]> git.proxmox.com Git - mirror_qemu.git/blob - target/hexagon/macros.h
Hexagon HVX (target/hexagon) fix bug in HVX saturate instructions
[mirror_qemu.git] / target / hexagon / macros.h
1 /*
2 * Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #ifndef HEXAGON_MACROS_H
19 #define HEXAGON_MACROS_H
20
21 #include "cpu.h"
22 #include "hex_regs.h"
23 #include "reg_fields.h"
24
25 #ifdef QEMU_GENERATE
26 #define READ_REG(dest, NUM) gen_read_reg(dest, NUM)
27 #else
28 #define READ_REG(NUM) (env->gpr[(NUM)])
29 #define READ_PREG(NUM) (env->pred[NUM])
30
31 #define WRITE_RREG(NUM, VAL) log_reg_write(env, NUM, VAL, slot)
32 #define WRITE_PREG(NUM, VAL) log_pred_write(env, NUM, VAL)
33 #endif
34
35 #define PCALIGN 4
36 #define PCALIGN_MASK (PCALIGN - 1)
37
38 #define GET_FIELD(FIELD, REGIN) \
39 fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
40 reg_field_info[FIELD].offset)
41
42 #ifdef QEMU_GENERATE
43 #define GET_USR_FIELD(FIELD, DST) \
44 tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
45 reg_field_info[FIELD].offset, \
46 reg_field_info[FIELD].width)
47
48 #define TYPE_INT(X) __builtin_types_compatible_p(typeof(X), int)
49 #define TYPE_TCGV(X) __builtin_types_compatible_p(typeof(X), TCGv)
50 #define TYPE_TCGV_I64(X) __builtin_types_compatible_p(typeof(X), TCGv_i64)
51
52 #define SET_USR_FIELD_FUNC(X) \
53 __builtin_choose_expr(TYPE_INT(X), \
54 gen_set_usr_fieldi, \
55 __builtin_choose_expr(TYPE_TCGV(X), \
56 gen_set_usr_field, (void)0))
57 #define SET_USR_FIELD(FIELD, VAL) \
58 SET_USR_FIELD_FUNC(VAL)(FIELD, VAL)
59 #else
60 #define GET_USR_FIELD(FIELD) \
61 fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
62 reg_field_info[FIELD].offset)
63
64 #define SET_USR_FIELD(FIELD, VAL) \
65 fINSERT_BITS(env->new_value[HEX_REG_USR], reg_field_info[FIELD].width, \
66 reg_field_info[FIELD].offset, (VAL))
67 #endif
68
69 #ifdef QEMU_GENERATE
70 /*
71 * Section 5.5 of the Hexagon V67 Programmer's Reference Manual
72 *
73 * Slot 1 store with slot 0 load
74 * A slot 1 store operation with a slot 0 load operation can appear in a packet.
75 * The packet attribute :mem_noshuf inhibits the instruction reordering that
76 * would otherwise be done by the assembler. For example:
77 * {
78 * memw(R5) = R2 // slot 1 store
79 * R3 = memh(R6) // slot 0 load
80 * }:mem_noshuf
81 * Unlike most packetized operations, these memory operations are not executed
82 * in parallel (Section 3.3.1). Instead, the store instruction in Slot 1
83 * effectively executes first, followed by the load instruction in Slot 0. If
84 * the addresses of the two operations are overlapping, the load will receive
85 * the newly stored data. This feature is supported in processor versions
86 * V65 or greater.
87 *
88 *
89 * For qemu, we look for a load in slot 0 when there is a store in slot 1
90 * in the same packet. When we see this, we call a helper that merges the
91 * bytes from the store buffer with the value loaded from memory.
92 */
93 #define CHECK_NOSHUF \
94 do { \
95 if (insn->slot == 0 && pkt->pkt_has_store_s1) { \
96 process_store(ctx, pkt, 1); \
97 } \
98 } while (0)
99
100 #define MEM_LOAD1s(DST, VA) \
101 do { \
102 CHECK_NOSHUF; \
103 tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \
104 } while (0)
105 #define MEM_LOAD1u(DST, VA) \
106 do { \
107 CHECK_NOSHUF; \
108 tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \
109 } while (0)
110 #define MEM_LOAD2s(DST, VA) \
111 do { \
112 CHECK_NOSHUF; \
113 tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \
114 } while (0)
115 #define MEM_LOAD2u(DST, VA) \
116 do { \
117 CHECK_NOSHUF; \
118 tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \
119 } while (0)
120 #define MEM_LOAD4s(DST, VA) \
121 do { \
122 CHECK_NOSHUF; \
123 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
124 } while (0)
125 #define MEM_LOAD4u(DST, VA) \
126 do { \
127 CHECK_NOSHUF; \
128 tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
129 } while (0)
130 #define MEM_LOAD8u(DST, VA) \
131 do { \
132 CHECK_NOSHUF; \
133 tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \
134 } while (0)
135
136 #define MEM_STORE1_FUNC(X) \
137 __builtin_choose_expr(TYPE_INT(X), \
138 gen_store1i, \
139 __builtin_choose_expr(TYPE_TCGV(X), \
140 gen_store1, (void)0))
141 #define MEM_STORE1(VA, DATA, SLOT) \
142 MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
143
144 #define MEM_STORE2_FUNC(X) \
145 __builtin_choose_expr(TYPE_INT(X), \
146 gen_store2i, \
147 __builtin_choose_expr(TYPE_TCGV(X), \
148 gen_store2, (void)0))
149 #define MEM_STORE2(VA, DATA, SLOT) \
150 MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
151
152 #define MEM_STORE4_FUNC(X) \
153 __builtin_choose_expr(TYPE_INT(X), \
154 gen_store4i, \
155 __builtin_choose_expr(TYPE_TCGV(X), \
156 gen_store4, (void)0))
157 #define MEM_STORE4(VA, DATA, SLOT) \
158 MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
159
160 #define MEM_STORE8_FUNC(X) \
161 __builtin_choose_expr(TYPE_INT(X), \
162 gen_store8i, \
163 __builtin_choose_expr(TYPE_TCGV_I64(X), \
164 gen_store8, (void)0))
165 #define MEM_STORE8(VA, DATA, SLOT) \
166 MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
167 #else
168 #define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA))
169 #define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA))
170 #define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA))
171 #define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA))
172 #define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA))
173 #define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA))
174 #define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA))
175 #define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA))
176
177 #define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
178 #define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
179 #define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
180 #define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
181 #endif
182
183 #define CANCEL cancel_slot(env, slot)
184
185 #define LOAD_CANCEL(EA) do { CANCEL; } while (0)
186
187 #ifdef QEMU_GENERATE
188 static inline void gen_pred_cancel(TCGv pred, int slot_num)
189 {
190 TCGv slot_mask = tcg_temp_new();
191 TCGv tmp = tcg_temp_new();
192 TCGv zero = tcg_constant_tl(0);
193 tcg_gen_ori_tl(slot_mask, hex_slot_cancelled, 1 << slot_num);
194 tcg_gen_andi_tl(tmp, pred, 1);
195 tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero,
196 slot_mask, hex_slot_cancelled);
197 tcg_temp_free(slot_mask);
198 tcg_temp_free(tmp);
199 }
200 #define PRED_LOAD_CANCEL(PRED, EA) \
201 gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot)
202 #endif
203
204 #define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
205
206 #define fMAX(A, B) (((A) > (B)) ? (A) : (B))
207
208 #define fMIN(A, B) (((A) < (B)) ? (A) : (B))
209
210 #define fABS(A) (((A) < 0) ? (-(A)) : (A))
211 #define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
212 REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG)
213 #define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
214 ((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL)
215 #define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
216 (fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
217 #define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
218 (((HIBIT) - (LOWBIT) + 1) ? \
219 extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \
220 0LL)
221 #define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \
222 do { \
223 int width = ((HIBIT) - (LOWBIT) + 1); \
224 INREG = (width >= 0 ? \
225 deposit64((INREG), (LOWBIT), width, (INVAL)) : \
226 INREG); \
227 } while (0)
228
229 #define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
230
231 #ifdef QEMU_GENERATE
232 #define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
233 #else
234 #define fLSBOLD(VAL) ((VAL) & 1)
235 #endif
236
237 #ifdef QEMU_GENERATE
238 #define fLSBNEW(PVAL) tcg_gen_andi_tl(LSB, (PVAL), 1)
239 #define fLSBNEW0 tcg_gen_andi_tl(LSB, hex_new_pred_value[0], 1)
240 #define fLSBNEW1 tcg_gen_andi_tl(LSB, hex_new_pred_value[1], 1)
241 #else
242 #define fLSBNEW(PVAL) ((PVAL) & 1)
243 #define fLSBNEW0 (env->new_pred_value[0] & 1)
244 #define fLSBNEW1 (env->new_pred_value[1] & 1)
245 #endif
246
247 #ifdef QEMU_GENERATE
248 #define fLSBOLDNOT(VAL) \
249 do { \
250 tcg_gen_andi_tl(LSB, (VAL), 1); \
251 tcg_gen_xori_tl(LSB, LSB, 1); \
252 } while (0)
253 #define fLSBNEWNOT(PNUM) \
254 do { \
255 tcg_gen_andi_tl(LSB, (PNUM), 1); \
256 tcg_gen_xori_tl(LSB, LSB, 1); \
257 } while (0)
258 #else
259 #define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
260 #define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
261 #define fLSBNEW0NOT (!fLSBNEW0)
262 #define fLSBNEW1NOT (!fLSBNEW1)
263 #endif
264
265 #define fNEWREG(VAL) ((int32_t)(VAL))
266
267 #define fNEWREG_ST(VAL) (VAL)
268
269 #define fVSATUVALN(N, VAL) \
270 ({ \
271 (((int64_t)(VAL)) < 0) ? 0 : ((1LL << (N)) - 1); \
272 })
273 #define fSATUVALN(N, VAL) \
274 ({ \
275 fSET_OVERFLOW(); \
276 ((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
277 })
278 #define fSATVALN(N, VAL) \
279 ({ \
280 fSET_OVERFLOW(); \
281 ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
282 })
283 #define fVSATVALN(N, VAL) \
284 ({ \
285 ((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
286 })
287 #define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL)
288 #define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL)
289 #define fSATN(N, VAL) \
290 ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
291 #define fVSATN(N, VAL) \
292 ((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATVALN(N, VAL))
293 #define fADDSAT64(DST, A, B) \
294 do { \
295 uint64_t __a = fCAST8u(A); \
296 uint64_t __b = fCAST8u(B); \
297 uint64_t __sum = __a + __b; \
298 uint64_t __xor = __a ^ __b; \
299 const uint64_t __mask = 0x8000000000000000ULL; \
300 if (__xor & __mask) { \
301 DST = __sum; \
302 } \
303 else if ((__a ^ __sum) & __mask) { \
304 if (__sum & __mask) { \
305 DST = 0x7FFFFFFFFFFFFFFFLL; \
306 fSET_OVERFLOW(); \
307 } else { \
308 DST = 0x8000000000000000LL; \
309 fSET_OVERFLOW(); \
310 } \
311 } else { \
312 DST = __sum; \
313 } \
314 } while (0)
315 #define fVSATUN(N, VAL) \
316 ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATUVALN(N, VAL))
317 #define fSATUN(N, VAL) \
318 ((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
319 #define fSATH(VAL) (fSATN(16, VAL))
320 #define fSATUH(VAL) (fSATUN(16, VAL))
321 #define fVSATH(VAL) (fVSATN(16, VAL))
322 #define fVSATUH(VAL) (fVSATUN(16, VAL))
323 #define fSATUB(VAL) (fSATUN(8, VAL))
324 #define fSATB(VAL) (fSATN(8, VAL))
325 #define fVSATUB(VAL) (fVSATUN(8, VAL))
326 #define fVSATB(VAL) (fVSATN(8, VAL))
327 #define fIMMEXT(IMM) (IMM = IMM)
328 #define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
329
330 #define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
331
332 #ifdef QEMU_GENERATE
333 static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift)
334 {
335 /*
336 * Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual
337 *
338 * The "I" value from a modifier register is divided into two pieces
339 * LSB bits 23:17
340 * MSB bits 31:28
341 * The value is signed
342 *
343 * At the end we shift the result according to the shift argument
344 */
345 TCGv msb = tcg_temp_new();
346 TCGv lsb = tcg_temp_new();
347
348 tcg_gen_extract_tl(lsb, val, 17, 7);
349 tcg_gen_sari_tl(msb, val, 21);
350 tcg_gen_deposit_tl(result, msb, lsb, 0, 7);
351
352 tcg_gen_shli_tl(result, result, shift);
353
354 tcg_temp_free(msb);
355 tcg_temp_free(lsb);
356
357 return result;
358 }
359 #define fREAD_IREG(VAL, SHIFT) gen_read_ireg(ireg, (VAL), (SHIFT))
360 #else
361 #define fREAD_IREG(VAL) \
362 (fSXTN(11, 64, (((VAL) & 0xf0000000) >> 21) | ((VAL >> 17) & 0x7f)))
363 #endif
364
365 #define fREAD_LR() (READ_REG(HEX_REG_LR))
366
367 #define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A)
368 #define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A)
369 #define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A)
370
371 #define fREAD_SP() (READ_REG(HEX_REG_SP))
372 #define fREAD_LC0 (READ_REG(HEX_REG_LC0))
373 #define fREAD_LC1 (READ_REG(HEX_REG_LC1))
374 #define fREAD_SA0 (READ_REG(HEX_REG_SA0))
375 #define fREAD_SA1 (READ_REG(HEX_REG_SA1))
376 #define fREAD_FP() (READ_REG(HEX_REG_FP))
377 #ifdef FIXME
378 /* Figure out how to get insn->extension_valid to helper */
379 #define fREAD_GP() \
380 (insn->extension_valid ? 0 : READ_REG(HEX_REG_GP))
381 #else
382 #define fREAD_GP() READ_REG(HEX_REG_GP)
383 #endif
384 #define fREAD_PC() (READ_REG(HEX_REG_PC))
385
386 #define fREAD_NPC() (env->next_PC & (0xfffffffe))
387
388 #define fREAD_P0() (READ_PREG(0))
389 #define fREAD_P3() (READ_PREG(3))
390
391 #define fCHECK_PCALIGN(A)
392
393 #define fWRITE_NPC(A) write_new_pc(env, A)
394
395 #define fBRANCH(LOC, TYPE) fWRITE_NPC(LOC)
396 #define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
397 #define fHINTJR(TARGET) { /* Not modelled in qemu */}
398 #define fCALL(A) \
399 do { \
400 fWRITE_LR(fREAD_NPC()); \
401 fBRANCH(A, COF_TYPE_CALL); \
402 } while (0)
403 #define fCALLR(A) \
404 do { \
405 fWRITE_LR(fREAD_NPC()); \
406 fBRANCH(A, COF_TYPE_CALLR); \
407 } while (0)
408 #define fWRITE_LOOP_REGS0(START, COUNT) \
409 do { \
410 WRITE_RREG(HEX_REG_LC0, COUNT); \
411 WRITE_RREG(HEX_REG_SA0, START); \
412 } while (0)
413 #define fWRITE_LOOP_REGS1(START, COUNT) \
414 do { \
415 WRITE_RREG(HEX_REG_LC1, COUNT); \
416 WRITE_RREG(HEX_REG_SA1, START);\
417 } while (0)
418 #define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL)
419 #define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL)
420
421 #define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
422 #define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
423 #define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
424 #define fWRITE_P0(VAL) WRITE_PREG(0, VAL)
425 #define fWRITE_P1(VAL) WRITE_PREG(1, VAL)
426 #define fWRITE_P2(VAL) WRITE_PREG(2, VAL)
427 #define fWRITE_P3(VAL) WRITE_PREG(3, VAL)
428 #define fPART1(WORK) if (part1) { WORK; return; }
429 #define fCAST4u(A) ((uint32_t)(A))
430 #define fCAST4s(A) ((int32_t)(A))
431 #define fCAST8u(A) ((uint64_t)(A))
432 #define fCAST8s(A) ((int64_t)(A))
433 #define fCAST2_2s(A) ((int16_t)(A))
434 #define fCAST2_2u(A) ((uint16_t)(A))
435 #define fCAST4_4s(A) ((int32_t)(A))
436 #define fCAST4_4u(A) ((uint32_t)(A))
437 #define fCAST4_8s(A) ((int64_t)((int32_t)(A)))
438 #define fCAST4_8u(A) ((uint64_t)((uint32_t)(A)))
439 #define fCAST8_8s(A) ((int64_t)(A))
440 #define fCAST8_8u(A) ((uint64_t)(A))
441 #define fCAST2_8s(A) ((int64_t)((int16_t)(A)))
442 #define fCAST2_8u(A) ((uint64_t)((uint16_t)(A)))
443 #define fZE8_16(A) ((int16_t)((uint8_t)(A)))
444 #define fSE8_16(A) ((int16_t)((int8_t)(A)))
445 #define fSE16_32(A) ((int32_t)((int16_t)(A)))
446 #define fZE16_32(A) ((uint32_t)((uint16_t)(A)))
447 #define fSE32_64(A) ((int64_t)((int32_t)(A)))
448 #define fZE32_64(A) ((uint64_t)((uint32_t)(A)))
449 #define fSE8_32(A) ((int32_t)((int8_t)(A)))
450 #define fZE8_32(A) ((int32_t)((uint8_t)(A)))
451 #define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
452 #define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
453 #define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
454 #define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
455 #define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
456 #define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
457 #define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
458 #define fMPY16US(A, B) fMPY16SU(B, A)
459 #define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
460 #define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
461 #define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
462 #define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
463 #define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
464 #define fROUND(A) (A + 0x8000)
465 #define fCLIP(DST, SRC, U) \
466 do { \
467 int32_t maxv = (1 << U) - 1; \
468 int32_t minv = -(1 << U); \
469 DST = fMIN(maxv, fMAX(SRC, minv)); \
470 } while (0)
471 #define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
472 #define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
473 #define fCRNDN(A, N) (conv_round(A, N))
474 #define fADD128(A, B) (int128_add(A, B))
475 #define fSUB128(A, B) (int128_sub(A, B))
476 #define fSHIFTR128(A, B) (int128_rshift(A, B))
477 #define fSHIFTL128(A, B) (int128_lshift(A, B))
478 #define fAND128(A, B) (int128_and(A, B))
479 #define fCAST8S_16S(A) (int128_exts64(A))
480 #define fCAST16S_8S(A) (int128_getlo(A))
481
482 #ifdef QEMU_GENERATE
483 #define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM)
484 #define fEA_RRs(REG, REG2, SCALE) \
485 do { \
486 TCGv tmp = tcg_temp_new(); \
487 tcg_gen_shli_tl(tmp, REG2, SCALE); \
488 tcg_gen_add_tl(EA, REG, tmp); \
489 tcg_temp_free(tmp); \
490 } while (0)
491 #define fEA_IRs(IMM, REG, SCALE) \
492 do { \
493 tcg_gen_shli_tl(EA, REG, SCALE); \
494 tcg_gen_addi_tl(EA, EA, IMM); \
495 } while (0)
496 #else
497 #define fEA_RI(REG, IMM) \
498 do { \
499 EA = REG + IMM; \
500 } while (0)
501 #define fEA_RRs(REG, REG2, SCALE) \
502 do { \
503 EA = REG + (REG2 << SCALE); \
504 } while (0)
505 #define fEA_IRs(IMM, REG, SCALE) \
506 do { \
507 EA = IMM + (REG << SCALE); \
508 } while (0)
509 #endif
510
511 #ifdef QEMU_GENERATE
512 #define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
513 #define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
514 #define fEA_BREVR(REG) gen_helper_fbrev(EA, REG)
515 #define fPM_I(REG, IMM) tcg_gen_addi_tl(REG, REG, IMM)
516 #define fPM_M(REG, MVAL) tcg_gen_add_tl(REG, REG, MVAL)
517 #define fPM_CIRI(REG, IMM, MVAL) \
518 do { \
519 TCGv tcgv_siV = tcg_constant_tl(siV); \
520 gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \
521 hex_gpr[HEX_REG_CS0 + MuN]); \
522 } while (0)
523 #else
524 #define fEA_IMM(IMM) do { EA = (IMM); } while (0)
525 #define fEA_REG(REG) do { EA = (REG); } while (0)
526 #define fEA_GPI(IMM) do { EA = (fREAD_GP() + (IMM)); } while (0)
527 #define fPM_I(REG, IMM) do { REG = REG + (IMM); } while (0)
528 #define fPM_M(REG, MVAL) do { REG = REG + (MVAL); } while (0)
529 #endif
530 #define fSCALE(N, A) (((int64_t)(A)) << N)
531 #define fVSATW(A) fVSATN(32, ((long long)A))
532 #define fSATW(A) fSATN(32, ((long long)A))
533 #define fVSAT(A) fVSATN(32, (A))
534 #define fSAT(A) fSATN(32, (A))
535 #define fSAT_ORIG_SHL(A, ORIG_REG) \
536 ((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \
537 ? fSATVALN(32, ((int32_t)(ORIG_REG))) \
538 : ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
539 : fSAT(A)))
540 #define fPASS(A) A
541 #define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
542 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
543 : (fCAST##REGSTYPE(SRC) << (SHAMT)))
544 #define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
545 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
546 #define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
547 fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
548 #define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
549 (((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
550 : fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
551 #define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
552 (((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
553 : (fCAST##REGSTYPE(SRC) >> (SHAMT)))
554 #define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
555 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
556 #define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
557 fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
558 #define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
559 (((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
560 << ((-(SHAMT)) - 1)) << 1, (SRC)) \
561 : (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
562 #define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
563 #define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
564 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
565 #define fROTL(SRC, SHAMT, REGSTYPE) \
566 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
567 ((fCAST##REGSTYPE##u(SRC) >> \
568 ((sizeof(SRC) * 8) - (SHAMT))))))
569 #define fROTR(SRC, SHAMT, REGSTYPE) \
570 (((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
571 ((fCAST##REGSTYPE##u(SRC) << \
572 ((sizeof(SRC) * 8) - (SHAMT))))))
573 #define fASHIFTL(SRC, SHAMT, REGSTYPE) \
574 (((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
575
576 #ifdef QEMU_GENERATE
577 #define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
578 #else
579 #define fLOAD(NUM, SIZE, SIGN, EA, DST) \
580 DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA)
581 #endif
582
583 #define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
584
585 #define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY)
586 #define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
587 #define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
588
589 #ifdef CONFIG_USER_ONLY
590 #define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */
591 #else
592 /* System mode not implemented yet */
593 #define fFRAMECHECK(ADDR, EA) g_assert_not_reached();
594 #endif
595
596 #ifdef QEMU_GENERATE
597 #define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
598 gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
599 #endif
600
601 #ifdef QEMU_GENERATE
602 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot)
603 #else
604 #define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
605 #endif
606
607 #ifdef QEMU_GENERATE
608 #define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
609 gen_store_conditional##SIZE(ctx, PRED, EA, SRC);
610 #endif
611
612 #ifdef QEMU_GENERATE
613 #define GETBYTE_FUNC(X) \
614 __builtin_choose_expr(TYPE_TCGV(X), \
615 gen_get_byte, \
616 __builtin_choose_expr(TYPE_TCGV_I64(X), \
617 gen_get_byte_i64, (void)0))
618 #define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true)
619 #define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false)
620 #else
621 #define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff))
622 #define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff))
623 #endif
624
625 #define fSETBYTE(N, DST, VAL) \
626 do { \
627 DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
628 (((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
629 } while (0)
630
631 #ifdef QEMU_GENERATE
632 #define fGETHALF(N, SRC) gen_get_half(HALF, N, SRC, true)
633 #define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false)
634 #else
635 #define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff))
636 #define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff))
637 #endif
638 #define fSETHALF(N, DST, VAL) \
639 do { \
640 DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
641 (((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
642 } while (0)
643 #define fSETHALFw fSETHALF
644 #define fSETHALFd fSETHALF
645
646 #define fGETWORD(N, SRC) \
647 ((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
648 #define fGETUWORD(N, SRC) \
649 ((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
650
651 #define fSETWORD(N, DST, VAL) \
652 do { \
653 DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
654 (((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
655 } while (0)
656
657 #define fSETBIT(N, DST, VAL) \
658 do { \
659 DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \
660 } while (0)
661
662 #define fGETBIT(N, SRC) (((SRC) >> N) & 1)
663 #define fSETBITS(HI, LO, DST, VAL) \
664 do { \
665 int j; \
666 for (j = LO; j <= HI; j++) { \
667 fSETBIT(j, DST, VAL); \
668 } \
669 } while (0)
670 #define fCOUNTONES_2(VAL) ctpop16(VAL)
671 #define fCOUNTONES_4(VAL) ctpop32(VAL)
672 #define fCOUNTONES_8(VAL) ctpop64(VAL)
673 #define fBREV_8(VAL) revbit64(VAL)
674 #define fBREV_4(VAL) revbit32(VAL)
675 #define fCL1_8(VAL) clo64(VAL)
676 #define fCL1_4(VAL) clo32(VAL)
677 #define fCL1_2(VAL) (clz32(~(uint16_t)(VAL) & 0xffff) - 16)
678 #define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
679 #define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
680 #define fHIDE(A) A
681 #define fCONSTLL(A) A##LL
682 #define fECHO(A) (A)
683
684 #define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
685 #define fPAUSE(IMM)
686
687 #define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
688 ((VAL) << reg_field_info[FIELD].offset)
689 #define fGET_REG_FIELD_MASK(FIELD) \
690 (((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
691 #define fREAD_REG_FIELD(REG, FIELD) \
692 fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
693 reg_field_info[FIELD].width, \
694 reg_field_info[FIELD].offset)
695 #define fGET_FIELD(VAL, FIELD)
696 #define fSET_FIELD(VAL, FIELD, NEWVAL)
697 #define fBARRIER()
698 #define fSYNCH()
699 #define fISYNC()
700 #define fDCFETCH(REG) \
701 do { (void)REG; } while (0) /* Nothing to do in qemu */
702 #define fICINVA(REG) \
703 do { (void)REG; } while (0) /* Nothing to do in qemu */
704 #define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS)
705 #define fDCCLEANA(REG) \
706 do { (void)REG; } while (0) /* Nothing to do in qemu */
707 #define fDCCLEANINVA(REG) \
708 do { (void)REG; } while (0) /* Nothing to do in qemu */
709
710 #define fDCZEROA(REG) do { env->dczero_addr = (REG); } while (0)
711
712 #define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
713 STRBITNUM) /* Nothing */
714
715
716 #endif