]> git.proxmox.com Git - mirror_qemu.git/blob - target/hexagon/mmvec/macros.h
Merge tag 'pull-hex-20231018' of https://github.com/quic/qemu into staging
[mirror_qemu.git] / target / hexagon / mmvec / macros.h
1 /*
2 * Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #ifndef HEXAGON_MMVEC_MACROS_H
19 #define HEXAGON_MMVEC_MACROS_H
20
21 #include "qemu/host-utils.h"
22 #include "arch.h"
23 #include "mmvec/system_ext_mmvec.h"
24
25 #ifndef QEMU_GENERATE
26 #define VdV (*(MMVector *)(VdV_void))
27 #define VsV (*(MMVector *)(VsV_void))
28 #define VuV (*(MMVector *)(VuV_void))
29 #define VvV (*(MMVector *)(VvV_void))
30 #define VwV (*(MMVector *)(VwV_void))
31 #define VxV (*(MMVector *)(VxV_void))
32 #define VyV (*(MMVector *)(VyV_void))
33
34 #define VddV (*(MMVectorPair *)(VddV_void))
35 #define VuuV (*(MMVectorPair *)(VuuV_void))
36 #define VvvV (*(MMVectorPair *)(VvvV_void))
37 #define VxxV (*(MMVectorPair *)(VxxV_void))
38
39 #define QeV (*(MMQReg *)(QeV_void))
40 #define QdV (*(MMQReg *)(QdV_void))
41 #define QsV (*(MMQReg *)(QsV_void))
42 #define QtV (*(MMQReg *)(QtV_void))
43 #define QuV (*(MMQReg *)(QuV_void))
44 #define QvV (*(MMQReg *)(QvV_void))
45 #define QxV (*(MMQReg *)(QxV_void))
46 #endif
47
48 #define LOG_VTCM_BYTE(VA, MASK, VAL, IDX) \
49 do { \
50 env->vtcm_log.data.ub[IDX] = (VAL); \
51 if (MASK) { \
52 set_bit((IDX), env->vtcm_log.mask); \
53 } else { \
54 clear_bit((IDX), env->vtcm_log.mask); \
55 } \
56 env->vtcm_log.va[IDX] = (VA); \
57 } while (0)
58
59 #define fNOTQ(VAL) \
60 ({ \
61 MMQReg _ret; \
62 int _i_; \
63 for (_i_ = 0; _i_ < fVECSIZE() / 64; _i_++) { \
64 _ret.ud[_i_] = ~VAL.ud[_i_]; \
65 } \
66 _ret;\
67 })
68 #define fGETQBITS(REG, WIDTH, MASK, BITNO) \
69 ((MASK) & (REG.w[(BITNO) >> 5] >> ((BITNO) & 0x1f)))
70 #define fGETQBIT(REG, BITNO) fGETQBITS(REG, 1, 1, BITNO)
71 #define fGENMASKW(QREG, IDX) \
72 (((fGETQBIT(QREG, (IDX * 4 + 0)) ? 0xFF : 0x0) << 0) | \
73 ((fGETQBIT(QREG, (IDX * 4 + 1)) ? 0xFF : 0x0) << 8) | \
74 ((fGETQBIT(QREG, (IDX * 4 + 2)) ? 0xFF : 0x0) << 16) | \
75 ((fGETQBIT(QREG, (IDX * 4 + 3)) ? 0xFF : 0x0) << 24))
76 #define fGETNIBBLE(IDX, SRC) (fSXTN(4, 8, (SRC >> (4 * IDX)) & 0xF))
77 #define fGETCRUMB(IDX, SRC) (fSXTN(2, 8, (SRC >> (2 * IDX)) & 0x3))
78 #define fGETCRUMB_SYMMETRIC(IDX, SRC) \
79 ((fGETCRUMB(IDX, SRC) >= 0 ? (2 - fGETCRUMB(IDX, SRC)) \
80 : fGETCRUMB(IDX, SRC)))
81 #define fGENMASKH(QREG, IDX) \
82 (((fGETQBIT(QREG, (IDX * 2 + 0)) ? 0xFF : 0x0) << 0) | \
83 ((fGETQBIT(QREG, (IDX * 2 + 1)) ? 0xFF : 0x0) << 8))
84 #define fGETMASKW(VREG, QREG, IDX) (VREG.w[IDX] & fGENMASKW((QREG), IDX))
85 #define fGETMASKH(VREG, QREG, IDX) (VREG.h[IDX] & fGENMASKH((QREG), IDX))
86 #define fCONDMASK8(QREG, IDX, YESVAL, NOVAL) \
87 (fGETQBIT(QREG, IDX) ? (YESVAL) : (NOVAL))
88 #define fCONDMASK16(QREG, IDX, YESVAL, NOVAL) \
89 ((fGENMASKH(QREG, IDX) & (YESVAL)) | \
90 (fGENMASKH(fNOTQ(QREG), IDX) & (NOVAL)))
91 #define fCONDMASK32(QREG, IDX, YESVAL, NOVAL) \
92 ((fGENMASKW(QREG, IDX) & (YESVAL)) | \
93 (fGENMASKW(fNOTQ(QREG), IDX) & (NOVAL)))
94 #define fSETQBITS(REG, WIDTH, MASK, BITNO, VAL) \
95 do { \
96 uint32_t __TMP = (VAL); \
97 REG.w[(BITNO) >> 5] &= ~((MASK) << ((BITNO) & 0x1f)); \
98 REG.w[(BITNO) >> 5] |= (((__TMP) & (MASK)) << ((BITNO) & 0x1f)); \
99 } while (0)
100 #define fSETQBIT(REG, BITNO, VAL) fSETQBITS(REG, 1, 1, BITNO, VAL)
101 #define fVBYTES() (fVECSIZE())
102 #define fVALIGN(ADDR, LOG2_ALIGNMENT) (ADDR = ADDR & ~(LOG2_ALIGNMENT - 1))
103 #define fVLASTBYTE(ADDR, LOG2_ALIGNMENT) (ADDR = ADDR | (LOG2_ALIGNMENT - 1))
104 #define fVELEM(WIDTH) ((fVECSIZE() * 8) / WIDTH)
105 #define fVECLOGSIZE() (7)
106 #define fVECSIZE() (1 << fVECLOGSIZE())
107 #define fSWAPB(A, B) do { uint8_t tmp = A; A = B; B = tmp; } while (0)
108 #define fV_AL_CHECK(EA, MASK) \
109 if ((EA) & (MASK)) { \
110 warn("aligning misaligned vector. EA=%08x", (EA)); \
111 }
112 #define fSCATTER_INIT(REGION_START, LENGTH, ELEMENT_SIZE) \
113 mem_vector_scatter_init(env)
114 #define fGATHER_INIT(REGION_START, LENGTH, ELEMENT_SIZE) \
115 mem_vector_gather_init(env)
116 #define fSCATTER_FINISH(OP)
117 #define fGATHER_FINISH()
118 #define fLOG_SCATTER_OP(SIZE) \
119 do { \
120 env->vtcm_log.op = true; \
121 env->vtcm_log.op_size = SIZE; \
122 } while (0)
123 #define fVLOG_VTCM_WORD_INCREMENT(EA, OFFSET, INC, IDX, ALIGNMENT, LEN) \
124 do { \
125 int log_byte = 0; \
126 target_ulong va = EA; \
127 target_ulong va_high = EA + LEN; \
128 for (int i0 = 0; i0 < 4; i0++) { \
129 log_byte = (va + i0) <= va_high; \
130 LOG_VTCM_BYTE(va + i0, log_byte, INC. ub[4 * IDX + i0], \
131 4 * IDX + i0); \
132 } \
133 } while (0)
134 #define fVLOG_VTCM_HALFWORD_INCREMENT(EA, OFFSET, INC, IDX, ALIGNMENT, LEN) \
135 do { \
136 int log_byte = 0; \
137 target_ulong va = EA; \
138 target_ulong va_high = EA + LEN; \
139 for (int i0 = 0; i0 < 2; i0++) { \
140 log_byte = (va + i0) <= va_high; \
141 LOG_VTCM_BYTE(va + i0, log_byte, INC.ub[2 * IDX + i0], \
142 2 * IDX + i0); \
143 } \
144 } while (0)
145
146 #define fVLOG_VTCM_HALFWORD_INCREMENT_DV(EA, OFFSET, INC, IDX, IDX2, IDX_H, \
147 ALIGNMENT, LEN) \
148 do { \
149 int log_byte = 0; \
150 target_ulong va = EA; \
151 target_ulong va_high = EA + LEN; \
152 for (int i0 = 0; i0 < 2; i0++) { \
153 log_byte = (va + i0) <= va_high; \
154 LOG_VTCM_BYTE(va + i0, log_byte, INC.ub[2 * IDX + i0], \
155 2 * IDX + i0); \
156 } \
157 } while (0)
158
159 /* NOTE - Will this always be tmp_VRegs[0]; */
160 #define GATHER_FUNCTION(EA, OFFSET, IDX, LEN, ELEMENT_SIZE, BANK_IDX, QVAL) \
161 do { \
162 int i0; \
163 target_ulong va = EA; \
164 target_ulong va_high = EA + LEN; \
165 uintptr_t ra = GETPC(); \
166 int log_byte = 0; \
167 for (i0 = 0; i0 < ELEMENT_SIZE; i0++) { \
168 log_byte = ((va + i0) <= va_high) && QVAL; \
169 uint8_t B; \
170 B = cpu_ldub_data_ra(env, EA + i0, ra); \
171 env->tmp_VRegs[0].ub[ELEMENT_SIZE * IDX + i0] = B; \
172 LOG_VTCM_BYTE(va + i0, log_byte, B, ELEMENT_SIZE * IDX + i0); \
173 } \
174 } while (0)
175 #define fVLOG_VTCM_GATHER_WORD(EA, OFFSET, IDX, LEN) \
176 do { \
177 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, 1); \
178 } while (0)
179 #define fVLOG_VTCM_GATHER_HALFWORD(EA, OFFSET, IDX, LEN) \
180 do { \
181 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, 1); \
182 } while (0)
183 #define fVLOG_VTCM_GATHER_HALFWORD_DV(EA, OFFSET, IDX, IDX2, IDX_H, LEN) \
184 do { \
185 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, (2 * IDX2 + IDX_H), 1); \
186 } while (0)
187 #define fVLOG_VTCM_GATHER_WORDQ(EA, OFFSET, IDX, Q, LEN) \
188 do { \
189 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, \
190 fGETQBIT(QsV, 4 * IDX + i0)); \
191 } while (0)
192 #define fVLOG_VTCM_GATHER_HALFWORDQ(EA, OFFSET, IDX, Q, LEN) \
193 do { \
194 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, \
195 fGETQBIT(QsV, 2 * IDX + i0)); \
196 } while (0)
197 #define fVLOG_VTCM_GATHER_HALFWORDQ_DV(EA, OFFSET, IDX, IDX2, IDX_H, Q, LEN) \
198 do { \
199 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, (2 * IDX2 + IDX_H), \
200 fGETQBIT(QsV, 2 * IDX + i0)); \
201 } while (0)
202 #define SCATTER_OP_WRITE_TO_MEM(TYPE) \
203 do { \
204 ra = GETPC(); \
205 for (int i = 0; i < sizeof(MMVector); i += sizeof(TYPE)) { \
206 if (test_bit(i, env->vtcm_log.mask)) { \
207 TYPE dst = 0; \
208 TYPE inc = 0; \
209 for (int j = 0; j < sizeof(TYPE); j++) { \
210 uint8_t val; \
211 val = cpu_ldub_data_ra(env, env->vtcm_log.va[i + j], ra); \
212 dst |= val << (8 * j); \
213 inc |= env->vtcm_log.data.ub[j + i] << (8 * j); \
214 clear_bit(j + i, env->vtcm_log.mask); \
215 env->vtcm_log.data.ub[j + i] = 0; \
216 } \
217 dst += inc; \
218 for (int j = 0; j < sizeof(TYPE); j++) { \
219 cpu_stb_data_ra(env, env->vtcm_log.va[i + j], \
220 (dst >> (8 * j)) & 0xFF, ra); \
221 } \
222 } \
223 } \
224 } while (0)
225 #define SCATTER_OP_PROBE_MEM(TYPE, MMU_IDX, RETADDR) \
226 do { \
227 for (int i = 0; i < sizeof(MMVector); i += sizeof(TYPE)) { \
228 if (test_bit(i, env->vtcm_log.mask)) { \
229 for (int j = 0; j < sizeof(TYPE); j++) { \
230 probe_read(env, env->vtcm_log.va[i + j], 1, \
231 MMU_IDX, RETADDR); \
232 probe_write(env, env->vtcm_log.va[i + j], 1, \
233 MMU_IDX, RETADDR); \
234 } \
235 } \
236 } \
237 } while (0)
238 #define SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, ELEM_SIZE, BANK_IDX, QVAL, IN) \
239 do { \
240 int i0; \
241 target_ulong va = EA; \
242 target_ulong va_high = EA + LEN; \
243 int log_byte = 0; \
244 for (i0 = 0; i0 < ELEM_SIZE; i0++) { \
245 log_byte = ((va + i0) <= va_high) && QVAL; \
246 LOG_VTCM_BYTE(va + i0, log_byte, IN.ub[ELEM_SIZE * IDX + i0], \
247 ELEM_SIZE * IDX + i0); \
248 } \
249 } while (0)
250 #define fVLOG_VTCM_HALFWORD(EA, OFFSET, IN, IDX, LEN) \
251 do { \
252 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, 1, IN); \
253 } while (0)
254 #define fVLOG_VTCM_WORD(EA, OFFSET, IN, IDX, LEN) \
255 do { \
256 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, 1, IN); \
257 } while (0)
258 #define fVLOG_VTCM_HALFWORDQ(EA, OFFSET, IN, IDX, Q, LEN) \
259 do { \
260 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, \
261 fGETQBIT(QsV, 2 * IDX + i0), IN); \
262 } while (0)
263 #define fVLOG_VTCM_WORDQ(EA, OFFSET, IN, IDX, Q, LEN) \
264 do { \
265 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, \
266 fGETQBIT(QsV, 4 * IDX + i0), IN); \
267 } while (0)
268 #define fVLOG_VTCM_HALFWORD_DV(EA, OFFSET, IN, IDX, IDX2, IDX_H, LEN) \
269 do { \
270 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, \
271 (2 * IDX2 + IDX_H), 1, IN); \
272 } while (0)
273 #define fVLOG_VTCM_HALFWORDQ_DV(EA, OFFSET, IN, IDX, Q, IDX2, IDX_H, LEN) \
274 do { \
275 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, (2 * IDX2 + IDX_H), \
276 fGETQBIT(QsV, 2 * IDX + i0), IN); \
277 } while (0)
278 #define fSTORERELEASE(EA, TYPE) \
279 do { \
280 fV_AL_CHECK(EA, fVECSIZE() - 1); \
281 } while (0)
282 #ifdef QEMU_GENERATE
283 #define fLOADMMV(EA, DST) gen_vreg_load(ctx, DST##_off, EA, true)
284 #endif
285 #ifdef QEMU_GENERATE
286 #define fLOADMMVU(EA, DST) gen_vreg_load(ctx, DST##_off, EA, false)
287 #endif
288 #ifdef QEMU_GENERATE
289 #define fSTOREMMV(EA, SRC) \
290 gen_vreg_store(ctx, EA, SRC##_off, insn->slot, true)
291 #endif
292 #ifdef QEMU_GENERATE
293 #define fSTOREMMVQ(EA, SRC, MASK) \
294 gen_vreg_masked_store(ctx, EA, SRC##_off, MASK##_off, insn->slot, false)
295 #endif
296 #ifdef QEMU_GENERATE
297 #define fSTOREMMVNQ(EA, SRC, MASK) \
298 gen_vreg_masked_store(ctx, EA, SRC##_off, MASK##_off, insn->slot, true)
299 #endif
300 #ifdef QEMU_GENERATE
301 #define fSTOREMMVU(EA, SRC) \
302 gen_vreg_store(ctx, EA, SRC##_off, insn->slot, false)
303 #endif
304 #define fVFOREACH(WIDTH, VAR) for (VAR = 0; VAR < fVELEM(WIDTH); VAR++)
305 #define fVARRAY_ELEMENT_ACCESS(ARRAY, TYPE, INDEX) \
306 ARRAY.v[(INDEX) / (fVECSIZE() / (sizeof(ARRAY.TYPE[0])))].TYPE[(INDEX) % \
307 (fVECSIZE() / (sizeof(ARRAY.TYPE[0])))]
308
309 #define fVSATDW(U, V) fVSATW(((((long long)U) << 32) | fZXTN(32, 64, V)))
310 #define fVASL_SATHI(U, V) fVSATW(((U) << 1) | ((V) >> 31))
311 #define fVUADDSAT(WIDTH, U, V) \
312 fVSATUN(WIDTH, fZXTN(WIDTH, 2 * WIDTH, U) + fZXTN(WIDTH, 2 * WIDTH, V))
313 #define fVSADDSAT(WIDTH, U, V) \
314 fVSATN(WIDTH, fSXTN(WIDTH, 2 * WIDTH, U) + fSXTN(WIDTH, 2 * WIDTH, V))
315 #define fVUSUBSAT(WIDTH, U, V) \
316 fVSATUN(WIDTH, fZXTN(WIDTH, 2 * WIDTH, U) - fZXTN(WIDTH, 2 * WIDTH, V))
317 #define fVSSUBSAT(WIDTH, U, V) \
318 fVSATN(WIDTH, fSXTN(WIDTH, 2 * WIDTH, U) - fSXTN(WIDTH, 2 * WIDTH, V))
319 #define fVAVGU(WIDTH, U, V) \
320 ((fZXTN(WIDTH, 2 * WIDTH, U) + fZXTN(WIDTH, 2 * WIDTH, V)) >> 1)
321 #define fVAVGURND(WIDTH, U, V) \
322 ((fZXTN(WIDTH, 2 * WIDTH, U) + fZXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1)
323 #define fVNAVGU(WIDTH, U, V) \
324 ((fZXTN(WIDTH, 2 * WIDTH, U) - fZXTN(WIDTH, 2 * WIDTH, V)) >> 1)
325 #define fVNAVGURNDSAT(WIDTH, U, V) \
326 fVSATUN(WIDTH, ((fZXTN(WIDTH, 2 * WIDTH, U) - \
327 fZXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1))
328 #define fVAVGS(WIDTH, U, V) \
329 ((fSXTN(WIDTH, 2 * WIDTH, U) + fSXTN(WIDTH, 2 * WIDTH, V)) >> 1)
330 #define fVAVGSRND(WIDTH, U, V) \
331 ((fSXTN(WIDTH, 2 * WIDTH, U) + fSXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1)
332 #define fVNAVGS(WIDTH, U, V) \
333 ((fSXTN(WIDTH, 2 * WIDTH, U) - fSXTN(WIDTH, 2 * WIDTH, V)) >> 1)
334 #define fVNAVGSRND(WIDTH, U, V) \
335 ((fSXTN(WIDTH, 2 * WIDTH, U) - fSXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1)
336 #define fVNAVGSRNDSAT(WIDTH, U, V) \
337 fVSATN(WIDTH, ((fSXTN(WIDTH, 2 * WIDTH, U) - \
338 fSXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1))
339 #define fVNOROUND(VAL, SHAMT) VAL
340 #define fVNOSAT(VAL) VAL
341 #define fVROUND(VAL, SHAMT) \
342 ((VAL) + (((SHAMT) > 0) ? (1LL << ((SHAMT) - 1)) : 0))
343 #define fCARRY_FROM_ADD32(A, B, C) \
344 (((fZXTN(32, 64, A) + fZXTN(32, 64, B) + C) >> 32) & 1)
345 #define fUARCH_NOTE_PUMP_4X()
346 #define fUARCH_NOTE_PUMP_2X()
347
348 #define IV1DEAD()
349
350 #define fGET10BIT(COE, VAL, POS) \
351 do { \
352 COE = (sextract32(VAL, 24 + 2 * POS, 2) << 8) | \
353 extract32(VAL, POS * 8, 8); \
354 } while (0);
355
356 #endif