]> git.proxmox.com Git - mirror_qemu.git/blob - target/avr/translate.c
Merge remote-tracking branch 'remotes/berrange-gitlab/tags/tls-deps-pull-request...
[mirror_qemu.git] / target / avr / translate.c
1 /*
2 * QEMU AVR CPU
3 *
4 * Copyright (c) 2019-2020 Michael Rolnik
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see
18 * <http://www.gnu.org/licenses/lgpl-2.1.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "tcg/tcg.h"
24 #include "cpu.h"
25 #include "exec/exec-all.h"
26 #include "tcg/tcg-op.h"
27 #include "exec/cpu_ldst.h"
28 #include "exec/helper-proto.h"
29 #include "exec/helper-gen.h"
30 #include "exec/log.h"
31 #include "exec/translator.h"
32 #include "exec/gen-icount.h"
33
34 /*
35 * Define if you want a BREAK instruction translated to a breakpoint
36 * Active debugging connection is assumed
37 * This is for
38 * https://github.com/seharris/qemu-avr-tests/tree/master/instruction-tests
39 * tests
40 */
41 #undef BREAKPOINT_ON_BREAK
42
43 static TCGv cpu_pc;
44
45 static TCGv cpu_Cf;
46 static TCGv cpu_Zf;
47 static TCGv cpu_Nf;
48 static TCGv cpu_Vf;
49 static TCGv cpu_Sf;
50 static TCGv cpu_Hf;
51 static TCGv cpu_Tf;
52 static TCGv cpu_If;
53
54 static TCGv cpu_rampD;
55 static TCGv cpu_rampX;
56 static TCGv cpu_rampY;
57 static TCGv cpu_rampZ;
58
59 static TCGv cpu_r[NUMBER_OF_CPU_REGISTERS];
60 static TCGv cpu_eind;
61 static TCGv cpu_sp;
62
63 static TCGv cpu_skip;
64
65 static const char reg_names[NUMBER_OF_CPU_REGISTERS][8] = {
66 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
67 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
68 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
69 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
70 };
71 #define REG(x) (cpu_r[x])
72
73 enum {
74 DISAS_EXIT = DISAS_TARGET_0, /* We want return to the cpu main loop. */
75 DISAS_LOOKUP = DISAS_TARGET_1, /* We have a variable condition exit. */
76 DISAS_CHAIN = DISAS_TARGET_2, /* We have a single condition exit. */
77 };
78
79 typedef struct DisasContext DisasContext;
80
81 /* This is the state at translation time. */
82 struct DisasContext {
83 DisasContextBase base;
84
85 CPUAVRState *env;
86 CPUState *cs;
87
88 target_long npc;
89 uint32_t opcode;
90
91 /* Routine used to access memory */
92 int memidx;
93
94 /*
95 * some AVR instructions can make the following instruction to be skipped
96 * Let's name those instructions
97 * A - instruction that can skip the next one
98 * B - instruction that can be skipped. this depends on execution of A
99 * there are two scenarios
100 * 1. A and B belong to the same translation block
101 * 2. A is the last instruction in the translation block and B is the last
102 *
103 * following variables are used to simplify the skipping logic, they are
104 * used in the following manner (sketch)
105 *
106 * TCGLabel *skip_label = NULL;
107 * if (ctx->skip_cond != TCG_COND_NEVER) {
108 * skip_label = gen_new_label();
109 * tcg_gen_brcond_tl(skip_cond, skip_var0, skip_var1, skip_label);
110 * }
111 *
112 * if (free_skip_var0) {
113 * tcg_temp_free(skip_var0);
114 * free_skip_var0 = false;
115 * }
116 *
117 * translate(ctx);
118 *
119 * if (skip_label) {
120 * gen_set_label(skip_label);
121 * }
122 */
123 TCGv skip_var0;
124 TCGv skip_var1;
125 TCGCond skip_cond;
126 bool free_skip_var0;
127 };
128
129 void avr_cpu_tcg_init(void)
130 {
131 int i;
132
133 #define AVR_REG_OFFS(x) offsetof(CPUAVRState, x)
134 cpu_pc = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(pc_w), "pc");
135 cpu_Cf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregC), "Cf");
136 cpu_Zf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregZ), "Zf");
137 cpu_Nf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregN), "Nf");
138 cpu_Vf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregV), "Vf");
139 cpu_Sf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregS), "Sf");
140 cpu_Hf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregH), "Hf");
141 cpu_Tf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregT), "Tf");
142 cpu_If = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregI), "If");
143 cpu_rampD = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampD), "rampD");
144 cpu_rampX = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampX), "rampX");
145 cpu_rampY = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampY), "rampY");
146 cpu_rampZ = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampZ), "rampZ");
147 cpu_eind = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(eind), "eind");
148 cpu_sp = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sp), "sp");
149 cpu_skip = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(skip), "skip");
150
151 for (i = 0; i < NUMBER_OF_CPU_REGISTERS; i++) {
152 cpu_r[i] = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(r[i]),
153 reg_names[i]);
154 }
155 #undef AVR_REG_OFFS
156 }
157
158 static int to_regs_16_31_by_one(DisasContext *ctx, int indx)
159 {
160 return 16 + (indx % 16);
161 }
162
163 static int to_regs_16_23_by_one(DisasContext *ctx, int indx)
164 {
165 return 16 + (indx % 8);
166 }
167
168 static int to_regs_24_30_by_two(DisasContext *ctx, int indx)
169 {
170 return 24 + (indx % 4) * 2;
171 }
172
173 static int to_regs_00_30_by_two(DisasContext *ctx, int indx)
174 {
175 return (indx % 16) * 2;
176 }
177
178 static uint16_t next_word(DisasContext *ctx)
179 {
180 return cpu_lduw_code(ctx->env, ctx->npc++ * 2);
181 }
182
183 static int append_16(DisasContext *ctx, int x)
184 {
185 return x << 16 | next_word(ctx);
186 }
187
188 static bool avr_have_feature(DisasContext *ctx, int feature)
189 {
190 if (!avr_feature(ctx->env, feature)) {
191 gen_helper_unsupported(cpu_env);
192 ctx->base.is_jmp = DISAS_NORETURN;
193 return false;
194 }
195 return true;
196 }
197
198 static bool decode_insn(DisasContext *ctx, uint16_t insn);
199 #include "decode-insn.c.inc"
200
201 /*
202 * Arithmetic Instructions
203 */
204
205 /*
206 * Utility functions for updating status registers:
207 *
208 * - gen_add_CHf()
209 * - gen_add_Vf()
210 * - gen_sub_CHf()
211 * - gen_sub_Vf()
212 * - gen_NSf()
213 * - gen_ZNSf()
214 *
215 */
216
217 static void gen_add_CHf(TCGv R, TCGv Rd, TCGv Rr)
218 {
219 TCGv t1 = tcg_temp_new_i32();
220 TCGv t2 = tcg_temp_new_i32();
221 TCGv t3 = tcg_temp_new_i32();
222
223 tcg_gen_and_tl(t1, Rd, Rr); /* t1 = Rd & Rr */
224 tcg_gen_andc_tl(t2, Rd, R); /* t2 = Rd & ~R */
225 tcg_gen_andc_tl(t3, Rr, R); /* t3 = Rr & ~R */
226 tcg_gen_or_tl(t1, t1, t2); /* t1 = t1 | t2 | t3 */
227 tcg_gen_or_tl(t1, t1, t3);
228
229 tcg_gen_shri_tl(cpu_Cf, t1, 7); /* Cf = t1(7) */
230 tcg_gen_shri_tl(cpu_Hf, t1, 3); /* Hf = t1(3) */
231 tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
232
233 tcg_temp_free_i32(t3);
234 tcg_temp_free_i32(t2);
235 tcg_temp_free_i32(t1);
236 }
237
238 static void gen_add_Vf(TCGv R, TCGv Rd, TCGv Rr)
239 {
240 TCGv t1 = tcg_temp_new_i32();
241 TCGv t2 = tcg_temp_new_i32();
242
243 /* t1 = Rd & Rr & ~R | ~Rd & ~Rr & R */
244 /* = (Rd ^ R) & ~(Rd ^ Rr) */
245 tcg_gen_xor_tl(t1, Rd, R);
246 tcg_gen_xor_tl(t2, Rd, Rr);
247 tcg_gen_andc_tl(t1, t1, t2);
248
249 tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
250
251 tcg_temp_free_i32(t2);
252 tcg_temp_free_i32(t1);
253 }
254
255 static void gen_sub_CHf(TCGv R, TCGv Rd, TCGv Rr)
256 {
257 TCGv t1 = tcg_temp_new_i32();
258 TCGv t2 = tcg_temp_new_i32();
259 TCGv t3 = tcg_temp_new_i32();
260
261 tcg_gen_not_tl(t1, Rd); /* t1 = ~Rd */
262 tcg_gen_and_tl(t2, t1, Rr); /* t2 = ~Rd & Rr */
263 tcg_gen_or_tl(t3, t1, Rr); /* t3 = (~Rd | Rr) & R */
264 tcg_gen_and_tl(t3, t3, R);
265 tcg_gen_or_tl(t2, t2, t3); /* t2 = ~Rd & Rr | ~Rd & R | R & Rr */
266
267 tcg_gen_shri_tl(cpu_Cf, t2, 7); /* Cf = t2(7) */
268 tcg_gen_shri_tl(cpu_Hf, t2, 3); /* Hf = t2(3) */
269 tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
270
271 tcg_temp_free_i32(t3);
272 tcg_temp_free_i32(t2);
273 tcg_temp_free_i32(t1);
274 }
275
276 static void gen_sub_Vf(TCGv R, TCGv Rd, TCGv Rr)
277 {
278 TCGv t1 = tcg_temp_new_i32();
279 TCGv t2 = tcg_temp_new_i32();
280
281 /* t1 = Rd & ~Rr & ~R | ~Rd & Rr & R */
282 /* = (Rd ^ R) & (Rd ^ R) */
283 tcg_gen_xor_tl(t1, Rd, R);
284 tcg_gen_xor_tl(t2, Rd, Rr);
285 tcg_gen_and_tl(t1, t1, t2);
286
287 tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
288
289 tcg_temp_free_i32(t2);
290 tcg_temp_free_i32(t1);
291 }
292
293 static void gen_NSf(TCGv R)
294 {
295 tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
296 tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
297 }
298
299 static void gen_ZNSf(TCGv R)
300 {
301 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
302
303 /* update status register */
304 tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
305 tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
306 }
307
308 /*
309 * Adds two registers without the C Flag and places the result in the
310 * destination register Rd.
311 */
312 static bool trans_ADD(DisasContext *ctx, arg_ADD *a)
313 {
314 TCGv Rd = cpu_r[a->rd];
315 TCGv Rr = cpu_r[a->rr];
316 TCGv R = tcg_temp_new_i32();
317
318 tcg_gen_add_tl(R, Rd, Rr); /* Rd = Rd + Rr */
319 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
320
321 /* update status register */
322 gen_add_CHf(R, Rd, Rr);
323 gen_add_Vf(R, Rd, Rr);
324 gen_ZNSf(R);
325
326 /* update output registers */
327 tcg_gen_mov_tl(Rd, R);
328
329 tcg_temp_free_i32(R);
330
331 return true;
332 }
333
334 /*
335 * Adds two registers and the contents of the C Flag and places the result in
336 * the destination register Rd.
337 */
338 static bool trans_ADC(DisasContext *ctx, arg_ADC *a)
339 {
340 TCGv Rd = cpu_r[a->rd];
341 TCGv Rr = cpu_r[a->rr];
342 TCGv R = tcg_temp_new_i32();
343
344 tcg_gen_add_tl(R, Rd, Rr); /* R = Rd + Rr + Cf */
345 tcg_gen_add_tl(R, R, cpu_Cf);
346 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
347
348 /* update status register */
349 gen_add_CHf(R, Rd, Rr);
350 gen_add_Vf(R, Rd, Rr);
351 gen_ZNSf(R);
352
353 /* update output registers */
354 tcg_gen_mov_tl(Rd, R);
355
356 tcg_temp_free_i32(R);
357
358 return true;
359 }
360
361 /*
362 * Adds an immediate value (0 - 63) to a register pair and places the result
363 * in the register pair. This instruction operates on the upper four register
364 * pairs, and is well suited for operations on the pointer registers. This
365 * instruction is not available in all devices. Refer to the device specific
366 * instruction set summary.
367 */
368 static bool trans_ADIW(DisasContext *ctx, arg_ADIW *a)
369 {
370 if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) {
371 return true;
372 }
373
374 TCGv RdL = cpu_r[a->rd];
375 TCGv RdH = cpu_r[a->rd + 1];
376 int Imm = (a->imm);
377 TCGv R = tcg_temp_new_i32();
378 TCGv Rd = tcg_temp_new_i32();
379
380 tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
381 tcg_gen_addi_tl(R, Rd, Imm); /* R = Rd + Imm */
382 tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
383
384 /* update status register */
385 tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */
386 tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15);
387 tcg_gen_andc_tl(cpu_Vf, R, Rd); /* Vf = R & ~Rd */
388 tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15);
389 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
390 tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
391 tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf);/* Sf = Nf ^ Vf */
392
393 /* update output registers */
394 tcg_gen_andi_tl(RdL, R, 0xff);
395 tcg_gen_shri_tl(RdH, R, 8);
396
397 tcg_temp_free_i32(Rd);
398 tcg_temp_free_i32(R);
399
400 return true;
401 }
402
403 /*
404 * Subtracts two registers and places the result in the destination
405 * register Rd.
406 */
407 static bool trans_SUB(DisasContext *ctx, arg_SUB *a)
408 {
409 TCGv Rd = cpu_r[a->rd];
410 TCGv Rr = cpu_r[a->rr];
411 TCGv R = tcg_temp_new_i32();
412
413 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
414 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
415
416 /* update status register */
417 tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */
418 gen_sub_CHf(R, Rd, Rr);
419 gen_sub_Vf(R, Rd, Rr);
420 gen_ZNSf(R);
421
422 /* update output registers */
423 tcg_gen_mov_tl(Rd, R);
424
425 tcg_temp_free_i32(R);
426
427 return true;
428 }
429
430 /*
431 * Subtracts a register and a constant and places the result in the
432 * destination register Rd. This instruction is working on Register R16 to R31
433 * and is very well suited for operations on the X, Y, and Z-pointers.
434 */
435 static bool trans_SUBI(DisasContext *ctx, arg_SUBI *a)
436 {
437 TCGv Rd = cpu_r[a->rd];
438 TCGv Rr = tcg_const_i32(a->imm);
439 TCGv R = tcg_temp_new_i32();
440
441 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Imm */
442 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
443
444 /* update status register */
445 gen_sub_CHf(R, Rd, Rr);
446 gen_sub_Vf(R, Rd, Rr);
447 gen_ZNSf(R);
448
449 /* update output registers */
450 tcg_gen_mov_tl(Rd, R);
451
452 tcg_temp_free_i32(R);
453 tcg_temp_free_i32(Rr);
454
455 return true;
456 }
457
458 /*
459 * Subtracts two registers and subtracts with the C Flag and places the
460 * result in the destination register Rd.
461 */
462 static bool trans_SBC(DisasContext *ctx, arg_SBC *a)
463 {
464 TCGv Rd = cpu_r[a->rd];
465 TCGv Rr = cpu_r[a->rr];
466 TCGv R = tcg_temp_new_i32();
467 TCGv zero = tcg_const_i32(0);
468
469 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
470 tcg_gen_sub_tl(R, R, cpu_Cf);
471 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
472
473 /* update status register */
474 gen_sub_CHf(R, Rd, Rr);
475 gen_sub_Vf(R, Rd, Rr);
476 gen_NSf(R);
477
478 /*
479 * Previous value remains unchanged when the result is zero;
480 * cleared otherwise.
481 */
482 tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero);
483
484 /* update output registers */
485 tcg_gen_mov_tl(Rd, R);
486
487 tcg_temp_free_i32(zero);
488 tcg_temp_free_i32(R);
489
490 return true;
491 }
492
493 /*
494 * SBCI -- Subtract Immediate with Carry
495 */
496 static bool trans_SBCI(DisasContext *ctx, arg_SBCI *a)
497 {
498 TCGv Rd = cpu_r[a->rd];
499 TCGv Rr = tcg_const_i32(a->imm);
500 TCGv R = tcg_temp_new_i32();
501 TCGv zero = tcg_const_i32(0);
502
503 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
504 tcg_gen_sub_tl(R, R, cpu_Cf);
505 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
506
507 /* update status register */
508 gen_sub_CHf(R, Rd, Rr);
509 gen_sub_Vf(R, Rd, Rr);
510 gen_NSf(R);
511
512 /*
513 * Previous value remains unchanged when the result is zero;
514 * cleared otherwise.
515 */
516 tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero);
517
518 /* update output registers */
519 tcg_gen_mov_tl(Rd, R);
520
521 tcg_temp_free_i32(zero);
522 tcg_temp_free_i32(R);
523 tcg_temp_free_i32(Rr);
524
525 return true;
526 }
527
528 /*
529 * Subtracts an immediate value (0-63) from a register pair and places the
530 * result in the register pair. This instruction operates on the upper four
531 * register pairs, and is well suited for operations on the Pointer Registers.
532 * This instruction is not available in all devices. Refer to the device
533 * specific instruction set summary.
534 */
535 static bool trans_SBIW(DisasContext *ctx, arg_SBIW *a)
536 {
537 if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) {
538 return true;
539 }
540
541 TCGv RdL = cpu_r[a->rd];
542 TCGv RdH = cpu_r[a->rd + 1];
543 int Imm = (a->imm);
544 TCGv R = tcg_temp_new_i32();
545 TCGv Rd = tcg_temp_new_i32();
546
547 tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
548 tcg_gen_subi_tl(R, Rd, Imm); /* R = Rd - Imm */
549 tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
550
551 /* update status register */
552 tcg_gen_andc_tl(cpu_Cf, R, Rd);
553 tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); /* Cf = R & ~Rd */
554 tcg_gen_andc_tl(cpu_Vf, Rd, R);
555 tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); /* Vf = Rd & ~R */
556 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
557 tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
558 tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
559
560 /* update output registers */
561 tcg_gen_andi_tl(RdL, R, 0xff);
562 tcg_gen_shri_tl(RdH, R, 8);
563
564 tcg_temp_free_i32(Rd);
565 tcg_temp_free_i32(R);
566
567 return true;
568 }
569
570 /*
571 * Performs the logical AND between the contents of register Rd and register
572 * Rr and places the result in the destination register Rd.
573 */
574 static bool trans_AND(DisasContext *ctx, arg_AND *a)
575 {
576 TCGv Rd = cpu_r[a->rd];
577 TCGv Rr = cpu_r[a->rr];
578 TCGv R = tcg_temp_new_i32();
579
580 tcg_gen_and_tl(R, Rd, Rr); /* Rd = Rd and Rr */
581
582 /* update status register */
583 tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */
584 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
585 gen_ZNSf(R);
586
587 /* update output registers */
588 tcg_gen_mov_tl(Rd, R);
589
590 tcg_temp_free_i32(R);
591
592 return true;
593 }
594
595 /*
596 * Performs the logical AND between the contents of register Rd and a constant
597 * and places the result in the destination register Rd.
598 */
599 static bool trans_ANDI(DisasContext *ctx, arg_ANDI *a)
600 {
601 TCGv Rd = cpu_r[a->rd];
602 int Imm = (a->imm);
603
604 tcg_gen_andi_tl(Rd, Rd, Imm); /* Rd = Rd & Imm */
605
606 /* update status register */
607 tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
608 gen_ZNSf(Rd);
609
610 return true;
611 }
612
613 /*
614 * Performs the logical OR between the contents of register Rd and register
615 * Rr and places the result in the destination register Rd.
616 */
617 static bool trans_OR(DisasContext *ctx, arg_OR *a)
618 {
619 TCGv Rd = cpu_r[a->rd];
620 TCGv Rr = cpu_r[a->rr];
621 TCGv R = tcg_temp_new_i32();
622
623 tcg_gen_or_tl(R, Rd, Rr);
624
625 /* update status register */
626 tcg_gen_movi_tl(cpu_Vf, 0);
627 gen_ZNSf(R);
628
629 /* update output registers */
630 tcg_gen_mov_tl(Rd, R);
631
632 tcg_temp_free_i32(R);
633
634 return true;
635 }
636
637 /*
638 * Performs the logical OR between the contents of register Rd and a
639 * constant and places the result in the destination register Rd.
640 */
641 static bool trans_ORI(DisasContext *ctx, arg_ORI *a)
642 {
643 TCGv Rd = cpu_r[a->rd];
644 int Imm = (a->imm);
645
646 tcg_gen_ori_tl(Rd, Rd, Imm); /* Rd = Rd | Imm */
647
648 /* update status register */
649 tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
650 gen_ZNSf(Rd);
651
652 return true;
653 }
654
655 /*
656 * Performs the logical EOR between the contents of register Rd and
657 * register Rr and places the result in the destination register Rd.
658 */
659 static bool trans_EOR(DisasContext *ctx, arg_EOR *a)
660 {
661 TCGv Rd = cpu_r[a->rd];
662 TCGv Rr = cpu_r[a->rr];
663
664 tcg_gen_xor_tl(Rd, Rd, Rr);
665
666 /* update status register */
667 tcg_gen_movi_tl(cpu_Vf, 0);
668 gen_ZNSf(Rd);
669
670 return true;
671 }
672
673 /*
674 * Clears the specified bits in register Rd. Performs the logical AND
675 * between the contents of register Rd and the complement of the constant mask
676 * K. The result will be placed in register Rd.
677 */
678 static bool trans_COM(DisasContext *ctx, arg_COM *a)
679 {
680 TCGv Rd = cpu_r[a->rd];
681 TCGv R = tcg_temp_new_i32();
682
683 tcg_gen_xori_tl(Rd, Rd, 0xff);
684
685 /* update status register */
686 tcg_gen_movi_tl(cpu_Cf, 1); /* Cf = 1 */
687 tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */
688 gen_ZNSf(Rd);
689
690 tcg_temp_free_i32(R);
691
692 return true;
693 }
694
695 /*
696 * Replaces the contents of register Rd with its two's complement; the
697 * value $80 is left unchanged.
698 */
699 static bool trans_NEG(DisasContext *ctx, arg_NEG *a)
700 {
701 TCGv Rd = cpu_r[a->rd];
702 TCGv t0 = tcg_const_i32(0);
703 TCGv R = tcg_temp_new_i32();
704
705 tcg_gen_sub_tl(R, t0, Rd); /* R = 0 - Rd */
706 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
707
708 /* update status register */
709 gen_sub_CHf(R, t0, Rd);
710 gen_sub_Vf(R, t0, Rd);
711 gen_ZNSf(R);
712
713 /* update output registers */
714 tcg_gen_mov_tl(Rd, R);
715
716 tcg_temp_free_i32(t0);
717 tcg_temp_free_i32(R);
718
719 return true;
720 }
721
722 /*
723 * Adds one -1- to the contents of register Rd and places the result in the
724 * destination register Rd. The C Flag in SREG is not affected by the
725 * operation, thus allowing the INC instruction to be used on a loop counter in
726 * multiple-precision computations. When operating on unsigned numbers, only
727 * BREQ and BRNE branches can be expected to perform consistently. When
728 * operating on two's complement values, all signed branches are available.
729 */
730 static bool trans_INC(DisasContext *ctx, arg_INC *a)
731 {
732 TCGv Rd = cpu_r[a->rd];
733
734 tcg_gen_addi_tl(Rd, Rd, 1);
735 tcg_gen_andi_tl(Rd, Rd, 0xff);
736
737 /* update status register */
738 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x80); /* Vf = Rd == 0x80 */
739 gen_ZNSf(Rd);
740
741 return true;
742 }
743
744 /*
745 * Subtracts one -1- from the contents of register Rd and places the result
746 * in the destination register Rd. The C Flag in SREG is not affected by the
747 * operation, thus allowing the DEC instruction to be used on a loop counter in
748 * multiple-precision computations. When operating on unsigned values, only
749 * BREQ and BRNE branches can be expected to perform consistently. When
750 * operating on two's complement values, all signed branches are available.
751 */
752 static bool trans_DEC(DisasContext *ctx, arg_DEC *a)
753 {
754 TCGv Rd = cpu_r[a->rd];
755
756 tcg_gen_subi_tl(Rd, Rd, 1); /* Rd = Rd - 1 */
757 tcg_gen_andi_tl(Rd, Rd, 0xff); /* make it 8 bits */
758
759 /* update status register */
760 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x7f); /* Vf = Rd == 0x7f */
761 gen_ZNSf(Rd);
762
763 return true;
764 }
765
766 /*
767 * This instruction performs 8-bit x 8-bit -> 16-bit unsigned multiplication.
768 */
769 static bool trans_MUL(DisasContext *ctx, arg_MUL *a)
770 {
771 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
772 return true;
773 }
774
775 TCGv R0 = cpu_r[0];
776 TCGv R1 = cpu_r[1];
777 TCGv Rd = cpu_r[a->rd];
778 TCGv Rr = cpu_r[a->rr];
779 TCGv R = tcg_temp_new_i32();
780
781 tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */
782 tcg_gen_andi_tl(R0, R, 0xff);
783 tcg_gen_shri_tl(R1, R, 8);
784
785 /* update status register */
786 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
787 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
788
789 tcg_temp_free_i32(R);
790
791 return true;
792 }
793
794 /*
795 * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication.
796 */
797 static bool trans_MULS(DisasContext *ctx, arg_MULS *a)
798 {
799 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
800 return true;
801 }
802
803 TCGv R0 = cpu_r[0];
804 TCGv R1 = cpu_r[1];
805 TCGv Rd = cpu_r[a->rd];
806 TCGv Rr = cpu_r[a->rr];
807 TCGv R = tcg_temp_new_i32();
808 TCGv t0 = tcg_temp_new_i32();
809 TCGv t1 = tcg_temp_new_i32();
810
811 tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
812 tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
813 tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */
814 tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
815 tcg_gen_andi_tl(R0, R, 0xff);
816 tcg_gen_shri_tl(R1, R, 8);
817
818 /* update status register */
819 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
820 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
821
822 tcg_temp_free_i32(t1);
823 tcg_temp_free_i32(t0);
824 tcg_temp_free_i32(R);
825
826 return true;
827 }
828
829 /*
830 * This instruction performs 8-bit x 8-bit -> 16-bit multiplication of a
831 * signed and an unsigned number.
832 */
833 static bool trans_MULSU(DisasContext *ctx, arg_MULSU *a)
834 {
835 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
836 return true;
837 }
838
839 TCGv R0 = cpu_r[0];
840 TCGv R1 = cpu_r[1];
841 TCGv Rd = cpu_r[a->rd];
842 TCGv Rr = cpu_r[a->rr];
843 TCGv R = tcg_temp_new_i32();
844 TCGv t0 = tcg_temp_new_i32();
845
846 tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
847 tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */
848 tcg_gen_andi_tl(R, R, 0xffff); /* make R 16 bits */
849 tcg_gen_andi_tl(R0, R, 0xff);
850 tcg_gen_shri_tl(R1, R, 8);
851
852 /* update status register */
853 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
854 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
855
856 tcg_temp_free_i32(t0);
857 tcg_temp_free_i32(R);
858
859 return true;
860 }
861
862 /*
863 * This instruction performs 8-bit x 8-bit -> 16-bit unsigned
864 * multiplication and shifts the result one bit left.
865 */
866 static bool trans_FMUL(DisasContext *ctx, arg_FMUL *a)
867 {
868 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
869 return true;
870 }
871
872 TCGv R0 = cpu_r[0];
873 TCGv R1 = cpu_r[1];
874 TCGv Rd = cpu_r[a->rd];
875 TCGv Rr = cpu_r[a->rr];
876 TCGv R = tcg_temp_new_i32();
877
878 tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */
879
880 /* update status register */
881 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
882 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
883
884 /* update output registers */
885 tcg_gen_shli_tl(R, R, 1);
886 tcg_gen_andi_tl(R0, R, 0xff);
887 tcg_gen_shri_tl(R1, R, 8);
888 tcg_gen_andi_tl(R1, R1, 0xff);
889
890
891 tcg_temp_free_i32(R);
892
893 return true;
894 }
895
896 /*
897 * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
898 * and shifts the result one bit left.
899 */
900 static bool trans_FMULS(DisasContext *ctx, arg_FMULS *a)
901 {
902 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
903 return true;
904 }
905
906 TCGv R0 = cpu_r[0];
907 TCGv R1 = cpu_r[1];
908 TCGv Rd = cpu_r[a->rd];
909 TCGv Rr = cpu_r[a->rr];
910 TCGv R = tcg_temp_new_i32();
911 TCGv t0 = tcg_temp_new_i32();
912 TCGv t1 = tcg_temp_new_i32();
913
914 tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
915 tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
916 tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */
917 tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
918
919 /* update status register */
920 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
921 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
922
923 /* update output registers */
924 tcg_gen_shli_tl(R, R, 1);
925 tcg_gen_andi_tl(R0, R, 0xff);
926 tcg_gen_shri_tl(R1, R, 8);
927 tcg_gen_andi_tl(R1, R1, 0xff);
928
929 tcg_temp_free_i32(t1);
930 tcg_temp_free_i32(t0);
931 tcg_temp_free_i32(R);
932
933 return true;
934 }
935
936 /*
937 * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
938 * and shifts the result one bit left.
939 */
940 static bool trans_FMULSU(DisasContext *ctx, arg_FMULSU *a)
941 {
942 if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) {
943 return true;
944 }
945
946 TCGv R0 = cpu_r[0];
947 TCGv R1 = cpu_r[1];
948 TCGv Rd = cpu_r[a->rd];
949 TCGv Rr = cpu_r[a->rr];
950 TCGv R = tcg_temp_new_i32();
951 TCGv t0 = tcg_temp_new_i32();
952
953 tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
954 tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */
955 tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
956
957 /* update status register */
958 tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */
959 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
960
961 /* update output registers */
962 tcg_gen_shli_tl(R, R, 1);
963 tcg_gen_andi_tl(R0, R, 0xff);
964 tcg_gen_shri_tl(R1, R, 8);
965 tcg_gen_andi_tl(R1, R1, 0xff);
966
967 tcg_temp_free_i32(t0);
968 tcg_temp_free_i32(R);
969
970 return true;
971 }
972
973 /*
974 * The module is an instruction set extension to the AVR CPU, performing
975 * DES iterations. The 64-bit data block (plaintext or ciphertext) is placed in
976 * the CPU register file, registers R0-R7, where LSB of data is placed in LSB
977 * of R0 and MSB of data is placed in MSB of R7. The full 64-bit key (including
978 * parity bits) is placed in registers R8- R15, organized in the register file
979 * with LSB of key in LSB of R8 and MSB of key in MSB of R15. Executing one DES
980 * instruction performs one round in the DES algorithm. Sixteen rounds must be
981 * executed in increasing order to form the correct DES ciphertext or
982 * plaintext. Intermediate results are stored in the register file (R0-R15)
983 * after each DES instruction. The instruction's operand (K) determines which
984 * round is executed, and the half carry flag (H) determines whether encryption
985 * or decryption is performed. The DES algorithm is described in
986 * "Specifications for the Data Encryption Standard" (Federal Information
987 * Processing Standards Publication 46). Intermediate results in this
988 * implementation differ from the standard because the initial permutation and
989 * the inverse initial permutation are performed each iteration. This does not
990 * affect the result in the final ciphertext or plaintext, but reduces
991 * execution time.
992 */
993 static bool trans_DES(DisasContext *ctx, arg_DES *a)
994 {
995 /* TODO */
996 if (!avr_have_feature(ctx, AVR_FEATURE_DES)) {
997 return true;
998 }
999
1000 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
1001
1002 return true;
1003 }
1004
1005 /*
1006 * Branch Instructions
1007 */
1008 static void gen_jmp_ez(DisasContext *ctx)
1009 {
1010 tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
1011 tcg_gen_or_tl(cpu_pc, cpu_pc, cpu_eind);
1012 ctx->base.is_jmp = DISAS_LOOKUP;
1013 }
1014
1015 static void gen_jmp_z(DisasContext *ctx)
1016 {
1017 tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
1018 ctx->base.is_jmp = DISAS_LOOKUP;
1019 }
1020
1021 static void gen_push_ret(DisasContext *ctx, int ret)
1022 {
1023 if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) {
1024
1025 TCGv t0 = tcg_const_i32((ret & 0x0000ff));
1026
1027 tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_UB);
1028 tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
1029
1030 tcg_temp_free_i32(t0);
1031 } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) {
1032
1033 TCGv t0 = tcg_const_i32((ret & 0x00ffff));
1034
1035 tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
1036 tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_BEUW);
1037 tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
1038
1039 tcg_temp_free_i32(t0);
1040
1041 } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) {
1042
1043 TCGv lo = tcg_const_i32((ret & 0x0000ff));
1044 TCGv hi = tcg_const_i32((ret & 0xffff00) >> 8);
1045
1046 tcg_gen_qemu_st_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
1047 tcg_gen_subi_tl(cpu_sp, cpu_sp, 2);
1048 tcg_gen_qemu_st_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
1049 tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
1050
1051 tcg_temp_free_i32(lo);
1052 tcg_temp_free_i32(hi);
1053 }
1054 }
1055
1056 static void gen_pop_ret(DisasContext *ctx, TCGv ret)
1057 {
1058 if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) {
1059 tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
1060 tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_UB);
1061 } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) {
1062 tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
1063 tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_BEUW);
1064 tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
1065 } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) {
1066 TCGv lo = tcg_temp_new_i32();
1067 TCGv hi = tcg_temp_new_i32();
1068
1069 tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
1070 tcg_gen_qemu_ld_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
1071
1072 tcg_gen_addi_tl(cpu_sp, cpu_sp, 2);
1073 tcg_gen_qemu_ld_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
1074
1075 tcg_gen_deposit_tl(ret, lo, hi, 8, 16);
1076
1077 tcg_temp_free_i32(lo);
1078 tcg_temp_free_i32(hi);
1079 }
1080 }
1081
1082 static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest)
1083 {
1084 const TranslationBlock *tb = ctx->base.tb;
1085
1086 if (!ctx->base.singlestep_enabled) {
1087 tcg_gen_goto_tb(n);
1088 tcg_gen_movi_i32(cpu_pc, dest);
1089 tcg_gen_exit_tb(tb, n);
1090 } else {
1091 tcg_gen_movi_i32(cpu_pc, dest);
1092 gen_helper_debug(cpu_env);
1093 tcg_gen_exit_tb(NULL, 0);
1094 }
1095 ctx->base.is_jmp = DISAS_NORETURN;
1096 }
1097
1098 /*
1099 * Relative jump to an address within PC - 2K +1 and PC + 2K (words). For
1100 * AVR microcontrollers with Program memory not exceeding 4K words (8KB) this
1101 * instruction can address the entire memory from every address location. See
1102 * also JMP.
1103 */
1104 static bool trans_RJMP(DisasContext *ctx, arg_RJMP *a)
1105 {
1106 int dst = ctx->npc + a->imm;
1107
1108 gen_goto_tb(ctx, 0, dst);
1109
1110 return true;
1111 }
1112
1113 /*
1114 * Indirect jump to the address pointed to by the Z (16 bits) Pointer
1115 * Register in the Register File. The Z-pointer Register is 16 bits wide and
1116 * allows jump within the lowest 64K words (128KB) section of Program memory.
1117 * This instruction is not available in all devices. Refer to the device
1118 * specific instruction set summary.
1119 */
1120 static bool trans_IJMP(DisasContext *ctx, arg_IJMP *a)
1121 {
1122 if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) {
1123 return true;
1124 }
1125
1126 gen_jmp_z(ctx);
1127
1128 return true;
1129 }
1130
1131 /*
1132 * Indirect jump to the address pointed to by the Z (16 bits) Pointer
1133 * Register in the Register File and the EIND Register in the I/O space. This
1134 * instruction allows for indirect jumps to the entire 4M (words) Program
1135 * memory space. See also IJMP. This instruction is not available in all
1136 * devices. Refer to the device specific instruction set summary.
1137 */
1138 static bool trans_EIJMP(DisasContext *ctx, arg_EIJMP *a)
1139 {
1140 if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) {
1141 return true;
1142 }
1143
1144 gen_jmp_ez(ctx);
1145 return true;
1146 }
1147
1148 /*
1149 * Jump to an address within the entire 4M (words) Program memory. See also
1150 * RJMP. This instruction is not available in all devices. Refer to the device
1151 * specific instruction set summary.0
1152 */
1153 static bool trans_JMP(DisasContext *ctx, arg_JMP *a)
1154 {
1155 if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) {
1156 return true;
1157 }
1158
1159 gen_goto_tb(ctx, 0, a->imm);
1160
1161 return true;
1162 }
1163
1164 /*
1165 * Relative call to an address within PC - 2K + 1 and PC + 2K (words). The
1166 * return address (the instruction after the RCALL) is stored onto the Stack.
1167 * See also CALL. For AVR microcontrollers with Program memory not exceeding 4K
1168 * words (8KB) this instruction can address the entire memory from every
1169 * address location. The Stack Pointer uses a post-decrement scheme during
1170 * RCALL.
1171 */
1172 static bool trans_RCALL(DisasContext *ctx, arg_RCALL *a)
1173 {
1174 int ret = ctx->npc;
1175 int dst = ctx->npc + a->imm;
1176
1177 gen_push_ret(ctx, ret);
1178 gen_goto_tb(ctx, 0, dst);
1179
1180 return true;
1181 }
1182
1183 /*
1184 * Calls to a subroutine within the entire 4M (words) Program memory. The
1185 * return address (to the instruction after the CALL) will be stored onto the
1186 * Stack. See also RCALL. The Stack Pointer uses a post-decrement scheme during
1187 * CALL. This instruction is not available in all devices. Refer to the device
1188 * specific instruction set summary.
1189 */
1190 static bool trans_ICALL(DisasContext *ctx, arg_ICALL *a)
1191 {
1192 if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) {
1193 return true;
1194 }
1195
1196 int ret = ctx->npc;
1197
1198 gen_push_ret(ctx, ret);
1199 gen_jmp_z(ctx);
1200
1201 return true;
1202 }
1203
1204 /*
1205 * Indirect call of a subroutine pointed to by the Z (16 bits) Pointer
1206 * Register in the Register File and the EIND Register in the I/O space. This
1207 * instruction allows for indirect calls to the entire 4M (words) Program
1208 * memory space. See also ICALL. The Stack Pointer uses a post-decrement scheme
1209 * during EICALL. This instruction is not available in all devices. Refer to
1210 * the device specific instruction set summary.
1211 */
1212 static bool trans_EICALL(DisasContext *ctx, arg_EICALL *a)
1213 {
1214 if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) {
1215 return true;
1216 }
1217
1218 int ret = ctx->npc;
1219
1220 gen_push_ret(ctx, ret);
1221 gen_jmp_ez(ctx);
1222 return true;
1223 }
1224
1225 /*
1226 * Calls to a subroutine within the entire Program memory. The return
1227 * address (to the instruction after the CALL) will be stored onto the Stack.
1228 * (See also RCALL). The Stack Pointer uses a post-decrement scheme during
1229 * CALL. This instruction is not available in all devices. Refer to the device
1230 * specific instruction set summary.
1231 */
1232 static bool trans_CALL(DisasContext *ctx, arg_CALL *a)
1233 {
1234 if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) {
1235 return true;
1236 }
1237
1238 int Imm = a->imm;
1239 int ret = ctx->npc;
1240
1241 gen_push_ret(ctx, ret);
1242 gen_goto_tb(ctx, 0, Imm);
1243
1244 return true;
1245 }
1246
1247 /*
1248 * Returns from subroutine. The return address is loaded from the STACK.
1249 * The Stack Pointer uses a preincrement scheme during RET.
1250 */
1251 static bool trans_RET(DisasContext *ctx, arg_RET *a)
1252 {
1253 gen_pop_ret(ctx, cpu_pc);
1254
1255 ctx->base.is_jmp = DISAS_LOOKUP;
1256 return true;
1257 }
1258
1259 /*
1260 * Returns from interrupt. The return address is loaded from the STACK and
1261 * the Global Interrupt Flag is set. Note that the Status Register is not
1262 * automatically stored when entering an interrupt routine, and it is not
1263 * restored when returning from an interrupt routine. This must be handled by
1264 * the application program. The Stack Pointer uses a pre-increment scheme
1265 * during RETI.
1266 */
1267 static bool trans_RETI(DisasContext *ctx, arg_RETI *a)
1268 {
1269 gen_pop_ret(ctx, cpu_pc);
1270 tcg_gen_movi_tl(cpu_If, 1);
1271
1272 /* Need to return to main loop to re-evaluate interrupts. */
1273 ctx->base.is_jmp = DISAS_EXIT;
1274 return true;
1275 }
1276
1277 /*
1278 * This instruction performs a compare between two registers Rd and Rr, and
1279 * skips the next instruction if Rd = Rr.
1280 */
1281 static bool trans_CPSE(DisasContext *ctx, arg_CPSE *a)
1282 {
1283 ctx->skip_cond = TCG_COND_EQ;
1284 ctx->skip_var0 = cpu_r[a->rd];
1285 ctx->skip_var1 = cpu_r[a->rr];
1286 return true;
1287 }
1288
1289 /*
1290 * This instruction performs a compare between two registers Rd and Rr.
1291 * None of the registers are changed. All conditional branches can be used
1292 * after this instruction.
1293 */
1294 static bool trans_CP(DisasContext *ctx, arg_CP *a)
1295 {
1296 TCGv Rd = cpu_r[a->rd];
1297 TCGv Rr = cpu_r[a->rr];
1298 TCGv R = tcg_temp_new_i32();
1299
1300 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
1301 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
1302
1303 /* update status register */
1304 gen_sub_CHf(R, Rd, Rr);
1305 gen_sub_Vf(R, Rd, Rr);
1306 gen_ZNSf(R);
1307
1308 tcg_temp_free_i32(R);
1309
1310 return true;
1311 }
1312
1313 /*
1314 * This instruction performs a compare between two registers Rd and Rr and
1315 * also takes into account the previous carry. None of the registers are
1316 * changed. All conditional branches can be used after this instruction.
1317 */
1318 static bool trans_CPC(DisasContext *ctx, arg_CPC *a)
1319 {
1320 TCGv Rd = cpu_r[a->rd];
1321 TCGv Rr = cpu_r[a->rr];
1322 TCGv R = tcg_temp_new_i32();
1323 TCGv zero = tcg_const_i32(0);
1324
1325 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
1326 tcg_gen_sub_tl(R, R, cpu_Cf);
1327 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
1328 /* update status register */
1329 gen_sub_CHf(R, Rd, Rr);
1330 gen_sub_Vf(R, Rd, Rr);
1331 gen_NSf(R);
1332
1333 /*
1334 * Previous value remains unchanged when the result is zero;
1335 * cleared otherwise.
1336 */
1337 tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero);
1338
1339 tcg_temp_free_i32(zero);
1340 tcg_temp_free_i32(R);
1341
1342 return true;
1343 }
1344
1345 /*
1346 * This instruction performs a compare between register Rd and a constant.
1347 * The register is not changed. All conditional branches can be used after this
1348 * instruction.
1349 */
1350 static bool trans_CPI(DisasContext *ctx, arg_CPI *a)
1351 {
1352 TCGv Rd = cpu_r[a->rd];
1353 int Imm = a->imm;
1354 TCGv Rr = tcg_const_i32(Imm);
1355 TCGv R = tcg_temp_new_i32();
1356
1357 tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
1358 tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
1359
1360 /* update status register */
1361 gen_sub_CHf(R, Rd, Rr);
1362 gen_sub_Vf(R, Rd, Rr);
1363 gen_ZNSf(R);
1364
1365 tcg_temp_free_i32(R);
1366 tcg_temp_free_i32(Rr);
1367
1368 return true;
1369 }
1370
1371 /*
1372 * This instruction tests a single bit in a register and skips the next
1373 * instruction if the bit is cleared.
1374 */
1375 static bool trans_SBRC(DisasContext *ctx, arg_SBRC *a)
1376 {
1377 TCGv Rr = cpu_r[a->rr];
1378
1379 ctx->skip_cond = TCG_COND_EQ;
1380 ctx->skip_var0 = tcg_temp_new();
1381 ctx->free_skip_var0 = true;
1382
1383 tcg_gen_andi_tl(ctx->skip_var0, Rr, 1 << a->bit);
1384 return true;
1385 }
1386
1387 /*
1388 * This instruction tests a single bit in a register and skips the next
1389 * instruction if the bit is set.
1390 */
1391 static bool trans_SBRS(DisasContext *ctx, arg_SBRS *a)
1392 {
1393 TCGv Rr = cpu_r[a->rr];
1394
1395 ctx->skip_cond = TCG_COND_NE;
1396 ctx->skip_var0 = tcg_temp_new();
1397 ctx->free_skip_var0 = true;
1398
1399 tcg_gen_andi_tl(ctx->skip_var0, Rr, 1 << a->bit);
1400 return true;
1401 }
1402
1403 /*
1404 * This instruction tests a single bit in an I/O Register and skips the
1405 * next instruction if the bit is cleared. This instruction operates on the
1406 * lower 32 I/O Registers -- addresses 0-31.
1407 */
1408 static bool trans_SBIC(DisasContext *ctx, arg_SBIC *a)
1409 {
1410 TCGv temp = tcg_const_i32(a->reg);
1411
1412 gen_helper_inb(temp, cpu_env, temp);
1413 tcg_gen_andi_tl(temp, temp, 1 << a->bit);
1414 ctx->skip_cond = TCG_COND_EQ;
1415 ctx->skip_var0 = temp;
1416 ctx->free_skip_var0 = true;
1417
1418 return true;
1419 }
1420
1421 /*
1422 * This instruction tests a single bit in an I/O Register and skips the
1423 * next instruction if the bit is set. This instruction operates on the lower
1424 * 32 I/O Registers -- addresses 0-31.
1425 */
1426 static bool trans_SBIS(DisasContext *ctx, arg_SBIS *a)
1427 {
1428 TCGv temp = tcg_const_i32(a->reg);
1429
1430 gen_helper_inb(temp, cpu_env, temp);
1431 tcg_gen_andi_tl(temp, temp, 1 << a->bit);
1432 ctx->skip_cond = TCG_COND_NE;
1433 ctx->skip_var0 = temp;
1434 ctx->free_skip_var0 = true;
1435
1436 return true;
1437 }
1438
1439 /*
1440 * Conditional relative branch. Tests a single bit in SREG and branches
1441 * relatively to PC if the bit is cleared. This instruction branches relatively
1442 * to PC in either direction (PC - 63 < = destination <= PC + 64). The
1443 * parameter k is the offset from PC and is represented in two's complement
1444 * form.
1445 */
1446 static bool trans_BRBC(DisasContext *ctx, arg_BRBC *a)
1447 {
1448 TCGLabel *not_taken = gen_new_label();
1449
1450 TCGv var;
1451
1452 switch (a->bit) {
1453 case 0x00:
1454 var = cpu_Cf;
1455 break;
1456 case 0x01:
1457 var = cpu_Zf;
1458 break;
1459 case 0x02:
1460 var = cpu_Nf;
1461 break;
1462 case 0x03:
1463 var = cpu_Vf;
1464 break;
1465 case 0x04:
1466 var = cpu_Sf;
1467 break;
1468 case 0x05:
1469 var = cpu_Hf;
1470 break;
1471 case 0x06:
1472 var = cpu_Tf;
1473 break;
1474 case 0x07:
1475 var = cpu_If;
1476 break;
1477 default:
1478 g_assert_not_reached();
1479 }
1480
1481 tcg_gen_brcondi_i32(TCG_COND_NE, var, 0, not_taken);
1482 gen_goto_tb(ctx, 0, ctx->npc + a->imm);
1483 gen_set_label(not_taken);
1484
1485 ctx->base.is_jmp = DISAS_CHAIN;
1486 return true;
1487 }
1488
1489 /*
1490 * Conditional relative branch. Tests a single bit in SREG and branches
1491 * relatively to PC if the bit is set. This instruction branches relatively to
1492 * PC in either direction (PC - 63 < = destination <= PC + 64). The parameter k
1493 * is the offset from PC and is represented in two's complement form.
1494 */
1495 static bool trans_BRBS(DisasContext *ctx, arg_BRBS *a)
1496 {
1497 TCGLabel *not_taken = gen_new_label();
1498
1499 TCGv var;
1500
1501 switch (a->bit) {
1502 case 0x00:
1503 var = cpu_Cf;
1504 break;
1505 case 0x01:
1506 var = cpu_Zf;
1507 break;
1508 case 0x02:
1509 var = cpu_Nf;
1510 break;
1511 case 0x03:
1512 var = cpu_Vf;
1513 break;
1514 case 0x04:
1515 var = cpu_Sf;
1516 break;
1517 case 0x05:
1518 var = cpu_Hf;
1519 break;
1520 case 0x06:
1521 var = cpu_Tf;
1522 break;
1523 case 0x07:
1524 var = cpu_If;
1525 break;
1526 default:
1527 g_assert_not_reached();
1528 }
1529
1530 tcg_gen_brcondi_i32(TCG_COND_EQ, var, 0, not_taken);
1531 gen_goto_tb(ctx, 0, ctx->npc + a->imm);
1532 gen_set_label(not_taken);
1533
1534 ctx->base.is_jmp = DISAS_CHAIN;
1535 return true;
1536 }
1537
1538 /*
1539 * Data Transfer Instructions
1540 */
1541
1542 /*
1543 * in the gen_set_addr & gen_get_addr functions
1544 * H assumed to be in 0x00ff0000 format
1545 * M assumed to be in 0x000000ff format
1546 * L assumed to be in 0x000000ff format
1547 */
1548 static void gen_set_addr(TCGv addr, TCGv H, TCGv M, TCGv L)
1549 {
1550
1551 tcg_gen_andi_tl(L, addr, 0x000000ff);
1552
1553 tcg_gen_andi_tl(M, addr, 0x0000ff00);
1554 tcg_gen_shri_tl(M, M, 8);
1555
1556 tcg_gen_andi_tl(H, addr, 0x00ff0000);
1557 }
1558
1559 static void gen_set_xaddr(TCGv addr)
1560 {
1561 gen_set_addr(addr, cpu_rampX, cpu_r[27], cpu_r[26]);
1562 }
1563
1564 static void gen_set_yaddr(TCGv addr)
1565 {
1566 gen_set_addr(addr, cpu_rampY, cpu_r[29], cpu_r[28]);
1567 }
1568
1569 static void gen_set_zaddr(TCGv addr)
1570 {
1571 gen_set_addr(addr, cpu_rampZ, cpu_r[31], cpu_r[30]);
1572 }
1573
1574 static TCGv gen_get_addr(TCGv H, TCGv M, TCGv L)
1575 {
1576 TCGv addr = tcg_temp_new_i32();
1577
1578 tcg_gen_deposit_tl(addr, M, H, 8, 8);
1579 tcg_gen_deposit_tl(addr, L, addr, 8, 16);
1580
1581 return addr;
1582 }
1583
1584 static TCGv gen_get_xaddr(void)
1585 {
1586 return gen_get_addr(cpu_rampX, cpu_r[27], cpu_r[26]);
1587 }
1588
1589 static TCGv gen_get_yaddr(void)
1590 {
1591 return gen_get_addr(cpu_rampY, cpu_r[29], cpu_r[28]);
1592 }
1593
1594 static TCGv gen_get_zaddr(void)
1595 {
1596 return gen_get_addr(cpu_rampZ, cpu_r[31], cpu_r[30]);
1597 }
1598
1599 /*
1600 * Load one byte indirect from data space to register and stores an clear
1601 * the bits in data space specified by the register. The instruction can only
1602 * be used towards internal SRAM. The data location is pointed to by the Z (16
1603 * bits) Pointer Register in the Register File. Memory access is limited to the
1604 * current data segment of 64KB. To access another data segment in devices with
1605 * more than 64KB data space, the RAMPZ in register in the I/O area has to be
1606 * changed. The Z-pointer Register is left unchanged by the operation. This
1607 * instruction is especially suited for clearing status bits stored in SRAM.
1608 */
1609 static void gen_data_store(DisasContext *ctx, TCGv data, TCGv addr)
1610 {
1611 if (ctx->base.tb->flags & TB_FLAGS_FULL_ACCESS) {
1612 gen_helper_fullwr(cpu_env, data, addr);
1613 } else {
1614 tcg_gen_qemu_st8(data, addr, MMU_DATA_IDX); /* mem[addr] = data */
1615 }
1616 }
1617
1618 static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr)
1619 {
1620 if (ctx->base.tb->flags & TB_FLAGS_FULL_ACCESS) {
1621 gen_helper_fullrd(data, cpu_env, addr);
1622 } else {
1623 tcg_gen_qemu_ld8u(data, addr, MMU_DATA_IDX); /* data = mem[addr] */
1624 }
1625 }
1626
1627 /*
1628 * This instruction makes a copy of one register into another. The source
1629 * register Rr is left unchanged, while the destination register Rd is loaded
1630 * with a copy of Rr.
1631 */
1632 static bool trans_MOV(DisasContext *ctx, arg_MOV *a)
1633 {
1634 TCGv Rd = cpu_r[a->rd];
1635 TCGv Rr = cpu_r[a->rr];
1636
1637 tcg_gen_mov_tl(Rd, Rr);
1638
1639 return true;
1640 }
1641
1642 /*
1643 * This instruction makes a copy of one register pair into another register
1644 * pair. The source register pair Rr+1:Rr is left unchanged, while the
1645 * destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr. This
1646 * instruction is not available in all devices. Refer to the device specific
1647 * instruction set summary.
1648 */
1649 static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a)
1650 {
1651 if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) {
1652 return true;
1653 }
1654
1655 TCGv RdL = cpu_r[a->rd];
1656 TCGv RdH = cpu_r[a->rd + 1];
1657 TCGv RrL = cpu_r[a->rr];
1658 TCGv RrH = cpu_r[a->rr + 1];
1659
1660 tcg_gen_mov_tl(RdH, RrH);
1661 tcg_gen_mov_tl(RdL, RrL);
1662
1663 return true;
1664 }
1665
1666 /*
1667 * Loads an 8 bit constant directly to register 16 to 31.
1668 */
1669 static bool trans_LDI(DisasContext *ctx, arg_LDI *a)
1670 {
1671 TCGv Rd = cpu_r[a->rd];
1672 int imm = a->imm;
1673
1674 tcg_gen_movi_tl(Rd, imm);
1675
1676 return true;
1677 }
1678
1679 /*
1680 * Loads one byte from the data space to a register. For parts with SRAM,
1681 * the data space consists of the Register File, I/O memory and internal SRAM
1682 * (and external SRAM if applicable). For parts without SRAM, the data space
1683 * consists of the register file only. The EEPROM has a separate address space.
1684 * A 16-bit address must be supplied. Memory access is limited to the current
1685 * data segment of 64KB. The LDS instruction uses the RAMPD Register to access
1686 * memory above 64KB. To access another data segment in devices with more than
1687 * 64KB data space, the RAMPD in register in the I/O area has to be changed.
1688 * This instruction is not available in all devices. Refer to the device
1689 * specific instruction set summary.
1690 */
1691 static bool trans_LDS(DisasContext *ctx, arg_LDS *a)
1692 {
1693 TCGv Rd = cpu_r[a->rd];
1694 TCGv addr = tcg_temp_new_i32();
1695 TCGv H = cpu_rampD;
1696 a->imm = next_word(ctx);
1697
1698 tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
1699 tcg_gen_shli_tl(addr, addr, 16);
1700 tcg_gen_ori_tl(addr, addr, a->imm);
1701
1702 gen_data_load(ctx, Rd, addr);
1703
1704 tcg_temp_free_i32(addr);
1705
1706 return true;
1707 }
1708
1709 /*
1710 * Loads one byte indirect from the data space to a register. For parts
1711 * with SRAM, the data space consists of the Register File, I/O memory and
1712 * internal SRAM (and external SRAM if applicable). For parts without SRAM, the
1713 * data space consists of the Register File only. In some parts the Flash
1714 * Memory has been mapped to the data space and can be read using this command.
1715 * The EEPROM has a separate address space. The data location is pointed to by
1716 * the X (16 bits) Pointer Register in the Register File. Memory access is
1717 * limited to the current data segment of 64KB. To access another data segment
1718 * in devices with more than 64KB data space, the RAMPX in register in the I/O
1719 * area has to be changed. The X-pointer Register can either be left unchanged
1720 * by the operation, or it can be post-incremented or predecremented. These
1721 * features are especially suited for accessing arrays, tables, and Stack
1722 * Pointer usage of the X-pointer Register. Note that only the low byte of the
1723 * X-pointer is updated in devices with no more than 256 bytes data space. For
1724 * such devices, the high byte of the pointer is not used by this instruction
1725 * and can be used for other purposes. The RAMPX Register in the I/O area is
1726 * updated in parts with more than 64KB data space or more than 64KB Program
1727 * memory, and the increment/decrement is added to the entire 24-bit address on
1728 * such devices. Not all variants of this instruction is available in all
1729 * devices. Refer to the device specific instruction set summary. In the
1730 * Reduced Core tinyAVR the LD instruction can be used to achieve the same
1731 * operation as LPM since the program memory is mapped to the data memory
1732 * space.
1733 */
1734 static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a)
1735 {
1736 TCGv Rd = cpu_r[a->rd];
1737 TCGv addr = gen_get_xaddr();
1738
1739 gen_data_load(ctx, Rd, addr);
1740
1741 tcg_temp_free_i32(addr);
1742
1743 return true;
1744 }
1745
1746 static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a)
1747 {
1748 TCGv Rd = cpu_r[a->rd];
1749 TCGv addr = gen_get_xaddr();
1750
1751 gen_data_load(ctx, Rd, addr);
1752 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
1753
1754 gen_set_xaddr(addr);
1755
1756 tcg_temp_free_i32(addr);
1757
1758 return true;
1759 }
1760
1761 static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a)
1762 {
1763 TCGv Rd = cpu_r[a->rd];
1764 TCGv addr = gen_get_xaddr();
1765
1766 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
1767 gen_data_load(ctx, Rd, addr);
1768 gen_set_xaddr(addr);
1769
1770 tcg_temp_free_i32(addr);
1771
1772 return true;
1773 }
1774
1775 /*
1776 * Loads one byte indirect with or without displacement from the data space
1777 * to a register. For parts with SRAM, the data space consists of the Register
1778 * File, I/O memory and internal SRAM (and external SRAM if applicable). For
1779 * parts without SRAM, the data space consists of the Register File only. In
1780 * some parts the Flash Memory has been mapped to the data space and can be
1781 * read using this command. The EEPROM has a separate address space. The data
1782 * location is pointed to by the Y (16 bits) Pointer Register in the Register
1783 * File. Memory access is limited to the current data segment of 64KB. To
1784 * access another data segment in devices with more than 64KB data space, the
1785 * RAMPY in register in the I/O area has to be changed. The Y-pointer Register
1786 * can either be left unchanged by the operation, or it can be post-incremented
1787 * or predecremented. These features are especially suited for accessing
1788 * arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note that
1789 * only the low byte of the Y-pointer is updated in devices with no more than
1790 * 256 bytes data space. For such devices, the high byte of the pointer is not
1791 * used by this instruction and can be used for other purposes. The RAMPY
1792 * Register in the I/O area is updated in parts with more than 64KB data space
1793 * or more than 64KB Program memory, and the increment/decrement/displacement
1794 * is added to the entire 24-bit address on such devices. Not all variants of
1795 * this instruction is available in all devices. Refer to the device specific
1796 * instruction set summary. In the Reduced Core tinyAVR the LD instruction can
1797 * be used to achieve the same operation as LPM since the program memory is
1798 * mapped to the data memory space.
1799 */
1800 static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a)
1801 {
1802 TCGv Rd = cpu_r[a->rd];
1803 TCGv addr = gen_get_yaddr();
1804
1805 gen_data_load(ctx, Rd, addr);
1806 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
1807
1808 gen_set_yaddr(addr);
1809
1810 tcg_temp_free_i32(addr);
1811
1812 return true;
1813 }
1814
1815 static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a)
1816 {
1817 TCGv Rd = cpu_r[a->rd];
1818 TCGv addr = gen_get_yaddr();
1819
1820 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
1821 gen_data_load(ctx, Rd, addr);
1822 gen_set_yaddr(addr);
1823
1824 tcg_temp_free_i32(addr);
1825
1826 return true;
1827 }
1828
1829 static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a)
1830 {
1831 TCGv Rd = cpu_r[a->rd];
1832 TCGv addr = gen_get_yaddr();
1833
1834 tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
1835 gen_data_load(ctx, Rd, addr);
1836
1837 tcg_temp_free_i32(addr);
1838
1839 return true;
1840 }
1841
1842 /*
1843 * Loads one byte indirect with or without displacement from the data space
1844 * to a register. For parts with SRAM, the data space consists of the Register
1845 * File, I/O memory and internal SRAM (and external SRAM if applicable). For
1846 * parts without SRAM, the data space consists of the Register File only. In
1847 * some parts the Flash Memory has been mapped to the data space and can be
1848 * read using this command. The EEPROM has a separate address space. The data
1849 * location is pointed to by the Z (16 bits) Pointer Register in the Register
1850 * File. Memory access is limited to the current data segment of 64KB. To
1851 * access another data segment in devices with more than 64KB data space, the
1852 * RAMPZ in register in the I/O area has to be changed. The Z-pointer Register
1853 * can either be left unchanged by the operation, or it can be post-incremented
1854 * or predecremented. These features are especially suited for Stack Pointer
1855 * usage of the Z-pointer Register, however because the Z-pointer Register can
1856 * be used for indirect subroutine calls, indirect jumps and table lookup, it
1857 * is often more convenient to use the X or Y-pointer as a dedicated Stack
1858 * Pointer. Note that only the low byte of the Z-pointer is updated in devices
1859 * with no more than 256 bytes data space. For such devices, the high byte of
1860 * the pointer is not used by this instruction and can be used for other
1861 * purposes. The RAMPZ Register in the I/O area is updated in parts with more
1862 * than 64KB data space or more than 64KB Program memory, and the
1863 * increment/decrement/displacement is added to the entire 24-bit address on
1864 * such devices. Not all variants of this instruction is available in all
1865 * devices. Refer to the device specific instruction set summary. In the
1866 * Reduced Core tinyAVR the LD instruction can be used to achieve the same
1867 * operation as LPM since the program memory is mapped to the data memory
1868 * space. For using the Z-pointer for table lookup in Program memory see the
1869 * LPM and ELPM instructions.
1870 */
1871 static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a)
1872 {
1873 TCGv Rd = cpu_r[a->rd];
1874 TCGv addr = gen_get_zaddr();
1875
1876 gen_data_load(ctx, Rd, addr);
1877 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
1878
1879 gen_set_zaddr(addr);
1880
1881 tcg_temp_free_i32(addr);
1882
1883 return true;
1884 }
1885
1886 static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a)
1887 {
1888 TCGv Rd = cpu_r[a->rd];
1889 TCGv addr = gen_get_zaddr();
1890
1891 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
1892 gen_data_load(ctx, Rd, addr);
1893
1894 gen_set_zaddr(addr);
1895
1896 tcg_temp_free_i32(addr);
1897
1898 return true;
1899 }
1900
1901 static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a)
1902 {
1903 TCGv Rd = cpu_r[a->rd];
1904 TCGv addr = gen_get_zaddr();
1905
1906 tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
1907 gen_data_load(ctx, Rd, addr);
1908
1909 tcg_temp_free_i32(addr);
1910
1911 return true;
1912 }
1913
1914 /*
1915 * Stores one byte from a Register to the data space. For parts with SRAM,
1916 * the data space consists of the Register File, I/O memory and internal SRAM
1917 * (and external SRAM if applicable). For parts without SRAM, the data space
1918 * consists of the Register File only. The EEPROM has a separate address space.
1919 * A 16-bit address must be supplied. Memory access is limited to the current
1920 * data segment of 64KB. The STS instruction uses the RAMPD Register to access
1921 * memory above 64KB. To access another data segment in devices with more than
1922 * 64KB data space, the RAMPD in register in the I/O area has to be changed.
1923 * This instruction is not available in all devices. Refer to the device
1924 * specific instruction set summary.
1925 */
1926 static bool trans_STS(DisasContext *ctx, arg_STS *a)
1927 {
1928 TCGv Rd = cpu_r[a->rd];
1929 TCGv addr = tcg_temp_new_i32();
1930 TCGv H = cpu_rampD;
1931 a->imm = next_word(ctx);
1932
1933 tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
1934 tcg_gen_shli_tl(addr, addr, 16);
1935 tcg_gen_ori_tl(addr, addr, a->imm);
1936 gen_data_store(ctx, Rd, addr);
1937
1938 tcg_temp_free_i32(addr);
1939
1940 return true;
1941 }
1942
1943 /*
1944 * Stores one byte indirect from a register to data space. For parts with SRAM,
1945 * the data space consists of the Register File, I/O memory, and internal SRAM
1946 * (and external SRAM if applicable). For parts without SRAM, the data space
1947 * consists of the Register File only. The EEPROM has a separate address space.
1948 *
1949 * The data location is pointed to by the X (16 bits) Pointer Register in the
1950 * Register File. Memory access is limited to the current data segment of 64KB.
1951 * To access another data segment in devices with more than 64KB data space, the
1952 * RAMPX in register in the I/O area has to be changed.
1953 *
1954 * The X-pointer Register can either be left unchanged by the operation, or it
1955 * can be post-incremented or pre-decremented. These features are especially
1956 * suited for accessing arrays, tables, and Stack Pointer usage of the
1957 * X-pointer Register. Note that only the low byte of the X-pointer is updated
1958 * in devices with no more than 256 bytes data space. For such devices, the high
1959 * byte of the pointer is not used by this instruction and can be used for other
1960 * purposes. The RAMPX Register in the I/O area is updated in parts with more
1961 * than 64KB data space or more than 64KB Program memory, and the increment /
1962 * decrement is added to the entire 24-bit address on such devices.
1963 */
1964 static bool trans_STX1(DisasContext *ctx, arg_STX1 *a)
1965 {
1966 TCGv Rd = cpu_r[a->rr];
1967 TCGv addr = gen_get_xaddr();
1968
1969 gen_data_store(ctx, Rd, addr);
1970
1971 tcg_temp_free_i32(addr);
1972
1973 return true;
1974 }
1975
1976 static bool trans_STX2(DisasContext *ctx, arg_STX2 *a)
1977 {
1978 TCGv Rd = cpu_r[a->rr];
1979 TCGv addr = gen_get_xaddr();
1980
1981 gen_data_store(ctx, Rd, addr);
1982 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
1983 gen_set_xaddr(addr);
1984
1985 tcg_temp_free_i32(addr);
1986
1987 return true;
1988 }
1989
1990 static bool trans_STX3(DisasContext *ctx, arg_STX3 *a)
1991 {
1992 TCGv Rd = cpu_r[a->rr];
1993 TCGv addr = gen_get_xaddr();
1994
1995 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
1996 gen_data_store(ctx, Rd, addr);
1997 gen_set_xaddr(addr);
1998
1999 tcg_temp_free_i32(addr);
2000
2001 return true;
2002 }
2003
2004 /*
2005 * Stores one byte indirect with or without displacement from a register to data
2006 * space. For parts with SRAM, the data space consists of the Register File, I/O
2007 * memory, and internal SRAM (and external SRAM if applicable). For parts
2008 * without SRAM, the data space consists of the Register File only. The EEPROM
2009 * has a separate address space.
2010 *
2011 * The data location is pointed to by the Y (16 bits) Pointer Register in the
2012 * Register File. Memory access is limited to the current data segment of 64KB.
2013 * To access another data segment in devices with more than 64KB data space, the
2014 * RAMPY in register in the I/O area has to be changed.
2015 *
2016 * The Y-pointer Register can either be left unchanged by the operation, or it
2017 * can be post-incremented or pre-decremented. These features are especially
2018 * suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer
2019 * Register. Note that only the low byte of the Y-pointer is updated in devices
2020 * with no more than 256 bytes data space. For such devices, the high byte of
2021 * the pointer is not used by this instruction and can be used for other
2022 * purposes. The RAMPY Register in the I/O area is updated in parts with more
2023 * than 64KB data space or more than 64KB Program memory, and the increment /
2024 * decrement / displacement is added to the entire 24-bit address on such
2025 * devices.
2026 */
2027 static bool trans_STY2(DisasContext *ctx, arg_STY2 *a)
2028 {
2029 TCGv Rd = cpu_r[a->rd];
2030 TCGv addr = gen_get_yaddr();
2031
2032 gen_data_store(ctx, Rd, addr);
2033 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
2034 gen_set_yaddr(addr);
2035
2036 tcg_temp_free_i32(addr);
2037
2038 return true;
2039 }
2040
2041 static bool trans_STY3(DisasContext *ctx, arg_STY3 *a)
2042 {
2043 TCGv Rd = cpu_r[a->rd];
2044 TCGv addr = gen_get_yaddr();
2045
2046 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
2047 gen_data_store(ctx, Rd, addr);
2048 gen_set_yaddr(addr);
2049
2050 tcg_temp_free_i32(addr);
2051
2052 return true;
2053 }
2054
2055 static bool trans_STDY(DisasContext *ctx, arg_STDY *a)
2056 {
2057 TCGv Rd = cpu_r[a->rd];
2058 TCGv addr = gen_get_yaddr();
2059
2060 tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
2061 gen_data_store(ctx, Rd, addr);
2062
2063 tcg_temp_free_i32(addr);
2064
2065 return true;
2066 }
2067
2068 /*
2069 * Stores one byte indirect with or without displacement from a register to data
2070 * space. For parts with SRAM, the data space consists of the Register File, I/O
2071 * memory, and internal SRAM (and external SRAM if applicable). For parts
2072 * without SRAM, the data space consists of the Register File only. The EEPROM
2073 * has a separate address space.
2074 *
2075 * The data location is pointed to by the Y (16 bits) Pointer Register in the
2076 * Register File. Memory access is limited to the current data segment of 64KB.
2077 * To access another data segment in devices with more than 64KB data space, the
2078 * RAMPY in register in the I/O area has to be changed.
2079 *
2080 * The Y-pointer Register can either be left unchanged by the operation, or it
2081 * can be post-incremented or pre-decremented. These features are especially
2082 * suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer
2083 * Register. Note that only the low byte of the Y-pointer is updated in devices
2084 * with no more than 256 bytes data space. For such devices, the high byte of
2085 * the pointer is not used by this instruction and can be used for other
2086 * purposes. The RAMPY Register in the I/O area is updated in parts with more
2087 * than 64KB data space or more than 64KB Program memory, and the increment /
2088 * decrement / displacement is added to the entire 24-bit address on such
2089 * devices.
2090 */
2091 static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a)
2092 {
2093 TCGv Rd = cpu_r[a->rd];
2094 TCGv addr = gen_get_zaddr();
2095
2096 gen_data_store(ctx, Rd, addr);
2097 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
2098
2099 gen_set_zaddr(addr);
2100
2101 tcg_temp_free_i32(addr);
2102
2103 return true;
2104 }
2105
2106 static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a)
2107 {
2108 TCGv Rd = cpu_r[a->rd];
2109 TCGv addr = gen_get_zaddr();
2110
2111 tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
2112 gen_data_store(ctx, Rd, addr);
2113
2114 gen_set_zaddr(addr);
2115
2116 tcg_temp_free_i32(addr);
2117
2118 return true;
2119 }
2120
2121 static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a)
2122 {
2123 TCGv Rd = cpu_r[a->rd];
2124 TCGv addr = gen_get_zaddr();
2125
2126 tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
2127 gen_data_store(ctx, Rd, addr);
2128
2129 tcg_temp_free_i32(addr);
2130
2131 return true;
2132 }
2133
2134 /*
2135 * Loads one byte pointed to by the Z-register into the destination
2136 * register Rd. This instruction features a 100% space effective constant
2137 * initialization or constant data fetch. The Program memory is organized in
2138 * 16-bit words while the Z-pointer is a byte address. Thus, the least
2139 * significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high
2140 * byte (ZLSB = 1). This instruction can address the first 64KB (32K words) of
2141 * Program memory. The Zpointer Register can either be left unchanged by the
2142 * operation, or it can be incremented. The incrementation does not apply to
2143 * the RAMPZ Register.
2144 *
2145 * Devices with Self-Programming capability can use the LPM instruction to read
2146 * the Fuse and Lock bit values.
2147 */
2148 static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a)
2149 {
2150 if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
2151 return true;
2152 }
2153
2154 TCGv Rd = cpu_r[0];
2155 TCGv addr = tcg_temp_new_i32();
2156 TCGv H = cpu_r[31];
2157 TCGv L = cpu_r[30];
2158
2159 tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
2160 tcg_gen_or_tl(addr, addr, L);
2161 tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
2162
2163 tcg_temp_free_i32(addr);
2164
2165 return true;
2166 }
2167
2168 static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a)
2169 {
2170 if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
2171 return true;
2172 }
2173
2174 TCGv Rd = cpu_r[a->rd];
2175 TCGv addr = tcg_temp_new_i32();
2176 TCGv H = cpu_r[31];
2177 TCGv L = cpu_r[30];
2178
2179 tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
2180 tcg_gen_or_tl(addr, addr, L);
2181 tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
2182
2183 tcg_temp_free_i32(addr);
2184
2185 return true;
2186 }
2187
2188 static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a)
2189 {
2190 if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) {
2191 return true;
2192 }
2193
2194 TCGv Rd = cpu_r[a->rd];
2195 TCGv addr = tcg_temp_new_i32();
2196 TCGv H = cpu_r[31];
2197 TCGv L = cpu_r[30];
2198
2199 tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
2200 tcg_gen_or_tl(addr, addr, L);
2201 tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
2202 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
2203 tcg_gen_andi_tl(L, addr, 0xff);
2204 tcg_gen_shri_tl(addr, addr, 8);
2205 tcg_gen_andi_tl(H, addr, 0xff);
2206
2207 tcg_temp_free_i32(addr);
2208
2209 return true;
2210 }
2211
2212 /*
2213 * Loads one byte pointed to by the Z-register and the RAMPZ Register in
2214 * the I/O space, and places this byte in the destination register Rd. This
2215 * instruction features a 100% space effective constant initialization or
2216 * constant data fetch. The Program memory is organized in 16-bit words while
2217 * the Z-pointer is a byte address. Thus, the least significant bit of the
2218 * Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This
2219 * instruction can address the entire Program memory space. The Z-pointer
2220 * Register can either be left unchanged by the operation, or it can be
2221 * incremented. The incrementation applies to the entire 24-bit concatenation
2222 * of the RAMPZ and Z-pointer Registers.
2223 *
2224 * Devices with Self-Programming capability can use the ELPM instruction to
2225 * read the Fuse and Lock bit value.
2226 */
2227 static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a)
2228 {
2229 if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
2230 return true;
2231 }
2232
2233 TCGv Rd = cpu_r[0];
2234 TCGv addr = gen_get_zaddr();
2235
2236 tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
2237
2238 tcg_temp_free_i32(addr);
2239
2240 return true;
2241 }
2242
2243 static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a)
2244 {
2245 if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
2246 return true;
2247 }
2248
2249 TCGv Rd = cpu_r[a->rd];
2250 TCGv addr = gen_get_zaddr();
2251
2252 tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
2253
2254 tcg_temp_free_i32(addr);
2255
2256 return true;
2257 }
2258
2259 static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a)
2260 {
2261 if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) {
2262 return true;
2263 }
2264
2265 TCGv Rd = cpu_r[a->rd];
2266 TCGv addr = gen_get_zaddr();
2267
2268 tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
2269 tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
2270 gen_set_zaddr(addr);
2271
2272 tcg_temp_free_i32(addr);
2273
2274 return true;
2275 }
2276
2277 /*
2278 * SPM can be used to erase a page in the Program memory, to write a page
2279 * in the Program memory (that is already erased), and to set Boot Loader Lock
2280 * bits. In some devices, the Program memory can be written one word at a time,
2281 * in other devices an entire page can be programmed simultaneously after first
2282 * filling a temporary page buffer. In all cases, the Program memory must be
2283 * erased one page at a time. When erasing the Program memory, the RAMPZ and
2284 * Z-register are used as page address. When writing the Program memory, the
2285 * RAMPZ and Z-register are used as page or word address, and the R1:R0
2286 * register pair is used as data(1). When setting the Boot Loader Lock bits,
2287 * the R1:R0 register pair is used as data. Refer to the device documentation
2288 * for detailed description of SPM usage. This instruction can address the
2289 * entire Program memory.
2290 *
2291 * The SPM instruction is not available in all devices. Refer to the device
2292 * specific instruction set summary.
2293 *
2294 * Note: 1. R1 determines the instruction high byte, and R0 determines the
2295 * instruction low byte.
2296 */
2297 static bool trans_SPM(DisasContext *ctx, arg_SPM *a)
2298 {
2299 /* TODO */
2300 if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) {
2301 return true;
2302 }
2303
2304 return true;
2305 }
2306
2307 static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a)
2308 {
2309 /* TODO */
2310 if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) {
2311 return true;
2312 }
2313
2314 return true;
2315 }
2316
2317 /*
2318 * Loads data from the I/O Space (Ports, Timers, Configuration Registers,
2319 * etc.) into register Rd in the Register File.
2320 */
2321 static bool trans_IN(DisasContext *ctx, arg_IN *a)
2322 {
2323 TCGv Rd = cpu_r[a->rd];
2324 TCGv port = tcg_const_i32(a->imm);
2325
2326 gen_helper_inb(Rd, cpu_env, port);
2327
2328 tcg_temp_free_i32(port);
2329
2330 return true;
2331 }
2332
2333 /*
2334 * Stores data from register Rr in the Register File to I/O Space (Ports,
2335 * Timers, Configuration Registers, etc.).
2336 */
2337 static bool trans_OUT(DisasContext *ctx, arg_OUT *a)
2338 {
2339 TCGv Rd = cpu_r[a->rd];
2340 TCGv port = tcg_const_i32(a->imm);
2341
2342 gen_helper_outb(cpu_env, port, Rd);
2343
2344 tcg_temp_free_i32(port);
2345
2346 return true;
2347 }
2348
2349 /*
2350 * This instruction stores the contents of register Rr on the STACK. The
2351 * Stack Pointer is post-decremented by 1 after the PUSH. This instruction is
2352 * not available in all devices. Refer to the device specific instruction set
2353 * summary.
2354 */
2355 static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a)
2356 {
2357 TCGv Rd = cpu_r[a->rd];
2358
2359 gen_data_store(ctx, Rd, cpu_sp);
2360 tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
2361
2362 return true;
2363 }
2364
2365 /*
2366 * This instruction loads register Rd with a byte from the STACK. The Stack
2367 * Pointer is pre-incremented by 1 before the POP. This instruction is not
2368 * available in all devices. Refer to the device specific instruction set
2369 * summary.
2370 */
2371 static bool trans_POP(DisasContext *ctx, arg_POP *a)
2372 {
2373 /*
2374 * Using a temp to work around some strange behaviour:
2375 * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
2376 * gen_data_load(ctx, Rd, cpu_sp);
2377 * seems to cause the add to happen twice.
2378 * This doesn't happen if either the add or the load is removed.
2379 */
2380 TCGv t1 = tcg_temp_new_i32();
2381 TCGv Rd = cpu_r[a->rd];
2382
2383 tcg_gen_addi_tl(t1, cpu_sp, 1);
2384 gen_data_load(ctx, Rd, t1);
2385 tcg_gen_mov_tl(cpu_sp, t1);
2386
2387 return true;
2388 }
2389
2390 /*
2391 * Exchanges one byte indirect between register and data space. The data
2392 * location is pointed to by the Z (16 bits) Pointer Register in the Register
2393 * File. Memory access is limited to the current data segment of 64KB. To
2394 * access another data segment in devices with more than 64KB data space, the
2395 * RAMPZ in register in the I/O area has to be changed.
2396 *
2397 * The Z-pointer Register is left unchanged by the operation. This instruction
2398 * is especially suited for writing/reading status bits stored in SRAM.
2399 */
2400 static bool trans_XCH(DisasContext *ctx, arg_XCH *a)
2401 {
2402 if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
2403 return true;
2404 }
2405
2406 TCGv Rd = cpu_r[a->rd];
2407 TCGv t0 = tcg_temp_new_i32();
2408 TCGv addr = gen_get_zaddr();
2409
2410 gen_data_load(ctx, t0, addr);
2411 gen_data_store(ctx, Rd, addr);
2412 tcg_gen_mov_tl(Rd, t0);
2413
2414 tcg_temp_free_i32(t0);
2415 tcg_temp_free_i32(addr);
2416
2417 return true;
2418 }
2419
2420 /*
2421 * Load one byte indirect from data space to register and set bits in data
2422 * space specified by the register. The instruction can only be used towards
2423 * internal SRAM. The data location is pointed to by the Z (16 bits) Pointer
2424 * Register in the Register File. Memory access is limited to the current data
2425 * segment of 64KB. To access another data segment in devices with more than
2426 * 64KB data space, the RAMPZ in register in the I/O area has to be changed.
2427 *
2428 * The Z-pointer Register is left unchanged by the operation. This instruction
2429 * is especially suited for setting status bits stored in SRAM.
2430 */
2431 static bool trans_LAS(DisasContext *ctx, arg_LAS *a)
2432 {
2433 if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
2434 return true;
2435 }
2436
2437 TCGv Rr = cpu_r[a->rd];
2438 TCGv addr = gen_get_zaddr();
2439 TCGv t0 = tcg_temp_new_i32();
2440 TCGv t1 = tcg_temp_new_i32();
2441
2442 gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
2443 tcg_gen_or_tl(t1, t0, Rr);
2444 tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
2445 gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
2446
2447 tcg_temp_free_i32(t1);
2448 tcg_temp_free_i32(t0);
2449 tcg_temp_free_i32(addr);
2450
2451 return true;
2452 }
2453
2454 /*
2455 * Load one byte indirect from data space to register and stores and clear
2456 * the bits in data space specified by the register. The instruction can
2457 * only be used towards internal SRAM. The data location is pointed to by
2458 * the Z (16 bits) Pointer Register in the Register File. Memory access is
2459 * limited to the current data segment of 64KB. To access another data
2460 * segment in devices with more than 64KB data space, the RAMPZ in register
2461 * in the I/O area has to be changed.
2462 *
2463 * The Z-pointer Register is left unchanged by the operation. This instruction
2464 * is especially suited for clearing status bits stored in SRAM.
2465 */
2466 static bool trans_LAC(DisasContext *ctx, arg_LAC *a)
2467 {
2468 if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
2469 return true;
2470 }
2471
2472 TCGv Rr = cpu_r[a->rd];
2473 TCGv addr = gen_get_zaddr();
2474 TCGv t0 = tcg_temp_new_i32();
2475 TCGv t1 = tcg_temp_new_i32();
2476
2477 gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
2478 tcg_gen_andc_tl(t1, t0, Rr); /* t1 = t0 & (0xff - Rr) = t0 & ~Rr */
2479 tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
2480 gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
2481
2482 tcg_temp_free_i32(t1);
2483 tcg_temp_free_i32(t0);
2484 tcg_temp_free_i32(addr);
2485
2486 return true;
2487 }
2488
2489
2490 /*
2491 * Load one byte indirect from data space to register and toggles bits in
2492 * the data space specified by the register. The instruction can only be used
2493 * towards SRAM. The data location is pointed to by the Z (16 bits) Pointer
2494 * Register in the Register File. Memory access is limited to the current data
2495 * segment of 64KB. To access another data segment in devices with more than
2496 * 64KB data space, the RAMPZ in register in the I/O area has to be changed.
2497 *
2498 * The Z-pointer Register is left unchanged by the operation. This instruction
2499 * is especially suited for changing status bits stored in SRAM.
2500 */
2501 static bool trans_LAT(DisasContext *ctx, arg_LAT *a)
2502 {
2503 if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
2504 return true;
2505 }
2506
2507 TCGv Rd = cpu_r[a->rd];
2508 TCGv addr = gen_get_zaddr();
2509 TCGv t0 = tcg_temp_new_i32();
2510 TCGv t1 = tcg_temp_new_i32();
2511
2512 gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
2513 tcg_gen_xor_tl(t1, t0, Rd);
2514 tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */
2515 gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
2516
2517 tcg_temp_free_i32(t1);
2518 tcg_temp_free_i32(t0);
2519 tcg_temp_free_i32(addr);
2520
2521 return true;
2522 }
2523
2524 /*
2525 * Bit and Bit-test Instructions
2526 */
2527 static void gen_rshift_ZNVSf(TCGv R)
2528 {
2529 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
2530 tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
2531 tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
2532 tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
2533 }
2534
2535 /*
2536 * Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is
2537 * loaded into the C Flag of the SREG. This operation effectively divides an
2538 * unsigned value by two. The C Flag can be used to round the result.
2539 */
2540 static bool trans_LSR(DisasContext *ctx, arg_LSR *a)
2541 {
2542 TCGv Rd = cpu_r[a->rd];
2543
2544 tcg_gen_andi_tl(cpu_Cf, Rd, 1);
2545 tcg_gen_shri_tl(Rd, Rd, 1);
2546
2547 /* update status register */
2548 tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, Rd, 0); /* Zf = Rd == 0 */
2549 tcg_gen_movi_tl(cpu_Nf, 0);
2550 tcg_gen_mov_tl(cpu_Vf, cpu_Cf);
2551 tcg_gen_mov_tl(cpu_Sf, cpu_Vf);
2552
2553 return true;
2554 }
2555
2556 /*
2557 * Shifts all bits in Rd one place to the right. The C Flag is shifted into
2558 * bit 7 of Rd. Bit 0 is shifted into the C Flag. This operation, combined
2559 * with ASR, effectively divides multi-byte signed values by two. Combined with
2560 * LSR it effectively divides multi-byte unsigned values by two. The Carry Flag
2561 * can be used to round the result.
2562 */
2563 static bool trans_ROR(DisasContext *ctx, arg_ROR *a)
2564 {
2565 TCGv Rd = cpu_r[a->rd];
2566 TCGv t0 = tcg_temp_new_i32();
2567
2568 tcg_gen_shli_tl(t0, cpu_Cf, 7);
2569
2570 /* update status register */
2571 tcg_gen_andi_tl(cpu_Cf, Rd, 1);
2572
2573 /* update output register */
2574 tcg_gen_shri_tl(Rd, Rd, 1);
2575 tcg_gen_or_tl(Rd, Rd, t0);
2576
2577 /* update status register */
2578 gen_rshift_ZNVSf(Rd);
2579
2580 tcg_temp_free_i32(t0);
2581
2582 return true;
2583 }
2584
2585 /*
2586 * Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0
2587 * is loaded into the C Flag of the SREG. This operation effectively divides a
2588 * signed value by two without changing its sign. The Carry Flag can be used to
2589 * round the result.
2590 */
2591 static bool trans_ASR(DisasContext *ctx, arg_ASR *a)
2592 {
2593 TCGv Rd = cpu_r[a->rd];
2594 TCGv t0 = tcg_temp_new_i32();
2595
2596 /* update status register */
2597 tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */
2598
2599 /* update output register */
2600 tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */
2601 tcg_gen_shri_tl(Rd, Rd, 1);
2602 tcg_gen_or_tl(Rd, Rd, t0);
2603
2604 /* update status register */
2605 gen_rshift_ZNVSf(Rd);
2606
2607 tcg_temp_free_i32(t0);
2608
2609 return true;
2610 }
2611
2612 /*
2613 * Swaps high and low nibbles in a register.
2614 */
2615 static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a)
2616 {
2617 TCGv Rd = cpu_r[a->rd];
2618 TCGv t0 = tcg_temp_new_i32();
2619 TCGv t1 = tcg_temp_new_i32();
2620
2621 tcg_gen_andi_tl(t0, Rd, 0x0f);
2622 tcg_gen_shli_tl(t0, t0, 4);
2623 tcg_gen_andi_tl(t1, Rd, 0xf0);
2624 tcg_gen_shri_tl(t1, t1, 4);
2625 tcg_gen_or_tl(Rd, t0, t1);
2626
2627 tcg_temp_free_i32(t1);
2628 tcg_temp_free_i32(t0);
2629
2630 return true;
2631 }
2632
2633 /*
2634 * Sets a specified bit in an I/O Register. This instruction operates on
2635 * the lower 32 I/O Registers -- addresses 0-31.
2636 */
2637 static bool trans_SBI(DisasContext *ctx, arg_SBI *a)
2638 {
2639 TCGv data = tcg_temp_new_i32();
2640 TCGv port = tcg_const_i32(a->reg);
2641
2642 gen_helper_inb(data, cpu_env, port);
2643 tcg_gen_ori_tl(data, data, 1 << a->bit);
2644 gen_helper_outb(cpu_env, port, data);
2645
2646 tcg_temp_free_i32(port);
2647 tcg_temp_free_i32(data);
2648
2649 return true;
2650 }
2651
2652 /*
2653 * Clears a specified bit in an I/O Register. This instruction operates on
2654 * the lower 32 I/O Registers -- addresses 0-31.
2655 */
2656 static bool trans_CBI(DisasContext *ctx, arg_CBI *a)
2657 {
2658 TCGv data = tcg_temp_new_i32();
2659 TCGv port = tcg_const_i32(a->reg);
2660
2661 gen_helper_inb(data, cpu_env, port);
2662 tcg_gen_andi_tl(data, data, ~(1 << a->bit));
2663 gen_helper_outb(cpu_env, port, data);
2664
2665 tcg_temp_free_i32(data);
2666 tcg_temp_free_i32(port);
2667
2668 return true;
2669 }
2670
2671 /*
2672 * Stores bit b from Rd to the T Flag in SREG (Status Register).
2673 */
2674 static bool trans_BST(DisasContext *ctx, arg_BST *a)
2675 {
2676 TCGv Rd = cpu_r[a->rd];
2677
2678 tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit);
2679 tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit);
2680
2681 return true;
2682 }
2683
2684 /*
2685 * Copies the T Flag in the SREG (Status Register) to bit b in register Rd.
2686 */
2687 static bool trans_BLD(DisasContext *ctx, arg_BLD *a)
2688 {
2689 TCGv Rd = cpu_r[a->rd];
2690 TCGv t1 = tcg_temp_new_i32();
2691
2692 tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */
2693 tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */
2694 tcg_gen_or_tl(Rd, Rd, t1);
2695
2696 tcg_temp_free_i32(t1);
2697
2698 return true;
2699 }
2700
2701 /*
2702 * Sets a single Flag or bit in SREG.
2703 */
2704 static bool trans_BSET(DisasContext *ctx, arg_BSET *a)
2705 {
2706 switch (a->bit) {
2707 case 0x00:
2708 tcg_gen_movi_tl(cpu_Cf, 0x01);
2709 break;
2710 case 0x01:
2711 tcg_gen_movi_tl(cpu_Zf, 0x01);
2712 break;
2713 case 0x02:
2714 tcg_gen_movi_tl(cpu_Nf, 0x01);
2715 break;
2716 case 0x03:
2717 tcg_gen_movi_tl(cpu_Vf, 0x01);
2718 break;
2719 case 0x04:
2720 tcg_gen_movi_tl(cpu_Sf, 0x01);
2721 break;
2722 case 0x05:
2723 tcg_gen_movi_tl(cpu_Hf, 0x01);
2724 break;
2725 case 0x06:
2726 tcg_gen_movi_tl(cpu_Tf, 0x01);
2727 break;
2728 case 0x07:
2729 tcg_gen_movi_tl(cpu_If, 0x01);
2730 break;
2731 }
2732
2733 return true;
2734 }
2735
2736 /*
2737 * Clears a single Flag in SREG.
2738 */
2739 static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a)
2740 {
2741 switch (a->bit) {
2742 case 0x00:
2743 tcg_gen_movi_tl(cpu_Cf, 0x00);
2744 break;
2745 case 0x01:
2746 tcg_gen_movi_tl(cpu_Zf, 0x00);
2747 break;
2748 case 0x02:
2749 tcg_gen_movi_tl(cpu_Nf, 0x00);
2750 break;
2751 case 0x03:
2752 tcg_gen_movi_tl(cpu_Vf, 0x00);
2753 break;
2754 case 0x04:
2755 tcg_gen_movi_tl(cpu_Sf, 0x00);
2756 break;
2757 case 0x05:
2758 tcg_gen_movi_tl(cpu_Hf, 0x00);
2759 break;
2760 case 0x06:
2761 tcg_gen_movi_tl(cpu_Tf, 0x00);
2762 break;
2763 case 0x07:
2764 tcg_gen_movi_tl(cpu_If, 0x00);
2765 break;
2766 }
2767
2768 return true;
2769 }
2770
2771 /*
2772 * MCU Control Instructions
2773 */
2774
2775 /*
2776 * The BREAK instruction is used by the On-chip Debug system, and is
2777 * normally not used in the application software. When the BREAK instruction is
2778 * executed, the AVR CPU is set in the Stopped Mode. This gives the On-chip
2779 * Debugger access to internal resources. If any Lock bits are set, or either
2780 * the JTAGEN or OCDEN Fuses are unprogrammed, the CPU will treat the BREAK
2781 * instruction as a NOP and will not enter the Stopped mode. This instruction
2782 * is not available in all devices. Refer to the device specific instruction
2783 * set summary.
2784 */
2785 static bool trans_BREAK(DisasContext *ctx, arg_BREAK *a)
2786 {
2787 if (!avr_have_feature(ctx, AVR_FEATURE_BREAK)) {
2788 return true;
2789 }
2790
2791 #ifdef BREAKPOINT_ON_BREAK
2792 tcg_gen_movi_tl(cpu_pc, ctx->npc - 1);
2793 gen_helper_debug(cpu_env);
2794 ctx->base.is_jmp = DISAS_EXIT;
2795 #else
2796 /* NOP */
2797 #endif
2798
2799 return true;
2800 }
2801
2802 /*
2803 * This instruction performs a single cycle No Operation.
2804 */
2805 static bool trans_NOP(DisasContext *ctx, arg_NOP *a)
2806 {
2807
2808 /* NOP */
2809
2810 return true;
2811 }
2812
2813 /*
2814 * This instruction sets the circuit in sleep mode defined by the MCU
2815 * Control Register.
2816 */
2817 static bool trans_SLEEP(DisasContext *ctx, arg_SLEEP *a)
2818 {
2819 gen_helper_sleep(cpu_env);
2820 ctx->base.is_jmp = DISAS_NORETURN;
2821 return true;
2822 }
2823
2824 /*
2825 * This instruction resets the Watchdog Timer. This instruction must be
2826 * executed within a limited time given by the WD prescaler. See the Watchdog
2827 * Timer hardware specification.
2828 */
2829 static bool trans_WDR(DisasContext *ctx, arg_WDR *a)
2830 {
2831 gen_helper_wdr(cpu_env);
2832
2833 return true;
2834 }
2835
2836 /*
2837 * Core translation mechanism functions:
2838 *
2839 * - translate()
2840 * - canonicalize_skip()
2841 * - gen_intermediate_code()
2842 * - restore_state_to_opc()
2843 *
2844 */
2845 static void translate(DisasContext *ctx)
2846 {
2847 uint32_t opcode = next_word(ctx);
2848
2849 if (!decode_insn(ctx, opcode)) {
2850 gen_helper_unsupported(cpu_env);
2851 ctx->base.is_jmp = DISAS_NORETURN;
2852 }
2853 }
2854
2855 /* Standardize the cpu_skip condition to NE. */
2856 static bool canonicalize_skip(DisasContext *ctx)
2857 {
2858 switch (ctx->skip_cond) {
2859 case TCG_COND_NEVER:
2860 /* Normal case: cpu_skip is known to be false. */
2861 return false;
2862
2863 case TCG_COND_ALWAYS:
2864 /*
2865 * Breakpoint case: cpu_skip is known to be true, via TB_FLAGS_SKIP.
2866 * The breakpoint is on the instruction being skipped, at the start
2867 * of the TranslationBlock. No need to update.
2868 */
2869 return false;
2870
2871 case TCG_COND_NE:
2872 if (ctx->skip_var1 == NULL) {
2873 tcg_gen_mov_tl(cpu_skip, ctx->skip_var0);
2874 } else {
2875 tcg_gen_xor_tl(cpu_skip, ctx->skip_var0, ctx->skip_var1);
2876 ctx->skip_var1 = NULL;
2877 }
2878 break;
2879
2880 default:
2881 /* Convert to a NE condition vs 0. */
2882 if (ctx->skip_var1 == NULL) {
2883 tcg_gen_setcondi_tl(ctx->skip_cond, cpu_skip, ctx->skip_var0, 0);
2884 } else {
2885 tcg_gen_setcond_tl(ctx->skip_cond, cpu_skip,
2886 ctx->skip_var0, ctx->skip_var1);
2887 ctx->skip_var1 = NULL;
2888 }
2889 ctx->skip_cond = TCG_COND_NE;
2890 break;
2891 }
2892 if (ctx->free_skip_var0) {
2893 tcg_temp_free(ctx->skip_var0);
2894 ctx->free_skip_var0 = false;
2895 }
2896 ctx->skip_var0 = cpu_skip;
2897 return true;
2898 }
2899
2900 static void gen_breakpoint(DisasContext *ctx)
2901 {
2902 canonicalize_skip(ctx);
2903 tcg_gen_movi_tl(cpu_pc, ctx->npc);
2904 gen_helper_debug(cpu_env);
2905 ctx->base.is_jmp = DISAS_NORETURN;
2906 }
2907
2908 static void avr_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs)
2909 {
2910 DisasContext *ctx = container_of(dcbase, DisasContext, base);
2911 CPUAVRState *env = cs->env_ptr;
2912 uint32_t tb_flags = ctx->base.tb->flags;
2913
2914 ctx->cs = cs;
2915 ctx->env = env;
2916 ctx->npc = ctx->base.pc_first / 2;
2917
2918 ctx->skip_cond = TCG_COND_NEVER;
2919 if (tb_flags & TB_FLAGS_SKIP) {
2920 ctx->skip_cond = TCG_COND_ALWAYS;
2921 ctx->skip_var0 = cpu_skip;
2922 }
2923
2924 if (tb_flags & TB_FLAGS_FULL_ACCESS) {
2925 /*
2926 * This flag is set by ST/LD instruction we will regenerate it ONLY
2927 * with mem/cpu memory access instead of mem access
2928 */
2929 ctx->base.max_insns = 1;
2930 }
2931 }
2932
2933 static void avr_tr_tb_start(DisasContextBase *db, CPUState *cs)
2934 {
2935 }
2936
2937 static void avr_tr_insn_start(DisasContextBase *dcbase, CPUState *cs)
2938 {
2939 DisasContext *ctx = container_of(dcbase, DisasContext, base);
2940
2941 tcg_gen_insn_start(ctx->npc);
2942 }
2943
2944 static bool avr_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cs,
2945 const CPUBreakpoint *bp)
2946 {
2947 DisasContext *ctx = container_of(dcbase, DisasContext, base);
2948
2949 gen_breakpoint(ctx);
2950 return true;
2951 }
2952
2953 static void avr_tr_translate_insn(DisasContextBase *dcbase, CPUState *cs)
2954 {
2955 DisasContext *ctx = container_of(dcbase, DisasContext, base);
2956 TCGLabel *skip_label = NULL;
2957
2958 /*
2959 * This is due to some strange GDB behavior
2960 * Let's assume main has address 0x100:
2961 * b main - sets breakpoint at address 0x00000100 (code)
2962 * b *0x100 - sets breakpoint at address 0x00800100 (data)
2963 *
2964 * The translator driver has already taken care of the code pointer.
2965 */
2966 if (!ctx->base.singlestep_enabled &&
2967 cpu_breakpoint_test(cs, OFFSET_DATA + ctx->base.pc_next, BP_ANY)) {
2968 gen_breakpoint(ctx);
2969 return;
2970 }
2971
2972 /* Conditionally skip the next instruction, if indicated. */
2973 if (ctx->skip_cond != TCG_COND_NEVER) {
2974 skip_label = gen_new_label();
2975 if (ctx->skip_var0 == cpu_skip) {
2976 /*
2977 * Copy cpu_skip so that we may zero it before the branch.
2978 * This ensures that cpu_skip is non-zero after the label
2979 * if and only if the skipped insn itself sets a skip.
2980 */
2981 ctx->free_skip_var0 = true;
2982 ctx->skip_var0 = tcg_temp_new();
2983 tcg_gen_mov_tl(ctx->skip_var0, cpu_skip);
2984 tcg_gen_movi_tl(cpu_skip, 0);
2985 }
2986 if (ctx->skip_var1 == NULL) {
2987 tcg_gen_brcondi_tl(ctx->skip_cond, ctx->skip_var0, 0, skip_label);
2988 } else {
2989 tcg_gen_brcond_tl(ctx->skip_cond, ctx->skip_var0,
2990 ctx->skip_var1, skip_label);
2991 ctx->skip_var1 = NULL;
2992 }
2993 if (ctx->free_skip_var0) {
2994 tcg_temp_free(ctx->skip_var0);
2995 ctx->free_skip_var0 = false;
2996 }
2997 ctx->skip_cond = TCG_COND_NEVER;
2998 ctx->skip_var0 = NULL;
2999 }
3000
3001 translate(ctx);
3002
3003 ctx->base.pc_next = ctx->npc * 2;
3004
3005 if (skip_label) {
3006 canonicalize_skip(ctx);
3007 gen_set_label(skip_label);
3008 if (ctx->base.is_jmp == DISAS_NORETURN) {
3009 ctx->base.is_jmp = DISAS_CHAIN;
3010 }
3011 }
3012
3013 if (ctx->base.is_jmp == DISAS_NEXT) {
3014 target_ulong page_first = ctx->base.pc_first & TARGET_PAGE_MASK;
3015
3016 if ((ctx->base.pc_next - page_first) >= TARGET_PAGE_SIZE - 4) {
3017 ctx->base.is_jmp = DISAS_TOO_MANY;
3018 }
3019 }
3020 }
3021
3022 static void avr_tr_tb_stop(DisasContextBase *dcbase, CPUState *cs)
3023 {
3024 DisasContext *ctx = container_of(dcbase, DisasContext, base);
3025 bool nonconst_skip = canonicalize_skip(ctx);
3026
3027 switch (ctx->base.is_jmp) {
3028 case DISAS_NORETURN:
3029 assert(!nonconst_skip);
3030 break;
3031 case DISAS_NEXT:
3032 case DISAS_TOO_MANY:
3033 case DISAS_CHAIN:
3034 if (!nonconst_skip) {
3035 /* Note gen_goto_tb checks singlestep. */
3036 gen_goto_tb(ctx, 1, ctx->npc);
3037 break;
3038 }
3039 tcg_gen_movi_tl(cpu_pc, ctx->npc);
3040 /* fall through */
3041 case DISAS_LOOKUP:
3042 if (!ctx->base.singlestep_enabled) {
3043 tcg_gen_lookup_and_goto_ptr();
3044 break;
3045 }
3046 /* fall through */
3047 case DISAS_EXIT:
3048 if (ctx->base.singlestep_enabled) {
3049 gen_helper_debug(cpu_env);
3050 } else {
3051 tcg_gen_exit_tb(NULL, 0);
3052 }
3053 break;
3054 default:
3055 g_assert_not_reached();
3056 }
3057 }
3058
3059 static void avr_tr_disas_log(const DisasContextBase *dcbase, CPUState *cs)
3060 {
3061 qemu_log("IN: %s\n", lookup_symbol(dcbase->pc_first));
3062 log_target_disas(cs, dcbase->pc_first, dcbase->tb->size);
3063 }
3064
3065 static const TranslatorOps avr_tr_ops = {
3066 .init_disas_context = avr_tr_init_disas_context,
3067 .tb_start = avr_tr_tb_start,
3068 .insn_start = avr_tr_insn_start,
3069 .breakpoint_check = avr_tr_breakpoint_check,
3070 .translate_insn = avr_tr_translate_insn,
3071 .tb_stop = avr_tr_tb_stop,
3072 .disas_log = avr_tr_disas_log,
3073 };
3074
3075 void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns)
3076 {
3077 DisasContext dc = { };
3078 translator_loop(&avr_tr_ops, &dc.base, cs, tb, max_insns);
3079 }
3080
3081 void restore_state_to_opc(CPUAVRState *env, TranslationBlock *tb,
3082 target_ulong *data)
3083 {
3084 env->pc_w = data[0];
3085 }