]> git.proxmox.com Git - mirror_qemu.git/blob - target/hexagon/cpu.c
Hexagon (iclass): update J4_hintjumpr slot constraints
[mirror_qemu.git] / target / hexagon / cpu.c
1 /*
2 * Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include "qemu/osdep.h"
19 #include "qemu/qemu-print.h"
20 #include "cpu.h"
21 #include "internal.h"
22 #include "exec/exec-all.h"
23 #include "qapi/error.h"
24 #include "hw/qdev-properties.h"
25 #include "fpu/softfloat-helpers.h"
26 #include "tcg/tcg.h"
27
28 static void hexagon_v67_cpu_init(Object *obj) { }
29 static void hexagon_v68_cpu_init(Object *obj) { }
30 static void hexagon_v69_cpu_init(Object *obj) { }
31 static void hexagon_v71_cpu_init(Object *obj) { }
32 static void hexagon_v73_cpu_init(Object *obj) { }
33
34 static void hexagon_cpu_list_entry(gpointer data, gpointer user_data)
35 {
36 ObjectClass *oc = data;
37 char *name = g_strdup(object_class_get_name(oc));
38 if (g_str_has_suffix(name, HEXAGON_CPU_TYPE_SUFFIX)) {
39 name[strlen(name) - strlen(HEXAGON_CPU_TYPE_SUFFIX)] = '\0';
40 }
41 qemu_printf(" %s\n", name);
42 g_free(name);
43 }
44
45 void hexagon_cpu_list(void)
46 {
47 GSList *list;
48 list = object_class_get_list_sorted(TYPE_HEXAGON_CPU, false);
49 qemu_printf("Available CPUs:\n");
50 g_slist_foreach(list, hexagon_cpu_list_entry, NULL);
51 g_slist_free(list);
52 }
53
54 static ObjectClass *hexagon_cpu_class_by_name(const char *cpu_model)
55 {
56 ObjectClass *oc;
57 char *typename;
58 char **cpuname;
59
60 cpuname = g_strsplit(cpu_model, ",", 1);
61 typename = g_strdup_printf(HEXAGON_CPU_TYPE_NAME("%s"), cpuname[0]);
62 oc = object_class_by_name(typename);
63 g_strfreev(cpuname);
64 g_free(typename);
65 if (!oc || !object_class_dynamic_cast(oc, TYPE_HEXAGON_CPU) ||
66 object_class_is_abstract(oc)) {
67 return NULL;
68 }
69 return oc;
70 }
71
72 static Property hexagon_lldb_compat_property =
73 DEFINE_PROP_BOOL("lldb-compat", HexagonCPU, lldb_compat, false);
74 static Property hexagon_lldb_stack_adjust_property =
75 DEFINE_PROP_UNSIGNED("lldb-stack-adjust", HexagonCPU, lldb_stack_adjust,
76 0, qdev_prop_uint32, target_ulong);
77 static Property hexagon_short_circuit_property =
78 DEFINE_PROP_BOOL("short-circuit", HexagonCPU, short_circuit, true);
79
80 const char * const hexagon_regnames[TOTAL_PER_THREAD_REGS] = {
81 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
82 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
83 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
84 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
85 "sa0", "lc0", "sa1", "lc1", "p3_0", "c5", "m0", "m1",
86 "usr", "pc", "ugp", "gp", "cs0", "cs1", "c14", "c15",
87 "c16", "c17", "c18", "c19", "pkt_cnt", "insn_cnt", "hvx_cnt", "c23",
88 "c24", "c25", "c26", "c27", "c28", "c29", "c30", "c31",
89 };
90
91 /*
92 * One of the main debugging techniques is to use "-d cpu" and compare against
93 * LLDB output when single stepping. However, the target and qemu put the
94 * stacks at different locations. This is used to compensate so the diff is
95 * cleaner.
96 */
97 static target_ulong adjust_stack_ptrs(CPUHexagonState *env, target_ulong addr)
98 {
99 HexagonCPU *cpu = env_archcpu(env);
100 target_ulong stack_adjust = cpu->lldb_stack_adjust;
101 target_ulong stack_start = env->stack_start;
102 target_ulong stack_size = 0x10000;
103
104 if (stack_adjust == 0) {
105 return addr;
106 }
107
108 if (stack_start + 0x1000 >= addr && addr >= (stack_start - stack_size)) {
109 return addr - stack_adjust;
110 }
111 return addr;
112 }
113
114 /* HEX_REG_P3_0_ALIASED (aka C4) is an alias for the predicate registers */
115 static target_ulong read_p3_0(CPUHexagonState *env)
116 {
117 int32_t control_reg = 0;
118 int i;
119 for (i = NUM_PREGS - 1; i >= 0; i--) {
120 control_reg <<= 8;
121 control_reg |= env->pred[i] & 0xff;
122 }
123 return control_reg;
124 }
125
126 static void print_reg(FILE *f, CPUHexagonState *env, int regnum)
127 {
128 target_ulong value;
129
130 if (regnum == HEX_REG_P3_0_ALIASED) {
131 value = read_p3_0(env);
132 } else {
133 value = regnum < 32 ? adjust_stack_ptrs(env, env->gpr[regnum])
134 : env->gpr[regnum];
135 }
136
137 qemu_fprintf(f, " %s = 0x" TARGET_FMT_lx "\n",
138 hexagon_regnames[regnum], value);
139 }
140
141 static void print_vreg(FILE *f, CPUHexagonState *env, int regnum,
142 bool skip_if_zero)
143 {
144 if (skip_if_zero) {
145 bool nonzero_found = false;
146 for (int i = 0; i < MAX_VEC_SIZE_BYTES; i++) {
147 if (env->VRegs[regnum].ub[i] != 0) {
148 nonzero_found = true;
149 break;
150 }
151 }
152 if (!nonzero_found) {
153 return;
154 }
155 }
156
157 qemu_fprintf(f, " v%d = ( ", regnum);
158 qemu_fprintf(f, "0x%02x", env->VRegs[regnum].ub[MAX_VEC_SIZE_BYTES - 1]);
159 for (int i = MAX_VEC_SIZE_BYTES - 2; i >= 0; i--) {
160 qemu_fprintf(f, ", 0x%02x", env->VRegs[regnum].ub[i]);
161 }
162 qemu_fprintf(f, " )\n");
163 }
164
165 void hexagon_debug_vreg(CPUHexagonState *env, int regnum)
166 {
167 print_vreg(stdout, env, regnum, false);
168 }
169
170 static void print_qreg(FILE *f, CPUHexagonState *env, int regnum,
171 bool skip_if_zero)
172 {
173 if (skip_if_zero) {
174 bool nonzero_found = false;
175 for (int i = 0; i < MAX_VEC_SIZE_BYTES / 8; i++) {
176 if (env->QRegs[regnum].ub[i] != 0) {
177 nonzero_found = true;
178 break;
179 }
180 }
181 if (!nonzero_found) {
182 return;
183 }
184 }
185
186 qemu_fprintf(f, " q%d = ( ", regnum);
187 qemu_fprintf(f, "0x%02x",
188 env->QRegs[regnum].ub[MAX_VEC_SIZE_BYTES / 8 - 1]);
189 for (int i = MAX_VEC_SIZE_BYTES / 8 - 2; i >= 0; i--) {
190 qemu_fprintf(f, ", 0x%02x", env->QRegs[regnum].ub[i]);
191 }
192 qemu_fprintf(f, " )\n");
193 }
194
195 void hexagon_debug_qreg(CPUHexagonState *env, int regnum)
196 {
197 print_qreg(stdout, env, regnum, false);
198 }
199
200 static void hexagon_dump(CPUHexagonState *env, FILE *f, int flags)
201 {
202 HexagonCPU *cpu = env_archcpu(env);
203
204 if (cpu->lldb_compat) {
205 /*
206 * When comparing with LLDB, it doesn't step through single-cycle
207 * hardware loops the same way. So, we just skip them here
208 */
209 if (env->gpr[HEX_REG_PC] == env->last_pc_dumped) {
210 return;
211 }
212 env->last_pc_dumped = env->gpr[HEX_REG_PC];
213 }
214
215 qemu_fprintf(f, "General Purpose Registers = {\n");
216 for (int i = 0; i < 32; i++) {
217 print_reg(f, env, i);
218 }
219 print_reg(f, env, HEX_REG_SA0);
220 print_reg(f, env, HEX_REG_LC0);
221 print_reg(f, env, HEX_REG_SA1);
222 print_reg(f, env, HEX_REG_LC1);
223 print_reg(f, env, HEX_REG_M0);
224 print_reg(f, env, HEX_REG_M1);
225 print_reg(f, env, HEX_REG_USR);
226 print_reg(f, env, HEX_REG_P3_0_ALIASED);
227 print_reg(f, env, HEX_REG_GP);
228 print_reg(f, env, HEX_REG_UGP);
229 print_reg(f, env, HEX_REG_PC);
230 #ifdef CONFIG_USER_ONLY
231 /*
232 * Not modelled in user mode, print junk to minimize the diff's
233 * with LLDB output
234 */
235 qemu_fprintf(f, " cause = 0x000000db\n");
236 qemu_fprintf(f, " badva = 0x00000000\n");
237 qemu_fprintf(f, " cs0 = 0x00000000\n");
238 qemu_fprintf(f, " cs1 = 0x00000000\n");
239 #else
240 print_reg(f, env, HEX_REG_CAUSE);
241 print_reg(f, env, HEX_REG_BADVA);
242 print_reg(f, env, HEX_REG_CS0);
243 print_reg(f, env, HEX_REG_CS1);
244 #endif
245 qemu_fprintf(f, "}\n");
246
247 if (flags & CPU_DUMP_FPU) {
248 qemu_fprintf(f, "Vector Registers = {\n");
249 for (int i = 0; i < NUM_VREGS; i++) {
250 print_vreg(f, env, i, true);
251 }
252 for (int i = 0; i < NUM_QREGS; i++) {
253 print_qreg(f, env, i, true);
254 }
255 qemu_fprintf(f, "}\n");
256 }
257 }
258
259 static void hexagon_dump_state(CPUState *cs, FILE *f, int flags)
260 {
261 HexagonCPU *cpu = HEXAGON_CPU(cs);
262 CPUHexagonState *env = &cpu->env;
263
264 hexagon_dump(env, f, flags);
265 }
266
267 void hexagon_debug(CPUHexagonState *env)
268 {
269 hexagon_dump(env, stdout, CPU_DUMP_FPU);
270 }
271
272 static void hexagon_cpu_set_pc(CPUState *cs, vaddr value)
273 {
274 HexagonCPU *cpu = HEXAGON_CPU(cs);
275 CPUHexagonState *env = &cpu->env;
276 env->gpr[HEX_REG_PC] = value;
277 }
278
279 static vaddr hexagon_cpu_get_pc(CPUState *cs)
280 {
281 HexagonCPU *cpu = HEXAGON_CPU(cs);
282 CPUHexagonState *env = &cpu->env;
283 return env->gpr[HEX_REG_PC];
284 }
285
286 static void hexagon_cpu_synchronize_from_tb(CPUState *cs,
287 const TranslationBlock *tb)
288 {
289 HexagonCPU *cpu = HEXAGON_CPU(cs);
290 CPUHexagonState *env = &cpu->env;
291 tcg_debug_assert(!(cs->tcg_cflags & CF_PCREL));
292 env->gpr[HEX_REG_PC] = tb->pc;
293 }
294
295 static bool hexagon_cpu_has_work(CPUState *cs)
296 {
297 return true;
298 }
299
300 static void hexagon_restore_state_to_opc(CPUState *cs,
301 const TranslationBlock *tb,
302 const uint64_t *data)
303 {
304 HexagonCPU *cpu = HEXAGON_CPU(cs);
305 CPUHexagonState *env = &cpu->env;
306
307 env->gpr[HEX_REG_PC] = data[0];
308 }
309
310 static void hexagon_cpu_reset_hold(Object *obj)
311 {
312 CPUState *cs = CPU(obj);
313 HexagonCPU *cpu = HEXAGON_CPU(cs);
314 HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(cpu);
315 CPUHexagonState *env = &cpu->env;
316
317 if (mcc->parent_phases.hold) {
318 mcc->parent_phases.hold(obj);
319 }
320
321 set_default_nan_mode(1, &env->fp_status);
322 set_float_detect_tininess(float_tininess_before_rounding, &env->fp_status);
323 }
324
325 static void hexagon_cpu_disas_set_info(CPUState *s, disassemble_info *info)
326 {
327 info->print_insn = print_insn_hexagon;
328 }
329
330 static void hexagon_cpu_realize(DeviceState *dev, Error **errp)
331 {
332 CPUState *cs = CPU(dev);
333 HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(dev);
334 Error *local_err = NULL;
335
336 cpu_exec_realizefn(cs, &local_err);
337 if (local_err != NULL) {
338 error_propagate(errp, local_err);
339 return;
340 }
341
342 qemu_init_vcpu(cs);
343 cpu_reset(cs);
344
345 mcc->parent_realize(dev, errp);
346 }
347
348 static void hexagon_cpu_init(Object *obj)
349 {
350 HexagonCPU *cpu = HEXAGON_CPU(obj);
351
352 cpu_set_cpustate_pointers(cpu);
353 qdev_property_add_static(DEVICE(obj), &hexagon_lldb_compat_property);
354 qdev_property_add_static(DEVICE(obj), &hexagon_lldb_stack_adjust_property);
355 qdev_property_add_static(DEVICE(obj), &hexagon_short_circuit_property);
356 }
357
358 #include "hw/core/tcg-cpu-ops.h"
359
360 static const struct TCGCPUOps hexagon_tcg_ops = {
361 .initialize = hexagon_translate_init,
362 .synchronize_from_tb = hexagon_cpu_synchronize_from_tb,
363 .restore_state_to_opc = hexagon_restore_state_to_opc,
364 };
365
366 static void hexagon_cpu_class_init(ObjectClass *c, void *data)
367 {
368 HexagonCPUClass *mcc = HEXAGON_CPU_CLASS(c);
369 CPUClass *cc = CPU_CLASS(c);
370 DeviceClass *dc = DEVICE_CLASS(c);
371 ResettableClass *rc = RESETTABLE_CLASS(c);
372
373 device_class_set_parent_realize(dc, hexagon_cpu_realize,
374 &mcc->parent_realize);
375
376 resettable_class_set_parent_phases(rc, NULL, hexagon_cpu_reset_hold, NULL,
377 &mcc->parent_phases);
378
379 cc->class_by_name = hexagon_cpu_class_by_name;
380 cc->has_work = hexagon_cpu_has_work;
381 cc->dump_state = hexagon_dump_state;
382 cc->set_pc = hexagon_cpu_set_pc;
383 cc->get_pc = hexagon_cpu_get_pc;
384 cc->gdb_read_register = hexagon_gdb_read_register;
385 cc->gdb_write_register = hexagon_gdb_write_register;
386 cc->gdb_num_core_regs = TOTAL_PER_THREAD_REGS + NUM_VREGS + NUM_QREGS;
387 cc->gdb_stop_before_watchpoint = true;
388 cc->disas_set_info = hexagon_cpu_disas_set_info;
389 cc->tcg_ops = &hexagon_tcg_ops;
390 }
391
392 #define DEFINE_CPU(type_name, initfn) \
393 { \
394 .name = type_name, \
395 .parent = TYPE_HEXAGON_CPU, \
396 .instance_init = initfn \
397 }
398
399 static const TypeInfo hexagon_cpu_type_infos[] = {
400 {
401 .name = TYPE_HEXAGON_CPU,
402 .parent = TYPE_CPU,
403 .instance_size = sizeof(HexagonCPU),
404 .instance_init = hexagon_cpu_init,
405 .abstract = true,
406 .class_size = sizeof(HexagonCPUClass),
407 .class_init = hexagon_cpu_class_init,
408 },
409 DEFINE_CPU(TYPE_HEXAGON_CPU_V67, hexagon_v67_cpu_init),
410 DEFINE_CPU(TYPE_HEXAGON_CPU_V68, hexagon_v68_cpu_init),
411 DEFINE_CPU(TYPE_HEXAGON_CPU_V69, hexagon_v69_cpu_init),
412 DEFINE_CPU(TYPE_HEXAGON_CPU_V71, hexagon_v71_cpu_init),
413 DEFINE_CPU(TYPE_HEXAGON_CPU_V73, hexagon_v73_cpu_init),
414 };
415
416 DEFINE_TYPES(hexagon_cpu_type_infos)