]> git.proxmox.com Git - mirror_qemu.git/blob - target/hexagon/macros.h
Merge tag 'for-upstream' of https://repo.or.cz/qemu/kevin into staging
[mirror_qemu.git] / target / hexagon / macros.h
1 /*
2 * Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #ifndef HEXAGON_MACROS_H
19 #define HEXAGON_MACROS_H
20
21 #include "cpu.h"
22 #include "hex_regs.h"
23 #include "reg_fields.h"
24
25 #ifdef QEMU_GENERATE
26 #define READ_REG(dest, NUM) gen_read_reg(dest, NUM)
27 #else
28 #define READ_REG(NUM) (env->gpr[(NUM)])
29 #define READ_PREG(NUM) (env->pred[NUM])
30
31 #define WRITE_RREG(NUM, VAL) log_reg_write(env, NUM, VAL, slot)
32 #define WRITE_PREG(NUM, VAL) log_pred_write(env, NUM, VAL)
33 #endif
34
35 #define PCALIGN 4
36 #define PCALIGN_MASK (PCALIGN - 1)
37
38 #define GET_FIELD(FIELD, REGIN) \
39 fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
40 reg_field_info[FIELD].offset)
41
42 #ifdef QEMU_GENERATE
43 #define GET_USR_FIELD(FIELD, DST) \
44 tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
45 reg_field_info[FIELD].offset, \
46 reg_field_info[FIELD].width)
47
48 #define TYPE_INT(X) __builtin_types_compatible_p(typeof(X), int)
49 #define TYPE_TCGV(X) __builtin_types_compatible_p(typeof(X), TCGv)
50 #define TYPE_TCGV_I64(X) __builtin_types_compatible_p(typeof(X), TCGv_i64)
51
52 #define SET_USR_FIELD_FUNC(X) \
53 __builtin_choose_expr(TYPE_INT(X), \
54 gen_set_usr_fieldi, \
55 __builtin_choose_expr(TYPE_TCGV(X), \
56 gen_set_usr_field, (void)0))
57 #define SET_USR_FIELD(FIELD, VAL) \
58 SET_USR_FIELD_FUNC(VAL)(FIELD, VAL)
59 #else
60 #define GET_USR_FIELD(FIELD) \
61 fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
62 reg_field_info[FIELD].offset)
63
64 #define SET_USR_FIELD(FIELD, VAL) \
65 fINSERT_BITS(env->new_value[HEX_REG_USR], reg_field_info[FIELD].width, \
66 reg_field_info[FIELD].offset, (VAL))
67 #endif
68
69 #ifdef QEMU_GENERATE
70 /*
71 * Section 5.5 of the Hexagon V67 Programmer's Reference Manual
72 *
73 * Slot 1 store with slot 0 load
74 * A slot 1 store operation with a slot 0 load operation can appear in a packet.
75 * The packet attribute :mem_noshuf inhibits the instruction reordering that
76 * would otherwise be done by the assembler. For example:
77 * {
78 * memw(R5) = R2 // slot 1 store
79 * R3 = memh(R6) // slot 0 load
80 * }:mem_noshuf
81 * Unlike most packetized operations, these memory operations are not executed
82 * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1
83 * effectively executes first, followed by the load instruction in Slot 0. If
84 * the addresses of the two operations are overlapping, the load will receive
85 * the newly stored data. This feature is supported in processor versions
86 * V65 or greater.
87 *
88 *
89 * For qemu, we look for a load in slot 0 when there is a store in slot 1
90 * in the same packet. When we see this, we call a helper that probes the
91 * load to make sure it doesn't fault. Then, we process the store ahead of
92 * the actual load.
93
94 */
95 #define CHECK_NOSHUF(VA, SIZE) \
96 do { \
97 if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \
98 probe_noshuf_load(VA, SIZE, ctx->mem_idx); \
99 process_store(ctx, 1); \
100 } \
101 } while (0)
102
103 #define CHECK_NOSHUF_PRED(GET_EA, SIZE, PRED) \
104 do { \
105 TCGLabel *label = gen_new_label(); \
106 tcg_gen_brcondi_tl(TCG_COND_EQ, PRED, 0, label); \
107 GET_EA; \
108 if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \
109 probe_noshuf_load(EA, SIZE, ctx->mem_idx); \
110 } \
111 gen_set_label(label); \
112 if (insn->slot == 0 && ctx->pkt->pkt_has_store_s1) { \
113 process_store(ctx, 1); \
114 } \
115 } while (0)
116
117 #define MEM_LOAD1s(DST, VA) \
118 do { \
119 CHECK_NOSHUF(VA, 1); \
120 tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \
121 } while (0)
122 #define MEM_LOAD1u(DST, VA) \
123 do { \
124 CHECK_NOSHUF(VA, 1); \
125 tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \
126 } while (0)
127 #define MEM_LOAD2s(DST, VA) \
128 do { \
129 CHECK_NOSHUF(VA, 2); \
130 tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \
131 } while (0)
132 #define MEM_LOAD2u(DST, VA) \
133 do { \
134 CHECK_NOSHUF(VA, 2); \
135 tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \
136 } while (0)
137 #define MEM_LOAD4s(DST, VA) \
138 do { \
139 CHECK_NOSHUF(VA, 4); \
140 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
141 } while (0)
142 #define MEM_LOAD4u(DST, VA) \
143 do { \
144 CHECK_NOSHUF(VA, 4); \
145 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
146 } while (0)
147 #define MEM_LOAD8u(DST, VA) \
148 do { \
149 CHECK_NOSHUF(VA, 8); \
150 tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \
151 } while (0)
152
153 #define MEM_STORE1_FUNC(X) \
154 __builtin_choose_expr(TYPE_INT(X), \
155 gen_store1i, \
156 __builtin_choose_expr(TYPE_TCGV(X), \
157 gen_store1, (void)0))
158 #define MEM_STORE1(VA, DATA, SLOT) \
159 MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
160
161 #define MEM_STORE2_FUNC(X) \
162 __builtin_choose_expr(TYPE_INT(X), \
163 gen_store2i, \
164 __builtin_choose_expr(TYPE_TCGV(X), \
165 gen_store2, (void)0))
166 #define MEM_STORE2(VA, DATA, SLOT) \
167 MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
168
169 #define MEM_STORE4_FUNC(X) \
170 __builtin_choose_expr(TYPE_INT(X), \
171 gen_store4i, \
172 __builtin_choose_expr(TYPE_TCGV(X), \
173 gen_store4, (void)0))
174 #define MEM_STORE4(VA, DATA, SLOT) \
175 MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
176
177 #define MEM_STORE8_FUNC(X) \
178 __builtin_choose_expr(TYPE_INT(X), \
179 gen_store8i, \
180 __builtin_choose_expr(TYPE_TCGV_I64(X), \
181 gen_store8, (void)0))
182 #define MEM_STORE8(VA, DATA, SLOT) \
183 MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, SLOT)
184 #else
185 #define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA))
186 #define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA))
187 #define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA))
188 #define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA))
189 #define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA))
190 #define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA))
191 #define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA))
192 #define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA))
193
194 #define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
195 #define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
196 #define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
197 #define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
198 #endif
199
200 #ifdef QEMU_GENERATE
201 static inline void gen_cancel(uint32_t slot)
202 {
203 tcg_gen_ori_tl(hex_slot_cancelled, hex_slot_cancelled, 1 << slot);
204 }
205
206 #define CANCEL gen_cancel(slot);
207 #else
208 #define CANCEL do { } while (0)
209 #endif
210
211 #define LOAD_CANCEL(EA) do { CANCEL; } while (0)
212
213 #define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
214
215 #define fMAX(A, B) (((A) > (B)) ? (A) : (B))
216
217 #define fMIN(A, B) (((A) < (B)) ? (A) : (B))
218
219 #define fABS(A) (((A) < 0) ? (-(A)) : (A))
220 #define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
221 REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG)
222 #define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
223 ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL)
224 #define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
225 (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
226 #define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
227 (((HIBIT) - (LOWBIT) + 1) ? \
228 extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \
229 0LL)
230 #define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \
231 do { \
232 int width = ((HIBIT) - (LOWBIT) + 1); \
233 INREG = (width >= 0 ? \
234 deposit64((INREG), (LOWBIT), width, (INVAL)) : \
235 INREG); \
236 } while (0)
237
238 #define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
239
240 #ifdef QEMU_GENERATE
241 #define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
242 #else
243 #define fLSBOLD(VAL) ((VAL) & 1)
244 #endif
245
246 #ifdef QEMU_GENERATE
247 #define fLSBNEW(PVAL) tcg_gen_andi_tl(LSB, (PVAL), 1)
248 #define fLSBNEW0 tcg_gen_andi_tl(LSB, hex_new_pred_value[0], 1)
249 #define fLSBNEW1 tcg_gen_andi_tl(LSB, hex_new_pred_value[1], 1)
250 #else
251 #define fLSBNEW(PVAL) ((PVAL) & 1)
252 #define fLSBNEW0 (env->new_pred_value[0] & 1)
253 #define fLSBNEW1 (env->new_pred_value[1] & 1)
254 #endif
255
256 #ifdef QEMU_GENERATE
257 #define fLSBOLDNOT(VAL) \
258 do { \
259 tcg_gen_andi_tl(LSB, (VAL), 1); \
260 tcg_gen_xori_tl(LSB, LSB, 1); \
261 } while (0)
262 #define fLSBNEWNOT(PNUM) \
263 do { \
264 tcg_gen_andi_tl(LSB, (PNUM), 1); \
265 tcg_gen_xori_tl(LSB, LSB, 1); \
266 } while (0)
267 #else
268 #define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
269 #define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
270 #define fLSBNEW0NOT (!fLSBNEW0)
271 #define fLSBNEW1NOT (!fLSBNEW1)
272 #endif
273
274 #define fNEWREG(VAL) ((int32_t)(VAL))
275
276 #define fNEWREG_ST(VAL) (VAL)
277
278 #define fVSATUVALN(N, VAL) \
279 ({ \
280 (((int64_t)(VAL)) < 0) ? 0 : ((1LL << (N)) - 1); \
281 })
282 #define fSATUVALN(N, VAL) \
283 ({ \
284 fSET_OVERFLOW(); \
285 ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
286 })
287 #define fSATVALN(N, VAL) \
288 ({ \
289 fSET_OVERFLOW(); \
290 ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
291 })
292 #define fVSATVALN(N, VAL) \
293 ({ \
294 ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
295 })
296 #define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL)
297 #define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL)
298 #define fSATN(N, VAL) \
299 ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
300 #define fVSATN(N, VAL) \
301 ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATVALN(N, VAL))
302 #define fADDSAT64(DST, A, B) \
303 do { \
304 uint64_t __a = fCAST8u(A); \
305 uint64_t __b = fCAST8u(B); \
306 uint64_t __sum = __a + __b; \
307 uint64_t __xor = __a ^ __b; \
308 const uint64_t __mask = 0x8000000000000000ULL; \
309 if (__xor & __mask) { \
310 DST = __sum; \
311 } \
312 else if ((__a ^ __sum) & __mask) { \
313 if (__sum & __mask) { \
314 DST = 0x7FFFFFFFFFFFFFFFLL; \
315 fSET_OVERFLOW(); \
316 } else { \
317 DST = 0x8000000000000000LL; \
318 fSET_OVERFLOW(); \
319 } \
320 } else { \
321 DST = __sum; \
322 } \
323 } while (0)
324 #define fVSATUN(N, VAL) \
325 ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATUVALN(N, VAL))
326 #define fSATUN(N, VAL) \
327 ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
328 #define fSATH(VAL) (fSATN(16, VAL))
329 #define fSATUH(VAL) (fSATUN(16, VAL))
330 #define fVSATH(VAL) (fVSATN(16, VAL))
331 #define fVSATUH(VAL) (fVSATUN(16, VAL))
332 #define fSATUB(VAL) (fSATUN(8, VAL))
333 #define fSATB(VAL) (fSATN(8, VAL))
334 #define fVSATUB(VAL) (fVSATUN(8, VAL))
335 #define fVSATB(VAL) (fVSATN(8, VAL))
336 #define fIMMEXT(IMM) (IMM = IMM)
337 #define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
338
339 #define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
340
341 #ifdef QEMU_GENERATE
342 static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift)
343 {
344 /*
345 * Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual
346 *
347 * The "I" value from a modifier register is divided into two pieces
348 * LSB bits 23:17
349 * MSB bits 31:28
350 * The value is signed
351 *
352 * At the end we shift the result according to the shift argument
353 */
354 TCGv msb = tcg_temp_new();
355 TCGv lsb = tcg_temp_new();
356
357 tcg_gen_extract_tl(lsb, val, 17, 7);
358 tcg_gen_sari_tl(msb, val, 21);
359 tcg_gen_deposit_tl(result, msb, lsb, 0, 7);
360
361 tcg_gen_shli_tl(result, result, shift);
362 return result;
363 }
364 #define fREAD_IREG(VAL, SHIFT) gen_read_ireg(ireg, (VAL), (SHIFT))
365 #else
366 #define fREAD_IREG(VAL) \
367 (fSXTN(11, 64, (((VAL) & 0xf0000000) >> 21) | ((VAL >> 17) & 0x7f)))
368 #endif
369
370 #define fREAD_LR() (READ_REG(HEX_REG_LR))
371
372 #define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A)
373 #define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A)
374 #define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A)
375
376 #define fREAD_SP() (READ_REG(HEX_REG_SP))
377 #define fREAD_LC0 (READ_REG(HEX_REG_LC0))
378 #define fREAD_LC1 (READ_REG(HEX_REG_LC1))
379 #define fREAD_SA0 (READ_REG(HEX_REG_SA0))
380 #define fREAD_SA1 (READ_REG(HEX_REG_SA1))
381 #define fREAD_FP() (READ_REG(HEX_REG_FP))
382 #ifdef FIXME
383 /* Figure out how to get insn->extension_valid to helper */
384 #define fREAD_GP() \
385 (insn->extension_valid ? 0 : READ_REG(HEX_REG_GP))
386 #else
387 #define fREAD_GP() READ_REG(HEX_REG_GP)
388 #endif
389 #define fREAD_PC() (PC)
390
391 #define fREAD_NPC() (next_PC & (0xfffffffe))
392
393 #define fREAD_P0() (READ_PREG(0))
394 #define fREAD_P3() (READ_PREG(3))
395
396 #define fCHECK_PCALIGN(A)
397
398 #define fWRITE_NPC(A) write_new_pc(env, pkt_has_multi_cof != 0, A)
399
400 #define fBRANCH(LOC, TYPE) fWRITE_NPC(LOC)
401 #define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
402 #define fHINTJR(TARGET) { /* Not modelled in qemu */}
403 #define fWRITE_LOOP_REGS0(START, COUNT) \
404 do { \
405 WRITE_RREG(HEX_REG_LC0, COUNT); \
406 WRITE_RREG(HEX_REG_SA0, START); \
407 } while (0)
408 #define fWRITE_LOOP_REGS1(START, COUNT) \
409 do { \
410 WRITE_RREG(HEX_REG_LC1, COUNT); \
411 WRITE_RREG(HEX_REG_SA1, START);\
412 } while (0)
413 #define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL)
414 #define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL)
415
416 #define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
417 #define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
418 #define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
419 #define fWRITE_P0(VAL) WRITE_PREG(0, VAL)
420 #define fWRITE_P1(VAL) WRITE_PREG(1, VAL)
421 #define fWRITE_P2(VAL) WRITE_PREG(2, VAL)
422 #define fWRITE_P3(VAL) WRITE_PREG(3, VAL)
423 #define fPART1(WORK) if (part1) { WORK; return; }
424 #define fCAST4u(A) ((uint32_t)(A))
425 #define fCAST4s(A) ((int32_t)(A))
426 #define fCAST8u(A) ((uint64_t)(A))
427 #define fCAST8s(A) ((int64_t)(A))
428 #define fCAST2_2s(A) ((int16_t)(A))
429 #define fCAST2_2u(A) ((uint16_t)(A))
430 #define fCAST4_4s(A) ((int32_t)(A))
431 #define fCAST4_4u(A) ((uint32_t)(A))
432 #define fCAST4_8s(A) ((int64_t)((int32_t)(A)))
433 #define fCAST4_8u(A) ((uint64_t)((uint32_t)(A)))
434 #define fCAST8_8s(A) ((int64_t)(A))
435 #define fCAST8_8u(A) ((uint64_t)(A))
436 #define fCAST2_8s(A) ((int64_t)((int16_t)(A)))
437 #define fCAST2_8u(A) ((uint64_t)((uint16_t)(A)))
438 #define fZE8_16(A) ((int16_t)((uint8_t)(A)))
439 #define fSE8_16(A) ((int16_t)((int8_t)(A)))
440 #define fSE16_32(A) ((int32_t)((int16_t)(A)))
441 #define fZE16_32(A) ((uint32_t)((uint16_t)(A)))
442 #define fSE32_64(A) ((int64_t)((int32_t)(A)))
443 #define fZE32_64(A) ((uint64_t)((uint32_t)(A)))
444 #define fSE8_32(A) ((int32_t)((int8_t)(A)))
445 #define fZE8_32(A) ((int32_t)((uint8_t)(A)))
446 #define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
447 #define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
448 #define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
449 #define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
450 #define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
451 #define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
452 #define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
453 #define fMPY16US(A, B) fMPY16SU(B, A)
454 #define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
455 #define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
456 #define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
457 #define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
458 #define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
459 #define fROUND(A) (A + 0x8000)
460 #define fCLIP(DST, SRC, U) \
461 do { \
462 int32_t maxv = (1 << U) - 1; \
463 int32_t minv = -(1 << U); \
464 DST = fMIN(maxv, fMAX(SRC, minv)); \
465 } while (0)
466 #define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
467 #define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
468 #define fCRNDN(A, N) (conv_round(A, N))
469 #define fADD128(A, B) (int128_add(A, B))
470 #define fSUB128(A, B) (int128_sub(A, B))
471 #define fSHIFTR128(A, B) (int128_rshift(A, B))
472 #define fSHIFTL128(A, B) (int128_lshift(A, B))
473 #define fAND128(A, B) (int128_and(A, B))
474 #define fCAST8S_16S(A) (int128_exts64(A))
475 #define fCAST16S_8S(A) (int128_getlo(A))
476
477 #ifdef QEMU_GENERATE
478 #define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM)
479 #define fEA_RRs(REG, REG2, SCALE) \
480 do { \
481 TCGv tmp = tcg_temp_new(); \
482 tcg_gen_shli_tl(tmp, REG2, SCALE); \
483 tcg_gen_add_tl(EA, REG, tmp); \
484 } while (0)
485 #define fEA_IRs(IMM, REG, SCALE) \
486 do { \
487 tcg_gen_shli_tl(EA, REG, SCALE); \
488 tcg_gen_addi_tl(EA, EA, IMM); \
489 } while (0)
490 #else
491 #define fEA_RI(REG, IMM) \
492 do { \
493 EA = REG + IMM; \
494 } while (0)
495 #define fEA_RRs(REG, REG2, SCALE) \
496 do { \
497 EA = REG + (REG2 << SCALE); \
498 } while (0)
499 #define fEA_IRs(IMM, REG, SCALE) \
500 do { \
501 EA = IMM + (REG << SCALE); \
502 } while (0)
503 #endif
504
505 #ifdef QEMU_GENERATE
506 #define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
507 #define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
508 #define fEA_BREVR(REG) gen_helper_fbrev(EA, REG)
509 #define fPM_I(REG, IMM) tcg_gen_addi_tl(REG, REG, IMM)
510 #define fPM_M(REG, MVAL) tcg_gen_add_tl(REG, REG, MVAL)
511 #define fPM_CIRI(REG, IMM, MVAL) \
512 do { \
513 TCGv tcgv_siV = tcg_constant_tl(siV); \
514 gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \
515 hex_gpr[HEX_REG_CS0 + MuN]); \
516 } while (0)
517 #else
518 #define fEA_IMM(IMM) do { EA = (IMM); } while (0)
519 #define fEA_REG(REG) do { EA = (REG); } while (0)
520 #define fEA_GPI(IMM) do { EA = (fREAD_GP() + (IMM)); } while (0)
521 #define fPM_I(REG, IMM) do { REG = REG + (IMM); } while (0)
522 #define fPM_M(REG, MVAL) do { REG = REG + (MVAL); } while (0)
523 #endif
524 #define fSCALE(N, A) (((int64_t)(A)) << N)
525 #define fVSATW(A) fVSATN(32, ((long long)A))
526 #define fSATW(A) fSATN(32, ((long long)A))
527 #define fVSAT(A) fVSATN(32, (A))
528 #define fSAT(A) fSATN(32, (A))
529 #define fSAT_ORIG_SHL(A, ORIG_REG) \
530 ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \
531 ? fSATVALN(32, ((int32_t)(ORIG_REG))) \
532 : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
533 : fSAT(A)))
534 #define fPASS(A) A
535 #define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
536 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
537 : (fCAST##REGSTYPE(SRC) << (SHAMT)))
538 #define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
539 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
540 #define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
541 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
542 #define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
543 (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
544 : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
545 #define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
546 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
547 : (fCAST##REGSTYPE(SRC) >> (SHAMT)))
548 #define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
549 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
550 #define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
551 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
552 #define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
553 (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
554 << ((-(SHAMT)) - 1)) << 1, (SRC)) \
555 : (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
556 #define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
557 #define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
558 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
559 #define fROTL(SRC, SHAMT, REGSTYPE) \
560 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
561 ((fCAST##REGSTYPE##u(SRC) >> \
562 ((sizeof(SRC) * 8) - (SHAMT))))))
563 #define fROTR(SRC, SHAMT, REGSTYPE) \
564 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
565 ((fCAST##REGSTYPE##u(SRC) << \
566 ((sizeof(SRC) * 8) - (SHAMT))))))
567 #define fASHIFTL(SRC, SHAMT, REGSTYPE) \
568 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
569
570 #ifdef QEMU_GENERATE
571 #define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
572 #else
573 #define fLOAD(NUM, SIZE, SIGN, EA, DST) \
574 DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA)
575 #endif
576
577 #define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
578
579 #define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY)
580 #define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
581 #define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
582
583 #ifdef CONFIG_USER_ONLY
584 #define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */
585 #else
586 /* System mode not implemented yet */
587 #define fFRAMECHECK(ADDR, EA) g_assert_not_reached();
588 #endif
589
590 #ifdef QEMU_GENERATE
591 #define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
592 gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
593 #endif
594
595 #ifdef QEMU_GENERATE
596 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot)
597 #else
598 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
599 #endif
600
601 #ifdef QEMU_GENERATE
602 #define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
603 gen_store_conditional##SIZE(ctx, PRED, EA, SRC);
604 #endif
605
606 #ifdef QEMU_GENERATE
607 #define GETBYTE_FUNC(X) \
608 __builtin_choose_expr(TYPE_TCGV(X), \
609 gen_get_byte, \
610 __builtin_choose_expr(TYPE_TCGV_I64(X), \
611 gen_get_byte_i64, (void)0))
612 #define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true)
613 #define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false)
614 #else
615 #define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff))
616 #define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff))
617 #endif
618
619 #define fSETBYTE(N, DST, VAL) \
620 do { \
621 DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
622 (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
623 } while (0)
624
625 #ifdef QEMU_GENERATE
626 #define fGETHALF(N, SRC) gen_get_half(HALF, N, SRC, true)
627 #define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false)
628 #else
629 #define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff))
630 #define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff))
631 #endif
632 #define fSETHALF(N, DST, VAL) \
633 do { \
634 DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
635 (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
636 } while (0)
637 #define fSETHALFw fSETHALF
638 #define fSETHALFd fSETHALF
639
640 #define fGETWORD(N, SRC) \
641 ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
642 #define fGETUWORD(N, SRC) \
643 ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
644
645 #define fSETWORD(N, DST, VAL) \
646 do { \
647 DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
648 (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
649 } while (0)
650
651 #define fSETBIT(N, DST, VAL) \
652 do { \
653 DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \
654 } while (0)
655
656 #define fGETBIT(N, SRC) (((SRC) >> N) & 1)
657 #define fSETBITS(HI, LO, DST, VAL) \
658 do { \
659 int j; \
660 for (j = LO; j <= HI; j++) { \
661 fSETBIT(j, DST, VAL); \
662 } \
663 } while (0)
664 #define fCOUNTONES_2(VAL) ctpop16(VAL)
665 #define fCOUNTONES_4(VAL) ctpop32(VAL)
666 #define fCOUNTONES_8(VAL) ctpop64(VAL)
667 #define fBREV_8(VAL) revbit64(VAL)
668 #define fBREV_4(VAL) revbit32(VAL)
669 #define fCL1_8(VAL) clo64(VAL)
670 #define fCL1_4(VAL) clo32(VAL)
671 #define fCL1_2(VAL) (clz32(~(uint16_t)(VAL) & 0xffff) - 16)
672 #define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
673 #define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
674 #define fHIDE(A) A
675 #define fCONSTLL(A) A##LL
676 #define fECHO(A) (A)
677
678 #define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
679 #define fPAUSE(IMM)
680
681 #define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
682 ((VAL) << reg_field_info[FIELD].offset)
683 #define fGET_REG_FIELD_MASK(FIELD) \
684 (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
685 #define fREAD_REG_FIELD(REG, FIELD) \
686 fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
687 reg_field_info[FIELD].width, \
688 reg_field_info[FIELD].offset)
689 #define fGET_FIELD(VAL, FIELD)
690 #define fSET_FIELD(VAL, FIELD, NEWVAL)
691 #define fBARRIER()
692 #define fSYNCH()
693 #define fISYNC()
694 #define fDCFETCH(REG) \
695 do { (void)REG; } while (0) /* Nothing to do in qemu */
696 #define fICINVA(REG) \
697 do { (void)REG; } while (0) /* Nothing to do in qemu */
698 #define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS)
699 #define fDCCLEANA(REG) \
700 do { (void)REG; } while (0) /* Nothing to do in qemu */
701 #define fDCCLEANINVA(REG) \
702 do { (void)REG; } while (0) /* Nothing to do in qemu */
703
704 #define fDCZEROA(REG) do { env->dczero_addr = (REG); } while (0)
705
706 #define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
707 STRBITNUM) /* Nothing */
708
709
710 #endif