]> git.proxmox.com Git - mirror_qemu.git/blob - target/hexagon/cpu.c
Merge remote-tracking branch 'remotes/vsementsov/tags/pull-simplebench-2021-05-04...
[mirror_qemu.git] / target / hexagon / cpu.c
1 /*
2 * Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include "qemu/osdep.h"
19 #include "qemu/qemu-print.h"
20 #include "cpu.h"
21 #include "internal.h"
22 #include "exec/exec-all.h"
23 #include "qapi/error.h"
24 #include "hw/qdev-properties.h"
25 #include "fpu/softfloat-helpers.h"
26
27 static void hexagon_v67_cpu_init(Object *obj)
28 {
29 }
30
31 static ObjectClass *hexagon_cpu_class_by_name(const char *cpu_model)
32 {
33 ObjectClass *oc;
34 char *typename;
35 char **cpuname;
36
37 cpuname = g_strsplit(cpu_model, ",", 1);
38 typename = g_strdup_printf(HEXAGON_CPU_TYPE_NAME("%s"), cpuname[0]);
39 oc = object_class_by_name(typename);
40 g_strfreev(cpuname);
41 g_free(typename);
42 if (!oc || !object_class_dynamic_cast(oc, TYPE_HEXAGON_CPU) ||
43 object_class_is_abstract(oc)) {
44 return NULL;
45 }
46 return oc;
47 }
48
49 static Property hexagon_lldb_compat_property =
50 DEFINE_PROP_BOOL("lldb-compat", HexagonCPU, lldb_compat, false);
51 static Property hexagon_lldb_stack_adjust_property =
52 DEFINE_PROP_UNSIGNED("lldb-stack-adjust", HexagonCPU, lldb_stack_adjust,
53 0, qdev_prop_uint32, target_ulong);
54
55 const char * const hexagon_regnames[TOTAL_PER_THREAD_REGS] = {
56 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
57 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
58 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
59 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
60 "sa0", "lc0", "sa1", "lc1", "p3_0", "c5", "m0", "m1",
61 "usr", "pc", "ugp", "gp", "cs0", "cs1", "c14", "c15",
62 "c16", "c17", "c18", "c19", "pkt_cnt", "insn_cnt", "c22", "c23",
63 "c24", "c25", "c26", "c27", "c28", "c29", "c30", "c31",
64 };
65
66 /*
67 * One of the main debugging techniques is to use "-d cpu" and compare against
68 * LLDB output when single stepping. However, the target and qemu put the
69 * stacks at different locations. This is used to compensate so the diff is
70 * cleaner.
71 */
72 static target_ulong adjust_stack_ptrs(CPUHexagonState *env, target_ulong addr)
73 {
74 HexagonCPU *cpu = env_archcpu(env);
75 target_ulong stack_adjust = cpu->lldb_stack_adjust;
76 target_ulong stack_start = env->stack_start;
77 target_ulong stack_size = 0x10000;
78
79 if (stack_adjust == 0) {
80 return addr;
81 }
82
83 if (stack_start + 0x1000 >= addr && addr >= (stack_start - stack_size)) {
84 return addr - stack_adjust;
85 }
86 return addr;
87 }
88
89 /* HEX_REG_P3_0 (aka C4) is an alias for the predicate registers */
90 static target_ulong read_p3_0(CPUHexagonState *env)
91 {
92 int32_t control_reg = 0;
93 int i;
94 for (i = NUM_PREGS - 1; i >= 0; i--) {
95 control_reg <<= 8;
96 control_reg |= env->pred[i] & 0xff;
97 }
98 return control_reg;
99 }
100
101 static void print_reg(FILE *f, CPUHexagonState *env, int regnum)
102 {
103 target_ulong value;
104
105 if (regnum == HEX_REG_P3_0) {
106 value = read_p3_0(env);
107 } else {
108 value = regnum < 32 ? adjust_stack_ptrs(env, env->gpr[regnum])
109 : env->gpr[regnum];
110 }
111
112 qemu_fprintf(f, " %s = 0x" TARGET_FMT_lx "\n",
113 hexagon_regnames[regnum], value);
114 }
115
116 static void hexagon_dump(CPUHexagonState *env, FILE *f)
117 {
118 HexagonCPU *cpu = env_archcpu(env);
119
120 if (cpu->lldb_compat) {
121 /*
122 * When comparing with LLDB, it doesn't step through single-cycle
123 * hardware loops the same way. So, we just skip them here
124 */
125 if (env->gpr[HEX_REG_PC] == env->last_pc_dumped) {
126 return;
127 }
128 env->last_pc_dumped = env->gpr[HEX_REG_PC];
129 }
130
131 qemu_fprintf(f, "General Purpose Registers = {\n");
132 for (int i = 0; i < 32; i++) {
133 print_reg(f, env, i);
134 }
135 print_reg(f, env, HEX_REG_SA0);
136 print_reg(f, env, HEX_REG_LC0);
137 print_reg(f, env, HEX_REG_SA1);
138 print_reg(f, env, HEX_REG_LC1);
139 print_reg(f, env, HEX_REG_M0);
140 print_reg(f, env, HEX_REG_M1);
141 print_reg(f, env, HEX_REG_USR);
142 print_reg(f, env, HEX_REG_P3_0);
143 print_reg(f, env, HEX_REG_GP);
144 print_reg(f, env, HEX_REG_UGP);
145 print_reg(f, env, HEX_REG_PC);
146 #ifdef CONFIG_USER_ONLY
147 /*
148 * Not modelled in user mode, print junk to minimize the diff's
149 * with LLDB output
150 */
151 qemu_fprintf(f, " cause = 0x000000db\n");
152 qemu_fprintf(f, " badva = 0x00000000\n");
153 qemu_fprintf(f, " cs0 = 0x00000000\n");
154 qemu_fprintf(f, " cs1 = 0x00000000\n");
155 #else
156 print_reg(f, env, HEX_REG_CAUSE);
157 print_reg(f, env, HEX_REG_BADVA);
158 print_reg(f, env, HEX_REG_CS0);
159 print_reg(f, env, HEX_REG_CS1);
160 #endif
161 qemu_fprintf(f, "}\n");
162 }
163
164 static void hexagon_dump_state(CPUState *cs, FILE *f, int flags)
165 {
166 HexagonCPU *cpu = HEXAGON_CPU(cs);
167 CPUHexagonState *env = &cpu->env;
168
169 hexagon_dump(env, f);
170 }
171
172 void hexagon_debug(CPUHexagonState *env)
173 {
174 hexagon_dump(env, stdout);
175 }
176
177 static void hexagon_cpu_set_pc(CPUState *cs, vaddr value)
178 {
179 HexagonCPU *cpu = HEXAGON_CPU(cs);
180 CPUHexagonState *env = &cpu->env;
181 env->gpr[HEX_REG_PC] = value;
182 }
183
184 static void hexagon_cpu_synchronize_from_tb(CPUState *cs,
185 const TranslationBlock *tb)
186 {
187 HexagonCPU *cpu = HEXAGON_CPU(cs);
188 CPUHexagonState *env = &cpu->env;
189 env->gpr[HEX_REG_PC] = tb->pc;
190 }
191
192 static bool hexagon_cpu_has_work(CPUState *cs)
193 {
194 return true;
195 }
196
197 void restore_state_to_opc(CPUHexagonState *env, TranslationBlock *tb,
198 target_ulong *data)
199 {
200 env->gpr[HEX_REG_PC] = data[0];
201 }
202
203 static void hexagon_cpu_reset(DeviceState *dev)
204 {
205 CPUState *cs = CPU(dev);
206 HexagonCPU *cpu = HEXAGON_CPU(cs);
207 HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(cpu);
208 CPUHexagonState *env = &cpu->env;
209
210 mcc->parent_reset(dev);
211
212 set_default_nan_mode(1, &env->fp_status);
213 set_float_detect_tininess(float_tininess_before_rounding, &env->fp_status);
214 }
215
216 static void hexagon_cpu_disas_set_info(CPUState *s, disassemble_info *info)
217 {
218 info->print_insn = print_insn_hexagon;
219 }
220
221 static void hexagon_cpu_realize(DeviceState *dev, Error **errp)
222 {
223 CPUState *cs = CPU(dev);
224 HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(dev);
225 Error *local_err = NULL;
226
227 cpu_exec_realizefn(cs, &local_err);
228 if (local_err != NULL) {
229 error_propagate(errp, local_err);
230 return;
231 }
232
233 qemu_init_vcpu(cs);
234 cpu_reset(cs);
235
236 mcc->parent_realize(dev, errp);
237 }
238
239 static void hexagon_cpu_init(Object *obj)
240 {
241 HexagonCPU *cpu = HEXAGON_CPU(obj);
242
243 cpu_set_cpustate_pointers(cpu);
244 qdev_property_add_static(DEVICE(obj), &hexagon_lldb_compat_property);
245 qdev_property_add_static(DEVICE(obj), &hexagon_lldb_stack_adjust_property);
246 }
247
248 static bool hexagon_tlb_fill(CPUState *cs, vaddr address, int size,
249 MMUAccessType access_type, int mmu_idx,
250 bool probe, uintptr_t retaddr)
251 {
252 #ifdef CONFIG_USER_ONLY
253 switch (access_type) {
254 case MMU_INST_FETCH:
255 cs->exception_index = HEX_EXCP_FETCH_NO_UPAGE;
256 break;
257 case MMU_DATA_LOAD:
258 cs->exception_index = HEX_EXCP_PRIV_NO_UREAD;
259 break;
260 case MMU_DATA_STORE:
261 cs->exception_index = HEX_EXCP_PRIV_NO_UWRITE;
262 break;
263 }
264 cpu_loop_exit_restore(cs, retaddr);
265 #else
266 #error System mode not implemented for Hexagon
267 #endif
268 }
269
270 #include "hw/core/tcg-cpu-ops.h"
271
272 static struct TCGCPUOps hexagon_tcg_ops = {
273 .initialize = hexagon_translate_init,
274 .synchronize_from_tb = hexagon_cpu_synchronize_from_tb,
275 .tlb_fill = hexagon_tlb_fill,
276 };
277
278 static void hexagon_cpu_class_init(ObjectClass *c, void *data)
279 {
280 HexagonCPUClass *mcc = HEXAGON_CPU_CLASS(c);
281 CPUClass *cc = CPU_CLASS(c);
282 DeviceClass *dc = DEVICE_CLASS(c);
283
284 device_class_set_parent_realize(dc, hexagon_cpu_realize,
285 &mcc->parent_realize);
286
287 device_class_set_parent_reset(dc, hexagon_cpu_reset, &mcc->parent_reset);
288
289 cc->class_by_name = hexagon_cpu_class_by_name;
290 cc->has_work = hexagon_cpu_has_work;
291 cc->dump_state = hexagon_dump_state;
292 cc->set_pc = hexagon_cpu_set_pc;
293 cc->gdb_read_register = hexagon_gdb_read_register;
294 cc->gdb_write_register = hexagon_gdb_write_register;
295 cc->gdb_num_core_regs = TOTAL_PER_THREAD_REGS;
296 cc->gdb_stop_before_watchpoint = true;
297 cc->disas_set_info = hexagon_cpu_disas_set_info;
298 cc->tcg_ops = &hexagon_tcg_ops;
299 }
300
301 #define DEFINE_CPU(type_name, initfn) \
302 { \
303 .name = type_name, \
304 .parent = TYPE_HEXAGON_CPU, \
305 .instance_init = initfn \
306 }
307
308 static const TypeInfo hexagon_cpu_type_infos[] = {
309 {
310 .name = TYPE_HEXAGON_CPU,
311 .parent = TYPE_CPU,
312 .instance_size = sizeof(HexagonCPU),
313 .instance_init = hexagon_cpu_init,
314 .abstract = true,
315 .class_size = sizeof(HexagonCPUClass),
316 .class_init = hexagon_cpu_class_init,
317 },
318 DEFINE_CPU(TYPE_HEXAGON_CPU_V67, hexagon_v67_cpu_init),
319 };
320
321 DEFINE_TYPES(hexagon_cpu_type_infos)