]> git.proxmox.com Git - mirror_qemu.git/blob - target/hexagon/macros.h
Merge tag 'pull-hex-20231018' of https://github.com/quic/qemu into staging
[mirror_qemu.git] / target / hexagon / macros.h
1 /*
2 * Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #ifndef HEXAGON_MACROS_H
19 #define HEXAGON_MACROS_H
20
21 #include "cpu.h"
22 #include "hex_regs.h"
23 #include "reg_fields.h"
24
25 #define PCALIGN 4
26 #define PCALIGN_MASK (PCALIGN - 1)
27
28 #define GET_FIELD(FIELD, REGIN) \
29 fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
30 reg_field_info[FIELD].offset)
31
32 #ifdef QEMU_GENERATE
33 #define GET_USR_FIELD(FIELD, DST) \
34 tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
35 reg_field_info[FIELD].offset, \
36 reg_field_info[FIELD].width)
37
38 #define TYPE_INT(X) __builtin_types_compatible_p(typeof(X), int)
39 #define TYPE_TCGV(X) __builtin_types_compatible_p(typeof(X), TCGv)
40 #define TYPE_TCGV_I64(X) __builtin_types_compatible_p(typeof(X), TCGv_i64)
41 #else
42 #define GET_USR_FIELD(FIELD) \
43 fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
44 reg_field_info[FIELD].offset)
45
46 #define SET_USR_FIELD(FIELD, VAL) \
47 do { \
48 if (pkt_need_commit) { \
49 fINSERT_BITS(env->new_value_usr, \
50 reg_field_info[FIELD].width, \
51 reg_field_info[FIELD].offset, (VAL)); \
52 } else { \
53 fINSERT_BITS(env->gpr[HEX_REG_USR], \
54 reg_field_info[FIELD].width, \
55 reg_field_info[FIELD].offset, (VAL)); \
56 } \
57 } while (0)
58 #endif
59
60 #ifdef QEMU_GENERATE
61 /*
62 * Section 5.5 of the Hexagon V67 Programmer's Reference Manual
63 *
64 * Slot 1 store with slot 0 load
65 * A slot 1 store operation with a slot 0 load operation can appear in a packet.
66 * The packet attribute :mem_noshuf inhibits the instruction reordering that
67 * would otherwise be done by the assembler. For example:
68 * {
69 * memw(R5) = R2 // slot 1 store
70 * R3 = memh(R6) // slot 0 load
71 * }:mem_noshuf
72 * Unlike most packetized operations, these memory operations are not executed
73 * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1
74 * effectively executes first, followed by the load instruction in Slot 0. If
75 * the addresses of the two operations are overlapping, the load will receive
76 * the newly stored data. This feature is supported in processor versions
77 * V65 or greater.
78 *
79 *
80 * For qemu, we look for a load in slot 0 when there is a store in slot 1
81 * in the same packet. When we see this, we call a helper that probes the
82 * load to make sure it doesn't fault. Then, we process the store ahead of
83 * the actual load.
84
85 */
86 #define CHECK_NOSHUF(VA, SIZE) \
87 do { \
88 if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \
89 probe_noshuf_load(VA, SIZE, ctx->mem_idx); \
90 process_store(ctx, 1); \
91 } \
92 } while (0)
93
94 #define CHECK_NOSHUF_PRED(GET_EA, SIZE, PRED) \
95 do { \
96 TCGLabel *label = gen_new_label(); \
97 tcg_gen_brcondi_tl(TCG_COND_EQ, PRED, 0, label); \
98 GET_EA; \
99 if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \
100 probe_noshuf_load(EA, SIZE, ctx->mem_idx); \
101 } \
102 gen_set_label(label); \
103 if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \
104 process_store(ctx, 1); \
105 } \
106 } while (0)
107
108 #define MEM_LOAD1s(DST, VA) \
109 do { \
110 CHECK_NOSHUF(VA, 1); \
111 tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_SB); \
112 } while (0)
113 #define MEM_LOAD1u(DST, VA) \
114 do { \
115 CHECK_NOSHUF(VA, 1); \
116 tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_UB); \
117 } while (0)
118 #define MEM_LOAD2s(DST, VA) \
119 do { \
120 CHECK_NOSHUF(VA, 2); \
121 tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_TESW); \
122 } while (0)
123 #define MEM_LOAD2u(DST, VA) \
124 do { \
125 CHECK_NOSHUF(VA, 2); \
126 tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_TEUW); \
127 } while (0)
128 #define MEM_LOAD4s(DST, VA) \
129 do { \
130 CHECK_NOSHUF(VA, 4); \
131 tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_TESL); \
132 } while (0)
133 #define MEM_LOAD4u(DST, VA) \
134 do { \
135 CHECK_NOSHUF(VA, 4); \
136 tcg_gen_qemu_ld_tl(DST, VA, ctx->mem_idx, MO_TEUL); \
137 } while (0)
138 #define MEM_LOAD8u(DST, VA) \
139 do { \
140 CHECK_NOSHUF(VA, 8); \
141 tcg_gen_qemu_ld_i64(DST, VA, ctx->mem_idx, MO_TEUQ); \
142 } while (0)
143
144 #define MEM_STORE1_FUNC(X) \
145 __builtin_choose_expr(TYPE_INT(X), \
146 gen_store1i, \
147 __builtin_choose_expr(TYPE_TCGV(X), \
148 gen_store1, (void)0))
149 #define MEM_STORE1(VA, DATA, SLOT) \
150 MEM_STORE1_FUNC(DATA)(tcg_env, VA, DATA, SLOT)
151
152 #define MEM_STORE2_FUNC(X) \
153 __builtin_choose_expr(TYPE_INT(X), \
154 gen_store2i, \
155 __builtin_choose_expr(TYPE_TCGV(X), \
156 gen_store2, (void)0))
157 #define MEM_STORE2(VA, DATA, SLOT) \
158 MEM_STORE2_FUNC(DATA)(tcg_env, VA, DATA, SLOT)
159
160 #define MEM_STORE4_FUNC(X) \
161 __builtin_choose_expr(TYPE_INT(X), \
162 gen_store4i, \
163 __builtin_choose_expr(TYPE_TCGV(X), \
164 gen_store4, (void)0))
165 #define MEM_STORE4(VA, DATA, SLOT) \
166 MEM_STORE4_FUNC(DATA)(tcg_env, VA, DATA, SLOT)
167
168 #define MEM_STORE8_FUNC(X) \
169 __builtin_choose_expr(TYPE_INT(X), \
170 gen_store8i, \
171 __builtin_choose_expr(TYPE_TCGV_I64(X), \
172 gen_store8, (void)0))
173 #define MEM_STORE8(VA, DATA, SLOT) \
174 MEM_STORE8_FUNC(DATA)(tcg_env, VA, DATA, SLOT)
175 #else
176 #define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
177 #define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
178 #define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
179 #define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
180 #endif
181
182 #ifdef QEMU_GENERATE
183 static inline void gen_cancel(uint32_t slot)
184 {
185 tcg_gen_ori_tl(hex_slot_cancelled, hex_slot_cancelled, 1 << slot);
186 }
187
188 #define CANCEL gen_cancel(slot);
189 #else
190 #define CANCEL do { } while (0)
191 #endif
192
193 #define LOAD_CANCEL(EA) do { CANCEL; } while (0)
194
195 #define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
196
197 #define fMAX(A, B) (((A) > (B)) ? (A) : (B))
198
199 #define fMIN(A, B) (((A) < (B)) ? (A) : (B))
200
201 #define fABS(A) (((A) < 0) ? (-(A)) : (A))
202 #define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
203 REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG)
204 #define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
205 ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL)
206 #define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
207 (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
208 #define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
209 (((HIBIT) - (LOWBIT) + 1) ? \
210 extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \
211 0LL)
212 #define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \
213 do { \
214 int width = ((HIBIT) - (LOWBIT) + 1); \
215 INREG = (width >= 0 ? \
216 deposit64((INREG), (LOWBIT), width, (INVAL)) : \
217 INREG); \
218 } while (0)
219
220 #define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
221
222 #ifdef QEMU_GENERATE
223 #define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
224 #else
225 #define fLSBOLD(VAL) ((VAL) & 1)
226 #endif
227
228 #ifdef QEMU_GENERATE
229 #define fLSBNEW(PVAL) tcg_gen_andi_tl(LSB, (PVAL), 1)
230 #else
231 #define fLSBNEW(PVAL) ((PVAL) & 1)
232 #endif
233
234 #ifdef QEMU_GENERATE
235 #define fLSBOLDNOT(VAL) \
236 do { \
237 tcg_gen_andi_tl(LSB, (VAL), 1); \
238 tcg_gen_xori_tl(LSB, LSB, 1); \
239 } while (0)
240 #define fLSBNEWNOT(PNUM) \
241 do { \
242 tcg_gen_andi_tl(LSB, (PNUM), 1); \
243 tcg_gen_xori_tl(LSB, LSB, 1); \
244 } while (0)
245 #else
246 #define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
247 #define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
248 #define fLSBNEW0NOT (!fLSBNEW0)
249 #define fLSBNEW1NOT (!fLSBNEW1)
250 #endif
251
252 #define fNEWREG(VAL) ((int32_t)(VAL))
253
254 #define fNEWREG_ST(VAL) (VAL)
255
256 #define fVSATUVALN(N, VAL) \
257 ({ \
258 (((int64_t)(VAL)) < 0) ? 0 : ((1LL << (N)) - 1); \
259 })
260 #define fSATUVALN(N, VAL) \
261 ({ \
262 fSET_OVERFLOW(); \
263 ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
264 })
265 #define fSATVALN(N, VAL) \
266 ({ \
267 fSET_OVERFLOW(); \
268 ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
269 })
270 #define fVSATVALN(N, VAL) \
271 ({ \
272 ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
273 })
274 #define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL)
275 #define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL)
276 #define fSATN(N, VAL) \
277 ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
278 #define fVSATN(N, VAL) \
279 ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATVALN(N, VAL))
280 #define fADDSAT64(DST, A, B) \
281 do { \
282 uint64_t __a = fCAST8u(A); \
283 uint64_t __b = fCAST8u(B); \
284 uint64_t __sum = __a + __b; \
285 uint64_t __xor = __a ^ __b; \
286 const uint64_t __mask = 0x8000000000000000ULL; \
287 if (__xor & __mask) { \
288 DST = __sum; \
289 } \
290 else if ((__a ^ __sum) & __mask) { \
291 if (__sum & __mask) { \
292 DST = 0x7FFFFFFFFFFFFFFFLL; \
293 fSET_OVERFLOW(); \
294 } else { \
295 DST = 0x8000000000000000LL; \
296 fSET_OVERFLOW(); \
297 } \
298 } else { \
299 DST = __sum; \
300 } \
301 } while (0)
302 #define fVSATUN(N, VAL) \
303 ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATUVALN(N, VAL))
304 #define fSATUN(N, VAL) \
305 ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
306 #define fSATH(VAL) (fSATN(16, VAL))
307 #define fSATUH(VAL) (fSATUN(16, VAL))
308 #define fVSATH(VAL) (fVSATN(16, VAL))
309 #define fVSATUH(VAL) (fVSATUN(16, VAL))
310 #define fSATUB(VAL) (fSATUN(8, VAL))
311 #define fSATB(VAL) (fSATN(8, VAL))
312 #define fVSATUB(VAL) (fVSATUN(8, VAL))
313 #define fVSATB(VAL) (fVSATN(8, VAL))
314 #define fIMMEXT(IMM) (IMM = IMM)
315 #define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
316
317 #define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
318
319 #ifdef QEMU_GENERATE
320 static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift)
321 {
322 /*
323 * Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual
324 *
325 * The "I" value from a modifier register is divided into two pieces
326 * LSB bits 23:17
327 * MSB bits 31:28
328 * The value is signed
329 *
330 * At the end we shift the result according to the shift argument
331 */
332 TCGv msb = tcg_temp_new();
333 TCGv lsb = tcg_temp_new();
334
335 tcg_gen_extract_tl(lsb, val, 17, 7);
336 tcg_gen_sari_tl(msb, val, 21);
337 tcg_gen_deposit_tl(result, msb, lsb, 0, 7);
338
339 tcg_gen_shli_tl(result, result, shift);
340 return result;
341 }
342 #endif
343
344 #define fREAD_LR() (env->gpr[HEX_REG_LR])
345
346 #define fREAD_SP() (env->gpr[HEX_REG_SP])
347 #define fREAD_LC0 (env->gpr[HEX_REG_LC0])
348 #define fREAD_LC1 (env->gpr[HEX_REG_LC1])
349 #define fREAD_SA0 (env->gpr[HEX_REG_SA0])
350 #define fREAD_SA1 (env->gpr[HEX_REG_SA1])
351 #define fREAD_FP() (env->gpr[HEX_REG_FP])
352 #ifdef FIXME
353 /* Figure out how to get insn->extension_valid to helper */
354 #define fREAD_GP() \
355 (insn->extension_valid ? 0 : env->gpr[HEX_REG_GP])
356 #else
357 #define fREAD_GP() (env->gpr[HEX_REG_GP])
358 #endif
359 #define fREAD_PC() (PC)
360
361 #define fREAD_P0() (env->pred[0])
362
363 #define fCHECK_PCALIGN(A)
364
365 #define fWRITE_NPC(A) write_new_pc(env, pkt_has_multi_cof != 0, A)
366
367 #define fBRANCH(LOC, TYPE) fWRITE_NPC(LOC)
368 #define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
369 #define fHINTJR(TARGET) { /* Not modelled in qemu */}
370
371 #define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
372 #define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
373 #define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
374 #define fPART1(WORK) if (part1) { WORK; return; }
375 #define fCAST4u(A) ((uint32_t)(A))
376 #define fCAST4s(A) ((int32_t)(A))
377 #define fCAST8u(A) ((uint64_t)(A))
378 #define fCAST8s(A) ((int64_t)(A))
379 #define fCAST2_2s(A) ((int16_t)(A))
380 #define fCAST2_2u(A) ((uint16_t)(A))
381 #define fCAST4_4s(A) ((int32_t)(A))
382 #define fCAST4_4u(A) ((uint32_t)(A))
383 #define fCAST4_8s(A) ((int64_t)((int32_t)(A)))
384 #define fCAST4_8u(A) ((uint64_t)((uint32_t)(A)))
385 #define fCAST8_8s(A) ((int64_t)(A))
386 #define fCAST8_8u(A) ((uint64_t)(A))
387 #define fCAST2_8s(A) ((int64_t)((int16_t)(A)))
388 #define fCAST2_8u(A) ((uint64_t)((uint16_t)(A)))
389 #define fZE8_16(A) ((int16_t)((uint8_t)(A)))
390 #define fSE8_16(A) ((int16_t)((int8_t)(A)))
391 #define fSE16_32(A) ((int32_t)((int16_t)(A)))
392 #define fZE16_32(A) ((uint32_t)((uint16_t)(A)))
393 #define fSE32_64(A) ((int64_t)((int32_t)(A)))
394 #define fZE32_64(A) ((uint64_t)((uint32_t)(A)))
395 #define fSE8_32(A) ((int32_t)((int8_t)(A)))
396 #define fZE8_32(A) ((int32_t)((uint8_t)(A)))
397 #define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
398 #define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
399 #define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
400 #define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
401 #define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
402 #define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
403 #define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
404 #define fMPY16US(A, B) fMPY16SU(B, A)
405 #define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
406 #define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
407 #define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
408 #define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
409 #define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
410 #define fROUND(A) (A + 0x8000)
411 #define fCLIP(DST, SRC, U) \
412 do { \
413 int32_t maxv = (1 << U) - 1; \
414 int32_t minv = -(1 << U); \
415 DST = fMIN(maxv, fMAX(SRC, minv)); \
416 } while (0)
417 #define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
418 #define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
419 #define fCRNDN(A, N) (conv_round(A, N))
420 #define fADD128(A, B) (int128_add(A, B))
421 #define fSUB128(A, B) (int128_sub(A, B))
422 #define fSHIFTR128(A, B) (int128_rshift(A, B))
423 #define fSHIFTL128(A, B) (int128_lshift(A, B))
424 #define fAND128(A, B) (int128_and(A, B))
425 #define fCAST8S_16S(A) (int128_exts64(A))
426 #define fCAST16S_8S(A) (int128_getlo(A))
427
428 #ifdef QEMU_GENERATE
429 #define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM)
430 #define fEA_RRs(REG, REG2, SCALE) \
431 do { \
432 TCGv tmp = tcg_temp_new(); \
433 tcg_gen_shli_tl(tmp, REG2, SCALE); \
434 tcg_gen_add_tl(EA, REG, tmp); \
435 } while (0)
436 #define fEA_IRs(IMM, REG, SCALE) \
437 do { \
438 tcg_gen_shli_tl(EA, REG, SCALE); \
439 tcg_gen_addi_tl(EA, EA, IMM); \
440 } while (0)
441 #else
442 #define fEA_RI(REG, IMM) \
443 do { \
444 EA = REG + IMM; \
445 } while (0)
446 #define fEA_RRs(REG, REG2, SCALE) \
447 do { \
448 EA = REG + (REG2 << SCALE); \
449 } while (0)
450 #define fEA_IRs(IMM, REG, SCALE) \
451 do { \
452 EA = IMM + (REG << SCALE); \
453 } while (0)
454 #endif
455
456 #ifdef QEMU_GENERATE
457 #define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
458 #define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
459 #define fEA_BREVR(REG) gen_helper_fbrev(EA, REG)
460 #define fPM_I(REG, IMM) tcg_gen_addi_tl(REG, REG, IMM)
461 #define fPM_M(REG, MVAL) tcg_gen_add_tl(REG, REG, MVAL)
462 #define fPM_CIRI(REG, IMM, MVAL) \
463 do { \
464 TCGv tcgv_siV = tcg_constant_tl(siV); \
465 gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \
466 hex_gpr[HEX_REG_CS0 + MuN]); \
467 } while (0)
468 #else
469 #define fEA_IMM(IMM) do { EA = (IMM); } while (0)
470 #define fEA_REG(REG) do { EA = (REG); } while (0)
471 #define fEA_GPI(IMM) do { EA = (fREAD_GP() + (IMM)); } while (0)
472 #define fPM_I(REG, IMM) do { REG = REG + (IMM); } while (0)
473 #define fPM_M(REG, MVAL) do { REG = REG + (MVAL); } while (0)
474 #endif
475 #define fSCALE(N, A) (((int64_t)(A)) << N)
476 #define fVSATW(A) fVSATN(32, ((long long)A))
477 #define fSATW(A) fSATN(32, ((long long)A))
478 #define fVSAT(A) fVSATN(32, (A))
479 #define fSAT(A) fSATN(32, (A))
480 #define fSAT_ORIG_SHL(A, ORIG_REG) \
481 ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \
482 ? fSATVALN(32, ((int32_t)(ORIG_REG))) \
483 : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
484 : fSAT(A)))
485 #define fPASS(A) A
486 #define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
487 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
488 : (fCAST##REGSTYPE(SRC) << (SHAMT)))
489 #define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
490 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
491 #define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
492 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
493 #define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
494 (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
495 : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
496 #define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
497 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
498 : (fCAST##REGSTYPE(SRC) >> (SHAMT)))
499 #define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
500 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
501 #define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
502 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
503 #define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
504 (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
505 << ((-(SHAMT)) - 1)) << 1, (SRC)) \
506 : (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
507 #define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
508 #define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
509 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
510 #define fROTL(SRC, SHAMT, REGSTYPE) \
511 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
512 ((fCAST##REGSTYPE##u(SRC) >> \
513 ((sizeof(SRC) * 8) - (SHAMT))))))
514 #define fROTR(SRC, SHAMT, REGSTYPE) \
515 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
516 ((fCAST##REGSTYPE##u(SRC) << \
517 ((sizeof(SRC) * 8) - (SHAMT))))))
518 #define fASHIFTL(SRC, SHAMT, REGSTYPE) \
519 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
520
521 #ifdef QEMU_GENERATE
522 #define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
523 #else
524 #define MEM_LOAD1 cpu_ldub_data_ra
525 #define MEM_LOAD2 cpu_lduw_data_ra
526 #define MEM_LOAD4 cpu_ldl_data_ra
527 #define MEM_LOAD8 cpu_ldq_data_ra
528
529 #define fLOAD(NUM, SIZE, SIGN, EA, DST) \
530 do { \
531 check_noshuf(env, pkt_has_store_s1, slot, EA, SIZE, GETPC()); \
532 DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE(env, EA, GETPC()); \
533 } while (0)
534 #endif
535
536 #define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
537
538 #define fGET_FRAMEKEY() (env->gpr[HEX_REG_FRAMEKEY])
539 #define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
540 #define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
541
542 #ifdef CONFIG_USER_ONLY
543 #define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */
544 #else
545 /* System mode not implemented yet */
546 #define fFRAMECHECK(ADDR, EA) g_assert_not_reached();
547 #endif
548
549 #ifdef QEMU_GENERATE
550 #define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
551 gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
552 #endif
553
554 #ifdef QEMU_GENERATE
555 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot)
556 #else
557 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
558 #endif
559
560 #ifdef QEMU_GENERATE
561 #define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
562 gen_store_conditional##SIZE(ctx, PRED, EA, SRC);
563 #endif
564
565 #ifdef QEMU_GENERATE
566 #define GETBYTE_FUNC(X) \
567 __builtin_choose_expr(TYPE_TCGV(X), \
568 gen_get_byte, \
569 __builtin_choose_expr(TYPE_TCGV_I64(X), \
570 gen_get_byte_i64, (void)0))
571 #define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true)
572 #define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false)
573 #else
574 #define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff))
575 #define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff))
576 #endif
577
578 #define fSETBYTE(N, DST, VAL) \
579 do { \
580 DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
581 (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
582 } while (0)
583
584 #ifdef QEMU_GENERATE
585 #define fGETHALF(N, SRC) gen_get_half(HALF, N, SRC, true)
586 #define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false)
587 #else
588 #define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff))
589 #define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff))
590 #endif
591 #define fSETHALF(N, DST, VAL) \
592 do { \
593 DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
594 (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
595 } while (0)
596 #define fSETHALFw fSETHALF
597 #define fSETHALFd fSETHALF
598
599 #define fGETWORD(N, SRC) \
600 ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
601 #define fGETUWORD(N, SRC) \
602 ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
603
604 #define fSETWORD(N, DST, VAL) \
605 do { \
606 DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
607 (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
608 } while (0)
609
610 #define fSETBIT(N, DST, VAL) \
611 do { \
612 DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \
613 } while (0)
614
615 #define fGETBIT(N, SRC) (((SRC) >> N) & 1)
616 #define fSETBITS(HI, LO, DST, VAL) \
617 do { \
618 int j; \
619 for (j = LO; j <= HI; j++) { \
620 fSETBIT(j, DST, VAL); \
621 } \
622 } while (0)
623 #define fCOUNTONES_2(VAL) ctpop16(VAL)
624 #define fCOUNTONES_4(VAL) ctpop32(VAL)
625 #define fCOUNTONES_8(VAL) ctpop64(VAL)
626 #define fBREV_8(VAL) revbit64(VAL)
627 #define fBREV_4(VAL) revbit32(VAL)
628 #define fCL1_8(VAL) clo64(VAL)
629 #define fCL1_4(VAL) clo32(VAL)
630 #define fCL1_2(VAL) (clz32(~(uint16_t)(VAL) & 0xffff) - 16)
631 #define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
632 #define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
633 #define fHIDE(A) A
634 #define fCONSTLL(A) A##LL
635 #define fECHO(A) (A)
636
637 #define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
638 #define fPAUSE(IMM)
639
640 #define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
641 ((VAL) << reg_field_info[FIELD].offset)
642 #define fGET_REG_FIELD_MASK(FIELD) \
643 (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
644 #define fREAD_REG_FIELD(REG, FIELD) \
645 fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
646 reg_field_info[FIELD].width, \
647 reg_field_info[FIELD].offset)
648
649 #ifdef QEMU_GENERATE
650 #define fDCZEROA(REG) \
651 do { \
652 ctx->dczero_addr = tcg_temp_new(); \
653 tcg_gen_mov_tl(ctx->dczero_addr, (REG)); \
654 } while (0)
655 #endif
656
657 #define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
658 STRBITNUM) /* Nothing */
659
660
661 #endif