 *
108 * TCGLabel *skip_label = NULL;
109 * if (ctx->skip_cond != TCG_COND_NEVER) {
110 * skip_label = gen_new_label();
111 * tcg_gen_brcond_tl(skip_cond, skip_var0, skip_var1, skip_label);
112 * }
113 *
114 * translate(ctx);
115 *
116 * if (skip_label) {
117 * gen_set_label(skip_label);
118 * }
119 */
120 TCGv skip_var0;
121 TCGv skip_var1;
122 TCGCond skip_cond;
123 };
124
125 void avr_cpu_tcg_init(void)
126 {
127 int i;
128
129 #define AVR_REG_OFFS(x) offsetof(CPUAVRState, x)
130 cpu_pc = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(pc_w), "pc");
131 cpu_Cf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregC), "Cf");
132 cpu_Zf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregZ), "Zf");
133 cpu_Nf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregN), "Nf");
134 cpu_Vf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregV), "Vf");
135 cpu_Sf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregS), "Sf");
136 cpu_Hf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregH), "Hf");
137 cpu_Tf = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregT), "Tf");
138 cpu_If = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sregI), "If");
139 cpu_rampD = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(rampD), "rampD");
140 cpu_rampX = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(rampX), "rampX");
141 cpu_rampY = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(rampY), "rampY");
142 cpu_rampZ = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(rampZ), "rampZ");
143 cpu_eind = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(eind), "eind");
144 cpu_sp = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(sp), "sp");
145 cpu_skip = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(skip), "skip");
146
147 for (i = 0; i < NUMBER_OF_CPU_REGISTERS; i++) {
148 cpu_r[i] = tcg_global_mem_new_i32(tcg_env, AVR_REG_OFFS(r[i]),
149 reg_names[i]);
150 }
151 #undef AVR_REG_OFFS
152 }
153
154 static int to_regs_16_31_by_one(DisasContext *ctx, int indx)
155 {
156 return 16 + (indx % 16);
157 }
158
159 static int to_regs_16_23_by_one(DisasContext *ctx, int indx)
160 {
161 return 16 + (indx % 8);
162 }
163
164 static int to_regs_24_30_by_two(DisasContext *ctx, int indx)
165 {
166 return 24 + (indx % 4) * 2;
167 }
168
169 static int to_regs_00_30_by_two(DisasContext *ctx, int indx)
170 {
171 return (indx % 16) * 2;
172 }
173
174 static uint16_t next_word(DisasContext *ctx)
175 {
176 return cpu_lduw_code(ctx->env, ctx->npc++ * 2);
177 }
178
179 static int append_16(DisasContext *ctx, int x)
180 {
181 return x << 16 | next_word(ctx);
182 }
183
184 static bool avr_have_feature(DisasContext *ctx, int feature)
185 {
186 if (!avr_feature(ctx->env, feature)) {
187 gen_helper_unsupported(tcg_env);
188 ctx->base.is_jmp = DISAS_NORETURN;
189 return false;
190 }
191 return true;
192 }
193
194 static bool decode_insn(DisasContext *ctx, uint16_t insn);
195 #include "decode-insn.c.inc"
196
197 /*
198 * Arithmetic Instructions
199 */
200
201 /*
202 * Utility functions for updating status registers:
203 *
204 * - gen_add_CHf()
205 * - gen_add_Vf()
206 * - gen_sub_CHf()
207 * - gen_sub_Vf()
208 * - gen_NSf()
209 * - gen_ZNSf()
210 *
211 */
212
213 static void gen_add_CHf(TCGv R, TCGv Rd, TCGv Rr)
214 {
215 TCGv t1 = tcg_temp_new_i32();
216 TCGv t2 = tcg_temp_new_i32();
217 TCGv t3 = tcg_temp_new_i32();
218
219 tcg_gen_and_tl(t1, Rd, Rr); /* t1 = Rd & Rr */
220 tcg_gen_andc_tl(t2, Rd, R); /* t2 = Rd & ~R */
221 tcg_gen_andc_tl(t3, Rr, R); /* t3 = Rr & ~R */
222 tcg_gen_or_tl(t1, t1, t2); /* t1 = t1 | t2 | t3 */
223 tcg_gen_or_tl(t1, t1, t3);
224
225 tcg_gen_shri_tl(cpu_Cf, t1, 7); /* Cf = t1(7) */
226 tcg_gen_shri_tl(cpu_Hf, t1, 3); /* Hf = t1(3) */
227 tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
228 }
229
230 static void gen_add_Vf(TCGv R, TCGv Rd, TCGv Rr)
231 {
232 TCGv t1 = tcg_temp_new_i32();
233 TCGv t2 = tcg_temp_new_i32();
234
235 /* t1 = Rd & Rr & ~R | ~Rd & ~Rr & R */
236 /* = (Rd ^ R) & ~(Rd ^ Rr) */
237 tcg_gen_xor_tl(t1, Rd, R);
238 tcg_gen_xor_tl(t2, Rd, Rr);
239 tcg_gen_andc_tl(t1, t1, t2);
240
241 tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
242 }
243
244 static void gen_sub_CHf(TCGv R, TCGv Rd, TCGv Rr)
245 {
246 TCGv t1 = tcg_temp_new_i32();
247 TCGv t2 = tcg_temp_new_i32();
248 TCGv t3 = tcg_temp_new_i32();
249
250 tcg_gen_not_tl(t1, Rd); /* t1 = ~Rd */
251 tcg_gen_and_tl(t2, t1, Rr); /* t2 = ~Rd & Rr */
252 tcg_gen_or_tl(t3, t1, Rr); /* t3 = (~Rd | Rr) & R */
253 tcg_gen_and_tl(t3, t3, R);
254 tcg_gen_or_tl(t2, t2, t3); /* t2 = ~Rd & Rr | ~Rd & R | R & Rr */
255
256 tcg_gen_shri_tl(cpu_Cf, t2, 7); /* Cf = t2(7) */
257 tcg_gen_shri_tl(cpu_Hf, t2, 3); /* Hf = t2(3) */
258 tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
259 }
260
261 static void gen_sub_Vf(TCGv R, TCGv Rd, TCGv Rr)
262 {
263 TCGv t1 = tcg_temp_new_i32();
264 TCGv t2 = tcg_temp_new_i32();
265
266 /* t1 = Rd & ~Rr & ~R | ~Rd & Rr & R */
267 /* = (Rd ^ R) & (Rd ^ R) */
268 tcg_gen_xor_tl(t1, Rd, R);
269 tcg_gen_xor_tl(t2, Rd, Rr);
270 tcg_gen_and_tl(t1, t1, t2);
271
272 tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
273 }
274
275 static void gen_NSf(TCGv R)
276 {
277 tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
278 tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
279 }
280
281 static void gen_ZNSf(TCGv R)
282 {
283 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
284
285 /* update status register */
286 tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
287 tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
288 }
289
290 /*
291 * Adds two registers without the C Flag and places the result in the
292 * destination register Rd.
293 */
294 static bool trans_ADD(DisasContext *ctx, arg_ADD *a)
295 {
296 TCGv Rd = cpu_r[a->rd];
297 TCGv Rr = cpu_r[a->rr];
298 TCGv R = tcg_temp_new_i32();
299
300 tcg_gen_add_tl(R, Rd, Rr); /* Rd = Rd + Rr */
301 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
302
303 /* update status register */
304 gen_add_CHf(R, Rd, Rr);
305 gen_add_Vf(R, Rd, Rr);
306 gen_ZNSf(R);
307
308 /* update output registers */
309 tcg_gen_mov_tl(Rd, R);
310 return true;
311 }
312
313 /*
314 * Adds two registers and the contents of the C Flag and places the result in
315 * the destination register Rd.
316 */
317 static bool trans_ADC(DisasContext *ctx, arg_ADC *a)
318 {
319 TCGv Rd = cpu_r[a->rd];
320 TCGv Rr = cpu_r[a->rr];
321 TCGv R = tcg_temp_new_i32();
322
323 tcg_gen_add_tl(R, Rd, Rr); /* R = Rd + Rr + Cf */
324 tcg_gen_add_tl(R, R, cpu_Cf);
325 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
326
327 /* update status register */
328 gen_add_CHf(R, Rd, Rr);
329 gen_add_Vf(R, Rd, Rr);
330 gen_ZNSf(R);
331
332 /* update output registers */
333 tcg_gen_mov_tl(Rd, R);
334 return true;
335 }
336
337 /*
338 * Adds an immediate value (0 - 63) to a register pair and places the result
339 * in the register pair. This instruction operates on the upper four register
340 * pairs, and is well suited for operations on the pointer registers. This
341 * instruction is not available in all devices. Refer to the device specific
342 * instruction set summary.
343 */
344 static bool trans_ADIW(DisasContext *ctx, arg_ADIW *a)
345 {
346 if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) {
347 return true;
348 }
349
350 TCGv RdL = cpu_r[a->rd];
351 TCGv RdH = cpu_r[a->rd + 1];
352 int Imm = (a->imm);
353 TCGv R = tcg_temp_new_i32();
354 TCGv Rd = tcg_temp_new_i32();
355
356 tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
357 tcg_gen_addi_tl(R, Rd, Imm); /* R = Rd + Imm */
358 tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
359
360 /* update status register */
361 tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */
362 tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15);
363 tcg_gen_andc_tl(cpu_Vf, R, Rd); /* Vf = R & ~Rd */
364 tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15);
365 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
366 tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
367 tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf);/* Sf = Nf ^ Vf */
368
369 /* update output registers */
370 tcg_gen_andi_tl(RdL, R, 0xff);
371 tcg_gen_shri_tl(RdH, R, 8);
372 return true;
373 }
374
375 /*
376 * Subtracts two registers and places the result in the destination
377 * register Rd.
378 */
379 static bool trans_SUB(DisasContext *ctx, arg_SUB *a)
380 {
381 TCGv Rd = cpu_r[a->rd];
382 TCGv Rr = cpu_r[a->rr];
383 TCGv R = tcg_temp_new_i32();
384
385 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
386 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
387
388 /* update status register */
389 tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */
390 gen_sub_CHf(R, Rd, Rr);
391 gen_sub_Vf(R, Rd, Rr);
392 gen_ZNSf(R);
393
394 /* update output registers */
395 tcg_gen_mov_tl(Rd, R);
396 return true;
397 }
398
399 /*
400 * Subtracts a register and a constant and places the result in the
401 * destination register Rd. This instruction is working on Register R16 to R31
402 * and is very well suited for operations on the X, Y, and Z-pointers.
403 */
404 static bool trans_SUBI(DisasContext *ctx, arg_SUBI *a)
405 {
406 TCGv Rd = cpu_r[a->rd];
407 TCGv Rr = tcg_constant_i32(a->imm);
408 TCGv R = tcg_temp_new_i32();
409
410 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Imm */
411 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
412
413 /* update status register */
414 gen_sub_CHf(R, Rd, Rr);
415 gen_sub_Vf(R, Rd, Rr);
416 gen_ZNSf(R);
417
418 /* update output registers */
419 tcg_gen_mov_tl(Rd, R);
420 return true;
421 }
422
423 /*
424 * Subtracts two registers and subtracts with the C Flag and places the
425 * result in the destination register Rd.
426 */
427 static bool trans_SBC(DisasContext *ctx, arg_SBC *a)
428 {
429 TCGv Rd = cpu_r[a->rd];
430 TCGv Rr = cpu_r[a->rr];
431 TCGv R = tcg_temp_new_i32();
432 TCGv zero = tcg_constant_i32(0);
433
434 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
435 tcg_gen_sub_tl(R, R, cpu_Cf);
436 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
437
438 /* update status register */
439 gen_sub_CHf(R, Rd, Rr);
440 gen_sub_Vf(R, Rd, Rr);
441 gen_NSf(R);
442
443 /*
444 * Previous value remains unchanged when the result is zero;
445 * cleared otherwise.
446 */
447 tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero);
448
449 /* update output registers */
450 tcg_gen_mov_tl(Rd, R);
451 return true;
452 }
453
454 /*
455 * SBCI -- Subtract Immediate with Carry
456 */
457 static bool trans_SBCI(DisasContext *ctx, arg_SBCI *a)
458 {
459 TCGv Rd = cpu_r[a->rd];
460 TCGv Rr = tcg_constant_i32(a->imm);
461 TCGv R = tcg_temp_new_i32();
462 TCGv zero = tcg_constant_i32(0);
463
464 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
465 tcg_gen_sub_tl(R, R, cpu_Cf);
466 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
467
468 /* update status register */
469 gen_sub_CHf(R, Rd, Rr);
470 gen_sub_Vf(R, Rd, Rr);
471 gen_NSf(R);
472
473 /*
474 * Previous value remains unchanged when the result is zero;
475 * cleared otherwise.
476 */
477 tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero);
478
479 /* update output registers */
480 tcg_gen_mov_tl(Rd, R);
481 return true;
482 }
483
484 /*
485 * Subtracts an immediate value (0-63) from a register pair and places the
486 * result in the register pair. This instruction operates on the upper four
487 * register pairs, and is well suited for operations on the Pointer Registers.
488 * This instruction is not available in all devices. Refer to the device
489 * specific instruction set summary.
490 */
491 static bool trans_SBIW(DisasContext *ctx, arg_SBIW *a)
492 {
493 if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) {
494 return true;
495 }
496
497 TCGv RdL = cpu_r[a->rd];
498 TCGv RdH = cpu_r[a->rd + 1];
499 int Imm = (a->imm);
500 TCGv R = tcg_temp_new_i32();
501 TCGv Rd = tcg_temp_new_i32();
502
503 tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
504 tcg_gen_subi_tl(R, Rd, Imm); /* R = Rd - Imm */
505 tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
506
507 /* update status register */
508 tcg_gen_andc_tl(cpu_Cf, R, Rd);
509 tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); /* Cf = R & ~Rd */
510 tcg_gen_andc_tl(cpu_Vf, Rd, R);
511 tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); /* Vf = Rd & ~R */
512 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
513 tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
514 tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
515
516 /* update output registers */
517 tcg_gen_andi_tl(RdL, R, 0xff);
518 tcg_gen_shri_tl(RdH, R, 8);
519 return true;
520 }
521
522 /*
523 * Performs the logical AND between the contents of register Rd and register
524 * Rr and places the result in the destination register Rd.
525 */
526 static bool trans_AND(DisasContext *ctx, arg_AND *a)
527 {
528 TCGv Rd = cpu_r[a->rd];
529 TCGv Rr = cpu_r[a->rr];
530 TCGv R = tcg_temp_new_i32();
531
532 tcg_gen_and_tl(R, Rd, Rr); /* Rd = Rd and Rr */
533
534 /* update status register */
535 tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */
536 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
537 gen_ZNSf(R);
538
539 /* update output registers */
540 tcg_gen_mov_tl(Rd, R);
541 return true;
542 }
543
544 /*
545 * Performs the logical AND between the contents of register Rd and a constant
546 * and places the result in the destination register Rd.
547 */
548 static bool trans_ANDI(DisasContext *ctx, arg_ANDI *a)
549 {
550 TCGv Rd = cpu_r[a->rd];
551 int Imm = (a->imm);
552
553 tcg_gen_andi_tl(Rd, Rd, Imm); /* Rd = Rd & Imm */
554
555 /* update status register */
556 tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
557 gen_ZNSf(Rd);
558
559 return true;
560 }
561
562 /*
563 * Performs the logical OR between the contents of register Rd and register
564 * Rr and places the result in the destination register Rd.
565 */
566 static bool trans_OR(DisasContext *ctx, arg_OR *a)
567 {
568 TCGv Rd = cpu_r[a->rd];
569 TCGv Rr = cpu_r[a->rr];
570 TCGv R = tcg_temp_new_i32();
571
572 tcg_gen_or_tl(R, Rd, Rr);
573
574 /* update status register */
575 tcg_gen_movi_tl(cpu_Vf, 0);
576 gen_ZNSf(R);
577
578 /* update output registers */
579 tcg_gen_mov_tl(Rd, R);
580 return true;
581 }
582
583 /*
584 * Performs the logical OR between the contents of register Rd and a
585 * constant and places the result in the destination register Rd.
586 */
587 static bool trans_ORI(DisasContext *ctx, arg_ORI *a)
588 {
589 TCGv Rd = cpu_r[a->rd];
590 int Imm = (a->imm);
591
592 tcg_gen_ori_tl(Rd, Rd, Imm); /* Rd = Rd | Imm */
593
594 /* update status register */
595 tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
596 gen_ZNSf(Rd);
597
598 return true;
599 }
600
601 /*
602 * Performs the logical EOR between the contents of register Rd and
603 * register Rr and places the result in the destination register Rd.
604 */
605 static bool trans_EOR(DisasContext *ctx, arg_EOR *a)
606 {
607 TCGv Rd = cpu_r[a->rd];
608 TCGv Rr = cpu_r[a->rr];
609
610 tcg_gen_xor_tl(Rd, Rd, Rr);
611
612 /* update status register */
613 tcg_gen_movi_tl(cpu_Vf, 0);
614 gen_ZNSf(Rd);
615
616 return true;
617 }
618
619 /*
620 * Clears the specified bits in register Rd. Performs the logical AND
621 * between the contents of register Rd and the complement of the constant mask
622 * K. The result will be placed in register Rd.
623 */
624 static bool trans_COM(DisasContext *ctx, arg_COM *a)
625 {
626 TCGv Rd = cpu_r[a->rd];
627
628 tcg_gen_xori_tl(Rd, Rd, 0xff);
629
630 /* update status register */
631 tcg_gen_movi_tl(cpu_Cf, 1); /* Cf = 1 */
632 tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */
633 gen_ZNSf(Rd);
634 return true;
635 }
636
637 /*
638 * Replaces the contents of register Rd with its two's complement; the
639 * value $80 is left unchanged.
640 */
641 static bool trans_NEG(DisasContext *ctx, arg_NEG *a)
642 {
643 TCGv Rd = cpu_r[a->rd];
644 TCGv t0 = tcg_constant_i32(0);
645 TCGv R = tcg_temp_new_i32();
646
647 tcg_gen_sub_tl(R, t0, Rd); /* R = 0 - Rd */
648 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
649
650 /* update status register */
651 gen_sub_CHf(R, t0, Rd);
652 gen_sub_Vf(R, t0, Rd);
653 gen_ZNSf(R);
654
655 /* update output registers */
656 tcg_gen_mov_tl(Rd, R);
657 return true;
658 }
659
660 /*
661 * Adds one -1- to the contents of register Rd and places the result in the
662 * destination register Rd. The C Flag in SREG is not affected by the
663 * operation, thus allowing the INC instruction to be used on a loop counter in
664 * multiple-precision computations. When operating on unsigned numbers, only
665 * BREQ and BRNE branches can be expected to perform consistently. When
666 * operating on two's complement values, all signed branches are available.
667 */
668 static bool trans_INC(DisasContext *ctx, arg_INC *a)
669 {
670 TCGv Rd = cpu_r[a->rd];
671
672 tcg_gen_addi_tl(Rd, Rd, 1);
673 tcg_gen_andi_tl(Rd, Rd, 0xff);
674
675 /* update status register */
676 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x80); /* Vf = Rd == 0x80 */
677 gen_ZNSf(Rd);
678
679 return true;
680 }
681
682 /*
683 * Subtracts one -1- from the contents of register Rd and places the result
684 * in the destination register Rd. The C Flag in SREG is not affected by the
685 * operation, thus allowing the DEC instruction to be used on a loop counter in
686 * multiple-precision computations. When operating on unsigned values, only
687 * BREQ and BRNE branches can be expected to perform consistently. When
688 * operating on two's complement values, all signed branches are available.
689 */
690 static bool trans_DEC(DisasContext *ctx, arg_DEC *a)
691 {
692 TCGv Rd = cpu_r[a->rd];
693
694 tcg_gen_subi_tl(Rd, Rd, 1); /* Rd = Rd - 1 */
695 tcg_gen_andi_tl(Rd, Rd, 0xff); /* make it 8 bits */
696
697 /* update status register */
698 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x7f); /* Vf = Rd == 0x7f */
699 gen_ZNSf(Rd);
700
701 return true;
702 }
703
704 /*
705 * This instruction performs 8-bit x 8-bit -> 16-bit unsigned multiplication.
706 */
707 static bool trans_MUL(DisasContext *ctx, arg_MUL *a)
708 {
709 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
710 return true;
711 }
712
713 TCGv R0 = cpu_r[0];
714 TCGv R1 = cpu_r[1];
715 TCGv Rd = cpu_r[a->rd];
716 TCGv Rr = cpu_r[a->rr];
717 TCGv R = tcg_temp_new_i32();
718
719 tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */
720 tcg_gen_andi_tl(R0, R, 0xff);
721 tcg_gen_shri_tl(R1, R, 8);
722
723 /* update status register */
724 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
725 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
726 return true;
727 }
728
729 /*
730 * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication.
731 */
732 static bool trans_MULS(DisasContext *ctx, arg_MULS *a)
733 {
734 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
735 return true;
736 }
737
738 TCGv R0 = cpu_r[0];
739 TCGv R1 = cpu_r[1];
740 TCGv Rd = cpu_r[a->rd];
741 TCGv Rr = cpu_r[a->rr];
742 TCGv R = tcg_temp_new_i32();
743 TCGv t0 = tcg_temp_new_i32();
744 TCGv t1 = tcg_temp_new_i32();
745
746 tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
747 tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
748 tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */
749 tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
750 tcg_gen_andi_tl(R0, R, 0xff);
751 tcg_gen_shri_tl(R1, R, 8);
752
753 /* update status register */
754 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
755 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
756 return true;
757 }
758
759 /*
760 * This instruction performs 8-bit x 8-bit -> 16-bit multiplication of a
761 * signed and an unsigned number.
762 */
763 static bool trans_MULSU(DisasContext *ctx, arg_MULSU *a)
764 {
765 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
766 return true;
767 }
768
769 TCGv R0 = cpu_r[0];
770 TCGv R1 = cpu_r[1];
771 TCGv Rd = cpu_r[a->rd];
772 TCGv Rr = cpu_r[a->rr];
773 TCGv R = tcg_temp_new_i32();
774 TCGv t0 = tcg_temp_new_i32();
775
776 tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
777 tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */
778 tcg_gen_andi_tl(R, R, 0xffff); /* make R 16 bits */
779 tcg_gen_andi_tl(R0, R, 0xff);
780 tcg_gen_shri_tl(R1, R, 8);
781
782 /* update status register */
783 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
784 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
785 return true;
786 }
787
788 /*
789 * This instruction performs 8-bit x 8-bit -> 16-bit unsigned
790 * multiplication and shifts the result one bit left.
791 */
792 static bool trans_FMUL(DisasContext *ctx, arg_FMUL *a)
793 {
794 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
795 return true;
796 }
797
798 TCGv R0 = cpu_r[0];
799 TCGv R1 = cpu_r[1];
800 TCGv Rd = cpu_r[a->rd];
801 TCGv Rr = cpu_r[a->rr];
802 TCGv R = tcg_temp_new_i32();
803
804 tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */
805
806 /* update status register */
807 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
808 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
809
810 /* update output registers */
811 tcg_gen_shli_tl(R, R, 1);
812 tcg_gen_andi_tl(R0, R, 0xff);
813 tcg_gen_shri_tl(R1, R, 8);
814 tcg_gen_andi_tl(R1, R1, 0xff);
815 return true;
816 }
817
818 /*
819 * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
820 * and shifts the result one bit left.
821 */
822 static bool trans_FMULS(DisasContext *ctx, arg_FMULS *a)
823 {
824 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
825 return true;
826 }
827
828 TCGv R0 = cpu_r[0];
829 TCGv R1 = cpu_r[1];
830 TCGv Rd = cpu_r[a->rd];
831 TCGv Rr = cpu_r[a->rr];
832 TCGv R = tcg_temp_new_i32();
833 TCGv t0 = tcg_temp_new_i32();
834 TCGv t1 = tcg_temp_new_i32();
835
836 tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
837 tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
838 tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */
839 tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
840
841 /* update status register */
842 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
843 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
844
845 /* update output registers */
846 tcg_gen_shli_tl(R, R, 1);
847 tcg_gen_andi_tl(R0, R, 0xff);
848 tcg_gen_shri_tl(R1, R, 8);
849 tcg_gen_andi_tl(R1, R1, 0xff);
850 return true;
851 }
852
853 /*
854 * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
855 * and shifts the result one bit left.
856 */
857 static bool trans_FMULSU(DisasContext *ctx, arg_FMULSU *a)
858 {
859 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
860 return true;
861 }
862
863 TCGv R0 = cpu_r[0];
864 TCGv R1 = cpu_r[1];
865 TCGv Rd = cpu_r[a->rd];
866 TCGv Rr = cpu_r[a->rr];
867 TCGv R = tcg_temp_new_i32();
868 TCGv t0 = tcg_temp_new_i32();
869
870 tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
871 tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */
872 tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
873
874 /* update status register */
875 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
876 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
877
878 /* update output registers */
879 tcg_gen_shli_tl(R, R, 1);
880 tcg_gen_andi_tl(R0, R, 0xff);
881 tcg_gen_shri_tl(R1, R, 8);
882 tcg_gen_andi_tl(R1, R1, 0xff);
883 return true;
884 }
885
886 /*
887 * The module is an instruction set extension to the AVR CPU, performing
888 * DES iterations. The 64-bit data block (plaintext or ciphertext) is placed in
889 * the CPU register file, registers R0-R7, where LSB of data is placed in LSB
890 * of R0 and MSB of data is placed in MSB of R7. The full 64-bit key (including
891 * parity bits) is placed in registers R8- R15, organized in the register file
892 * with LSB of key in LSB of R8 and MSB of key in MSB of R15. Executing one DES
893 * instruction performs one round in the DES algorithm. Sixteen rounds must be
894 * executed in increasing order to form the correct DES ciphertext or
895 * plaintext. Intermediate results are stored in the register file (R0-R15)
896 * after each DES instruction. The instruction's operand (K) determines which
897 * round is executed, and the half carry flag (H) determines whether encryption
898 * or decryption is performed. The DES algorithm is described in
899 * "Specifications for the Data Encryption Standard" (Federal Information
900 * Processing Standards Publication 46). Intermediate results in this
901 * implementation differ from the standard because the initial permutation and
902 * the inverse initial permutation are performed each iteration. This does not
903 * affect the result in the final ciphertext or plaintext, but reduces
904 * execution time.
905 */
906 static bool trans_DES(DisasContext *ctx, arg_DES *a)
907 {
908 /* TODO */
909 if (!avr_have_feature(ctx, AVR_FEATURE_DES)) {
910 return true;
911 }
912
913 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
914
915 return true;
916 }
917
918 /*
919 * Branch Instructions
920 */
921 static void gen_jmp_ez(DisasContext *ctx)
922 {
923 tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
924 tcg_gen_or_tl(cpu_pc, cpu_pc, cpu_eind);
925 ctx->base.is_jmp = DISAS_LOOKUP;
926 }
927
928 static void gen_jmp_z(DisasContext *ctx)
929 {
930 tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
931 ctx->base.is_jmp = DISAS_LOOKUP;
932 }
933
934 static void gen_push_ret(DisasContext *ctx, int ret)
935 {
936 if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) {
937 TCGv t0 = tcg_constant_i32(ret & 0x0000ff);
938
939 tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_UB);
940 tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
941 } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) {
942 TCGv t0 = tcg_constant_i32(ret & 0x00ffff);
943
944 tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
945 tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_BEUW);
946 tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
947 } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) {
948 TCGv lo = tcg_constant_i32(ret & 0x0000ff);
949 TCGv hi = tcg_constant_i32((ret & 0xffff00) >> 8);
950
951 tcg_gen_qemu_st_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
952 tcg_gen_subi_tl(cpu_sp, cpu_sp, 2);
953 tcg_gen_qemu_st_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
954 tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
955 }
956 }
957
958 static void gen_pop_ret(DisasContext *ctx, TCGv ret)
959 {
960 if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) {
961 tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
962 tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_UB);
963 } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) {
964 tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
965 tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_BEUW);
966 tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
967 } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) {
968 TCGv lo = tcg_temp_new_i32();
969 TCGv hi = tcg_temp_new_i32();
970
971 tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
972 tcg_gen_qemu_ld_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
973
974 tcg_gen_addi_tl(cpu_sp, cpu_sp, 2);
975 tcg_gen_qemu_ld_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
976
977 tcg_gen_deposit_tl(ret, lo, hi, 8, 16);
978 }
979 }
980
981 static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest)
982 {
983 const TranslationBlock *tb = ctx->base.tb;
984
985 if (translator_use_goto_tb(&ctx->base, dest)) {
986 tcg_gen_goto_tb(n);
987 tcg_gen_movi_i32(cpu_pc, dest);
988 tcg_gen_exit_tb(tb, n);
989 } else {
990 tcg_gen_movi_i32(cpu_pc, dest);
991 tcg_gen_lookup_and_goto_ptr();
992 }
993 ctx->base.is_jmp = DISAS_NORETURN;
994 }
995
996 /*
997 * Relative jump to an address within PC - 2K +1 and PC + 2K (words). For
998 * AVR microcontrollers with Program memory not exceeding 4K words (8KB) this
999 * instruction can address the entire memory from every address location. See
1000 * also JMP.
1001 */
1002 static bool trans_RJMP(DisasContext *ctx, arg_RJMP *a)
1003 {
1004 int dst = ctx->npc + a->imm;
1005
1006 gen_goto_tb(ctx, 0, dst);
1007
1008 return true;
1009 }
1010
1011 /*
1012 * Indirect jump to the address pointed to by the Z (16 bits) Pointer
1013 * Register in the Register File. The Z-pointer Register is 16 bits wide and
1014 * allows jump within the lowest 64K words (128KB) section of Program memory.
1015 * This instruction is not available in all devices. Refer to the device
1016 * specific instruction set summary.
1017 */
1018 static bool trans_IJMP(DisasContext *ctx, arg_IJMP *a)
1019 {
1020 if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) {
1021 return true;
1022 }
1023
1024 gen_jmp_z(ctx);
1025
1026 return true;
1027 }
1028
1029 /*
1030 * Indirect jump to the address pointed to by the Z (16 bits) Pointer
1031 * Register in the Register File and the EIND Register in the I/O space. This
1032 * instruction allows for indirect jumps to the entire 4M (words) Program
1033 * memory space. See also IJMP. This instruction is not available in all
1034 * devices. Refer to the device specific instruction set summary.
1035 */
1036 static bool trans_EIJMP(DisasContext *ctx, arg_EIJMP *a)
1037 {
1038 if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) {
1039 return true;
1040 }
1041
1042 gen_jmp_ez(ctx);
1043 return true;
1044 }
1045
1046 /*
1047 * Jump to an address within the entire 4M (words) Program memory. See also
1048 * RJMP. This instruction is not available in all devices. Refer to the device
1049 * specific instruction set summary.0
1050 */
1051 static bool trans_JMP(DisasContext *ctx, arg_JMP *a)
1052 {
1053 if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) {
1054 return true;
1055 }
1056
1057 gen_goto_tb(ctx, 0, a->imm);
1058
1059 return true;
1060 }
1061
1062 /*
1063 * Relative call to an address within PC - 2K + 1 and PC + 2K (words). The
1064 * return address (the instruction after the RCALL) is stored onto the Stack.
1065 * See also CALL. For AVR microcontrollers with Program memory not exceeding 4K
1066 * words (8KB) this instruction can address the entire memory from every
1067 * address location. The Stack Pointer uses a post-decrement scheme during
1068 * RCALL.
1069 */
1070 static bool trans_RCALL(DisasContext *ctx, arg_RCALL *a)
1071 {
1072 int ret = ctx->npc;
1073 int dst = ctx->npc + a->imm;
1074
1075 gen_push_ret(ctx, ret);
1076 gen_goto_tb(ctx, 0, dst);
1077
1078 return true;
1079 }
1080
1081 /*
1082 * Calls to a subroutine within the entire 4M (words) Program memory. The
1083 * return address (to the instruction after the CALL) will be stored onto the
1084 * Stack. See also RCALL. The Stack Pointer uses a post-decrement scheme during
1085 * CALL. This instruction is not available in all devices. Refer to the device
1086 * specific instruction set summary.
1087 */
1088 static bool trans_ICALL(DisasContext *ctx, arg_ICALL *a)
1089 {
1090 if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) {
1091 return true;
1092 }
1093
1094 int ret = ctx->npc;
1095
1096 gen_push_ret(ctx, ret);
1097 gen_jmp_z(ctx);
1098
1099 return true;
1100 }
1101
1102 /*
1103 * Indirect call of a subroutine pointed to by the Z (16 bits) Pointer
1104 * Register in the Register File and the EIND Register in the I/O space. This
1105 * instruction allows for indirect calls to the entire 4M (words) Program
1106 * memory space. See also ICALL. The Stack Pointer uses a post-decrement scheme
1107 * during EICALL. This instruction is not available in all devices. Refer to
1108 * the device specific instruction set summary.
1109 */
1110 static bool trans_EICALL(DisasContext *ctx, arg_EICALL *a)
1111 {
1112 if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) {
1113 return true;
1114 }
1115
1116 int ret = ctx->npc;
1117
1118 gen_push_ret(ctx, ret);
1119 gen_jmp_ez(ctx);
1120 return true;
1121 }
1122
1123 /*
1124 * Calls to a subroutine within the entire Program memory. The return
1125 * address (to the instruction after the CALL) will be stored onto the Stack.
1126 * (See also RCALL). The Stack Pointer uses a post-decrement scheme during
1127 * CALL. This instruction is not available in all devices. Refer to the device
1128 * specific instruction set summary.
1129 */
1130 static bool trans_CALL(DisasContext *ctx, arg_CALL *a)
1131 {
1132 if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) {
1133 return true;
1134 }
1135
1136 int Imm = a->imm;
1137 int ret = ctx->npc;
1138
1139 gen_push_ret(ctx, ret);
1140 gen_goto_tb(ctx, 0, Imm);
1141
1142 return true;
1143 }
1144
1145 /*
1146 * Returns from subroutine. The return address is loaded from the STACK.
1147 * The Stack Pointer uses a preincrement scheme during RET.
1148 */
1149 static bool trans_RET(DisasContext *ctx, arg_RET *a)
1150 {
1151 gen_pop_ret(ctx, cpu_pc);
1152
1153 ctx->base.is_jmp = DISAS_LOOKUP;
1154 return true;
1155 }
1156
1157 /*
1158 * Returns from interrupt. The return address is loaded from the STACK and
1159 * the Global Interrupt Flag is set. Note that the Status Register is not
1160 * automatically stored when entering an interrupt routine, and it is not
1161 * restored when returning from an interrupt routine. This must be handled by
1162 * the application program. The Stack Pointer uses a pre-increment scheme
1163 * during RETI.
1164 */
1165 static bool trans_RETI(DisasContext *ctx, arg_RETI *a)
1166 {
1167 gen_pop_ret(ctx, cpu_pc);
1168 tcg_gen_movi_tl(cpu_If, 1);
1169
1170 /* Need to return to main loop to re-evaluate interrupts. */
1171 ctx->base.is_jmp = DISAS_EXIT;
1172 return true;
1173 }
1174
1175 /*
1176 * This instruction performs a compare between two registers Rd and Rr, and
1177 * skips the next instruction if Rd = Rr.
1178 */
1179 static bool trans_CPSE(DisasContext *ctx, arg_CPSE *a)
1180 {
1181 ctx->skip_cond = TCG_COND_EQ;
1182 ctx->skip_var0 = cpu_r[a->rd];
1183 ctx->skip_var1 = cpu_r[a->rr];
1184 return true;
1185 }
1186
1187 /*
1188 * This instruction performs a compare between two registers Rd and Rr.
1189 * None of the registers are changed. All conditional branches can be used
1190 * after this instruction.
1191 */
1192 static bool trans_CP(DisasContext *ctx, arg_CP *a)
1193 {
1194 TCGv Rd = cpu_r[a->rd];
1195 TCGv Rr = cpu_r[a->rr];
1196 TCGv R = tcg_temp_new_i32();
1197
1198 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
1199 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
1200
1201 /* update status register */
1202 gen_sub_CHf(R, Rd, Rr);
1203 gen_sub_Vf(R, Rd, Rr);
1204 gen_ZNSf(R);
1205 return true;
1206 }
1207
1208 /*
1209 * This instruction performs a compare between two registers Rd and Rr and
1210 * also takes into account the previous carry. None of the registers are
1211 * changed. All conditional branches can be used after this instruction.
1212 */
1213 static bool trans_CPC(DisasContext *ctx, arg_CPC *a)
1214 {
1215 TCGv Rd = cpu_r[a->rd];
1216 TCGv Rr = cpu_r[a->rr];
1217 TCGv R = tcg_temp_new_i32();
1218 TCGv zero = tcg_constant_i32(0);
1219
1220 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
1221 tcg_gen_sub_tl(R, R, cpu_Cf);
1222 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
1223 /* update status register */
1224 gen_sub_CHf(R, Rd, Rr);
1225 gen_sub_Vf(R, Rd, Rr);
1226 gen_NSf(R);
1227
1228 /*
1229 * Previous value remains unchanged when the result is zero;
1230 * cleared otherwise.
1231 */
1232 tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero);
1233 return true;
1234 }
1235
1236 /*
1237 * This instruction performs a compare between register Rd and a constant.
1238 * The register is not changed. All conditional branches can be used after this
1239 * instruction.
1240 */
1241 static bool trans_CPI(DisasContext *ctx, arg_CPI *a)
1242 {
1243 TCGv Rd = cpu_r[a->rd];
1244 int Imm = a->imm;
1245 TCGv Rr = tcg_constant_i32(Imm);
1246 TCGv R = tcg_temp_new_i32();
1247
1248 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
1249 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
1250
1251 /* update status register */
1252 gen_sub_CHf(R, Rd, Rr);
1253 gen_sub_Vf(R, Rd, Rr);
1254 gen_ZNSf(R);
1255 return true;
1256 }
1257
1258 /*
1259 * This instruction tests a single bit in a register and skips the next
1260 * instruction if the bit is cleared.
1261 */
1262 static bool trans_SBRC(DisasContext *ctx, arg_SBRC *a)
1263 {
1264 TCGv Rr = cpu_r[a->rr];
1265
1266 ctx->skip_cond = TCG_COND_EQ;
1267 ctx->skip_var0 = tcg_temp_new();
1268
1269 tcg_gen_andi_tl(ctx->skip_var0, Rr, 1 << a->bit);
1270 return true;
1271 }
1272
1273 /*
1274 * This instruction tests a single bit in a register and skips the next
1275 * instruction if the bit is set.
1276 */
1277 static bool trans_SBRS(DisasContext *ctx, arg_SBRS *a)
1278 {
1279 TCGv Rr = cpu_r[a->rr];
1280
1281 ctx->skip_cond = TCG_COND_NE;
1282 ctx->skip_var0 = tcg_temp_new();
1283
1284 tcg_gen_andi_tl(ctx->skip_var0, Rr, 1 << a->bit);
1285 return true;
1286 }
1287
1288 /*
1289 * This instruction tests a single bit in an I/O Register and skips the
1290 * next instruction if the bit is cleared. This instruction operates on the
1291 * lower 32 I/O Registers -- addresses 0-31.
1292 */
1293 static bool trans_SBIC(DisasContext *ctx, arg_SBIC *a)
1294 {
1295 TCGv data = tcg_temp_new_i32();
1296 TCGv port = tcg_constant_i32(a->reg);
1297
1298 gen_helper_inb(data, tcg_env, port);
1299 tcg_gen_andi_tl(data, data, 1 << a->bit);
1300 ctx->skip_cond = TCG_COND_EQ;
1301 ctx->skip_var0 = data;
1302
1303 return true;
1304 }
1305
1306 /*
1307 * This instruction tests a single bit in an I/O Register and skips the
1308 * next instruction if the bit is set. This instruction operates on the lower
1309 * 32 I/O Registers -- addresses 0-31.
1310 */
1311 static bool trans_SBIS(DisasContext *ctx, arg_SBIS *a)
1312 {
1313 TCGv data = tcg_temp_new_i32();
1314 TCGv port = tcg_constant_i32(a->reg);
1315
1316 gen_helper_inb(data, tcg_env, port);
1317 tcg_gen_andi_tl(data, data, 1 << a->bit);
1318 ctx->skip_cond = TCG_COND_NE;
1319 ctx->skip_var0 = data;
1320
1321 return true;
1322 }
1323
1324 /*
1325 * Conditional relative branch. Tests a single bit in SREG and branches
1326 * relatively to PC if the bit is cleared. This instruction branches relatively
1327 * to PC in either direction (PC - 63 < = destination <= PC + 64). The
1328 * parameter k is the offset from PC and is represented in two's complement
1329 * form.
1330 */
1331 static bool trans_BRBC(DisasContext *ctx, arg_BRBC *a)
1332 {
1333 TCGLabel *not_taken = gen_new_label();
1334
1335 TCGv var;
1336
1337 switch (a->bit) {
1338 case 0x00:
1339 var = cpu_Cf;
1340 break;
1341 case 0x01:
1342 var = cpu_Zf;
1343 break;
1344 case 0x02:
1345 var = cpu_Nf;
1346 break;
1347 case 0x03:
1348 var = cpu_Vf;
1349 break;
1350 case 0x04:
1351 var = cpu_Sf;
1352 break;
1353 case 0x05:
1354 var = cpu_Hf;
1355 break;
1356 case 0x06:
1357 var = cpu_Tf;
1358 break;
1359 case 0x07:
1360 var = cpu_If;
1361 break;
1362 default:
1363 g_assert_not_reached();
1364 }
1365
1366 tcg_gen_brcondi_i32(TCG_COND_NE, var, 0, not_taken);
1367 gen_goto_tb(ctx, 0, ctx->npc + a->imm);
1368 gen_set_label(not_taken);
1369
1370 ctx->base.is_jmp = DISAS_CHAIN;
1371 return true;
1372 }
1373
1374 /*
1375 * Conditional relative branch. Tests a single bit in SREG and branches
1376 * relatively to PC if the bit is set. This instruction branches relatively to
1377 * PC in either direction (PC - 63 < = destination <= PC + 64). The parameter k
1378 * is the offset from PC and is represented in two's complement form.
1379 */
1380 static bool trans_BRBS(DisasContext *ctx, arg_BRBS *a)
1381 {
1382 TCGLabel *not_taken = gen_new_label();
1383
1384 TCGv var;
1385
1386 switch (a->bit) {
1387 case 0x00:
1388 var = cpu_Cf;
1389 break;
1390 case 0x01:
1391 var = cpu_Zf;
1392 break;
1393 case 0x02:
1394 var = cpu_Nf;
1395 break;
1396 case 0x03:
1397 var = cpu_Vf;
1398 break;
1399 case 0x04:
1400 var = cpu_Sf;
1401 break;
1402 case 0x05:
1403 var = cpu_Hf;
1404 break;
1405 case 0x06:
1406 var = cpu_Tf;
1407 break;
1408 case 0x07:
1409 var = cpu_If;
1410 break;
1411 default:
1412 g_assert_not_reached();
1413 }
1414
1415 tcg_gen_brcondi_i32(TCG_COND_EQ, var, 0, not_taken);
1416 gen_goto_tb(ctx, 0, ctx->npc + a->imm);
1417 gen_set_label(not_taken);
1418
1419 ctx->base.is_jmp = DISAS_CHAIN;
1420 return true;
1421 }
1422
1423 /*
1424 * Data Transfer Instructions
1425 */
1426
1427 /*
1428 * in the gen_set_addr & gen_get_addr functions
1429 * H assumed to be in 0x00ff0000 format
1430 * M assumed to be in 0x000000ff format
1431 * L assumed to be in 0x000000ff format
1432 */
1433 static void gen_set_addr(TCGv addr, TCGv H, TCGv M, TCGv L)
1434 {
1435
1436 tcg_gen_andi_tl(L, addr, 0x000000ff);
1437
1438 tcg_gen_andi_tl(M, addr, 0x0000ff00);
1439 tcg_gen_shri_tl(M, M, 8);
1440
1441 tcg_gen_andi_tl(H, addr, 0x00ff0000);
1442 }
1443
1444 static void gen_set_xaddr(TCGv addr)
1445 {
1446 gen_set_addr(addr, cpu_rampX, cpu_r[27], cpu_r[26]);
1447 }
1448
1449 static void gen_set_yaddr(TCGv addr)
1450 {
1451 gen_set_addr(addr, cpu_rampY, cpu_r[29], cpu_r[28]);
1452 }
1453
1454 static void gen_set_zaddr(TCGv addr)
1455 {
1456 gen_set_addr(addr, cpu_rampZ, cpu_r[31], cpu_r[30]);
1457 }
1458
1459 static TCGv gen_get_addr(TCGv H, TCGv M, TCGv L)
1460 {
1461 TCGv addr = tcg_temp_new_i32();
1462
1463 tcg_gen_deposit_tl(addr, M, H, 8, 8);
1464 tcg_gen_deposit_tl(addr, L, addr, 8, 16);
1465
1466 return addr;
1467 }
1468
1469 static TCGv gen_get_xaddr(void)
1470 {
1471 return gen_get_addr(cpu_rampX, cpu_r[27], cpu_r[26]);
1472 }
1473
1474 static TCGv gen_get_yaddr(void)
1475 {
1476 return gen_get_addr(cpu_rampY, cpu_r[29], cpu_r[28]);
1477 }
1478
1479 static TCGv gen_get_zaddr(void)
1480 {
1481 return gen_get_addr(cpu_rampZ, cpu_r[31], cpu_r[30]);
1482 }
1483
1484 /*
1485 * Load one byte indirect from data space to register and stores an clear
1486 * the bits in data space specified by the register. The instruction can only
1487 * be used towards internal SRAM. The data location is pointed to by the Z (16
1488 * bits) Pointer Register in the Register File. Memory access is limited to the
1489 * current data segment of 64KB. To access another data segment in devices with
1490 * more than 64KB data space, the RAMPZ in register in the I/O area has to be
1491 * changed. The Z-pointer Register is left unchanged by the operation. This
1492 * instruction is especially suited for clearing status bits stored in SRAM.
1493 */
1494 static void gen_data_store(DisasContext *ctx, TCGv data, TCGv addr)
1495 {
1496 if (ctx->base.tb->flags & TB_FLAGS_FULL_ACCESS) {
1497 gen_helper_fullwr(tcg_env, data, addr);
1498 } else {
1499 tcg_gen_qemu_st_tl(data, addr, MMU_DATA_IDX, MO_UB);
1500 }
1501 }
1502
1503 static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr)
1504 {
1505 if (ctx->base.tb->flags & TB_FLAGS_FULL_ACCESS) {
1506 gen_helper_fullrd(data, tcg_env, addr);
1507 } else {
1508 tcg_gen_qemu_ld_tl(data, addr, MMU_DATA_IDX, MO_UB);
1509 }
1510 }
1511
1512 /*
1513 * This instruction makes a copy of one register into another. The source
1514 * register Rr is left unchanged, while the destination register Rd is loaded
1515 * with a copy of Rr.
1516 */
1517 static bool trans_MOV(DisasContext *ctx, arg_MOV *a)
1518 {
1519 TCGv Rd = cpu_r[a->rd];
1520 TCGv Rr = cpu_r[a->rr];
1521
1522 tcg_gen_mov_tl(Rd, Rr);
1523
1524 return true;
1525 }
1526
1527 /*
1528 * This instruction makes a copy of one register pair into another register
1529 * pair. The source register pair Rr+1:Rr is left unchanged, while the
1530 * destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr. This
1531 * instruction is not available in all devices. Refer to the device specific
1532 * instruction set summary.
1533 */
1534 static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a)
1535 {
1536 if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) {
1537 return true;
1538 }
1539
1540 TCGv RdL = cpu_r[a->rd];
1541 TCGv RdH = cpu_r[a->rd + 1];
1542 TCGv RrL = cpu_r[a->rr];
1543 TCGv RrH = cpu_r[a->rr + 1];
1544
1545 tcg_gen_mov_tl(RdH, RrH);
1546 tcg_gen_mov_tl(RdL, RrL);
1547
1548 return true;
1549 }
1550
1551 /*
1552 * Loads an 8 bit constant directly to register 16 to 31.
1553 */
1554 static bool trans_LDI(DisasContext *ctx, arg_LDI *a)
1555 {
1556 TCGv Rd = cpu_r[a->rd];
1557 int imm = a->imm;
1558
1559 tcg_gen_movi_tl(Rd, imm);
1560
1561 return true;
1562 }
1563
1564 /*
1565 * Loads one byte from the data space to a register. For parts with SRAM,
1566 * the data space consists of the Register File, I/O memory and internal SRAM
1567 * (and external SRAM if applicable). For parts without SRAM, the data space
1568 * consists of the register file only. The EEPROM has a separate address space.
1569 * A 16-bit address must be supplied. Memory access is limited to the current
1570 * data segment of 64KB. The LDS instruction uses the RAMPD Register to access
1571 * memory above 64KB. To access another data segment in devices with more than
1572 * 64KB data space, the RAMPD in register in the I/O area has to be changed.
1573 * This instruction is not available in all devices. Refer to the device
1574 * specific instruction set summary.
1575 */
1576 static bool trans_LDS(DisasContext *ctx, arg_LDS *a)
1577 {
1578 TCGv Rd = cpu_r[a->rd];
1579 TCGv addr = tcg_temp_new_i32();
1580 TCGv H = cpu_rampD;
1581 a->imm = next_word(ctx);
1582
1583 tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
1584 tcg_gen_shli_tl(addr, addr, 16);
1585 tcg_gen_ori_tl(addr, addr, a->imm);
1586
1587 gen_data_load(ctx, Rd, addr);
1588 return true;
1589 }
1590
1591 /*
1592 * Loads one byte indirect from the data space to a register. For parts
1593 * with SRAM, the data space consists of the Register File, I/O memory and
1594 * internal SRAM (and external SRAM if applicable). For parts without SRAM, the
1595 * data space consists of the Register File only. In some parts the Flash
1596 * Memory has been mapped to the data space and can be read using this command.
1597 * The EEPROM has a separate address space. The data location is pointed to by
1598 * the X (16 bits) Pointer Register in the Register File. Memory access is
1599 * limited to the current data segment of 64KB. To access another data segment
1600 * in devices with more than 64KB data space, the RAMPX in register in the I/O
1601 * area has to be changed. The X-pointer Register can either be left unchanged
1602 * by the operation, or it can be post-incremented or predecremented. These
1603 * features are especially suited for accessing arrays, tables, and Stack
1604 * Pointer usage of the X-pointer Register. Note that only the low byte of the
1605 * X-pointer is updated in devices with no more than 256 bytes data space. For
1606 * such devices, the high byte of the pointer is not used by this instruction
1607 * and can be used for other purposes. The RAMPX Register in the I/O area is
1608 * updated in parts with more than 64KB data space or more than 64KB Program
1609 * memory, and the increment/decrement is added to the entire 24-bit address on
1610 * such devices. Not all variants of this instruction is available in all
1611 * devices. Refer to the device specific instruction set summary. In the
1612 * Reduced Core tinyAVR the LD instruction can be used to achieve the same
1613 * operation as LPM since the program memory is mapped to the data memory
1614 * space.
1615 */
1616 static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a)
1617 {
1618 TCGv Rd = cpu_r[a->rd];
1619 TCGv addr = gen_get_xaddr();
1620
1621 gen_data_load(ctx, Rd, addr);
1622 return true;
1623 }
1624
1625 static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a)
1626 {
1627 TCGv Rd = cpu_r[a->rd];
1628 TCGv addr = gen_get_xaddr();
1629
1630 gen_data_load(ctx, Rd, addr);
1631 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
1632
1633 gen_set_xaddr(addr);
1634 return true;
1635 }
1636
1637 static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a)
1638 {
1639 TCGv Rd = cpu_r[a->rd];
1640 TCGv addr = gen_get_xaddr();
1641
1642 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
1643 gen_data_load(ctx, Rd, addr);
1644 gen_set_xaddr(addr);
1645 return true;
1646 }
1647
1648 /*
1649 * Loads one byte indirect with or without displacement from the data space
1650 * to a register. For parts with SRAM, the data space consists of the Register
1651 * File, I/O memory and internal SRAM (and external SRAM if applicable). For
1652 * parts without SRAM, the data space consists of the Register File only. In
1653 * some parts the Flash Memory has been mapped to the data space and can be
1654 * read using this command. The EEPROM has a separate address space. The data
1655 * location is pointed to by the Y (16 bits) Pointer Register in the Register
1656 * File. Memory access is limited to the current data segment of 64KB. To
1657 * access another data segment in devices with more than 64KB data space, the
1658 * RAMPY in register in the I/O area has to be changed. The Y-pointer Register
1659 * can either be left unchanged by the operation, or it can be post-incremented
1660 * or predecremented. These features are especially suited for accessing
1661 * arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note that
1662 * only the low byte of the Y-pointer is updated in devices with no more than
1663 * 256 bytes data space. For such devices, the high byte of the pointer is not
1664 * used by this instruction and can be used for other purposes. The RAMPY
1665 * Register in the I/O area is updated in parts with more than 64KB data space
1666 * or more than 64KB Program memory, and the increment/decrement/displacement
1667 * is added to the entire 24-bit address on such devices. Not all variants of
1668 * this instruction is available in all devices. Refer to the device specific
1669 * instruction set summary. In the Reduced Core tinyAVR the LD instruction can
1670 * be used to achieve the same operation as LPM since the program memory is
1671 * mapped to the data memory space.
1672 */
1673 static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a)
1674 {
1675 TCGv Rd = cpu_r[a->rd];
1676 TCGv addr = gen_get_yaddr();
1677
1678 gen_data_load(ctx, Rd, addr);
1679 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
1680
1681 gen_set_yaddr(addr);
1682 return true;
1683 }
1684
1685 static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a)
1686 {
1687 TCGv Rd = cpu_r[a->rd];
1688 TCGv addr = gen_get_yaddr();
1689
1690 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
1691 gen_data_load(ctx, Rd, addr);
1692 gen_set_yaddr(addr);
1693 return true;
1694 }
1695
1696 static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a)
1697 {
1698 TCGv Rd = cpu_r[a->rd];
1699 TCGv addr = gen_get_yaddr();
1700
1701 tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
1702 gen_data_load(ctx, Rd, addr);
1703 return true;
1704 }
1705
1706 /*
1707 * Loads one byte indirect with or without displacement from the data space
1708 * to a register. For parts with SRAM, the data space consists of the Register
1709 * File, I/O memory and internal SRAM (and external SRAM if applicable). For
1710 * parts without SRAM, the data space consists of the Register File only. In
1711 * some parts the Flash Memory has been mapped to the data space and can be
1712 * read using this command. The EEPROM has a separate address space. The data
1713 * location is pointed to by the Z (16 bits) Pointer Register in the Register
1714 * File. Memory access is limited to the current data segment of 64KB. To
1715 * access another data segment in devices with more than 64KB data space, the
1716 * RAMPZ in register in the I/O area has to be changed. The Z-pointer Register
1717 * can either be left unchanged by the operation, or it can be post-incremented
1718 * or predecremented. These features are especially suited for Stack Pointer
1719 * usage of the Z-pointer Register, however because the Z-pointer Register can
1720 * be used for indirect subroutine calls, indirect jumps and table lookup, it
1721 * is often more convenient to use the X or Y-pointer as a dedicated Stack
1722 * Pointer. Note that only the low byte of the Z-pointer is updated in devices
1723 * with no more than 256 bytes data space. For such devices, the high byte of
1724 * the pointer is not used by this instruction and can be used for other
1725 * purposes. The RAMPZ Register in the I/O area is updated in parts with more
1726 * than 64KB data space or more than 64KB Program memory, and the
1727 * increment/decrement/displacement is added to the entire 24-bit address on
1728 * such devices. Not all variants of this instruction is available in all
1729 * devices. Refer to the device specific instruction set summary. In the
1730 * Reduced Core tinyAVR the LD instruction can be used to achieve the same
1731 * operation as LPM since the program memory is mapped to the data memory
1732 * space. For using the Z-pointer for table lookup in Program memory see the
1733 * LPM and ELPM instructions.
1734 */
1735 static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a)
1736 {
1737 TCGv Rd = cpu_r[a->rd];
1738 TCGv addr = gen_get_zaddr();
1739
1740 gen_data_load(ctx, Rd, addr);
1741 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
1742
1743 gen_set_zaddr(addr);
1744 return true;
1745 }
1746
1747 static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a)
1748 {
1749 TCGv Rd = cpu_r[a->rd];
1750 TCGv addr = gen_get_zaddr();
1751
1752 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
1753 gen_data_load(ctx, Rd, addr);
1754
1755 gen_set_zaddr(addr);
1756 return true;
1757 }
1758
1759 static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a)
1760 {
1761 TCGv Rd = cpu_r[a->rd];
1762 TCGv addr = gen_get_zaddr();
1763
1764 tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
1765 gen_data_load(ctx, Rd, addr);
1766 return true;
1767 }
1768
1769 /*
1770 * Stores one byte from a Register to the data space. For parts with SRAM,
1771 * the data space consists of the Register File, I/O memory and internal SRAM
1772 * (and external SRAM if applicable). For parts without SRAM, the data space
1773 * consists of the Register File only. The EEPROM has a separate address space.
1774 * A 16-bit address must be supplied. Memory access is limited to the current
1775 * data segment of 64KB. The STS instruction uses the RAMPD Register to access
1776 * memory above 64KB. To access another data segment in devices with more than
1777 * 64KB data space, the RAMPD in register in the I/O area has to be changed.
1778 * This instruction is not available in all devices. Refer to the device
1779 * specific instruction set summary.
1780 */
1781 static bool trans_STS(DisasContext *ctx, arg_STS *a)
1782 {
1783 TCGv Rd = cpu_r[a->rd];
1784 TCGv addr = tcg_temp_new_i32();
1785 TCGv H = cpu_rampD;
1786 a->imm = next_word(ctx);
1787
1788 tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
1789 tcg_gen_shli_tl(addr, addr, 16);
1790 tcg_gen_ori_tl(addr, addr, a->imm);
1791 gen_data_store(ctx, Rd, addr);
1792 return true;
1793 }
1794
1795 /*
1796 * Stores one byte indirect from a register to data space. For parts with SRAM,
1797 * the data space consists of the Register File, I/O memory, and internal SRAM
1798 * (and external SRAM if applicable). For parts without SRAM, the data space
1799 * consists of the Register File only. The EEPROM has a separate address space.
1800 *
1801 * The data location is pointed to by the X (16 bits) Pointer Register in the
1802 * Register File. Memory access is limited to the current data segment of 64KB.
1803 * To access another data segment in devices with more than 64KB data space, the
1804 * RAMPX in register in the I/O area has to be changed.
1805 *
1806 * The X-pointer Register can either be left unchanged by the operation, or it
1807 * can be post-incremented or pre-decremented. These features are especially
1808 * suited for accessing arrays, tables, and Stack Pointer usage of the
1809 * X-pointer Register. Note that only the low byte of the X-pointer is updated
1810 * in devices with no more than 256 bytes data space. For such devices, the high
1811 * byte of the pointer is not used by this instruction and can be used for other
1812 * purposes. The RAMPX Register in the I/O area is updated in parts with more
1813 * than 64KB data space or more than 64KB Program memory, and the increment /
1814 * decrement is added to the entire 24-bit address on such devices.
1815 */
1816 static bool trans_STX1(DisasContext *ctx, arg_STX1 *a)
1817 {
1818 TCGv Rd = cpu_r[a->rr];
1819 TCGv addr = gen_get_xaddr();
1820
1821 gen_data_store(ctx, Rd, addr);
1822 return true;
1823 }
1824
1825 static bool trans_STX2(DisasContext *ctx, arg_STX2 *a)
1826 {
1827 TCGv Rd = cpu_r[a->rr];
1828 TCGv addr = gen_get_xaddr();
1829
1830 gen_data_store(ctx, Rd, addr);
1831 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
1832 gen_set_xaddr(addr);
1833 return true;
1834 }
1835
1836 static bool trans_STX3(DisasContext *ctx, arg_STX3 *a)
1837 {
1838 TCGv Rd = cpu_r[a->rr];
1839 TCGv addr = gen_get_xaddr();
1840
1841 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
1842 gen_data_store(ctx, Rd, addr);
1843 gen_set_xaddr(addr);
1844 return true;
1845 }
1846
1847 /*
1848 * Stores one byte indirect with or without displacement from a register to data
1849 * space. For parts with SRAM, the data space consists of the Register File, I/O
1850 * memory, and internal SRAM (and external SRAM if applicable). For parts
1851 * without SRAM, the data space consists of the Register File only. The EEPROM
1852 * has a separate address space.
1853 *
1854 * The data location is pointed to by the Y (16 bits) Pointer Register in the
1855 * Register File. Memory access is limited to the current data segment of 64KB.
1856 * To access another data segment in devices with more than 64KB data space, the
1857 * RAMPY in register in the I/O area has to be changed.
1858 *
1859 * The Y-pointer Register can either be left unchanged by the operation, or it
1860 * can be post-incremented or pre-decremented. These features are especially
1861 * suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer
1862 * Register. Note that only the low byte of the Y-pointer is updated in devices
1863 * with no more than 256 bytes data space. For such devices, the high byte of
1864 * the pointer is not used by this instruction and can be used for other
1865 * purposes. The RAMPY Register in the I/O area is updated in parts with more
1866 * than 64KB data space or more than 64KB Program memory, and the increment /
1867 * decrement / displacement is added to the entire 24-bit address on such
1868 * devices.
1869 */
1870 static bool trans_STY2(DisasContext *ctx, arg_STY2 *a)
1871 {
1872 TCGv Rd = cpu_r[a->rd];
1873 TCGv addr = gen_get_yaddr();
1874
1875 gen_data_store(ctx, Rd, addr);
1876 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
1877 gen_set_yaddr(addr);
1878 return true;
1879 }
1880
1881 static bool trans_STY3(DisasContext *ctx, arg_STY3 *a)
1882 {
1883 TCGv Rd = cpu_r[a->rd];
1884 TCGv addr = gen_get_yaddr();
1885
1886 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
1887 gen_data_store(ctx, Rd, addr);
1888 gen_set_yaddr(addr);
1889 return true;
1890 }
1891
1892 static bool trans_STDY(DisasContext *ctx, arg_STDY *a)
1893 {
1894 TCGv Rd = cpu_r[a->rd];
1895 TCGv addr = gen_get_yaddr();
1896
1897 tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
1898 gen_data_store(ctx, Rd, addr);
1899 return true;
1900 }
1901
1902 /*
1903 * Stores one byte indirect with or without displacement from a register to data
1904 * space. For parts with SRAM, the data space consists of the Register File, I/O
1905 * memory, and internal SRAM (and external SRAM if applicable). For parts
1906 * without SRAM, the data space consists of the Register File only. The EEPROM
1907 * has a separate address space.
1908 *
1909 * The data location is pointed to by the Y (16 bits) Pointer Register in the
1910 * Register File. Memory access is limited to the current data segment of 64KB.
1911 * To access another data segment in devices with more than 64KB data space, the
1912 * RAMPY in register in the I/O area has to be changed.
1913 *
1914 * The Y-pointer Register can either be left unchanged by the operation, or it
1915 * can be post-incremented or pre-decremented. These features are especially
1916 * suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer
1917 * Register. Note that only the low byte of the Y-pointer is updated in devices
1918 * with no more than 256 bytes data space. For such devices, the high byte of
1919 * the pointer is not used by this instruction and can be used for other
1920 * purposes. The RAMPY Register in the I/O area is updated in parts with more
1921 * than 64KB data space or more than 64KB Program memory, and the increment /
1922 * decrement / displacement is added to the entire 24-bit address on such
1923 * devices.
1924 */
1925 static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a)
1926 {
1927 TCGv Rd = cpu_r[a->rd];
1928 TCGv addr = gen_get_zaddr();
1929
1930 gen_data_store(ctx, Rd, addr);
1931 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
1932
1933 gen_set_zaddr(addr);
1934 return true;
1935 }
1936
1937 static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a)
1938 {
1939 TCGv Rd = cpu_r[a->rd];
1940 TCGv addr = gen_get_zaddr();
1941
1942 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
1943 gen_data_store(ctx, Rd, addr);
1944
1945 gen_set_zaddr(addr);
1946 return true;
1947 }
1948
1949 static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a)
1950 {
1951 TCGv Rd = cpu_r[a->rd];
1952 TCGv addr = gen_get_zaddr();
1953
1954 tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
1955 gen_data_store(ctx, Rd, addr);
1956 return true;
1957 }
1958
1959 /*
1960 * Loads one byte pointed to by the Z-register into the destination
1961 * register Rd. This instruction features a 100% space effective constant
1962 * initialization or constant data fetch. The Program memory is organized in
1963 * 16-bit words while the Z-pointer is a byte address. Thus, the least
1964 * significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high
1965 * byte (ZLSB = 1). This instruction can address the first 64KB (32K words) of
1966 * Program memory. The Zpointer Register can either be left unchanged by the
1967 * operation, or it can be incremented. The incrementation does not apply to
1968 * the RAMPZ Register.
1969 *
1970 * Devices with Self-Programming capability can use the LPM instruction to read
1971 * the Fuse and Lock bit values.
1972 */
1973 static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a)
1974 {
1975 if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
1976 return true;
1977 }
1978
1979 TCGv Rd = cpu_r[0];
1980 TCGv addr = tcg_temp_new_i32();
1981 TCGv H = cpu_r[31];
1982 TCGv L = cpu_r[30];
1983
1984 tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
1985 tcg_gen_or_tl(addr, addr, L);
1986 tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB);
1987 return true;
1988 }
1989
1990 static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a)
1991 {
1992 if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
1993 return true;
1994 }
1995
1996 TCGv Rd = cpu_r[a->rd];
1997 TCGv addr = tcg_temp_new_i32();
1998 TCGv H = cpu_r[31];
1999 TCGv L = cpu_r[30];
2000
2001 tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
2002 tcg_gen_or_tl(addr, addr, L);
2003 tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB);
2004 return true;
2005 }
2006
2007 static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a)
2008 {
2009 if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) {
2010 return true;
2011 }
2012
2013 TCGv Rd = cpu_r[a->rd];
2014 TCGv addr = tcg_temp_new_i32();
2015 TCGv H = cpu_r[31];
2016 TCGv L = cpu_r[30];
2017
2018 tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
2019 tcg_gen_or_tl(addr, addr, L);
2020 tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB);
2021 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
2022 tcg_gen_andi_tl(L, addr, 0xff);
2023 tcg_gen_shri_tl(addr, addr, 8);
2024 tcg_gen_andi_tl(H, addr, 0xff);
2025 return true;
2026 }
2027
2028 /*
2029 * Loads one byte pointed to by the Z-register and the RAMPZ Register in
2030 * the I/O space, and places this byte in the destination register Rd. This
2031 * instruction features a 100% space effective constant initialization or
2032 * constant data fetch. The Program memory is organized in 16-bit words while
2033 * the Z-pointer is a byte address. Thus, the least significant bit of the
2034 * Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This
2035 * instruction can address the entire Program memory space. The Z-pointer
2036 * Register can either be left unchanged by the operation, or it can be
2037 * incremented. The incrementation applies to the entire 24-bit concatenation
2038 * of the RAMPZ and Z-pointer Registers.
2039 *
2040 * Devices with Self-Programming capability can use the ELPM instruction to
2041 * read the Fuse and Lock bit value.
2042 */
2043 static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a)
2044 {
2045 if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
2046 return true;
2047 }
2048
2049 TCGv Rd = cpu_r[0];
2050 TCGv addr = gen_get_zaddr();
2051
2052 tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB);
2053 return true;
2054 }
2055
2056 static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a)
2057 {
2058 if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
2059 return true;
2060 }
2061
2062 TCGv Rd = cpu_r[a->rd];
2063 TCGv addr = gen_get_zaddr();
2064
2065 tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB);
2066 return true;
2067 }
2068
2069 static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a)
2070 {
2071 if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) {
2072 return true;
2073 }
2074
2075 TCGv Rd = cpu_r[a->rd];
2076 TCGv addr = gen_get_zaddr();
2077
2078 tcg_gen_qemu_ld_tl(Rd, addr, MMU_CODE_IDX, MO_UB);
2079 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
2080 gen_set_zaddr(addr);
2081 return true;
2082 }
2083
2084 /*
2085 * SPM can be used to erase a page in the Program memory, to write a page
2086 * in the Program memory (that is already erased), and to set Boot Loader Lock
2087 * bits. In some devices, the Program memory can be written one word at a time,
2088 * in other devices an entire page can be programmed simultaneously after first
2089 * filling a temporary page buffer. In all cases, the Program memory must be
2090 * erased one page at a time. When erasing the Program memory, the RAMPZ and
2091 * Z-register are used as page address. When writing the Program memory, the
2092 * RAMPZ and Z-register are used as page or word address, and the R1:R0
2093 * register pair is used as data(1). When setting the Boot Loader Lock bits,
2094 * the R1:R0 register pair is used as data. Refer to the device documentation
2095 * for detailed description of SPM usage. This instruction can address the
2096 * entire Program memory.
2097 *
2098 * The SPM instruction is not available in all devices. Refer to the device
2099 * specific instruction set summary.
2100 *
2101 * Note: 1. R1 determines the instruction high byte, and R0 determines the
2102 * instruction low byte.
2103 */
2104 static bool trans_SPM(DisasContext *ctx, arg_SPM *a)
2105 {
2106 /* TODO */
2107 if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) {
2108 return true;
2109 }
2110
2111 return true;
2112 }
2113
2114 static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a)
2115 {
2116 /* TODO */
2117 if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) {
2118 return true;
2119 }
2120
2121 return true;
2122 }
2123
2124 /*
2125 * Loads data from the I/O Space (Ports, Timers, Configuration Registers,
2126 * etc.) into register Rd in the Register File.
2127 */
2128 static bool trans_IN(DisasContext *ctx, arg_IN *a)
2129 {
2130 TCGv Rd = cpu_r[a->rd];
2131 TCGv port = tcg_constant_i32(a->imm);
2132
2133 gen_helper_inb(Rd, tcg_env, port);
2134 return true;
2135 }
2136
2137 /*
2138 * Stores data from register Rr in the Register File to I/O Space (Ports,
2139 * Timers, Configuration Registers, etc.).
2140 */
2141 static bool trans_OUT(DisasContext *ctx, arg_OUT *a)
2142 {
2143 TCGv Rd = cpu_r[a->rd];
2144 TCGv port = tcg_constant_i32(a->imm);
2145
2146 gen_helper_outb(tcg_env, port, Rd);
2147 return true;
2148 }
2149
2150 /*
2151 * This instruction stores the contents of register Rr on the STACK. The
2152 * Stack Pointer is post-decremented by 1 after the PUSH. This instruction is
2153 * not available in all devices. Refer to the device specific instruction set
2154 * summary.
2155 */
2156 static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a)
2157 {
2158 TCGv Rd = cpu_r[a->rd];
2159
2160 gen_data_store(ctx, Rd, cpu_sp);
2161 tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
2162
2163 return true;
2164 }
2165
2166 /*
2167 * This instruction loads register Rd with a byte from the STACK. The Stack
2168 * Pointer is pre-incremented by 1 before the POP. This instruction is not
2169 * available in all devices. Refer to the device specific instruction set
2170 * summary.
2171 */
2172 static bool trans_POP(DisasContext *ctx, arg_POP *a)
2173 {
2174 /*
2175 * Using a temp to work around some strange behaviour:
2176 * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
2177 * gen_data_load(ctx, Rd, cpu_sp);
2178 * seems to cause the add to happen twice.
2179 * This doesn't happen if either the add or the load is removed.
2180 */
2181 TCGv t1 = tcg_temp_new_i32();
2182 TCGv Rd = cpu_r[a->rd];
2183
2184 tcg_gen_addi_tl(t1, cpu_sp, 1);
2185 gen_data_load(ctx, Rd, t1);
2186 tcg_gen_mov_tl(cpu_sp, t1);
2187
2188 return true;
2189 }
2190
2191 /*
2192 * Exchanges one byte indirect between register and data space. The data
2193 * location is pointed to by the Z (16 bits) Pointer Register in the Register
2194 * File. Memory access is limited to the current data segment of 64KB. To
2195 * access another data segment in devices with more than 64KB data space, the
2196 * RAMPZ in register in the I/O area has to be changed.
2197 *
2198 * The Z-pointer Register is left unchanged by the operation. This instruction
2199 * is especially suited for writing/reading status bits stored in SRAM.
2200 */
2201 static bool trans_XCH(DisasContext *ctx, arg_XCH *a)
2202 {
2203 if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
2204 return true;
2205 }
2206
2207 TCGv Rd = cpu_r[a->rd];
2208 TCGv t0 = tcg_temp_new_i32();
2209 TCGv addr = gen_get_zaddr();
2210
2211 gen_data_load(ctx, t0, addr);
2212 gen_data_store(ctx, Rd, addr);
2213 tcg_gen_mov_tl(Rd, t0);
2214 return true;
2215 }
2216
2217 /*
2218 * Load one byte indirect from data space to register and set bits in data
2219 * space specified by the register. The instruction can only be used towards
2220 * internal SRAM. The data location is pointed to by the Z (16 bits) Pointer
2221 * Register in the Register File. Memory access is limited to the current data
2222 * segment of 64KB. To access another data segment in devices with more than
2223 * 64KB data space, the RAMPZ in register in the I/O area has to be changed.
2224 *
2225 * The Z-pointer Register is left unchanged by the operation. This instruction
2226 * is especially suited for setting status bits stored in SRAM.
2227 */
2228 static bool trans_LAS(DisasContext *ctx, arg_LAS *a)
2229 {
2230 if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
2231 return true;
2232 }
2233
2234 TCGv Rr = cpu_r[a->rd];
2235 TCGv addr = gen_get_zaddr();
2236 TCGv t0 = tcg_temp_new_i32();
2237 TCGv t1 = tcg_temp_new_i32();
2238
2239 gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
2240 tcg_gen_or_tl(t1, t0, Rr);
2241 tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
2242 gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
2243 return true;
2244 }
2245
2246 /*
2247 * Load one byte indirect from data space to register and stores and clear
2248 * the bits in data space specified by the register. The instruction can
2249 * only be used towards internal SRAM. The data location is pointed to by
2250 * the Z (16 bits) Pointer Register in the Register File. Memory access is
2251 * limited to the current data segment of 64KB. To access another data
2252 * segment in devices with more than 64KB data space, the RAMPZ in register
2253 * in the I/O area has to be changed.
2254 *
2255 * The Z-pointer Register is left unchanged by the operation. This instruction
2256 * is especially suited for clearing status bits stored in SRAM.
2257 */
2258 static bool trans_LAC(DisasContext *ctx, arg_LAC *a)
2259 {
2260 if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
2261 return true;
2262 }
2263
2264 TCGv Rr = cpu_r[a->rd];
2265 TCGv addr = gen_get_zaddr();
2266 TCGv t0 = tcg_temp_new_i32();
2267 TCGv t1 = tcg_temp_new_i32();
2268
2269 gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
2270 tcg_gen_andc_tl(t1, t0, Rr); /* t1 = t0 & (0xff - Rr) = t0 & ~Rr */
2271 tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
2272 gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
2273 return true;
2274 }
2275
2276
2277 /*
2278 * Load one byte indirect from data space to register and toggles bits in
2279 * the data space specified by the register. The instruction can only be used
2280 * towards SRAM. The data location is pointed to by the Z (16 bits) Pointer
2281 * Register in the Register File. Memory access is limited to the current data
2282 * segment of 64KB. To access another data segment in devices with more than
2283 * 64KB data space, the RAMPZ in register in the I/O area has to be changed.
2284 *
2285 * The Z-pointer Register is left unchanged by the operation. This instruction
2286 * is especially suited for changing status bits stored in SRAM.
2287 */
2288 static bool trans_LAT(DisasContext *ctx, arg_LAT *a)
2289 {
2290 if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
2291 return true;
2292 }
2293
2294 TCGv Rd = cpu_r[a->rd];
2295 TCGv addr = gen_get_zaddr();
2296 TCGv t0 = tcg_temp_new_i32();
2297 TCGv t1 = tcg_temp_new_i32();
2298
2299 gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
2300 tcg_gen_xor_tl(t1, t0, Rd);
2301 tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */
2302 gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
2303 return true;
2304 }
2305
2306 /*
2307 * Bit and Bit-test Instructions
2308 */
2309 static void gen_rshift_ZNVSf(TCGv R)
2310 {
2311 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
2312 tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
2313 tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
2314 tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
2315 }
2316
2317 /*
2318 * Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is
2319 * loaded into the C Flag of the SREG. This operation effectively divides an
2320 * unsigned value by two. The C Flag can be used to round the result.
2321 */
2322 static bool trans_LSR(DisasContext *ctx, arg_LSR *a)
2323 {
2324 TCGv Rd = cpu_r[a->rd];
2325
2326 tcg_gen_andi_tl(cpu_Cf, Rd, 1);
2327 tcg_gen_shri_tl(Rd, Rd, 1);
2328
2329 /* update status register */
2330 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, Rd, 0); /* Zf = Rd == 0 */
2331 tcg_gen_movi_tl(cpu_Nf, 0);
2332 tcg_gen_mov_tl(cpu_Vf, cpu_Cf);
2333 tcg_gen_mov_tl(cpu_Sf, cpu_Vf);
2334
2335 return true;
2336 }
2337
2338 /*
2339 * Shifts all bits in Rd one place to the right. The C Flag is shifted into
2340 * bit 7 of Rd. Bit 0 is shifted into the C Flag. This operation, combined
2341 * with ASR, effectively divides multi-byte signed values by two. Combined with
2342 * LSR it effectively divides multi-byte unsigned values by two. The Carry Flag
2343 * can be used to round the result.
2344 */
2345 static bool trans_ROR(DisasContext *ctx, arg_ROR *a)
2346 {
2347 TCGv Rd = cpu_r[a->rd];
2348 TCGv t0 = tcg_temp_new_i32();
2349
2350 tcg_gen_shli_tl(t0, cpu_Cf, 7);
2351
2352 /* update status register */
2353 tcg_gen_andi_tl(cpu_Cf, Rd, 1);
2354
2355 /* update output register */
2356 tcg_gen_shri_tl(Rd, Rd, 1);
2357 tcg_gen_or_tl(Rd, Rd, t0);
2358
2359 /* update status register */
2360 gen_rshift_ZNVSf(Rd);
2361 return true;
2362 }
2363
2364 /*
2365 * Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0
2366 * is loaded into the C Flag of the SREG. This operation effectively divides a
2367 * signed value by two without changing its sign. The Carry Flag can be used to
2368 * round the result.
2369 */
2370 static bool trans_ASR(DisasContext *ctx, arg_ASR *a)
2371 {
2372 TCGv Rd = cpu_r[a->rd];
2373 TCGv t0 = tcg_temp_new_i32();
2374
2375 /* update status register */
2376 tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */
2377
2378 /* update output register */
2379 tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */
2380 tcg_gen_shri_tl(Rd, Rd, 1);
2381 tcg_gen_or_tl(Rd, Rd, t0);
2382
2383 /* update status register */
2384 gen_rshift_ZNVSf(Rd);
2385 return true;
2386 }
2387
2388 /*
2389 * Swaps high and low nibbles in a register.
2390 */
2391 static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a)
2392 {
2393 TCGv Rd = cpu_r[a->rd];
2394 TCGv t0 = tcg_temp_new_i32();
2395 TCGv t1 = tcg_temp_new_i32();
2396
2397 tcg_gen_andi_tl(t0, Rd, 0x0f);
2398 tcg_gen_shli_tl(t0, t0, 4);
2399 tcg_gen_andi_tl(t1, Rd, 0xf0);
2400 tcg_gen_shri_tl(t1, t1, 4);
2401 tcg_gen_or_tl(Rd, t0, t1);
2402 return true;
2403 }
2404
2405 /*
2406 * Sets a specified bit in an I/O Register. This instruction operates on
2407 * the lower 32 I/O Registers -- addresses 0-31.
2408 */
2409 static bool trans_SBI(DisasContext *ctx, arg_SBI *a)
2410 {
2411 TCGv data = tcg_temp_new_i32();
2412 TCGv port = tcg_constant_i32(a->reg);
2413
2414 gen_helper_inb(data, tcg_env, port);
2415 tcg_gen_ori_tl(data, data, 1 << a->bit);
2416 gen_helper_outb(tcg_env, port, data);
2417 return true;
2418 }
2419
2420 /*
2421 * Clears a specified bit in an I/O Register. This instruction operates on
2422 * the lower 32 I/O Registers -- addresses 0-31.
2423 */
2424 static bool trans_CBI(DisasContext *ctx, arg_CBI *a)
2425 {
2426 TCGv data = tcg_temp_new_i32();
2427 TCGv port = tcg_constant_i32(a->reg);
2428
2429 gen_helper_inb(data, tcg_env, port);
2430 tcg_gen_andi_tl(data, data, ~(1 << a->bit));
2431 gen_helper_outb(tcg_env, port, data);
2432 return true;
2433 }
2434
2435 /*
2436 * Stores bit b from Rd to the T Flag in SREG (Status Register).
2437 */
2438 static bool trans_BST(DisasContext *ctx, arg_BST *a)
2439 {
2440 TCGv Rd = cpu_r[a->rd];
2441
2442 tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit);
2443 tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit);
2444
2445 return true;
2446 }
2447
2448 /*
2449 * Copies the T Flag in the SREG (Status Register) to bit b in register Rd.
2450 */
2451 static bool trans_BLD(DisasContext *ctx, arg_BLD *a)
2452 {
2453 TCGv Rd = cpu_r[a->rd];
2454 TCGv t1 = tcg_temp_new_i32();
2455
2456 tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */
2457 tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */
2458 tcg_gen_or_tl(Rd, Rd, t1);
2459 return true;
2460 }
2461
2462 /*
2463 * Sets a single Flag or bit in SREG.
2464 */
2465 static bool trans_BSET(DisasContext *ctx, arg_BSET *a)
2466 {
2467 switch (a->bit) {
2468 case 0x00:
2469 tcg_gen_movi_tl(cpu_Cf, 0x01);
2470 break;
2471 case 0x01:
2472 tcg_gen_movi_tl(cpu_Zf, 0x01);
2473 break;
2474 case 0x02:
2475 tcg_gen_movi_tl(cpu_Nf, 0x01);
2476 break;
2477 case 0x03:
2478 tcg_gen_movi_tl(cpu_Vf, 0x01);
2479 break;
2480 case 0x04:
2481 tcg_gen_movi_tl(cpu_Sf, 0x01);
2482 break;
2483 case 0x05:
2484 tcg_gen_movi_tl(cpu_Hf, 0x01);
2485 break;
2486 case 0x06:
2487 tcg_gen_movi_tl(cpu_Tf, 0x01);
2488 break;
2489 case 0x07:
2490 tcg_gen_movi_tl(cpu_If, 0x01);
2491 break;
2492 }
2493
2494 return true;
2495 }
2496
2497 /*
2498 * Clears a single Flag in SREG.
2499 */
2500 static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a)
2501 {
2502 switch (a->bit) {
2503 case 0x00:
2504 tcg_gen_movi_tl(cpu_Cf, 0x00);
2505 break;
2506 case 0x01:
2507 tcg_gen_movi_tl(cpu_Zf, 0x00);
2508 break;
2509 case 0x02:
2510 tcg_gen_movi_tl(cpu_Nf, 0x00);
2511 break;
2512 case 0x03:
2513 tcg_gen_movi_tl(cpu_Vf, 0x00);
2514 break;
2515 case 0x04:
2516 tcg_gen_movi_tl(cpu_Sf, 0x00);
2517 break;
2518 case 0x05:
2519 tcg_gen_movi_tl(cpu_Hf, 0x00);
2520 break;
2521 case 0x06:
2522 tcg_gen_movi_tl(cpu_Tf, 0x00);
2523 break;
2524 case 0x07:
2525 tcg_gen_movi_tl(cpu_If, 0x00);
2526 break;
2527 }
2528
2529 return true;
2530 }
2531
2532 /*
2533 * MCU Control Instructions
2534 */
2535
2536 /*
2537 * The BREAK instruction is used by the On-chip Debug system, and is
2538 * normally not used in the application software. When the BREAK instruction is
2539 * executed, the AVR CPU is set in the Stopped Mode. This gives the On-chip
2540 * Debugger access to internal resources. If any Lock bits are set, or either
2541 * the JTAGEN or OCDEN Fuses are unprogrammed, the CPU will treat the BREAK
2542 * instruction as a NOP and will not enter the Stopped mode. This instruction
2543 * is not available in all devices. Refer to the device specific instruction
2544 * set summary.
2545 */
2546 static bool trans_BREAK(DisasContext *ctx, arg_BREAK *a)
2547 {
2548 if (!avr_have_feature(ctx, AVR_FEATURE_BREAK)) {
2549 return true;
2550 }
2551
2552 #ifdef BREAKPOINT_ON_BREAK
2553 tcg_gen_movi_tl(cpu_pc, ctx->npc - 1);
2554 gen_helper_debug(tcg_env);
2555 ctx->base.is_jmp = DISAS_EXIT;
2556 #else
2557 /* NOP */
2558 #endif
2559
2560 return true;
2561 }
2562
2563 /*
2564 * This instruction performs a single cycle No Operation.
2565 */
2566 static bool trans_NOP(DisasContext *ctx, arg_NOP *a)
2567 {
2568
2569 /* NOP */
2570
2571 return true;
2572 }
2573
2574 /*
2575 * This instruction sets the circuit in sleep mode defined by the MCU
2576 * Control Register.
2577 */
2578 static bool trans_SLEEP(DisasContext *ctx, arg_SLEEP *a)
2579 {
2580 gen_helper_sleep(tcg_env);
2581 ctx->base.is_jmp = DISAS_NORETURN;
2582 return true;
2583 }
2584
2585 /*
2586 * This instruction resets the Watchdog Timer. This instruction must be
2587 * executed within a limited time given by the WD prescaler. See the Watchdog
2588 * Timer hardware specification.
2589 */
2590 static bool trans_WDR(DisasContext *ctx, arg_WDR *a)
2591 {
2592 gen_helper_wdr(tcg_env);
2593
2594 return true;
2595 }
2596
2597 /*
2598 * Core translation mechanism functions:
2599 *
2600 * - translate()
2601 * - canonicalize_skip()
2602 * - gen_intermediate_code()
2603 * - restore_state_to_opc()
2604 *
2605 */
2606 static void translate(DisasContext *ctx)
2607 {
2608 uint32_t opcode = next_word(ctx);
2609
2610 if (!decode_insn(ctx, opcode)) {
2611 gen_helper_unsupported(tcg_env);
2612 ctx->base.is_jmp = DISAS_NORETURN;
2613 }
2614 }
2615
2616 /* Standardize the cpu_skip condition to NE. */
2617 static bool canonicalize_skip(DisasContext *ctx)
2618 {
2619 switch (ctx->skip_cond) {
2620 case TCG_COND_NEVER:
2621 /* Normal case: cpu_skip is known to be false. */
2622 return false;
2623
2624 case TCG_COND_ALWAYS:
2625 /*
2626 * Breakpoint case: cpu_skip is known to be true, via TB_FLAGS_SKIP.
2627 * The breakpoint is on the instruction being skipped, at the start
2628 * of the TranslationBlock. No need to update.
2629 */
2630 return false;
2631
2632 case TCG_COND_NE:
2633 if (ctx->skip_var1 == NULL) {
2634 tcg_gen_mov_tl(cpu_skip, ctx->skip_var0);
2635 } else {
2636 tcg_gen_xor_tl(cpu_skip, ctx->skip_var0, ctx->skip_var1);
2637 ctx->skip_var1 = NULL;
2638 }
2639 break;
2640
2641 default:
2642 /* Convert to a NE condition vs 0. */
2643 if (ctx->skip_var1 == NULL) {
2644 tcg_gen_setcondi_tl(ctx->skip_cond, cpu_skip, ctx->skip_var0, 0);
2645 } else {
2646 tcg_gen_setcond_tl(ctx->skip_cond, cpu_skip,
2647 ctx->skip_var0, ctx->skip_var1);
2648 ctx->skip_var1 = NULL;
2649 }
2650 ctx->skip_cond = TCG_COND_NE;
2651 break;
2652 }
2653 ctx->skip_var0 = cpu_skip;
2654 return true;
2655 }
2656
2657 static void avr_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs)
2658 {
2659 DisasContext *ctx = container_of(dcbase, DisasContext, base);
2660 CPUAVRState *env = cpu_env(cs);
2661 uint32_t tb_flags = ctx->base.tb->flags;
2662
2663 ctx->cs = cs;
2664 ctx->env = env;
2665 ctx->npc = ctx->base.pc_first / 2;
2666
2667 ctx->skip_cond = TCG_COND_NEVER;
2668 if (tb_flags & TB_FLAGS_SKIP) {
2669 ctx->skip_cond = TCG_COND_ALWAYS;
2670 ctx->skip_var0 = cpu_skip;
2671 }
2672
2673 if (tb_flags & TB_FLAGS_FULL_ACCESS) {
2674 /*
2675 * This flag is set by ST/LD instruction we will regenerate it ONLY
2676 * with mem/cpu memory access instead of mem access
2677 */
2678 ctx->base.max_insns = 1;
2679 }
2680 }
2681
2682 static void avr_tr_tb_start(DisasContextBase *db, CPUState *cs)
2683 {
2684 }
2685
2686 static void avr_tr_insn_start(DisasContextBase *dcbase, CPUState *cs)
2687 {
2688 DisasContext *ctx = container_of(dcbase, DisasContext, base);
2689
2690 tcg_gen_insn_start(ctx->npc);
2691 }
2692
2693 static void avr_tr_translate_insn(DisasContextBase *dcbase, CPUState *cs)
2694 {
2695 DisasContext *ctx = container_of(dcbase, DisasContext, base);
2696 TCGLabel *skip_label = NULL;
2697
2698 /* Conditionally skip the next instruction, if indicated. */
2699 if (ctx->skip_cond != TCG_COND_NEVER) {
2700 skip_label = gen_new_label();
2701 if (ctx->skip_var0 == cpu_skip) {
2702 /*
2703 * Copy cpu_skip so that we may zero it before the branch.
2704 * This ensures that cpu_skip is non-zero after the label
2705 * if and only if the skipped insn itself sets a skip.
2706 */
2707 ctx->skip_var0 = tcg_temp_new();
2708 tcg_gen_mov_tl(ctx->skip_var0, cpu_skip);
2709 tcg_gen_movi_tl(cpu_skip, 0);
2710 }
2711 if (ctx->skip_var1 == NULL) {
2712 tcg_gen_brcondi_tl(ctx->skip_cond, ctx->skip_var0, 0, skip_label);
2713 } else {
2714 tcg_gen_brcond_tl(ctx->skip_cond, ctx->skip_var0,
2715 ctx->skip_var1, skip_label);
2716 ctx->skip_var1 = NULL;
2717 }
2718 ctx->skip_cond = TCG_COND_NEVER;
2719 ctx->skip_var0 = NULL;
2720 }
2721
2722 translate(ctx);
2723
2724 ctx->base.pc_next = ctx->npc * 2;
2725
2726 if (skip_label) {
2727 canonicalize_skip(ctx);
2728 gen_set_label(skip_label);
2729
2730 switch (ctx->base.is_jmp) {
2731 case DISAS_NORETURN:
2732 ctx->base.is_jmp = DISAS_CHAIN;
2733 break;
2734 case DISAS_NEXT:
2735 if (ctx->base.tb->flags & TB_FLAGS_SKIP) {
2736 ctx->base.is_jmp = DISAS_TOO_MANY;
2737 }
2738 break;
2739 default:
2740 break;
2741 }
2742 }
2743
2744 if (ctx->base.is_jmp == DISAS_NEXT) {
2745 target_ulong page_first = ctx->base.pc_first & TARGET_PAGE_MASK;
2746
2747 if ((ctx->base.pc_next - page_first) >= TARGET_PAGE_SIZE - 4) {
2748 ctx->base.is_jmp = DISAS_TOO_MANY;
2749 }
2750 }
2751 }
2752
2753 static void avr_tr_tb_stop(DisasContextBase *dcbase, CPUState *cs)
2754 {
2755 DisasContext *ctx = container_of(dcbase, DisasContext, base);
2756 bool nonconst_skip = canonicalize_skip(ctx);
2757 /*
2758 * Because we disable interrupts while env->skip is set,
2759 * we must return to the main loop to re-evaluate afterward.
2760 */
2761 bool force_exit = ctx->base.tb->flags & TB_FLAGS_SKIP;
2762
2763 switch (ctx->base.is_jmp) {
2764 case DISAS_NORETURN:
2765 assert(!nonconst_skip);
2766 break;
2767 case DISAS_NEXT:
2768 case DISAS_TOO_MANY:
2769 case DISAS_CHAIN:
2770 if (!nonconst_skip && !force_exit) {
2771 /* Note gen_goto_tb checks singlestep. */
2772 gen_goto_tb(ctx, 1, ctx->npc);
2773 break;
2774 }
2775 tcg_gen_movi_tl(cpu_pc, ctx->npc);
2776 /* fall through */
2777 case DISAS_LOOKUP:
2778 if (!force_exit) {
2779 tcg_gen_lookup_and_goto_ptr();
2780 break;
2781 }
2782 /* fall through */
2783 case DISAS_EXIT:
2784 tcg_gen_exit_tb(NULL, 0);
2785 break;
2786 default:
2787 g_assert_not_reached();
2788 }
2789 }
2790
2791 static void avr_tr_disas_log(const DisasContextBase *dcbase,
2792 CPUState *cs, FILE *logfile)
2793 {
2794 fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first));
2795 target_disas(logfile, cs, dcbase->pc_first, dcbase->tb->size);
2796 }
2797
2798 static const TranslatorOps avr_tr_ops = {
2799 .init_disas_context = avr_tr_init_disas_context,
2800 .tb_start = avr_tr_tb_start,
2801 .insn_start = avr_tr_insn_start,
2802 .translate_insn = avr_tr_translate_insn,
2803 .tb_stop = avr_tr_tb_stop,
2804 .disas_log = avr_tr_disas_log,
2805 };
2806
2807 void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns,
2808 target_ulong pc, void *host_pc)
2809 {
2810 DisasContext dc = { };
2811 translator_loop(cs, tb, max_insns, pc, host_pc, &avr_tr_ops, &dc.base);
2812 }