]> git.proxmox.com Git - mirror_qemu.git/blob - target/hexagon/cpu.c
Merge tag 'for-upstream' of https://gitlab.com/bonzini/qemu into staging
[mirror_qemu.git] / target / hexagon / cpu.c
1 /*
2 * Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include "qemu/osdep.h"
19 #include "qemu/qemu-print.h"
20 #include "cpu.h"
21 #include "internal.h"
22 #include "exec/exec-all.h"
23 #include "qapi/error.h"
24 #include "hw/qdev-properties.h"
25 #include "fpu/softfloat-helpers.h"
26 #include "tcg/tcg.h"
27
28 static void hexagon_v67_cpu_init(Object *obj)
29 {
30 }
31
32 static ObjectClass *hexagon_cpu_class_by_name(const char *cpu_model)
33 {
34 ObjectClass *oc;
35 char *typename;
36 char **cpuname;
37
38 cpuname = g_strsplit(cpu_model, ",", 1);
39 typename = g_strdup_printf(HEXAGON_CPU_TYPE_NAME("%s"), cpuname[0]);
40 oc = object_class_by_name(typename);
41 g_strfreev(cpuname);
42 g_free(typename);
43 if (!oc || !object_class_dynamic_cast(oc, TYPE_HEXAGON_CPU) ||
44 object_class_is_abstract(oc)) {
45 return NULL;
46 }
47 return oc;
48 }
49
50 static Property hexagon_lldb_compat_property =
51 DEFINE_PROP_BOOL("lldb-compat", HexagonCPU, lldb_compat, false);
52 static Property hexagon_lldb_stack_adjust_property =
53 DEFINE_PROP_UNSIGNED("lldb-stack-adjust", HexagonCPU, lldb_stack_adjust,
54 0, qdev_prop_uint32, target_ulong);
55
56 const char * const hexagon_regnames[TOTAL_PER_THREAD_REGS] = {
57 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
58 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
59 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
60 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
61 "sa0", "lc0", "sa1", "lc1", "p3_0", "c5", "m0", "m1",
62 "usr", "pc", "ugp", "gp", "cs0", "cs1", "c14", "c15",
63 "c16", "c17", "c18", "c19", "pkt_cnt", "insn_cnt", "hvx_cnt", "c23",
64 "c24", "c25", "c26", "c27", "c28", "c29", "c30", "c31",
65 };
66
67 /*
68 * One of the main debugging techniques is to use "-d cpu" and compare against
69 * LLDB output when single stepping. However, the target and qemu put the
70 * stacks at different locations. This is used to compensate so the diff is
71 * cleaner.
72 */
73 static target_ulong adjust_stack_ptrs(CPUHexagonState *env, target_ulong addr)
74 {
75 HexagonCPU *cpu = env_archcpu(env);
76 target_ulong stack_adjust = cpu->lldb_stack_adjust;
77 target_ulong stack_start = env->stack_start;
78 target_ulong stack_size = 0x10000;
79
80 if (stack_adjust == 0) {
81 return addr;
82 }
83
84 if (stack_start + 0x1000 >= addr && addr >= (stack_start - stack_size)) {
85 return addr - stack_adjust;
86 }
87 return addr;
88 }
89
90 /* HEX_REG_P3_0_ALIASED (aka C4) is an alias for the predicate registers */
91 static target_ulong read_p3_0(CPUHexagonState *env)
92 {
93 int32_t control_reg = 0;
94 int i;
95 for (i = NUM_PREGS - 1; i >= 0; i--) {
96 control_reg <<= 8;
97 control_reg |= env->pred[i] & 0xff;
98 }
99 return control_reg;
100 }
101
102 static void print_reg(FILE *f, CPUHexagonState *env, int regnum)
103 {
104 target_ulong value;
105
106 if (regnum == HEX_REG_P3_0_ALIASED) {
107 value = read_p3_0(env);
108 } else {
109 value = regnum < 32 ? adjust_stack_ptrs(env, env->gpr[regnum])
110 : env->gpr[regnum];
111 }
112
113 qemu_fprintf(f, " %s = 0x" TARGET_FMT_lx "\n",
114 hexagon_regnames[regnum], value);
115 }
116
117 static void print_vreg(FILE *f, CPUHexagonState *env, int regnum,
118 bool skip_if_zero)
119 {
120 if (skip_if_zero) {
121 bool nonzero_found = false;
122 for (int i = 0; i < MAX_VEC_SIZE_BYTES; i++) {
123 if (env->VRegs[regnum].ub[i] != 0) {
124 nonzero_found = true;
125 break;
126 }
127 }
128 if (!nonzero_found) {
129 return;
130 }
131 }
132
133 qemu_fprintf(f, " v%d = ( ", regnum);
134 qemu_fprintf(f, "0x%02x", env->VRegs[regnum].ub[MAX_VEC_SIZE_BYTES - 1]);
135 for (int i = MAX_VEC_SIZE_BYTES - 2; i >= 0; i--) {
136 qemu_fprintf(f, ", 0x%02x", env->VRegs[regnum].ub[i]);
137 }
138 qemu_fprintf(f, " )\n");
139 }
140
141 void hexagon_debug_vreg(CPUHexagonState *env, int regnum)
142 {
143 print_vreg(stdout, env, regnum, false);
144 }
145
146 static void print_qreg(FILE *f, CPUHexagonState *env, int regnum,
147 bool skip_if_zero)
148 {
149 if (skip_if_zero) {
150 bool nonzero_found = false;
151 for (int i = 0; i < MAX_VEC_SIZE_BYTES / 8; i++) {
152 if (env->QRegs[regnum].ub[i] != 0) {
153 nonzero_found = true;
154 break;
155 }
156 }
157 if (!nonzero_found) {
158 return;
159 }
160 }
161
162 qemu_fprintf(f, " q%d = ( ", regnum);
163 qemu_fprintf(f, "0x%02x",
164 env->QRegs[regnum].ub[MAX_VEC_SIZE_BYTES / 8 - 1]);
165 for (int i = MAX_VEC_SIZE_BYTES / 8 - 2; i >= 0; i--) {
166 qemu_fprintf(f, ", 0x%02x", env->QRegs[regnum].ub[i]);
167 }
168 qemu_fprintf(f, " )\n");
169 }
170
171 void hexagon_debug_qreg(CPUHexagonState *env, int regnum)
172 {
173 print_qreg(stdout, env, regnum, false);
174 }
175
176 static void hexagon_dump(CPUHexagonState *env, FILE *f, int flags)
177 {
178 HexagonCPU *cpu = env_archcpu(env);
179
180 if (cpu->lldb_compat) {
181 /*
182 * When comparing with LLDB, it doesn't step through single-cycle
183 * hardware loops the same way. So, we just skip them here
184 */
185 if (env->gpr[HEX_REG_PC] == env->last_pc_dumped) {
186 return;
187 }
188 env->last_pc_dumped = env->gpr[HEX_REG_PC];
189 }
190
191 qemu_fprintf(f, "General Purpose Registers = {\n");
192 for (int i = 0; i < 32; i++) {
193 print_reg(f, env, i);
194 }
195 print_reg(f, env, HEX_REG_SA0);
196 print_reg(f, env, HEX_REG_LC0);
197 print_reg(f, env, HEX_REG_SA1);
198 print_reg(f, env, HEX_REG_LC1);
199 print_reg(f, env, HEX_REG_M0);
200 print_reg(f, env, HEX_REG_M1);
201 print_reg(f, env, HEX_REG_USR);
202 print_reg(f, env, HEX_REG_P3_0_ALIASED);
203 print_reg(f, env, HEX_REG_GP);
204 print_reg(f, env, HEX_REG_UGP);
205 print_reg(f, env, HEX_REG_PC);
206 #ifdef CONFIG_USER_ONLY
207 /*
208 * Not modelled in user mode, print junk to minimize the diff's
209 * with LLDB output
210 */
211 qemu_fprintf(f, " cause = 0x000000db\n");
212 qemu_fprintf(f, " badva = 0x00000000\n");
213 qemu_fprintf(f, " cs0 = 0x00000000\n");
214 qemu_fprintf(f, " cs1 = 0x00000000\n");
215 #else
216 print_reg(f, env, HEX_REG_CAUSE);
217 print_reg(f, env, HEX_REG_BADVA);
218 print_reg(f, env, HEX_REG_CS0);
219 print_reg(f, env, HEX_REG_CS1);
220 #endif
221 qemu_fprintf(f, "}\n");
222
223 if (flags & CPU_DUMP_FPU) {
224 qemu_fprintf(f, "Vector Registers = {\n");
225 for (int i = 0; i < NUM_VREGS; i++) {
226 print_vreg(f, env, i, true);
227 }
228 for (int i = 0; i < NUM_QREGS; i++) {
229 print_qreg(f, env, i, true);
230 }
231 qemu_fprintf(f, "}\n");
232 }
233 }
234
235 static void hexagon_dump_state(CPUState *cs, FILE *f, int flags)
236 {
237 HexagonCPU *cpu = HEXAGON_CPU(cs);
238 CPUHexagonState *env = &cpu->env;
239
240 hexagon_dump(env, f, flags);
241 }
242
243 void hexagon_debug(CPUHexagonState *env)
244 {
245 hexagon_dump(env, stdout, CPU_DUMP_FPU);
246 }
247
248 static void hexagon_cpu_set_pc(CPUState *cs, vaddr value)
249 {
250 HexagonCPU *cpu = HEXAGON_CPU(cs);
251 CPUHexagonState *env = &cpu->env;
252 env->gpr[HEX_REG_PC] = value;
253 }
254
255 static vaddr hexagon_cpu_get_pc(CPUState *cs)
256 {
257 HexagonCPU *cpu = HEXAGON_CPU(cs);
258 CPUHexagonState *env = &cpu->env;
259 return env->gpr[HEX_REG_PC];
260 }
261
262 static void hexagon_cpu_synchronize_from_tb(CPUState *cs,
263 const TranslationBlock *tb)
264 {
265 HexagonCPU *cpu = HEXAGON_CPU(cs);
266 CPUHexagonState *env = &cpu->env;
267 tcg_debug_assert(!(cs->tcg_cflags & CF_PCREL));
268 env->gpr[HEX_REG_PC] = tb->pc;
269 }
270
271 static bool hexagon_cpu_has_work(CPUState *cs)
272 {
273 return true;
274 }
275
276 static void hexagon_restore_state_to_opc(CPUState *cs,
277 const TranslationBlock *tb,
278 const uint64_t *data)
279 {
280 HexagonCPU *cpu = HEXAGON_CPU(cs);
281 CPUHexagonState *env = &cpu->env;
282
283 env->gpr[HEX_REG_PC] = data[0];
284 }
285
286 static void hexagon_cpu_reset_hold(Object *obj)
287 {
288 CPUState *cs = CPU(obj);
289 HexagonCPU *cpu = HEXAGON_CPU(cs);
290 HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(cpu);
291 CPUHexagonState *env = &cpu->env;
292
293 if (mcc->parent_phases.hold) {
294 mcc->parent_phases.hold(obj);
295 }
296
297 set_default_nan_mode(1, &env->fp_status);
298 set_float_detect_tininess(float_tininess_before_rounding, &env->fp_status);
299 }
300
301 static void hexagon_cpu_disas_set_info(CPUState *s, disassemble_info *info)
302 {
303 info->print_insn = print_insn_hexagon;
304 }
305
306 static void hexagon_cpu_realize(DeviceState *dev, Error **errp)
307 {
308 CPUState *cs = CPU(dev);
309 HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(dev);
310 Error *local_err = NULL;
311
312 cpu_exec_realizefn(cs, &local_err);
313 if (local_err != NULL) {
314 error_propagate(errp, local_err);
315 return;
316 }
317
318 qemu_init_vcpu(cs);
319 cpu_reset(cs);
320
321 mcc->parent_realize(dev, errp);
322 }
323
324 static void hexagon_cpu_init(Object *obj)
325 {
326 HexagonCPU *cpu = HEXAGON_CPU(obj);
327
328 cpu_set_cpustate_pointers(cpu);
329 qdev_property_add_static(DEVICE(obj), &hexagon_lldb_compat_property);
330 qdev_property_add_static(DEVICE(obj), &hexagon_lldb_stack_adjust_property);
331 }
332
333 #include "hw/core/tcg-cpu-ops.h"
334
335 static const struct TCGCPUOps hexagon_tcg_ops = {
336 .initialize = hexagon_translate_init,
337 .synchronize_from_tb = hexagon_cpu_synchronize_from_tb,
338 .restore_state_to_opc = hexagon_restore_state_to_opc,
339 };
340
341 static void hexagon_cpu_class_init(ObjectClass *c, void *data)
342 {
343 HexagonCPUClass *mcc = HEXAGON_CPU_CLASS(c);
344 CPUClass *cc = CPU_CLASS(c);
345 DeviceClass *dc = DEVICE_CLASS(c);
346 ResettableClass *rc = RESETTABLE_CLASS(c);
347
348 device_class_set_parent_realize(dc, hexagon_cpu_realize,
349 &mcc->parent_realize);
350
351 resettable_class_set_parent_phases(rc, NULL, hexagon_cpu_reset_hold, NULL,
352 &mcc->parent_phases);
353
354 cc->class_by_name = hexagon_cpu_class_by_name;
355 cc->has_work = hexagon_cpu_has_work;
356 cc->dump_state = hexagon_dump_state;
357 cc->set_pc = hexagon_cpu_set_pc;
358 cc->get_pc = hexagon_cpu_get_pc;
359 cc->gdb_read_register = hexagon_gdb_read_register;
360 cc->gdb_write_register = hexagon_gdb_write_register;
361 cc->gdb_num_core_regs = TOTAL_PER_THREAD_REGS + NUM_VREGS + NUM_QREGS;
362 cc->gdb_stop_before_watchpoint = true;
363 cc->disas_set_info = hexagon_cpu_disas_set_info;
364 cc->tcg_ops = &hexagon_tcg_ops;
365 }
366
367 #define DEFINE_CPU(type_name, initfn) \
368 { \
369 .name = type_name, \
370 .parent = TYPE_HEXAGON_CPU, \
371 .instance_init = initfn \
372 }
373
374 static const TypeInfo hexagon_cpu_type_infos[] = {
375 {
376 .name = TYPE_HEXAGON_CPU,
377 .parent = TYPE_CPU,
378 .instance_size = sizeof(HexagonCPU),
379 .instance_init = hexagon_cpu_init,
380 .abstract = true,
381 .class_size = sizeof(HexagonCPUClass),
382 .class_init = hexagon_cpu_class_init,
383 },
384 DEFINE_CPU(TYPE_HEXAGON_CPU_V67, hexagon_v67_cpu_init),
385 };
386
387 DEFINE_TYPES(hexagon_cpu_type_infos)